
Technical Report TR05-011

Ensuring Color Consistency across Multiple Cameras

Adrian Ilie and Greg Welch
Department of Computer Science

University of North Carolina at Chapel Hill
adyilie@cs.unc.edu, welch@cs.unc.edu

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es
Red

0 100 200
0

50

100

150

200

250

Target values
C

am
er

a
va

lu
es

Green

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Blue

Figure 1: Differences in responses of 8 cameras. Left image: 3D RGB color space plot. Each colored sphere represents the position
of a camera sample in the RGB color space. Each connected cluster of colored spheres corresponds to one of the 24 samples in a
ColorCheckerTM chart. The size of each sphere is proportional to the intra-sample variance. The small white spheres at the origin of
each cluster represent the position in the RGB color space of the corresponding color samples in the chart. Right 3 images: The measured
color for each channel, camera and sample, plotted with respect to the corresponding target values. Each individual curve represents
samples taken from a particular camera.

Abstract

Most multi-camera vision applications assume a single
common color response for all cameras. However different
cameras—even of the same type—can exhibit radically dif-
ferent color responses, and the differences can cause signifi-
cant errors in scene interpretation. To address this problem
we have developed a robust system aimed at inter-camera
color consistency. Our method consists of two phases: an
iterative closed-loop calibration phase that searches for the
per-camera hardware register settings that best balance lin-
earity and dynamic range, followed by a refinement phase
that computes the per-camera parametric values for an ad-
ditional software-based color mapping.

1. Introduction
Many of the computer vision and computer graphics appli-
cations that have emerged during the last decade make use
of multiple images. Some applications involve the acquisi-
tion of multiple images using a single camera [12, 8, 20].

While using a single camera ensures a consistent color re-
sponse between images, the approach limits the applicabil-
ity of these methods to static scenes. Alternatively one can
capture dynamic scenes using multiple cameras [9, 23, 21].
However such applications require consistent inter-camera
color responses to produce artifact-free results. Figure 2 il-
lustrates some artifacts in a reconstruction produced by an
implementation of the 3D reconstruction system in [24].

Figure 2: Artifacts in the 3D reconstruction of a physical cookie
box. Left: A reconstruction using uncalibrated cameras with
the same hardware settings. Right: A reconstruction with color-
calibrated cameras. Most artifacts are eliminated and the colors
have a more natural look.

1

Unfortunately most cameras–even of the same type–do
not exhibit consistent responses. Figure 1 illustrates the
differences between the responses of 8 cameras to the 24
colors of the GretagMacbeth [5] ColorCheckerTM chart
imaged under the same illumination conditions and using
the same hardware settings. The data shows that color
values are significantly different from camera to camera.
This is due for example to aperture variations, fabrication
variations, electrical noise, and interpolation artifacts aris-
ing from the reconstruction of a full-resolution color image
from a half-resolution Bayer pattern image [3].

To address the color matching problem we have devised
a two phase process: an iterative closed-loop calibration
phase that searches for the per-camera hardware register
settings that best balance linearity and dynamic range, fol-
lowed by a refinement phase that computes the per-camera
parametric values for an additional software-based color
mapping. Variations of these phases have previously been
explored separately, however we believe the hardware and
software approaches offer complementary benefits that can
yield better results when combined. Our goal is to bring the
response curves of several cameras closer together and as
close as possible to a desired reference image, while also
minimizing the amount of noise in the images.

Note that in color science the phrase photometric cali-
bration is typically defined as setting a device to a particu-
lar state characterized during a profiling process such as the
one described in [14] and later taken into account in order
to achieve a desired behavior of the device. In computer
graphics, the same phrase is typically used to describe the
process of tuning a general model of the physical device to
best describe the specific instance of the device [4]. The first
definition corresponds to our iterative closed-loop hardware
calibration phase, and the second definition corresponds to
our software refinement phase.

2. Previous Work
Previous research aimed at color consistency falls mainly
in two categories: calibrating cameras in order to obtain
some desired response function, and processing images af-
ter acquisition. Color consistency has also been studied in
the context of projector displays [10], but these techniques
have not been extended to camera systems.

Calibrating cameras is usually performed with respect
to a known target, such as a color chart with standardized
samples [11]. Color charts have been traditionally used in
photography, and they have been recently adopted in color
research as well [1]. The closest work to our method is
presented in [7]. They acquire images of a color target,
compensate for non-uniform lighting, adjust the gains and
offsets of each color channel to calibrate each camera to
a linear response, and then apply several software post-

processing steps. They also address the scalability of cal-
ibrating a large number of cameras by automatically detect-
ing the location of the color target and using special hard-
ware attached to each camera in order to minimize traffic
over the camera connections. Although their calibration
method is different, their other contributions are applica-
ble to our method as well. We use an approach that mini-
mizes the differences between several camera images while
also observing goals such as maintaining visual fidelity and
minimizing the signal noise.

Other researchers have proposed the use of scene statis-
tics for single camera calibration [6]. Scene statistics are
used in the RingCam [13], a system for capturing panora-
mas using multiple cameras. They change the brightness
and gain of each camera to match desired “black level” and
“mean brightness” values, and then again to match colors in
the overlapping regions of adjacent cameras. While these
methods have the advantage that they do not require a color
chart, they are sensitive to the choices of desired values.

Consistency can also be obtained by software post-
processing of images. For example, [17] uses pair-wise
correlation for modeling transfer functions and a special
distance metric based on image color histograms. While
this can produce reasonable results, its complexity increases
quadratically with the number of cameras. Also, the transfer
functions computed by this approach may introduce distor-
tions and quantization errors when some parts of the color
spectrum are compressed or stretched.

3. The Calibration Process
Our method consists of two main phases: an iterative
closed-loop hardware calibration phase, and a software re-
finement phase. In the first phase we search for the per-
camera hardware register settings that best balance linear-
ity and dynamic range. We do this in two steps: first we
optimize to a known target1, and then we optimize to the
average of the results of the previous step. In the second
phase we compute the per-camera parametric values for an
additional software-based color mapping. These two phases
and the intra-phase steps are depicted in Algorithm 1, and
described in more detail in the following subsections.

3.1. Closed-Loop Calibration of Hardware

The basic idea of this first phase is to use a general opti-
mizer to search the space of hardware register values for
a state with the closest match between the colors of a tar-
get image and each camera’s images of the color chart. For
each camera, the optimizer repeatedly adjusts the register
values, acquires an image, computes the cost, and repeats

124-sample GretagMacbeth [5] ColorCheckerTM

2

Algorithm 1 Overall process.

Phase 1: Closed-Loop Calibration of Hardware
identify locations of color samples in target
Step 1: optimize to target
for each camera do

identify locations of color samples in image
repeat

minimize cost function with respect to target
until (cost < threshold) or (no improvement)

end for
Step 2: optimize to average
repeat

compute average of all cameras
designate average as the new target and identify locations of
color samples in it
for each camera do

if cost is higher than a threshold then
minimize cost function with respect to target

end if
end for

until for all cameras (cost < threshold) or (no improvement))

Phase 2: Software-Based Refinement
for each camera do

perform software refinement
end for

the process. We allow the optimizer to run until all the cam-
eras are close enough to the target image, or until there is
no significant improvement from the previous iteration. We
actually perform a variation of this procedure twice—in two
steps.

In the first step we optimize to an image of the
GretagMacbeth ColorCheckerTM chart acquired with a
device whose response function is considered ideal. The op-
timizer cost is computed as a function of the differences in
color for a predefined number of target image samples from
each camera. We compute the differences in RGB color
space using either an L1 or an L2 norm. We also include
the intra-window sample variance in the cost function as a
way to ensure that our calibration simultaneously minimizes
image noise. (Noise will increase with certain poor choices
for camera register values.) The resulting formula for the
cost function is a weighted sum of the color differences and
the intra-window sample variances:

C =

NS�
s=1

�
w|~Is − ~Ts| + (1 − w)Vs � (1)

where C is the value of the cost function, s is the sample
number, NS is the total number of samples, ~Is is the color
of image sample s, ~Ts is the color of target image sample
s, w and (1 − w) are weights (we use w = 0.5). Note that
colors are 3-element vectors, containing the 3 values for the

red, green and blue channel: e.g., ~Is = [Irs Igs Ibs].
The intra-window sample variance Vs is computed as

Vs =

√

√

√

√

WS
∑

i=1

| ~Isi − ~Is|
2

(2)

where i is the index of each pixel inside the sampling win-
dow, WS is the window size, ~Isi is the color of pixel i of
sample s, ~Is is the average pixel color over the window.

During the first step each camera will converge on some
minimum cost, however the colors in the final camera im-
ages are typically still quite different from the target colors.
This is not unexpected, as most cameras would be unable to
match the ideal target. However in practice when the cam-
eras are of the same type, their response functions (after this
first step) are reasonably similar.

In the second step of the hardware-based calibration
phase we use the same cost function, but compare with a
new target image, formed as the average for all cameras of
the final sample colors from the previous step. This guar-
antees that we have not chosen an outlier for the new tar-
get, and increases the probability that it can be matched by
all the cameras. We repeat the optimization process for all
cameras, and then compute yet another average target im-
age. We repeat this process until all the cameras are close
enough to the latest average target image, or there is no sig-
nificant improvement. In our experience, a small number
of iterations are usually sufficient. Figure 3 shows the final
result of our hardware calibration for 8 cameras of the same
type.

In both steps of the hardware-based calibration phase
(see Algorithm 1) we minimize the cost function iteratively
by using a modified Powell’s method, adapted from [18].
We chose this method because it is robust to local minima,
it does not require the derivatives of the cost function with
respect to the input parameters, and it computes the global
minimum in a reasonable number of iterations. In our im-
plementation, we use the cost function callback provided by
Powell’s method to set the current parameter values on the
camera, acquire a new image, then compute and return the
corresponding cost value. In order to minimize the chance
of choosing a local minimum instead of the global mini-
mum, we randomize the starting values of each parameter
and the order in which the parameter domains are explored.

3.2. Software-Based Refinement
Hardware settings alone are insufficient to achieve color
consistency, because their range and precision are often in-
adequate. Consequently, a more precise software refine-
ment also needs to be applied to images taken with already
calibrated cameras. However, to avoid amplifying noise,
clamping and color space distortion errors, we suggest the

3

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Red

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Green

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Blue

Figure 3: The results of the hardware calibration process. Left image: 3D RGB color space plot. Each colored sphere represents the
position of a camera sample in the RGB color space. The size of each sphere is proportional to the intra-sample variance. The small
white spheres at the origin of each cluster represent the position in the RGB color space of the corresponding color samples in the target
image. Right 3 images: The measured color for each channel, camera and sample, plotted with respect to the corresponding target values.
Each individual curve represents samples taken form a particular camera. The color values in the camera images are still far from the
corresponding target values, but they are more consistent (closer together).

impact of software refinement should be kept to a minimum.
We have explored three different post processing methods
to improve our results: linear least squares matching, a 3x3
RGB to RGB linear transform and a general polynomial
transform.

3.2.1. Linear Least Squares Matching

The simplest and fastest transform that can be applied is
linear least squares matching. We compute the coefficients
ac and bc of the best linear transforms that map the im-
age color values to the target color values for color channel
c ∈ {R,G,B}. We compute the transforms minimizing the
following functions in least square sense [22]:

NS�
s=1

(~Ics − (ac
~Tcs + bc))

2
, c ∈ {R, G, B} (3)

Here ~Ics is the component for color channel c of camera
image color ~Is, and ~Tcs is the component for color channel
c of target image color ~Ts. Figure 4 (left) shows the effect
of the transformation. In effect, we are scaling and trans-
lating the color values of each channel independently. This
procedure is fast, but often inadequate, because the other
color channels have a significant influence that is not taken
into account. These inter-channel effects are due to sev-
eral factors. One factor is the fact that the color filter ar-
rays in front of the sensor arrays let in some light from the
other channels. Another factor is the specific arrangement
of the sensor cells into color arrays, known as Bayer pat-
tern [3]. In this arrangement, each sensor cell receives only
light from one of the red, green or blue (R,G,B) color chan-
nels. The cells are arranged into a mosaic composed of 2x2
RG-GB tiles, and the final RGB image is constructed by in-
terpolation using special de-mosaicing algorithms. Some of

these algorithms introduce inter-channel effects, noticeable
around edges in the image.

3.2.2. RGB to RGB Transform

A common way to account for inter-channel effects is a 3x3
RGB to RGB transform [7]. We compute the 3x3 matrix
that best transforms the 24 color samples of a camera im-
age into the corresponding color samples of a target image.
The matrix is the solution to the following over-constrained
matrix system:

����
~I1

~I2

...
~I24

� ���
24×3

×

�� trr trg trb

tgr tgg tgb

rbr tbg tbb

��
3×3

'

����
~T1

~T2

...
~T24

� ���
24×3

(4)

This system can be rewritten as the linear system

������������������

~I1
~03

~03

~03
~I1

~03

~03
~03

~I1

~I2
~03

~03

~03
~I2

~03

~03
~03

~I2

.
~I24

~03
~03

~03
~I24

~03

~03
~03

~I24

� �����������������
72×9

×

��������������

trr

trg

trb

tgr

tgg

tgb

tbr

tbg

tbb

� �������������
9

'

����
~T T
1

~T T
2

...
~T T
24

� ���
72

⇔ A × ~t ' ~T ⇔ ~t ' Pinv(A) × ~T (5)

To simplify the notation, we grouped the matrix elements
into vectors: ~Is = [Irs Igs Ibs] is the color for image sam-
ple s, ~Ts = [Trs Tgs Tbs] is the color for target sample s,
and ~03 = [0 0 0] is a 3-component null vector. txy is the

4

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

 0 50 100 150 200 250

Red
 0

 100

 200
G

reen
 0

 100
 200

B
lue

Figure 4: Different types of software refinement. 3D RGB color space plots. Left: Sample colors after linear last squares matching. Center:
Sample colors after applying the RGB to RGB matrix transform. Right: Sample colors after applying the general polynomial transform.
The grey outlines show an example of how the color space is distorted by each transform for one of the cameras.

term that specifies how much the input from color channel
x contributes to the output of color channel y. We solve
the system in the least squares sense using singular value
decomposition to compute the pseudo-inverse of matrix A

and back substitution to compute the solution ~t. Our imple-
mentation uses the routines from [18]. Figure 4 (middle)
shows the effect of this transform.

3.2.3. General Polynomial Transform

Although the RGB to RGB matrix transform accounts for
inter-channel effects, it does not have a translation com-
ponent and does not compensate for nonlinearities in the
response functions. To account for these remaining short-
comings, we have devised a general polynomial transform.
We generalize the 3x3 RGB to RGB transform to a non-
linear transform by introducing higher degree terms to com-
pensate for the non-linearities in the response functions and
a bias term to allow translations. The general formula for
color c ∈ {r, g, b} of sample s is:

D�
k=1

�
trck

Ir
k
s + tgck

Ig
k
s + tbck

Ib
k
s � + tc0 ' Tcs (6)

where D is the degree of the polynomial approximation.
Irk

s , Igk
s and Ibk

s are the red, green and blue values for im-
age sample s, raised to power k. Trs, Tgs and Tbs are the
red, green and blue color values for target sample s. txck

is
the polynomial coefficient of the kth order term that spec-
ifies how much the input from color channel x ∈ {r, g, b}
contributes to the output of color channel c. tc0 is an addi-
tive term that allows translating the output of channel c. Our
experiments have shown that D = 2 is sufficient to attain
the level of precision required by typical applications. For

D = 2, we can write Equation 6 for all the 24 samples of
the color chart in equivalent matrix form as follows:









Ir1 Ir2

1
Ig1 Ig2

1
Ib1 Ib2

1
1

Ir2 Ir2

2
Ig2 Ig2

2
Ib2 Ib2

2
1

. .

Ir24 Ir2

24
Ig24 Ig2

24
Ib24 Ib2

24
1









24×7

×

[

trc1 trc2 tgc1 tgc2 tbc1 tbc2 tr0
]T

7
'









Tc1

Tc2

...

T c24









24

⇔ B × ~tc ' ~Tc ⇔ ~tc ' Pinv(B) × ~Tc, c ∈ {r, g, b}
(7)

Tcs is the value for color channel c ∈ {r, g, b} of target
sample s. We solve each matrix equation using singular
value decomposition to compute the pseudo-inverse of ma-
trix B and back substitution to compute the 3 solutions ~tr,
~tg and ~tb. Note that matrix B is the same for all 3 color
channels, so we only need to perform the inversion once.
Our implementation uses the routines from [18]. Figure
4 (right) shows the effect of this transform. Visually, the
general polynomial transform gives the best results, yet the
amount of distortion (shown in grey) is the largest.

4. Implementation and Results

This section describes our calibration application and dis-
cusses the results of some of our experiments.

5

4.1. Application
We have implemented a complete calibration system as an
easy to use, stand-alone, extensible application. A few ele-
ments of the user interface are shown in Figure 5.

We use square sampling windows of adjustable size, and
compute the sample color as an average in each color chan-
nel. Initially the user helps identify the sample locations by
clicking on the four corners of the color card in the cam-
era image. The application assumes the card is planar, and
arranges the sample locations compensating for perspective
effects. (If our method is applied to a large number of cam-
eras, the approach described in [7] and [21] can be applied
for automatically detecting the locations of the samples.)

The closed-loop hardware calibration phase is flexible,
offering the possibility to choose which hardware settings
are tuned, and within what interval. By default optimization
is done with Powell’s method. If time is not critical, the en-
tire hardware settings space can be explored exhaustively,
with a specified step in the domain of each setting. The cost
can be computed on raw or transformed color values, using
either an L1 or an L2 norm and flexible weighting between
the color differences and intra-sample variances. The user
is given real-time feedback showing the evolution of the
color sample values in RGB space and of the value of the
cost function. The best hardware setting values are saved
in configuration files that are later used during our acqui-
sition process. The camera response function with respect
to a chosen hardware setting can also be visualized. This
can provide insight into the limits within which the setting
should be constrained during calibration to avoid undesir-
able effects such as color saturation or excessive noise.

The software refinement phase is performed on demand,
and the effect of each transform on the color values can also
be visualized. The computed values for the coefficients of
the linear, RGB to RGB, and general polynomial transforms
are also saved in configuration files that are later used during
post-processing.

The application is written in C++, so extending it by
adding new types of cameras and cost metrics is easy by
design. Camera hardware settings are mapped to register
values, and the mappings are saved in initialization files.
Other types of cameras can be supported by writing sub-
classes of the base camera class, linking with appropriate
libraries and creating appropriate initialization files.

4.2. Results
For an implementation of the 3D reconstruction system de-
scribed in [24] We use FireWire DragonF ly cameras and
capture libraries provided by PointGrey, Inc. [16].

As shown in Figure 1 and Figure 2 (left), even though or
cameras are of the same type and we have set their registers
to the same values, their response functions are quite differ-

Table 1: Results of Hardware Calibration
Channel Before After

Mean R 7.6488 3.0524
inter-sample G 6.1958 2.3559

st. dev. B 7.9980 3.5444
Mean R 0.3220 0.2637

intra-sample G 0.3000 0.1932
st. dev. B 0.2598 0.2695

Table 2: Software Refinement Methods
Channel Hardware Linear Matrix General

R 3.0524 2.4438 2.3992 1.5170
G 2.3559 1.5098 1.7392 1.0580
B 3.5444 1.7275 1.8078 1.0547

Table 3: Matching of Sony and PointGrey
Channel Hardware Software

Mean R 11.1369 5.1854
inter-sample G 15.1733 5.8926

st. dev. B 12.6101 6.1872

ent and these differences lead to noticeable artifacts in the
3D reconstruction.

For comparison purposes, we first calibrated one cam-
era to a scanned image of the color chart2, then applied
its setting values to all the other cameras. Of all the avail-
able camera settings, we used the gain, brightness and per-
channel gain during hardware calibration. We chose appro-
priate values for the other settings and turned off camera
features such as auto white balance and auto exposure. Ta-
ble 1 shows the impact of the hardware calibration process
for all cameras.

The inter-sample standard deviation measures how far
apart the color samples in the camera images are with re-
spect to each other. This is the error we are trying to min-
imize, and the hardware calibration accomplishes this task
for all 3 color channels. The intra-sample standard devi-
ation measures the level of noise in the camera images.
While the noise in the blue channel increases slightly, the
noise in the red and green channels decreases significantly.

We then applied the software refinement process. Ta-
ble 2 shows the impact of the 3 refinement methods we
tested (linear least squares, 3x3 matrix transform and gen-
eral polynomial transform) on the error measured as mean
inter-sample standard deviation for each channel, compared
to the values after hardware calibration.

The general polynomial transform performs best accord-
ing to this error criterion. The 3x3 matrix transform per-
forms worse than the linear transform in this particular case,
due to the fact that the 3x3 matrix transform does not have a

2The chart manufacturer [5] provides color values for the chart we use,
but the values do not correspond to any color space used in practice [15].

6

Figure 5: The graphical user interface of the color matching application. Left: The main window, which shows a camera image with
the samples highlighted. Also visible are the RGB space representation of all the samples (top left), the hardware optimization settings
window (right) and the real time feedback window that shows the progress of Powell’s method’s cost function during hardware calibration
(bottom left). Top right: The batch processing window for applying the software transformations after capture. Bottom right: An example
response function graph: color values from the 6 samples of a 6-step gray scale, plotted against the gain of the camera.

translation component, and overestimates the inter-channel
effects to compensate.

There is a trade-off between the error and the amount
of distortion a transform induces. Choosing the appropriate
software refinement method is dependent upon the applica-
tion and the scene content. Applications that are more sen-
sitive to differences between camera images and deal with
scenes of average colors should choose the general poly-
nomial transform. However, if a scene contains very dark
or very bright colors that are already close to the limits of
the color space, more distortion can lead to more clamping
errors, and the linear method should be chosen instead.

We have also experimented with calibrating configura-
tions of heterogenous cameras. Our first experiment was
with a Flea camera from the same manufacturer [16]. The
available settings were not the same as for DragonF ly

cameras: the gain setting for the green channel was miss-
ing, but Flea cameras implement gamma correction. We
were able to integrate the camera into our application with
very little effort, and the result of the calibration was in-
distinguishable from a DragonF ly camera. (Both cameras
use the same type of imaging sensor.)

For a second experiment, we used a DFW − V L500
camera from Sony [19], which we integrated into our ap-

plication using the generic capture driver and libraries from
[2]. This camera was also missing the gain setting for the
green channel, but had many other settings, of which we
chose to use brightness, gain, white balance, hue, saturation
and gamma correction. Table 3 shows the result of calibrat-
ing this camera and one DragonF ly camera to the same
target.

The errors are approximately 5 times larger than when
using cameras of the same type, but within the usability
threshold for many applications. We conclude that using
cameras of different types is possible, but if high-quality
results are desired the best way to obtain them is to use
cameras of the same type or at least with the same type of
imaging sensor.

5. Conclusion and Future Work
We have shown that it is possible to calibrate several cam-
eras to a known target with high accuracy, which brings
their response curves closer together while also minimiz-
ing the noise in their images. This enables correlation-
based computer vision applications to obtain high quality
results. We have presented a complete calibration system
in the form of an easy to use, stand-alone, extensible appli-

7

cation. Our system implements a two phase process: an
iterative closed-loop hardware calibration, followed by a
single-stage software refinement.

The main limitation of our work is that cameras have to
be re-calibrated when the lighting conditions change dra-
matically. While we have not been affected by this problem
in our reconstructions, we think re-calibrating may become
impractical in some specific circumstances. Re-calibrating
without imaging the color chart is not straightforward. We
plan to investigate methods that use scene statistics [6] as
a way to make incremental adjustments to the cameras to
compensate for small changes in lighting.

Another area we plan to explore is more detailed profil-
ing of the cameras. At this time, only the best hardware
settings values and the corresponding software transforms
coefficients are saved for later use, and only for particular
lighting conditions. Profiling the cameras in more detail and
under several different lighting conditions may help avoid
the need to re-calibrate when the lighting changes.

References
[1] K. Barnard and B. Funt. “Camera characterization for color

research.” Color Research and Application, Vol. 27, No. 3,
2002, pp. 153-164.

[2] C. Baker. “CMU 1394 Digital Camera Driver.”, available at
http://www-2.cs.cmu.edu/∼iwan/1394/.

[3] B. Bayer. “Color imaging array” US Patent 3,971,065, 1976.

[4] M. Goesele. “New Acquisition Techniques for Real Objects
and Light Sources in Computer Graphics.” PhD Thesis, Max-
Planck-Institut fur Informatik, Saarbrucken, Germany, June 8
2004.

[5] GretagMacbeth Color Management Solutions http://
www.gretagmacbeth.com.

[6] M. Grossberg and S. Nayar. “What can be Known about the
Radiometric Response Function from Images?” Proceedings
of ECCV, 2002.

[7] N. Joshi “Color Calibration for Arrays of Inexpensive Im-
age Sensors”, MS Thesis, Stanford University Department of
Computer Science, March 2004.

[8] M. Levoy and P. Hanrahan. “Light Field Rendering.” Pro-
ceedings SIGGRAPH, 1996.

[9] A. Majumder, W. Seales, M. Gopi, H. Fuchs. “Immersive
teleconferencing: A New Algorithm to Generate Seamless
Panoramic Video Imagery.” Proceedings of the Seventh ACM
International Conference on Multimedia, October 30 - No-
vember 5, 1999.

[10] A. Majumder, Z. He, H. Towles, and G. Welch. “Achieving
color uniformity across multi-projector displays.” Proceed-
ings of IEEE Visualization, 2000.

[11] C. McCamy, H. Marcus, J. Davidson. “A Color-Rendition
Chart.” J. Appl. Phot. Eng., vol. 2, No. 3, 1976, pp. 95-99.

[12] L. McMillan, and G. Bishop “Plenoptic Modeling: An
Image-Based Rendering System,” Proceedings of SIG-
GRAPH 1995, Los Angeles, CA August 6-11, 1995, pp. 39-46.

[13] H. Nanda and R. Cutler. “Practical calibrations for a realtime
digital omnidirectional camera.” Proceedings of CVPR, Tech-
nical Sketch, 2001.

[14] M. Nielsen and M. Stokes. “The Creation of the sRGB ICC
Profile.” Proceedings of IS&T Sixth Color Imaging Confer-
ence: Color Science Systems and Applications, 1998.

[15] D. Pascale. “RGB Coordinates of the Macbeth Color
Checker.” Available at: http://www.babelcolor.
com/main level/download.htm.

[16] Point Grey Research Inc. http://www.ptgrey.com/.

[17] F. Porikli. “Inter-Camera Color Calibration by Cross-
Correlation Model Function”, IEEE International Conference
on Image Processing (ICIP), Vol. 2, September 2003, pp. 133-
136.

[18] W. Press, S. Teukolsky, W. Vetterling, B. Flannery. “Numer-
ical Recipes in C: The Art of Scientific Computing, Second
Edition.” Cambridge University Press, January 1993.

[19] Sony Corporation “Digital Color Camera Module DFW-
VL500.” Available at: http://www.sony.net/
Products/ISP/products/interface/DFWV500.
html.

[20] R. Szeliski and H.-Y. Shum. “Creating full view panoramic
image mosaics and environment maps.” Computer Graphics,
31(Annual Conference Series), 1997, pp 251-258.

[21] V. Vaish, B. Wilburn, and M. Levoy. “Using plane + parallax
for calibrating dense camera arrays.” Proceedings of CVPR,
2004.

[22] E. Weisstein. “Least Squares Fitting”. In MathWorld-A Wol-
fram Web Resource, http://mathworld.wolfram.
com/LeastSquaresFitting.html.

[23] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz.
“High speed video using a dense array of cameras.” Proceed-
ings of CVPR, 2004.

[24] R. Yang, “View-Dependent Pixel Coloring - A
Physically-Based Approach for 2D View Synthe-
sis.” PhD Thesis, University of North Carolina
at Chapel Hill, Computer Science Department,
http://www.cs.unc.edu/Publications/
full dissertations/yang dissertation.pdf.

Acknowledgement: This material is based upon work sup-
ported by the “3D Telepresence for Medical Consultation: Extend-
ing Medical Expertise Throughout, Between, and Beyond Hospi-
tals” project and the National Science Foundation under Grant No.
0121657.

8

