COMP 265  – Project 2

Embedded Controller Architecture (ECA)

May 2, 2001

Professor Brooks

Adrian Ilie and John Chek

3Honor Pledge

1.
Application Characteristics
4
1.1
Overview
4
1.2
Users
4
1.3
Interfacing
4
1.3.1
ACPI
4
1.3.2
SMB
4
1.3.3
ADC
5
1.3.4
PWM
5
1.3.5
Digital I/O
5
1.4
Applications
6
1.4.1
Temperature Regulation
6
1.4.2
Power Measurement
6
2.
Name-space
8
2.1
Memory
8
2.2
Working Store
8
2.3
Control Store
9
2.3.1
STATUS
9
2.3.2
Embedded Controller Status/Command (Read)
10
2.3.3
Embedded Controller Status/Command (Write)
11
2.3.4
Port CONtrol
11
2.4
Backing Store
12
2.5
Addressing
12
2.5.1
Direct addressing
12
2.5.2
Immediate addressing
13
2.6
Stacks
13
3.
Encoding
14
3.1
Data Formats
14
3.2
Instruction Formats
15
4.
Programming Model
17
5.
Operations
18
5.1
Operation List
18
5.2
Detailed Descriptions
19
6.
Instruction Sequencing
35
7.
Supervision
36
7.1
Policing Invalid Addresses
36
7.2
Interruption
36
8.
I/O
38
8.1
ACPI
38
8.2
Peripheral Devices
40
8.2.1
SMB
40
8.2.2
ADC
40
8.2.3
PWM
41
8.2.4
Digital I/O
42
9.
Rationale
43
10.
Sample Programs
48
10.1
OS ACPI Driver
48
10.2
ECA Memory Map
51
10.3
ECA Kernel
52
10.3.1
Definitions
52
10.3.2
Startup Sequence
54
10.3.3
Interrupt Handlers
54
10.3.3.1
Interrupt 0 - Exception
54
10.3.3.2
Interrupt 1 - TIMER
55
10.3.3.3
Interrupt 2 - SMB
56
10.3.3.4
Interrupt 3 - ACPI
56
10.3.4
Main Execution Loop
60
10.3.5
Temperature Regulation
62
10.3.6
Power Monitoring
66
10.3.7
Library Routines
68
10.4
ECA Kernel Performance
69
11.
Bibliography
71


Honor Pledge

“I have neither given nor received unauthorized aid while preparing this assignment.”

1. Application Characteristics

1.1 Overview

This manual describes a special‑purpose architecture for embedded control.  The Embedded Controller Architecture (ECA) provides an interface to the host Operating System (OS) for controlling interaction with peripheral devices inside personal computers.  ECA interfaces to these devices by providing ports for System Management Bus (SMB), digital Input-Output (I/O), Analog to Digital Converter (ADC), and Pulse Width Modulation (PWM). Examples of peripheral devices that may interface to ECA are fans, Light Emitting Diodes (LEDs), and thermal diodes.

1.2 Users

Engineers responsible for implementing the firmware to control peripheral devices in personal computers are the primary users of ECA.  Most of the programming is done at design time, with periodic program updates supported by remote interaction with the OS driver or specially-designed upgrade software.  Engineers responsible for electrical integration have a secondary interaction with ECA in that they must be aware of the functionality provided by it.

1.3 Interfacing

1.3.1 ACPI

ECA supports the Advanced Configuration and Power Interface (ACPI) specification for communication with the host OS.  ACPI is an industry standard specification that enables connectivity between devices in personal computers.  Architectural support for ACPI includes three registers and one interrupt which together provide ECA programmer with a private interrupt-driven interface to the protocol.  The exact function of the ACPI registers is defined in sections 2.2 and 2.3, and the interrupt is detailed in section 7.2.  It is the responsibility of the ECA programmer to provide proper handling of the standard command set (see section 8.1.1 for details) in addition to any custom commands.  ACPI requires little‑endian byte ordering.  A proper example of the kind of firmware required to support ACPI is given in section 10.3.3.4.

1.3.2 SMB

SMB is a two-wire interface through which simple power-related chips can communicate with the rest of the system. It uses I²C as its backbone. (definition from [SMB], page 1)

A system using SMB passes messages to and from devices instead of tripping individual control lines. Removing the individual control lines reduces pin count. Accepting messages ensures future expandability.

With SMB, a device can provide manufacturer information, tell the system what its model/part number is, save its state for a suspend event, report different types of errors, accept control parameters, and return its status. (description from [SMB], page 1)
SMB address space is one of the generic address spaces defined in the ACPI specification.

The SMB host interface provides a method of communicating on the SMB through a block of registers that reside in <ECA's memory> space. Some SMB host controller interfaces have special requirements that certain SMB commands are filtered by <ECA>. For example, to prevent an errant application or virus from potentially damaging the battery subsystem. This is most easily accomplished by providing the host interface controller through <ECA>, because <ECA> can easily filter out the potentially problematic commands. The SMB host controller interface allows the host processor (under control of the OS) to manage devices on the SMB. Among typical devices that reside on the SMB are smart batteries, smart chargers, contrast/backlight control, and temperature sensors. (description from [ACPI], page 275)

ECA must be able to act as an SMB host, performing the functions mentioned above. Supporting the current SMB specification requires 40 bytes of address space and a dedicated interrupt.

1.3.3 ADC

The ADC port is necessary to acquire digital information from analog signals.  This includes measurement of ambient temperature, processor temperature, processor current, and processor voltage.  Analog signals may vary from zero to five volts.  The ADC port shall provide a resolution of 8-bits.  This makes the worst case precision, with an analog reference of five volts, twenty millivolts per bit.  The best-case precision, with an analog reference of one volt, is four millivolts per bit.  The conversion error should be no worse than one half the least significant bit.  Conversions must complete within twenty microseconds of the cycle on which the conversion is started.  ECA needs to provide support for sixteen ADC channels.

1.3.4 PWM

PWM provides a method for controlling the speed of fans used for cooling processors and regulating the ambient temperature in the personal computer.  Sixteen PWM channels shall be provided.  All channels will operate at a fixed frequency of 10KHz.  This frequency accommodates the ten to fifty microsecond response times typical of personal computer fans.

1.3.5 Digital I/O

Digital I/O provides a generic method of interfacing to peripheral devices or discrete components that are not addressed by the other ports.  ECA shall provide eight inputs and eight outputs for this purpose.  The output levels shall reach their final state by the end of the cycle in which the output port write is initiated.  Similarly, the data from an input port read shall be available by the end of the cycle in which the input port read is initiated.
1.4 Applications

1.4.1 Temperature Regulation

Processor and ambient temperature regulation is a primary concern in personal computers. Although temperature regulation may be implemented in a variety of ways, there are three general steps to regulating the temperature with an embedded controller.

The first step is to determine the reference or maximum allowable temperature. This information may be programmed into the embedded controller, communicated to the embedded controller by an ECA ACPI OS driver running on the host processor, or both.  

Second, the temperature of the thermal zone being regulated needs to be measured.  Temperature is measured by converting an analog signal, typically from a thermal diode, to a digital value.  This may be done externally with an ADC that supports SMB or internally with the on-board 8-channel ADC provided in the ECA.  The resolution required for the analog signal is 8-bits.  The smallest amount of temperature that can be represented is calculated by the range of the voltage divided by the number of bits of resolution.

Thermal diodes may be located throughout the personal computer to measure ambient temperatures.  On-die temperatures may be measured on processors such as the Intel® Pentium® II, III, IV and Sun® UltraSPARC™ that support internal temperature measurement.

The final step is to adjust the fan speed to compensate for the difference between the measured and reference temperatures.  Fan speed may be controlled with digital outputs, PWM, Digital to Analog Converter (DAC), or with SMB messages if the fan is SMB compliant.  ECA supports control directly with digital outputs, PWM, and SMB.  DAC control is indirectly supported in that DAC can be synthesized with the digital outputs of ECA.
1.4.2 Power Measurement

Power measurement, as it pertains to PC embedded control, is primarily concerned with providing feedback to the ECA ACPI OS driver on processor power consumption.  This is because PC processors can draw large amounts, more than fifty watts, of power.  Power measurement and monitoring is especially critical for systems powered by limited power sources such as batteries.

The first step in providing processor power consumption feedback is to measure the voltage and current.  Processor voltage and current may range from zero to five volts or from zero to fifteen amps respectively.  These measurements are obtained using the ADC port whose interface requirements are described in section 1.3.3.

Power is calculated by multiplying the measured voltage and current.  A correct calculation of instantaneous power assumes that voltage and current are sampled at the same exact point in time.  However, a programming convention of performing the measurements in immediate succession combined with proper external sampling circuitry is sufficient.  Averaging may be performed with ECA or at the OS driver level to achieve a greater level of precision.
2. Name-space

2.1 Memory

ECA provides 16-bits of address space that is shared equally by the program and data memory.

The program memory space starts at address 0000h and ends at address 7FFFh. It is implemented as FLASH memory and should be written only at the factory or during upgrades. The actual amount of memory may differ from implementation to implementation.

The data memory space starts at address 8000h and ends at address FFFFh. It is implemented as standard RAM. The actual amount of memory may differ from implementation to implementation.

2.2 Working Store

ECA has a working store of 12 8-bit registers, divided into two groups: the general‑purpose register file and the special register file.

The general-purpose register file consists of 8 general-purpose registers, named R0...R7. These registers can be addressed either individually, using their names, or in pairs: R0:R1 as P0, R2:R3 as P1, R4:R5 as P2, and R6:R7 as P3.

The special register file consists of 4 special registers, named ECDATA, PDATA, C0 and C1. These registers can be addressed individually, using their names.

The Embedded Controller DATA register (ECDATA) is ECA's equivalent for the EC_DATA register defined in the ACPI Embedded Controller Specification. "It is a read/write register that allows additional command bytes to be issued to the embedded controller, and allows the OS to read data returned by the embedded controller." (definition from [ACPI], page 270).

The Port DATA register (PDATA) is a special register used by ECA to exchange data with the I/O, ADC, and PWM ports.

The Counter0 (C0) and Counter1 (C1) are the registers ECA uses for counters that help keep track of time. Section 7.2 describes the timer interrupt, and section 10.3.3.2 shows an example of using the counter registers to keep track of time.

2.3 Control Store

ECA has a control store of 4 8-bit registers: ECSCR, ECSCW, PCON and STATUS. The control store also includes a 16 bit Instruction Address register and a Stack Pointer that are not accessible to the programmer.

The ECSCR and ECSCW registers are included to support the ACPI Embedded Controller Specification. Their descriptions are quoted from the specification. Before we describe them however, we need to define two terms: SCI and SMI.

The System Control Interrupt (SCI) is "a system interrupt used by <ECA> to notify the OS of ACPI events." (definition from [ACPI], page 30)
The System Management Interrupt (SMI) is "an OS-transparent interrupt generated by interrupt events on legacy systems. <...> Hardware platforms that want to support both legacy operating systems and ACPI systems must support a way of re-mapping the interrupt events between SMIs and SCIs when switching between ACPI and legacy models." (definition from [ACPI], page 30)
ECA only needs to support SCIs, and communicates with the OS through its Device Driver, since SMIs were designed to support non ACPI‑compliant legacy devices. 

2.3.1 STATUS

The STATUS register contains the bits used to characterize ECA's state and operating modes. 

	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	ACPI
	SMB
	TIMER
	CARRY
	ZERO
	unused
	unused
	unused


Table 2.3.1: STATUS bit specification

Legend:

ACPI

1 = the ACPI interrupt is enabled

0 = the ACPI interrupt is not enabled

SMB

1 = the SMB interrupt is enabled

0 = the SMB interrupt is not enabled

TIMER
1 = the timer interrupt is enabled

0 = the timer interrupt is not enabled

CARRY
The Carry flag is used to signal overflows in arithmetic operations. It is also used and affected by some logical and shift operations.

ZERO
The Zero flag is used to signal a zero result of an arithmetic operation. It is also affected by the bit-wise test operations.

2.3.2 Embedded Controller Status/Command (Read)

The Embedded Controller Status/Command (Read) register (ECSCR) is ECA's equivalent for the EC_SC (R) register defined in the ACPI Embedded Controller Specification. "This is a read-only register <from the OS point of view> that indicates the current status of the embedded controller interface." (definition from [ACPI], page 268).

	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	IGN
	SMI_EVT
	SCI_EVT
	BURST
	CMD
	IGN
	IBF
	OBF


Table 2.3.2: ESCR bit specification (from [ACPI], page 269).

Legend:

IGN:

Ignored

SMI_EVT:
1 = Indicates SMI event is pending (requesting SMI query).

0 = No SMI events are pending.

SCI_EVT:
1 = Indicates SCI event is pending (requesting SCI query).

0 = No SCI events are pending.

BURST:
1 = Controller is in burst mode for polled command processing.

0 = Controller is in normal mode for interrupt-driven command

processing.

CMD:

1 = Byte in data register is a command byte (only used by controller).

0 = Byte in data register is a data byte (only used by controller).

IBF:

1 = Input buffer is full (data ready for embedded controller).

0 = Input buffer is empty.

OBF:

1 = Output buffer is full (data ready for host).

0 = Output buffer is empty.

The Output Buffer Full (OBF) flag is set when <ECA> has written a byte of data into the command or data port but the host has not yet read it. After the host reads the status byte and sees the OBF flag set, the host reads the data port to get the byte of data that <ECA> has written. After the host reads the data byte, the OBF flag is cleared automatically by hardware. This signals <ECA> that the data has been read by the host and <ECA> is free to write more data to the host. (definition from [ACPI], page 269) The ECA implementation requires the programmer to wait for the OBF flag to be cleared by the hardware before writing new data into ECDATA and setting OBF again.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or data port, but <ECA> has not yet read it. After <ECA> reads the status byte and sees the IBF flag set, the <ECA> reads the data port to get the byte of data that the host has written. After <ECA> reads the data byte, the IBF flag is automatically cleared by hardware. This is the signal to the host that the data has been read by <ECA> and that the host is free to write more data to <ECA>. (definition from [ACPI], page 269) The ECA implementation requires the programmer to explicitly clear the IBF flag after reading the data from ECDATA.

The SCI EVenT (SCI_EVT) flag is set when <ECA> has detected an internal event that requires the operating system’s attention. <ECA> sets this bit in the status register, and generates an SCI to the OS. The OS needs this bit to differentiate command-complete SCIs from notification SCIs. The OS uses the query command to request the cause of the SCI_EVT and take action. (definition from [ACPI], page 269)

The SMI EVenT (SMI_EVT) flag is set when the embedded controller has detected an internal event that requires the system management interrupt handler’s attention. <ECA> sets this bit in the status register before generating an SMI. (definition from [ACPI], page 270) ECA includes this flag for compatibility reasons only, as it does not support SMIs.
The BURST (BURST) flag indicates that <ECA> has received the burst enable command from the host, has halted normal processing, and is waiting for a series of commands to be sent from the host. This allows the OS or system management handler to quickly read and write several bytes of data at a time without the overhead of SCIs between the commands. (definition from [ACPI], page 270)
2.3.3 Embedded Controller Status/Command (Write)

The Embedded Controller Status/Command (Write) register (ECSCW) is ECA's equivalent for the EC_SC (W) status register defined in the ACPI Embedded Controller Specification. "This is a write-only register <from the OS point of view> that allows commands to be issued to <ECA>. Writes to this port are latched in the input data register and the input buffer full flag <IBF> is set in the status register. Writes to this location also cause the command bit <CMD> to be set in the status register. This allows <ECA> to differentiate the start of a command sequence from a data byte write operation." (definition from [ACPI], page 270).

2.3.4 Port CONtrol

The Port CONtrol register (PCON) is a register used by ECA to control digital I/O, ADC, and PWM operations.

	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	DIR
	DOW
	PWM
	ADC
	CHANNEL


Table 2.3.4: PCON bit specification

Legend:

DIR:

1 = Indicates that the digital input port latch is being read.

0 = Indicates that the digital input port latch is not being read.

DOW:

1 = Indicates that the digital output port latch is being written.

0 = Indicates that the digital output port latch is not being written.

PWM:

1 = Indicates that the Pulse Width Modulation port latch is being written.

0 = Indicates that the Pulse Width Modulation port latch is not being written.

ADC:

1 = Indicates that an Analog to Digital Conversion is in progress.

0 = Indicates that an Analog to Digital Conversion is not in progress.

CHANNEL:
Four bit binary number indicating one of sixteen possible channels. 
2.4 Backing Store

ECA provides no backing store because the architecture is designed to be a single chip solution.

2.5 Addressing

2.5.1 Direct addressing

Data memory addressing is always via a general-purpose register pair.

Limited address modification is available through the use of a 4-bit displacement. This provides the functionality if a 16-position index.

Example: load into general-purpose register R5 the data found at the address specified by general-purpose register pair RP1 indexed by the immediate value 10 (Ah).

LOAD
R5, [RP1+Ah]

Indirect addressing can be achieved by loading pointers from memory:

Example: load into general-purpose register R3 the data found at the address specified by general-purpose register pair RP2, which is loaded from the address specified by general‑purpose register pair RP0.

LOAD
R4, [RP0+0h]    ; Load lower part of address

LOAD
R5, [RP0+1h]    ; Load higher part of address

LOAD
R3, [RP2+0h]    ; Load indirect-addressed data

Accessing invalid addresses lead to a non-maskable interrupt (see section 7.2 for details).

2.5.2 Immediate addressing

Any general-purpose register can be loaded with an 8-bit immediate.

Any general-purpose register pair can be loaded with 16-bit immediate.

2.6 Stacks

There is one stack in ECA, used by default by subroutine CALL and RETURN operations to place and retrieve the return address and by PUSH and POP operations to save and restore the program context.

The stack is implemented in memory with the use of a 16-bit Stack Pointer that contains the memory addresses of the element on top of the stack. A PUSH operation decrements the Stack Pointer by two, then place its operand in memory. A POP operation retrieves its operand, then increment the Stack Pointers by two.

The Stack Pointer is not accessible to the programmer. It is initialized by hardware on device reset to the highest address available in the data memory. Using the POP operation beyond the highest available address or the PUSH operation below the lowest available address results in a non‑maskable interrupt (see section 7.2 for details).

It is the programmer's responsibility to ensure that other memory operations do not overwrite stack data or that stack doesn't grow to overwrite data in the lower part of data memory.

3. Encoding

3.1 Data Formats

ECA stores data in binary radix two’s complement notation. The byte size is 8-bits. Multi-byte storage e.g., the result of a multiply routine, should use the little‑endian format.

Addresses are stored in binary radix with little-endian byte ordering. See Figure 3-1 for a graphical representation of the formats. 


[image: image1.wmf]
Figure 3.1: Data formats

3.2 Instruction Formats











Note: the H/L field acts as part of the op-code, specifying which register in a general‑purpose register pair the instruction refers to.

	Format
	Bit patterns

	a
	0 1 0 0 Op(1) Unused(3)

	b
	0 1 1 0 Op(1) Pair(2) Op(1)

	c
	0 1 1 1 Op(1) Pair(2) H/L(1)

	d
	1 0 0 0 Cnd(1) C(1) Z(1) Unused(1) ; I(8)

	e
	1 0 1 1 Op(1) Pair(2) H/L(1) ; I(8)

	f
	1 0 0 0 Op(4) ; Reg(4) Reg(4)

	g
	1 0 1 0 Op(1) Pair(2) Unused(1) ; Reg(4) I(4)

	h
	1 0 0 0 Op(4) ; Reg(4) Unused(1) I(3)

	i
	1 1 0 0 Op(1) ; Unused(3); I(8) ; I(8)

	j
	1 1 1 0 Op(1) Pair(2) Unused(1) ; I(8) ; I(8)


Table 3.2: Instruction syntax

Legend:

C = carry – branch if the carry flag is set/clear, depending on the flag value

Cnd = condition – whether a relative branch is conditional or unconditional

Z = zero – branch if the zero flag is set/clear, depending on the flag value

H/L = High/Low – specifies the higher or the lower part of a pair

I(n) = Immediate, N bits long

Op = operation

Pair = register pair specifier – 00b...11b for pairs 0...4

Reg = register specifier: Set(1) Pair(2) H/L(1), where Set indicates the general‑purpose or special‑purpose register set

Notes:

Semicolons separate instruction bytes.

The first two bits specify instruction length in bytes.

The 3rd bit specifies whether the bits 5 and 6 are used to specify a register pair or not.

The 4th bit specifies whether the bit 7 is used as a High/Low specifier.

4. Programming Model


[image: image2.wmf]
Figure 4.1: Programming Model of the ECA

Note: the Stack Pointer is not shown in this model, as it is not accessible to the programmer. The Program Counter is shown because it is responsible for instruction sequencing.

5. Operations

5.1 Operation List

	Mnemonics
	Format
	Flags
	Description

	Fixed-Point Arithmetic

	ADD
	R, R
	f
	C, Z
	Add

	ADDC
	R, R
	f
	C, Z
	Add with carry

	SUB
	R, R
	f
	C, Z
	Subtract

	SUBC
	R, R
	f
	C, Z
	Subtract with carry

	INCH
	RP
	c
	C, Z
	Increment high

	INCL
	RP
	c
	C, Z
	Increment low

	DECH
	RP
	c
	C, Z
	Decrement high

	DECL
	RP
	c
	C, Z
	Decrement low

	COMPH
	RP, I_8
	e
	C, Z
	Compare high with 8-bit Immediate

	COMPL
	RP, I_8
	e
	C, Z
	Compare low with 8-bit Immediate

	Logic and Shift

	SHLL
	R, I_3
	h
	
	Logical shift left

	SHLR
	R, I_3
	h
	
	Logical shift right

	SHAL
	R, I_3
	h
	
	Arithmetic shift left

	SHAR
	R, I_3
	h
	
	Arithmetic shift right

	ROTL
	R, I_3
	h
	C
	Rotate left through carry

	ROTR
	R, I_3
	h
	C
	Rotate right through carry

	SET
	R, I_3
	h
	
	Set a bit in a register

	CLEAR
	R, I_3
	h
	
	Clear a bit in a register

	TEST
	R, I_3
	h
	Z
	Test a bit in a register

	AND
	R, R
	f
	C, Z
	Logical and

	OR
	R, R
	f
	C, Z
	Logical or

	XOR
	R, R
	f
	C, Z
	Exclusive or

	Data Handling

	MOVEH
	RP, I_8
	e
	
	Move 8-bit Immediate into high

	MOVEL
	RP, I_8
	e
	
	Move 8-bit Immediate into low

	MOVE
	R, R
	f
	
	Move register to register

	MOVEI
	RP, I_16
	j
	
	Move 16-bit Immediate

	Address Arithmetic

	LOAD
	R, [RP+I_4]
	g
	
	Load indirectly via register pair

	STORE
	[RP+I_4], R
	g
	
	Store indirectly via register pair

	PUSH
	RP
	b
	
	Push register pair on stack

	POP
	RP
	b
	
	Pop register pair from stack

	INC
	RP
	b
	C, Z
	16-bit Increment

	DEC
	RP
	b
	C, Z
	16-bit Decrement

	Sequencing

	BRC
	I_8
	d
	
	Branch if carry is set

	BRNC
	I_8
	d
	
	Branch if carry is clear

	BRZ
	I_8
	d
	
	Branch if zero is set

	BRNZ
	I_8
	d
	
	Branch if zero is clear

	BRCZ
	I_8
	d
	
	Branch if zero and carry are set

	BRNCZ
	I_8
	d
	
	Branch if zero and carry are clear

	BR
	I_8
	d
	
	Branch relative

	CALL
	I_16
	i
	
	Branch and push the PC

	JUMP
	I_16
	i
	
	Jump absolute

	RETURN
	
	a
	
	Pop the PC and return

	RESET
	
	a
	C, Z
	Reset the device


Table 5.1: Operation list
5.2 Detailed Descriptions

Legend:

OPERATION
short description with mnemonic highlighting

Syntax:

syntax

Operands:

operands and their meaning

Operation:

operation effect, in C++ notation
Description:
description

Status Affected:
flags

Circumstances under which flags are affected.

Encoding:

BIT ENCODING, ";" on byte boundaries

Format:

format

Bytes:


number of bytes

Encoding notations:

0, 1 - bits

R(4) – 4-bit register specifier

U(N) – N unused bits

P(2) – 2-bit register pair specifier

I(N) – N-bit immediate

; - byte boundary (except I_16)
ADD


ADD two 8-bit registers

Syntax:

ADD

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.

Operation:

R(left) + = R(right)

Description:
The contents of R(right) are added to the contents of R(left) and the result is placed in R(left).

Status Affected:
C, Z 

The zero flag is set on a zero result. The Carry flag is set on  overflow.

Encoding:

1 0 0 0 0 0 0 0 ; R(4) R(4)
Format:

f

Bytes:


2

ADDC


ADD two 8-bit registers with Carry

Syntax:

ADDC

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.




Carry(implicit)  [0, 1]

Operation:

R(left) R(left) + R(right) + Carry

Description:
The contents of R(left) are added to the contents of R(right) and the result is placed in R(left). The Carry-out from the previous operation is also added to the result.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on overflow.

Encoding:

1 0 0 0 0 1 0 0 ; R(4) R(4)
Format:

f

Bytes:


2

AND


Logical AND between two 8-bit registers

Syntax:

AND

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.

Operation:

R(left) & = R(right)
Description:
The contents of R(left) are ANDed with the contents of R(right) and the result is placed in R(left).

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is cleared.

Encoding:

1 0 0 0 1 0 0 1 ; R(4) R(4)

Format:

f

Bytes:


2

BR


relative BRanch unconditional

Syntax:

BR

I_8

Operands:

-128  I_8  127

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed unconditionally.

Status Affected:
none

Encoding:

1 0 0 0 0 0 0 0 ; I_8(8)

Format:

d

Bytes:


2

BRC


relative BRanch on Carry

Syntax:

BRC

I_8

Operands:

-128  I_8  127




Carry(implicit)  [0, 1]

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed if the Carry flag is set.

Status Affected:
none

Encoding:

1 0 0 0 1 1 0 1 ; I_8(8)

Format:

d

Bytes:


2

BRCZ


relative BRanch on Carry and Zero

Syntax:

BRCZ

I_8

Operands:

-128  I_8  127




Carry(implicit)  [0, 1]




Zero(implicit)  [0, 1]

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed if both the Carry and the Zero flags are set.

Status Affected:
none

Encoding:

1 0 0 0 1 1 1 1 ; I_8(8)



Format:

d

Bytes:


2

BRNC


relative BRanch on Not Carry

Syntax:

BRNC

I_8




Operands:

-128  I_8  127




Carry(implicit)  [0, 1]

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed if the Carry flag is not set.

Status Affected:
none

Encoding:

1 0 0 0 0 1 0 1 ; I_8(8)

Format:

d

Bytes:


2

BRNCZ

relative BRanch on Not Carry and not Zero

Syntax:

BRNCZ
I_8

Operands:

-128  I_8  127

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed if neither the Carry nor the Zero flags are set.

Status Affected:
none

Encoding:

1 0 0 0 0 1 1 1 ; I_8(8)


Format:

d

Bytes:


2

BRNZ


relative BRanch on Not Zero

Syntax:

BRNZ

I_8



Operands:

-128  I_8  127




Zero(implicit)  [0, 1]

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed if the Zero flag is not set. 

Status Affected:
none

Encoding:

1 0 0 0 0 0 1 1 ; I_8(8)



Format:

d

Bytes:


2

BRZ


relative BRanch on Zero

Syntax:

BRZ

I_8

Operands:

-128  I_8  127




Zero(implicit)  [0, 1]

Operation:

PC + = SignExt ( I_8 )

Description:
Performs a relative branch. The program counter (PC, inaccessible to the programmer) is set to its previous value to which the sign-extended value of I_8 is added. If I_8 is negative (bit 7 = 1), the value is in fact subtracted. The target addresses domain is [PC‑128...PC+127]. The operation is performed if the Zero flag is set.

Status Affected:
none

Encoding:

1 0 0 0 1 0 1 1 ; I_8(8)

Format:

d

Bytes:


2

CALL


subroutine CALL

Syntax:

CALL
I_16

Operands:

0  I_16  65535

Operation:

SP – = 2 ; Mem[SP]  PC[1] ; Mem[SP+1]  PC[0]




PC = I_16

Description:
CALL pushes the address of the next instruction on the stack before performing the absolute jump.The program counter (PC, inaccessible to the programmer) is set to the value of I_16. 

Status Affected:
none

Encoding:

1 1 0 0 U(3) 0 ; I_8(8) ; I_8(8)

Format:

i

Bytes:


3

CLEAR

CLEAR bits in 8-bit register

Syntax:

CLEAR
R, I_3

Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

R & = ~ ( 2 << I_3 )

Description:

Clears the I_3th bit of register R. 

Status Affected:
C, Z might be affected if R is STATUS.

Encoding:

1 0 0 0 1 0 0 1 ; R(4) U(1) I_3(3)

Format:

e

Bytes:


2

COMPH

COMPare Higher part of register pair with immediate

Syntax:

COMPH
RP, I_8
Operands:

RP is any general-purpose register pair.

0  I_8  255

Operation:

C ( RP[1] > I_8 ) ; Z  ( RP[1] = = I_8 )

Description:
The value in the higher part of general-purpose register pair RP is compared to the 8-bit immediate ‘I_8’. The Carry and Zero flags indicate the result. A comparison performs in fact an unsigned subtraction, but it doesn't store the result of the subtraction, only its characteristics.

Status Affected:
C, Z

The Carry flag is set when the value in the register is less than I_8 and reset otherwise.

The Zero flag is set when the two values are equal and reset otherwise.

Encoding:

1 0 1 1 1 P(2) 1 ; I_8(8)
Format:

e

Bytes:


2

COMPL

COMPare Lower part of register pair with immediate

Syntax:

COMPL
RP, I_8

Operands:

RP is any general-purpose register pair.

0  I_8  255

Operation:

C  ( RP[0] > I_8 ) ; Z  ( RP[0] = = I_8 )

Description:
The value in the lower part of general-purpose register pair RP is compared to the 8-bit immediate ‘I_8’. The Carry and Zero flags indicate the result. A comparison performs in fact an unsigned subtraction, but it doesn't store the result of the subtraction, only its characteristics.

Status Affected:
C, Z

The Carry flag is set when the value in the register is less than I_8 and reset otherwise.

The Zero flag is set when the two values are equal and reset otherwise.

Encoding:

1 0 1 1 1 P(2) 0 ; I_8(8)
Format:

e

Bytes:


2

DEC


DECrement register pair

Syntax:

DEC
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP 
Description:

The register pair RP is decremented by 1.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on borrow.

Encoding:

0 1 1 0 0 P(2) 1

Format:

b

Bytes:


1

DECH


DECrement Higher part of register pair

Syntax:

DECH
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP[1] 
Description:
The higher part of general-purpose register pair RP is decremented by 1.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on borrow.

Encoding:

0 1 1 1 0 P(2) 1

Format:

c

Bytes:


1

DECL


DECrement Lower part of register pair

Syntax:

DECH
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP[0] 
Description:
The lower part of general-purpose register pair RP is decremented by 1.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on borrow.

Encoding:

0 1 1 1 0 P(2) 0

Format:

c

Bytes:


1

INC


INCrement register pair

Syntax:

INC
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP + +

Description:

The register pair RP is incremented by 1.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on overflow.

Encoding:

0 1 1 0 0 P(2) 0

Format:

b

Bytes:


1

INCH


INCrement Higher part of register pair

Syntax:

INCH
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP[1] 
Description:
The higher part of general-purpose register pair RP is incremented by 1.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on overflow.

Encoding:

0 1 1 1 1 P(2) 1

Format:

c

Bytes:


1

INCL


INCrement Lower part of register pair

Syntax:

INCH
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP[0] 
Description:
The lower part of general-purpose register pair RP is incremented by 1.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on overflow.

Encoding:

0 1 1 1 1 P(2) 0

Format:

c

Bytes:


1

JUMP


JUMP to absolute address

Syntax:

JUMP
I_16

Operands:

0  I_16  65535

Operation:

PC = I_16

Description:
The program counter (PC, inaccessible to the programmer) is set to the value of I_16.

Status Affected:
none

Encoding:

1 1 0 0 U(3) 1 ; I_8(8) ; I_8(8)

Format:

i

Bytes:


3

LOAD


LOAD 8-bit register from memory

Syntax:

LOAD

R,[RP+I_4]

Operands:

RP is any general-purpose register pair.



R is any general or special-purpose register.

0  I_4  15

Operation:

R = Mem[RP + I_4]

Description:
The register R is loaded with the value at the address specified by register  pair RP to which I_4 is added.

Status Affected:
none

Encoding:

1 0 1 0 0 P(2) Unused(1) ; R(4) I_4

Format:

b

Bytes:


2

MOVE

MOVE data between 8-bit registers

Syntax:

MOVE

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.

Operation:

R(left) = R(right)

Description:
The contents of R(right) are copied to R(left).

Status Affected:
none

Encoding:

1 0 0 0 1 0 0 0 ; R(4) R(4)
Format:

f

Bytes:


2

MOVEI

MOVE Immediate data into register pair

Syntax:

MOVEI
RP, I_16

Operands:

RP is any general-purpose register pair.

0  I_16  65535

Operation:

RP = I_16

Description:

The register pair RP is set to the value of I_16.

Status Affected:
none

Encoding:

1 1 1 0 0 P(2) U(1) ; I_8(8) ; I_8(8)

Format:

i

Bytes:


3

MOVEH

MOVE immediate data to Higher part of register pair

Syntax:

MOVEH
RP, I_8

Operands:

RP is any general-purpose register pair.

0  I_8  255

Operation:

RP[1] = I_8

Description:
The 8-bit immediate ‘I_8’ is copied to the higher part of register pair RP.

Status Affected:
none

Encoding:

1 0 1 1 0 P(2) 1 ; I_8(8)

Format:

e

Bytes:


2

MOVEL

MOVE immediate data to Lower part of register pair

Syntax:

MOVEL
RP, I_8

Operands:

RP is any general-purpose register pair.

0  I_8  255

Operation:

RP[0] = I_8

Description:
The 8-bit immediate ‘I_8’ is copied to the lower part of register pair RP.

Status Affected:
none

Encoding:

1 0 1 1 0 P(2) 0 ; I_8(8)

Format:

e

Bytes:


2

OR


logical OR between 8-bit registers

Syntax:

OR

R(left), R(right)



Operands:

R(left), R(right) are any general or special purpose registers.

Operation:

R(left) | = R(right)




Description:
The contents of R(left) are ORed with the contents of R(right) and the result is placed in R(left).

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is cleared.

Encoding:

1 0 0 0 1 0 1 0 ; R(4) R(4)

Format:

f

Bytes:


2

POP


POP a register pair from stack

Syntax:

POP
RP

Operands:

RP is any general-purpose register pair.

Operation:

RP[1] = Mem[SP] ; RP[0] = Mem[SP+1] ; SP + = 2

The Stack Pointer (SP, inaccessible to the programmer) holds the address of the element on the top of the stack. The stack grows downward. The Stack Pointer is increased on pop by two, the size of a register pair.

Description:

The register pair RP is popped from the stack.

Status Affected:
none

Encoding:

0 1 1 0 1 P(2) 0

Format:

b

Bytes:


1

PUSH


PUSH a register pair onto stack

Syntax:

PUSH
RP

Operands:

RP is any general-purpose register pair.

Operation:

SP – = 2 ; Mem[SP]  RP[1] ; Mem[SP+1]  RP[0]

The Stack Pointer (SP, inaccessible to the programmer) holds the address of the element on the top of the stack. The stack grows downward. The Stack Pointer is decreased on push by two, the size of a register pair.

Description:

The register pair RP is pushed onto the stack.

Status Affected:
none

Encoding:

0 1 1 0 1 P(2) 1

Format:

b

Bytes:


1

RESET

RESET device

Syntax:

RESET

Operands:

none

Operation:

PC = 0000h ; SP = MemCap ; STATUS = 0 ; PCON = 0 ; ...

Description:
On machine reset, the program counter (PC, inaccessible to the programmer) is set to zero. This is equivalent to an unconditional jump to address 0000h. By convention, the initialization routine is placed at that address. The Stack Pointer (SP, inaccessible to the programmer) is set to the maximum value, depending on RAM capacity. Also, the STATUS and PCON registers are reset. All pending port operations are aborted.

Status Affected:
none

Encoding:

0 1 0 0 0 U(3)

Format:

a

Bytes:


1

RETURN

RETURN from subroutine

Syntax:

RETURN

Operands:

none

Operation:

PC[1] = Mem[SP] ; PC[0] = Mem[SP+1] ; SP + = 2

Description:
The program counter (PC, inaccessible to the programmer) is set to the value on top of the stack. The Stack Pointer (SP, inaccessible to the programmer) is increased by two, like in a POP operation.

Status Affected:
none

Encoding:

0 1 0 0 1 U(3)

Format:

a

Bytes:


1

ROTL


ROTate Left 8-bit register

Syntax:

ROTL
R, I_3
Operands:

R is any general or special-purpose register.




Carry(implicit)  [0, 1]

0  I_3  7

Operation:

R0..7 | Carry = ( R0..7 | Carry ) << I_3


Description:
Performs an I_3 positions rotate left with carry on the value in register R. 

Status Affected:
C




The Carry flag participates as a 9th bit in the operation.

Encoding:

1 0 0 0 0 0 0 0 ; R(4) U(1) I_3(3)

Format:

h

Bytes:


2

ROTR


ROTate Right 8-bit register

Syntax:

ROTR
R, I_3

Operands:

R is any general or special-purpose register.




Carry(implicit)  [0, 1]

0  I_3  7

Operation:

R0..7 | Carry = ( R0..7 | Carry ) >> I_3

Description:
Performs an I_3 positions rotate right with carry on the value in register R. 

Status Affected:
C




The Carry flag participates as a 9th bit in the operation.

Encoding:

1 0 0 0 0 0 1 0 ; R(4) U(1) I_3(3)
Format:

h

Bytes:


2

SET


SET bit in 8-bit register

Syntax:

SET

R, I_3
Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

R | = ( 2 << I_3 ) 

Description:

Sets the I_3th bit of register R. 

Status Affected:
C, Z might be affected if R is STATUS.

Encoding:

1 0 0 0 1 0 1 0 ; R(4) U(1) I_3(3)
Format:

e

Bytes:


2

SHAL


Arithmetic SHift Left 8-bit register

Syntax:

SHAL
R, I_3
Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

R = R * ( 2 << I_3 )

Description:
Performs an I_3 positions arithmetic shift left on the value in register R. The operation is equivalent to a signed multiply with the I_3th power of two. Zeroes are repeatedly shifted into the right side of the group formed by the least significant 7 bits.

Status Affected:
none

Encoding:

1 0 0 0 0 1 0 1 ; R(4) U(1) I_3(3)

Format:

e

Bytes:


2

SHAR


Arithmetic SHift Right 8-bit register

Syntax:

SHAR
R, I_3

Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

R = R / ( 2 << I_3 )

Description:
Performs an I_3 positions arithmetic shift right on the value in register R. The operation is equivalent to a signed divide by the I_3th power of two. The sign bit is repeatedly shifted into the left side of the group formed by the least significant 7 bits.

Status Affected:
none

Encoding:

1 0 0 0 0 1 1 1 ; R(4) U(1) I_3(3)
Format:

e

Bytes:


2

SHLL


Logical SHift Left 8-bit register

Syntax:

SHLL
R, I_3
Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

R = R << I_3

Description:
Performs an I_3 positions logical shift left on the value in register R. The operation is equivalent to an unsigned multiply by the I_3th power of two. Zeroes are shifted in from the right side.

Status Affected:
none

Encoding:

1 0 0 0 0 0 0 1 ; R(4) U(1) I_3(3)

Format:

e

Bytes:


2

SHLR


Logical SHift Right 8-bit register

Syntax:

SHLR
R, I_3

Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

R = R >> I_3

Description:
Performs an I_3 positions logical shift right on the value in register R. The operation is equivalent to an unsigned divide by the I_3th power of two. Zeroes are shifted in from the left side.

Status Affected:
none

Encoding:

1 0 0 0 0 0 1 1 ; R(4) U(1) I_3(3)
Format:

e

Bytes:


2

STORE 

STORE 8-bit register to memory

Syntax:

STORE
[RP+I_4],R

Operands:

RP is any general-purpose register pair.



R is any general or special-purpose register.

0  I_4  15

Operation:

Mem[RP + I_4] = R

Description:
The value in register R is stored at the address specified by the value in register pair RP to which I_4 is added.

Status Affected:
none

Encoding:

1 0 1 0 1 P(2) U(1) ; R(4) I_4(4)

Format:

b

Bytes:


2

SUB


SUBtract two 8-bit registers

Syntax:

SUB

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.

Operation:

R(left) – = R(right)

Description:
The contents of R(right) are subtracted from the contents of R(left) and the result is placed in R(left).

Status Affected:
C, Z 

The zero flag is set on a zero result. The Carry flag is set on  borrow.

Encoding:

1 0 0 0 0 0 1 0 ; R(4) R(4)
Format:

f

Bytes:


2

SUBC


SUBtract two 8-bit registers with Carry

Syntax:

SUBC

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.




Carry(implicit)  [0, 1]

Operation:

R(left) R(left) – R(right) – ~ Carry

Description:
The contents of R(left) are subtracted from the contents of R(right) and the result is placed in R(left). The Carry-out from the previous operation is also subtracted (after complementation) from the result.

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is set on borrow.

Encoding:

1 0 0 0 0 1 1 0 ; R(4) R(4)
Format:

f

Bytes:


2

TEST


TEST bit in 8-bit register

Syntax:

TEST

R, I_3
Operands:

R is any general or special-purpose register.

0  I_3  7

Operation:

Z = R && ( 2 << I_3 )

Description:
Tests the I_3th bit of register R and sets the Zero flag accordingly. 

Status Affected:
Z




The Zero flag takes the value of the I_3th bit.

Encoding:

1 0 0 0 1 0 0 0 ; R(4) U(1) I_3(3)

Format:

e

Bytes:


2

XOR


logical eXclusive OR between two 8-bit registers

Syntax:

XOR

R(left), R(right)
Operands:

R(left), R(right) are any general or special purpose registers.

Operation:

R(left) ^ = R(right)
Description:
The contents of R(left) are XORed with the contents of R(right) and the result is placed in R(left).

Status Affected:
C, Z

The zero flag is set on a zero result. The Carry flag is cleared.

Encoding:

1 0 0 0 1 0 1 1 ; R(4) R(4)

Format:

f

Bytes:


2

6. Instruction Sequencing

Normal instruction sequencing is controlled by the instruction address, which is stored in the Program Counter (PC, inaccessible to the programmer). This address is automatically initialized by hardware on device reset to value 0000h, the beginning of program memory.

Instruction sequencing begins with the PC selecting a location in the program memory. The byte at that location is fetched, then decoded as the op-code, since op-codes always precede data. The first two bits in the op-code specify the total number of bytes in the instruction (see section 3.2, Instruction Syntax for details). Additional data bytes are subsequently fetched as necessary.

Sequencing is also provided for branches and subroutine calls. ECA provides absolute and relative branches. Relative branches can be either conditional or unconditional.

Absolute branching ("jumping") is provided by way of 16-bit immediate data being used as target address.

Relative branches compute their target address by adding an offset to the next instruction address. The offset is a signed 8-bit immediate, with the sign bit as the highest-order bit. This gives a range of target addresses from PC-128 to PC+127. Conditional relative branches test the Zero and Carry flags resulting from the last flag-affecting operation.

Subroutine calls push the next instruction address onto the stack before jumping to the subroutine. Returns pop the address from the stack and resume execution at the instruction after the call.

7. Supervision

7.1 Policing Invalid Addresses

Valid target addresses for branches are in the domain 0000h-7FFFh. If the actual amount of FLASH memory implemented is less than 32kb, the upper bound is adjusted accordingly. Invalid branch target addresses cause a non-maskable interrupt.

Valid addresses for data references are in the domain 8000h-FFFFh. If the actual amount of RAM implemented is less than 32kb, the upper bound is adjusted accordingly. Invalid addresses cause a non-maskable interrupt.

Policing must be turned off during upgrades to the firmware. Doing so allows load and store access to addresses in the FLASH memory, as well as use of branch target addresses in RAM. This allows a program to be copied from FLASH to RAM and executed there. Alternatively, the program can be received from the OS driver. This program acts as a counterpart to the software on the host that performs the upgrade. It implements functions such as saving the current contents of the FLASH and writing new contents.

Upgrades are performed under the control of special upgrade programs or the OS driver. ECA provides a pin that combines two functions: it enables writes to FLASH memory and disables invalid address policing. The pin can be set programmatically or manually to logic level high in order to perform an upgrade.

We suggest that the upgrade process be done in the following steps:

· disable policing and write-enable the FLASH memory;

· have the controlling program issue a series of standard and/or custom commands to update the firmware;

· enable policing and write-disable the FLASH memory.

Program memory zone 0100h-01FFh is reserved for the firmware upgrade program, but using it during the upgrade process is not mandatory. The program stored here also has the responsibility of recovering from failed upgrades.

7.2 Interruption

ECA provides maskable and non-maskable interrupts.

The ECA maskable interrupts are ACPI, SMB and Timer.

The ACPI interrupt is enabled by the ACPI flag in the STATUS register and enables communication with the host processor using the protocol defined in the ACPI specification. Section 10.3.3.4 shows a sample ACPI interrupt handler.

The SMB interrupt is enabled by the SMB flag in the STATUS register and allows communication with peripheral devices connected to the SMB. ECA acts as an SMB host and provides the interface between the peripheral devices and the OS (see [SMB] for details on the SMB protocol specification).

The Timer interrupt is enabled by the TIMER flag in the STATUS register and performs counting and other timer-dependent functions i.e., monitoring power and adjusting temperature. This interrupt occurs every microsecond. As the counter registers together contain only 16 bits, additional bytes can be stored in memory if intervals larger than 65536 microseconds are to be measured. Alternatively, one can sacrifice counter resolution to achieve a greater scale. Section 10.3.3.2 shows a sample timer interrupt handler that uses two additional bytes to measure time.

The ECA provides a non-maskable interrupt for invalid data references, invalid branch target addresses and invalid op-codes. The non-maskable interrupt handler sends an error message to the OS driver via ACPI and resets the device. Section 10.3.3.1 shows a sample non‑maskable interrupt handler.
8. I/O

ECA I/O provides interfaces for the host OS and peripheral devices.  Communication with the host OS is necessary to enable high-level use of devices under ECA control.  Four methods of interfacing to peripheral devices are supported to enable connectivity with a variety of peripheral devices.

8.1 ACPI

All communication with the host OS is accomplished via the ACPI protocol.  The host OS is expected to load an ECA ACPI driver.  The host OS driver communicates with ECA by setting bits in the ECSCR register, writing commands in the ECSCW register and writing data in the ECDATA register. ECA can send messages to the OS driver using the SCI mechanism defined in section 2.3. The communication protocol makes use of the SCI_EVT, BURST, CMD, IBF and OBF flags in the ECSCR register, as described in section 2.3.

The ACPI Embedded Controller specification requires that ECA implements a set of standard commands. This section briefly describes the ACPI Embedded Controller Command Set, as implemented in ECA. For a full description of the ACPI specification, see [ACPI], section 13.3, page 270.

	Description
	Command Code
	Byte Encoding

	Read Embedded Controller
	RD_EC
	80h

	Write Embedded Controller
	WR_EC
	81h

	Burst Enable Embedded Controller
	BE_EC
	82h

	Burst Disable Embedded Controller
	BD_EC
	83h

	Query Embedded Controller
	QR_EC
	84h


Table 2: Embedded Controller Commands (from [ACPI], page 270).

The Read Embedded Controller (RD_EC) command is reserved for exclusive use by the OS, allowing it to read a byte in the address space of ECA. The command consists of a command byte written to ECSCW, followed by an address byte written to ECDATA. ECA then returns the byte at the addressed location. The OS reads the data at the data port after the OBF flag is set by ECA.

The Write Embedded Controller (WR_EC) command is reserved for exclusive use by the OS, allowing it to write a byte in the address space of ECA. It consists of a command byte written to the ECSCW register, followed by an address byte written to ECDATA, followed by a data byte written to ECDATA, the latter being the data byte to be written at the addressed location. The data is read by ECA at the data port after the IBF flag is set by the OS, then written to ECA's memory.

The Burst Enable Embedded Controller (BE_EC) command allows the OS to request dedicated attention from ECA and (except for critical events) prevents ECA from doing tasks other than receiving command and data from the OS. This command is an optimization that allows the OS to issue several commands back to back, in order to reduce latency at ECA's interface.

When ECA is in burst mode, it should transition to the Burst Disable state if the OS does not issue a command within the following guidelines:

First Access - 400 microseconds

Subsequent Accesses - 50 microseconds each

Total Burst Time - 1 millisecond

In addition, ECA can disengage the burst mode at any time to process a critical event. If ECA disables burst mode for any reason other than the Burst Disable command, it should generate an SCI to the OS to indicate the change. 

While in burst mode, ECA follows these guidelines for the OS driver:

SCIs are generated as normal, including IBF=0 and OBF=1.

Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

1. The OS driver writes the BE_EC command byte  (82h) and then ECA will prepare to enter the Burst mode. This includes processing any routine activities such that it should be able to remain dedicated to the OS interface for approximately one millisecond.

2. ECA sets the Burst bit of the ECSC register, puts the Burst Acknowledge byte (90h) into the SCI output buffer, sets the OBF bit, and generates an SCI to signal the OS that it is in Burst mode.

Burst mode is exited the following manner:

1. The OS driver writes the Burst Disable Embedded Controller, BD_EC command byte (83h) and then ECA will exit Burst mode by clearing the Burst bit in the ECSCR status register and generating an SCI signal (due to IBF = 0).

2. ECA clears the Burst bit of the ECSCR status register.

The Burst Disable Embedded Controller (BD_EC) command byte releases ECA from a previous burst enable command and allows it to resume normal processing. This command is sent by the OS after it has completed its entire queued command sequence to ECA.

The Query Embedded Controller, (QR_EC) command is sent by the OS driver when the SCI_EVT flag in the ECSCR register is set. When ECA has detected a system event that must be communicated to the OS, it first sets the SCI_EVT flag in the ECSCR register, generates an SCI, and then waits for the OS to send the QR_EC command. The OS detects the SCI_EVT flag, and sends the query command to the ECA. Upon receipt of the QR_EC command, ECA places a notification byte with a value between 0-255, indicating the cause of the notification. The notification byte indicates which interrupt handler operation should be executed by the OS to process the SCI. The query value of zero is reserved for a spurious query result and indicates “no outstanding event.”

8.2 Peripheral Devices

With the exception of SMB, communication with peripheral devices is controlled by the PCON register.  Individual port operations are initiated by setting the corresponding control bit.  The PDATA register serves as the data source for all port output operations and as the data destination for all port input operations.  The contents of the PDATA register are not destroyed on the start of output operations.  If more than one port operation is started in the same cycle the DIR, DOW, PWM, and ADC bits are cleared on completion of the first operation, halting the other port operations, while the channel bits remain unchanged.  Starting more than one port operation per cycle will cause the contents of the PDATA register to be undefined.  The results of the PDATA register are undefined if the channel bits are written during the same cycle that a port operation is started.  Selecting the channel one or more cycles prior to the start of a port operation is required to allow the channel multiplexers to reach their final state.

8.2.1 SMB

ECA supports the SMB protocol for communication with SMB compliant peripherals.  The protocol requires one interrupt, eight control, and thirty-two data registers.  The SMB interrupt vector is located at address 0014h.  SMB interrupts can be masked by clearing the SMB bit in the STATUS register.  The SMB control and data registers are mapped into the data memory at locations 8200h-8228h.  Locations 8229h-82FFh are reserved for future expansions or custom extensions to the SMB protocol.  Details of the SMB register map and protocol can be found in [SMB] and [ACPI].

8.2.2 ADC

The 8-bit ADC port supports up to sixteen analog input channels.  Conversions are performed in two simple steps.  First, the desired analog channel is selected by writing to the channel bits in the PCON register.  Second, the conversion is started one or more cycles later by setting the ADC bit in the PCON register.  The ADC bit along with the DIR, DOW, and PWM bits are automatically cleared when the conversion is complete. 

Analog signals may vary from zero to five volts.  The conversion error is plus or minus one half of the least significant bit.  The conversion resolution, in volts, is the voltage present at the analog voltage reference when the conversion is started divided by 256.  The analog voltage reference may vary between one and five volts making the best and worst-case resolutions four and twenty millivolts per bit respectively.

Sample results form conversions on an analog waveform are given in figure 8.2.2.


[image: image3.wmf]
Figure 8.2.2: ADC Sample Conversions
8.2.3 PWM

The PWM port supports up to sixteen output channels.  PWM outputs have two components that govern the amount of time the output is at a high or low logic level.  The first component, frequency, determines the pulse width cycle duration.  Second, the duty cycle, with eight bits of resolution, governs the amount of time the output signal remains high during the pulse width cycle.

The PWM frequency is fixed at 10KHz for all channels.  PWM outputs are actively pulsed at this frequency as long as the ECA device has power.  The duty cycle is automatically set to zero when the ECA device is powered on.  Modifying the duty cycle requires three steps.  First, the PWM channel is selected by setting the channel bits in the PCON register.  Second, the duty cycle is loaded into the PDATA register.  Finally, the write operation is initiated by setting the PWM bit in the PCON register.  The PWM bit along with the DIR, DOW, and ADC bits are automatically cleared when the conversion is complete.  Once the duty cycle is written to a PWM channel, the channel continues to produce a 10KHz waveform at that duty cycle until a different duty cycle is written.  Writing a duty cycle of 00h or FFh maintains the output at a logic low or high level.

Sample PWM waveforms for different duty cycles are given in figure 8.2.3.


[image: image4.wmf]
Legend: h = Hexadecimal; H = Logic High; L= Logic Low

Figure 8.2.3: PWM Sample Output
8.2.4 Digital I/O

The digital I/O port provides eight discrete digital inputs and eight outputs.  I/O operations complete in the same cycle that they are started.  All outputs are automatically initialized to a logic level low on ECA device power up.  Two steps are required to write to the digital output port.  First, the PDATA register is loaded with the logic levels to be written to the outputs.  A binary one represents logic level high while a binary zero corresponds to logic level low.  Second, the DOW bit is set in the PCON register.  The DOW bit is automatically cleared along with the DIR, PWM, and ADC bits when the output port write operation completes.  Similarly, digital input read operations use the DIR control bit. Logic levels represented on the input pins are loaded to the PDATA in one cycle.

9. Rationale

ECA offers a fresh take on providing an architecture for embedded control in personal computers. The scope of our application has shifted slightly from our first project in that ECA is not aimed specifically at embedded control in “servers.”

Our first step in developing the ECA architecture was to carefully evaluate the mistakes that were made in our first architecture.  We found that our single biggest mistake was in failing to properly characterize the application.  Little attention was paid to what types of I/O were required or how the programmer would interact with them through our architecture.  This lead to an architecture that failed to convey a “vision of usefulness.”  Second, resource allocation was unbalanced and unclean.  Our first design had separate memory and data busses dedicating excessive register space and a full 16‑bit adder for addressing and address calculation.  These resources would have been spent much more wisely in expanding the functionality of the general register set and the ALU.

In short, “good” special-purpose architectures cannot be developed without careful consideration of the application. 

This lesson learned, we started the ECA design with a detailed investigation of the elements that characterize our application and a survey of other solutions to the same problem.  I/O plays a much more important role than we anticipated. The I/O requirements can be broken into two equally important domains.  The first is communication with the host operating system.  The second is communication with the peripheral devices.  In addition to I/O, the application requires that ECA encapsulate a limited amount of control and measurement.  Our section on application characteristics mirrors this organization and focuses on detailed requirements derived from our investigation.

Investigation into communication with the host OS revealed the ACPI protocol.  We chose ACPI as the exclusive interface to the host OS for three fundamental reasons.  First, ACPI is a widely accepted and supported industry standard.  Devices that support ACPI are more apt to be accepted than proprietary ones with proprietary protocols.  Second, a great deal of work was put into developing the ACPI protocol with the expressed purpose of supporting ECA type devices.  It would seem fruitless to try to reinvent the wheel.  Finally, the protocol requires minimal architectural support for extensive functionality.

Study of peripheral device options for control and data acquisition revealed several requirements.  First, ECA must have the ability to acquire digital data about analog signals, primarily temperature measurement.  Providing an ADC accomplishes this.  Second, fan speeds need to be controlled.  This is accomplished with PWM.  Third, ECA needs to be able to interface to discrete devices such as switches or Light Emitting Diodes (LEDs).  Digital I/O is the obvious facility for providing this feature.  Finally, ECA users will likely desire interconnection between other control devices in the system.  SMB is an industry standard protocol for this type of inner connection.  We chose to provide for full SMB support in ECA.

In addition to I/O, our application analysis revealed two applications that ECA is most likely to encapsulate.  The first of these applications is temperature control/regulation.  The second is the ability to acquire data and do minimal calculation.

The ECA vision of usefulness is derived directly from these application characteristics.  Specifically, ECA will act largely as the operating systems’ interface to peripheral devices in the system.  In addition to wrapping the functionality of peripheral devices ECA will encapsulate methods of control and data acquisition.  

After working hard to resolve the characteristics of our application we set out to weigh the design alternatives and come up with an architecture that provides the desired functionality in a useful and extensible way.  Additionally, consideration was paid to avoiding the “second system effect.”

One of our first assertions was that all of the ECA elements be realized on a single Integrated Circuit (IC). We feel this decision is necessary to yield a high price‑performance ratio. Price-performance is paramount to ECA customers who will integrate ECA devices to reduce costs in the highly competitive low‑margin business of personal computers.  In addition to being less expensive to integrate and manufacture ECA pin count is minimized because no external data or address busses are required.

The disadvantages of a single IC implementation are equally clear.  First, the design choices must consider a minimal bit budget.  Second, memory size is limited to what can be implemented on‑die.  It is somewhat unfortunate to have this memory constraint because memory can be used to solve many system problems.

Considering our memory constraints, we chose to provide 16-bits of address space.  This address space is shared between the program memory and data memory.  The Von Neumann shared memory model was chosen because it requires only one bus.  Separate 16-bit address space for program and data memory is excessive considering our die constraints. We anticipate that 50% of the program address space and 25% of the data address space can be implemented on-die with current technological capabilities.  We believe this is sufficient for current applications and provide room for future growth. All unused address space is policed to prevent ghost operations, a lesson learned from the IBM 1401.  Additionally, we feel that providing support for backward compatibility justifies the added cost of policing circuitry.

The application also influences the type of programming memory.  We argue that FLASH is the best alternative for non-volatile program memory in ECA.  There are two reasons for this decision.  The first is that FLASH offers the highest level of flexibility, which adds value to ECA for users who wish to have the capability of upgrading ECA firmware remotely.  Second, read operations from Flash memory occur at the same speeds at read operations from volatile memory obviating the need to copy the program into RAM for fast execution. We feel that these benefits outweigh the additional cost of FLASH.

Our choice to provide a general-purpose register-to-register architecture, as opposed to an accumulator or stack-based architecture, was motivated by ease of use, flexibility, and instruction set orthogonality. The register‑to‑register model also requires the lowest memory bandwidth. Finally, this choice provides the best support for handling programs of growing complexity.

The disadvantages of choosing this architectural style are twofold.  First, registers cost approximately four times as much as memory.  Second, a register‑to‑register organization requires additional operation and format complexity.  However, the relatively small number of registers in ECA makes the impact of a higher transistor count negligible.   Additionally, careful operation and format specification helps mitigate the impact on complexity.

Our next consideration was on the number of registers to provide.  The number of registers to provide is influenced by the requirements for control store, working store, and operation format specification.

The control store influences the number of registers required only if they can be specified as operands in the operation formats.  Some embedded controller architectures have chosen to make control store part of memory essentially creating “magic” memory locations.  This approach is clearly less constraining.  However, we chose to specify the control store as operands in the operation formats.  The only exception to this is the memory locations that act as the SMB register set.  This is due to the fact that the current SMB specification requires forty registers.  We believe this is a cleaner approach and reduces the number of load store operations significantly.  The real value of this decision is apparent when analyzing the frequency of peripheral I/O operations.

Control store includes three registers for ACPI support, one register for combined status, and two registers for a counter.  Two registers are used for interaction with the digital I/O, ADC, and PWM ports.  This is accomplished via a shared functional interface with one register dedicated to control and the other to data.  These eight registers are conveniently addressable with half of a byte.  We chose a symmetrical size for the general-purpose registers, i.e. working store, for simplicity in the operation formats.  Our experience programming ECA has shown the number of registers to be sufficient.

Our choice requiring ECA to be a single IC realization eliminated the ability to provide a direct backing store.  However, there is no real need for it in this application.  If backing store were required it could be easily synthesized with ACPI communication with the host OS.

There are many alternatives to addressing modes and address calculation.  We chose to use immediate addressing for transfer of constants and addresses from program memory to registers.  Direct addressing is used for data memory references. We chose to provide address modification mainly because it is a very powerful tool for describing access patterns that would be awkward to program otherwise. ECA only allows for 4-bit displacements in address modification. This rather awkward choice is motivated by the fact that larger displacements would have required additional space in the instruction format, and we felt the price of one extra byte was too high to pay for a limited additional functionality.

In addition to the above addressing modes ECA provides stack functionality, because complex programs benefit greatly from a stack facility. That is to say when programmers venture into complex applications we should support them with a powerful tool for writing subroutines. Also, stacks are common in most modern architectures and most programmers are familiar with using them on other machines. The requirement for ease of subroutine use and the need to provide nested subroutine calls quickly led us to the necessity of having a stack. We also needed a stack for an easy and convenient way to save and restore data, in order to free up registers.

We chose not to make the Stack Pointer visible to the programmer for two reasons. First, specifying it would require a special register pair that would take up op-code space. Second, there were no obvious advantages of exposing the Stack Pointer from the application point of view.

The choice of an 8-bit op-code seems quite excessive at first glance, considering the application range. It seems unlikely that the programmer needs 256 different instructions to monitor sensors. However, we feel strongly that it is justified. Our first justification is that we are less likely to make concessions to implied behaviors with a liberal op-code space. Second, the op-size is now the same size as the machine data path and adds to the overall uniformity of the machine. It is also likely that this will simplify implementation because the bit patterns we used (see section 3.2, instruction syntax) allow easy decoding and policing. Finally, we realize that our design will fall short in some respect, as foresight is not 20/20. Having space in the op-code will allow future architects to easily add to and correct aspects of the original. You could say that we chose to pay the cost of extensibility with the lost bit-efficiency due to unused op-code space.

We chose to provide two different ways to specify the general-purpose registers, using their names or as parts of pairs, for two reasons. The first is the need to fit a general‑purpose register specifier into the op-code of tight formats such as c and e. The second is that a register specifier is easy to decode in the format we have chosen (see section 3.2 for details).

We provided normal instruction sequencing by use of the Program Counter. We chose not to make it available to the programmer for the same reasons we have chosen to hide the Stack Pointer: saving register and op-code space and lack of obvious advantages of exposing it to the programmer.

For branching we had the choice to provide the full array of conditional and unconditional, absolute and relative branches. This approach would have scored high on the orthogonality scale, but we felt that it would add unnecessary redundancy in the operation set. ECA provides the full array of condition codes testing only for relative branches, because it leaves us more room in the op‑code for unforeseen operations. Instruction format i can be easily extended to support conditional absolute branches, if this decision is reversed in future iterations of the architecture. This can even be done without complicating the decoding process, as format i doesn't use bits 4, 5 and 6, exactly the bits that format d uses to specify condition testing (see sections 3.2 and 3.3 for details) 
By default, ECA polices data memory references and branch target addresses. The standard way FLASH memories are written is by providing a pin that enables write accesses. In ECA we add policing disabling to the functionality of that pin. This way upgrades to the firmware can be done programmatically, under the control of a special program or the OS driver.

ECA provides interrupts for communicating with the outside world i.e., the OS driver and the devices attached to the SMB. We chose to integrate the functionality of reading data from the devices embedded in ECA (PWM, ADC, Digital I/O) with the timer interrupt, instead of providing each device with its own interrupt mainly for reasons of convenience. Also, most of the embedded devices are polled at precise intervals, rather than interrupt‑driven.
ECA architecture bears a strong resemblance to early microprocessors. This is due to the fact that both architectures were designed to solve control problems making likely that some of our choices coincide. Additionally, we have been undoubtedly influenced by past designs. Specific concerns shared by early microprocessors and ECA are:

· Designed to monitor sensors and control various devices;

· Infrequently written programs lead to extensive use of cross-assembly;

· The program is fixed, i.e. burned into a non-volatile memory;

· Lack of a backing store;

· High bit efficiency and code density to cost constraints;

· Many bit-wise operations for I/O;

· Full set of branch conditions;

· Architecture must provide rich functionality at a low cost.

ECA differs from the classical microcomputer in the following ways:

· The use of FLASH memory as program storage.

· Fewer address modes.

· Embedded devices for specialized functionality.

· Dedicated registers for protocol and embedded devices support.

· General register set addressable as pairs.

10. Sample Programs

10.1 OS ACPI Driver

#include <SMA_ACPI.h>           // communication functions definition

#include <plots2D.h>            // some graph plotting functions

//-----------------------------------------------------------------------------

// Standard ACPI commands definition for ECSCW

//-----------------------------------------------------------------------------

#define RD_EC 0x80

#define WR_EC 0x81

#define BE_EC 0x82

#define BD_EC 0x83

#define QR_EC 0x84

//-----------------------------------------------------------------------------

// Error codes

//-----------------------------------------------------------------------------

#define SPEV  0x00 // spurious event

#define INIT  0x81 // ECA ready for init sequence

#define BMACK 0x90 // Burst Mode acknowledgement

//-----------------------------------------------------------------------------

// ECSCR Constants

//-----------------------------------------------------------------------------

#define OBF    0x00 // Output Buffer Full

#define IBF    0x01 // Input Buffer Full

#define CMD    0x03 // CoMmanD

#define BURST  0x04 // BURST mode active

#define SCI_EV 0x05 // SCI EVent

#define SMI_EV 0x06 // SMI EVent (not used)

//-----------------------------------------------------------------------------

// Functions

//-----------------------------------------------------------------------------

char doRD_EC(char address)

    {

    ACPIwrite(ECSCW, RD_EC);           

    ACPIset(ECSCR, CMD);               // will send a command

    ACPIset(ECSCR, IBF);                // send

    ACPIwrite(ECDATA, address);

    ACPIreset(ECSCR, CMD);              // will send data

    ACPIset(ECSCR, IBF);           

    while (!(ACPIread(ECSCR) & OBF));   // wait for reply to become available

    return ACPIread(ECDATA);            // read reply

    }

void doWR_EC(char address, char data)

    {

    ACPIwrite(ECSCW, WR_EC);            

    ACPIset(ECSCR, CMD);                // will send a command        

    ACPIset(ECSCR, IBF);                // send

    ACPIwrite(ECDATA, address);

    ACPIreset(ECSCR, CMD);              // will send data

    ACPIset(ECSCR, IBF);                // send

    ACPIwrite(ECDATA, data);

    ACPIreset(ECSCR, CMD);              // will send data

    ACPIset(ECSCR, IBF);                // send

    }

char doBE_EC(char * commands, char length)

    {

    char i, r;

    ACPIwrite(ECSCW, BE_EC);           

    ACPIset(ECSCR, CMD);                 // will send a command

    ACPIset(ECSCR, IBF);                 // send

    while (!(ACPIread(ECSCR) & BURST));  // wait for Burst Mode enable

    while (!(ACPIread(ECSCR) & SCI_EV)); // wait for SCI event

    if (ACPIread(ECDATA)==BMACK)

      for (i=0; i<length; i++)

        {

        ACPIwrite(ECDATA, commands[i]);            

        ACPIreset(ECSCR, CMD);           // will send data

        ACPIset(ECSCR, IBF);

        r=i;                             // count bytes sent

        while (ACPIread(ECSCR) & IBF)    // wait for it to be read

          if (ACPIread(ECSCR) & SCI)     // ECA sent an SCI

            {

            i=length;

            break;

            }                            // exit

        }

    ACPIwrite(ECSCW, BD_EC);           

    ACPIset(ECSCR, CMD);                 // will send a command

    ACPIset(ECSCR, IBF);                 // send

    return r;

    }

char doQR_EC()

    {

    ACPIwrite(ECSCW, QR_EC);            

    ACPIset(ECSCR, CMD);                // will send a command        

    ACPIset(ECSCR, IBF);                // send

    while (!(ACPIread(ECSCR) & OBF));   // wait for reply to become available

    return ACPIread(ECDATA);            // read reply

    }

void init()                           // initialize system variables

    {

    doWR_EC(0x00,0x5A);               // set Zone 1 Reference

    doWR_EC(0x02,0x78);               // set Processor 1 Reference

    doWR_EC(0x06,0x78);               // set Processor 2 Reference

    }

//-----------------------------------------------------------------------------

// Main program

// Trivial example, only initialization and plotting values over time.

//-----------------------------------------------------------------------------

void main()

    {

    char error, temp;

    int power;

    while (!(ACPIread(ECSCR) & SCI));   // wait for ECA to say "I'm alive"

    if (doQR_EC==INIT) init()           // received ready for init signal

    while (1)

      {

      if (ACPIread(ECSCR) & SCI)        // ECA sent an SCI

        {

        error = doQR_EC();              // find out what was wrong

        switch (error)

          {

          case 0: ...                   // take appropriate actions

          case 1: ...

          ...

          case INIT: init();            // ECA was reset, re-initialize

          default ...

          }

        }

      temp = doRD_EC(0x01);             // read Zone 1 temperature

      plotByte(temp);                   // plot the value over time        

      power = doRD_EC(0x04)+256*doRD_EC(0x05); // processor 1 power

      plotWord(power);                  // plot the value over time

      power = doRD_EC(0x08)+256*doRD_EC(0x08); // processor 2 power

      plotWord(power);                  // plot the value over time

      ...

      }

    }

10.2 ECA Memory Map

;------------------------------------------------------------------------------

; Memory organization

;------------------------------------------------------------------------------

;

;       Address Content        Comments

;                               

;                                       ; Start of program memory (Flash)

;       0000h           @Startup        ; Startup routine

;       0005h           @v0hndlr        ; Interrupt vector 0 (non-maskable)

;                                       ; Trap on exceptions

;

;       000Ah           @v1hndlr        ; Interrupt vector 1 (maskable)

;                                       ; Trap on Timer

;

;       000Fh           @v2hndlr        ; Interrupt vector 2 (maskable)

;                                       ; Trap on SMB message

;

;       0014h           @v3hndlr        ; Interrupt vector 3 (maskable)

;                                       ; Trap on ACPI message

;

;       0100h           XXh             ; Start of program memory (Flash)

;       7FFFh           XXh             ; End of program memory

;

;                                       ; Start of RAM

;       8000h           XXh             ; Start of ACPI shared zone

;       80FFh           XXh             ; End of ACPI shared zone

;

;       8100h           XXh             ; Start of system variables zone

;       81FFh           XXh             ; End of system variables zone

;

;       8200h           XXh             ; Start of SMB support zone

;       82FFh           XXh             ; End of SMB support zone

;

;       8300h           00h             ; Beginning of ACPI command buffer

;                                       ; Grows up without bound

;                                      

;       FFFFh           00h             ; Limit of memory, start of stack

;                                       ; Grows down without lower limit

;                                          

;------------------------------------------------------------------------------

10.3 ECA Kernel

10.3.1 Definitions

;------------------------------------------------------------------------------

; Assembly language notations and conventions

;------------------------------------------------------------------------------

; $name
- constant or variable name

; @label 
– label specifier in branches

; :label
- label – target address for branches

; Xh

- 3-bit or 4-bit immediate (hex)

; XXh

- 8-bit immediate (hex)

; XXXXh
- 16-bit immediate (hex)

; XXXXXXXXb
- 8-bit immediate (binary)

; [RPn+Xh]
- address specifier: register pair + 4-bit immediate (hex)

; 

; ECA is a two-address machine.

; Results are assigned to the left operands.

; 

;------------------------------------------------------------------------------

; Special function register bit definitions

;------------------------------------------------------------------------------

;Decl.          Name    Value           Comments

;------------------------------------------------------------------------------

                                ; STATUS  processor STATUS

.const          $ZERO   03h             ; ZERO flag

.const          $CARRY  04h             ; CARRY flag

.const          $TIMER  05h             ; Timer interrupt

.const          $SMB    06h             ; SMB interrupt

.const          $ACPI   07h             ; ACPI interrupt

                                ; ECSCR   Embedded Controller Status/Command Rd

.const          $OBF    00h             ; Output Buffer Full

.const          $IBF    01h             ; Input Buffer Full

.const          $CMD    03h             ; CoMmanD

.const          $BURST  04h             ; BURST mode active

.const          $SCI_EV 05h             ; SCI EVent

.const          $SMI_EV 06h             ; SMI EVent (not used)

                                ; PCON    Port CONtrol

.const          $CH0    00h             ; Port CHannel bit 0

.const          $CH1    01h             ; Port CHannel bit 1

.const          $CH2    02h             ; Port CHannel bit 2

.const          $CH3
03h             ; Port CHannel bit 3

.const          $ADC    04h             ; Analog to Digital Conversion active

.const          $PWM    05h             ; Pulse Width Modulation active

.const          $DOW    06h             ; Digital Output Write active

.const          $DIR    07h             ; Digital Input Read active

                                        ; Bits 4-7 auto. cleared on completion

;------------------------------------------------------------------------------

; Miscellaneous constants

;------------------------------------------------------------------------------

;Decl.          Name    Value           Comments

;------------------------------------------------------------------------------

                                        ; Memory page reservations

.const          $ACPIM  8000h           ; ACPI shared memory 8000h-80FFh

.const          $LSTAT  8100h           ; Last command STATus address

.const          $LCMD   8101h           ; Last CoMmanD pointer address

.const          $CMDBUF 8300h           ; ACPI CoMmanD BUFfer starts at 8200h

.const          $CMDBH  82h             ; High Byte of ACPI CoMmand buffer addr

.const          $BMACK  90h             ; ACPI Burst Mode ACKnowledge code

.const          $INIT   01h             ; Error code to signal "Init" to driver

.const          $COUNT  8104h           ; Counter/timer address

                                        ; ACPI standard command codes

.const          $RD_EC  80h             ; ReaD Embedded Controller

.const          $WR_EC  81h             ; WRite Embedded Controller

.const          $BE_EC  82h             ; Burst Enable Embedded Controller

.const          $BD_EC  83h             ; Burst Disable Embedded Controller

.const          $QR_EC  84h             ; QueRy Embedded Controller

;------------------------------------------------------------------------------

; System variables

;------------------------------------------------------------------------------

;Decl.  Address Name    Content         Comments

;------------------------------------------------------------------------------

                                        ; ACPI shared memory

.byte   @8000   $Z1R    5Ah             ; Zone 1 Reference (90 degrees F) 

.byte   @8001   $Z1T    00h             ; Zone 1 Temperature

.byte   @8002   $P1R    78h             ; Processor 1 Reference (120 degrees F)

.byte   @8003   $P1T    00h             ; Processor 1 Temperature

.byte   @8004   $P1PC   0000h           ; Processor 1 Power Consumption (2)

.byte   @8006   $P2R    78h             ; Processor 2 Reference (120 degrees F)

.byte   @8007   $P2T    00h             ; Processor 2 Temperature

.byte   @8008   $P2PC   0000h           ; Processor 2 Power Consumption (2)

                                        ; Start of system variables

.byte   @8100   $LSTATV 00h             ; Last error status

.byte   @8101   $LCMDL  00h             ; Last address in command buffer (low)

.byte   @8102   $LCMDH  00h             ; Last address in command buffer (high)

.byte   @8103   $Z1TR   01h             ; Zone 1 ThReshold (1 degree F)

.byte   @8104   $CNTL   00h             ; Counter/timer (low)

.byte   @8105   $CNTH   00h             ; Counter/timer (high)

10.3.2 Startup Sequence

;------------------------------------------------------------------------------

; Startup sequence, placed at beginning of FLASH memory

;------------------------------------------------------------------------------

:startup

                JUMP    @initialize

10.3.3 Interrupt Handlers

;------------------------------------------------------------------------------

; Interrupt handlers

;------------------------------------------------------------------------------

:v0hndlr

                CALL    @v0             ; Call vector 0 handler

                RETURN

:v1hndlr

                CALL    @v1             ; Call vector 1 handler

                RETURN

:v2hndlr

                CALL    @v2             ; Call vector 2 handler

                RETURN

:v3hndlr

                CALL    @v3             ; Call vector 3 handler

                RETURN

10.3.3.1 Interrupt 0 - Exception

;------------------------------------------------------------------------------

; Handle interrupt vector 0

;------------------------------------------------------------------------------

; Source:               Invalid address, Illegal operation code

;                       Stack pointer overflow, Stack pointer underflow

; Maskable:             NO

;------------------------------------------------------------------------------

; Exception handler

; Issue an SCI, then wait for the OS driver to query the error code.

; No timeout implemented, assume OS driver complies with specification.

; Signal "unspecified error" and RESET.

;------------------------------------------------------------------------------

:v0

                MOVEL   RP0, 00h        ; R0=Low(RP0)=0

                CALL    @SCI_EVT

:v0wait

                TEST    ECSCR, $IBF     ; Has OS send query yet?

                BRNZ    @v0wait         ; No, wait

                COMPL   RP0, $QR_EC     ; Is command QR_EC?

                BRNZ    v0wait          ; No, ignore and repeat

                CALL    @QR_EC          ; Call the QR_EC command handler

                RESET

10.3.3.2 Interrupt 1 - TIMER

;------------------------------------------------------------------------------

; Handle interrupt vector 1

;------------------------------------------------------------------------------

; Source:               Timer

; Maskable:             YES

;------------------------------------------------------------------------------

; Counter interrupt handler

; Bump the counter.

; If 8192 microseconds elapsed, sample power.

; If 1048576 microseconds elapsed, sample temperature and adjust fan speed.

; In this example no corrections are operated in the counter value to account

; for the time spent on conversions.

;------------------------------------------------------------------------------

:v1

                PUSH    RP0             ; Save pair RP0

                MOVE    R0, STATUS

                CLEAR   STATUS, $TIMER  ; Disable interrupt

                PUSH    RP0             ; Save status

                MOVE    R1, 01h

                ADD     C0, R1

                BRNC    @counterNC      ; No overflow

                ADD     C1, R1

                MOVE    R0, STATUS      ; Save STATUS

                PUSH    RP0

                PUSH    RP1

                MOVE    R0, C1

                TEST    R0, 3h

                BRNZ    @nopwr          ; No need to measure power yet

                CALL    @P1pwr          ; Measure power

                CALL    @P2pwr

:nopwr

                POP     RP1

                POP     RP0

                MOVE    STATUS, R0      ; Restore STATUS

                BRNC    @counterNC      ; No overflow

                PUSH    RP1

                MOVEI   RP1, $COUNT

                LOAD    R0,[RP1+0h]     ; 1st byte from memory

                ADD     R0, R1

                STORE   [RP1+0h],R0

                MOVE    R1, STATUS      ; Save STATUS

                PUSH    RP0

                PUSH    RP1

                TEST    R0, 3h

                BRNZ    @notmp          ; No need to measure temperature yet

                PUSH    RP2             ; Save context as needed

                PUSH    RP3

                CALL    @regZ1          ; Adjust temperature

                CALL    @regP1

                CALL    @regP2

                POP     RP3             ; Restore context

                POP     RP2

:notmp

                POP     RP1

                POP     RP0

                MOVE    STATUS, R1      ; Restore STATUS

                BRNC    @counterPOP     ; No overflow

                LOAD    R0,[RP1+1h]     ; 2nd byte from memory

                ADD     R0, R1

                STORE   [RP1+1h],R0

:counterPOP     

                POP     RP1

:counterNC

                POP     RP0             ; Restore status

                MOVE    STATUS, R0

                POP     RP0             ; Restore pair RP0

                RETURN

10.3.3.3 Interrupt 2 - SMB

;------------------------------------------------------------------------------

; Handle interrupt vector 2

;------------------------------------------------------------------------------

; Source:               SMB

; Maskable:             YES

;------------------------------------------------------------------------------

; SMB interrupt handler

; Not implemented in this example.

;------------------------------------------------------------------------------

:v2

                CLEAR   STATUS,$SMB     ; Disable SMB interrupts

...

                SET     STATUS,$SMB     ; Enable SMB interrupts

                RETURN

10.3.3.4 Interrupt 3 - ACPI

;------------------------------------------------------------------------------

; Handle interrupt vector 3

;------------------------------------------------------------------------------

; Source:               ACPI

; Maskable:             YES

;------------------------------------------------------------------------------

; ACPI interrupt handler

; Called whenever the OS driver sends a message.

; If message is a standard ACPI command, execute.

; If message is a non-standard ACPI command or some data, enqueue in buffer.

;------------------------------------------------------------------------------

:v3

                CLEAR   STATUS, $ACPI   ; Disable ACPI interrupts

                PUSH    RP0             ; Save context, registers R0 and R1

                MOVE    R0, STATUS

                PUSH    RP0             ; Save status

                TEST    ECSCR, $CMD     ; Is received byte data or command?

                BRNZ    @ACPIcommand

                MOVE    R0, ECDATA

                BR      @default        ; Enqueue the data

:ACPIcommand

                MOVE    R0, ECSCW

                COMPL   RP0, $RD_EC     ; Is command RD_EC?

                BRNZ    @ACPIcont1      ; No, continue checking

                CALL    @RD_EC          ; Else call RD_EC command handler

                BR      @ACPIdone

:ACPIcont1

                COMPL   RP0, $WR_EC     ; Is command WR_EC?

                BRNZ    @ACPIcont2      ; No, continue checking

                CALL    @WR_EC          ; Else call the WR_EC command handler

                BR      @ACPIdone

:ACPIcont2

                COMPL   RP0, $BE_EC     ; Is command BE_EC?

                BRNZ    @ACPIcont3      ; No, continue checking

                CALL    @BE_EC          ; Else call the BE_EC command handler

                BR      @ACPIdone

:ACPIcont3

                COMPL   RP0, $QR_EC     ; Is command QR_EC?

                BRNZ    @ACPIdefault    ; No, continue checking

                CALL    @QR_EC          ; Else call the QR_EC command handler

                BR      @ACPIdone

:ACPIdefault                            ; Custom command types or data

                PUSH    RP1             ; Save context, registers R2 and R3

                PUSH    RP2             ; Save context, registers R4 and R5

                MOVEI   RP2, $BUFEND    ; Load address of last command buffer

                LOAD    R2, [RP2+0h]

                LOAD    R3, [RP2+1h]

                STORE   [RP1+0h], R0    ; Store command/data in buffer

                INC     RP1             ; Increment address

                STORE   [RP2+0h], R2    ; Store lower part

                STORE   [RP2+1h], R3    ; Store higher part

                POP     RP2             ; Restore context, registers R4 and R5

                POP     RP1             ; Restore context, registers R2 and R3

:ACPIdone

                POP     RP0             ; Restore status

                MOVE    STATUS, R0

                CLEAR   ECSCR, $IBF     ; Input buffer now empty,  can receive

                SET     STATUS, $ACPI   ; Set the interrupt flag

                RETURN

;------------------------------------------------------------------------------

; Read Embedded Controller RD_EC handler

; Wait for OS to send address, then read data and send it.

; No timeout implemented, assume OS driver complies to specification.

;------------------------------------------------------------------------------

:RD_EC

                TEST    ECSCR, $IBF     ; Has OS send address yet?

                BRNZ    @RD_EC          ; No,  wait

                PUSH    RP0             ; Save pair RP0

                MOVEI   RP0, $ACPIM     ; Load buffer address

                MOVE    R0, ECDATA      ; Overwrite lower byte of address

                LOAD    ECDATA, [RP0+0h]; Get data to send

                SET     ECSCR, $OBF     ; Output buffer now full, send

                POP     RP0             ; Restore pair RP0

                RETURN

;------------------------------------------------------------------------------

; Write Embedded Controller WR_EC handler

; Wait for OS to send address and data, then write data at specified address.

; No timeout implemented, assume OS driver complies to specification.

;------------------------------------------------------------------------------

:WR_EC

                TEST    ECSCR, $IBF     ; Has OS send address yet?

                BRNZ    @WR_EC          ; No, wait

                PUSH    RP0             ; Save pair RP0

                MOVEI   RP0, $ACPIM     ; Load buffer address

                MOVE    R0, ECDATA      ; Overwrite lower byte

                CLEAR   ESCR, $IBF      ; Signal that byte has been read

:WR_ECwaiti

                TEST    ECSCR, $IBF     ; Has OS send content yet?

                BRNZ    @WR_ECwaiti     ; No, wait

:WR_ECwaito

                TEST    ECSCR, $OBF     ; Is the output buffer free?

                BRNZ    @WR_ECwaito     ; No, wait

                STORE   [RP0+0h], ECDATA; Store content

                POP     RP0             ; Restore pair RP0

                RETURN

;------------------------------------------------------------------------------

; Burst Enable Embedded Controller BE_EC handler

; Simple model, assume exit only on end or timeout, with no internal

; interrupts to handle. Disables SMB interrupts.

; Adjusts final counter value to compensate for lost time.

; Exit on timeout or BD_EC command.

; Assume only non-standard commands issued in Burst Mode.

;------------------------------------------------------------------------------

:BE_EC

                PUSH    RP0

                SET     ECSCR, $BURST   ; Enable Burst mode

                MOVE    R0, $BMACK      ; Burst acknowledge byte

                MOVE    ECDATA, R0

                SET     ECSCR, $OBF     ; Send acknowledgement

                PUSH    RP1

                PUSH    RP2

                PUSH    RP3

                MOVE    R0, STATUS

                MOVE    R1, STATUS      ; Make a second copy

                PUSH    RP0             ; Save the status

                CLEAR   STATUS,$SMB     ; Disable SMB interrupts

                MOVE    R0, C0

                MOVE    R1, C1

                PUSH    RP0             ; Save the counter value

                MOVEI   RP0, $LASTCMD   ; Load pointer to last command

                LOAD    R2, [RP0+0h]    ; Load lower part of RP1

                LOAD    R3, [RP0+1h]    ; Load higher part of RP1

                CLEAR   STATUS, $TIMER  ; Disable the counter

                XOR     C0, C0          ; Clear the counter value

                XOR     C1, C1

                CLEAR   STATUS, $SCALE1 ; SCALE=00b

                CLEAR   STATUS, $SCALE2

                SET     STATUS, $TIMER  ; Start the counter

:BE_ECloop1                             ; First access, 400ms

                MOVE    R6, C0

                COMPL   RP3, 8Fh        ; 8Fh=143<144=400-256*1

                BRNC    @BE_ECcont1

                MOVE    R6, C1

                COMPL   RP3, 01h

                BRZ     @BE_ECend       ; 400 microseconds elapsed, exit

:BE_ECcont1

                TEST    ECSCR, $IBF     ; Has OS sent data yet?

                BRNZ    @BE_ECloop1     ; No, wait

:BE_ECcommand

                MOVE    R6, ECDATA

                COMPL   RP3, $BD_EC     ; Is command BD_EC?

                BRZ     @BE_ECend       ; OS finished sending, exit

                STORE   [RP1+0h], ECDATA; Store the command

                INC     RP1             ; Increment destination address

                MOVE    R5, C0          ; Copy the lower part of the counter

                CLEAR   ECDCR, $IBF     ; Ready for new data

:BE_ECloop2                             ; Subsequent access, 50ms each

                MOVE    R4, C0          ; Copy current time

                SUB     R4, R5          ; Subtract reference time

                BRC     @BE_ECover      ; Got a "negative" here

                COMPL   RP2, 32h        ; 32h=50

                BRZ     @BE_ECend       ; 50 ms elapsed, exit

                BR      @BE_ECcont2

:BE_ECover

                COMPL   RP2, CEh        ; CEh=206=256-50

                BRZ     @BE_ECend       ; 50 ms elapsed, exit

:BE_ECcont2

                TEST    ECSCR, $IBF     ; Has OS sent data yet?

                BRNZ    @BE_ECloop2     ; No, wait

                MOVE    R6, C0

                COMPL   RP3, E7h        ; E7h=231<232=1000-256*3

                BRNC    @BE_ECcommand   ; 1000 ms not elapsed yet

                MOVE    R6, C1

                COMPL   RP3, 03h        ; 03h=3=1000/3

                BRNZ    @BE_ECcommand   ; 1000 ms not elapsed yet

:BE_ECend

                MOVEI   RP0, $LASTCMD   ; Need to write buffer current length

                STORE   [RP0+0h], R2    ; Store lower part of RP1

                STORE   [RP0+1h], R3    ; Store higher part of RP1

                POP     RP0             ; Retrieve old counter value

                POP     RP1             ; Retrieve old status into RP1

                ADD     R0, C0          ; Add lower part of scaled value

                ADDC    R1, C1          ; Add higher part of scaled value

                MOVE    C0, R0          ; Store the new counter

                MOVE    C1, R1

                MOVE    STATUS, R3      ; Restore old status from second copy

                POP     RP3

                POP     RP2

                POP     RP1

                CLEAR   ECSCR, $BURST   ; Disable Burst mode

                XOR     R0, R0          ; Clear last error

                CALL    @SCI_EVT

                POP     RP0

                RETURN

;------------------------------------------------------------------------------

; Query Embedded Controller RD_EC handler

; Send the code of the last error.

; No timeout implemented, assume OS driver complies to specification.

;------------------------------------------------------------------------------

:QR_EC

                PUSH    RP0             ; Save pair RP0

                MOVEI   RP0, $LSTAT     ; Get the address of the error code

                LOAD    ECDATA, [RP0+0h]; Get data to send

                SET     ECSCR, $OBF     ; Output buffer now full, send

                POP     RP0             ; Restore pair RP0

                CLEAR   ECSCR, $SCI_EVT ; Signal that error has been processed

                RETURN

10.3.4 Main Execution Loop

;------------------------------------------------------------------------------

; Main execution loop

;------------------------------------------------------------------------------

:mainloop

                MOVEI   RP0, $LASTCMD   ; Load pointer to last buffered command

                LOAD    R2, [RP0+0h]    ; Load lower command address

                LOAD    R3, [RP0+1h]    ; Load higher command address

                MOVE    R4, $CMDBH      ; High($CMDBUF), Low($CMDBUF)=0

                SUB     R3, R4          ; Compute buffer length

                OR      R3, R2          ; Only care about non zero bits

                BRZ     @rest           ; No, continue

;------------------------------------------------------------------------------

; Command buffer processor

;------------------------------------------------------------------------------

                MOVEI   RP0, $CMDBUF    ; Load buffer start address

:commandloop

                LOAD    R4, [RP0+0h]    ; Load the current command

                COMPL   RP2, $CMD01     ; Is it CMD01?

                BRNZ    @next01

                CALL    @handle02

:next01

                COMPL   RP2, $CMD02     ; Is it CMD02?

                BRNZ    @next02

                CALL    @handle02

:next02

...

                COMPL   RP2, $CMD7F     ; Is it CMD7F?

                BRNZ    @next7F

                CALL    @handle7F

:next7F                                 ; Finished comparing

                INC     RP0             ; Increase processed command address

                MOVE    R5, R2          ; Compute lower byte of length

                SUB     R5, R0

                MOVE    R4, R3          ; Compute higher byte of length

                SUB     R4, R1

                OR      R5, R4          ; Only care about non-zero bits

                BRNZ    @commandloop    ; Repeat for all commands

;------------------------------------------------------------------------------

; Other operations:

; Move any new commands that were added to buffer by interrupts to beginning.

;------------------------------------------------------------------------------

:rest                                   ; Other stuff that needs to be done

                CLEAR   STATUS, $ACPI   ; Disable ACPI interrupts

                MOVEI   RP0, $LASTCMD   ; Load address of buffer address

                LOAD    R4, [RP0+0h]    ; Load lower part of buffer address

                LOAD    R5, [RP0+1h]    ; Load higher part of buffer address

                MOVEI   RP3, $CMDBUF    ; Load buffer start address

:movebuffer

                LOAD    R0, [RP2+0h]    ; Move the current command

                STORE   [RP3+0h], R0

                INC     RP2             ; Increment the addresses

                INC     RP3

                MOVE    R1, R5          ; See if done

                SUB     R1, R3

                MOVE    R0, R4

                SUB     R0, R2

                OR      R0, R1          ; Only care about non-zero bits

                BRNZ    @movebuffer

                SET     STATUS, $ACPI   ; Enable ACPI interrupts

                BR      @mainloop       ; Repeat

;------------------------------------------------------------------------------

; Call convention:

; Individual command handlers can and should use and increase RP0, the current

; buffer address (i.e., R0 and R1) as needed to read command parameters.

; They must not modify RP1 (i.e., R2 and R3), as it stores the highest command

; address.

; They can use RP2 and RP3 (i.e., R4, R5, R6 and R7) freely.

;------------------------------------------------------------------------------

:handle01

...

RETURN

:handle02

...

RETURN

...

:handle7F

...

RETURN

10.3.5 Temperature Regulation

;------------------------------------------------------------------------------

; Regulate Zone 1 temperature

;------------------------------------------------------------------------------

; This routine regulates the temperature in Zone 1 by proportional adjustments

; to the Zone 1 fan speed.

;

; The first component is the temperature reference value, reference for short,

; which resides in the shared memory space. The reference value which, 

; indicates the maximum allowable temperature, is by default set to 90 degrees

; Fahrenheit. The operating system driver may then modify the reference value

; as it sees fit.

;

; The second component of temperature control is the threshold.  The target

; temperature is calculated by subtracting the threshold from the reference.

; The threshold, which is fixed at 3 degrees Fahrenheit, prevents the

; reference temperature from being below 3 degrees.  If the operating system

; driver sets the reference below 3 degrees the following code will set the

; reference to 3 degrees.

;

; The Pulse Width Modulation duty cycle, i.e. average power, is varied in 33%

; increments from off, when the measured temperature is equal to the target,

; to full power, when the measured temperature is equal to the reference.

; This keeps the actual temperature half way between the reference and target.

;------------------------------------------------------------------------------

; Ports used:           ADC Channel 1 (temperature), PWM channel 1 (fan speed)

; Registers used:       STATUS, PCON, PDATA, R4, R5, R6, R7

; Variables:            Z1R (reference temperature), Z1T (measured temperature)

;------------------------------------------------------------------------------

:regZ1                                  ; Read zone 1 temperature               

                MOVEL   R4, 00010001b   ; ADC channel 1 external reference

                MOVE    PCON, R4        ; Initialize A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:RZ1test1                               ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @RZ1test1

                LOAD    RP2, @$Z1R      ; Get zone 1 reference temperature

                LOAD    R6, [RP2+0h]

                COMPL   RP3, 03h        ; If zone 1 reference is < 3

                BRNC    @RZ1range

                MOVEL   RP3, 03h        ; Set reference to min temperature

:RZ1range

                STORE   PDATA, [RP2+1h] ; Save new zone 1 temperature

                MOVEH   RP3, 03h        ; Load zone 1 threshold

                SUB     R6, R7          ; Calculate target temperature

                MOVE    PDATA, R7       ; Compare measured to target

                SUB     R7, R6

                BRNCZ   @RZ1elseif1     ; If measured <= target

                XOR     PDATA, PDATA    ; Turn fan off (duty cycle = 00h)

                SET     PCON, $PWM

:RZ1test2                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RZ1test2

                BR      @RZ1else

:RZ1elseif1              

                COMPH   RP3, 01h        ; Else if measured == target + 1

                BRNZ    @RZ1elseif2

                MOVEL   RP3, 52h        ; Set fan to 33% of max speed

                MOVE    PDATA, R6       ; (duty cycle = 52h)

                SET     PCON, $PWM

:RZ1test3                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RZ1test3

                BR      @RZ1else

:RZ1elseif2

                COMPH   RP3, 02h        ; Else if measured == target + 2

                BRNZ    @RZ1else1

                MOVEL   RP3, A4h        ; Set fan to 66% of max speed

                MOVE    PDATA, R6       ; (duty cycle = A4h)

                SET     PCON, $PWM

:RZ1test4                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RZ1test4

:RZ1else

                MOVEH   RP3, FFh        ; Else set fan to max speed

                MOVE    PDATA, R7       ; (duty cycle = FFh)

                SET     PCON, $PWM

:RZ1test4                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RZ1test4

                RETURN                  ; Return to caller

;------------------------------------------------------------------------------

; Regulate processor 1 temperature

;------------------------------------------------------------------------------

; This routine is identical to the routine for regulating the temperature

; of zone 1 with the exception of variable names.

;------------------------------------------------------------------------------

; Ports used:           ADC Channel 2 (temperature), PWM channel 2 (fan speed)

; Registers used:       STATUS, PCON, PDATA, R4, R5, R6, R7

; Variables:            P1R (reference temperature), P1T (measured temperature)

;------------------------------------------------------------------------------

:regP1                                  ; Read processor 1 temperature          

                MOVEL   R4, 00010010b   ; ADC channel 2 external reference

                MOVE    PCON, R4        ; Initialze A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:RP1test1                               ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @RP1test1

                LOAD    RP2, @$P1R      ; Get processor 1 reference temperature

                LOAD    R6, [RP2+0h]

                COMPL   RP3, 03h        ; If processor 1 reference is < 3

                BRNC    @RP1range

                MOVEL   RP3, 03h        ; Set reference to min temperature

:RP1range

                STORE   PDATA, [RP2+0h] ; Save new processor 1 temperature

                MOVEH   RP3, 03h        ; Load processor 1 threshold

                SUB     R6, R7          ; Calculate target temperature

                MOVE    PDATA, R7       ; Compare measured to target

                SUB     R7, R6

                BRNCZ   @RP1elseif1     ; If measured <= target

                XOR     PDATA, PDATA    ; Turn fan off (duty cycle = 00h)

                SET     PCON, $PWM

:RP1test2                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RP1test2

                BR      @RP1else

:RP1elseif1

                COMPH   RP3, 01h        ; Else if measured == target + 1

                BRNZ    @RP1elseif2

                MOVEL   RP3, 52h        ; Set fan to 33% of max speed

                MOVE    PDATA, R6       ; (duty cycle = 52h)

                SET     PCON, $PWM

:RP1test3                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RP1test3

                BR      @else2

:RP1elseif2

                COMPH   RP3, 02h        ; Else if measured == target + 2

                BRNZ    @else2

                MOVEL   RP3, A4h        ; Set fan to 66% of max speed

                MOVE    PDATA, R6       ; (duty cycle = A4h)

                SET     PCON, $PWM

:RP1test4                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RP1test4

:RP1else

                MOVEH   RP3, FFh        ; Else set fan to max speed

                MOVE    PDATA, R7       ; (duty cycle = FFh)

                SET     PCON, $PWM

:RP1test5                               ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @RP1test5

                RETURN                  ; Return to caller

;------------------------------------------------------------------------------

; Regulate processor 2 temperature

;------------------------------------------------------------------------------

; This routine is identical to the routine for regulating the temperature

; of zone 1 with the exception of the variable names.

;------------------------------------------------------------------------------

; Ports used:           ADC Channel 3 (temperature), PWM channel 3 (fan speed)

; Registers used:       PCON, PDATA, STATUS, R4, R5, R6, R7

; Variables:            P2R (reference temperature), P2T (measured temperature)

;------------------------------------------------------------------------------

:regp2                                  ; Read processor 2 temperature          

                MOVEL   R4, 00010011b   ; ADC channel 3 external reference

                MOVE    PCON, R4        ; Initialze A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:r2test1                                ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @r2test1

                LOAD    RP2, @$P2R      ; Get processor 2 reference temperature

                LOAD    R6, [RP2+0h]

                COMPL   RP3, 03h        ; If processor 2 reference is < 3

                BRNC    @r2range

                MOVEL   RP3, 03h        ; Set reference to min temperature

:r2range

                STORE   PDATA, [RP2+0h] ; Save new processor 2 temperature

                MOVEH   RP3, 03h        ; Load processor 2 threshold

                SUB     R6, R7          ; Calculate target temperature

                MOVE    PDATA, R7       ; Compare measured to target

                SUB     R7, R6

                BRNCZ   @r2elseif1      ; If measured <= target

                XOR     PDATA, PDATA    ; Turn fan off (duty cycle = 00h)

                SET     PCON, $PWM

:r2test2                                ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @r2test2

                BR      @r2else

:r2elseif1              

                COMPH   RP3, 01h        ; Else if measured == target + 1

                BRNZ    @r2elseif2

                MOVEL   RP3, 52h        ; Set fan to 33% of max speed

                MOVE    PDATA, R6       ; (duty cycle = 52h)

                SET     PCON, $PWM

:r2test3                                ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @r2test3

                BR      @r2else

:r2elseif2

                COMPH   RP3, 02h        ; Else if measured == target + 2

                BRNZ    @r2else

                MOVEL   RP3, A4h        ; Set fan to 66% of max speed

                MOVE    PDATA, R6       ; (duty cycle = A4h)

                SET     PCON, $PWM

:r2test4                                ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @r2test4

:r2else         

                MOVEH   RP3, FFh        ; Else set fan to max speed

                MOVE    PDATA, R7       ; (duty cycle = FFh)

                SET     PCON, $PWM

:r2test5                                ; Wait for PWM to start

                TEST    PCON, $PWM

                BRNZ    @r2test5

                RETURN                  ; Return to caller

10.3.6 Power Monitoring

;------------------------------------------------------------------------------

; Calculate processor 1 power consumption

;------------------------------------------------------------------------------

; This routine calculates the power consumption of processor 1 and makes the

; result available to the operating system driver via shared memory.

;------------------------------------------------------------------------------

; Ports used:           ADC Channels 4 and 5

; Registers used:       STATUS, PCON, PDATA, R0, R1, R2, R3

; Variables:            P1PC

;------------------------------------------------------------------------------

:P1pwr                                  ; Read processor 1 voltage (V)

                MOVEL   R3, 00010100b   ; ADC channel 4 external reference

                MOVE    PCON, R3        ; Initialize A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:PP1ptest1                              ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @PP1ptest1

                MOVE    R2, PDATA       ; Use voltage as the multiplier

                                        ; Read processor 1 current (I)          

                MOVEL   R3, 00010101b   ; ADC channel 5 external reference

                MOVE    PCON, R3        ; Initialize A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:PP1ptest2                              ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @PP1ptest2

                MOVE    R0, PDATA       ; Use current as multiplicand

                CALL    @multiply       ; Multiply current and voltage

                LOAD    RP1, @$P1PC     ; Save new processor 1 power (P)

                STORE   R0, [RP1+0h]    ; Product low byte

                STORE   R1, [RP1+1h]    ; Product high byte

                RETURN                  ; Return to caller

;------------------------------------------------------------------------------

; Calculate processor 2 power consumption

;------------------------------------------------------------------------------

; This routine is identical to the routine for calculating the power

; consumption of processor 1 with the exception of the variable names.

;------------------------------------------------------------------------------

; Ports used:           ADC Channels 6 and 7

; Registers used:       STATUS, PCON, PDATA, R0, R1, R2, R3

; Variables:            P2PC

;------------------------------------------------------------------------------

:P2pwr                                  ; Read processor 1 voltage (V)

                MOVEL   R3, 00010110b   ; ADC channel 6 external reference

                MOVE    PCON, R3        ; Initialize A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:PP2ptest1                              ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @PP2ptest1

                MOVE    R2, PDATA       ; Use voltage as the multiplier

                                        ; Read processor 1 current (I)          

                MOVEL   R3, 00010111b   ; ADC channel 7 external reference

                MOVE    PCON, R3        ; Initialize A/D port control

                SET     PCON, $ADC      ; Start A/D conversion

:PP2ptest2                              ; Wait for conversion to complete

                TEST    PCON, $ADC

                BRNZ    @PP2ptest2

                MOVE    R0, PDATA       ; Use current as multiplicand

                CALL    @multiply       ; Multiply current and voltage

                LOAD    RP1, @$P2PC     ; Save new processor 2 power (P)

                STORE   R0, [RP1+0h]    ; Product low byte

                STORE   R1, [RP1+1h]    ; Product high byte

                RETURN                  ; Return to caller

10.3.7 Library Routines

;------------------------------------------------------------------------------

; Initialization routine

;------------------------------------------------------------------------------

:initialize

                                        ; Perform initializations

                SET     STATUS,$ACPI    ; Enable ACPI interrupts

                MOVEL   RP0, $INIT      ; Error code for "Init"

                CALL    @SCI_EVT        ; Signal to OS driver

                SET     STATUS,$SMB     ; Enable SMB interrupts

                XOR     C0, C0          ; Clear the counter value

                XOR     C1, C1

                CLEAR   STATUS, $SCALE1 ; SCALE=00b

                CLEAR   STATUS, $SCALE2

                SET     STATUS, $TIMER  ; Enable the counter

...                                     ; Other initializations

                JUMP    @mainloop

;------------------------------------------------------------------------------

; Unsigned double-precision multiply

;------------------------------------------------------------------------------

; This routine performs an unsigned double-precision multiply as specified in

; HP2 Appendix A.

;

; R0 (product low) R1 (product high) = R0 (multiplicand) * R2 (multiplier)

;------------------------------------------------------------------------------

; Registers used:       STATUS, R0, R1, R2, R3

;------------------------------------------------------------------------------

:multiply

                PUSH    RP1             ; Save pair RP1

                XOR     R1, R1          ; R1 is P from HP2; also clear Carry

                MOVEH   RP1, FFh        ; Load FFh into R3, to ensure 8 steps

:mloop

                TEST    R0, 0h          ; Is least significant bit zero?

                BRZ     @mcont          ; Yes, don't do anything

                ADD     R1, R2          ; No, add multiplier to P

:mcont

                ROTR    R1, 1h          ; Rotate right P, with Carry

                ROTR    R0, 1h          ; Rotate right multiplicand, with Carry

                SHLR    R3, 1h          ; Counter is 8-bits wide

                AND     R3, R3          ; Done yet? Also clear Carry

                BRNZ    @mloop

                POP     RP1             ; Restore pair RP1

                RETURN

;------------------------------------------------------------------------------

; Signal an error as an SCI EVenT

; Calling convention: error code in R0

;------------------------------------------------------------------------------

:SCI_EVT

                PUSH    RP1             ; Save pair RP1

                MOVEI   RP1, $LSTAT     ; Get the address of the error code

                STORE   [RP1+0h], R0    ; Put the error code in memory

                SET     ECSCR, $SCI_EVT ; Signal to the OS

                POP     RP1             ; Restore pair RP1

                RETURN

10.4 ECA Kernel Performance

In this section we show the instruction frequencies for the sample ECA Kernel. 


[image: image5.wmf]0

10

20

30

40

50

60

70

ADD

ADDC

AND

BR

BRC

BRCZ

BRNC

BRNCZ

BRNZ

BRZ

CALL

CLEAR

COMPH

COMPL

DEC

DECH

DECL

INC

INCH

INCL

JUMP

LOAD

MOVE

MOVEH

MOVEI

MOVEL

OR

POP

PUSH

RESET

RETURN

ROTL

ROTR

SET

SHAL

SHAR

SHLL

SHLR

STORE

SUB

SUBC

TEST

XOR


Figure 11-1: Instruction Frequencies

Register‑to‑register operations are the most frequent, which justifies our choice of a register‑to‑register organization. The next most used instruction is BRanch on Not Zero, due to arithmetic and bit TEST operations. Bit SET and TEST operations follow as frequently used operations, mostly due to their use in Input/Output operations with the ECSCR and PCON registers. Context saving and restoring (PUSH and POP) and subroutine CALLs and RETURNs also are frequently used, which justifies our choice to provide a stack.

11. Bibliography

[B&B] Computer Architecture – Concepts and Evolution – Gerrit A. Blaauw, Frederick P. Brooks, Jr. – Addison Wesley Longman, Inc., 1997

[ACPI] Advanced Configuration and Power Interface Specification – Intel, Microsoft, Toshiba - Revision 1.0b February 2, 1999

[SMB] System Management Bus Specification - Revision 1.0 February 15, 1995

[HP2] Computer Architecture – A Quantitative Approach – John L. Hennessy and David A. Patterson – Morgan Kauffmann Publishers, Inc. San Francisco, California, 1996
P














*





0           5    7 8         12       16





g





Op





R





R





*





*





0                  8         12       16













































































f





I_8





P





Op





H


L





0           5    7 8                  16





e





Op





*





I_8














0                7 8                  16





d





H


L





P





Op





0           5    7 8                





c





+





P





Op





0           5    7 8                





b





*





*





Op





0           5      8                





a





+





Legend:





*





R





I_N





H


L





P





Op





OP-code





N-bit Immediate





Register position in pair





Register pair





Register





Unused


















































*





I_16 (low)





I_16 (high)





P





0           5    7 8                  16                 24





j





Op





*





I_16 (low)





I_16 (high)





0           5    7 8                  16                 24





i





+





I_3





R





Op





*





*





*





0                  8         12 13    16








h






































I_4





R





Op








	COMP 265
	Embedded Controller Architecture (ECA)
	Page 47 of 72



_1050183868.vsd
Memory�

R0�

Memory Address�

R3�

R1�

R6�

R4�

R2�

R7�

R5�

0�

8�

8 0�

0�

16�

STATUS�

8�

ECSCW�

ECDATA�

C1�

PCON�

ECSCR�

C0�

PDATA�

0�

8�

ALU�

Operation�

8�

0�

Program Counter�

0�

16�

Memory Data�

0�


_1050232026.xls
Chart4

		ADD

		ADDC

		AND

		BR

		BRC

		BRCZ

		BRNC

		BRNCZ

		BRNZ

		BRZ

		CALL

		CLEAR

		COMPH

		COMPL

		DEC

		DECH

		DECL

		INC

		INCH

		INCL

		JUMP

		LOAD

		MOVE

		MOVEH

		MOVEI

		MOVEL

		OR

		POP

		PUSH

		RESET

		RETURN

		ROTL

		ROTR

		SET

		SHAL

		SHAR

		SHLL

		SHLR

		STORE

		SUB

		SUBC

		TEST

		XOR



6

1

1

13

1

0

8

3

47

6

22

14

6

18

0

0

0

5

0

0

2

22

58

7

12

18

3

23

24

1

18

0

2

31

0

0

0

1

18

12

0

30

9



Sheet1

		XOR				ADD		6						ADD		6

		XOR				ADDC		1						ADDC		1

		XOR				AND		1						AND		1

		XOR				BR		13						BR		13

		XOR				BRC		1						BRC		1

		XOR				BRNC		8						BRCZ		0

		XOR				BRNCZ		3						BRNC		8

		XOR				BRNZ		47						BRNCZ		3

		XOR				BRZ		6						BRNZ		47

						CALL		22						BRZ		6

						CLEAR		14						CALL		22

						COMPH		6						CLEAR		14

						COMPL		18						COMPH		6

						INC		5						COMPL		18

						JUMP		2						DEC		0

						LOAD		22						DECH		0

						MOVE		70						DECL		0

						MOVEH		7						INC		5

						MOVEL		18						INCH		0

						OR		3						INCL		0

						POP		23						JUMP		2

						PUSH		24						LOAD		22

						RESET		1						MOVE		58

						RETURN		18						MOVEH		7

						ROTR		2						MOVEI		12

						SET		31						MOVEL		18

						SHR		1						OR		3

						STORE		18						POP		23

						SUB		12						PUSH		24

						TEST		30						RESET		1

						XOR		9						RETURN		18

														ROTL		0

														ROTR		2

														SET		31

														SHAL		0

														SHAR		0

														SHLL		0

														SHLR		1

														STORE		18

														SUB		12

														SUBC		0

														TEST		30

														XOR		9





Sheet1

		





Sheet2

		





Sheet3

		






_1050234784.vsd
Byte�

�

8�

0�

Low Byte�

8�

0�

Address�

High Byte�

8�

0�


_1050184309.vsd
80h�

C0h�

FFh�

�

H

L�

H

L�

H

L�

H

L�

H

L�

Duty Cycle�

Time(milliseconds)�

0�

Legend:  h = Hexadecimal;  H = Logic High;  L = Logic Low�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

0.7�

0.8�

00h�

40h�


_1049739325.vsd
GND�

00h�

80h�

80h�

�

Legend:  h = Hexadecimal;  Vref = A/D Reference Voltage;  GND = Ground�

FFh�

80h�

�

Vref�

Voltage�

Digital Value�


