MATH 131 Problem Set 5                                                Adrian Ilie


This problem set deals with the concurrence theorems for triangles. These theorems have a common format: given triangle ABC, then three lines, one associated with each vertex or with each side, are concurrent at a point, that is, all three of them pass through a certain point.

Note: (November 20) In the proof of problem 1, you'll run into trouble because the AAS congruence theorem is not true generally on the sphere. However, remember that spheres have reflection symmetry through lines. In particular, an angle always has reflection symmetry through its bisector (you can use this fact). That should enable you to prove this particular theorem!

1 On the Euclidean plane, hyperbolic plane, or sphere, the angle bisectors of the three angles of triangle ABC are concurrent at a point called the incenter of the triangle. The incenter is the center of a circle inscribed in the triangle (that is, the circle is inside the triangle but touches all three sides). [To prove this, draw the bisectors from A and B and let them meet at P; then prove that PC is in fact the third angle bisector.]
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Figure 1: Triangle incenter.

Let AP and BP be the bisectors of angles CAB and ABC respectively (the two bisectors meet at P, otherwise they would be both perpendicular to AB, or angles CAB and ABC have 180 degrees each, which is impossible). We also draw the line PC. We need to prove that PC is the bisector of angle BCA.

We draw the perpendiculars PG, PF and PE from P to the sides AB, AC and BC respectively.

Since AP is the bisector of angle BAC, the angle has symmetry through it. In particular, angle GPA = angle FPA.

We have angle AGP = angle AFP = 90 degrees, angle GAP = angle FAP (AP is the bisector of angle BAC), angle GPA = angle FPA (proven earlier). It follows that triangles PGA and PFA are congruent (AAA on the sphere, and ASA on the Euclidean and hyperbolic plane, since they have side AP in common). So, PG=PF.

Similarly, since BP is the bisector of angle ABC, the angle has symmetry through it. In particular, angle GPB = angle EPB.

We have angle BGP = angle BEP = 90 degrees, angle GBP = angle EBP (BP is the bisector of angle ABC), angle GPB = angle EPB (proven earlier). It follows that triangles PGB and PEB are congruent (AAA on the sphere, and ASA on the Euclidean and hyperbolic plane, since they have side BP in common). So, PG = PE.

So, PG = PE = PF, or PE = PF.

We draw segment EF. Triangle PEF is isosceles, so (by ITT) angle PEF = angle PFE.

But angle PEF = angle PEC – angle FEC.

Also, angle PFE = angle PFC – angle EFC.

Since angle PEC = angle PFC = 90 degrees, it follows that angle FEC = angle EFC.

So, triangle CEF is isosceles, and (by converse ITT) EC = FC.

We have PE = PF, EC = FC and angle PEC = angle PFC = 90 degrees. It follows (by SAS) that triangles PEC and PFC are congruent, and angle PCE = angle PCF, or PC is the bisector of angle ECF, q.e.d.

The reasoning is valid on the Euclidean and hyperbolic plane, as well as on the sphere.

2 On the Euclidean plane or sphere, the perpendicular bisectors of the sides of triangle ABC are concurrent at a point called the circumcenter of the triangle. The circumcenter is the center of a circle circumscribed around the triangle (that is, the circle passes through all three vertices).
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Figure 2: Triangle circumcenter.

Let MD and ME be the bisectors of segments AB and BC respectively (they intersect at M on the Euclidean plane, otherwise BA and BC would be collinear, and they intersect at opposite points as any two geodesics on the sphere). We also choose F on AC such that AF = FC and draw segment MF. We need to prove that MF is perpendicular to AC.

We draw segments AM, BM and CM.

We have AD = DB and angle ADM = angle BDM = 90 degrees. It follows that triangles ADM and BDM are congruent (SAS, since they have side MD in common). So, AM = MB.

Similarly, we have BE = EC and angle BEM = angle CEM = 90 degrees. It follows that triangles BEM and CEM are congruent (SAS, since they have side ME in common). So, BM = CM.

Since AM = MB = CM, we have AM = CM.

Since AM = CM and AF = FC, triangles AFM and MFC are congruent (SSS, as they have side MF in common). It follows that angle AFM = angle CFM.

But angle AFM + angle CFM = 180 degrees, so angle AFM = angle CFM = 180 / 2 = 90 degrees. It follows that MS is perpendicular to AC, q.e.d.

Note: On the sphere, SSS is valid only for small triangles, so only small triangles are guaranteed to have a circumcenter on the sphere. For a “large” triangle, the bisector of its sides intersect at the circumcenter of the small triangle that’s “complementary” to the large triangle considered.

3 The theorem of problem 2 is not true on the hyperbolic plane. Prove this by showing how to construct a hyperbolic triangle ABC such that the perpendicular bisectors of the sides have a common perpendicular (a line perpendicular to all three of the bisectors).
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Figure 3:Three asymptotically parallel bisectors.

On the Euclidean plane and the sphere the tree perpendicular bisectors meet. On the hyperbolic plane, however, a situation like the one in Figure 3 is possible, where HI is the common perpendicular of DL, FM and EN. This can happen if DL, FM and EN are asymptotically parallel.

If fact, it is enough to have two (DM’ and FM in Figure 4) of the perpendicular bisectors of the sides of a triangle be asymptotically parallel. Since two of them never meet, all three will never meet either. Even if the third bisector does intersect the other two, it will do so at different points M and M’, as shown in Figure 4:
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Figure 4:Two asymptotically parallel bisectors.
