=, THE UNIVERSITY
” I of NORTH CAROLINA
i

— at CHAPEL HILL

COMP 110
Introduction to Programming

Fall 2015
Time: TR 9:30 - 10:45
Room: AR 121 (Hanes Art Center)

Jay Aikat
FB 314, aikat@cs.unc.edu

==
Il Previous Class

e What did we discuss?

COMP 110 - Fall 2015

9/29/2015



@L Today

Announcements
e Assignment 2 : Due Friday, Oct 2 @ 11:55 PM

http://comp110.com/assignments/the-worried-wizard

Midterm on Thu, Oct 8
* in class, no computers

Study guide

http://comp110.com/midterm-study-guide

Arrays

COMP 110 - Fall 2015

Let's talk
Dorms

9/29/2015



Proposal: Krzyzewski Dorm

Mike Krzyzewski will donate a lot of money to UNC iff:
In Coach K Dorm, the rooms aren’t numbered, they’re named.

| I oAl

Robust Melodic
Ram Monkey

[ | I o I | 11 1 1 | I N B |
Silly Loud Ornery Fuzzy Healthy Tall Petite Creepy
Snake Liger Onyx Frog Hippo Turtle Pig Cat

=
e — —

What benefits do room numbers provide?

What are the benefits of a
Dorm Name + Number
Addressing Scheme?

Everett Dorm:

I | I oI I | 1 I 11 rTrop bl | I Rl |
201 | 202 | 203 | 204 |205 |206 (207 |208 |209 | 210 211
13x19 13x19 13x19 13x19 13x19 13x19 13x19 13x19 13x19 13219
i L

e — S S

Naming is hard. Numbering is easy.
Learning and remembering names even harder.

* Locate rooms quickly and predictably.

* Easier to manage A LOT of rooms.
“Ok, I'll prep rooms 1-150, you prep 151-300.”

9/29/2015



9/29/2015

Arrays are like Dorms for Data

Aﬁ‘fﬁiﬁﬁﬁfﬁulllll.cu.llnllnll:‘.lﬁ
02 {03 |04 |05 |06 |O7 (08 |09 | 10 111

13x19 13«19 13x19 13x19 13x19 | 13x19 13x19 13x79 | 13x19 13x19 | 13x19

— -

e R

= =
= — = — m— =, =

int int int int int int int int int int int

0 1 2 3 4 5 6 7 8 9 10

(Not drawn to scale.)

Arrays provide uniform housing for
many values.

int int int int int int int int int int

Each “room” in an array is called an Element

An element stores a single value. No roommates!
All elements in an array are of the same type
Arrays cannot be resized after construction

P w NP




Elements are addressed by
Name and Index

int

int

int

int

int

int

int

int

int

int

0

1

2

3

4

5

6

(Beware: Off-by-one bugs can be stingers &.)

~

8 9/
1. Notation: arrayName[index],i.e. arrayName[9]
2. Indexing starts at [@] (not [1])

Where have we seen
[1s?

Questions?

9/29/2015



Let’s demystify some magic

public static void main(

ring

e When you see [brackets] there are arrays

e This is an array of strings available to our program!

What’s in it?
— Arguments passed in when we run
— > java cli.CommandLineDemo

args)

ur progran
foo|bar|baz
0 1 2

Recall Expressions:

—_
||, Expressions

e
* Expression?

operators

— An expression has a value

with a number value
+ 10, taxRate/100, (cost + tax) * discount

— An expression can be a variable, a value, or a
combination made up of variables, values and

— Arithmetic expression: a combination of numbers

9/29/2015



This is a major coup.

Operation Form Example

Read Element arrayName[index] scores[0]

Accessing Elements with an Index

index is any integer expression.

Number Integer Arithmetic
arrayName[0] inti=0; inti=0;
arrayName[1i] arrayName[i+1]

Looping with an Integer
for(int i = @; i<arrayName.length; i++){
System.out.println(arrayName[i]);

}

9/29/2015



Example

# of Elements arrayName.length scores.length

Finding # of Elements

.length property is number of elements in array.

Use “<a.length” in for loop termination test.

How might we calculate
Mack’s Average Yardage?

9/29/2015



Declare an Array

Assign Elements

How do we make our own arrays?

int[] yards;

Construct an Array yards = new int[3];
yards[@] = 10;
yards[1] = 20;
yards[2] = 30;

How do we average yards?

Operation

# of Elements

Form

arrayName.length

Java Array Operations

Example

scores.length

Read Element

arrayName[index]

scores[0]

Declare

type[] arrayName;

int[] scores;

Construct

arrayName = new type[size];

scores = new int[3];

Assign Element

arrayName[index] = expression;

scores[@] = 12;

Initialize
(Just a shortcut.)

type[] arrayName = {elements};

int[] scores = {12,0,1};

9/29/2015



9/29/2015

Key Concepts

1) |An array is a uniform structure housing many elements. [TTTTTT 1]
01234567

2) |Elements are addressed via name and index. myArray[0]

3)|{Index is an " int length = 8;
myArray[length-1]

— N
Im Arrays

e To think about arrays, let’s think about loops
first

 Why do we need loops?

— Because we want to repeat things without
writing them again and again

COMP 110 - Fall 2015

10



==

|l Average Score without Loops

— |

_—

e Assuming that we only need 5 basketball
scores for averaging...

int scorel = keyboard.nextInt();
int score2 = keyboard.nextInt();
int score3 = keyboard.nextInt();
int score4 = keyboard.nextInt();
int score5 = keyboard.nextInt();

double average = (double) (scorel + score2 +
score3 + score4 + score5) / 5.0;

COMP 110 - Fall 2015

=\
]l Average Score with Loops

e Assuming that we only need 5 scores
for (int 1 = @; i < 5; i++)
scoreSum += keyboard.nextInt();

double average = (double) scoreSum / 5.0;

COMP 110 - Fall 2015

9/29/2015

11



=
Im What if we really need to save them

* |f we really need to save these scores, loop
won’t help you

e Think about this problem
— Print out if a score is above/below average

— We have to calculate average first, then decide if
a score is above/below average

— Therefore we must save all these scores, and
compare them to the average in the end

COMP 110 - Fall 2015

= N
Comparing All Scores and the Average
111 paring g

System.out.println("Enter 5 basketball scores:");
Scanner keyboard = new Scanner(System.in);
int scorel = keyboard.nextInt();

int score2 = keyboard.nextInt();
int score3 = keyboard.nextInt();
int score4 = keyboard.nextInt();

int score5 = keyboard.nextInt();
double average = (double) (scorel + score2 + score3 + score4 + score5) / 5.0;
System.out.println("Average score: " + average);

// repeat this for each of the 5 scores
if (scorel > average)

System.out.println(scorel + ": above average");
else if (scorel < average)
System.out.println(scorel + ": below average");
else
System.out.println(scorel + ": equal to the average");

// if score2...score3...score4...

COMP 110 - Fall 2015

9/29/2015

12



= N
ﬂ:ﬂ If we have more Scores...

e Think about 80 scores... =
— Declare 80 variables E Yﬂ“ﬂ lﬂﬂm
— Check them 80 times i & o <
e This is illogical! |
e There must be an easier |
way!
— What about things like:

: = .h‘
Score,, Score,, ..., Score,, Is “-“"“cnl-

memegenerator.ne! t

o 7—““-'.
tor:

COMP 110 - Fall 2015

o~
ﬂ:ﬂ Arrays

e int[] scores = new int[5];

e This is like declaring 5 strangely named
variables of type int:
— scores[0]
— scores[1]
— scores[2]
— scores[3]
— scores[4]

» Especially, you can use scorel[i] to locate a
single one

COMP 110 - Fall 2015

9/29/2015

13



=\
Lﬂ- Arrays

* An array is a collection of items of the same

type

e Like a list of different variables, but with a

nice, compact way to name them

e A special kind of object in Java

* Loops repeat things temporally; arrays

repeat things spatially

COMP 110 - Fall 2015

=N
”—n Comparing Scores/Averages w/ Arrays

System.out.println("Enter 5 basketball scores:");
Scanner keyboard = new Scanner(System.in);

int[] scores = new int[5];

int scoreSum = 0;

“ for (int i = @; i < 5; i++) {
scores[i] = keyboard.nextInt();
scoreSum += scores[i];

¥
double average = (double) scoreSum / 5;
System.out.println("Average score: " + average);

for (int 1 = @3 1 < 5; i++) {
if (scores[i] > average)
System.out.printin(scores[i] +
else if (scores[i] < average)
System.out.println(scores[i] +
else
System.out.println(scores[i] +

COMP 110 - Fall 2015

": above average");

“: below average");

": equal to the average");

9/29/2015

14



N
[l Index

e Variables such as scores[0] and scores[1] that
have an integer expression in square brackets
are known as:

— indexed variables, subscripted variables, array
elements, or simply elements

* An index or subscript is an integer expression
inside the square brackets that indicates an
array element

— ArrayName[index]

COMP 110 - Fall 2015

[l Index

S —

e Where have we seen the word index before?
— String’s indexOf() method

H o w a r e y o u ?
0 1 2 3 4 5 6 7 8 9 10 11

— str.indexOf(‘e’) == 6;
— str.charAt(6) == ‘e’;

COMP 110 - Fall 2015

9/29/2015

15



9/29/2015

@L Index

* Index numbers start with 0. They do NOT
start with 1 or any other number.

— Not like counters in loops, you can’t change the
range of indices

* The reason is that the array name represents
a memory address, and the it" element can
be accessed by the address plus i

COMP 110 - Fall 2015

=N
[l Array and Index

* In history, computer scientists argued a lot on this

“Should array indices start at 0 or 1? My compromise of 0.5 was rejected
without, | thought, proper consideration.” — Stan Kelly-Bootle

COMP 110 - Fall 2015

16



Im Access Elements with Indices

 The number inside square brackets can be any
integer expression

— Aninteger: scores[3]
— Variable of type int: scores[index]
— Expression that evaluates to int: scores[index*3]

e Can use elements just like any other variables:
— scores[3] = 68;
— scores[4] = scores[4] + 3; // just made a 3-pointer!
— System.out.printin(scores[1]);

COMP 110 - Fall 2015

=N
Im Indices and For-Loops

* In programming, a for-loop usually starts
with counter i = 0. There is a reason

for (int 1 = ©; 1 < 5; i++) {
scores[i] = keyboard.nextInt();
scoreSum += scores[i];

COMP 110 - Fall 2015

9/29/2015

17



=N
[l Creating an Array

e Array is a special class and we create its
objects
— Syntax for creating an array:
e Base_Type[] Array_Name = new Base_Type[Length];
— Example:
* int[] pressure = new int[100];
— Alternatively:

* int[] pressure;
* pressure = new int[100];

COMP 110 - Fall 2015

=
Il Do not be OUT OF BOUNDS!

* Indices MUST be in bounds
— double[] entries = new double[5]; // from [0] to
[4]
— entries[5] = 3.7; // ERROR! Index out of bounds
* Your code will compile if you are using an
index that is out of bounds, but it will give
you a run-time error!

COMP 110 - Fall 2015

9/29/2015

18



9/29/2015

==
[l Initializing Arrays

* You can initialize arrays when you declare them
— int[] scores = {68, 97, 102 };
e Equivalent to
— int[] scores = new int[3];
— scores[0] = 68;
— scores[1] =97;
— scores[2] = 102;
e Or, you can use for-loop
— When in doubt, for-loop!

COMP 110 - Fall 2015

E Joke

* Q: Why did the programmer quit his job?
* A: Because he didn't get arrays.
Hint: A raise ;-)

COMP 110 - Fall 2015

19



9/29/2015

=N
[l Next class

e More on arrays

20



