
COMP110
Jump Around

November 19th, 2015
🐑

Fall 2015
Sections 2 & 3
Sitterson 014

Kris Jordan
kris@cs.unc.edu

Sitterson 238

Go ahead and get today’s code in Eclipse as
shown on next few slides…

mailto:kris@cs.unc.edu

Classroom Materials

https://github.com/comp110/materials

https://github.com/comp110/materials

Classroom Materials
1. Open Eclipse, File > Import…

2. Git > Projects from Git > Clone URI

3. URI is https://github.com/comp110/materials

4. MACs: Install Command Line Utilities OK

5. Next, Next, Browse to your COMP110 Projects Directory, Next

6. Select Import Existing Projects, Next, Finish

7. Open

1. 110 Class Materials > src > com.comp110.com.lecture20

2. FindTheCash.java

8. Try Running! If you have errors, see next slide…

9. Check in on PollEverywhere! pollev.com/comp110

https://github.com/comp110/materials
http://pollev.com/comp110

Classroom Materials: Errors?

If Eclipse won’t let you run:

1. Right click on ‘110 Class Materials’ project

2. Build Path > Add Libraries…

3. Select ‘JRE System Library’

4. Next > Finish

5. Try running again

Announcements

• Assignment 4

• Part B - Effects and Filters

• http://comp110.com/assignments/effects-and-
filters

• Demo

http://comp110.com/assignments/effects-and-filters

What is the output? (1)

What is the output? (2)

Call Stack on
Pen & Paper

 public static void main(String[] args) {
 System.out.println(scary(3));
 }

 static String scary(int howScary) {
 if(howScary > 1) {
 return scary(howScary - 1) + "O";
 } else {
 return "B";
 }
 }

A trick and a treat for you… 👻

Recursion

A Recursive Selfie
• Pull out your phones

• Open up your camera app and set it to selfie mode

• If you don’t have a phone / selfie mode: photobomb

• Pair up

• Turn your phone toward your neighbor’s and try to get an “infinite
mirror” effect photo

• Challenge: one at a time, make it a selfie, too

• Keep this photo for Part B of Assignment 4!

So that’s recursion in a
nutshell…

It’s a little awkward and hard to get right.

It’s really cool when it works.

It’ll stretch your mind.

What is recursion?
• It’s the idea that something can be self-referencing

• In Computer Science it shows up commonly in 2 ways:

• Recursive Data - A Data Type can refer to itself

• Example: organization chart of people

• A Person’s “boss” is just another Person

• Recursive Methods - A Methods can call itself

• You’ll most commonly use recursive methods with recursive data
types, but you can use either independently

Recursion in 110

A gentle introduction to the concept

with some hands on exploration.

Let’s write a recursive method…
icarus

Let’s write a recursive
method…

• Open RecursiveExamples.java

• Write a public static void method named icarus

• The icarus method should println “MUST FLY HIGHER”
and then call the icarus method again from within
itself.

• Try running. Let icarus fly toward that Sun…

So what’s happening?
• Remember the call stack?

• Each time we call a method a new
frame gets added to the top of the
call stack.

• Here we’re calling and calling and
calling the icarus method

• When the stack grows too tall, we
run out of memory and crash

• This is a Stack Overflow

How do we prevent  
Stack Overflows

with recursive methods?

• What differentiates an infinite
loop from a non-infinite loop?

• Recursive methods are like
“Strange Loops”

We need to reach some condition at
which point we’ll stop recurring.

This is called the base case.

int aRecursiveMethod(int n) {
 if(base case condition) {
 return 1;
 } else {
 return aRecursiveMethod(n - 1);
 }
}

Every Recursive Method 
Needs a Base Case

• The base case is the end of a recursive method call

• Once the base case is reached, we pop a frame off the
stack and return to the method from whence we came

• Think of the base case as similar to the boolean expression
in a loop: it is a condition that ends the repetition

Aside: Loops & Recursive Methods

• Anything you can express with a loop you can express with
recursive method

• Some programming languages don’t have loops and you
have to use recursion for everything (LISP, Scheme,
Haskell)

• Learning one of these “functional” languages after learning
Java will stretch your mind

Let’s write Factorial!

What is 3!

4!

5!

Changing Gears to a Game

Find the Cash Game

• Imagine a bunch of rooms connected by hallways.

• Each room has a right door and a left door or no doors
at all.

• There is cash spread out through the rooms at
random. You want to collect all the cash.

• What strategy would you use for walking through each
room?

A

B C

D E F G

H I J K L M N O

You Start Here

As you walk through each room, write down its letter…

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

E F G

H I J K L M N O

D
$50

Total: $50

A

B C

D
$50 E F G

H I J K L M N O

Total: $50

A

B C

E F G

H I J K L M N O

D
$50

Total: $50

A

B C

E F G

H I
$100! J K L M N O

D
$50

Total: $150

A

B C

E F G

H I
$100! J K L M N O

D
$50

Total: $150

A

B C

E F G

H I
$100! J K L M N O

D
$50

Total: $150

A

B C

E F G

H I
$100! J K L M N O

D
$50

Total: $150

How Could We  
Do This with Code?

• Open FindTheCash.java and then Room.java

• Try running FindTheCash.java

• Let’s walk through the code…

Implement our
Room Searching Algorithm

1. In Room.java’s searchForCash method…

2. Check to see if it has a left door / right door using
this.hasLeftDoor() / this.hasRightDoor()

3. If so, add the cash in the room behind each door to
the cashFound variable.

4. How could you search each room for cash recursively?

Done? Check in on PollEverywhere pollev.com/comp110

http://pollev.com/comp110

This is called a recursive
descent algorithm

1. Useful when “walking” or “traversing” a tree of objects

2. Imagine needing to write a program that finds a file in
your Documents folder (supposing there are
subfolders). Same idea!

3. Handy when working with a hierarchy (folders, web
sites, programming language compilers, scene graphs)

Recursive Data Types
1. When data types can refer to themselves you can construct

complex relationships between objects

2. “Trees” and “Graphs” of Objects are commonly used to model
real-world concepts

1. Organizational chart: Tree

2. Follow / Followers on Instagram: Graph

3. Recursive methods often pair beautifully with recursive data
types

