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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

What is a Real-Time System?

“right answer at the right time”

o e
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predictability = a priori validation of temporal correctness

Image credit: DaimlerChrysler AG via Wikimedia Commons
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in a Real-Time OS (RTOS)

A set of recurrent tasks with temporal

constraints (= deadlines).
Example: poll acceleration sensor every 10ms
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Scheduling in a Real-Time OS (RTOS)

A set of recurrent tasks with temporal

constraints (= deadlines).
Example: poll acceleration sensor every 10ms

tasks
request
processor
service
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in a Real-Time OS (RTOS)

A set of recurrent tasks with temporal

constraints (= deadlines).
Example: poll acceleration sensor every 10ms

tasks
request
processor
service

Allocates processor such
that all constraints are met.
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Locking in an RTOS

A set of recurrent tasks with temporal

constraints (= deadlines).
Example: poll acceleration sensor every 10ms

serially reusable
resources
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Locking in an RTOS

A set of recurrent tasks with temporal

T constraints (= deadlines).
n Example: poll acceleration sensor every 10ms

serially reusable
resources

Allocates both together such Ej
that all constraints are met.
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

The Emergence of
Multicore Processors

The “standard” hardware platform is changing / has changed.

constraints (= deadlines).
Example: poll acceleration sensor every 10ms

serially reusable
resources

How to allocate multiple processors
and resources such that all constraints are met?
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Why Real-Time on Multicore?

To reduce size, weight, and power
(SWaP) requirements.

Cost, availability: commercial-off-the-shelf (COTS)
processors likely to be multicore chips.

High computational demands:
HD media, computer vision, motion planning...

UNC Chapel Hill 9
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Why Real-Time on Multicore?

To reduce size, weight, and power
(SWaP) requirements.

Motivating example:

Mission
Detect forest fires
during dry summer months.

MARVIN Mk II: unmanned autonomous vehicle (UAV)

ﬂ Technische Universitat Berlin
Musial et al., 2006
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Why Real-Time on Multicore?

To reduce size, weight, and power
(SWaP) requirements.

Motivating example:

Payload:
pan & tilt camera

MARVIN Mk II: unmanned autonomous vehicle (UAY) ~ @nd infrared sensor.

UAV tethered to ground-
based mission planning.

ﬂ Technische Universitat Berlin
Musial et al., 2006

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Why Real-Time on Mu

Two computers for flight controller + payload

Mission planning

Not enough on-board
computational
resources!

Would need more
space, weight, power,
cooling, maintenance...

2x CPUs, 2x power supply (batteries),
2x cabling, 2x cooling...

Payload:
—— pan & tilt camera

MARVIN Mk II: unmanned autonomous vehicle (UAY) ~ @nd infrared sensor.

UAV tethered to ground-
based mission planning.

Why not use just one, more powerful multicore chip...?

UNC Chapel Hill



Scheduling «

Predictable temporal isolation required.

i Temporal failure =

Temporal failure = briefly “looks in wrong direction.”
wobbly flight or crash.

Payload:
—— pan & tilt camera

MARVIN Mk II: unmanned autonomous vehicle (UAy) _@nd infrared sensor.

UAV tett #red to ground-
basec glission planning.

ﬂ Technische Universitéat Berlin Temporal failure =
Musial et al., 2006 UAV “hesitates” a little longer.

UNC Chapel Hill
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Predictable Real-Time Kernel

Algorithms must be both
analytically sound and efficiently implementable.

serially reusable
resources

How to allocate multiple processors
and resources such that all constraints are met?
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Capacity Loss

Processor utilization that cannot be allocated
to real-time tasks without risking temporal failure.

(1.e., idle time required to meet all timing constraints)

Two main causes:

1. Algorithmic limitations (non-optimal scheduling decisions).
2. Runtime overheads (RTOS inefficient).

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Thesis Statement

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

Part 1:

Which scheduler to use.

UNC Chapel Hill

Parts 2 & 3: How to implement locking.

(underlined terms will be defined shortly)



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Thesis Statement

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(1) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the

impact of bin-packing limitations in the soft real-time case.
Further,

UNC Chapel Hill

Parts 2 & 3: How to implement locking.

(underlined terms will be defined shortly)
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Thesis Statement

UNC Chapel Hill

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(1) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(Iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

(underlined terms will be defined shortly)
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Scheduling




Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in Theory and Practice

-

Scheduling Theory:

“we consider overheads to be negligible”

RTOS Developers:

overheads, overheads, overheads...

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in Theory and Practice

-

Scheduling Theory:

“we consider overheads to be negligible”

My contribution:"an evaluation that'reflects
both overhead-related and algorithmic capacity loss.

RTOS Developers:

overheads, overheads, overheads...

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Methodology & Case Study

Choosing a Scheduler for a 24-Core Intel System

Linux Testbed for Multiprocessor 5cheduling
in Real-Time systems

RTOS Platform:
= Real-time Linux extension (v2.6.36).

= Supports scheduler plugins. L IT M L' S RT

- PnnC'pIe deveIOper prOJeCt Iead Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
= Since 2006: 9 releases, spanning 17 kernel versions.

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Methodology & Case Study

Choosing a Scheduler for a 24-Core Intel System

Linux Testbed for Multiprocessor 5cheduling
in Real-Time systems

RTOS Platform:

= Real-time Linux extension (v2.6.36).

= Supports scheduler plugins. LI I M l I S RT
- P””Clple deveIOper, prOJeCt Iead Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
= Since 2006: 9 releases, spanning 17 kernel versions.

HW Platform:

= 4 sockets

= 6 cores per socket (Intel 64bit Xeon L7455)
= 3 levels of cache (2 shared + 1 private)

= Detalls later...
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Methodology & Case Study

Choosing a Scheduler for a 24-Core Intel System

Linux Testbed for Multiprocessor 5cheduling

in Real-Time systems

Then:
case study details
and results.

Next:
background review.

HW Platform:

= 4 sockets

= 6 cores per socket (Intel 64bit Xeon L7455)
= 3 levels of cache (2 shared + 1 private)

= Detalls later...

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Sporadic Task Model

jri eIll J1,2

9 )

>
o 1 2 3 4 5 6 7 8 9 1011 12 13 14

void recurrent task() {
while (true) {
walt for event();
process event();
signal event processed();

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Sequence of jobs (= invocations)

-

jri J18 J1,2

9 )

>
o 1 2 3 4 5 6 7 8 9 1011 12 13 14

r

void recurrent task() {
while (true) {
walt for event();
process event();
signal event processed();
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Sporadic Task Model

/ >
5 6 7.8 9 10 11 12 13 14

e

, job release
void recurrent task() { j T

while (true

|wait_for_event();'
process_even ' job completion

signal event processed();

5 T
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Sporadic Task Model

: ’
| ) ) ()
1 W.I'/) , |'/)
{117
0 1 2.3 4 5 6 7/8 9 1041 12 13 14

e

| job rel
void recurk\x\i_t ask () { Job release
while (true T

' walt for event();

orocess event();
™~ [
+ 81gnal_event_processed();J

- |

>

job completion
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Sporadic Tasi

g

Ii§]

deadline

)

0 1 2 3 4 5 6 7.8 9 10A1 12 13 14

Background Review

>

e

r

void recu£>§§§;t,sk() {
while (true

lwait_for_event();

orocess event();
' signal event processed();

)
}

job release

|

job completion

|
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Deadline Constraint

A job should complete by its deadline.
If It does not, It is tardy.

Implicit: next job does not arrive before deadline.

A J1.1

11| [© B

>
o 1.2 3 4 5 6 7|8 9 1011 12 13 14

Tardiness: extent of deadline miss

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Hard vs. Soft Real-Time

Hard Real-Time (HRT)

Each job meets its deadline (= zero tardiness).

Soft Real-Time (SRT)

Maximum deadline tardiness is bounded
by a (reasonably small) constant.

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Hard vs. Soft Real-Time

Hard Real-Time (HRT)

Each job meets its deadline (= zero tardiness).

\é If COmpUtatiOﬂ S “bUﬂ:erable,”

deadline miss may be masked with
finite buffer (e.q., video decoding).

Soft Real-Time (SRT)

Maximum deadline tardiness € Eounded ‘)
ns .

by a (reasonably small) co

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

UNC Chapel Hill

Processor Requirement

Task Utilization

fraction of processor capacity required by task

Total Utilization

Sum of all task utilizations:
MIN. processor capacity required by task set.




Scheduling and Locking in Multiprocessor Real-Time Operating Systems Background Review

Schedulers for Sporadic Tasks

r

Task schedulable:

Task can be shown a priori to
always satisfy its temporal constraint
under a given scheduler
(w.r.t. HRT or SRT interpretation).

In this talk: In my dissertation:
5 selected schedulers. 22 schedulers.

UNC Chapel Hill



> Operating : Background Review

Clustered Multiprocessor Scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue.

clustered scheduling

UNC Chapel Hill



o Operating : Background Review

Clustered Multiprocessor Scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue.

-

Example: cores that share
a cache form a cluster.

clustered scheduling

UNC Chapel Hill



o Operating : Background Review

Clustered Mu

(1) Group cores into cluste

or Scheduling

Offline: assign
tasks to clusters.

(2) Statically assign tasks to clus grs Yefore runtime.

Online: schedule jobs
preemptively from a
priority queue.

Jobs may migrate,
but only within cluster.

clustered scheduling

UNC Chapel Hill
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Job Priority Order
. Earliest-Deadline First (EDF)
C I U sllle re d M U Ih P I (order by increasing deadline)

_ Fixed-Priority (FP)
(1) Group cores into clusters. (manually assign priorities to tasks)

(2) Statically assign tasks to clustersmwe
(3) Schedule each cluster individual’:

om ‘#per-cluster job queue.

clustered scheduling

UNC Chapel Hill



> Operating : Background Review

Clustered Multiprocessor Scheduling

Two common special cases:
one-core clusters and a single cluster

clustered scheduling

UNC Chapel Hill



> Operating : Background Review

Clustered Multiprocessor Scheduling

Two common special cases:
one-core clusters and a single cluster

partitioned scheduling clustered scheduling
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> Operating : Background Review

Clustered Multiprocessor Scheduling

Two common special cases:
one-core clusters and a single cluster

partitioned scheduling clustered scheduling global scheduling

UNC Chapel Hill



> Operating : Background Review

Clustered Multiprocessor Scheduling

-

Good cache affinity, P cOmmon special case¢

low contention. | clusters and a single ( o cache amnity;

high contention.

L.

partitioned scheduling clustered scheduling global scheduling

UNC Chapel Hill



> Operating : Background Review

Clustered Multiprocessor Scheduling

Two common special cases:
one-core clusters and a single cluster

task-to-cluster assignment = bin packing

partitioned scheduling clustered scheduling global scheduling

UNC Chapel Hill



> Operating : Background Review

Bin Packing

three identical tasks

task utilization = 2/3
total utilization =2

two unit processors

1.0

capacity
o

O
o
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> Operating : Background Review

Bin Packing

Processor Overloading

Even though there is sufficient total capacity,
the last task cannot be placed.

two unit processors

1.0

2/312/3 &l

capacity
o

O
o
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> Operating : Background Review

Bin Packing

Processor Overloading

Even though there is sufficient total capacity,
the last task cannot be placed.

Capacity loss approaching
—1  950% is possible under
partitioning.

capacity

UNC Chapel Hill



> Operating : Background Review

Clustered Multiprocessor Scheduling

Two common special cases:
one-core clusters and a single cluster

narder bin packing instance

' :
\/
N\ _/ \
larger clusters = higher ¢

12 " Y

Cuc e Cuche Cuche Cuche
EEEN

A

&3 e

partitioned scheduling clustered scheduling global scheduling
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> Operating : Background Review

Clustered Multiprocessor Scheduling

Two common special cases:
one-core clusters and a single cluster

-

Partitioned FP (P-FP) available in most RTOSs (and Linux, too).
—asiest variant to iImplement: simple uniprocessor extension.

\Y/

7/
() (el

partitioned scheduling clustered scheduling global scheduling

UNC Chapel Hill
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Xeon L7455 Hardware Topology

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.

RR R X x

(s su) sn)(su)(su sn)(sw) )(sn)(su)(au) su)(su)(eu)(sn)(&u)(su)(sn)( sn)(sw)(sn)(&u)

l2 Cuche I.2 Cuche I.2 Cuche 12 Cathe I.2 Cuche I.2 Cuche
mform inclusive, 12-way mform inclusive, 12wuy uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way
set associafive, 3072kB set ussoclullve 3072kB set associafive, 3072kB set associative, 3072kB set associafive, 3072kB set associative, 3072kB
|
L3 Cache L3 Cache
uniform, inclusive, 12-way set associative, 12288kB uniform, inclusive, 12-way set associative, 12288kB

@ @ @ @ () @ ® @ (5

% ) % ( 5 ) (0 ) % ( 5 ) () (B k)( ) [ (G ) ) () (o ) k)( DIEEIEE k)( %)

I.2 Cache I.2 Cuche I.2 Cuche I.2 the I.2 Cache I.2 Cuche
uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way
set associative, 3072kB set ussoclullve 3072kB set associative, 3072kB set associative, 3072kB set assocmhve 3072kB set associative, 3072kB

L3 Cache L3 Cache
uniform, inclusive, 12-way set associative, 12288kB uniform, inclusive, 12-way set associative, 12288kB

T —
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Hardware Topology — Single Socket

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.

L2 Cache Uniform,
Incdlusive

L2 Cache Uniform, m L2 Cache Uniform,
Inclusive Inclusive

UNC Chapel Hill
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Hardware Topology — Single Socket

Six cores per socket; each clocked at 2.16 GHz.

Four sockets for a total of K24 cores.

-

Private L1 caches
(32 KB each).

_vete

L2 Cache Uniform,
Inclusive

UNC Chapel Hill

Two cores each share a

@ unified L2 cache (3MB).
8
e )‘ BE G
Inclusive $J$
I.2 Cache Uniform,

L3 Uniform, Incdusive .
Inclusive
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Hardware Topology — Single Socket

Six cores per sacket: each clacked at 2.16 GHz.

Four S( All six cores share a unified | COres.
L3 cache (12 MB).

2 segg 8

Inclusive

L2 Cache Uniform, m L2 Cache Uniform,
Inclusive Inclusive

UNC Chapel Hill
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Clustered Scheduling Options

() (o I )R ) B ) ) B ) ) B

( L1 Data ) I.'I Instr. L1 Data I.I Instr. L1 Data I.I Instr. L1 Data ( L1 Instr. ) ( L1 Data ) ( L1 Instr. L1 Data ( L1 Instr. ) ( L1 Data l'l Instr. L1 Data ( L1 Instr. L1 Data I.'I Instr. L1 Data ( L1 Instr. ) ( L1 Data ) ( L1 Instr. L1 Data ( L1 Instr. )
8-way, 32kB 8-way, 32kB 8wuy 32kB Bwuy 32kB 8wuy 32kB 8wuy 32kB 8wuy 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB 8wny 32kB 8-way, 32kB 8-way, 32kB 8way 32kB 8wuy 32kB 8-way, 32kB 8—wuy 32kB 8wuy 32kB 8wuy 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB Bwuy 32kB 8-way, 32kB
12 Cuche I.2 Cuche I.2 Cuche 12 Cuche I.2 Cuche I.2 Cuche
uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way
set associafive, 3072kB set ussoclullve 3072kB set associafive, 3072kB set associative, 3072kB set ussouunve 3072kB sef associafive, 3072kB
L3 Cache L3 Cache
uniform, inclusive, 12-way set associative, 12288kB uniform, inclusive, 12-way set associative, 12288kB

) © D G @ ® W &

L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Inslr L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Instr. L1 Data L1 Inslr L1 Data L1 Instr.
8-way, 32kB 8-way, 32kB 8wuy 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB Bwuy 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB 8wuy 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB 8way 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB 8wuy 32kB 8-way, 32kB 8-way, 32kB 8-way, 32kB Bwuy 32kB 8-way, 32kB

<
@
@

I.2 Cache I.2 Cache I.2 Cuche I.2 the I.2 Cache I.2 Cache
uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way uniform, inclusive, 12-way
set associative, 3072kB set ussouullve 3072kB set associative, 3072kB set associative, 3072kB set ussocluhve 3072kB set associative, 3072kB
L3 Cache L3 Cache
uniform, inclusive, 12-way set associative, 12288kB uniform, inclusive, 12-way set associative, 12288kB

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Scheduling Options

L1 Instr. L1 Data L1 Instr.
8-way, 32kB 8wuy 32kB 8-way, 32kB

12 Cuche

uniform, inclusive, 12-way
set associafive, 3072kB

L1 Data L1 Instr.
8-way, 32kB 8wuy 32kB 8-way, 32kB

I.2 Cache
uniform, inclusive, 12-way
set associative, 3072kB

UNC Chapel Hill

L1 Instr. L1 Data L1 Instr.
8-way, 32kB 8wuy 32kB 8-way, 32kB

I.2 Cuche

uniform, inclusive, 12-way
set associafive, 3072kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Instr. L1 Data L1 Instr.
8-way, 32kB 8way 32kB 8-way, 32kB

L1 Instr. L1 Data L1 Instr.
8-way, 32kB 8wuy 32kB 8-way, 32kB

I.2 Cuche

uniform, inclusive, 12-way
set associative, 3072kB

L1 Instr. L1 Data L1 Instr.
8-way, 32kB Bwuy 32kB 8-way, 32kB

12 Cathe

uniform, inclusive, 12-way
set associative, 3072kB

I.2 Cuche
uniform, inclusive, 12-way
set associative, 3072kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Instr. L1 Data L1 Instr.
8-way, 32kB 8wuy 32kB 8-way, 32kB

Either 12 L2-based clusters of two cores each...

ay, 32kB

Data I.'I Instr. L1 Data
8wuy 32kB 8wuy 32kB

L1 Instr. L1 Data L1In
8-way, 32kB 8wc|y 32kB 8-way,

I.2 Cuche
uniform, inclusive, 12-way
set associative, 3072kB

I.2 the
uniform, inclusive, 12-way
set associative, 3072kB

I.2 Cuche
uniform, inclusive, 12-way
sef associafive, 3072kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data L1 Instr. L1 Data
8-way, 32kB 8-way, 32kB 8wuy 32kB -way,

I.2 Cache
uniform, inclusive, 12-way
set associative, 3072kB

L3 Cache

uniform, inclusive, 12-way set associative, 12288kB

&

L1 Instr. L1 Data L1 Inst
8-way, 32kB Bwuy 32kB 8-way, 321

I.2 Cuche

uniform, inclusive, 12-way
sef associafive, 3072kB

L1 Data L1 Instr. L1 Data
8-way, 32kB 8-way, 32kB Bwuy 32kB

I.2 Cache
uniform, inclusive, 12-way
set associative, 3072kB
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Clustered Scheduling Options

Either 12 L2-based clusters of two cores each...

) (;' ) (ke

l2 Cuche

uniform, inclusive, 12-way
set associafive, 3072kB

L2 Cache
uniform, inclusive, 12-way
set associative, 3072kB

Y ‘
uniform, inclusive, 12-way set associative, 12288kB — uniform, inclusive, 12-way set associative, 12288kB

...or four L3-based clusters of six cores each.

L2 Cache

uniform, inclusive, 12-way
set associative, 3072kB

L2 Cache

uniform, inclusive, 12-way
set associative, 3072kB

l2 Cuthe

uniform, inclusive, 12-way
set associative, 3072kB

L2 Cache
uniform, inclusive, 12-way
set associative, 3072kB

L1 Ins 1 Dat l I
8-wa 32kB 8 32kB 3

L2 Cache

uniform, inclusive, 12-way
set associafive, 3072kB

I.2 Cuche

uniform, inclusive, 12-way
sef associafive, 3072kB

I.2 Cuche
uniform, inclusive, 12-way
set associative, 3072kB

L2 Cache
uniform, inclusive, 12-way
set associative, 3072kB

L2 Cache
uniform, inclusive, 12-way
set associative, 3072kB

L2 Cache
uniform, inclusive, 12-way
set associative, 3072kB




Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

(dissertation: study with 22 scheduler configurations)

Global Clustered Partitioned

FP
CESEE)

G-EDF C-EDF-L2 P-EDF

== C-EDF-L3
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Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

(dissertation: study with 22 scheduler configurations)

Global Clustered Partitioned

-
T S |
w

y H‘\m‘ H
-y B

FP
LESEILE)

G-EDF C-EDF-L2 P-EDF

== C-EDF-L3

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

(dissertation: study with 22 scheduler configurations)

What dominates capacity loss:

Algorithmic or overhead issues?

UNC Chapel Hill
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Scheduler Evaluation Methodology

OS Phase

Analytical Phase

UNC Chapel Hill
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Scheduler Evaluation Methodology

‘ inefficient / debug performance _
Implement in extract / estimate mean,

RTOS kernel max, distributions

(

Instrument +

ok
measure overheads

OS Phase

Analytical Phase

UNC Chapel Hill
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Scheduler Evaluation Methodology

-

Implement in
RTOS kernel

OS Phase

inefficient / debug performance

extract / estimate mean,
max, distributions

Instrument +

ok
measure overheads

Analytical Phase

f

Count schedulable
task sets

UNC Chapel Hill

Integrate with
schedulability tests

<:, Distill overhead model I

e Randomly generate
millions of task sets
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Scheduler| """ Methodology

inefficient / ¢ gbug performance _
< : extract / estimate mean,
max, distributions

/

Instrument +
measure overheads

-

Implement in
RTOS kernel

ok

S Phase

Analytical Phase

Typical schedulability study jtegrate with - -
in the scheduling literature. Bqy|ability tests IStiil overnead moae

t _ Randomly generate
millions of task sets

Count schedulable
task sets
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Sched:
—  LITMUSRT |

|mp|ement in Linux Testbed for Multiprocessor Scheduling in Real-Time Systems a
| RTOS kernel Developed over span of 5 years.

Current diff to Linux 2.6.36:
93 files changed, 14,465 insertions, 36 deletions

OS Phase [TOaSUISE O

Analytical Phase

Integrate with
schedulability tests

<,L_ Distill overhead model l

ﬁ Randomly generate
millions of task sets

f

Count schedulable
task sets

UNC Chapel Hill
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-or each scheduler,
ran 200 task sets with 1-20 tasks per core.

ethodology

extract / estimate mean,
max, distributions

ok

<,L_ Distill overhead model I

& Randomly generate
millions of task sets

Total: traced >110 hours of execution,
collected >500 GB of raw samples.

‘ Instrument + "

easure overheads
OS Phase

Analytical Phase

Integrate with
schedulability tests

f

Count schedulable
task sets

UNC Chapel Hill
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Scheduler Evaluation Methodology

-

: inefficient / debug performance
implement in | < ‘
RTOS kernel

Model: monotonic piece-wise linear interpolation

Kernel overheads: function of task count

OS Phase

Cache affinity loss:
Analytical Phas function of working set size (WSS).

<:| Distill overhead model

Count schedulable ¢ Randomly generate
task sets millions of task sets

Integrate with
schedulability tests

UNC Chapel Hill
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OSP

Scheduler Evaluation Methodology

-

Implement in
RTOS kernel

inefficient / debug performance

extract / estimate mean,
max, distributions

Analy

SRT: use average-case overheads

Integrate with
; , schedulability tests

f

Count schedulable
task sets

UNC Chapel Hill

ok

Distill overhead model I

-

e Randomly generate
millions of task sets

HRT: use worst-case overheads
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Scheduler Evaluation Methodology

4 inefficient / debug performance _
Implement in extract / estimate mean,

RTOS kernel max, distributions

(

Instrument +

ok
measure overheads

OS Phase

Analytical Phase

[ intanratawin ] gl

Schedulability experiments:
run on 64 nodes of UNC’s TOPSAIL cluster over night

e Randomly generate
millions of task sets

\

Count schedulable
task sets

UNC Chapel Hill
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Scheduler Evaluation Methodology

‘ inefficient / debug performance _
Implement in extract / estimate mean,

RTOS kernel max, distributions

Instrument +
measure overheads

ok

<:_ Distill overhead model l

-

OS Phase
Analvtical Phase

Performance Metric

Schedulability =
fraction of schedulable task sets

Count schedulable
task sets

Randomly generate
millions of task sets

UNC Chapel Hill
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Thesis Statement

UNC Chapel Hill

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(if) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(1i1) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(Iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

(underlined terms will be defined shortly)
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Task Parameters

In this talk In My dissertation

uniformly in

Utilizations HRT: 10% — 40%
SRT: 50% — 90% 27 utilization &

period distributions

Task Periods / uniformly in
Implicit Deadlines [10, 100] ms

VVorking Set Size

(WSS) 64 KB 0 KB - 3072 KB

UNC Chapel Hill
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First Result: HRT Schedulability

1
r— 0.8 [
<
©
=,
= 06 -
.-E
©
> 04 -
O
)
L
O
@ 0.2 -
=

HRT schedulability

worst-case overheads, no tardiness

2 4 6 8 10 12 14 16

total utilization

18

20

22

24
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ction of schedulable
asl sets (out of 100)

schedulability [hard]

frz

Interpretation

“higher is better”

larger total utilization =
higher task count and less idle time

12 14

total utilization

24

UNC Chapel Hill
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Interpretation

optimal, overhead-free scheduler = 1
1 I I I I I I

“higher is better” | -

0.6 |-

Og |
04| ffo% capacity loss _
Uy
Co

schedulability [hard]

0.2

2 4 6 8 10 12 14 16 18 20 22 24

total utilization

Gap to y=1 (all task sets schedulable) reflects capacity loss.

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

First Result: HRT Schedulability

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB

1 L
r— 0.8 [
<
©
=,
= 06 -
.-E
©
> 04 -
O
)
L
O
@ 0.2 -
=

P-EDF e
[1]

[1]
[5]
;3 1|o 1I2 1I4 1|6 1|8 2|o

P-FP e (C-EDF-|2 e C-EDF-|3 en—

2]

total utilization

[3]

[4]

22

G-EDF s
[5]

24
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FI rsIII Res U IIII : F Partitioned EDF suffers least capacity loss.

Low overheads & little algorithmic loss.

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB

. [1]

8 "’p —
0.6 |- [5] ~
0.4 |- -
0.2 | |

0 | | | | | |

8 10 12 14 16 18

20 22 24

schedulability [hard]

total utilization

P-EDF e P-FP esmmmm C-EDF-L2 emmmmm C-EDF-L3 emmmmm  G-EDF s
[1] 2] [3] [4] [5]
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utilization uniformly in [0.1, 0.4]; perioc

1 L
r— 0.8 [
<
©
=,
= 06 -
.-E
©
> 04 -
O
)
L
O
@ 0.2 -
=

aiformly in [10, 100]; WSS=64 KB

ﬁ Partitioned FP performs worse than Partitioned EDF.
Low overheads & more algorithmic loss.

Ity

[5]

[3] A

[1]

P-EDF e
[1]

P-FP e (C-EDF-|2 e C-EDF-|3 en—

2]

10

12 14

total utilization

[3]

16

[4]

18

20 22

G-EDF s
[5]

24
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First |

Larger cluster sizes less competitive.

Larger cluster size = higher overheads.

utilization uniformiy_ [0.1, 0.4]; period unifor:

1 L
r— 0.8 [
<
©
=,
= 06 -
.-E
©
> 04 -
O
)
L
O
@ 0.2 -
=

in [10, 100]; WSS=64

P-EDF e

[1]

|
8

P-FP e (C-EDF-|2 e C-EDF-|3 en—

2]

total utilization

[3]

[4]

R | [1]
[5] [4] 3]
1IO 1|2 1|4 1|6 1|8 2|O 2|2

G-EDF s
[5]

24
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Thesis Statement

UNC Chapel Hill

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(if) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(1i1) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(Iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

(underlined terms will be defined shortly)



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Thesis Statement

UNC Chapel Hill

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(if) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(Iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

(underlined terms will be defined shortly)
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Second Result: SRT Schedulability

1

—. 08"

S

@,

> 06

E

®©

3 04+

()]

-

O

® 02
O_

SRT schedulability

average-case overheads, bounded tardiness

4 6 38 10 12 14 16

total utilization

18

20

22

24

UNC Chapel Hill




Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Second Result: SRT Schedulability

schedulability [soft]

0.8 |- )
0.6 |- )
[1,2] [5]
0.4 |- _
0.2 |- )
0
I I I I I
14 16 18 20 2y,

2 4 6 38 10 12 24

total utilization

P-EDF e P-FP s C-EDF-L2 s C-EDF-L3 emmmmms =~ G-EDF s
[1] 2] [3] [4] [5]
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Partitioned FP and Partitioned EDF curves overlap. lq b i I |'|'y
Equally affected by bin-packing limitations.

— 0.8

ke

D,

P 0.6

B

[

3 04

(b}

-

O

® 0.2
0

utilization uniformly in [0.5, 0.9]; period . *armly in [10, 100]; WSS=64 KB

:
[1,2] [5]

I I I
2 4 6 38 10 12 14 16 18 20 22 24

total utilization

P-EDF e P-FP s C-EDF-L2 s C-EDF-L3 emmmmms =~ G-EDF s
[1] 2] [3] [4] [5]
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Increasingly competitive with larger cluster sizes.
Effective at overcoming bin-packing issues.

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]);. VSS=64 Re

s i

— 08 _

ks

P,

P 0.6 - -

E

®©

3 04+t _

()]

-

O

® 02 _
0 _

| | | | | | | | | | | |

2 4 6 38 10 12 14 16 18 20 22 24

total utilization

P-EDF e P-FP s C-EDF-L2 s C-EDF-L3 emmmmms =~ G-EDF s
[1] 2] [3] [4] [5]
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SRT Schedulability

100]; WSS=64 KE

Why does G-EDF perform
better in the SRT case?

No algorithmic capacity loss in SRT [1,2]
case (Devi, 20006), but significant
algorithmic capacity loss in HRT case.

schedulability [soft]

Average-case overheads much

lower than worst-case overheads 16 18 20 22

(long-tail distributions).

EDF-L3 e  G-EDF s
[4] [5]
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Thesis Statement

UNC Chapel Hill

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(if) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(Iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

(underlined terms will be defined shortly)

v
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Full study:

— evaluated more than 92,000,000 task sets.

— results iIn more than 60,000 schedulability plots.

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is Y 4
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

(underlined terms will be defined shortly)
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Serially-Reusable Shared Resources

message buffers, I/O devices, device state,...

Mutual Exclusion

Resources protected by locks.

Real-Time Locking Protocol

Avoid unpredictable / unbounded
blocking due to unavailable resources.

UNC Chapel Hill
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Spinlocks vs. Semaphores

Jobs must wait for resources to become available.

J

Suspend Busy-Wait / Spin

taken off the ready queue non-preemptively

by the RTOS execute delay loop
semaphore spinlock

UNC Chapel Hill
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Part 2: Contributions

Concerning semaphore protocols.
= Notion of blocking optimality.
= Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

UNC Chapel Hill
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Part 2: Contributions

Concerning semaphore protocols.
= Notion of blocking optimality.
= Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

UNC Chapel Hill
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High-level view of semaphore

PCI |"|‘ 2 ° C r protocols first.

Concerning semaphore protocols.
= Notion of blocking optimality.
= Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed)
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

UNC Chapel Hill



= Operating Syste
What is “Blocking”?

Not every delay is “blocking” in a real-time system.

Uniprocessor:

Higher-priority jobs should not have to wait for lower-priority jobs.

Lower-priority jobs should always wait for higher-priority jobs.

UNC Chapel Hill



= Operating Syste
What is “Blocking”?

Not every delay is “blocking” in a real-time system.

(

Priority Inversion

A higher-priority job Is delayed
because it waits for a lower-priority job.

(job should be scheduled, but is not)

UNC Chapel Hill



= Operating Syste
What is “Blocking”?

“blocking in a real-time system”

times of priority inversion

pi-blocking

UNC Chapel Hill



> Operating : Background Review

The Generalization Question

Uniprocessor Pl-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

UNC Chapel Hill



> Operating : Background Review

The Generalization Question

Uniprocessor Pl-Blocking Optimality

On a uniprocessor, the re=! 4 2 "hlem
can be solved wit € O(1) maximum pi-blocking.

; Baker, 1991]

Any task in any task set: pi-blocked by at
most one critical section.

UNC Chapel Hill



> Operating : Background Review

The Generalization Question

Uniprocessor Pl-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

How does the bound generalize to
multiprocessor?

Oo(1)? O(m)? O(n)? Worse?

m identical processors n sporadic tasks

UNC Chapel Hill
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The Generalization Question

I n e n s
lanc

NV Resu ; 1S

i i
o I

— there are two kinds of schedulability analysis —

How does the bound generalize to
multiprocessor?

Oo(1)? O(m)? O(n)? Worse?

m identical processors n sporadic tasks

UNC Chapel Hill
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Two Kinds of Schedulability Analysis

analyzing suspensions Is notoriously difficult

actual execution: n ENTENTEN |

A

| ] scheduled without resource

job release | job completion

N\ executing critical section + deadline —— job suspended

UNC Chapel Hill
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TW ® Processor not used = other jobs can execute. SIS

analyzing sustencion.s is notoriously difficu

actual execution: 17 t E\ @Ej l

A

| ] scheduled without resource

job release | job completion

N\ executing critical section + deadline —— job suspended

UNC Chapel Hill
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TW o Processor not used = other jobs can execute. SIS

analyzing sustencion.s is notoriously difficu

actual execution: T t@ E\ @Ej l

predictablility requires a priori analysis

task set YES

platform met? @

schedulability test

Constraints

UNC Chapel Hill
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Two Kjmde ot Cohadidahiling Anglysis

ana Exploiting knowledge of suspensions in [t
schedulability tests is very difficult.

actual execution: T1 iE N ﬁlj

NV

task set

Constraints

platform met?

schedulability test

UNC Chapel Hill
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Two Kinds of Schedulability Analysis

analyzing suspensions Is notoriously difficult

actual execution: 11 tg = = l

analyzed as:

S S

suspension-oblivous (s-oblivious)

simplifying, safe assumption:
treat suspension time as execution time

UNC Chapel Hill
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Two Kinds of Schedulability Analysis

analyzing suspensions Is notoriously difficult

actual execution: n ENTENTEN |

analyzed as:

(AN N i~

suspension-oblivous (s-oblivious)

rEeNTENTEN

suspension-aware (s-aware)

Ideal:
accurate analysis.

UNC Chapel Hill
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Two Kinds of Schedulability Analysis

analyzing suspensions Is notoriously difficult

The type of schedulability analysis In use

subtly affects the definition of pi-blocking.

analyzed as:

(AN N i~

suspension-oblivous (s-oblivious)

nENTENTEN]

suspension-aware (s-aware)

UNC Chapel Hill
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Suspension-Oblivious Results

NN

suspension-oblivous (s-oblivious)

Suspensions modeled as execution.

UNC Chapel Hill
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Suspension-Oblivious Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global
Partitioned
Clustered

UNC Chapel Hill
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Suspension-Oblivious Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global (Q(m)
Partitioned (Q(m)
Clustered (Q(m)
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Suspension-Oblivious Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global Q(m) _
Partitioned Q(m) Q(m . n) / MPCP-VS
(Lakshmanan et al., 2009)
Clustered Q(m) —

MPCP-VS = Multiprocessor Priority Ceiling Protocol with Virtual Spinning

UNC Chapel Hill
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Suspension-Oblivious Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global | Q(m) | O(m)/ OMLP _

Partitioned Q(m) O(m) / OMLP Q(m n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Q(m) O(M) /[ OMLP —

OMLP = O(m) Locking Protocol
MPCP-VS = Multiprocessor Priority Ceiling Protocol with Virtual Spinning

UNC Chapel Hill
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us Results

Asymptotically optimal _
(approximately within factor of two) n sporadic tasks

My Work My Work Prior Work
Lower Bound IBound / Protocol Bound / Protocol

Global O(m) / OMLP _

Partitioned O(m) [ OMLP Q(m n) [ MPCP-VS
(Lakshmanan et al., 2009)

Clustered O(m) [ OMLP —

OMLP = O(m) Locking Protocol
MPCP-VS = Multiprocessor Priority Ceiling Protocol with Virtual Spinning
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(

S US P €l uUsesFIFO queues.

Uses priority queues.

m identical
My Work
Lower Bound Boun ,/ Protocol
Global | Q(m) | O(m)/ OMLP -
Partitioned Q(m) O(m) [ OMLP Q(m n) / MPCP-VS
(Lakshmanan et al., 2009)
Clustered Q(m) O(M) /[ OMLP —
OMLP = O(m) Locking Protocol

MPCP-VS = Multiprocessor Priority Ceiling Protocol with Virtual Spinning
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Suspension-Oblivious Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound
Next: overhead-aware schedulability
Global O ( m) study for non-asymptotic comparison.
partitioned | Q(m) | O(m) / OMLP | $¥(m-1) I MPCP-VS
(Lakshmanan et al., 2009)
Clustered Q(m) O(M) /| OMLP —
OMLP = O(m) Locking Protocol

MPCP-VS = Multiprocessor Priority Ceiling Protocol with Virtual Spinning
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Resource-Sharing Parameters

In this talk In My dissertation

Number of
resources

, 3,6, 12,24

10%, 25%, 407, 55%,

Access probability 25% 70%. 85%

o : : : short: [I, 15] us
Critical Section uniformly in medium: [1, 100] s

Lensths [1, 13] ps long: [5, 1280] ps

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

S-Oblivious Schedulability Comparison

g 0.8
> 08 HRT schedulability
§ 0.4 worst-case overheads, no tardiness
§ o2
0 .

2 4 6 8 10 12 14 16 18 20 22 24

total utilization
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schedulability [hard]

S-Oblivious Schedulability Comparison

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
wss=4KB; nres=6; pacc=0.10; short critical sections

2 4 6 8 10 12 14 16 18 20 22

total utilization

P-EDF/OMLP e=s==  P_FP/MPCP-VS mmm—
[1] 2]

UNC Chapel Hill
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° (¢ °
S-O b I V| OMLP yields better schedulability than the pCI rison

MPCP-VS in In virtually* all tested scenarios.

*Long critical sections are equally
troublesome under each of the protocols.

\

schedulability [hard]

2 4 6 8 10 12 14 16 18 20 22 24

total utilization

P-EDF/OMLP e=s==  P_FP/MPCP-VS mmm—
[1] 2]
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Suspension-Aware Results

nPENTENTENT |

suspension-aware (s-aware)

Suspensions analyzed in detail.
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Suspension-Aware Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global
Clustered
Partitioned
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Suspension-Aware Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global QQ(n)
Clustered QQ(n)
Partitioned QQ(n)
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Suspension-Aware Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global Q(n) Q(m-n)/

other PCP variant

Clustered Q(n) —

Q(m-n) / MPCP

Partitioned Q(n) Q(m | n) | DPCP

MPCP = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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Suspension-Aware Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Globadl Q(n) (special cases) Q(m | n) /

other PCP variant

Clustered Q(n) — _

Q(m-n) / MPCP

Partitioned
it QQ(n) O(n) / FMLP+ Q(m- 1) | DPCP

FMLP+ = FIFO Mutex Locking Protocol
MPCP = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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Suspension-Aware Results

n sporadic tasks

Asymptotically optimal

My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Globadl Q(n) (special cases) Q(m | n) /

other PCP variant

Clustered Q(n) — _

/

N 0 o0 | EMLP+ QQ(m-n) / MPCP
crittoned - £3() () Q(m- ) / DPCP

FMLP+ = FIFO Mutex Locking Protocol
MPCP = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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Suspension-Aware Results

Tightness is still an open
problem In the general case.

m identical processor

My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Globdl - f§2@n1'li)/
[O(n) in special cases] other PCP variant
Clustered —

Q(m-n) / MPCP

Partitioned
it QQ(n) O(n) / FMLP+ Q(m- 1) | DPCP

FMLP+ = FIFO Mutex Locking Protocol
MPCP = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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, nangjon-Aware

Uses FIFO queues. eSSOrIS

Uses priority queues.

My \‘ork My Work
Lower | 'o.'ad Bound / Protocol Bound / I)tocol
Global Q(n) ~ — QQ(m - n) /
[O(n) in special cases] other PCP variant
Clustered Q(n) —
N
et 0 o(m | EMLP+ Q(m-n) / MPCP
NS ") ") Q(m - n) / DPCP

FMLP+ = FIFO Mutex Locking Protocol
MPCP = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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Suspension-Aware Results

m identical processors n sporadic tasks
My Work My Work Prior Work
Lower Bound Bound / Protocol Bound / Protocol
Global Q) | — Q(m-n)/

Next: overhead-aware schedulability
Clustered @) ( n) study for non-asymptotic comparison.

i | O o emipe | (M 1) TMPCP |
B () () Q(m- ) / DPCP

FMLP+ = FIFO Mutex Locking Protocol
MPCP = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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S-Aware Schedulability Comparison

same parameters as before

g 0.8
> 08 HRT schedulability
§ 0.4 worst-case overheads, no tardiness
§ oz
0 .

2 4 6 8 10 12 14 16 18 20 22 24

total utilization

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

0.8

0.6

0.4

schedulability [hard]

0.2

S-Aware Schedulability Comparison

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
wss=4KB; nres=6; pacc=0.10; short critical sections

Scheduler: P-F

2 4 6 8 10 12 14 16 18 20 22 24

total utilization

FMLP-+ e MPCP e DPCP e
[1] 2] [3]
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S-Aware Schedulability Comparison

FMLP+ yields better schedulability than
utilization uniformly in [C either the MPCP or the DPCP In virtually* all
wss=4KB; nres=6; tested scenarios.

*Long critical sections are equally

o 08 troublesome under each of the protocols.
qv]
e
> 06
%
S 04|
O
)
-
& 02F

o |Scheduler: P-F

I I

2 4 6 8 10 12 14 16 18 20 22 24

total utilization

FMLP -+ emmm— MPCP e DPCP e
[1] 2] [3]
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Part 2: Contributions

Concerning semaphore protocols.
= Notions of blocking optimality.
= Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.
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Part 2: Contributions

Concerning semaphore protocals.

q = Notions of blocking optimality] ~ S-aware and s-oblivious '

= Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.
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Part 2: Contributions

Concerning semaphore protocols.
= Notionsd Three OMLP variants and the FMLP+.

= Several asymptotically optimal semaphore protocols.

g

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.
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Part 2: Contributions

Concerning semaphore protocols.

-Notions of blocking optimality.

¢ - Achieve higher schedulability than “classic” protocols. l

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.
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Part 2: Contributions

‘Concerning semaphore pr¢ | |
y Next: brief look at spinlocks.

W _ ~Notions of blocking optim
¥ _ - Several asymptotically optimal semapho £ protocols.

= These protocols perform well in practic/

Concerning spinlock protocols. P
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.
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> Operating : Background Review

Non-Preemptive Task-Fair Queue Lock

QOG-

Non-Preemptive

Jobs cannot be preempted while spinning
or executing their critical section.

Task-Fair Queue Lock

Waiting jobs form a FIFO spin queue.
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> Operating : Background Review

Non-Preemptive Task-Fair Queue Lock

OO

Advantages:

low overheads, no analysis of suspensions required.

Disadvantages:

waste processor cycles,
non-preemptivity can be problematic.
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Resource-Sharing Parameters

In this talk In My dissertation

Number of
resources

, 3,6, 12,24

10%, 25%, 407, 55%,

Access probability 25% 70%. 85%

o : : : short: [I, 15] us
Critical Section uniformly in medium: [1, 100] s

Lensths [1, 13] ps long: [5, 1280] ps
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S-Oblivious vs. S-Aware vs. Spinlocks

g 0.8
> 08 HRT schedulability
§ 0.4 worst-case overheads, no tardiness
§ o2
0 .

2 4 6 8 10 12 14 16 18 20 22 24

total utilization
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S-Oblivious vs. S-Aware vs Sninlacks

§ 0.8

S

<,

> 0.6

%

s 04

S

D

-

» 02
0

utilization un
wss=4K

Spinlocks improve schedulability compared to
the s-aware FMLP+ and the s-oblivious OMLP.

“—

\)

\ 7/

[3] .
2]

N\

P-EDF/Spinlocks essss==  P-EDF/ OMLP

[1]

10 12 14 16 18 20 22 24

total utilization

P-FP/ FMLP+ e
[3]
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S-Oblivious vs. S-Aware vs. Spinlocks

Surprise: the s-aware protocol (FMLP+) is not much
better then the best best s-oblivious protocol (OMLP). |'%)

' - _
el 0.8 - —
£ N\
0.6 _
2 N\ /
o)
2 o4l [3] _
go)
ps
S 02L 2] -
0 | | | | | | | | | | |

2 4 6 8 10 12 14 16 18 20 22 24

total utilization

P-EDF/Spinlocks essss== P-EDF/ OMLP P-FP/ FMLP+ emmmmm—
[1] [2] [3]
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S-Oblivious vs. S-Aware vs. Spinlocks

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
wss=4KB; nres=6; pacc=0.10; short critical sections

5 08, -

é 0.6 .

S o Reasons :

8 oz) Spinlocks incur an order of magnitude lower overheads )
0 (no system calls, no loss of cache affinity).

Analysis of suspensions is very pessimistic.

Existing s-aware analysis is not much more precise
than the much simpler s-oblivious approach.
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Part 2: Contributions

_Concerning semaphore protocols.

= Notion of blocking optimality.
_ = Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

Concerning spinlock protocols.
= Improved blocking analysis (very technical; not discussed).
= Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.
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Part 2: Contributions

‘Concerning semaphore protocols.

W _ = Notion of blocking optimality.
¥ -Several asymptotically optimal semaphore protocols.

= These protocols perform well in practice.

Concerning spinlock protocols.

_ =Improved blocking analysis (very technical; not discussed).

= Overhead-aware comparison of semaphores and

(

Use non-preemptive task-fair spinlocks in practice!
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Part 3

Reader-Writer Exclusion




Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Reader-Writer (RW) Exclusion

(Courtois et al., 1971)

Readers
=0Only observe state of shared resource.

a =May access resource concurrently with other readers.

Writers
=May modify state of shared resource.
=Require exclusive access.

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667—668.
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Reader-Writer (RW) Exclusion

(Courtois et al., 1971)

Readers

=0Only observe state of shared resource.

=May access resource concurrently with other readers.
Writers

@ =May modify state of shared resource.

=Require exclusive access.

r

My contributions:

First analysis of RW locks In the context of
multiprocessor real-time systems.

A new type of RW lock: phase-fair RW locks.

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667—668.

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?

Writer-Preference

Reader-Preference

Task-Fair

Other
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Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?

Writer-Preference

Reader-Preference

Task-Fair

Other
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Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?

Writer-Preference

Reader-Preference

Task-Fair
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Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?
| Writer-Preference

Reader-Preference
Task-Fair

Other

X

-

Let’s look at Writer-Preference RW Locks...
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Reader Queue
Critical Section

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Writer Queue
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\E\\\\\\\\‘
N

SRR LA AL A L

Critical Section

NANANNNN NANNN \\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

EERERAR AR AR AL LALLM AL NANNN N\
W . t Q

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

NNAAN \E\\\\\\\\

SRARARARARARAL LA AL AL LA L NAAARARARAARA AR AR NN @

Critical Section

NANANNNN NANNN \\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

EERERAR AR AR AL LALLM AL NANNN N\
W . t Q
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Writer-Preference RW Lock

i. Readers wait if writers are present.

ii. Writers enter in FIFO ' Writer Preference

ARARAR AN LALLM A >

9

Critical Section

BEEARARAR R UL AL AL LA AL AL >
W . t Q
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Reader Queuve

Critic@cﬁon

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Writer Queue
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Reader Queuve

Critic@ecﬁon

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Writer Queue
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Reader Queuve

Critic@ecﬁon

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Writer Queue
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

Critic@ecﬁon

EERERAR AR R AL LA AL AL A L A L >~
W . t Q
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Writer-Preference RW Lock

i. Readers wait if writers are present.

i. “Writers enter in FIFO order.

Critic@ecﬁon

EERERAR AR R AL LA AL AL A L A L >~
W . t Q
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Writer-Preference RW Lock

i. Readers sent.

ii. Writers¥®

starvation!

R JCR (R IR IR

S A A N NN NN NN NN N O O OO OO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Reader Queuve

Critic@acﬁon

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Writer Queue
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Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?

Writer-Preference x
"> Reader-Preference ?
?

Task-Fair

Other x

11SO UIHOWS Sid
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Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?

Writer-Preference

Reader-Preference

@
Other x

Let’s look at Task-Fair RW Locks...
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

Critical Section

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Quevue
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

m o o ©
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Task-Fair RW Lock

. Readers and writers both enter in FIFO

/

Later Writer Arrival

'S enter together.

AN NANANNNNNN NAUAMARANRARAAR A AR AR AR AN

SRR AR AR A AR NANNNNN \\\\\\\\\\\\\\\\\\\\\\\\‘
N

NANMARARAARAA AR AR NN

Critic@cﬁon
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order.

ii. Consecutive readers e

Critical Section

©® I

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Quevue
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

@@/R ‘R (R /R @

\NARRRNRN \NANANASNSRRSNNN \\\\

Queue

| Let’s rewind... l

Critical Section
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO

Change in arrival sequence. |\ (ooether.

/R ’R Qv} Qv}/k

\\\\\\\\\\\\»

Critical Section
Queue
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

® o ®

Quevue
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order. 4

ii. Consecutive reade

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Quevue
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

ml o o o

Quevue
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Task-Fair RW Lock

i. Readers and writers both enter in FIFO
order. ”

ii. Consecutiy Lackof" Paralielism

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
N

Quevue

UNC Chapel Hill
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Prior Work: RW Lock Choices

How to order conflicting reads and writes?

RW Lock Type Wort-case Blocking analysis

improvement? available?

Writer-Preference

Reader-Preference

Task-Fair

Other

Can be analyzed, but worst case similar to mutex. l
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My:contribution:

A new type of RW lock with
analytical worst-case improvement.

Wort-case Blocking analysis
RW Lock Type improvement? available?

) ¢
) ¢

X
X

Writer-Preference

Reader-Preference

Task-Fair

Other
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Design Space

Task-Fair
Locks

-~

Preference
Locks

-~

Increasing “fairness”

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Allows starvation!

Not “fair” enough!

SIgN SPAC Lack of parallelism!

Too “fair”!

Task-Fair
Locks

X

Preference
Locks

X

Increasing “fairness”

UNC Chapel Hill
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Design Space

Preference Task-Fair
Locks Locks

Increasing “fairness”
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A New Type of RW Lock

Phase-Fair

Reader-Writer Locks

UNC Chapel Hill
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“Polite” Readers and Writers

Phase-Fair

Reader-Writer Locks

Readers give preference to writers.
Writers give preference to readers.

“Please, after you...”

UNC Chapel Hill
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Phase-Fairness
(paraphrased)

All readers enter when unblocked by an
exiting writer (unless there are no writers).

A writer enters when unblocked by the
last exiting reader (unless there are no writers).

Effect: reader phases and writer phases alternate.

UNC Chapel Hill
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Phase-Fair RW Lock

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ >

Reader Queue
Critical Section

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ >

Writer Queue
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Phase-Fair RW Lock

staggering indicates arrival order

J

N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Reader Queue

W

N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Writer Queue

Critic(Qifbction
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Phase-Fair RW Lock

staggering indicates arrival order

9 9

Reader Queue

@ @ \ Critic@ction

erter Queue

All readers enter when unblocked by an
exiting writer (unless there are no writers).
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Phase-Fair RW Lock

NAUARALA LA LA L LA AL L

@ @ Critichection

erter Queue

All readers enter when unblocked by an
exiting writer (unless there are no writers).
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Phase-Fair RW Lock

OO0

Reader Queue

@@ Critichection

erter Queue

A writer enters when unblocked by the
last exiting reader (unless there are no writers).
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Phase-Fair RW Lock

WOV

Reader Quevue

Critic@ction

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ >
W . t Q

All readers enter when unblocked by an
exiting writer (unless there are no writers).
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Phase-Fair RW Lock

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Reader Queue

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Writer Queue

Critic@pction

Effect: reader phases and writer phases alternate.
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Blocking Analysis

Assumptions

=Resource request (protocol, spin loop, critical section)
executed non-preemptively.

=M Processors
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Blocking Analysis

Assumptions

=Resource request (protocol, spin loop, critical section)
executed non-preemptively.

=M Processors

Reader Writer Blocking

Lock Type Blocking (# of phases)
Task-Fair Mutex O(m) O(m)
Task-Fair RW O(m) olm)
Phase-Fair RW O(l) O(m)

UNC Chapel Hill
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Readermusiwait'forai'mosione
reader anda one writer phase.

Assumptions

=Resource request (protocol, spin loop, critical section)
executed non-preemptively.

=M Processors

Reader Writer Blocking

Lock Type Blocking (# of phases)
Task-Fair Mutex O(m) O(m)
Task-Fair RW O(m) olm)
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ReaUErmustwaitoriarmosiione
o
reader and one writer phase.

As

g uumwmwmwwuwm

iIs asympfotically optimal.

Reader Writer Blocking

Lock Type Blocking (# of phases)
Task-Fair Mutex O(m) O(m)
Task-Fair RW O(m) olm)
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Lu:wujuu musrwairrorafmostone
edader and one wrifer phase.

As

g bUUbMLUQ uwduu phase-FarRWILocks
. is asympftofically optimal.

But can phase-fair locks
be implemented efficiently
on real hardware?

UNC Chapel Hill
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Lock/Unlock Overhead

" Phase-Fair RW [ Linux RW

120

100

(0 0]
o

processor cycles
S &

N
o

Cache-hot micro-benchmark on an Intel Xeon X5650 (“Westmere”, Core 17).
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Lock/Unlock Overhead

Do task-fair RW and
phase-fair RW locks yield
schedulability improvements?

Cache-hot micro-benchmark on an Intel Xeon X5650 (“Westmere”, Core i7).

UNC Chapel Hill



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Resource Sharing Parameters

In this talk In My dissertation

Number of
FesSOUrces

6, 12,24

Access probability 25% 10%, 25%, 40%
| | o 10%, 20%, 30%,
VVrite ratio 20% 50%. 75%

o : : : short: [I, 15] us
Critical Section uniformly in medium: [1, 100] s

Lensths [1, 15] ps long: [5, 1280] s
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Full study:

— In total, 7,290 parameter combinations.
— Evaluated more than 34,000,000 task sets.
— Results iIn more than 100,000 schedulability plots.
N
it |
I'll show you one typical example...
ACCESS probabIIIty. /o 07, 257, 40%
10%, 20%, 30%
/Vrite ratic 20% ) 2070 = 0
\/\/L ILC [FdtlO o 50%’ 759,
~ritical Sectic : : short: [I, |5] us
Critical Section uniformly in medium: 1. 100] us
Lengths [1, 13] ps long: [5, 1280] s
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HRT Schedulability Improvements

g 0.8
> 08 HRT schedulability
§ 0.4 worst-case overheads, no tardiness
§ o2
0 .

2 4 6 8 10 12 14 16 18 20 22 24

total utilization
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HRT Schedulability Improvements

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
wss=4KB; nres=6; pacc=0.25; wratio=0.20; short critical sections

0.8

0.6

0.4

schedulability [hard]

0.2 |-

 Scheduler: P-EDF
|

[3]

2

UNC Chapel Hill

4

phase-fair RW e

[1]

12 14

total utilization

task-fair RV s

2]

16 18

task-fair mutex

[3]

20

22

24



Scheduling and Locking in Multiprocessor Real-Time Operating Systems

§ 0.8

S

<,

> 0.6

%

s 04

S

D

-

» 02
0

Phase-fair RW locks yield greater improvement than task-fair RW locks.

RW spinlocks improve schedulability compared to mutex spinlocks.

utilizatic 2 uniformly in [0.1, 0.4]; period unif fmly in [10, 100]
wss=4KB; 1. 'es=6; pacc=0.25; wratio=0.20; ¢ jort critical sections

 Scheduler: P-EDF
|

/

[3]

2 4 6 8 10 12 14 16 18 20

total utilization

phase-fair RW e task-fair R\ ssss==  {gsk-fair mutex s

[1] [2] [3]
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Thesis Statement

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is Y 4
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal
with regard to the maximum duration of blocking.
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Thesis Statement

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(1) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(if) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be eftective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal
with regard to the maximum duration of blocking.
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Hard Real-Time

Use partitioned EDF.

Soft Real-Time

Support clustered scheduling.




Scheduling and Locking in Multiprocessor
Real-Time Operating Systems

Keep It simple

Use non-preemptive spinlocks.
Use FIFO queues: optimal and practical.

Be polite

Phase-fair RW locks can be implemented
efficiently and improve worst-case analysis.




Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Future Work

RTOS Implementation.
= Hierarchical scheduling / container framework.

= Reduce lock contention in global and clustered scheduling.

Locking Optimality.
= |[mproved bounds under s-aware analysis.
= Nested requests.

Non-blocking synchronization.

Max
Planck

% Institute
1{o]

= Walit-free, lock-free. ‘

= Read-copy update (RCU). ﬂ o
Ex pe r i m e n ts Kaiserslautern - Saarbriicken // Germany

= Use worst-case execution time analysis. http://www.mpi-sws.org

= Use more real applications.

UNC Chapel Hill
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