
Björn B. Brandenburg
James H. Anderson (Advisor)

Department of Computer Science
The University of North Carolina at Chapel Hill

Scheduling and Locking in
Multiprocessor Real-Time

Operating Systems

Supported in part by a Fulbright Fellowship and a UNC Dissertation Completion Fellowship

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

What is a Real-Time System?

2

Image credit: DaimlerChrysler AG via Wikimedia Commons

“right answer at the right time”

predictability = a priori validation of temporal correctness

http://en.wikipedia.org/wiki/File:Airbag3.jpg
http://en.wikipedia.org/wiki/File:Airbag3.jpg

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in a Real-Time OS (RTOS)

3

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in a Real-Time OS (RTOS)

4

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

tasks
request

processor
service

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in a Real-Time OS (RTOS)

5

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

Allocates processor such
that all constraints are met.

tasks
request

processor
service

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Locking in an RTOS

6

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

tasks request
processor + resource(s)

serially reusable
resources

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Locking in an RTOS

7

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Allocates both together such
that all constraints are met.

tasks request
processor + resource(s)

serially reusable
resources

P1P2P3P4P5P6Processor

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

P1 P2 P3 P4 P5 P6

Locking in a Real-Time OS

8

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

How to allocate multiple processors
and resources such that all constraints are met?

tasks request
processor + resource(s)

serially reusable
resources

The Emergence of
Multicore Processors

The “standard” hardware platform is changing / has changed.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Why Real-Time on Multicore?

9

To reduce size, weight, and power
(SWaP) requirements.

Cost, availability: commercial-off-the-shelf (COTS)
processors likely to be multicore chips.

High computational demands:
HD media, computer vision, motion planning…

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Why Real-Time on Multicore?

10

To reduce size, weight, and power
(SWaP) requirements.

MARVIN Mk II: unmanned autonomous vehicle (UAV)

Technische Universität Berlin
Musial et al., 2006

Motivating example:

Mission
Detect forest fires

during dry summer months.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Why Real-Time on Multicore?

11

To reduce size, weight, and power
(SWaP) requirements.

MARVIN Mk II: unmanned autonomous vehicle (UAV)

Payload:
pan & tilt camera

and infrared sensor.

UAV tethered to ground-
based mission planning.

Technische Universität Berlin
Musial et al., 2006

Motivating example:

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Motivating example:

Technische Universität Berlin
Musial et al., 2006

Why Real-Time on Multicore?

12

MARVIN Mk II: unmanned autonomous vehicle (UAV)

UAV tethered to ground-
based mission planning.

Two computers for flight controller + payload

2x CPUs, 2x power supply (batteries),
 2x cabling, 2x cooling…

Mission planning

Not enough on-board
computational

resources!

Would need more
space, weight, power,

cooling, maintenance...

Why not use just one, more powerful multicore chip…?

Payload:
pan & tilt camera

and infrared sensor.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Motivating example:

Technische Universität Berlin
Musial et al., 2006

13

MARVIN Mk II: unmanned autonomous vehicle (UAV)

UAV tethered to ground-
based mission planning.

Payload:
pan & tilt camera

and infrared sensor.

Temporal failure =
wobbly flight or crash.

Predictable temporal isolation required.

Temporal failure =
briefly “looks in wrong direction.”

Temporal failure =
UAV “hesitates” a little longer.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

P1 P2 P3 P4 P5 P6

Locking in a Real-Time OS

14

A set of recurrent tasks with temporal
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

tasks request
processor + resource(s)

serially reusable
resources

Predictable Real-Time Kernel

Algorithms must be both
analytically sound and efficiently implementable.

How to allocate multiple processors
and resources such that all constraints are met?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

15

(i.e., idle time required to meet all timing constraints)

Two main causes:
1. Algorithmic limitations (non-optimal scheduling decisions).
2. Runtime overheads (RTOS inefficient).

Capacity Loss
Processor utilization that cannot be allocated
to real-time tasks without risking temporal failure.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Thesis Statement

16

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.
Parts 2 & 3: How to implement locking.

(underlined terms will be defined shortly)

Part 1:

Which scheduler to use.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

17

Parts 2 & 3: How to implement locking.

(underlined terms will be defined shortly)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

18

(underlined terms will be defined shortly)

Part 1

Scheduling

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in Theory and Practice

20

Scheduling Theory:

“we consider overheads to be negligible”

RTOS Developers:

overheads, overheads, overheads…

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduling in Theory and Practice

21

Scheduling Theory:

“we consider overheads to be negligible”

RTOS Developers:

overheads, overheads, overheads…

My contribution: an evaluation that reflects
both overhead-related and algorithmic capacity loss.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Methodology & Case Study

22

Choosing a Scheduler for a 24-Core Intel System

RTOS Platform:
➡ Real-time Linux extension (v2.6.36).
➡ Supports scheduler plugins.
➡ Principle developer, project lead.
➡ Since 2006: 9 releases, spanning 17 kernel versions.

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Methodology & Case Study

23

Choosing a Scheduler for a 24-Core Intel System

RTOS Platform:
➡ Real-time Linux extension (v2.6.36).
➡ Supports scheduler plugins.
➡ Principle developer, project lead.
➡ Since 2006: 9 releases, spanning 17 kernel versions.

HW Platform:
➡ 4 sockets
➡ 6 cores per socket (Intel 64bit Xeon L7455)
➡ 3 levels of cache (2 shared + 1 private)
➡ Details later…

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Methodology & Case Study

24

Choosing a Scheduler for a 24-Core Intel System

RTOS Platform:
➡ Real-time Linux extension (v2.6.36).
➡ Supports scheduler plugins.
➡ Principle developer, project lead.
➡ Since 2006: 9 releases, spanning 17 kernel versions.

HW Platform:
➡ 4 sockets
➡ 6 cores per socket (Intel 64bit Xeon L7455)
➡ 3 levels of cache (2 shared + 1 private)
➡ Details later…

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

Next:
background review.

Then:
case study details

and results.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Sporadic Task Model

25

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
 while (true) {
 wait_for_event();
 process_event();
 signal_event_processed();
 }
}

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Sporadic Task Model

26

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
 while (true) {
 wait_for_event();
 process_event();
 signal_event_processed();
 }
}

Sequence of jobs (= invocations)

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Sporadic Task Model

27

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
 while (true) {
 wait_for_event();
 process_event();
 signal_event_processed();
 }
}

job release

job completion

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Sporadic Task Model

28

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
 while (true) {
 wait_for_event();
 process_event();
 signal_event_processed();
 }
}

job release

job completion

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Sporadic Task Model

29

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
 while (true) {
 wait_for_event();
 process_event();
 signal_event_processed();
 }
}

job release

job completion

deadline
Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Deadline Constraint

30

A job should complete by its deadline.
If it does not, it is tardy.

1 2 3 54 6 7 8 109 11 12 13 140

T1

J1,1

Tardiness: extent of deadline miss

Implicit: next job does not arrive before deadline.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Hard vs. Soft Real-Time

31

Hard Real-Time (HRT)

Each job meets its deadline (= zero tardiness).

Soft Real-Time (SRT)

Maximum deadline tardiness is bounded
by a (reasonably small) constant.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Hard vs. Soft Real-Time

32

Hard Real-Time (HRT)

Each job meets its deadline (= zero tardiness).

Soft Real-Time (SRT)

Maximum deadline tardiness is bounded
by a (reasonably small) constant.

If computation is “bufferable,”
deadline miss may be masked with
finite buffer (e.g., video decoding).

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Processor Requirement

33

Task Utilization

fraction of processor capacity required by task

Total Utilization

Sum of all task utilizations:
min. processor capacity required by task set.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Schedulers for Sporadic Tasks

34

Task schedulable:

Task can be shown a priori to
always satisfy its temporal constraint

under a given scheduler
(w.r.t. HRT or SRT interpretation).

In my dissertation:
22 schedulers.

In this talk:
5 selected schedulers.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

35

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

36

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue.

Example: cores that share
a cache form a cluster.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

37

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue.

Online: schedule jobs
preemptively from a

priority queue.

Jobs may migrate,
but only within cluster.

Offline: assign
tasks to clusters.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

38

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue.

Background Review
Job Priority Order

Earliest-Deadline First (EDF)
(order by increasing deadline)

Fixed-Priority (FP)
(manually assign priorities to tasks)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

39

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

Two common special cases:
one-core clusters and a single cluster

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

40

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

41

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

42

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Good cache affinity,
low contention. Weak cache affinity,

high contention.

larger clusters = higher overheads

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

43

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

task-to-cluster assignment ≈ bin packing

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Bin Packing

44

three identical tasks
task utilization! = 2/3
total utilization! = 2

! ! ! ! ! two unit processors

2/3 2/3 2/3

0.5

0.0

1.0

ca
pa

ci
ty

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Bin Packing

44

three identical tasks
task utilization! = 2/3
total utilization! = 2

! ! ! ! ! two unit processors

2/3 2/3
2/30.5

0.0

1.0

Processor Overloading

Even though there is sufficient total capacity,
the last task cannot be placed.

ca
pa

ci
ty

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Bin Packing

44

three identical tasks
task utilization! = 2/3
total utilization! = 2

! ! ! ! ! two unit processors

2/3 2/3
2/30.5

0.0

1.0

Processor Overloading

Even though there is sufficient total capacity,
the last task cannot be placed.

Capacity loss approaching
50% is possible under

partitioning.

ca
pa

ci
ty

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

45

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

larger clusters = higher overheads

smaller clusters = harder bin packing instance

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Multiprocessor Scheduling

46

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Partitioned FP (P-FP) available in most RTOSs (and Linux, too).
Easiest variant to implement: simple uniprocessor extension.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Main Memory

L3 Uniform, Inclusive

L1
Data

Core
4

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
0

L1
Instr.

L1
Data

Core
12

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
8

L1
Instr.

L1
Data

Core
20

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
16

L1
Instr.

 Xeon L7455 Hardware Topology

47

Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
6

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
14

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
22

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
4

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
12

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
20

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
7

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
15

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
23

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
5

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
13

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
21

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
17

L1 Instr.
8-way, 32kB

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Hardware Topology — Single Socket

48

Main Memory

L3 Uniform, Inclusive

L1
Data

Core
4

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
0

L1
Instr.

L1
Data

Core
12

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
8

L1
Instr.

L1
Data

Core
20

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
16

L1
Instr.

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Hardware Topology — Single Socket

49

Main Memory

L3 Uniform, Inclusive

L1
Data

Core
4

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
0

L1
Instr.

L1
Data

Core
12

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
8

L1
Instr.

L1
Data

Core
20

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
16

L1
Instr.

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.

Private L1 caches
(32 KB each).

Two cores each share a
unified L2 cache (3MB).

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Hardware Topology — Single Socket

50

Main Memory

L3 Uniform, Inclusive

L1
Data

Core
4

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
0

L1
Instr.

L1
Data

Core
12

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
8

L1
Instr.

L1
Data

Core
20

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
16

L1
Instr.

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.All six cores share a unified

L3 cache (12 MB).

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Main Memory

L3 Uniform, Inclusive

L1
Data

Core
4

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
0

L1
Instr.

L1
Data

Core
12

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
8

L1
Instr.

L1
Data

Core
20

L2 Cache Uniform,
Inclusive

L1
Instr.

L1
Data

Core
16

L1
Instr.

Clustered Scheduling Options

51

Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
6

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
14

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
22

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
4

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
12

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
20

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
7

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
15

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
23

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
5

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
13

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
21

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
17

L1 Instr.
8-way, 32kB

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Scheduling Options

52

Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
6

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
14

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
22

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
4

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
12

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
20

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
7

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
15

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
23

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
5

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
13

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
21

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
17

L1 Instr.
8-way, 32kB

Either 12 L2-based clusters of two cores each…

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Clustered Scheduling Options

53

Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
6

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
14

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
22

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
4

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
12

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
20

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
7

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
15

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
23

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core
5

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
13

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
21

L2 Cache
uniform, inclusive, 12-way

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core
17

L1 Instr.
8-way, 32kB

…or four L3-based clusters of six cores each.

Either 12 L2-based clusters of two cores each…

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

54

Global Clustered Partitioned

FP
(baseline)

EDF

P-FP

G-EDF C-EDF-L2
C-EDF-L3 P-EDF

(dissertation: study with 22 scheduler configurations)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

55

Global Clustered Partitioned

FP
(baseline)

EDF

P-FP

G-EDF C-EDF-L2
C-EDF-L3 P-EDF

(dissertation: study with 22 scheduler configurations)

larger clusters = higher overheads

smaller clusters = harder bin packing instance

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

56

Global Clustered Partitioned

FP
(baseline)

EDF

P-FP

G-EDF C-EDF-L2
C-EDF-L3 P-EDF

(dissertation: study with 22 scheduler configurations)

What dominates capacity loss:

Algorithmic or overhead issues?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

57

OS Phase

Analytical Phase

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

58

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

inefficient / debug performance

ok

extract / estimate mean,
max, distributions

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

59

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

60

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

Typical schedulability study
in the scheduling literature.

Typical RTOS study.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

61

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

Developed over span of 5 years.
Current diff to Linux 2.6.36:

93 files changed, 14,465 insertions, 36 deletions

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

62

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

For each scheduler,
ran 200 task sets with 1-20 tasks per core.

Total: traced >110 hours of execution,
collected >500 GB of raw samples.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

63

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

Model: monotonic piece-wise linear interpolation

Kernel overheads: function of task count

Cache affinity loss:
function of working set size (WSS).

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

64

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

HRT: use worst-case overheads

SRT: use average-case overheads

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

65

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

Schedulability experiments:
run on 64 nodes of UNC’s TOPSAIL cluster over night

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Scheduler Evaluation Methodology

66

OS Phase

Analytical Phase

Implement in
RTOS kernel

Instrument +
measure overheads

extract / estimate mean,
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable
task sets

Integrate with
schedulability tests

Randomly generate
millions of task sets

Performance Metric

Schedulability =
fraction of schedulable task sets

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

67

(underlined terms will be defined shortly)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Task Parameters

68

In this talk In my dissertation

Utilizations

Task Periods /
Implicit Deadlines

Working Set Size
(WSS)

uniformly in
HRT: 10% – 40%
SRT: 50% – 90% 27 utilization &

period distributions
uniformly in
[10, 100] ms

27 utilization &
period distributions

64 KB 0 KB – 3072 KB

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

First Result: HRT Schedulability

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1C-EDF-L2 C-EDF-L3P-EDF G-EDF

total utilization

HRT schedulability
worst-case overheads, no tardiness

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Interpretation

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1C-EDF-L2 C-EDF-L3P-EDF G-EDF

“higher is better”

total utilization

fr
ac

tio
n

of
 s

ch
ed

ul
ab

le

ta
sk

 s
et

s
(o

ut
 o

f 1
00

)

larger total utilization =
higher task count and less idle time

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Interpretation

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1C-EDF-L2 C-EDF-L3P-EDF G-EDF

total utilization

optimal, overhead-free scheduler = 1

“higher is better”scheduler performance

capacity loss

Gap to y=1 (all task sets schedulable) reflects capacity loss.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

First Result: HRT Schedulability

72

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

First Result: HRT Schedulability

73

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]

Partitioned EDF suffers least capacity loss.
Low overheads & little algorithmic loss.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

First Result: HRT Schedulability

74

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Partitioned FP performs worse than Partitioned EDF.
Low overheads & more algorithmic loss.

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

First Result: HRT Schedulability

75

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Larger cluster sizes less competitive.
Larger cluster size = higher overheads.

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

76

(underlined terms will be defined shortly)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

77

(underlined terms will be defined shortly)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[s

of
t]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]; WSS=64 KB; idle CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

Second Result: SRT Schedulability

78

C-EDF-L2 C-EDF-L3P-EDF G-EDF

SRT schedulability
average-case overheads, bounded tardiness

total utilization

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[s

of
t]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]; WSS=64 KB; idle CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

Second Result: SRT Schedulability

79

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1,2] [3] [4] [5]

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[s

of
t]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]; WSS=64 KB; idle CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

Second Result: SRT Schedulability

80

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Partitioned FP and Partitioned EDF curves overlap.
Equally affected by bin-packing limitations.

total utilization

[1] [2] [3] [4] [5]

[1,2] [3] [4] [5]

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[s

of
t]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]; WSS=64 KB; idle CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

SRT Schedulability

81

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Increasingly competitive with larger cluster sizes.
Effective at overcoming bin-packing issues.

total utilization

[1] [2] [3] [4] [5]

[1,2] [3] [4] [5]

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[s

of
t]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]; WSS=64 KB; idle CPMD

P-EDF-Rm P-FP-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1

SRT Schedulability

82

C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1,2] [3] [4] [5]

Why does G-EDF perform
better in the SRT case?

No algorithmic capacity loss in SRT
case (Devi, 2006), but significant

algorithmic capacity loss in HRT case.

Average-case overheads much
lower than worst-case overheads

(long-tail distributions).

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

83

(underlined terms will be defined shortly)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal with
regard to the maximum duration of blocking.

Thesis Statement

84

(underlined terms will be defined shortly)

Full study:

— evaluated more than 92,000,000 task sets.

— results in more than 60,000 schedulability plots.

Part 2

Mutual Exclusion

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Serially-Reusable Shared Resources

86

message buffers, I/O devices, device state,…

Mutual Exclusion

Resources protected by locks.

Real-Time Locking Protocol

Avoid unpredictable / unbounded
blocking due to unavailable resources.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Busy-Wait / Spin
=

non-preemptively
execute delay loop

=
spinlock

Suspend
=

taken off the ready queue
by the RTOS

=
semaphore

Spinlocks vs. Semaphores

87

Jobs must wait for resources to become available.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

88

Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

89

Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

90

Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed)
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

High-level view of semaphore
protocols first.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

What is “Blocking”?

91

Not every delay is “blocking” in a real-time system.

Uniprocessor:

Higher-priority jobs should not have to wait for lower-priority jobs.

Lower-priority jobs should always wait for higher-priority jobs.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

What is “Blocking”?

92

Priority Inversion

A higher-priority job is delayed
because it waits for a lower-priority job.

(job should be scheduled, but is not)

Not every delay is “blocking” in a real-time system.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

What is “Blocking”?

93

Priority Inversion

A higher-priority job is delayed
because it waits for a lower-priority job.

(job should be scheduled, but is not)

(uniprocessor case)

Not every delay is “blocking” in a real-time system.
“blocking in a real-time system”

=

times of priority inversion

=

pi-blocking

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

The Generalization Question

94

Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

The Generalization Question

95

Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

Any task in any task set: pi-blocked by at
most one critical section.

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

The Generalization Question

96

Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

How does the bound generalize to
multiprocessor?

O(1)? O(m)? O(n)? Worse?

m identical processors n sporadic tasks

Background Review

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

The Generalization Question

97

Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

m identical processors n sporadic tasks

My Result: it depends.
— there are two kinds of schedulability analysis —

How does the bound generalize to
multiprocessor?

O(1)? O(m)? O(n)? Worse?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Two Kinds of Schedulability Analysis

98

T1actual execution:

scheduled without resource

executing critical section

job release job completion

deadline job suspended

analyzing suspensions is notoriously difficult

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Two Kinds of Schedulability Analysis

99

analyzing suspensions is notoriously difficult

T1actual execution:

Processor not used = other jobs can execute.

scheduled without resource

executing critical section

job release job completion

deadline job suspended

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Two Kinds of Schedulability Analysis

100

analyzing suspensions is notoriously difficult

T1actual execution:

Processor not used = other jobs can execute.

schedulability test

YES

NO

Constraints
met?

task set
platform

predictability requires a priori analysis

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

schedulability test

YES

NO

Constraints
met?

task set
platform

Two Kinds of Schedulability Analysis

101

analyzing suspensions is notoriously difficult

T1actual execution:

Exploiting knowledge of suspensions in
schedulability tests is very difficult.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

suspension-oblivous (s-oblivious)

Two Kinds of Schedulability Analysis

102

analyzing suspensions is notoriously difficult

T1actual execution:

analyzed as:

T1

simplifying, safe assumption:
treat suspension time as execution time

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Two Kinds of Schedulability Analysis

103

analyzing suspensions is notoriously difficult

T1actual execution:

analyzed as:

T1

T1

suspension-oblivous (s-oblivious)

suspension-aware (s-aware)

Ideal:
accurate analysis.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

suspension-oblivous (s-oblivious)

suspension-aware (s-aware)

Two Kinds of Schedulability Analysis

104

analyzing suspensions is notoriously difficult

T1actual execution:

analyzed as:

T1

T1

The type of schedulability analysis in use

subtly affects the definition of pi-blocking.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

105

Suspensions modeled as execution.

T1

suspension-oblivous (s-oblivious)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

106

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global

Partitioned

Clustered

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

107

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m)

Partitioned Ω(m)

Clustered Ω(m)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

108

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) —

Partitioned Ω(m) Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) —

MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

109

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

110

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

Asymptotically optimal
(approximately within factor of two)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

111

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

Uses priority queues.
Uses FIFO queues.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results

112

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

Next: overhead-aware schedulability
study for non-asymptotic comparison.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Resource-Sharing Parameters

113

In this talk In my dissertation

Number of
resources

Access probability

Critical Section
Lengths

6 1, 3, 6, 12, 24

25% 10%, 25%, 40%, 55%,
70%, 85%

uniformly in
[1, 15] µs

short: [1, 15] µs
medium: [1, 100] µs
long: [5, 1280] µs

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/OMLP P-FP-R1/MPCP-VS

S-Oblivious Schedulability Comparison

114

phase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/OMLP P-FP-R1/MPCP-VS

115

P-EDF/OMLP
[1] [2]

[1]

[2]

total utilization

P-FP/MPCP-VS

S-Oblivious Schedulability Comparison

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/OMLP P-FP-R1/MPCP-VS

116

P-EDF/OMLP
[1] [2]

[1]

[2]

total utilization

P-FP/MPCP-VS

S-Oblivious Schedulability ComparisonOMLP yields better schedulability than the
MPCP-VS in in virtually* all tested scenarios.

*Long critical sections are equally
troublesome under each of the protocols.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

117

suspension-aware (s-aware)
T1

Suspensions analyzed in detail.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

118

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global

Clustered

Partitioned

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

119

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n)

Clustered Ω(n)

Partitioned Ω(n)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

120

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) Ω(m⋅n) /
other PCP variant

Clustered Ω(n) —

Partitioned Ω(n)
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP

DPCPCPDPCPDMPC
MPCP ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

121

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) (special cases) Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

122

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) (special cases) Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Asymptotically optimal

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

123

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) —
[O(n) in special cases]

 Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Tightness is still an open
problem in the general case.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

124

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) —
[O(n) in special cases]

 Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Uses priority queues.

Uses FIFO queues.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Aware Results

125

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) —
[O(n) in special cases]

 Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Next: overhead-aware schedulability
study for non-asymptotic comparison.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-FP-R1/FMLP+ P-FP-R1/MPCP P-FP-R1/DPCP

S-Aware Schedulability Comparison

126

phase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness

same parameters as before

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-FP-R1/FMLP+ P-FP-R1/MPCP P-FP-R1/DPCP

127

FMLP+
[1] [2]

[1]

[3]

total utilization

MPCP

S-Aware Schedulability Comparison

[3]
DPCP

[2]

Scheduler: P-FP

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-FP-R1/FMLP+ P-FP-R1/MPCP P-FP-R1/DPCP

128

FMLP+
[1] [2]

[1]

[3]

total utilization

MPCP

S-Aware Schedulability Comparison

[3]
DPCP

[2]

FMLP+ yields better schedulability than
either the MPCP or the DPCP in virtually* all

tested scenarios.

*Long critical sections are equally
troublesome under each of the protocols.

Scheduler: P-FP

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

129

Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

130

Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

 s-aware and s-oblivious

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

131

Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

Three OMLP variants and the FMLP+.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

132

Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

Achieve higher schedulability than “classic” protocols.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

133

Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

Next: brief look at spinlocks.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Non-Preemptive Task-Fair Queue Lock

134

Task-Fair Queue Lock
Waiting jobs form a FIFO spin queue.

Job Job JobJob

Non-Preemptive
Jobs cannot be preempted while spinning

or executing their critical section.

Background Review

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Non-Preemptive Task-Fair Queue Lock

135

Task-Fair Queue Lock
Waiting jobs form a FIFO spin queue.

Job Job JobJob

Non-Preemptive
Jobs cannot be preempted while spinning

or executing their critical section.

Background Review

Advantages:

low overheads, no analysis of suspensions required.

Disadvantages:

waste processor cycles,
non-preemptivity can be problematic.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Resource-Sharing Parameters

136

In this talk In my dissertation

Number of
resources

Access probability

Critical Section
Lengths

6 1, 3, 6, 12, 24

25% 10%, 25%, 40%, 55%,
70%, 85%

uniformly in
[1, 15] µs

short: [1, 15] µs
medium: [1, 100] µs
long: [5, 1280] µs

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/MX-Q P-EDF-R1/OMLP P-FP-R1/FMLP+

S-Oblivious vs. S-Aware vs. Spinlocks

137

phase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/MX-Q P-EDF-R1/OMLP P-FP-R1/FMLP+

138

P-EDF/Spinlocks
[1] [2]

[1]

[3]

total utilization

P-EDF/ OMLP

S-Oblivious vs. S-Aware vs. Spinlocks

[3]
P-FP/ FMLP+

[2]

Spinlocks improve schedulability compared to
the s-aware FMLP+ and the s-oblivious OMLP.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/MX-Q P-EDF-R1/OMLP P-FP-R1/FMLP+

139

P-EDF/Spinlocks
[1] [2]

[1]

[3]

total utilization

P-EDF/ OMLP

S-Oblivious vs. S-Aware vs. Spinlocks

[3]
P-FP/ FMLP+

[2]

Surprise: the s-aware protocol (FMLP+) is not much
better then the best best s-oblivious protocol (OMLP).

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/MX-Q P-EDF-R1/OMLP P-FP-R1/FMLP+

140

P-EDF/Spinlocks
[1] [2]

[1]

[3]

total utilization

P-EDF/ OMLP

S-Oblivious vs. S-Aware vs. Spinlocks

[3]
P-FP/ FMLP+

[2]

Reasons

Spinlocks incur an order of magnitude lower overheads
(no system calls, no loss of cache affinity).

Analysis of suspensions is very pessimistic.

Existing s-aware analysis is not much more precise
than the much simpler s-oblivious approach.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

141

Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Part 2: Contributions

142

Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and

spinlocks in terms of schedulability.Use non-preemptive task-fair spinlocks in practice!

Part 3

Reader-Writer Exclusion

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Reader-Writer (RW) Exclusion

144

Readers
➡Only observe state of shared resource.
➡May access resource concurrently with other readers.

Writers
➡May modify state of shared resource.
➡Require exclusive access.

R

W

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667–668.

(Courtois et al., 1971)

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Reader-Writer (RW) Exclusion

145

R

W

My contributions:

First analysis of RW locks in the context of
multiprocessor real-time systems.

A new type of RW lock: phase-fair RW locks.

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667–668.

(Courtois et al., 1971)
Readers
➡Only observe state of shared resource.
➡May access resource concurrently with other readers.

Writers
➡May modify state of shared resource.
➡Require exclusive access.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

146

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

147

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

148

No strong progress guarantees—ordering is HW dependent.

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

149

Let’s look at Writer-Preference RW Locks...

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

150

R

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

151

R

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

R

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

152

R

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

R

W

R

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

153

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

W

R

R

Writer Preference

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

154

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

W

RR

W

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

155

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

W

RR

WW

R

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

156

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RR

W
W

RR

W

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

157

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RR

W

RR

WW

R

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

158

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RRRR

W
W

RR

W

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock

159

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RRRR

W

RR

W

Starvation!

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

160

Also allows starvation!

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

161

Let’s look at Task-Fair RW Locks...

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

162

WR

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

RRR

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

163

W
R

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

RRRW
W

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

164

W
R

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

RRRWW

Later Writer Arrival

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

165

R

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

R

R

RWW

No starvation!

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

166

WR

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

RRRWW

Let’s rewind...

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

167

WR

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

R RR WW

Change in arrival sequence.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

168

W
R

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

R RR WW

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

169

R

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

R RR WW

Only single reader enters!

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

170

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

R RR
W

W

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section
Queue

Task-Fair RW Lock

171

i. Readers and writers both enter in FIFO
order.

ii.Consecutive readers enter together.

R
R

R W

Lack of ParallelismLong Delay!

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

172

Can be analyzed, but worst case similar to mutex.

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Lock Type Wort-case
improvement?

Blocking analysis
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

173

Prior Work: RW Lock Choices
How to order conflicting reads and writes?

My contribution:

A new type of RW lock with
analytical worst-case improvement.

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Design Space

174

Preference
Locks

Task-Fair
Locks

Increasing “fairness”

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Design Space

175

Preference
Locks

Task-Fair
Locks

Increasing “fairness”

Lack of parallelism!
=

Too “fair”!

Allows starvation!
=

Not “fair” enough!

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Design Space

176

Increasing “fairness”

Preference
Locks

Task-Fair
Locks

What’s here?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

177

Phase-Fair
Reader-Writer Locks

A New Type of RW Lock

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Phase-Fair
Reader-Writer Locks

“Polite” Readers and Writers

178

Readers give preference to writers.
Writers give preference to readers.

“Please, after you…”

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Phase-Fairness

179

All readers enter when unblocked by an
exiting writer (unless there are no writers).

A writer enters when unblocked by the
last exiting reader (unless there are no writers).

Effect: reader phases and writer phases alternate.

(paraphrased)

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

R

Phase-Fair RW Lock

180

Critical Section

Writer Queue

Reader Queue

WW

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

R

Phase-Fair RW Lock

181

Critical Section

Writer Queue

Reader Queue
W

W

R

W

staggering indicates arrival order

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Critical Section

R

Phase-Fair RW Lock

182

Writer Queue

Reader Queue
W

W

R

W

staggering indicates arrival order

All readers enter when unblocked by an
exiting writer (unless there are no writers).

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Phase-Fair RW Lock

183

Critical Section

Writer Queue

Reader Queue

WW

R

R

R

All readers enter when unblocked by an
exiting writer (unless there are no writers).

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Phase-Fair RW Lock

184

Critical Section

Writer Queue

Reader Queue

WW

R

R

RR R

A writer enters when unblocked by the
last exiting reader (unless there are no writers).

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Phase-Fair RW Lock

185

Critical Section

Writer Queue

Reader Queue
W

W

RR R

All readers enter when unblocked by an
exiting writer (unless there are no writers).

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Phase-Fair RW Lock

186

Critical Section

Writer Queue

Reader Queue

W
R

R

R

Effect: reader phases and writer phases alternate.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Blocking Analysis

187

Assumptions
➡Resource request (protocol, spin loop, critical section)
executed non-preemptively.

➡m processors

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Blocking Analysis

188

Assumptions
➡Resource request (protocol, spin loop, critical section)
executed non-preemptively.

➡m processors

Lock Type Reader
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Blocking Analysis

189

Lock Type Reader
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

Assumptions
➡Resource request (protocol, spin loop, critical section)
executed non-preemptively.

➡m processors

Reader must wait for at most one
reader and one writer phase.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Blocking Analysis

190

Lock Type Reader
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

Assumptions
➡Resource request (protocol, spin loop, critical section)
executed non-preemptively.

➡m processors

Blocking under Phase-Fair RW Locks
is asymptotically optimal.

Reader must wait for at most one
reader and one writer phase.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Blocking Analysis

191

Lock Type Reader
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

Assumptions
➡Resource request (protocol, spin loop, critical section)
executed non-preemptively.

➡m processors

Blocking under Phase-Fair RW Locks
is asymptotically optimal.

Reader must wait for at most one
reader and one writer phase.

But can phase-fair locks
be implemented efficiently

on real hardware?

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Lock/Unlock Overhead

192

0

20

40

60

80

100

120

READ WRITE

9999 10098

Phase-Fair RW Linux RW
pr

oc
es

so
r c

yc
le

s

Cache-hot micro-benchmark on an Intel Xeon X5650 (“Westmere”, Core i7).

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Lock/Unlock Overhead

193

0

20

40

60

80

100

120

READ WRITE

9999 10098

Phase-Fair RW Linux RW
pr

oc
es

so
r c

yc
le

s

Cache-hot micro-benchmark on an Intel Xeon X5650 (“Westmere”, Core i7).

Do task-fair RW and
phase-fair RW locks yield

schedulability improvements?

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Resource Sharing Parameters

194

In this talk In my dissertation

Number of
resources

Access probability

Write ratio

Critical Section
Lengths

6 6, 12, 24

25% 10%, 25%, 40%

20% 10%, 20%, 30%,
50%, 75%

uniformly in
[1, 15] µs

short: [1, 15] µs
medium: [1, 100] µs
long: [5, 1280] µs

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

RW Resource Sharing Parameters

195

In this talk In my dissertation

Number of
resources

Access probability

Write ratio

Critical Section
Lengths

6 6, 12, 24

25% 10%, 25%, 40%

20% 10%, 20%, 30%,
50%, 75%

uniformly in
[1, 15] µs

short: [1, 15] µs
medium: [1, 100] µs
long: [5, 1280] µs

Full study:

— In total, 7,290 parameter combinations.

— Evaluated more than 34,000,000 task sets.

— Results in more than 100,000 schedulability plots.

I’ll show you one typical example…

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

HRT Schedulability Improvements

196

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.25; wratio=0.20; short critical sections

P-EDF-R1/PF-Q P-EDF-R1/TF-Q P-EDF-R1/MX-Qphase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

HRT Schedulability Improvements

197

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.25; wratio=0.20; short critical sections

P-EDF-R1/PF-Q P-EDF-R1/TF-Q P-EDF-R1/MX-Qphase-fair RW
[1] [2] [3]

[1]

[2]
[3]

task-fair RW task-fair mutex

total utilization

Scheduler: P-EDF

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

HRT Schedulability Improvements

198

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24

sc
he

du
la

bi
lit

y
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.25; wratio=0.20; short critical sections

P-EDF-R1/PF-Q P-EDF-R1/TF-Q P-EDF-R1/MX-Qphase-fair RW
[1] [2] [3]

[1]

[2]
[3]

task-fair RW task-fair mutex

total utilization

RW spinlocks improve schedulability compared to mutex spinlocks.

Phase-fair RW locks yield greater improvement than task-fair RW locks.

Scheduler: P-EDF

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal
with regard to the maximum duration of blocking.

Thesis Statement

199

UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

When both overhead-related and algorithmic capacity loss
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the
impact of bin-packing limitations in the soft real-time case.
Further,

(iv) multiprocessor locking protocols exist that are both
efficiently implementable and asymptotically optimal
with regard to the maximum duration of blocking.

Thesis Statement

200

Scheduling and Locking in Multiprocessor
Real-Time Operating Systems

Scheduling and Locking in Multiprocessor
Real-Time Operating Systems

Hard Real-Time

Use partitioned EDF.

Soft Real-Time

Support clustered scheduling.

Scheduling and Locking in Multiprocessor
Real-Time Operating Systems

Keep it simple

 Use non-preemptive spinlocks.
Use FIFO queues: optimal and practical.

Be polite

Phase-fair RW locks can be implemented
efficiently and improve worst-case analysis.

UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Future Work

204

RTOS Implementation.
➡Hierarchical scheduling / container framework.
➡Reduce lock contention in global and clustered scheduling.

Locking Optimality.
➡ Improved bounds under s-aware analysis.
➡Nested requests.

Non-blocking synchronization.
➡Wait-free, lock-free.
➡Read-copy update (RCU).

Experiments
➡Use worst-case execution time analysis.
➡Use more real applications.

http://www.mpi-sws.org

http://www.mpi-sws.org
http://www.mpi-sws.org

Acknowledgements (I/II)

My advisor and committee for their guidance and support.
Jim Anderson, Sanjoy Baruah, Hermann Härtig, Jan Prins, Don Smith, Paul McKenney

My co-authors and the real-time group.
Aaron Block, Andrea Bastoni, John Calandrino, Uma Devi, Glenn Elliott, Jon

Herman, Hennadiy Leontyev, Chris Kenna, Alex Mills, Mac Mollison

The Fulbright Program and the UNC
Graduate School for funding my first year and

my last year, respectively.

The CS Departmentʼs amazing staff!
Special thanks to Mike Stone for un-breaking everything the real-
time group touches; Murray Anderegg and John Sopko for putting

up with my Linux special requests; Bil Hays for keeping the real-
time lab cool; and Sandra Neely, Janet Jones, Jodie Turnbull, and

Dawn Andres for keeping me out of paperwork trouble.

Acknowledgements (II/II)

Special thanks to my friends Aaron & Nicki,
Jasper, Dot, and Andrea for keeping me sane.

My Sitterson Hall friends.
Sasa Junuzovic, Jay Aikat, Sean Curtis, Stephen Olivier, Keith Lee,
Jamie Snape, Srinivas Krishnan, Anish Chandak, Stephen Guy

To my parents Harald & Petra, and my girlfriend Nora, for their
unwavering support, understanding, and encouragement.

RTOS & Scheduling
1. C. Kenna, J. Herman, B. Brandenburg, A. Mills, and J. Anderson,

“Soft Real-Time on Multiprocessors: Are Analysis-Based Schedulers
Really Worth It?”, Proceedings of the 32nd IEEE Real-Time Systems
Symposium (RTSS 2011), December 2011, to appear.

2. A. Bastoni, B. Brandenburg, and J. Anderson, “Is Semi-Partitioned
Scheduling Practical?”, Proceedings of the 23rd Euromicro Conference
on Real-Time Systems (ECRTS 2011), pp. 125-135. IEEE, July 2011.

3. A. Bastoni, B. Brandenburg, and J. Anderson, “An Empirical
Comparison of Global, Partitioned, and Clustered Multiprocessor EDF
Schedulers”, Proceedings of the 31th IEEE Real-Time Systems
Symposium (RTSS 2010), pp. 14-24. IEEE, December 2010.

4. B. Brandenburg, H. Leontyev, and J. Anderson, “An Overview of
Interrupt Accounting Techniques for Multiprocessor Real-Time
Systems”, Journal of Systems Architecture, special issue on selected
papers from the 15th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, in press, 2010.

5. A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-Related
Preemption and Migration Delays: Empirical Approximation and Impact
on Schedulability”, Proceedings of the Sixth International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT 2010), pp. 33-44, July 2010.

6. B. Brandenburg and J. Anderson, “On the Implementation of Global
Real-Time Schedulers”, Proceedings of the 30th IEEE Real-Time
Systems Symposium (RTSS 2009), pp. 214-224. IEEE, December 2009.

7. B. Brandenburg and J. Anderson, “Joint Opportunities for Real-Time
Linux and Real-Time Systems Research”, Proceedings of the 11th Real-
Time Linux Workshop (RTLWS 2009), pp. 19-30. Real-Time Linux
Foundation, September 2009.

8. B. Brandenburg, H. Leontyev, and J. Anderson, “Accounting for
Interrupts in Multiprocessor Real-Time Systems”, Proceedings of the
15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2009), pp. 273-283.
IEEE, August 2009.

9. M. Mollison, B. Brandenburg, and J. Anderson, “Towards Unit Testing
Real-Time Schedulers in LITMUSRT”, Proceedings of the Fifth
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT 2009), pp. 33-39. Politécnico do
Porto, July 2009.

10. J. Anderson, S. Baruah, and B. Brandenburg, “Multicore Operating-
System Support for Mixed Criticality”, Proceedings of the Workshop on
Mixed Criticality: Roadmap to Evolving UAV Certification (part of CPS
Week 2009). April 2009.

11. B. Brandenburg, J. Calandrino, and J. Anderson, “On the Scalability
of Real-Time Scheduling Algorithms on Multicore Platforms: A Case
Study”, Proceedings of the 29th IEEE Real-Time Systems Symposium
(RTSS 2008), pp. 157-169. IEEE, December 2008.

12. A. Block, B. Brandenburg, J. Anderson, and S. Quint, “An Adaptive
Framework for Multiprocessor Real-Time Systems”, Proceedings of the
20th Euromicro Conference on Real-Time Systems (ECRTS 2008),
pp. 23-33. IEEE, July 2008.

13. B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and J.
Anderson, “LITMUSRT: A Status Report”, Proceedings of the Ninth Real-

Time Linux Workshop (RTLWS 2007), pp. 107-123. Real-Time Linux
Foundation, November 2007.

14. B. Brandenburg and J. Anderson, “Feather-Trace: A Light-Weight Event
Tracing Toolkit”, Proceedings of the Third International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT 2007), pp. 19-28. National ICT Australia, July 2007.

15. B. Brandenburg and J. Anderson, “Integrating Hard/Soft Real-Time
Tasks and Best-Effort Jobs on Multiprocessors”, Proceedings of the
19th Euromicro Conference on Real-Time Systems (ECRTS 2007),
pp. 61-70. IEEE, July 2007

Locking Protocol
Design & Analysis

16. B. Brandenburg and J. Anderson, “Real-Time Resource-Sharing
under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion
Locks”, Proceedings of the International Conference on Embedded
Software (EMSOFT 2011), to appear, October 2011.

17. B. Brandenburg and J. Anderson, “Optimality Results for
Multiprocessor Real-Time Locking”, Proceedings of the 31th IEEE Real-
Time Systems Symposium (RTSS 2010), pp. 49-60. IEEE, December
2010.

18. B. Brandenburg and J. Anderson, “Spin-Based Reader-Writer
Synchronization for Multiprocessor Real-Time Systems”, Real-Time
Systems, special issue on selected papers from the 21st Euromicro
Conference on Real-Time Systems, Volume 46, Number 1, pp. 25-87,
2010.

19. B. Brandenburg and J. Anderson, “Reader-Writer Synchronization for
Shared-Memory Multiprocessor Real-Time Systems”, Proceedings of the
21st Euromicro Conference on Real-Time Systems (ECRTS 2009),
pp. 184-193. IEEE, July 2009.

20. B. Brandenburg and J. Anderson, “A Comparison of the M-PCP, D-
PCP, and FMLP on LITMUSRT”, Proceedings of the 12th International
Conference On Principles Of Distributed Systems (OPODIS 2008),
Lecture Notes in Computer Science 5401, pp. 105-124. Springer-
Verlag, December 2008.

21. B. Brandenburg and J. Anderson, “An Implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in
LITMUSRT”, Proceedings of the 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA
2008), pp. 185-194. IEEE, August 2008.

22. B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J.
Anderson, “Real-Time Synchronization on Multiprocessors: To Block or
Not to Block, to Suspend or Spin?”, Proceedings of the 14th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS
2008), pp. 342-353. IEEE, April 2008.

23. A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A Flexible
Real-Time Locking Protocol for Multiprocessors”, Proceedings of the
13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2007), pp. 47-57. IEEE,
August 2007.

Thank you!

