
Sharing Non-Processor
Resources in Multiprocessor

Real-Time Systems

Bryan C. Ward
Under the Direction of Prof. Jim Anderson

Dissertation Defense

Real-Time System

• System that requires both

• Logical correctness, and

• Temporal correctness.

• Common in safety-critical and cyber-physical
systems.

2

Real-Time System

• Systems that requires both

• Logical correctness, and

• Temporal correctness.

• Common in safety-critical and cyber-physical
systems.

Fundamentally affects how systems are designed and built.

Predictability is more important than performance.

3

Temporal Correctness

• Temporal correctness requires:

• Models of system components,

• Sound mathematical analysis.

4

Real-Time Task Model

5

Pedestrian Detection

T T

Real-Time Task Model

time

6

Pedestrian Detection

Job releases.
Next frame available from the camera.

T T

Real-Time Task Model

time

6

Pedestrian Detection

Job releases.
Next frame available from the camera.

Period: time between frames. e.g., 33ms for 30FPS.

T T

Real-Time Task Model

time

Computation time

7

Pedestrian Detection

T T

Real-Time Task Model

time

8

Pedestrian Detection

Job deadlines.
Time by which the computation must complete.

Relative Deadline: time between release and deadline.

Scheduling and Analysis

• Scheduling algorithm determines when jobs run.

• Earliest-Deadline First (EDF).

• Fixed Priority (FP).

• Schedulability test used to determine whether all
jobs will provably finish before their deadlines.

9

Synchronization
• In practice, tasks share resources to which

accesses must be synchronized.

Shared Buffer

Producer
e.g., read frame from camera

Consumer
e.g., pedestrian detection

• Locking protocol used to synchronize such
accesses to ensure safety.

10

Synchronization Example

11

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$8$12 $4

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$8$12 $4

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$8$12 $4

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$8$12 $4

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$8$12 $14

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$12 $18 $14

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$18 $14$2

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$18 14-8

Synchronization Example

12

def transaction(from_acct, to_acct, amount)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$18 14-8

Two threads executing concurrently can produce a
logically incorrect or unsafe result.

Synchronization Example

13

def transaction(to_acct, from_acct, amount)
lock()
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount
unlock()

Synchronization Example

13

def transaction(to_acct, from_acct, amount)
lock()
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount
unlock()

Using a locking protocol, we can fix this issue by
ensuring only one transaction executes at a time.

T

Priority-Inversion Blocking

T

T

T

14

Critical section

T1

T2

T

Priority-Inversion Blocking
• Synchronization may cause priority-inversion blocking (pi-blocking).

T

T

T

14

Critical section

T1

T2

T

Priority-Inversion Blocking
• Synchronization may cause priority-inversion blocking (pi-blocking).

T

T

T

14

Critical sectionPi-blocking

T1

T2

T

Priority-Inversion Blocking
• Synchronization may cause priority-inversion blocking (pi-blocking).

• Pi-blocking must be incorporated into schedulability analysis.

T

T

T

14

Critical sectionPi-blocking

T1

T2

T

Priority-Inversion Blocking
• Synchronization may cause priority-inversion blocking (pi-blocking).

• Pi-blocking must be incorporated into schedulability analysis.

• Pi-blocking can cause significant utilization loss.

T

T

T

14

Critical sectionPi-blocking

T1

T2

T

Progress Mechanisms

T

T

T

15

T

T1

T2

T3

T

Progress Mechanisms
• Must consider scheduling and synchronization interactions

in computing pi-blocking bounds.

T

T

T

15

T

T1

T2

T3

T

Progress Mechanisms
• Must consider scheduling and synchronization interactions

in computing pi-blocking bounds.

T

T

T

15

T

Medium-priority non-resource using task can cause
pi-blocking for blocked high-priority task.

T1

T2

T3

T

Progress Mechanisms
• Must consider scheduling and synchronization interactions

in computing pi-blocking bounds.

• Progress mechanisms used to mitigate such adverse
interactions.

T

T

T

15

T

T1

T2

T3

T

Priority Inheritance
• An example progress mechanism is priority inheritance.

• Resource-holding job inherits the priority of the highest-priority blocked
job.

• Can cause pi-blocking for non-resource-using tasks.

T

T

T

16

T

T1

T2

T3

T

Priority Inheritance
• An example progress mechanism is priority inheritance.

• Resource-holding job inherits the priority of the highest-priority blocked
job.

• Can cause pi-blocking for non-resource-using tasks.

T

T

T

16

T

Priority inheritance

T1

T2

T3

T

Priority Inheritance
• An example progress mechanism is priority inheritance.

• Resource-holding job inherits the priority of the highest-priority blocked
job.

• Can cause pi-blocking for non-resource-using tasks.

T

T

T

16

T

T1

T2

T3

Modern Multicore
Architectures

CPU 1 CPU m…
L1 L1

Shared LLC

Multicore Processor

M
em

or
y

I/O Hub

17

Modern Multicore
Architectures

CPU 1 CPU m…
L1 L1

Shared LLC

Multicore Processor

M
em

or
y

I/O Hub

18

Multicore processors are designed with several shared
hardware components. Explicitly synchronizing access to

such resources can improve predictability.

Thesis Statement

“Dependencies among tasks in real-time
systems through shared resources, both

memory objects, as well as shared hardware
resources, can be managed through

synchronization protocols. Such protocols can
be designed to exploit the inherent sharing

constraints of the managed resources in order
to achieve improved resource utilization.”

19

Outline
• Introduction & Background

• Memory Objects

• Fine-grained mutex locks (RNLP)

• Fine-grained reader/writer locks (R/W RNLP)

• Hardware Resources

• Preemptive mutual exclusion

• Half-protected exclusion

• Conclusions

20

Coarse-Grained Locking

21

def transaction(to_acct, from_acct, amount)
lock()
if(balances[from_acct] < amount)
Insufficient funds
return False

else
balances[to_acct] = balances[to_acct] + amount
balances[from_acct] = balances[from_acct] - amount
unlock()

Balances

A B C

$8 $4$12

Fine-Grained Locking

22

def transaction(to_acct, from_acct, amount)
lock(from_acct)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
lock(to_acct)
balances[to_acct] = balances[to_acct] + amount
unlock(to_acct)
balances[from_acct] = balances[from_acct] - amount

unlock(from_acct)

Balances

A B C

$8 $4$12

Fine-Grained Locking

22

def transaction(to_acct, from_acct, amount)
lock(from_acct)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
lock(to_acct)
balances[to_acct] = balances[to_acct] + amount
unlock(to_acct)
balances[from_acct] = balances[from_acct] - amount

unlock(from_acct)

Balances

A B C

$8 $4$12

Fine-grained locking can reduce blocking by allowing
non-conflicting transactions to be processed concurrently.

RNLP

• Real-Time Nested Locking Protocol (RNLP).

• First multiprocessor real-time locking protocol to
support fine-grained locking.

• Modular, “plug-and-play” architecture can be
configured optimally under different schedulers
and analysis assumptions.

*B. Ward and J. Anderson. “Supporting Nested Locking in Multiprocessor Real-Time Systems.” ECRTS ‘12 23

RNLP

…
Token wait queue

Token Lock

Wait queues

Re
so

ur
ce

s

Request Satisfaction
Mechanism (RSM)

24

RSM
The key problem: later-issued requests hold
resources that are requested in a nested fashion.

A

B

C

25

Wait Queues

Re
so

ur
ce

s

Resource Holders

RSM
The key problem: later-issued requests hold
resources that are requested in a nested fashion.

R1

A

B

C

26

RSM
The key problem: later-issued requests hold
resources that are requested in a nested fashion.

R2

R1

A

B

C

27

RSM
The key problem: later-issued requests hold
resources that are requested in a nested fashion.

R2

R1

R3

A

B

C

28

RSM
The key problem: later-issued requests hold
resources that are requested in a nested fashion.

R2

R1

R3R2

A

B

C

The earlier-issued R2 is blocked
by the later-issued R3.

29

RSM
In the RNLP, this problem is avoided by preventing
later-issued requests from acquiring resources that
may be requested in a nested fashion.

R2

R1

R3

A

B

C

Now R2 can acquire B
immediately.

30

RSM
In the RNLP, this problem is avoided by preventing
later-issued requests from acquiring resources that
may be requested in a nested fashion.

R2

R1

R3

A

B

C

Now R2 can acquire B
immediately.R2

31

RSM

R2

R1

R3

A

B

C

Note that R2 may still block on
R1. This is ok; R1 was issued

earlier than R2.

R2

R2

In the RNLP, this problem is avoided by preventing
later-issued requests from acquiring resources that
may be requested in a nested fashion.

32

RSM

R2

R1

R3

A

B

C

Transitive blocking is still
possible, and must be

considered.
R2

R2

In the RNLP, this problem is avoided by preventing
later-issued requests from acquiring resources that
may be requested in a nested fashion.

33

Optimality Results

34

Optimality Results

Number of tokens

35

Optimality Results

Progress mechanism used

36

Optimality Results

These blocking bounds match those
of previous optimal coarse-grained

protocols.

37

Optimality Results

A new k-exclusion locking protocol also
proposed in this dissertation.

*B. Ward, G. Elliott and J. Anderson. “Replica-Request Priority Donation: A Real-Time Progress Mechanism for
Global Locking Protocols.” RTCSA ‘12 38

Optimality Results

39

The problem of fine-grained locking in multiprocessor real-
time systems stood open for over 20 years! The RNLP solves

this problem optimally under all common analysis
assumptions and platform configurations.

Outline
• Introduction

• Memory Objects

• Fine-grained mutex locks (RNLP)

• Fine-grained reader/writer locks (R/W RNLP)

• Hardware Resources

• Preemptive mutual exclusion

• Half-protected exclusion

• Conclusions

40

Motivation

41

def transaction(from_acct, to_acct, amount)
lock(from_acct)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
lock(to_acct)
balances[to_acct] = balances[to_acct] + amount
unlock(to_acct)
balances[from_acct] = balances[from_acct] - amount

unlock(from_acct)

Balances

A B C

$8 $4$12

Motivation

41

def transaction(from_acct, to_acct, amount)
lock(from_acct)
if(balances[from_acct] < amount)
Insufficient funds
return False

else
lock(to_acct)
balances[to_acct] = balances[to_acct] + amount
unlock(to_acct)
balances[from_acct] = balances[from_acct] - amount

unlock(from_acct)

Balances

A B C

$8 $4$12

What if there are other routines that need only read the
current balance of some accounts?

Reader/Writer Locking
• Reader/writer locking:

• Reads can execute in parallel.

• Writes require mutual exclusion.

• Reader/writer locking reduces blocking when reads
are common.

• How do we extend the RNLP to support fine-
grained reader/writer locking?

*B. Ward and J. Anderson. “Multi-Resource Real-Time Reader/Writer Locks for Multiprocessors.” IPDPS ‘14 42

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)
WW

RRR

W

43

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)
WW

RRR

43

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)
WW

R

R

R

43

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)
WW

R

R

R

R

43

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)
WW

R

43

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)

W

W

R

43

Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)

W

W

R

43

Result: O(1) read blocking, O(m) write blocking.

One Challenge

• In the RNLP, a request is never blocked by another
later-issued request.

• To achieve O(1) reader blocking, later-issued read
requests must “cut ahead” of earlier-issued write
requests.

44

Multi-Resources Phases

45

R1

R2

W3

A

B

What happens if R1 issues a
nested read request for B?

Multi-Resources Phases

46

R1

R2

W3

A

B

Per-resource phase-fair logic
dictates that it should wait.

R1

Multi-Resources Phases

46

R1

W3

A

B

Per-resource phase-fair logic
dictates that it should wait.

R1

Multi-Resources Phases

46

R1

W3

A

B

Per-resource phase-fair logic
dictates that it should wait.

R1

But R1 would be blocked by
later-issued read and write

requests!

Multi-Resources Phases

47

What if R1 is allowed to cut
ahead?

R1

R2

W3

A

BR1

Multi-Resources Phases

47

What if R1 is allowed to cut
ahead?

This may increase the read-
phase duration.

R1

R2

W3

A

BR1

Multi-Resources Phases

47

What if R1 is allowed to cut
ahead?

This may increase the read-
phase duration.

R1

W3

A

BR1

R/W RNLP
• These issues are resolved through a concept called

entitlement.

• Entitlement resolves the dilemma of which phase goes
next.

• R/W RNLP Results:

• First fine-grained multiprocessor real-time R/W lock.

• O(1) reader pi-blocking.

• O(m) writer pi-blocking.

48

Outline
• Introduction

• Memory Objects

• Fine-grained mutex locks (RNLP)

• Fine-grained reader/writer locks (R/W RNLP)

• Hardware Resources

• Preemptive mutual exclusion

• Half-protected exclusion

• Conclusions

49

Modern Multicore
Architectures

CPU 1 CPU m…
L1 L1

Shared LLC

Multicore Processor

M
em

or
y

I/O Hub

50

Hardware-based Timing
Interference

51

Isolation Interference

Hardware-based Timing
Interference

51

Isolation Interference

Interference caused by other tasks concurrently
scheduled on other processors

Hardware-based Timing
Interference

51

Isolation Interference

Hardware-based interference can entirely negate
the benefits of having additional cores. De Facto
industry standard is to disable all but one core!

Locking Hardware
Resources

• Locking hardware resources improves predictability, but is
not (necessarily) required for logical correctness.

• Example: Shared cache.

• Problem: a job may evict cached data of another
concurrently executing job.

• Goal: “lock” cache resources to prevent such evictions,
thereby improving timing predictability.

• Observation: cache critical sections can be safely
preempted.

52

Non-Preemptive Mutual Exclusion

CPU 1

CPU 0

T

TT

T

53

T1

T2

Non-Preemptive Mutual Exclusion

Preemptive Mutual Exclusion

CPU 1

CPU 0
TT

T T

CPU 1

CPU 0

T

TT

T

54

T1

T2

T1

T2

Non-Preemptive Mutual Exclusion

Preemptive Mutual Exclusion

CPU 1

CPU 0
TT

T T

CPU 1

CPU 0

T

TT

T

Preemptivity allows the higher-priority
critical section to preempt the lower-priority

one, which prevents the deadline miss.

55

T1

T2

T1

T2

Preemptive Mutual Exclusion*

• At most one task may execute a critical section at
any time, but resource preemptions are allowed.

• This problem is unique to multiprocessors.

• Potential applications:

• Arbitrating bus accesses, e.g., memory bus.

*B. Ward. “Relaxing Resource-Sharing Constraints for Improved Hardware Management and Schedulability.”
RTSS ‘15 56

CPU 1

T1 CPU 0

T2

TT

T T

• Assumptions:

• Global EDF scheduling.

• Preemptive resources are EDF prioritized.

• No nesting.

Preemptive Mutual Exclusion
Algorithm

57

Schedulability Analysis

ta td

T

What must have occurred for this job
to have missed its deadline?

58

T

Schedulability Analysis

ta td

Pr
oc

es
so

rs

1…
m

S. Baruah, “Techniques for Multiprocessor Global Schedulability Analysis”, RTSS ’07.

t0

Last idle instant

59

Higher-priority demand

T

Schedulability Analysis

ta td

Pr
oc

es
so

rs

1…
m

S. Baruah, “Techniques for Multiprocessor Global Schedulability Analysis”, RTSS ’07.

t0

Last idle instant

59

Higher-priority demand

T

Schedulability Analysis

ta td

Pr
oc

es
so

rs

1…
m

S. Baruah, “Techniques for Multiprocessor Global Schedulability Analysis”, RTSS ’07.

C
ar

ry
-in

 d
em

an
d

t0

Last idle instant

59

T

Idleness Analysis

ta td

Pr
oc

es
so

rs

1…
m

C
ar

ry
-in

 d
em

an
d

t0

Higher-priority demand

60

T

Idleness Analysis

ta td

Pr
oc

es
so

rs

1…
m

C
ar

ry
-in

 d
em

an
d

t0

Higher-priority demand

60

T

Idleness Analysis

ta td

Pr
oc

es
so

rs

1…
m

C
ar

ry
-in

 d
em

an
d

t0

Higher-priority demand

Blocking due to synchronization can
induce idleness in the schedule.

60

Idleness

• Idleness in this context is caused by blocking.

• Traditionally, blocking modeled by suspensions.

61

Blocking Analysis
… …How long can this

request be blocked?

62

Blocking Analysis
… …How long can this

request be blocked?

Idleness Analysis

How much idleness can
this request induce in the

schedule?

62

Blocking Analysis
… …How long can this

request be blocked?

Idleness Analysis

How much idleness can
this request induce in the

schedule?

L

m
 -

1

62

Blocking Analysis
… …How long can this

request be blocked?

Idleness Analysis

How much idleness can
this request induce in the

schedule?

L

m
 -

1

62

Depending upon the analysis assumptions and
locking protocol (2m-1)L or (n-1)L.

T

Idleness Analysis

ta td

Pr
oc

es
so

rs

1…
m

C
ar

ry
-in

 d
em

an
d

t0

Higher-priority demand

63

T

Idleness Analysis

ta td

Pr
oc

es
so

rs

1…
m

C
ar

ry
-in

 d
em

an
d

t0

Higher-priority demand

New analysis question:
Is there sufficient demand plus induced

idleness to cause the deadline miss?

63

Idleness Analysis
• Advantages:

• Simple.

• Flexible.

• Incomparable with previous blocking-analysis techniques.

• Disadvantages:

• Can be pessimistic for high processor counts.

• Does not incorporate protocol-specific information to reduce
utilization loss.

64

Outline
• Introduction

• Memory Objects

• Fine-grained mutex locks (RNLP)

• Fine-grained reader/writer locks (R/W RNLP)

• Hardware Resources

• Preemptive mutual exclusion

• Half-protected exclusion

• Conclusions

65

Modern Multicore
Architectures

CPU 1 CPU m…
L1 L1

Shared LLC

Multicore Processor

M
em

or
y

I/O Hub

66

UCBs vs. ECBs
• In cache-related preemption-delay (CRPD)

analysis, there are two classes of cache blocks*:

• Useful (UCB): A cache block that is reused.

• Evicting (ECB): A cache block that may be
accessed, but may not be reused.

• Would like to protect UCBs from ECBs, but need
not protect ECBs at all.

*Lee et al. “Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.”
Transactions on Computing ’98.
 S. Altmeyer and C Maiza. “Cache-related preemption delay via useful cache blocks: Survey and
redefinition.” Journal of Systems Architecture ’11. 67

Half-Protected Sharing*
• Protected sections: require non-preemptive

mutual exclusion w.r.t both protected and
unprotected sections.

• Unprotected sections: may execute whenever a
protected section does not.

• Can be seen as a weaker variant of reader/writer
sharing: protected = write, unprotected ~ read.

*B. Ward. “Relaxing Resource-Sharing Constraints for Improved Hardware Management and Schedulability.”
RTSS ‘15 68

Half-Protected Lock

• Protected requests are statically prioritized over
unprotected requests.

• Protected requests are prioritized by non-
preemptive EDF.

• Unprotected requests may run whenever protected
requests do not.

69

Half-Protected Example
T1

T2

T3

Simple example:
Three tasks, T1, T2, and T3

scheduled on m = 2 processors.
70

Half-Protected Example

CPU 1

CPU 0

Unprotected Section

71

T1

T2

T3

Half-Protected Example

CPU 1

CPU 0

CPU 1

T1 preempts T3 while it is in an
unprotected section

72

T1

T2

T3

Half-Protected Example

CPU 1

CPU 0

CPU 1

T1 begins unprotected section,
even though T3 has not completed

its unprotected section.
73

T1

T2

T3

Half-Protected Example

CPU 1

CPU 0

CPU 1

T

Protected Section

Protected section “preempts”
the unprotected sections,

inducing idleness on CPU 1.
74

T1

T2

T3

Half-Protected Example

CPU 1

CPU 0

CPU 1

T

T

T

Unprotected section may resume after the
protected section completes.

75

T1

T2

T3

Half-Protected Example

CPU 1

CPU 0

CPU 1

CPU 0

T

T

T

T

T

T

76

T1

T2

T3

Half-Protected Example

CPU 1

CPU 0

CPU 1

CPU 0

T

T

T

T

T

T

With a reader/writer lock, such a
“preemption” is not safe.

76

T1

T2

T3

Unprotected Sections
Observation: unprotected sections cannot cause blocking.

77

Unprotected Sections
Observation: unprotected sections cannot cause blocking.

77

Unprotected Sections
Observation: unprotected sections cannot cause blocking.

77

Unprotected Sections
Observation: unprotected sections cannot cause blocking.

Result: Ignore them in idleness analysis.
77

Extending Idleness Analysis

• Idleness analysis can be easily extended to
support:

• Half-protected synchronization,

• Non-preemptive mutual exclusion.

78

Schedulability

79

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability

79

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

NOLOCK OMLP FMLP-O FMLP-A NP-I P-I

Per-task critical-section utilization = 0.1

Schedulability benefit made possible
by preemptive sharing.

Schedulability

80

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Schedulability

80

Sc
he

du
la

bi
lit

y

0

0.25

0.5

0.75

1

System Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

NOLOCK FMLP-A FMLP-O OMLP NP-I P-I

Conclusions
• RNLP: First fine-grained mutex, k-exclusion, and

reader/writer multiprocessor real-time locking
protocols.

• Idleness analysis: New analysis technique for
accounting for blocking in schedulability analysis.

• Preemptive and half-protected synchronization:
New models for synchronizing access to hardware
resources that reduce utilization loss.

81

• Namhoon Kim, Bryan C. Ward, Micaiah Chisholm,
James H. Anderson, and F. Donelson Smith.
"Attacking the One-Out-Of-m Multicore Problem by
Combining Hardware Management with Mixed-
Criticality Provisioning", (in submission).

• Micaiah Chisholm, Namhoon Kim, Bryan C. Ward,
Nathan Otterness, James H. Anderson, and F.
Donelson Smith. "Reconciling the Tension Between
Hardware Isolation and Data Sharing in Mixed-
Criticality, Multicore Systems", RTSS ‘16 (to appear).

• Namhoon Kim, Bryan C. Ward, Micaiah Chisholm,
Cheng-Yang Fu, James H. Anderson, and F.
Donelson Smith. "Attacking the One-Out-Of-m
Multicore Problem by Combining Hardware
Management with Mixed-Criticality Provisioning”,
RTAS ‘16, April 2016. Best Student Paper Award.

• Bryan C. Ward. "Relaxing Resource-Sharing
Constraints for Improved Hardware Management
and Schedulability", RTSS ‘15, December 2015.

• Micaiah Chisholm, Bryan C. Ward, Namhoon Kim,
and James H. Anderson. "Cache Sharing and
Isolation Tradeoffs in Multicore Mixed-Criticality
Systems", RTSS ‘15, December 2015.

• Catherine Jarrett, Bryan C. Ward, and James H.
Anderson. "A Contention-Sensitive Multi-Resource
Locking Protocol for Multiprocessor Real-Time
Systems", RTNS ‘15, November 2015.

• Bryan C. Ward and James H. Anderson. "A
Contention-Sensitive Multi-Resource Locking
Protocol for Multiprocessor Real-Time Systems",
RTSS ’14 WIP, December 2014.

• Bryan C. Ward, Abhilash Thekkilakattil, and James H.
Anderson. "Optimizing Preemption-Overhead
Accounting in Multiprocessor Real-Time Systems",
RTNS ‘14, October 2014.

• Bryan C. Ward and James H. Anderson. "Multi-
Resource Real-Time Reader/Writer Locks for
Multiprocessors", IPDPS ‘14, May 2014.

• Jeremy P. Erickson, James H. Anderson, and Bryan C.
Ward. "Fair Lateness Scheduling: Reducing Maximum
Lateness in G-EDF-like Scheduling", Real-Time
Systems, January 2014.

• Glenn A. Elliott, Bryan C. Ward and James H.
Anderson. "GPUSync: A Framework for Real-Time GPU
Management", RTSS ‘13, December 2013.

• Bryan C. Ward and James H. Anderson. "Fine-Grained
Multiprocessor Real-Time Locking with Improved
Blocking", RTNS ‘13, October 2013.

• Bryan C. Ward, Jonathan L. Herman, Christopher J.
Kenna, and James H. Anderson. "Making Shared
Caches More Predictable on Multicore Platforms",
ECRTS ‘13, July 2013. Outstanding Paper Award.

• Bryan C. Ward, Jeremy P. Erickson and James H.
Anderson. "A Linear Model for Setting Priority Points in
Soft Real-Time Systems", Proceedings of Real-Time
Systems: The Past, the Present, and the Future -- A
Conference Organized in Celebration of Alan Burns's
Sixtieth Birthday, March 2013.

• Bryan C. Ward, Glenn A. Elliott and James H.
Anderson. "Replica-Request Priority Donation: A Real-
Time Progress Mechanism for Global Locking
Protocols", RTCSA ‘12, August 2012.

• Bryan C. Ward and James H. Anderson. "Supporting
Nested Locking in Multiprocessor Real-Time Systems",
ECRTS ‘12, July 2012.82

