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Real-Time System

• System that requires both 

• Logical correctness, and 

• Temporal correctness. 

• Common in safety-critical and cyber-physical 
systems.
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Real-Time System

• Systems that requires both 

• Logical correctness, and 

• Temporal correctness. 

• Common in safety-critical and cyber-physical 
systems.

Fundamentally affects how systems are designed and built. 

Predictability is more important than performance. 
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Temporal Correctness

• Temporal correctness requires: 

• Models of system components, 

• Sound mathematical analysis.

4



Real-Time Task Model
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Pedestrian Detection

Job releases. 
Next frame available from the camera.

Period: time between frames. e.g., 33ms for 30FPS.
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Pedestrian Detection

Job deadlines. 
Time by which the computation must complete.

Relative Deadline: time between release and deadline.



Scheduling and Analysis

• Scheduling algorithm determines when jobs run. 

• Earliest-Deadline First (EDF). 

• Fixed Priority (FP). 

• Schedulability test used to determine whether all 
jobs will provably finish before their deadlines.
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Synchronization
• In practice, tasks share resources to which 

accesses must be synchronized.

Shared Buffer

Producer 
e.g., read frame from camera

Consumer 
e.g., pedestrian detection

• Locking protocol used to synchronize such 
accesses to ensure safety.

10



Synchronization Example
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def transaction(from_acct, to_acct, amount) 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
balances[to_acct] = balances[to_acct] + amount 
balances[from_acct] = balances[from_acct] - amount
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Synchronization Example

12

def transaction(from_acct, to_acct, amount) 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
balances[to_acct] = balances[to_acct] + amount 
balances[from_acct] = balances[from_acct] - amount

Task 1: transaction(A, B, 10) Task 2: transaction(A, C, 10)

Balances

A B C

$18 $14$-8

Two threads executing concurrently can produce a 
logically incorrect or unsafe result. 



Synchronization Example

13

def transaction(to_acct, from_acct, amount) 
lock() 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
balances[to_acct] = balances[to_acct] + amount 
balances[from_acct] = balances[from_acct] - amount 
unlock()



Synchronization Example

13

def transaction(to_acct, from_acct, amount) 
lock() 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
balances[to_acct] = balances[to_acct] + amount 
balances[from_acct] = balances[from_acct] - amount 
unlock()

Using a locking protocol, we can fix this issue by 
ensuring only one transaction executes at a time.
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T

Priority-Inversion Blocking
• Synchronization may cause priority-inversion blocking (pi-blocking).

• Pi-blocking must be incorporated into schedulability analysis.

• Pi-blocking can cause significant utilization loss.
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T

Progress Mechanisms
• Must consider scheduling and synchronization interactions 

in computing pi-blocking bounds.

• Progress mechanisms used to mitigate such adverse 
interactions.
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Modern Multicore 
Architectures

CPU 1 CPU m…
L1 L1

Shared LLC

Multicore Processor

M
em

or
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I/O Hub
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Modern Multicore 
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L1 L1

Shared LLC

Multicore Processor
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18

Multicore processors are designed with several shared 
hardware components. Explicitly synchronizing access to 

such resources can improve predictability.



Thesis Statement

“Dependencies among tasks in real-time 
systems through shared resources, both 

memory objects, as well as shared hardware 
resources, can be managed through 

synchronization protocols. Such protocols can 
be designed to exploit the inherent sharing 

constraints of the managed resources in order 
to achieve improved resource utilization.” 
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Outline
• Introduction & Background 

• Memory Objects

• Fine-grained mutex locks (RNLP)

• Fine-grained reader/writer locks (R/W RNLP) 

• Hardware Resources 

• Preemptive mutual exclusion 

• Half-protected exclusion 

• Conclusions
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Coarse-Grained Locking
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def transaction(to_acct, from_acct, amount) 
lock() 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
balances[to_acct] = balances[to_acct] + amount 
balances[from_acct] = balances[from_acct] - amount 
unlock()

Balances

A B C

$8 $4$12
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Fine-Grained Locking

22

def transaction(to_acct, from_acct, amount) 
lock(from_acct) 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
lock(to_acct) 
balances[to_acct] = balances[to_acct] + amount 
unlock(to_acct) 
balances[from_acct] = balances[from_acct] - amount 

unlock(from_acct)

Balances

A B C

$8 $4$12

Fine-grained locking can reduce blocking by allowing
non-conflicting transactions to be processed concurrently.



RNLP

• Real-Time Nested Locking Protocol (RNLP). 

• First multiprocessor real-time locking protocol to 
support fine-grained locking. 

• Modular, “plug-and-play” architecture can be 
configured optimally under different schedulers 
and analysis assumptions.

*B. Ward and J. Anderson. “Supporting Nested Locking in Multiprocessor Real-Time Systems.” ECRTS ‘12 23



RNLP

…
Token wait queue

Token Lock

Wait queues
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ce

s

Request Satisfaction 
Mechanism (RSM)
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RSM
The key problem: later-issued requests hold 
resources that are requested in a nested fashion.
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RSM
The key problem: later-issued requests hold 
resources that are requested in a nested fashion.

R2

R1

R3R2

A

B

C

The earlier-issued R2 is blocked 
by the later-issued R3.
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RSM
In the RNLP, this problem is avoided by preventing 
later-issued requests from acquiring resources that 
may be requested in a nested fashion.

R2

R1

R3

A

B

C

Now R2 can acquire B 
immediately.
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RSM
In the RNLP, this problem is avoided by preventing 
later-issued requests from acquiring resources that 
may be requested in a nested fashion.

R2

R1

R3

A

B

C

Now R2 can acquire B 
immediately.R2
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RSM

R2

R1

R3

A

B

C

Note that R2 may still block on 
R1. This is ok; R1 was issued 

earlier than R2.

R2

R2

In the RNLP, this problem is avoided by preventing 
later-issued requests from acquiring resources that 
may be requested in a nested fashion.
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RSM

R2

R1

R3

A

B

C

Transitive blocking is still 
possible, and must be 

considered.
R2

R2

In the RNLP, this problem is avoided by preventing 
later-issued requests from acquiring resources that 
may be requested in a nested fashion.
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Optimality Results
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Optimality Results

Number of tokens
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Optimality Results

Progress mechanism used
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Optimality Results

These blocking bounds match those 
of previous optimal coarse-grained 

protocols.
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Optimality Results

A new k-exclusion locking protocol also 
proposed in this dissertation.

*B. Ward, G. Elliott and J. Anderson. “Replica-Request Priority Donation: A Real-Time Progress Mechanism for 
Global Locking Protocols.” RTCSA ‘12 38



Optimality Results

39

The problem of fine-grained locking in multiprocessor real-
time systems stood open for over 20 years! The RNLP solves 

this problem optimally under all common analysis 
assumptions and platform configurations.
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Motivation
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def transaction(from_acct, to_acct, amount) 
lock(from_acct) 
if(balances[from_acct] < amount) 
# Insufficient funds 
return False 

else 
lock(to_acct) 
balances[to_acct] = balances[to_acct] + amount 
unlock(to_acct) 
balances[from_acct] = balances[from_acct] - amount 

unlock(from_acct)

Balances

A B C

$8 $4$12

What if there are other routines that need only read the 
current balance of some accounts?



Reader/Writer Locking
• Reader/writer locking:

• Reads can execute in parallel. 

• Writes require mutual exclusion. 

• Reader/writer locking reduces blocking when reads 
are common. 

• How do we extend the RNLP to support fine-
grained reader/writer locking?

*B. Ward and J. Anderson. “Multi-Resource Real-Time Reader/Writer Locks for Multiprocessors.” IPDPS ‘14 42



Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”
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Phase-Fair Locking*

*B. Brandenburg and J. Anderson. “Reader-Writer Synchronization for Shared-Memory Multiprocessor Real-Time Systems” ECRTS ‘09

Key idea: read phases and write phases “take turns.”

Write Queue

Read Queue

Resource Holder(s)

W

W

R

43

Result: O(1) read blocking, O(m) write blocking.



One Challenge

• In the RNLP, a request is never blocked by another 
later-issued request. 

• To achieve O(1) reader blocking, later-issued read 
requests must “cut ahead” of earlier-issued write 
requests.

44



Multi-Resources Phases
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R1

R2

W3

A

B

What happens if R1 issues a 
nested read request for B?



Multi-Resources Phases
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Multi-Resources Phases
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R1

W3

A

B

Per-resource phase-fair logic 
dictates that it should wait.

R1

But R1 would be blocked by 
later-issued read and write 

requests!
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R/W RNLP
• These issues are resolved through a concept called 

entitlement. 

• Entitlement resolves the dilemma of which phase goes 
next. 

• R/W RNLP Results: 

• First fine-grained multiprocessor real-time R/W lock. 

• O(1) reader pi-blocking. 

• O(m) writer pi-blocking.

48



Outline
• Introduction 

• Memory Objects 

• Fine-grained mutex locks (RNLP) 

• Fine-grained reader/writer locks (R/W RNLP) 

• Hardware Resources
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• Half-protected exclusion 

• Conclusions
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Modern Multicore 
Architectures

CPU 1 CPU m…
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Shared LLC
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Hardware-based Timing 
Interference

51

Isolation Interference

Interference caused by other tasks concurrently 
scheduled on other processors 



Hardware-based Timing 
Interference

51

Isolation Interference

Hardware-based interference can entirely negate 
the benefits of having additional cores. De Facto 
industry standard is to disable all but one core!



Locking Hardware 
Resources

• Locking hardware resources improves predictability, but is 
not (necessarily) required for logical correctness. 

• Example: Shared cache. 

• Problem: a job may evict cached data of another 
concurrently executing job. 

• Goal: “lock” cache resources to prevent such evictions, 
thereby improving timing predictability. 

• Observation: cache critical sections can be safely 
preempted.

52



Non-Preemptive Mutual Exclusion
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Non-Preemptive Mutual Exclusion

Preemptive Mutual Exclusion

CPU 1

CPU 0
TT

T T

CPU 1

CPU 0

T

TT

T

Preemptivity allows the higher-priority 
critical section to preempt the lower-priority 

one, which prevents the deadline miss.

55
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Preemptive Mutual Exclusion*

• At most one task may execute a critical section at 
any time, but resource preemptions are allowed. 

• This problem is unique to multiprocessors. 

• Potential applications: 

• Arbitrating bus accesses, e.g., memory bus.

*B. Ward. “Relaxing Resource-Sharing Constraints for Improved Hardware Management and Schedulability.” 
RTSS ‘15 56



CPU 1

T1 CPU 0

T2

TT

T T

• Assumptions: 

• Global EDF scheduling. 

• Preemptive resources are EDF prioritized. 

• No nesting.

Preemptive Mutual Exclusion 
Algorithm
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Schedulability Analysis

ta td

T

What must have occurred for this job 
to have missed its deadline?
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S. Baruah, “Techniques for Multiprocessor Global Schedulability Analysis”, RTSS ’07.
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Higher-priority demand
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Blocking due to synchronization can 
induce idleness in the schedule.
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Idleness

• Idleness in this context is caused by blocking. 

• Traditionally, blocking modeled by suspensions.

61



Blocking Analysis
… …How long can this 

request be blocked?
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Depending upon the analysis assumptions and 
locking protocol (2m-1)L or (n-1)L.
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Higher-priority demand

New analysis question:
Is there sufficient demand plus induced 

idleness to cause the deadline miss?
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Idleness Analysis
• Advantages:

• Simple. 

• Flexible. 

• Incomparable with previous blocking-analysis techniques. 

• Disadvantages:

• Can be pessimistic for high processor counts. 

• Does not incorporate protocol-specific information to reduce 
utilization loss.
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UCBs vs. ECBs
• In cache-related preemption-delay (CRPD) 

analysis, there are two classes of cache blocks*: 

• Useful (UCB): A cache block that is reused. 

• Evicting (ECB): A cache block that may be 
accessed, but may not be reused. 

• Would like to protect UCBs from ECBs, but need 
not protect ECBs at all.

*Lee et al. “Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.”  
Transactions on Computing ’98. 
 S. Altmeyer and C Maiza. “Cache-related preemption delay via useful cache blocks: Survey and 
redefinition.” Journal of Systems Architecture ’11. 67



Half-Protected Sharing*
• Protected sections: require non-preemptive 

mutual exclusion w.r.t both protected and 
unprotected sections. 

• Unprotected sections: may execute whenever a 
protected section does not. 

• Can be seen as a weaker variant of reader/writer 
sharing: protected = write, unprotected ~ read.

*B. Ward. “Relaxing Resource-Sharing Constraints for Improved Hardware Management and Schedulability.” 
RTSS ‘15 68



Half-Protected Lock

• Protected requests are statically prioritized over 
unprotected requests. 

• Protected requests are prioritized by non-
preemptive EDF. 

• Unprotected requests may run whenever protected 
requests do not.
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Half-Protected Example
T1

T2

T3

Simple example:
Three tasks, T1, T2, and T3 

scheduled on m = 2 processors.
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Half-Protected Example

CPU 1

CPU 0

Unprotected Section
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Half-Protected Example

CPU 1

CPU 0

CPU 1

T1 preempts T3 while it is in an 
unprotected section
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Half-Protected Example

CPU 1

CPU 0

CPU 1

T1 begins unprotected section, 
even though T3 has not completed 

its unprotected section.
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Half-Protected Example

CPU 1

CPU 0

CPU 1

T

Protected Section

Protected section “preempts” 
the unprotected sections, 

inducing idleness on CPU 1.
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Half-Protected Example

CPU 1

CPU 0

CPU 1

T

T

T

Unprotected section may resume after the 
protected section completes.
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Half-Protected Example

CPU 1

CPU 0

CPU 1

CPU 0

T

T

T

T

T

T
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Half-Protected Example

CPU 1

CPU 0

CPU 1

CPU 0

T

T

T

T

T

T

With a reader/writer lock, such a 
“preemption” is not safe.
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Unprotected Sections
Observation: unprotected sections cannot cause blocking.
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Unprotected Sections
Observation: unprotected sections cannot cause blocking.
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Unprotected Sections
Observation: unprotected sections cannot cause blocking.
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Unprotected Sections
Observation: unprotected sections cannot cause blocking.

Result: Ignore them in idleness analysis.
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Extending Idleness Analysis

• Idleness analysis can be easily extended to 
support: 

• Half-protected synchronization, 

• Non-preemptive mutual exclusion.
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Schedulability
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by preemptive sharing.
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Conclusions
• RNLP: First fine-grained mutex, k-exclusion, and 

reader/writer multiprocessor real-time locking 
protocols. 

• Idleness analysis: New analysis technique for 
accounting for blocking in schedulability analysis. 

• Preemptive and half-protected synchronization: 
New models for synchronizing access to hardware 
resources that reduce utilization loss.
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