REAL-TIME SCHEDULING FOR GPUS WITH
APPLICATIONS IN ADVANCED AUTOMOTIVE SYSTEMS

Glenn A. Elliott

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill
2015

Approved by:
James H. Anderson
Sanjoy K. Baruah
Anselmo Lastra

F. Donelson Smith
Lars S. Nyland

Shinpei Kato

©2015
Glenn A. Elliott
ALL RIGHTS RESERVED

il

ABSTRACT

Glenn A. Elliott: Real-Time Scheduling for GPUs with
Applications in Advanced Automotive Systems
(Under the direction of James H. Anderson)

Self-driving cars, once constrained to closed test tracks, are beginning to drive alongside human drivers
on public roads. Loss of life or property may result if the computing systems of automated vehicles fail to
respond to events at the right moment. We call such systems that must satisfy precise timing constraints
“real-time systems.” Since the 1960s, researchers have developed algorithms and analytical techniques used
in the development of real-time systems; however, this body of knowledge primarily applies to traditional
CPU-based platforms. Unfortunately, traditional platforms cannot meet the computational requirements of
self-driving cars without exceeding the power and cost constraints of commercially viable vehicles. We argue
that modern graphics processing units, or GPUs, represent a feasible alternative, but new algorithms and
analytical techniques must be developed in order to integrate these uniquely constrained processors into a
real-time system.

The goal of the research presented in this dissertation is to discover and remedy the issues that prevent
the use of GPUs in real-time systems. To overcome these issues, we design and implement a real-time
multi-GPU scheduler, called GPUSync. GPUSync tightly controls access to a GPU’s computational and
DMA processors, enabling simultaneous use despite potential limitations in GPU hardware. GPUSync
enables tasks to migrate among GPUs, allowing new classes of real-time multi-GPU computing platforms.
GPUSync employs heuristics to guide scheduling decisions to improve system efficiency without risking
violations in real-time constraints. GPUSync may be paired with a wide variety of common real-time CPU
schedulers. GPUSync supports closed-source GPU runtimes and drivers without loss in functionality.

We evaluate GPUSync with both analytical and runtime experiments. In our analytical experiments, we
model and evaluate over fifty configurations of GPUSync. We determine which configurations support the

greatest computational capacity while maintaining real-time constraints. In our runtime experiments, we

iii

execute computer vision programs similar to those found in automated vehicles, with and without GPUSync.
Our results demonstrate that GPUSync greatly reduces jitter in video processing.
Research into real-time systems with GPUs is a new area of study. Although there is prior work on such

systems, no other GPU scheduling framework is as comprehensive and flexible as GPUSync.

v

To the McKenzies

ACKNOWLEDGEMENTS

When I joined the computer science department at UNC, I largely believed that research as a graduate
student was an independent affair: my success or failure depended entirely upon myself. I certainly would
have failed had this been true. The completion of this dissertation is due in part to the knowledge, guidance,
aid, and even love, from those I met and worked with during my time at Chapel Hill. I owe them all a great
debt of gratitude.

First and foremost, I wish to thank my advisor, Jim Anderson, for taking a chance on a student who knew
nothing of real-time systems and only thought “research on GPUs might be interesting.” On more than one
occasion, Jim’s encouragement made it possible for me to complete a successful paper before a submission
deadline when I had been ready to throw in the towel a day before. I would also like to thank the members
of my committee, Sanjoy Baruah, Anselmo Lastra, Don Smith, Lars Nyland, and Shinpei Kato for their
guidance in my research.

I also wish thank my wonderful colleagues of the Real-Time Systems Research Group at UNC. In
particular, I am especially thankful for Bjorn Brandenburg and Bryan Ward. Bjorn’s tireless work on the
LiTMUSRT operating system, along with his techniques for real-time analysis, set the stage upon which I
performed my work. The results of Bryan’s research on locking protocols (as well as Bjorn’s) figures heavily
in the research presented herein. My work simply would not have been possible without the contributions
of these two. I would also like to thank fellow LITMUSRT developers Andrea Bastoni, Jonathan Herman,
and Chris Kenna for helping me work through software bugs at any hour, as well as their willingness to
offer advice during the implementation of the ideas behind my research. Additionally, I wish to thank my
conference paper co-authors, Jeremy Erickson, Namhoon Kim, Cong Liu, and Kecheng Yang. I throughly
enjoyed working with each of you. Finally, I would like to thank all of the other members of the real-time
systems group, including Bipasa Chattopadhyay, Zhishan Guo, Hennadiy Leontyev, Haohan Li, and Mac
Mollison.

I am also grateful for the opportunities NVIDIA afforded me. My internships with the company allowed

me to “peer behind the curtain” to see how GPUs and GPGPU runtimes are made. I thank Bryan Catanzaro,

vi

Vlad Glavtchev, Mark Hairgrove, Chris Lamb, and Thierry Lepley for their guidance. I also wish to especially
thank Elif Albuz and Michael Garland for giving me a free hand to explore.

I am also indebted to the staff of the UNC computer science department. I owe special thanks to Mike
Stone for keeping my computing hardware going, Melissa Wood for keeping grant applications on track, and
Jodie Turnbull for keeping the graduate school paperwork in order.

Finally, I wish to thank my parents and sisters for their love and support during the long years I was in
North Carolina—thank you for not telling me that I was crazy for going back to school, even if you may have
thought it, and even if you were right! I also want to thank Ryan and Leann McKenzie for their friendship;
words cannot express how grateful I am. Lastly, I wish to thank Kim Kutz for her continued patience, love,
and support, which sometimes took the form of fresh out-of-the-oven strawberry-rhubarb pie delivered to
Sitterson Hall at one in the morning.

The funding for this research was provided by NSF grants CNS 0834132, CNS 0834270, CNS 1016954,
CNS 1115284, CNS 1218693, CNS 1409175, CPS 1239135, and CPS 1446631; AFOSR grants FA9550-09-
1-0549 and FA9550-14-1-0161; AFRL grant FA8750-11-1-0033; and ARO grants W91 1NF-14-1-0499 and
WOI11NF-09-1-0535; with additional grants from General Motors, AT&T, and IBM.

vii

TABLE OF CONTENTS

LIST OF TABLES ..o e e e e e Xiv
LIST OF FIGURES . .. e e e e Xvi
LIST OF ABBREVIATTONS . ..o et e XX
Chapter 1: INtrodUuCtiont 1
1.1 Real-Time SYStEMS . . .« o vv ettt ettt ettt et e e e et et e e e e 2

1.2 Graphics Processing Unitsouiui it 3

1.3 Real-Time GPU APPLCAtIONSottt e 6

1.4 An Introduction to GPGPU Programming i, 7
1.4.1 GPGPU Programimingcuontontan ittt et eaaens 7

1.4.2 Real-Time GPU Scheduling 9

1.4.3 Real-Time Multi-GPU Scheduling ... 11

1.5 Thesis Statementttt et e et 11

1.6 ContribULIONSe ettt ettt ettt ettt e e e e e e 12
1.6.1 A Flexible Real-Time Multi-GPU Scheduling Framework 12

1.6.2 Techniques for Supporting Closed-Source GPGPU Software 13

1.6.3 Support for Graph-Based GPGPU Applicationsccoviiiiiiirinrennannn. 13

1.6.4 Implementation and Evaluation..................ii i 14

R A O 21 411/ 5 10 o 14
Chapter 2: Background and Prior Work. e 15
2.1 Multiprocessor Real-Time Scheduling..............c.ooi i, 15
2.1.1 Sporadic Task Model e 15

2.1.2 Rate-Based Task Modelo i e 17

viii

2.2

23

24

2.1.3 Processing Graph Methodo i 18

2.1.4 Scheduling Algorithms i e 21
2.1.5 Schedulability Tests and Tardiness Bounds............. ... it 23
2.1.6 Locking ProtocCOlsoouuint i e 27
2.1.6.1 Priority Inversions and Progress Mechanisms............................. 28
2.1.6.2 Nested LoCKINg oviti i e e 33
2.1.6.3 Priority-Inversion Blocking................ooiiiiiii i 35
2.1.7 Multiprocessor k-Exclusion Locking Protocols ..., 37
2.1.7.1 The k-FMLP ... 38
2172 The RZDGLP ..ot 41
2.1.73 The CK-OMLP ... e 44
2.1.8 Accounting for Overheads in Schedulability Testsccoiiiiiiiiiia... 46
2.1.8.1 Preemption-Centric ACCOUNTINGvvurrntrrtnent i eieneneenannnn, 47
2.1.8.2 Locking Protocol Overheadsccoiiiiiiiiiiiiiiiininn... 50
2.1.9 Integration of PI-Blocking and Overhead Accounting..................coovvuinen... 52
Real-Time Operating SYSIEIMNISttt ettt et et e e e ieanens 54
2.2.1 Basic RTOS ReqUirementsuueintmrtneit et a e ein e 54
22,2 LITMUSRE 56
223 Interrupt Handlingt 57
2.2.3 1 LINUX .ottt ettt et e e e e e e 58
2232 PREEMPT _RT ... e 60
2.2.3.3 Towards Ideal Real-Time Bottom-Half Scheduling 62
Review of Embedded GPUs and AcCCelerators.ouuuntinintinti i 66
GPGPU MEChaniCso e ettt ettt et e 70
2.4.1 Software ATChiteCtUIE.ottt e 70
2.4.2 Hardware ArChiteCtureottt ettt e 74
2421 Execution Engine 76
2422 Copy Engines.o 80

iX

2.4.3 Other Data Transfer Mechanisms 81

2.4.4 Maintaining Engine Independence i 83

245 VectorAdd Revisitedououiuiii i e 85

2.5 Prior Work on Accelerator Scheduling........ ... i 87
2.5.1 Real-Time GPU Schedulingoo i e i 87
2.5.1.1 Persistent Kernels.ouii i 88

2.5.1.2 GPU Kernel WCET Estimation and Control 88

2.5.1.3 GPU Resource Schedulingccooiiiiiiiiiiiiiiiiin i, 90

2.5.2 Real-Time DSPs and FPGA Schedulingo, 92

2.5.3 Non-Real-Time GPU Schedulingooiiiiiiii i 94
2.5.3.1 GPU Virtualizationc.oiiuiuin it 94

2.5.3.2 GPU Resource Maximization.c.vutuenineenininenennenenenennn. 96

2.5.3.3 Fair GPU Scheduling ... 97

2.6 CONCIUSION ...\ttt ettt 99
Chapter 3: GPUSYNCot e e e e e e 100
3.1 Software Architectures For GPU Schedulers ..., 101
3.1.1 API-Driven vs. Command-Driven GPU Schedulers.............................o... 101

3.1.2 Design-Space of API-Driven GPU Schedulers...................cooiiiiiiiiia.. 102
3.1.2.1 GPU Scheduling in User-Spaceco.ovuiiiiiiiiiiiiiinianen.. 103

3.1.2.2 GPU Scheduling in Kernel-Space, 108

TN D TS 4 A 114
3.2.1 Synchronization-Based Philosophy o i 114

322 System Model 115

3.2.3 Resource AlIOCAtIONc.untintt e 115
3.2.3.1 High-Level Descriptionoouiueiniiiiiniiiiiiineianenn. 115

3.2.3.2 GPU AOCALOT. . . o .ottt ettt 117

3.2.3.3 CoStPredictort 123

3234 Engine LOCKSt 124

324 Budget Enforcementt 127

325 INEIationeuett ittt e e et e e e 130
3.25.1 GPUlInterrupt Handling 130

3.2.5.2 CUDA Runtime Callback Threadscooiiiiiiiiiiiiiii.. 135

3.3 IMPIemMENtationutttt ettt et et e et e et e e e e e e 136
3.3.1 General Informationttt e 136

3.3.2 Scheduling POLICIES outtt et e e e e e 137

3.3.3 Priority Propagationuiuinriniiti i e 138

3.3.4 Heuristic Plugins for the GPU AIlOCatorvitiiiiii i eineaeennns. 143

335 UserInterfaceooiuoii i e 144

3.4 CONCIUSION ...ttt et et e 145
Chapter 4: Evaluationt e et 146
4.1 Evaluation Platform 147
4.2 Platform Configurationsc.iutiin ittt 148
4.3 Schedulability ANalysiS.uiuintn i e 149
4.3.1 Overhead MEasure€mentouuenten ettt e 149
4.3.1.1 Algorithmic Overheads i, 150

43.1.2 Memory Overheadso 154

TG TN N 1T o 167

4.3.3 Task Model for GPU-using Sporadic Tasks.................coiiiiiiiiiiiiiiii. 169

434 Blocking Analysisttt e 170
4.3.4.1 Three-Phase Blocking AnalysiS...........ccoovuiiiiiiiiiiiiiiniiinna... 172

4.3.4.2 Coarse-Grain Blocking Analysis for Engine Locks 172

4.3.4.3 Detailed Blocking Analysis for Engine Locks 174

4.3.4.4 Detailed Blocking Analysis for the GPU Allocator 193

435 Overhead ACCOUNTINGttt et e e e e et e e 196

X1

4.3.5.1 Accounting for Interrupt Top-Halves............., 197

4.3.5.2 Accounting for Interrupt Bottom-Halves, 198

4.3.5.3 LAMIEALIOIS . .t vttt ettt ettt e et e e e e e 203

4.3.6 Schedulability EXperimentsoiuuiiiimiiii i 205
4.3.6.1 Experimental SEtUP ..ottt 206

4.3.0.2 ReSUIS ..ottt e 208

4.4 Runtime Evaluation e 221
4.4.1 Budgeting, Cost Prediction, and Affinity ..., 222
4.4.1.1 Budget Performanceccoiiiiiiiiiiiii i 223

4.4.1.2 Cost Predictor ACCUTACY ..ottt et ettt e e e eieeeeeeenns 225

4.4.1.3 Migration Frequencyoovnriniiin e 227

4.42 Feature-Tracking Use-Caseouiutiuiirintiiia i iaaenennns 228

4.5 ConClUSION ...ttt e 234
Chapter 5: Graph Scheduling with GPUS e 236
5.1 Motivation for Graph-Based Task Models, 237
5.2 POMRT 240
5.2.1 Graphs, Nodes, and Edgest 240

5.2.2 Precedence Constraints and Token Transmissionc.ooiiiiiiean.n. 240

5.2.3 Real-Time CONCEINSo uv ettt ettt et et e e eens 243

5.3 0PN X . oo 244
5.4 Adding Real-Time Support to VisionWorkso 246
5.4.1 VisionWorks and the Sporadic Task Model............. ..o iiiiiiiiiia, 247

5.4.2 Libgpui: An Interposed GPGPU Library for CUDAt 252

5.4.3 VisionWorks, libgpui, and GPUSYNC ... 252

5.5 Evaluation of VisionWorks Under GPUSynC....... ... i 254
5.5.1 Video Stabilizationo.oiuiiii i e 254

5.5.2 ExXperimental SetUpoutintinti et e e e e 255

xii

5.5.3 RESUILS . oo 258

5.53.1 Completion Delayscouiiiiiiii e 258

5.53.2 End-to-End Latency...........oooiiiiiii e 275

5.6 CONCIUSION ...\ttt et ettt ettt e e e e 280
Chapter 6: CONCIUSION\ttt ettt ettt et e et e et e e et ettt e et ee e eeeaens 282
6.1 Summary of ReSultso.ii 282
6.2 FUuture WOTKo 288
6.3 Closing Remarks e 291
BIBLIOGRAPHY . ..o e e e e 292

X1l

1.1

1.2

2.1

2.2

23

2.4

2.5

2.6

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

53

5.4

55

5.6

LIST OF TABLES

ADAS prototypes and related research that employ GPUs ...t 7
Results of experiment reflecting unpredictable and unfair sharing of GPU resources 10
Summary of sporadic task Set parametersutiitiit it 17
Summary parameters for describing shared resourcesc.coviiiiiiiiiiiiniin... 28
Summary of parameters used in preemption-centric overhead accounting.................... 49
Summary of locking protocol overheads considered by preemption-centric accounting 51
Performance and GPGPU support of several embedded GPUs 67
NVIDIA software and hardware terminology with OpenCL and AMD equivalents........... 76
GPU Allocator heuristic plugin APL 144
Summary of additional parameters to describe and analyze sporadic task sets with GPUs..... 171
All possible representative blocking chains that may delay a copy engine request 179
An example arrangement of COPY eNgiNe reqUESES v.vutent et ereeeaeaeeieaneneeneanans 182
Summary of ILP parameters used for bounding the blocking of copy engine requests 188
GPUSync configuration rankings under worst-case loaded overheads 210
GPUSync configuration rankings under worst-case idle overheads 211
GPUSync configuration rankings under average-case loaded overheads 212
GPUSync configuration rankings under average-case idle overheads 213
Migration frequency under C-EDF and C-RM GPUSync configurations 228
Description of nodes used in the video stabilization graph of Figure 5.8 256
Evaluation task set using VisionWorks’ video stabilizationdemo 257
Completion delay data for SCHED_OTHERo 262
Completion delay data for SCHED_FIFO 263
Completion delay data for LITMUSRT without GPUSYNCvvuuiiiiiiiinnnnn... 263
Completion delay data for GPUSync for (1,6,FIFO), 264

X1V

5.7 Completion delay data for GPUSync for (1,6,PRIO) i 264
5.8 Completion delay data for GPUSync for (2,3,FIFO) 265
5.9 Completion delay data for GPUSync for (2,3,PRIO) ..., 265
5.10 Completion delay data for GPUSync for (3,2,FIFO)o 266
5.11 Completion delay data for GPUSync for (3,2,PRIO) 266
5.12 Completion delay data for GPUSync for (6, 1,FIFO) 267
5.13 Completion delay data for GPUSync for (6,1,PRIO), 267
5.14 Average normalized completiondelay data i 268

XV

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

LIST OF FIGURES

Historical trends in CPU and GPU processor performancec.covvviiiiean... 5
Host and device code for adding two vectors in CUDA i, 8
A schedule of vector_add () ..ot 9
Matrix of high-level CPU and GPU organizational choicesc..cociiiii.. 11
Example of a PGM-specified grapht 18
PGM-specified graph of Figure 2.1 transformed into rate-based and sporadic tasks........... 20
Task ready queues under partitioned, clustered, and global processor scheduling 21
Example of bounded deadline tardiness for a task set scheduled on two CPUs by G-EDF..... 25
Schedule depicting a critical SECtON vttt e e 27
Schedules where priority inheritance and priority boosting shorten priority inversions........ 29
Situations where multiprocessor systems require stronger progress mechanisms 31
Comparison of s-oblivious and s-aware pi-blocking under global scheduling 37
Queue structure of the k-FMLP 39
Queue structure of the RZDGLP oo 41
Queue structure of the CK-OMLP 45
Schedule depicting system overheads.o 47
Fixed-priority assignment when an I/O device is used by a single thread..................... 60
Example of an unbounded priority inVersionc.coeiiiiininiiineniininenenennn. 61
Example of a bounded priority inversion during interrupt bottom-half processing 62
A pathological scenario for fixed-priority interrupt handling, 63
A priority inversion due to the co-scheduling of a bottom-half, 65
Layered GPGPU software architecture on Linux with closed-source drivers 70
Situation where a callback thread may lead to a priority inversion........................... 73
High-level architecture of a modern multicore platform oL 75
Code fragments for a three-dimensional CUDA kernel, 77
The hierarchical relation of grids, blocks, and threads ool 78

XVi

2.23

2.24

2.25

2.26

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Decomposition of block threads into warps that are mapped to hardware lanes............... 79
Two streams of sequentially ordered GPU operations..............couiiiiiininenennn. 83
Schedule of falsely dependent streamed GPU operations and corrected counterpart 84
A detailed schedule of host and GPU processing for the simple vector_add() kernel....... 86
Software architectures of API-driven GPU schedulers implemented in user-space............ 104
Software architectures of API-driven GPU schedulers implemented in kernel-space.......... 110
High-level design of GPUSync’s resource allocation mechanisms........................... 116
A schedule of a job using GPU resources controlled by GPUSync 117
The structure of a GPU allocator lock 118
Example of budget signal handling i 129
Architecture of GPU tasklet scheduling infrastructure using klmirqd 132
Memory layout of nv_1inux_state_To.oiniiuiiiiii i 134
Relative static priorities among scheduling policiescoiiiiiiiiiiiiiniiann. 138
Example of a complex chain of execution dependencies for tasks using GPUSync 139
Recursive algorithm to propagate changes in effective priorityl 141
Concrete examples of multicore, multi-GPU, organizational configurations.................. 148
PDF of GPU top-half execution timeoiuiiuiteii i iaa s 151
PDF of GPU bottom-half execution timeo.iuiiiiiiiiiiiiii i 152
CCDFs of top-half and bottom-half execution timesooiiiiiiiii ... 153
Considered CPMD maximum overheads due to GPU traffic 155
Considered CPMD mean overheads due to GPU traffic............ ..., 156
Increase in considered CPMD overheads due to GPU traffic 159
GPU data transmission time in an idle system........... ...t 161
GPU data transmission time in systemunderload i 162
Increase in DMA operation costsdue toloado. i 164
Increase in DMA operation costs due to page interleavingoooiiiiiinan... 166
Procedures for computing blocking chains for a given request scenario...................... 184

Xvil

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Schedules with overheads due to bottom-half interrupt processing 199
Schedule depicting callback overheadso 201
[lustrative ranking of configuration 4 against configuration Bc.cooevuiieenean.n. 208
Detailed schedulability result e e 217
Detailed result of schedulability and effective utilizationcc.covviiun... 220
Accumulated execution engine time allocated totaskscooviiiiiiiii i, 224
CDFs of percentage error in COSt prediCtions v.u ettt e e i eiee i 226
CDF of job response time for C-EDF with FIFO-ordered engine locks 231
CDF of job response time for C-EDF with priority-ordered engine locks 231
CDF of job response time for C-RM with priority-ordered engine locks 232
Dataflow graph of a simple pedestrian detector applicationcooviiiieana.... 237
Transformation of a PGM-specified pedestrian detection application to sporadic tasks 238
Parallel execution of graph nodeso 239
Construction of a graph in OpenVX for pedestrian detection...............c.oviiien... 245
Procedure for PGMRT-coordinated job eXecution.covviuuiiieeeeeiinnne... 249

Derivation of PGM graphs used to support the pipelined thread-per-node execution model ... 250

Overly long token critical sections may result by releasing tokens at job completion time 253
Dependency graph of a video stabilization application..............c..coovieiiiniean.n. 255
Scenarios that lead to extreme values for measured completion delays....................... 258
PDF of normalized completion delay data for SCHED_OTHER. 271
PDF of normalized completion delay data for SCHED_FIFO. 271
PDF of normalized completion delay data for LITMUSRT without GPUSync................. 271
PDF of normalized completion delay data for GPUSync with (1,6,FIFO) 272
PDF of normalized completion delay data for GPUSync with (1,6,PRIO)................... 272
PDF of normalized completion delay data for GPUSync with (2,3,FIFO) 272
PDF of normalized completion delay data for GPUSync with (2,3,PRIO)................... 272
PDF of normalized completion delay data for GPUSync with (3,2,FIFO) 273

XViil

5.18 PDF of normalized completion delay data for GPUSync with (3,2,PRIO)................... 273

5.19 PDF of normalized completion delay data for GPUSync with (6,1,FIFO) 273
5.20 PDF of normalized completion delay data for GPUSync with (6,1,PRIO)................... 273
5.21 CDF of normalized observed end-to-end latency ..., 275
5.22 CCDF of normalized observed end-to-end latencycoiiiiiiiiiiinnennnnn... 277

XIX

ADAS
API
ASIC
BWI
CDF
CCDF
C-EDF
CE
CK-OMLP
C++ AMP
CPU
CUDA
CVA
DAG
DGL
dGPU
DMA
DPCP
DSP
EDF
EE

FL
FMLP
FPGA
FPS
G-EDF
GPC
GPL

LIST OF ABBREVIATIONS

Advanced Driver Assistance Systems
Application Programming Interface
Application-Specific Integrated Circuit
Bandwidth Inheritance

Cumulative Distribution Function
Complementary Cumulative Distribution Function
Clustered Earliest Deadline First

Copy Engine

Clustered k-exclusion Optimal Multiprocessor Locking Protocol
C++ Accelerated Massive Parallelism
Central Processing Unit

Compute Unified Device Architecture
Compliant Vector Analysis

Directed Acyclic Graph

Dynamic Group Lock

Discrete Graphics Processing Unit

Direct Memory Access

Distributed Priority Ceiling Protocol
Digital Signal Processor

Earliest Deadline First

Execution Engine

Fair-Lateness

Flexible Multiprocessor Locking Protocol
Field Programmable Gate Array

Frames Per Second

Global Earliest Deadline First

Graphics Processing Cluster

GNU General Public License

XX

GPGPU
GPU
HSA
iGPU
IORW
IPC

IPI

ISR
JLFP
k-FMLP
MPCP
MSRP
NUMA
O-KGLP
OMLP
OpenACC
OpenCL
(ON)

PClIe
PCP
PDF
P-EDF
PGM
p2p

RM

RPC
RTOS
R’DGLP
SM

General-Purpose Computing on Graphics Processing Units
Graphics Processing Unit

Heterogeneous System Architecture

Integrated Graphics Processing Unit

Input Output and Read Write

Inter-Process Communication

Inter-Processor Interrupt

Interrupt Service Routine

Job-Level Fixed Priority

k-exclusion Flexible Multiprocessor Locking Protocol
Multiprocessor Priority Ceiling Protocol
Multiprocessor Stack Resource Policy
Non-Uniform Memory Access

Optimal k-exclusion Global Locking Protocol

O(m) Multiprocessor Locking Protocol

Open Accelerators

Open Computing Language

Operating System

Peripheral Component Interconnect Express
Priority Ceiling Protocol

Probability Density Function

Partitioned Earliest Deadline First

Processing Graph Method

Peer-to-Peer

Rate-Monotonic

Remote Procedure Call

Real-Time Operating System

Replica-Request Donation Global Locking Protocol

Streaming Multiprocessor

XX1

SRP Stack Resource Policy

WSS Working Set Size

xxil

CHAPTER 1: INTRODUCTION

Real-time systems are those that must satisfy precise timing constraints in order to meet application
requirements. We often find such systems where computers sense and react to the physical world. Here, loss
of life or property may result if a computer fails to act in the right moment. Real-time system designers
must employ algorithms that realize predictable behavior that can be modeled by mathematical analysis.
This analysis allows the designer to prove that an application’s timing constraints are met. However, an
algorithm can only be as predictable as allowed by the underlying software and hardware upon which it is
implemented. Ensuring predictability becomes an increasing challenge as computing hardware grows in
complexity. This is especially true for commodity computing platforms, which are optimized for throughput
performance—often at the expense of predictability. This challenge is exemplified by the recent development
of programmable graphics processing units (GPUs) that are used to perform general purpose computations.
GPUs offer extraordinary performance and relative energy efficiency in comparison to traditional processors.
However, today’s standard GPU technology is unable to meet basic real-time predictability requirements.

The goal of the research presented in this dissertation is to discover and address the issues that prevent
GPUs from being used in real-time systems. GPUs exhibit unique characteristics that are not dealt with
easily using methods developed in prior real-time literature. New techniques are necessary. This dissertation
presents such techniques that remove the fundamental obstacles that bar the use of GPUs in real-time systems.
This research is important because it may allow GPUs to become an enabling technology for embedded
real-time systems that tackle computing problems that have been outside the reach of traditional processors.

This chapter begins with a brief introduction to real-time systems. We follow with a closer look at
the benefits offered by GPUs and potential real-time applications. We then discuss general purpose GPU
programming at a high level, followed by the challenges to supporting real-time constraints. We then present
the thesis of this dissertation and describe the dissertation’s contributions. Finally, we outline the organization

of this dissertation’s remaining chapters.

1.1 Real-Time Systems

The term “real time” has different meaning in different fields. In the context of computer graphics, “real
time” often equates to “real fast” or some degree of quality-of-service.! For instance, a computer graphics
animation may be rendered in “real time” if image frames are generated at roughly 30 frames per second.
An interactive simulation may be considered “real time” if the simulation runs at about 10 to 15 frames per
second. In contrast to these throughput-oriented quality-of-service-based definitions, “real time” in the field
of real-time systems is more precise. A real-time system is said to be “correct” if computations meet both
logical and temporal criteria. Logical criteria require that the results of a computation must be valid. This
condition is true for practically any computational system. Temporal criteria require that these results must
also be made available by a designated physical time (hence, “real time”). This strict concern for temporal
correctness may not necessarily be included in the aforementioned computer graphics systems where “real
fast” is often good enough. Indeed, temporal correctness is as important as logical correctness in a real-time
system.

A real-time workload is often embodied by a set of computational fasks. Each task releases recurring
work, with each such release called a job, according to a predicable rate or time interval. The completion time
of each job must satisfy some temporal constraint, such as a deadline that occurs within some interval of time
after the job’s release. A real-time scheduler is responsible for allocating processor time to each incomplete
job. A set of tasks, or task set, is said to be schedulable when timing constraints are guaranteed to always be
satisfied.

A scheduling algorithm, in and of itself, does not prove schedulability. Instead, schedulability is formally
proven according to an analytical model of the scheduling algorithm and the task set in question. These
models may incorporate real-world overheads that are often a function of the scheduling algorithm, the
algorithm’s implementation, and the hardware platform upon which jobs are scheduled. Overheads can have
a strong effect on schedulability. As a consequence, the design of an efficient real-time system involves the
co-design of the analytical model, the scheduling algorithm, and the algorithm’s implementation.

Over the last decade, multicore processors have become ubiquitous in computing. This has spurred
interest in the design and implementation of real-time multiprocessor schedulers and analytical models.

Multiprocessor schedulers can be generally classified into one of three categories: partitioned, clustered,

IThe term “real fast” in this context is borrowed from McKenney (2009).

or global. Under partitioned scheduling, each task (and all its associated jobs) is assigned to a processor.
Under global scheduling, jobs are free to migrate among all processors. Cluster scheduling is a hybrid of
partitioned and global approaches: the jobs of tasks are free to migrate among an assigned subset (or cluster)
of processors. Each method may be best suited to a particular application with its own temporal constraints,
as there are tradeoffs among the analytical models and associated overheads for each approach.

It is reasonable to assume that many future real-time systems will use multicore processors. Support for
real-time GPU computing with multicore processors is a central theme of this dissertation. Moreover, we
pay special attention to the interrelations between our analytical models, scheduling algorithms, algorithm
implementation, and the computing hardware.

We wish for the results of this dissertation to have bearing on practical applications, so much of the
effort behind this dissertation has been on the implementation of real-time multi-GPU schedulers and their
integration with real-time multiprocessor (i.e., CPU) schedulers. Implementation and integration is done at

SRT 3 real-time

the operating system (OS) level. We implement all of our solutions by extending LITMU
patch to the Linux kernel (Calandrino et al., 2006; Brandenburg, 2011b, 2014b). This is advantageous since
we can use all Linux-based GPGPU software in our research, while also benefiting from LITMUSRT s variety

of real-time multiprocessor schedulers and its other supporting functions.

1.2 Graphics Processing Units

The growth of GPU technology is characterized by an evolutionary process. Early GPUs of the 1970s
and 1980s were used to offload 2D rendering computations from the CPU, and support for 3D rendering
was common by the end of the 1990s (Buck, 2010). With few exceptions, these GPUs were “fixed function,”
meaning that rendering operations were defined a priori by the GPU hardware. This changed with the advent
of the “programmable pipeline” in 2001. The programmable pipeline enables programmers to implement
custom rendering operations called “shaders” by using program code that is executed on the GPU. Some
of the early successful shader languages include the OpenGL Shading Language (GLSL) (Khronos Group,
2014b), NVIDIA’s “C for Graphics” (Cg) (NVIDIA, 2012), and Microsoft’s High-Level Shader Language
(HLSL) (Microsoft, 2014).

Empowered by shader languages and programmable GPUs, researchers and developers began to exploit

the generality of the programmable pipeline to solve non-graphics-related problems. This practice of using

GPUs for general-purpose computations was coined GPGPU by M. Harris in 2002 (Luebke et al., 2004;
Harris, 2009). In early GPGPU approaches, computations were expressed as shader programs, operating
on graphics-oriented data (e.g., pixels and vertices). Recognizing the potential of GPGPU, generalized
languages and runtime environments were developed by major graphics hardware vendors and software
producers to allow general purpose programs to be run on graphics hardware without the limitations imposed
by graphics-focused shader languages. Notable platforms include the Compute Unified Device Architecture
(CUDA) (NVIDIA, 2014c), OpenCL (Khronos Group, 2014a), and OpenACC (OpenACC, 2013). The
ease of use enabled by these advances has facilitated the adoption of GPGPU in a number of fields of
computing. Today, GPGPU is used to efficiently handle data-parallel compute-intensive problems such
as cryptography (Harrison and Waldron, 2008), supercomputing (Meuer ef al., 2014), finance (Scicomp
Incorporated, 2013), ray-tracing (Aila and Laine, 2009), medical imaging (Watanabe and Itagaki, 2009),
video processing (Pieters ef al., 2009), and many others.

GPGPU technology has received little attention in the field of real-time systems, despite strong motiva-
tions for doing so. The strongest motivation is that the use of GPUs can significantly increase computational
performance. This is illustrated in Figure 1.1(a), which depicts performance trends of high-end Intel CPUs and
NVIDIA GPUs over much of the past decade (NVIDIA, 2014c; Intel, 2014; Ong et al., 2010). Figure 1.1(a)
plots the peak theoretical single-precision performance in terms of billions of floating point operations per
second (GFLOPS). There is a clear disparity between CPU and GPU performance in favor of GPUs. For
example, NVIDIA’s Titan GTX Black GPU can perform at 5,121 GFLOPS in comparison to 672 GFLOPS
for the Intel Ivy Bridge-EX—the GPU has a 7.6 times greater throughput.

This disparity is even greater when we consider mobile CPUs, such as those designed by ARM. For
instance, the ARM Cortex-A15 series processor as a peak theoretical performance of 8 GFLOPs at IGHz (Ra-
jovic et al., 2014). Thus, the dual Cortex-A15 cores of Samsung’s Exynos 5250 (which runs as 1.7GHz)
collectively achieve 27.2 GFLOPS. In contrast, the embedded NVIDIA K1 and PowerVR GX6650 GPUs
can both achieve a reported 384 GFLOPS (Smith, 2014a), making them more than 14 times faster than the
Exynos 5250.2

Growth in raw floating-point performance does not necessarily translate to equal gains in performance

for actual applications. In the case of both CPUs and GPUs, observed theoretical performance only nears

21t is unfair to compare the Titan GTX Black to any embedded processor since the GPU requires a great deal more power. The Titan
GTX Black consumes roughly 250 watts, while the Exynos 5250 consumes no more than 8 watts.

Trends in GFLOPS

6000 T T T T T T T T T T
—+— CPU (Intel)
-=-%-== GPU (NVIDIA)
TITAN GTX Black
5000 |- LT
TITAN GTX, "
llll
2 4000 [E
S
= /
[z
3 GTX-680y
£ 3000 F —
E
E
£ 2000 | -
GTX»SROx,"
GTX—480*,,"
GTX-280 .-
1000 GTX-260__.-~* E
________ * Ivy Bridge-EX
8800 GTX. ... Sandy Bridge-EP
6800 Ultra 7800 GI)};(..... Harpertown Bloomfield Westmere-EX
0 F Sl i 1 I 1 1 1 1 1 1
Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14
Date
(a) Trend in GFLOPS.
Trends in GFLOPS-per-Watt
25 T T T T T T T T T T
—+— CPU (Intel)
---%-=- GPU (NVIDIA)
TITAN GTX Black)
2 F -
2 TITAN GTX ¢*"
3
= GTX-680 "
&) ¥*
< 15F s .
) .
a ,'
3
8 K
2 ;
E 10f /¢ E
o} z
[=% .
Z K
8 GTX-580
> GTX-280 GTX-480 .--*
GTX-260 5 - yeoeteianas e”
s.P e Ivy Bridge-EX]
8800 GTX __.-=="
*” Sandy Bridge-EP.
West: -EX
Harpertown Bloomfield estmere
Irwindale Clovertown
0 1 1 1 1 1 1 1 1 L
Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14

Date

(b) Trend in GFLOPS-per-Watt.

Figure 1.1: Historical trends in CPU and GPU processor performance.

theoretical peak performance when executing very data-parallel algorithms. However, GPU performance
degrades significantly when executing inherently serial algorithms or those that contain many conditional
code paths (i.e., “branchy” code)—CPUs perform better in such cases (NVIDIA, 2014c). Nevertheless, a
review of published research reveals that GPUs commonly increase performance over CPUs on the range of

four to 20 times (Owens et al., 2007) for many types of computationally heavy applications. In the context of

real-time systems, computations accelerated by GPUs may execute at higher frequencies or perform more
computation per unit time, possibly improving system responsiveness or accuracy.

Power efficiency is another motivation to use GPUs in real-time systems, since real-time constraints
often must be satisfied in power-constrained embedded applications. GPUs can carry out computations at
a fraction of the power needed by CPUs for equivalent computations. This is illustrated in Figure 1.1(b),
which depicts the GFLOPS-per-watt for the same performance points of Figure 1.1(a). Here, the Titan
GTX Black can perform roughly 20.5 GFLOPS per watt in comparison to 4.3 GFLOPS per watt of the
Ivy Bridge-EX—the GPU is 4.7 times more efficient. For an additional point of reference, the K1 and
GX6650 integrated GPUs perform approximately 48 GFLOPS-per-watt, while the Exynos 5250 CPUs deliver

approximately 6.8 GFLOPS-per-watt.?

1.3 Real-Time GPU Applications

There are several application domains that may benefit from real-time support for GPUs. For example,
real-time-scheduled GPUs may be employed to realize predictable video compositing and encoding for use
in live news and sports broadcasting (NVIDIA, 2014e). Another domain includes support of high frequency
trading and other time-sensitive financial applications (King et al., 2010). However, possibly the greatest
potential for GPUs in real-time systems is in future automotive applications.

The domain that may benefit the most from real-time support for GPUs is in the advanced driver assistance
systems (ADAS) of new and future automobiles. Here, vehicle computer systems realize “intelligent” alert
and automated features that improve safety and/or the driving experience. For example, a system that alerts
the driver of pedestrians in the path of the vehicle is an ADAS. An intelligent adaptive cruise control system
that can automatically steer the vehicle and control its speed in stop-and-go highway traffic is another. Other
ADAS features include automatic traffic sign recognition, obstacle avoidance, and driver fatigue detection.
There are clear safety implications to ADAS: if the vehicle fails to act in the right moment, loss of life may
result. Precise timing constraints must be met.

Common to these ADAS applications is a reliance upon a rich sensor suite. This includes video cameras,

radar detectors, acoustic sensors, and lidar* sensors (Wei e al., 2013). Together, these sensors generate an

3Power metrics for individual components of embedded processors are difficult to find. Here, we conservatively assume that the K1,
GX6650, and Exynos 5250 each consume eight watts. This a common limit for the entirety of a smartphone- and tablet-class chip,
of which GPU and CPUs are merely components.

4The term “lidar” is a blend of the words “light” and “radar”.

Application Prototypes and Research ‘

Pedestrian, Vehicle, and Zhang and Nevatia (2008); Wojek et al. (2008)
Obstacle Detection Bauer et al. (2010); Benenson et al. (2012)
Traffic Sign Recognition | Mussi et al. (2010); Muyan-Ozcelik et al. (2011)

Driver Fatigue Detection Lalonde et al. (2007)
Lane Following Homm et al. (2010); Kuhnl ez al. (2012)
Seo and Rajkumar (2014)

Table 1.1: ADAS prototypes and related research that employ GPUs.

enormous amount of data for an embedded vehicle computing system to process. It is too much in fact for
traditional computing hardware to handle within a vehicle’s size, weight, and power (SWaP) constraints,
much less being affordable. GPUs offer a viable alternative because many of the algorithms employed in
ADAS are data parallel—ideal for GPUs. This is especially true of computer vision algorithms that operate
upon video camera feeds and the point-cloud processing of LIDAR data.

Researchers have begun applying GPUs to ADAS problems, as illustrated by Table 1.1, which lists
several ADAS prototypes and related research that uses GPUs. However, each prototype assumes full control
of the entire computing system; computing resources such as CPUs and GPUs are not shared with other tasks.
This does little to resolve automotive SWaP or cost constraints. If advanced automotive features are to be
realistically viable, then such computations must be consolidated onto as few low-cost CPUs and GPUs as
possible, while still meeting timing constraints. The design and implementation of foundational real-time

methods for such systems is the focus of this dissertation research.

1.4 An Introduction to GPGPU Programming

A brief introduction to GPGPU programming is necessary to conceptualize the challenges of using GPUs
in real-time systems. We first present a high-level description of GPGPU programming and GPU mechanics.
We then discuss the limitations that prevent us from using GPUs in a real-time system without any specialized

real-time mechanisms.

1.4.1 GPGPU Programming

Although GPUs are superior to CPUs in terms of raw performance and energy efficiency, today’s GPUs
cannot operate as independent processors. Instead, GPUs used in GPGPU applications act as co-processors

to CPUs. GPGPU programs are made up of a sequence of operations involving CPU code, GPU code, and, in

0NN AW =

1 // Add vectors ‘a’ and ‘b’ of ‘num_elements’ floats and store results in ‘c’
2 // using a GPU.

3 void vector_add(float *a, float *b, float *c, int num_elements) {

4 float *gpu_a, *gpu_b, *gpu_c;

5

6 . // allocate GPU-side memory for ‘gpu_a’, ‘gpu_b’, and ‘gpu_c’

7

8 // copy contents of ’a’ and ’b’ to corresponding buffers on the GPU

9 cudaMemcpy (gpu_a, a, num_elements*sizeof (float));

10 cudaMemcpy (gpu_b, b, num_elements*sizeof (float));

11

12 // perform ‘gpu_cl[i] = gpu_al[i]l + gpu_b[i]’ for i in [0..num_elements)
13 gpu_vector_add<<<...>>>(gpu_a, gpu_b, gpu_c, num_elements);

14

15 // copy the results of vectorAdd stored in ‘gpu_c’ to buffer ‘c’

16 cudaMemcpy (c, gpu_c, num_elements*sizeof (float));

17

18 . // free buffers allocated to ‘gpu_a’, ‘gpu_b’, and ‘gpu_c’

19 3}

(a) Host code for adding vectors, using a GPU.

3 ¢

// GPU routine for adding elements of vectors ‘a’ and ‘b’ with result stored ‘c’

__global__
void gpu_vector_add(float *a, float *b, float *c, int num_elements) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < num_elements) {
clil] = al[i]l + b[il;
}

(b) Device kernel for adding vectors.

Figure 1.2: Host and device code for adding two vectors in CUDA.

the case where GPUs are equipped with their own memory, memory copies between CPU main memory and
GPU-local memory.

GPU (or “device”) code is invoked by CPU (or “host”) code, in a manner similar to a remote procedure
call (RPC). Device-side procedures are commonly referred to as “kernels.” A simple GPGPU routine (in
the CUDA language) for adding the elements of two arrays (or vectors) is given in Figure 1.2. Host code
appears in Figure 1.2(a) and device code in Figure 1.2(b). The routine vector_add () executes on the host.
In lines 9 and 10 of Figure 1.2(a), memory is copied from host memory to device memory as input for
the gpu_vector_add() kernel. In line 13, this kernel is called by the host, triggering the procedure in
Figure 1.2(b) to execute on the device. The kernel’s output resides in device memory after it completes. The
resulting output of the kernel is copied back to host memory on line 16 of Figure 1.2(a).

A simplified schedule for the VectorAdd routine is depicted in Figure 1.3. (The actual sequence of

operations is more complex, as we shall see in Chapter 2, but this level of detail is sufficient for now.) From

SThis unfortunate name should not be confused with an operating system kernel. A GPU kernel and operating system kernel have
nothing in common.

cudaMemcpy (gpu_a, a,..); gpu_vector_host(..)

vector host(..) cudaMemcpy(gpu b, b,..); cudaMemcpy(c, gpu_c,..);

CPU \

CE

EE

time -
1 ta t3 14 ts e t7 g to

Figure 1.3: A schedule of vector_add ().

this schedule, we see that vector_add () begins execution on a CPU, starting at time #;. The memory copy
operations are carried out using direct memory access (DMA) by a “Copy Engine” (CE) processor on the
time intervals [f2,13], [t4,15], and [fg,29]. The CE is a GPU component used for DMA memory operations.
The kernel gpu_vector_add() executes on the GPU’s “Execution Engine” (EE) during the time interval
[t6,t7]. (We discuss CEs and EEs in more depth in Chapter 2.) Observe that the CPU code waits for each
GPU-related operation to complete—indicated by a set of horizontal dashed lines. During these intervals,
the CPU code may suspend or spin while waiting for GPU operations to complete (the particular desired

behavior may be specified by the programmer).

1.4.2 Real-Time GPU Scheduling

In a real-time system, CPU, CE, and EE processors must be scheduled according to a predictable policy to
ensure that timing constraints are met. This is difficult to achieve using stock GPGPU technology. Although
the routines in Figure 1.2 are simple, a great deal of complex underlying software is needed execute them.
This software comes in two parts: (i) the OS device driver that manages the GPU and issues device-specific
commands; and (ii) the GPGPU language runtime that interfaces with the GPU device driver to execute the
GPGPU program. GPU manufacturers provide this software. However, this software is not designed with
real-time requirements in mind. Worse, it is commonly distributed as closed-source, so our ability to modify

the software’s behavior to support real-time requirements is constrained.

Thread Loop Counts

Run 1 \ Run 2 \ Run 3
0 0 0
104 969 0

1,307 0 3,706

2,230 | 1,928 0

5 0 786 0

Total || 3,641 | 3,683 [3,706 |

IS ROSH (S Y

Table 1.2: Reported loop counts.

Unfortunately, stock GPGPU technology offers little support for dependable scheduling policies. Con-
tention for GPU resources is often resolved through undisclosed arbitration policies. These arbitration policies
typically have no regard for task priority and may exhibit behaviors detrimental to multitasking on host
CPUs. Furthermore, a single task can dominate GPU resources by issuing many or long-running operations.
Allocation methods are needed that eliminate or ameliorate these problems. We demonstrate several of these
points with a simple experiment.

In this experiment, we have a program that repeatedly executes the VectorAdd routine on 4,000,000-
element vectors in a tight loop. We ran five instances of our program, as threads, concurrently under Linux’s
general purpose scheduler (e.g., a non-real-time scheduler). Our test platform has more CPUs than test
threads, but all threads share the same GPU (an NVIDIA Quadro K5000). Our threads execute for a duration
of 30 seconds and report the number of completed loop iterations upon completion. Table 1.2 gives the
reported loop counts for three separate test runs of our experiment. We observe two important behaviors in
this data. First, by comparing the values within each column, we see that each thread receives a very uneven
share of GPU resources. For instance, in Run 1, Thread 2 completes 104 loops while Thread 4 completes
2,230. Second, by comparing the values within each row, we see that each thread receives a different amount
of GPU resources in each experiment. For example, Thread 3 is starved in Run 2, but it receives all of the
GPU resources in Run 3. In short, GPU resources are allocated unfairly and unpredictably.

Stock GPGPU technologies do not provide a solid foundation upon which to build a real-time system.
We could endeavor to replace the closed-source software with our own, as has been explored by Kato et al.
(2012). However, this requires a great deal of software development and reverse engineering effort. It is better

to leverage existing software, if at all possible. We show in this dissertation that this is indeed possible. We

10

CPU Scheduling

Partitioned Clustered Global

Partitioned

Clustered

GPU Organization

Global

Figure 1.4: Matrix of high-level CPU and GPU organizational choices.

devise and implement mechanisms that satisfy our need for predictability while still using the manufacturer’s

original software.

1.4.3 Real-Time Multi-GPU Scheduling

Modern hardware can support computing platforms that have multiple GPUs. Given the performance
benefits GPUs offer, it is desirable to support multi-GPU computing in a real-time system. Similar to CPUs
in multiprocessor scheduling, GPUs can be organized following a partitioned, clustered, or global approach.
When combined with the earlier-discussed multiprocessor scheduling methods, we have nine high-level
possible allocation categories, as illustrated in matrix form in Figure 1.4. Can real-time mechanisms be
devised to support every configuration choice? Which configurations are best for real-time predictability?
Which configurations offer the best observed real-time performance at runtime? Do configuration choices
really matter? The answers to these basic questions are not immediately clear. This dissertation investigates

these questions in depth.

1.5 Thesis Statement

GPGPU is a new technology that has received little attention in the field of real-time computing. Initial
research results are promising. However, there has yet to be a comprehensive study of the topic. For instance,
it is not known what tradeoffs exist among the configurations depicted in Figure 1.4. More importantly,
however, it has not yet been shown to what extent a real-time system can actually benefit from GPGPU

technology.

11

This dissertation seeks to investigate real-time GPU scheduling and demonstrate the benefits of GPGPU

in real-time systems. To this end, we put forth the following thesis statement:

The computational capacity of a real-time system can be greatly increased for data-parallel
applications by the addition of GPUs as co-processors, integrated using real-time scheduling and
synchronization techniques tailored to take advantage of specific GPU capabilities. Increases in
computational capacity outweigh costs, both analytical and actual, introduced by management

overheads and limitations of GPU hardware and software.

1.6 Contributions

We now present an overview of the contributions of this dissertation that support this thesis.

1.6.1 A Flexible Real-Time Multi-GPU Scheduling Framework

The central contribution of this dissertation is the design of a flexible real-time multi-GPU scheduling
framework. In Chapter 3, we present our framework, which is called GPUSync. We posit that GPU
management is best viewed as a synchronization problem rather than one of scheduling. At its heart,
GPUSync is a novel combination and adaptation of several recent advances in multiprocessor real-time
synchronization made by Brandenburg et al. (2011) and Ward et al. (2012, 2013). This approach provides us
established techniques for enforcing real-time predictable and an analytical framework for testing real-time
schedulability.

GPUSync is highly configurable and supports every high-level CPU/GPU scheduling/organizational
method depicted in Figure 1.4. For each high-level configuration, a system designer may select a low-level
GPUSync configuration that best complements their analytical model or yields the best observed runtime
performance (or perhaps both).

GPUSync is also designed to efficiently support practical multi-GPU scheduling, in terms of both real-
time analysis and real-world performance. We employ real-time scheduling techniques that reduce pessimism
in analysis. We combine online monitoring with heuristics that guide GPU scheduling decisions that improve
performance while still maintaining real-time predictability. We also develop budget-enforcement techniques

that allow us to mitigate the effects of GPU operations that exceed their provisioned execution times.

12

1.6.2 Techniques for Supporting Closed-Source GPGPU Software

In Chapter 2, we identify issues that may arise when we attempt to use non-real-time GPGPU software
in a real-time system. Specifically, these issues relate to: (i) non-real-time resource arbitration, and (ii) the
real-time scheduling of GPU device driver and GPGPU runtime computations.

We present a solution to these problems in Chapter 3. We resolve the arbitration issues of (i) by wrapping
the GPGPU runtime with our own interface to GPUSync. Resource contention is already resolved when
the GPGPU runtime is invoked by application code. Thus, our real-time system is no longer at the mercy
of undisclosed non-real-time arbitration techniques. We address the scheduling problems of (ii) through
interception techniques. For example, we intercept the OS-level interrupt processing of the GPU device driver
and insert our own interrupt scheduling framework. We also intercept the creation of “helper” threads created
by GPGPU runtime and assign them proper real-time scheduling priorities. These features integrate with
GPUSync, allowing the framework to dynamically adjust scheduling priorities in order to maintain real-time

predictability.

1.6.3 Support for Graph-Based GPGPU Applications

In Chapter 5, we extend real-time GPGPU support to graph-based software architectures, strengthening
the relevance of GPUs in real-time systems. In such architectures, vertices represent sequential code segments
that operate upon data, and edges express the flow of data among vertices. The flexibility offered by such an
architecture’s inherent modularity promotes code reuse and parallel development. Also, these architectures
naturally support concurrency, since parallelism can be explicitly described by the graph structure. This
allows work to be scheduled in parallel and take advantage of the pipelined execution of graph processing—
techniques known to improve analytical schedulability and runtime behavior.

Graph-based software architectures are well suited to efficiently handle the sensor processing and
computer vision algorithms in the complex automotive applications we discussed earlier. For example,
instead of repeating the same sensor processing steps within each application that uses a particular sensor,

redundant computations can be consolidated in a application that distributes its results to others.

13

1.6.4 Implementation and Evaluation

In Chapter 3, we also describe the implementation of GPUSync in LITMUSRT. We discuss several of
the unique implementation-related challenges we addressed, including efficient locking protocols, budget
enforcement techniques, and the tracking of real-time priorities.

In Chapters 4 and 5, we evaluate our implementation in terms of analytical schedulability and runtime
performance. The results of this evaluation support the central claim of this dissertation’s thesis that GPUs
can be used in a real-time system, resulting in increased computational capacity.

In order to evaluate schedulability, we develop and present an analytical model of real-world system
behavior under GPUSync in Chapter 4. This model incorporates carefully measured empirical overheads
relating to real-time scheduling and GPU operations. Using this model, we carry out schedulability experi-
ments in order to determine the most promising configurations of GPUSync. This evaluation is broad and is
backed by data generated from tens of thousands of CPU hours of experimentation. Ultimately, we find that
clustered CPU scheduling with partitioned GPUs offers the best real-time schedulability, overall. However,
clustered GPU scheduling is competitive in some situations.

We demonstrate the effectiveness of our real-time GPU scheduling techniques by observing the run-
time behavior of GPUSync under several synthetic and “real-world application” scenarios in Chapters 4
and 5. Among our findings, we show that although partitioned GPU scheduling may offer better real-time

schedulability, clustered GPU scheduling may offer better observed real-time behavior.

1.7 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we discuss several background
topics, including the architecture and mechanics of GPUs and prior work on real-time heterogeneous
multiprocessor scheduling (including GPUs). In Chapter 3, we describe the design and implementation of
our configurable real-time GPU scheduling framework, GPUSync. In Chapter 4, we evaluate GPUSync in
terms of theoretical schedulability and runtime experiments. In Chapter 5, we extend GPUSync to support
graph-based applications and present a runtime evaluation using real-world computer vision code. We end in

Chapter 6 with concluding remarks and a discussion of future work.

14

CHAPTER 2: BACKGROUND AND PRIOR WORK'

In this chapter, we discuss background material and prior work on topics related to this dissertation.
We begin with a discussion of real-time multiprocessor scheduling, locking protocols, and schedulability
analysis. We then examine prior work on the implementation of real-time schedulers in real-time operating
systems (RTOSs) and issues related to peripheral device management (specifically, device interrupt handling).
We then review the current state of accelerator co-processors in the embedded domain to help motivate the
timeliness of our research. We then delve into relevant aspects of GPU hardware and software architectures
and programming models. Here, we also discuss the challenges of real-time GPU computing. We conclude

with a review of related prior work on GPU scheduling.

2.1 Multiprocessor Real-Time Scheduling

We discuss several foundational elements of real-time multiprocessor scheduling in this section. We
begin with a description of the analytical approach we use to model real-time workloads in this dissertation.
This is followed by a discussion of the meaning of the term “schedulability” and the procedures we use for
formally proving real-time correctness. We then examine the topic of resource sharing in real-time systems,
and how sharing may impact schedulability analysis. Finally, we discuss the methods we use to account for

real-world system overheads in schedulability analysis.

2.1.1 Sporadic Task Model

A workload that is run on a real-time system is said to be schedulable when guarantees on timing
constraints can be made. Schedulability is formally proved through analytical models. One such model is the

well-studied sporadic task model (Mok, 1983); we focus on this task model in this research. We define the

! Portions of this chapter previously appeared in the proceedings of two conferences. The original citations are as follows:
Elliott, G. and Anderson, J. (2012a). The limitations of fixed-priority interrupt handling in PREEMPT_RT and alternative approaches.
In Proceedings of the 14th OSADL Real-Time Linux Workshop, pages 149-155;
Elliott, G. and Anderson, J. (2012b). Robust real-time multiprocessor interrupt handling motivated by GPUs. In Proceedings of the
24th Euromicro Conference on Real-Time Systems, pages 267-276.

15

basic elements of the sporadic task model here. Later in this section, we expand this model to incorporate
resource sharing. In Chapter 4, we further expand the model to describe GPUs and GPGPU workloads.
Under the sporadic task model, we describe the computational workload as a fask set, T, that is specified
as a collection of n tasks: T £ {N,---,T,}. A job is a recurrent invocation of work by a task, 7;, and is
denoted by J; j, where j indicates the j™ job of T; (we may omit the subscript j if the particular job invocation
is inconsequential). Task 7; is described by a tuple of three parameters: (e;, p;,d;). The worst-case execution
time (WCET) of a job is given by e;. The releases of jobs J; ; and J; ;1 have a minimum release separation
time described by the task’s period, p;. A task is said to be periodic (instead of sporadic) if its jobs are
always separated by p; time units. Job J; ; is released (arrives) at time a; ; and completes (finishes) at time f; ;.
Each job has a precedence constraint: although job J; ;1 may be released before job J; ; completes, J; j11
cannot be scheduled until after f; ;. A pending job is an incomplete released job that has had its precedence

constraint met. The response time of J; ; is

rij = fij—aij. (2.1)

Every task has a relative deadline, d;. A task is said to have an implicit, constrained, or arbitrary deadline if

d; = pi, d; < p;, or d; > 0, respectively. Every job has an absolute deadline, defined by

D;; £ a;;+d;. (2.2)

Each job must execute for at most e; time units in order to complete, and it must receive this execution time

by D; ; to meet its deadline. We define [ateness by

lij# fij—Dij. 2.3)

Deadline tardiness is defined by

Xi, j = maX(O, l,‘J). (24)
The utilization of a task quantifies the long-term processor share required by the task and is given by the term

€

) (2.5)
Pi

A
up =

16

Task Set and Scheduler Parameters

m number of CPUs
c CPU cluster size
T task set
n number of tasks in task set
U(T) task set utilization
Parameters of Task T;
e job worst-case execution time
Di period
d; relative deadline
U; utilization
Parameters of Job J; ;
a; release (arrival) time
fij completion (finish) time
D; absolute deadline
Yij response time
li j deadline lateness (may be negative)
X j deadline tardiness

Table 2.1: Summary of sporadic task set parameters.
The total utilization of a task set is given by
U(T) =Y u 2.6)
Table 2.1 summarizes the various parameters we use in modeling a sporadic task set.

2.1.2 Rate-Based Task Model

The rate-based task model provides a similar approach to describing the workload of a real-time system
as the sporadic task model (Jeffay and Goddard, 1999). Instead of using p; to describe the arrival sequence
of task 7;’s jobs, we use J; to specify the maximum number of jobs of task 7; that may arrive within a time
window of v; time units.2 Thus, each task is described by a tuple of four parameters: (e;, i, V;,d;). We reuse
all of the sporadic task model parameters we described earlier, except for p; and u;. Utilization is given by

Ul 2 e % (2.7
1

2 Jeffay and Goddard use the symbols x; and y; instead of y; and v;, respectively. We deviate from their notation to avoid confusion
with other parameters we define. For example, we use x; to denote deadline tardiness.

17

Figure 2.1: Example of a PGM-specified graph (courtesy of Liu and Anderson (2010)).

We do not use the rate-based task model directly to determine schedulability in this dissertation. However,
we do use it as an intermediary representation in the process of transforming a more complicated real-time

model into the sporadic task model. We discuss this next.

2.1.3 Processing Graph Method

The sporadic and rate-based task models are limited in that they describe a set of independent tasks.
However, real-time workloads are not always so simple. For example, the sporadic and rate-based task models
lack the necessary expressiveness to describe the scenario where the input of a job of one task 7; is dependent
upon the output of a job of another task 7;. We see this type of inter-task dependence in graph-based software
architectures. The Processing Graph Method (PGM) is an expressive model for describing such software
architectures.

PGM describes the dependencies among jobs in terms of producer/consumer relationships. The workload
is described by set of n graphs: G = {Gy,---,G,}. Each graph is comprised of subtasks, G; = {G!,- - .G},
where z; denotes the number of subtasks in G;. Figure 2.1 depicts a graph expressed in PGM. We represent
each subtask with a node. A directed edge connecting a producer subtask to a dependent consumer subtask
reflects the data dependencies between connected nodes. The production and consumption of data is modeled
by tokens, where producers produce tokens and consumers consume them. Each edge is described by three
parameters that describe token production and consumption. The number of tokens produced by a subtask
Glj for subtask Gi-‘ each time a job of G{ completes is denoted by Qif%j . The number of tokens consumed by

each job of Gﬁ-‘ is given by Kf<_j . Finally, a threshold on the number of tokens that must be available on the

18

edge connecting Glj and Gi-‘ before a job of Gi-‘ may execute is given by (pik “J. We denote the set of subtasks
that directly generate input for Glj with the function pred (sz). Likewise, we denote the set of subtasks that
directly consume the output of G{ with the function cons(G{). We attach rate-based arrival parameters to the
source nodes of each graph. Similar to the rate-based task model, we use)(lj to specify the maximum number
of jobs of task Glj that may arrive within a time window of vl.j time units.

Goddard presents a procedure for transforming a set of PGM graphs into a rate-based task set in his Ph.D.
dissertation (Goddard, 1998). Building upon this work, Liu and Anderson developed a method to transform
the PGM-derived rate-based task set into a sporadic task set, provided that the underlying graph contains no
cycles (i.e., a directed acyclic graph (DAG)) (Liu and Anderson, 2010).

We now present the procedure for transforming a PGM-based graph into a sporadic task set, via an
intermediate transformation into a rate-based task set. We direct the reader to Goddard (1998) and Liu
(2013) for the justifications behind the graph-to-rate-based-task-set and rate-based-to-sporadic-task-set
transformations, respectively.

We first assume that rate-based arrival parameters have been assigned to all source nodes of every graph.

We then derive these parameters for the remaining nodes using the equations

Uk 2] ’k = D'V | € d(Gk) (2.8)
;= lem v € pred(G;) ¢, .
t oc 1(@:?%‘} X xiv’ Kikev) p l
ko ok o X k
v
Xi =V - ’k S —v’y, where G} € pred(G;). (2.9)

1 1

We compute a relative deadline for every task using the equation:

dk 2

1

(2.10)

N

At the end of this transformation, we have a rate-based task set, 7’7, derived from G. We transform 7" into
a sporadic task set by replacing the terms Xlk and vll‘ of each task with a period equal to each task’s relative

deadline:

~Ta
lI>
<
il

iy 2.11)

R
Ead

19

(ef X vr dy)

2Rt

k k _k gk
(ef,1,4,4) 17 = (ef,p;i,d;)
1 1
ﬂ = (ei) 47 4)
2 2
(e7.4,12,3) (€3,4,12,3) 7 = (ei) 3, 3)
Tig = (6?7 37 3)
4 4
(4212 6) Tz (ei7676)
€54,)
(a) Rate-based transformation. (b) Sporadic transformation.

Figure 2.2: PGM-specified graph of Figure 2.1 transformed into rate-based (a) and sporadic (b) tasks.

Example 2.1. Consider the PGM-specified graph in Figure 2.1. Let us assume that G! has an execution
rate of (X,-l =1, vil =4).3 We now transform the graph G; into a set of rate-based tasks, followed by a
transformation into sporadic tasks. These transformations are illustrated in Figure 2.2.

We apply Equations (2.8) and (2.9) to find v? = lcm{%} — 12 and g2 = 12+ %1 = 4 for
the rate-based task Tl-rb 2. We use Equation (2.10) to find that the relative deadline for Tl.rl’2 is di2 =

12 = 3. The rate-based task T/” is similarly defined, since k2! = x> and o' = <! Also,

v} = lem { P Ot O } =lem{12,12} = 12 and x} = 12- 1. & =2 for the rate-based task 7;”*. The
relative deadline is df‘ = % = 6. To transform the rate-based tasks to sporadic tasks, we merely take the
rate-based relative deadline as the period for each task. O

Although we model the derived sporadic task set as a set of independent tasks, a scheduler must take steps,
at runtime, to (i) efficiently track the production and consumption of tokens on each edge; and (ii) dynamically
adjust the release time of jobs to ensure token input constraints are satisfied. We may accomplish (i) by
enabling token-producing jobs to notify the scheduler of when token constraints are satisfied. Liu and
Anderson (2010) specify how to address (ii): we delay the release of any sporadic job until inputs are satisfied.
Suppose a job Jl.’f j 1s “released” at time aﬁ ; as a conventional sporadic task, but that the token constraints
of J{f ; are not satisfied until a later time, 7. In such a case, we adjust the release time of job Jl" jto a{i j=t

and its deadline to Di-‘ j=1+ dll‘ . We present an efficient implementation for token constraint tracking and

release-time adjustment in Chapter 5.

3This example is courtesy of Liu and Anderson (2010).

20

[

CPU, CPU,

<

D]]]—' CPU] CPU] CPU]

D]—' CPU2 < CPU2 CPU2

[I:ll]—> CPU3 CPU3 CPU3
(a) Partitioned (¢ = 1) (b) Clustered (¢ =2) (c) Global (c =4)

Figure 2.3: Each processor cluster is fed by a dedicated ready queue of jobs. Example with m = 4.

2.1.4 Scheduling Algorithms

We now discuss the algorithms we use to schedule a given sporadic task set on set of processors, as well
as the formal analysis we use to determine whether timing constraints can be met.

The task set 7 is scheduled on hardware platform consisting of m processors (or cores). These processors
may be divided into disjoint clusters of ¢ processors each. Each task (and all its associated jobs) is assigned to
acluster. Whenc =1, 1 < ¢ <m, or c = m, the multiprocessor system is said to be scheduled by a partitioned,
clustered, or global scheduler, respectively.

An incomplete released job is ready if it is available for execution, it is scheduled if the job is executing
on a processor, and it is suspended if the job cannot be scheduled (for whatever reason). A scheduled job is
either preemptible or non-preemptible, and cannot be descheduled while it is non-preemptible.

Each processor cluster draws ready jobs from a dedicated priority-ordered ready queue. This is depicted
in Figure 2.3 for a system with four processors under partitioned (inset (a)), clustered (inset (b)), and global
(inset (c)) scheduling. In this figure, each ready job is depicted by a different shaded box. Jobs enter the ready
queue when they are released, resume from a suspension, or are preempted. Jobs exit the ready queue when
they are scheduled. A job is free to migrate among all processors within its assigned cluster. Of course, no
migration is possible under partitioned scheduling, since each cluster is made up of only one processor.

The research in this dissertation focuses on multiprocessor scheduling algorithms; specifically, job-level
fixed-priority (JLFP) scheduling algorithms where a fixed scheduling priority is assigned to a job when the
job is released. We further classify JLFP scheduling algorithms as fixed- or dynamic-priority. Fixed-priority
(FP) scheduling algorithms assign the same priority to all jobs of the same task, though each task may have a

different priority. Dynamic-priority scheduling algorithms assign a priority to a job upon release—every job

21

of every task may have a different priority. The rate-monotonic (RM) scheduler prioritizes tasks with shorter
periods over those with longer ones. Similarly, the deadline-monotonic (DM) scheduler prioritizes tasks
according to relative deadlines instead of period. Period and relative deadline parameters are constant, so RM
and DM are FP schedulers. The earliest-deadline-first (EDF) scheduler prioritizes jobs with earlier absolute
deadlines over those with later ones. EDF is a dynamic-priority scheduler since the absolute deadline depends
upon the release time of a job. Similarly, the recently developed “fair-lateness™ (FL) scheduler prioritizes jobs
using pseudo-deadlines called priority points (Erickson, 2014). The relative priority point of a task, denoted

by the parameter y;, is determined by the following formula:

m—1

yiZdi— ;. 2.12)

Similarly, an absolute priority point of a job, denoted by the parameter Y; ;, is given by:

m—1
Yij = Dij———ei. (2.13)

FL is also a dynamic-priority scheduler.

We combine the processor cluster organization with a prioritization scheme to create a multiprocessor
scheduling algorithm. For example, we refer to the multiprocessor scheduler defined by combination of
partitioned processor organization (¢ = 1) with EDF prioritization as “partitioned EDF” (P-EDF). Likewise,
we get the “global RM” (G-RM) scheduler by combining globally organized processors (¢ = m) with RM
prioritization.

Clustered approaches are particularly effective on large multiprocessor systems where migration costs
are high due to high interprocessor communication costs. Migration costs are reduced if processors that can
communicate efficiently, such as through shared caches, are clustered together. Semi-partitioned scheduling
is another hybrid approach whereby most tasks are partitioned to a individual processors, while remaining
tasks may migrate between two or more processors (Anderson et al., 2005). Semi-partitioned algorithms
are also effective since migration costs are eliminated for most tasks. We will not discuss semi-partitioned

algorithms any further; we only mention them here for the sake of completeness.

22

2.1.5 Schedulability Tests and Tardiness Bounds

A schedule is feasible for a task set if all timing constraints are met. A task set is schedulable under a
given scheduling algorithm if the algorithm always generates a feasible schedule. (A scheduling algorithm
is optimal if it always generates a feasible schedule, if one exists.) Our definitions of feasibility and
schedulability are with respect to some notion of “timing constraints”’—these may be application-specific.
We call systems where all deadlines must be met hard real-time (HRT) systems. Applications with HRT
requirements are found in safety-critical applications where loss of life or damage may occur if a deadline is
missed. We call systems where some deadline misses are acceptable soft real-time (SRT) systems. A video
decoder is an example of an application with SRT requirements. This definition of SRT remains general and
can be further refined. In the context of this dissertation, an SRT system is one where deadline tardiness (the
margin by which a deadline may be missed) is bounded.

A schedulability test is a procedure that determines if a given task set is schedulable. For instance, a
classic result from a seminal work by Liu and Layland (1973) states that any periodic task set scheduled by

uniprocessor RM scheduling is HRT-schedulable if
1
U(T)<n(2»—1). (2.14)

This schedulability test is only sufficient, as some task sets may be schedulable with utilizations greater
than n(ﬁ —1). In the same work, Liu and Layland also showed that any periodic task set scheduled under

uniprocessor EDF scheduling is HRT-schedulable iff
U(T)<1. (2.15)

Since any task set with a utilization greater than one has no feasible schedule, uniprocessor EDF is an optimal
scheduler.

The development of schedulability tests has been, and continues to be, a central topic in real-time systems
research. This research has resulted in numerous schedulability tests—each may evaluate schedulability
under a different set of timing constraints, scheduling algorithms, and assumptions of task set characteristics.
The primary schedulability test we concern ourselves with in this dissertation is the SRT test developed by

Devi and Anderson (2006) for implicit-deadline sporadic task sets scheduled by G-EDF: any conventional

23

sporadic task set is schedulable with bounded deadline tardiness if the constraints

U(T)<m (2.16)

and

VTi: u; <1 (2.17)

hold true. Inequality (2.16) defines the task set utilization constraint, and Inequality (2.17) defines a per-task
utilization constraint. These constraints can also be used to evaluate the schedulability (with bounded
tardiness) of task sets with arbitrary deadlines (Erickson, 2014).

We can compute deadline tardiness bounds for schedulable implicit-deadline task sets. We define several
terms and functions in order to describe this process. Let e,,;;, be the smallest job execution time among the
tasks in 7. We use £(7) to define an operation that returns the subset of m — 1 tasks in 7" with the largest e;.
Similarly, we use U(7) to define an operation that returns the subset of m — 2 tasks in 7" with the largest uy.

The deadline tardiness of any job is bounded by

(ZT,ez('I) €j) = emin

Xi =e;+ (2.18)

m— Y5 cu(r) Uk

We may extend the above test and tardiness bounds to C-EDF by testing each cluster individually.
In cases where [U(7)] < m, we may obtain tighter tardiness bounds by substituting the term m with m,
where

m=[U(T)], (2.19)

in Equation (2.18) and the definitions of £(7) and U(T). This optimization reflects the observation that a
task set only requires [U(7T)] processors to be schedulable with bounded tardiness. The bound provided by

Equation (2.18) may be tightened if we assume fewer than m processors in analysis.

Example 2.2. Figure 2.4 depicts the schedule for three periodic implicit-deadline tasks scheduled under
G-EDF on two processors (m = 2), with deadline ties broken by task index. The tasks share the same

parameters: 7; = (e; = 8, p; = 12,d; = 12). After time r = 12, the schedule settles into a steady pattern.

24

A A A A A T

T-’ v v v v
A [X X X 1y

T2 4 L 4 L 4

A T A T A T A T A
T3 \/ L/ \/ L/ \/
ﬁme T T T S S A T Y M A } } >

0 5 10 15 20 25 30 35 40 45 50 55 60 65

T Release l Deadline IComplete

Scheduled on CPU0 Scheduled on CPU]

Figure 2.4: Example of bounded deadline tardiness for a task set scheduled under G-EDF on two CPUs.

This task set satisfies the task set utilization (Inequality (2.16)) and per-task utilization (Inequality (2.17))
constraints since U(7) =2 and u; = % Using Equation (2.18) to analytically bound deadline tardiness, we

find that no job will miss its deadline by more than eight time units. %

In Figure 2.4, we see intuitively that task 73 will never misses its deadline by more than four time units. In
contrast, Equation (2.18) bounds tardiness by eight time units. This difference of four time units is evidence
of pessimism in analysis. Compliant Vector Analysis (CVA) by Erickson (2014) offers tighter tardiness
bounds. CVA computes bounds on deadline lateness, instead of tardiness, by solving a linear program. We
present the CVA linear program here, but we direct the reader to Erickson (2014) for justification.

CVA uses pseudo-deadline priority points, which we discussed with respect to FL-scheduling in Sec-
tion 2.1.4, and also defines several additional terms. Under CVA analysis of EDF scheduling, the relative
priority point and deadline of a task coincide (i.e., y; = d;). We characterize processor demand by task 7; with
the function

Si(vi) zei'maX{O,l]y)} (2.20)

Total demand is given by

SF) =Y, Siy) 2.21)

TeT

Response time and lateness bounds are defined recursively, with X; as a real value:

ri=yi+Xit+e, (2.22)

25

and

li=yi+%i+e —d. (2.23)
The function

GEY= Y (Gwuit+e—Si()) (2.24)

m—1 largest

denotes the processor demand from tasks that can contribute to job lateness.* Finally, let
s = G(£,5) +5(). (2.25)

We define additional variables S;, S, G, b, and z; for the linear program. We find values for £; by solving

the following linear program:

Minimize: s

Subject to: £ = — & Vi,
m
S; >0 Vi,
S,‘Zéi'<1—yi> Vi,
Di
z>0 Vi,

zi > Xuj+e;,—S;—b Vi,

Ssum - Z Si7

T,eT
G=b-(i—1)+ Y z,
T,eT
s > G+ Squm

With values for £; from the solution to the linear program, we compute bounds for /; using Equation (2.23).
There are three main advantages to CVA over Devi’s method (Equation (2.18)). First, CVA usually gives
tighter bounds than Equation (2.18).> Second, CVA computes lateness instead of tardiness. In some instances,

CVA may compute a negative value for [;, indicating that a job of task 7; never misses a deadline. Finally,

4Observe that we use the term 7i defined by Equation (2.19).

5 CVA strictly dominates Equation (2.18) with additional enhancements to its linear program (Erickson, 2014).

26

critical section
| |

blocked
|
J E =] s
I \ j \
time . . . >
re t |
btk bk

Figure 2.5: Critical section of job J;.

CVA can be applied to task sets that include tasks with arbitrary deadlines, while Equation (2.18) may only

be applied task sets made up entirely of tasks with implicit deadlines.

2.1.6 Locking Protocols

The sporadic task model can be extended to allow a set of serially-reusable shared resources (such as
shared data objects and I/O devices) to be specified. Access to these resources must be mutually exclusive, in
that only one job may access the resource at a time. We denote g such resources by /1,---,£,. When a job J;
requires a resource £}, it issues a request R; j for /; at time t; ejqk. The subscript k denotes the k”* non-nested

)

request of J; for £;. R; j x is satisfied as soon as J; holds ¢; at time #;7';, and completes when J; releases {; at
time ;' ejl - This sequence of events is illustrated by Figure 2.5. We call the computation and operations (such
as 1/0) of J; performed within the interval [},] ‘;l) a critical section. The length of a critical section of job

Ji for request R; ; x of resource /; given by
A rel
Lijk =155 =15k (2.26)

when job J; executes without preemption. We denote the longest critical section for resource ¢; of any job of

T; by L. The longest critical section of resource ¢; of any task is given by

L7 2 max {1} . (2.27)
T}G'T N

We denote the number of times a job J; may issue a request for resource ¢; with 7; ;. Finally, the total number
of resource requests of all resources requested by J; is denoted by 7;. The above parameters are summarized

in Table 2.2.

27

Parameter | Meaning

4 7™ serially reusable shared resource
Ri ik k™ request of job J; for resource ¢;
Lk critical section length of request R; ; «
L longest critical section of any request from a job of T; for resource ¢;
L;”“x longest critical section of any request for resource ¢
Nij number of times job J; may request resource /;
ni total number of resource requests issued by job J;

Table 2.2: Summary parameters for describing shared resources.

Locking protocols arbitrate resource requests for exclusive access issued by jobs. If a job J; issues a
request R; j ; for resource ¢; that is unavailable, then J; is blocked until R, ;; is satisfied. As depicted in
Figure 2.5, job J; is blocked during the interval [/, #}%,). In general, the blocked job J; can wait for R; j x
to be satisfied by either spinning or suspending. Under spinning, job J; remains scheduled on a processor
and executes a tight polling loop (busy-waits) until R; ; ; is satisfied. Under suspension, J; relinquishes its
processor and enters a suspended state, and J; becomes ready the instant R; ; is satisfied. The locking
protocol determines whether spin- or suspension-based waiting methods are used, as well as the order in
which multiple outstanding requests are satisfied. Spin-based locking protocols are commonly used when
resource access times are very short, since the runtime overhead of suspending a job can exceed the time
spent spinning. However, because GPUs have relatively long access times, we concern ourselves only with

suspension-based locking protocols. This allows other useful work to be done while jobs wait for GPU

access.

2.1.6.1 Priority Inversions and Progress Mechanisms

A priority inversion occurs whenever lower-priority work is scheduled instead of ready higher-priority
work. Some sources of priority inversions are forced upon us by real-world constraints. For instance, device
interrupts can be a source of priority inversions—we examine this at length later in Section 2.2.3. Resource

sharing can also lead to such inversions.

Example 2.3. Figure 2.6(a) depicts a classic priority-inversion scenario. Here, three jobs are scheduled on a
uniprocessor system. A low-priority job Jy is released at time 0. At time 5, job J;, obtains a lock on a shared
resource. A time 8, a high-priority job Jy is released, preempting Jz. Job Jy requires the resource held by job
Ji at time 15, so Jy blocks and is suspended from the processor; job J;, resumes execution. At time 18, a

medium-priority job Jy is released and preempts job J;, because Jys has a higher priority. Job Jjs continues to

28

TRelease [Complefe ITBlock TUnblock Resource Held = Priority Inversion ﬁ Elevated Priority

=]

I Iy —
A
Im Im T
, BB B
e s % s 20 2 0 a5 40 4 s A S o % 2 % % A 4w
(a) Jy experiences an unbounded priority inversion. (b) Ji, inherits a priority from Jy at time 15

g1

time

[5 10 15 20 25 30 35 40 45 50

(c) Priority of Jy, is boosted to a maximum priority at time 15.

Figure 2.6: Resource sharing can lead to priority inversions. Progress mechanisms, such as priority inheritance
(inset (b)) and priority boosting (inset (c)), can shorten priority inversion duration.

execute beyond the depicted schedule. Job Jy is ready to be scheduled at time 15, but it cannot since it must

wait to obtain the resource held by job J;. Thus, job Jy suffers from a priority inversion, starting at time 15.
O

We say that the priority inversion suffered by job Jy in Figure 2.6(a) is unbounded because the length of
the inversion depends upon the execution time of job Jjs, which may be arbitrarily large. Priority inversion
durations must be bounded. We accomplish this by using “progress mechanisms” that expedite the scheduling
of lower-priority resource-holding jobs. That is, we intentionally increase the scheduling priority of a
resource-holder from a base priority (i.e., its default priority) to a higher effective priority. Naturally, the
resultant priority inversion bounds are a function of resource critical section lengths, as opposed to arbitrary
processor demand (as was the case with job Jjy; in Figure 2.6(a)).

We discuss three general methods employed by real-time locking protocols to bound the duration of

priority inversions due to resource sharing: priority inheritance, priority boosting, and priority donation.

Priority Inheritance. Under priority inheritance (Rajkumar, 1991; Sha et al., 1990), the effective priority

of a job J; holding resource ¢ is set to the maximum of J;’s base priority and the effective priority of all jobs

29

blocked (or that may block, depending upon the locking protocol) on #. That is, job J; inherits the priority of

the highest-priority job that is waiting for ¢;. Job J;’s effective priority remains elevated until ¢ is released.

Example 2.4. Figure 2.6(b) depicts an example of priority inheritance. As before, job Jy requires the
resource held by job Jp at time 15, so Jy blocks and is suspended from the processor; job Jr resumes
execution. However, job J;, inherits the priority of job Jy, so Jy is scheduled with an effective priority of Jy.
When job Jy, is released at time 18, it lacks the sufficient priority to preempt J;.. Job J;, remains scheduled.
Job J;, relinquishes the share resource to job Jy at time 20. With the needed resource obtained, job Jy is

immediately scheduled. O

Priority inheritance is often viewed as the temporary transference of the priority from a high priority job
to a low priority job. However, it is better to conceive of priority inheritance as a transference, occurring in
the opposite direction, of work. That is, we may view priority inheritance as the transference of low priority
work, i.e., a critical section of a low priority job, to a higher-priority job. Conceptually, we may think of a
job as obtaining any requested resource immediately—the job is never blocked. However, such a job may
be required to notionally execute the critical sections of lower priority jobs on their behalf.% This view is
embodied by a strengthened form of priority inheritance called bandwidth inheritance (BWI) (Lamastra
et al., 2001; Nogueira and Pinho, 2008). Under BWI, a resource holding job that inherits a priority also
inherits the execution time budget of the job associated with the inherited priority. Thus, the execution time
of the critical section is charged against the budget of the blocked high-priority job, not the lower-priority
resource holding job. Tasks can be provisioned with enough budget to cover any budget lost due to BWL.
However, budgets may be exhausted if critical sections take longer to execute than expected (or provisioned).
We may take additional measures to isolate the temporal effects of such a fault. If the budget of a task with
an unsatisfied resource request is exhausted, then we abort the task’s request, refresh the budget of the task

(possibly decreasing the task’s priority), and reissue the aborted request (Brandenburg, 2012, 2014a).

Priority Boosting. Under priority boosting (Brandenburg and Anderson, 2013; Lakshmanan ef al., 2009;
Rajkumar, 1990, 1991; Rajkumar et al., 1988), a job J;’s effective priority is set to the highest scheduling
priority when access to a shared resource is contended, or when access is granted, depending upon the locking

protocol. Job J;’s effective priority remains elevated until #; is released.

5The number of critical sections executed depends upon the locking protocol.

30

T Release [Complete T Block T Unblock

J
CPU, M

Resource Held = Priority Inversion ﬁ Elevated Priority

: J
| CPU, M

cry,
Iy

cry,
Iy

2 FEEEH

e e R s e J A |

a4 4 L B

5 10 15 20 25 30 35 40 45 50 0o 5 10 15 20 25 30 35 40 45 50

JLj
0

time

(a) Priority inheritance ineffective across CPU partitions. (b) Priority boosting effective across CPU partitions.

cpPu, ‘M

cry, N -
I @
o

time

5 10 15 20 25 30 35 40 45 50

(c) Priority donation ensures resource-holding jobs are always scheduled.

Figure 2.7: Stronger progress mechanisms may be needed in multiprocessor systems.

Example 2.5. Figure 2.6(c) illustrates an example of priority boosting. This figure depicts the same scenario
we have studied before, except that we have added an additional very high priority job, Jyy, in order to
illustrate an important difference between priority inheritance and priority boosting. As before, job Jy
requires the resource held by job Jy at time 15, so Jy blocks and is suspended from the processor; job Jr
resumes execution, but when job Jj, is released at time 18, it lacks the sufficient priority to preempt J.—Jr,
remains scheduled. At time 19, the very high priority job Jyy is released. However, since job J;, has a boosted
priority, Jyy cannot preempt Jy, either. Job Jy, relinquishes the share resource to job Jy at time 20, and job
Jvy is immediately scheduled. Job Jyy completes at time 25. With the needed resource obtained, job Jy is

scheduled next. O

Observe that in Figure 2.6(c) Jyy suffers from a priority inversion, even though it does not require the
shared resource. This is a drawback to priority boosting: any job may suffer a priority inversion due to the
priority boosting of another job. This can be detrimental to schedulability.

Priority boosting is implicitly used by most spin-based locking protocols, as these protocols commonly
disable interrupts (disabling preemption) while spinning and within a critical section—this behavior is
essential to avoiding deadlock in a spin-based locking protocol. Disabling preemption essentially gives

the resource holding job a maximum priority. Priority boosting is also used in suspension-based locking

31

protocols. Particularly, in multiprocessor locking protocols where resources are shared among partitions or
clusters of processors. In general, priority inheritance is an ineffective progress mechanism across partitions
and clusters. This because a priority that guarantees that a job is scheduled within its own local partition
or cluster (i.e., the priority of a blocked job) may not be sufficient to guarantee that the resource holder is

scheduled within a remote partition or cluster.

Example 2.6. The ineffectiveness of priority inheritance for resources shared across partitions or clusters
is illustrated in Figure 2.7(a). Here, job Jj is partitioned to CPUy, while jobs Jy and J; are partitioned to
CPU;. Job Jy, inherits a priority from Jj; at time 15. However, since the priority of Jy is greater than Jy, Ji.
is not scheduled. Jj; experiences an unbounded priority inversion, even though it has sufficient priority to be
scheduled on CPUj,.

Priority boosting is effective in the same scenario, as illustrated by Figure 2.7(b). Here, the priority

inversions that effect jobs Jy and Jy, are bounded by the critical section length of J;. O

Priority Donation. Priority donation is a recently developed progress mechanism for multiprocessor locking
protocols (Brandenburg and Anderson, 2013). Priority donation is similar to priority inheritance in that a job
may adopt a priority from another job. Priority donation is also similar to priority boosting in that resource
holding jobs are always scheduled if they are ready. A donor is a job that donates its priority to a donee job.
The effective priority of a donee job is set to that of its donor. The donation relationship between donor and
donee is established upon job release of the donor.

We define two sets of pending jobs to help describe priority donation. Let 7 denote the set of all pending
jobs; these may be ready or suspended. Let the subset 7/7¢ € 7 denote the set of pending jobs with the top-c
priorities (recall that ¢ denotes the processor cluster size). Upon the release of a job J,, if J; € 7P, and the
arrival of J; causes a job J; to be moved from 77°¢ to the set 7\ 7P, then J; may become a priority donor

under the following conditions:

1. If J; is blocked waiting for a resource or it is a resource holder, then J; donates its priority to J;; J;

becomes the donee of J;.

2. If J; is a donor to a job J;, then J; donates its priority to J;, ending the donor relationship between J;

and J;, and replacing it with a relationship between J; and J;.

32

The effective priority of a donee job remains elevated until it releases any shared resources, terminating
any donor relationship it may have. A priority donor may not be scheduled until its donor relationship is

terminated.”

Example 2.7. Figure 2.7(c) illustrates an example of priority donation. Here, job J; obtains a shared resource
at time 5. The higher-priority job Jy is released at time 8. Since job J; holds a resource, job Jy donates its
priority to J;,, and J;, continues to execute. Job J;, terminates the donation relationship at time 13, when it

releases the shared resource. Job Jy is immediately scheduled. O

In general, any job may required to become a priority donor upon its release. As a result, any job can
experience a priority inversion due to donation, since donors always suffer from a priority inversion. That
is, every donor is in 9P (i.e., every donor should be scheduled), and no donor is ever scheduled. Priority
donation and priority boosting are similar in that any job can suffer a priority inversion due to shared resources
used by other jobs. However, under priority donation, this priority inversion occurs at most once per job.
Whereas, under priority boosting, a job may experience multiple priority inversions.

Priority donation is used by the “Clustered k-exclusion O(m) Locking Protocol” (CK-OMLP), developed
by Brandenburg and Anderson (2013). Ward et al. (2012) adapted the ideas behind priority donation for the
“Replica-Request Donation Global Locking Protocol” (R>DGLP). However, the R?DGLP limits donors to the
set of jobs that actually share a resource. The protocol also defers the establishment of donation relationships
to the moment a shared resource is requested, instead of at job release. Both the CK-OMLP and R?DGLP are

a foundational element to GPUSync, so we discuss them at length in Section 2.1.7.

2.1.6.2 Nested Locking

A job may require exclusive access to multiple shared resources at once. This can lead to nested resource
requests, where a task first acquires resource ¢, and then acquires resource ¢;,. In other words, the critical
section of ¢;, may be nested within the critical section of ¢,. Arbitrary nesting of critical sections may lead to
deadlock. The classic example of deadlock is the situation where task 7; holds resource ¢, and blocks for
access to resource {5, while 7; holds resource ¢, and blocks for access to resource /,. Neither task makes

progress, so the two tasks are blocked forever. Real-time correctness cannot be guaranteed for a system where

7 Additional refinements to priority donation rules allow a donor to be scheduled under special conditions when its donee is suspended.
However, this is merely a runtime optimization that does not improve schedulability analysis. We direct the interested reader to
Brandenburg and Anderson (2013) for details.

33

deadlock is possible. There are three general approaches to supporting nested resource requests: group locks,

totally-ordered nested requests, and deadlock-free locking protocols.

Group Locks. The first approach to manage nested locking is to define away the problem. This is done
by protecting the set of nested shared resources with a single group lock (Block et al., 2007). A task must
acquire this lock if it needs to access one or more of the resources protected by the group lock. While safe,
this approach limits parallelism. For example, consider the situation where three resources, ¢,, £, and /., are
protected by a single group lock. Task 7; requires resources ¢, and ¢;, while task T; only requires /.. The
execution of 7; and T; is serialized when they contend for the group lock, even though they do not actually

share the same resources.

Totally-Ordered Nested Requests. Another approach to supporting nested critical sections is to ensure that
resources are acquired in an order that guarantees deadlock freedom. To do so, we enumerate all resources
in a single sorted order /1,---,/¢,. This ordering is observed by all tasks in a system. If a task requires
simultaneous access to two resources, then it must acquire ¢; before resource ¢, where i < j. This generalizes
to an arbitrary number of resources. It is easy to see how total ordering resolves the classic deadlock scenario.
If tasks 7; and 7} both require access to resources ¢, and {3, then the tasks contend for ¢, before they may
contend for ¢,. No task can hold ¢;, while it contends for ¢,, so nested locking is deadlock-free. A drawback
to totally ordered nested requests is that it requires disciplined programming. A given resource ordering may
also be at odds with the natural flow of program code. For example, although a task 7; may require access
to both resources ¢, and ¢;,, program code may begin using ¢, long before ¢,. However, the total ordering

requires £, to be obtained early.

Deadlock-Free Locking Protocols. Deadlock freedom can also be guaranteed by a locking protocol al-
gorithm. Classic (uniprocessor) real-time locking protocols that ensure deadlock freedom include the
priority-ceiling protocol (PCP) (Sha et al., 1990) and the stack resource policy (SRP) (Baker, 1991). These
locking protocols use rules that delay access to a shared resource, even if it is available, if immediate access
may lead to deadlock at a later time.

Another technique that can guarantee deadlock freedom is the use of dynamic group locks (DGLs) (Ward
and Anderson, 2013). Under DGLs, a task issues requests for all resources it may require atomically. DGLs
leverage the combined atomic request to guarantee deadlock freedom. Consider the following scenario. A

task 7; requires resources £, and ¢, while task T; requires resources /,, £}, and £.. T; issues a combined

34

request for (4, ¢;), and T} issues a combined request for (¢,,¢p,¢.). The underlying locking protocol data
structures for each resource are jointly updated atomically. Under FIFO-ordered locks, resources can be
granted in any order without risk of deadlock. This is because whenever tasks 7; and 7; contend for the same
resources, the relative ordering between the tasks’ requests is the same in every FIFO queue. Thus, access to
every resource is granted in the same order. This prevents the deadlock scenario where each task waits for
resources held by the other.

We must point out two important details of DGLs. First, DGLs must maintain the illusion of obtaining
resources through individual requests in order to maintain sporadic task model abstractions. This means that
progress mechanisms that act on behalf of a task 7; may only be active on one lock at a time. We illustrate
this point with an example. Suppose task 7; waits for resources ¢, and ¢, and priority inheritance is used as
the progress mechanism for these locks. Either the resource holder of ¢, or the resource holder of ¢, may
inherit the priority of 7; at any given time instant, but not both.® The second important detail of DGLs is that
the underlying locking protocol implementation must support joint atomic updates. The data structures that
manage unsatisfied lock requests are commonly protected by per-lock spinlocks that reside in the OS kernel.
These spinlocks are only held while the data structures are modified. In order to support atomic DGL resource
requests, all of the spinlocks related to the resources in a DGL request must be obtained before modifying
the data structures of the individual locks. We have traded one multi-resource request problem (the request
for DGL-protected resources) for another (the spinlocks that protect the locking protocol data structures of
said resources)! We can resolve this problem in one of two ways. We may protect all locking protocol data
structures with a single spinlock (i.e., a group lock). This may be appropriate, since spinlocks are held for
only a short duration. However, this hurts parallelism, as all concurrently issued resource requests serialize
on the DGL spinlock. A better approach is to obtain the necessary spinlocks in a total order. Thankfully, this
trivial to implement in the OS kernel. Each spinlock has a unique memory address, so we obtain spinlocks in

order of their memory addresses.

2.1.6.3 Priority-Inversion Blocking

Blocking durations must be accounted for in schedulability analysis when locking protocols are used.

However, schedulability analysis must only consider blocking durations for which delays in execution cannot

8The only exception to this rule is when the same task holds both ¢, and ¢,,.

35

be attributed to higher-priority demand (otherwise, a job without sufficient priority to be scheduled has no
effect on analysis). We term this type of blocking priority inversion blocking (pi-blocking), and quantify the
total time a job J; may be pi-blocked with the term b;. Brandenburg and Anderson (2013) classify analytical
techniques for bounding pi-blocking due to suspension-based locking protocols as either suspension-oblivious
(s-oblivious) or suspension-aware (s-aware). Under s-oblivious analysis, all suspensions, including those
introduced by waiting for shared resources, are analytically treated as processor demand. Hence, a job’s

execution time e; is inflated by b; prior to performing schedulability tests such that

e; >ei+ b, (2.28)

where €} denotes the safe bound on execution time used in s-oblivious schedulability analysis. Inflation
essentially converts a set of dependent tasks into a set of independent tasks that can be analyzed by “normal”
(locking-protocol-agnostic) schedulability tests. This approach is safe, but pessimistic in that processor time
is analytically consumed by all suspensions. S-aware schedulability analysis explicitly treats b; as suspension
time. However, this treatment must be incorporated into schedulability tests. These tests are more difficult to
develop, and s-aware analysis has not yet matured for all schedulers. We primarily use s-oblivious tests for
global dynamic-priority JLFP schedulers. S-aware analysis is available for global fixed-priority scheduling,
P-EDF, and partitioned fixed-priority scheduling (e.g. see Easwaran and Andersson (2009); Lakshmanan
et al. (2009); Rajkumar (1991)).

Under global multiprocessor scheduling, if a ready job J; is not amongst the m highest-priority ready
jobs, then J; is not scheduled, and it does not suffer from any priority inversions. This is reflected by s-aware
analysis: the presence of m higher-priority ready jobs rules out the possibility of priority inversions for
lower-priority jobs. In contrast, under s-oblivious analysis, the presence of m higher priority jobs, ready or
suspended, rules out the possibility of priority inversions for lower-priority jobs. This fact can be exploited to

implement optimal locking protocols under s-oblivious analysis, as we discuss shortly.

Example 2.8. Figure 2.8 illustrates the difference between s-oblivious and s-aware pi-blocking. Here, three
jobs are scheduled globally across two (m = 2) processors. Jobs Jy, Jy, and Jr have a high, medium, and
low relative priorities, respectively. Job Jy is suspended during the time interval [5, 15) while it waits for
the shared resource held by job Jys. Job Jy has the highest priority, so it experiences pi-blocking under both

definitions of s-oblivious and s-aware analysis. Job J;, is suspended during the time interval [10,20), waiting

36

A =] | |
D Scheduled on CPU TRequse
Iy :
A T D Scheduled on CPU, Complete
IM Resource Held o
q P T e . . Block
T 222 S-aware pi-blocking only !
J -
fime i1y — S-aware or s-oblivious pi-blocking Unblock
0 5 10 15 20 25

Figure 2.8: Comparison of s-oblivious and s-aware pi-blocking under global scheduling.

for the same shared resource. Because job Jj; completes at time 15, job J; experiences pi-blocking under both
definitions of s-oblivious and s-aware analysis from time [15,20) (it is among the m highest-priority pending
jobs). However, job J;, experiences only s-aware pi-blocking during the time interval [10, 15) because job Jy

pending but not scheduled. O

2.1.7 Multiprocessor k-Exclusion Locking Protocols

Most multiprocessor locking protocols have been developed for JLFP schedulers, with most attention
towards the common schedulers P-RM, P-DM, P-EDF, and G-EDF.

The multiprocessor priority-ceiling protocol (MPCP) (Lakshmanan et al., 2009; Rajkumar, 1990) and the
distributed priority-ceiling protocol (DPCP) (Rajkumar et al., 1988) were developed for P-FP schedulers and
represent the first multiprocessor real-time locking protocols. Locking protocols for P-EDF scheduling were
later developed by Chen and Tripathi (1994), Gai et al. (2003), and Lopez et al. (2004). Locking protocols
supporting global scheduling have developed more recently. These include the flexible multiprocessor
locking protocol (FMLP) by Block et al. (2007), supporting any global JLFP scheduler, and the parallel
priority-ceiling protocol (PPCP) by Easwaran and Andersson (2009), supporting G-FP scheduling.

Our earlier discussion on the effect of s-oblivious and s-aware analysis on pi-blocking is based upon
insights of Brandenburg and Anderson (2013). These insights are a relatively new development in the analysis
real-time locking protocols and allow some locking protocols to be classified as optimal under s-aware or
s-oblivious analysis. Under s-aware analysis, a mutual exclusion locking protocol is optimal if b; is O(n), in
terms of the number of conflicting requests. In contrast, a mutual exclusion locking protocol is optimal if b;

is O(m) under s-oblivious analysis; this is significant since m < n is common in practice. Locking protocols

37

from the “O(m) Multiprocessor Locking Protocol” (OMLP) family of locking protocols are optimal under
s-oblivious analysis (Brandenburg and Anderson, 2013; Elliott and Anderson, 2013; Ward et al., 2012).

“K-exclusion” locking protocols can be used to arbitrate access to pools of similar or identical serially
reusable resources, such as communication channels or I/O buffers. K-exclusion extends ordinary mutual
exclusion (mutex) by allowing up to k tasks to simultaneously hold locks (thus, mutual exclusion is equivalent
to 1-exclusion). K-exclusion has historically received little attention in the real-time community. Up until
recently, only Chen (1992) had examined k-exclusion for real-time uniprocessor systems (to the best of
our knowledge). However, GPU applications have renewed interest in the topic, and several real-time
k-exclusion locking protocols for multiprocessor systems have resulted. These include the aforementioned
CK-OMLP (Brandenburg and Anderson, 2013) and R2DGLP (Ward et al., 2012), as well as a k-exclusion
variant of the global FMLP-Long, called the k-FMLP (Elliott and Anderson, 2012b).°

The definition of optimality changes under k-exclusion. Under s-aware analysis, a k-exclusion locking
protocol is optimal if b; is O(n/k), in terms of the number of conflicting requests. In contrast, a k-exclusion
locking protocol is optimal if b; is O(m/k) under s-oblivious analysis. The R?>DGLP and CK-OMLP are
optimal under s-oblivious analysis.

The k-FMLP, R?>DGLP, and CK-OMLP are important to the design of GPUSync, so we discuss next the
rules governing each protocol. We begin with the k-FMLP, being the simplest of the three protocols, and

then discuss the R2DGLP and CK-OMLP.

2.1.7.1 The k-FMLP

The k-FMLP is simple extension of the global FMLP-Long to support k-exclusion.'® It may be used
to protect a pool of k resources shared by tasks within the same cluster of processors. The pi-blocking
experienced by a job waiting for a resource protected by the k-FMLP is O(n/k) where n is the number of

tasks using the lock. The k-FMLP is designed as follows.

9The author of this dissertation contributed to the development of the “Optimal k-Exclusion Global Locking Protocol” (O-KGLP) (El-
liott and Anderson, 2013). We do not discuss the O-KGLP since it is obsolesced by the RZDGLP, which analytically dominates the
O-KGLP.

10The k-FMLP was designed by the author of this dissertation. We discuss it in this background chapter, rather than a later chapter,
because the k-FMLP is a minor contribution. A detailed description and analysis of the k-FMLP may be found in the online
appendix of Elliott and Anderson (2012b) at http://www.cs.unc.edu/~anderson/papers.html.

38

http://www.cs.unc.edu/~anderson/papers.html

FQ

FQ,

k resources

FQ,

FQ,

Resource
Holders

Figure 2.9: Queue structure of the k-FMLP.

Structure. The structure of the k-FMLP is illustrated in Figure 2.9. The k-FMLP uses k£ FIFO request
queues, denoted FQy, - -- ,FQ,. Each queue is assigned to one of the k protected replicas of resource £;. A
job J; enqueues a resource request R; ; x onto the queue FQ, when the job requires a resource. A job with a
request at the head of its queue is considered the holder of the associated resource and is ready to run. Jobs

with blocked requests are suspended from the processor.

Rules. The k-FMLP may compute the length of a FIFO queue FQ, at runtime with either one of two formulas.

Under the simplest formulation, the length of FQ, is given by the number of enqueued requests:
length(FQ,) = |[FQ,|. (2.29)
Alternatively, length may be expressed by the critical section lengths of enqueued requests:

length(FQ,) £ Y L;, (2.30)
R;€FQ,

where we reindex the requests in FQ, with i. We call the formulation of Equation (2.29) critical-section-
oblivious, and the formulation of Equation (2.30) critical-section-aware. We may use either formulation in

the following rules that govern the k-FMLP. Let J; denote a job that issues a request R; ; x for resource /;.

F1 When J; issues R; j «, R; j x is appended to the queue with the minimum length, min; << {length(FQ,)}.

J; acquires the x resource when R; j is at the head of FQ,.

39

F2 All jobs with queued requests are suspended except for resource holders, which are ready. The effective

priority of the resource holder in FQ, is set to the maximum priority of all jobs with requests queued in
FQ,.

F3 When J; releases replica x of resource £, R; ; x is dequeued from FQ,, and the job with the next queued
request in FQ, is granted the newly available resource. If FQ, is empty, then an arbitrary pending
request (if one exists) from another queue is “stolen” (removed from its queue) and moved to FQ,., and

the stolen request is granted replica x.!!

Blocking Analysis. We provide a summary of the s-oblivious blocking analysis presented by Elliott and
Anderson (2012b). We direct the reader to that paper for the rational behind the following claims. For
simplicity of presentation, we assume that each job issues one request.

By Rule F1, each request is enqueued on the shortest queue when it is issued, according to the function
length(FQ,). Thus, the k-FMLP load-balances requests among the k resources. We denote the bound on
pi-blocking that a request of job J; for a replica of a resource £; may experience under the k-FMLP with the
term bE‘jFMLP. Under the critical-section-oblivious formulation (Equation 2.29), request R; ; is blocked by at

most

n—1
biTMP = {k J L (2.31)

time units. No request is blocked by more than L%J requests. Hence, blocking under the k-FMLP is O(n/k).

Under the critical-section-aware formulation (Equation 2.30), request R; ; x is blocked by at most

pFMLP _ Z”E"\;T"}LW (2.32)

time units.'?> Although request R; j x may be blocked by more than L”;li individual requests under this formu-

. Yper\r L7
lation, =

< L%J - L™ often holds true, so the critical-section-aware method may provide a tighter
bound on blocking. However, the critical-section-aware method requires a more complex implementation of

the k-FMLP, as it must be cognizant of the critical section lengths of enqueued requests.

TRequest “stealing” does not affect worst-case blocking analysis, but it ensures efficient resource utilization at runtime.

12Tighter blocking bounds under the critical-section-aware method can be obtained by using an integer linear program to determine
the longest the shortest queue may be when R, ; ; is issued.

40

m donors

k resources

Resource
Holders

Figure 2.10: Queue structure of the R°>DGLP.

2.1.7.2 The R2DGLP

The R2DGLP is a k-exclusion locking protocol that is optimal under s-oblivious analysis. It may be
used to protect a pool of k resources shared by tasks within the same cluster of processors. The pi-blocking
experienced by a job waiting for a resource protected by the RZDGLP is O(m/k).

The generality of the structure and rules that govern the R°>DGLP, as described by Ward et al. (2012),
lends a considerable degree of leeway to the developer in the protocol’s implementation. Here, we describe a
slightly simplified version to make the R?DGLP more concrete for the reader. These simplifications do not

violate the rules prescribed by Ward et al. The locking protocol is designed as follows.

Structure. The structure of the R?DGLP is illustrated in Figure 2.10. Similar to the k-FMLP, the R2DGLP
uses k FIFO requests queues, denoted FQ,, - - - , FQ,. Each queue is assigned to one of the k protected replicas
of resource ;. A job with a request at the head of its queue is considered the holder of the associated resource
and is ready to run. Jobs with blocked requests are suspended from the processor. However, unlike the
k-FMLP, no FIFO queue may hold more than [m/k| requests. Additional requests may “overflow” into
one of two priority queues, denoted PQ and DQ. (We depict PQ and DQ in Figure 2.10 with triangles, as
they are efficiently implemented by heap data structures.) Requests with a sufficiently high priority are

inserted into DQ, while others are inserted into PQ. PQ is organized by priority-order. DQ is organized in

41

reverse-priority-order (i.e., the lowest-priority request appears at the head of the queue). As we describe

shortly, DQ may hold at most m requests.

Rules. Let J; denote a job that issues a request R; ; x for resource ¢;. The priority of R; ; x is equivalent to
the base priority of J;. We denote the set of incomplete requests with the m-highest priorities by . The
R2DGLP makes use of the relaxed notion of priority donation as discussed at the end of Section 2.1.6.1,
whereby the establishment of a donation relationship is deferred to the moment a shared resource is requested,
rather than at job release. We denote the set of requests that have a priority donor (i.e., the donees) by 4. The

length of FQ, is the number of enqueued requests in FQ,, given by the function
length(FQ,) = |[FQ,|. (2.33)

With these definitions, the R2DGLP operates under the following rules.

R1 When J; issues R; j x:

(a) R; j is enqueued on the shortest FIFO queue, FQ,, if length(FQ,) < [m/k].
(b) elseif R; jx ¢ M, then R; j ; is enqueued in PQ.

(c) else R; j« is enqueued in DQ. If the number of requests in DQ is no greater than m after R; ; «
is enqueued, then the priority of R; ; ; is donated to an arbitrary request in the set U)’j: {RIR €
FQ,} \ 4 \ M (i.e., any request in an FQ without a donor and is not among the requests in M).
Otherwise, the lowest-priority request R” in DQ (which cannot be R; jx by Rule R1b), is moved
to PQ, and R; ; x becomes the priority donor to the donee of RE. (Donor relationships are depicted

in Figure 2.10 by dashed arrows.)

R2 R; j is satisfied when it is at the head of FQ,.
R3 J; suspends until request R; ; ; is satisfied.

R4 The job with a request at the head of FQ, inherits the highest effective priority (which could be a

donated priority) of any request in FQ,.

RS R, is dequeued from FQ, when J; releases the replica x. If R; ; ; has a priority donor RP, then RP is

removed from DQ (by Rule R1c all donors must be in DQ) and enqueued on FQ,. The job that issued

42

RP no longer donates its priority to the job of R; jx. Otherwise, the request at the head of PQ (if it

exists) is removed from PQ and enqueued on FQ,.

Blocking Analysis. We provide a summary of the blocking analysis presented by Ward et al. (2012). We
direct the reader to that paper for the rational behind the following claims. For simplicity of presentation, we
assume that each job issues one request.
We begin by bounding the number of other requests that may pi-block a request R; ; x within each queue
under s-oblivious analysis.
Pi-blocking in FQ,: Rule Rla ensures that the maximum length of FQ, is [m/k]|. No request in FQ, is
pi-blocked by more than [m/k| — 1 other requests.
Pi-blocking in DQ: Rule R5 ensures that a donor request in DQ is moved to FQ, once their donee
request completes. A request in DQ is pi-blocked by no more than [m/k| other requests.
Pi-blocking in PQ: Rules R1b and R1c ensure that R; ; « ¢ M holds at the time R; .k enters PQ. R; ; x
may only enter M when a resource holder releases a replica, i.e., when the request of a resource
holder, R,, exits from FQ,. R, € M must hold if the dequeue of R, from FQ, promotes R; ; ; into
M. By Rule Rlc, R, cannot have a priority donor. Thus, by Rule RS, a request from PQ is moved
into FQ,. R; ;i must have the highest priority among all requests in PQ since R; jx € M while
{R|RE€PQAR#R; i} "M = 0. By Rule RS, R; ; ; is removed from PQ and enqueued on FQ,.
No request in PQ experiences pi-blocking under s-oblivious analysis, because the moment such a
request could experience pi-blocking, it is moved to an FQ.
Summing the pi-blocking that can be incurred by R; ; x as it moves through the queues, the maximum number

of other requests that may pi-block a request is
2. [T] _1 (2.34)

We denote the bound on pi-blocking that a request of job J; for a replica of a resource £; may experience

under the R?>DGLP with the term bEjDGLP. By Equation (2.34),

bEOSP = (2] = 1) Ly (235)

43

Hence, pi-blocking under the RZDGLP is O(m/k)—optimal under s-oblivious analysis. Equation (2.35)
provides a coarse-grain bound on pi-blocking. We examine derivation for finer-grained blocking bounds in

Chapter 4.

2.1.7.3 The CK-OMLP

The CK-OMLP, like the R2DGLP, is a k-exclusion locking protocol that is optimal under s-oblivious
analysis. Unlike the R?’DGLP, the CK-OMLP also supports the protection of a pool of k resources shared
by tasks across processor clusters. The pi-blocking experienced by any job in a cluster where resources

protected by the CK-OMLP is O(m/k). The CK-OMLP is designed as follows.

Structure. The structure of the CK-OMLP is illustrated in Figure 2.11. The CK-OMLP uses a single FIFO
queue, denoted FQ, that holds a maximum of m — k unsatisfied resource requests. The requests of the k
resource holders are not kept in FQ. The CK-OMLP relies upon additional scheduler data structures that
track the c-highest priority incomplete jobs within each processor cluster. Min-heaps are an efficient data
structure for such bookkeeping, so these scheduler data structures are depicted by triangles in Figure 2.11.
We denote the set of the c-highest priority incomplete jobs with the a”” cluster by ¢%. A job may be in C*

while also waiting for, or holding, a resource replica.

Rules. The CK-OMLP operates under the following rules. Let J; denote a job in the a” cluster that issues a

request R; ; x for resource /;.

C1 J; receives a donated priority from a donor job in ¢ if J; ¢ C?, pursuant to the description of priority

donation in Section 2.1.6.1, while R; ; x is incomplete.

C2 J; acquires the replica x when J; issues R; ; if such a replica is available. Otherwise, R; ; x is enqueued

on FQ and J; suspends.

C3 When J; releases the replica x, the pending request at the head of FQ (if it exists) is dequeued, and the

associated job acquires x.

Blocking Analysis. We provide a summary of the blocking analysis presented by Brandenburg and Anderson
(2013). We direct the reader to that paper for the rational behind the following claims. For simplicity of

presentation, we assume that each job issues at most one request per resource.

44

c donors

m
= clusters k resources

—_——— S

. A

o o *.
. .
B .
L - M]
I 1
N
v .

> PR Resource

>
Holders

scheduler data
structures

Figure 2.11: Queue structure of the CK-OMLP.

Under the CK-OMLP, a job may experience both direct and indirect pi-blocking. A job may experience
direct pi-blocking while it is blocked for a shared resource. A job may experience indirect blocking while it
acts as a priority donor. We consider bounds on direct and indirect blocking, in turn.

The priority donation rule, Rule C1, ensures that there are at most m incomplete requests. Since the k
resource holders are not kept in FQ FQ has a maximum length of m — k. We denote the bound on direct
pi-blocking with the term bSJK‘OMLP'D . By Rule C1, resource holders are always scheduled, so requests are
satisfied at a rate of at least k requests per L7“*-units-of-time. Thus, by this property and Rule C3, direct

pi-blocking is bounded by

bng_OMLP-D _ Vlk_k-‘ e = G%W _ 1) e, (2.36)

A job experiences indirect pi-blocking while it acts as a priority donor. We denote the bound on indirect

CK-OMLP-

pi-blocking due to resource £; with the term b;; ; . This duration is bounded by the maximum time that

a request may be waiting in FQ, plus the critical section length of that request. Thus, indirect pi-blocking due

45

to resource £ is bounded by

bEJK_OMLP_I — bEJK—OMLP—D +1 'L’}wx — ’7%—‘ .L;nax. (2.37)

There may exist multiple pools of resources that are each protected by a different instance of the CK-
OMLP, so bg;('OMLP" does not bound indirect pi-blocking due to all such resources. We denote the set of
resources accessed by tasks within the a” cluster by /. We denote the bound on total indirect pi-blocking by

bic K-OMLP-T which is

biCK—OMLP—I — max {biCJK—OMLP—I} _ (2.38)
é,—e[" ?

We denote the bound on the total pi-blocking experienced by a job under the CK-OMLP with the term

bl.CK‘OMLP. For jobs that do not issue requests,

bl_CK—OMLP — biCK_OMLP_[. (2.39)

Let £* denote the subset of resources accessed by job J; that is scheduled within the a™ cluster. For jobs that

do issue requests resource requests under the CK-OMLP,

blCK—OMLP :blCK'OMLP'I+ Z bSJK‘OMLP'D. (240)

tieLe

This concludes our review of real-time k-exclusion locking protocols.

2.1.8 Accounting for Overheads in Schedulability Tests

The schedulability tests we discussed in Section 2.1.5 assume that all scheduling decisions and actions
are instantaneous. However, this is impossible to achieve in the real world. Simply, scheduling algorithms
take time to execute. Moreover, scheduling decisions have side-effects. For instance, a job’s execution
time regularly increases with every preemption due to the loss of cache affinity. Basic OS functions, such
as processor and device interrupt handling, introduce additional delays to real-time jobs. Contention for
shared hardware, such as a system memory bus or caches, cause concurrently executing jobs to interfere with
one another. Collectively, we refer to these costs, as well as others, as system overheads. Overhead-aware

schedulability tests are those that incorporate system overheads into analysis.

46

Off-Chip TA !

CPU Ji tck | cid rel | cid
0
v
CPU Jj sch | cxs |cpd Ik tck | cid sch | exs Ji
1
time e e S S e B e
t#0 5 10 15 20 25 30 35 40 45 50 55 60 &5 70 75 80 85

D CPU Overhead D Off-Chip Overhead

Figure 2.12: Schedule depicting system overheads.

We now describe the “preemption-centric” method of Brandenburg (2011b), which we use for overhead-
aware schedulability analysis in this dissertation. We first focus our attention on the case where tasks are
independent, i.e., they share no resources besides processors. We discuss additional methods for account for

overheads due to resource sharing, thereafter.

2.1.8.1 Preemption-Centric Accounting

Figure 2.12 depicts a schedule for four jobs on a system with two CPUs. In this illustrative example, we
do not need to consider task parameters or the particular scheduling algorithm in use to study the relevant
overheads. Prior to time ¢, assume the following: jobs J; and J; were scheduled on CPU, and CPUj,
respectively; job J; had been scheduled, but was either preempted or suspended from execution; and a
hardware timer has been set to time 55 to trigger the release of job J;. We observe several different overheads

in Figure 2.12:

* Scheduling (sch) overheads are incurred when a job completes (time 15) or when a newly arrived job

must preempt a scheduled job (time 68).

* A release (rel) overhead is incurred when a job becomes ready for execution (time 59). This may occur
when a new job is released, or when an incomplete job resumes after having voluntarily relinquished a

CPU.

* A scheduler tick (tck) overhead is incurred at regular intervals (time 40). In Figure 2.12, we assume

that the scheduler ticks of the CPUs are synchronized, but this is not strictly necessary. Within the tick

47

handler, the OS may reevaluate scheduler state or perform bookkeeping functions, such as tracking the

execution time of currently scheduled jobs.

* Context switch (cxs) overhead is incurred whenever the scheduler switches from one job to another
(times 19 and 72). This process takes time as the scheduler must save program state (e.g., CPU register

values) of the old job, restore the state of the new job.

* A cache preemption/migration delay (cpd or CPMD) overhead is incurred when a previously scheduled
job resumes from execution (time 23). This overhead reflects the fact that such a job may have to reload
data that had been previously cached. In practice, this overhead is incurred incrementally as a job
executes. However, without exact knowledge of the state of the resuming job or caches, we analytically

assume a single worst-case overhead.

* A cache interrupt delay (cid) overhead is incurred after every interrupt is handled by a CPU (times 44
and 63). The interrupt handler should be relatively light-weight in terms of execution cost, leaving the
cached state of the interrupted job relatively intact, so we account for cache interrupt delays separately

from cache preemption/migration delays.

* An event (ev) overhead accounts for the latency between the occurrence of an event, e.g., the firing of a
hardware timer (time 55), and when that event is communicated to a CPU (time 59). Event overheads

do not consume CPU time, so Figure 2.12 depicts this overhead as occurring in parallel “off-chip.”

* Interprocessor interrupt (ipi) overheads are incurred in cooperative multiprocessor schedulers where a
CPU may make scheduling decisions for other CPUs. A CPU communicates such scheduling decisions
to the target CPU by sending an interprocessor interrupt (IPI) to a target CPU. The IPI overhead
captures the latency between when an IPI is sent (time 63) and when it is received (time 68). Like the
event overhead, this overhead does not consume CPU time, so Figure 2.12 depicts this overhead as

occurring in parallel “off-chip.”

The overhead durations reflected in Figure 2.12 are merely illustrative. The actual costs of each overhead
vary and depend upon different factors. For instance, context switch overheads depend primarily upon the
capabilities of the underlying processor and memory subsystem. Scheduling overheads, on the other hand,

depend upon the runtime complexity of the scheduling algorithm and its implementation. Cache-related

48

Parameter Meaning

AT scheduler overhead
Arel release overhead
Ak scheduler tick overhead
A context switch overhead
AT cache preemption/migration delay
A cache interrupt delay
A event latency
AP interprocessor interrupt latency
0 scheduler tick quantum
TO’C" virtual task modeling the scheduler tick interrupt
T virtual task modeling the release interrupt of task 7;
cPre cost of one preemption due to periodic interrupts

Table 2.3: Summary of parameters used in preemption-centric overhead accounting.

overheads depend upon the memory footprint and data access patterns of the jobs themselves. Each overhead
may be quantified though empirical measurement. We explore this methodology further in Chapter 4.

We now present the formalisms developed by Brandenburg (2011b) to integrate the above overheads into
schedulability analysis. The general strategy of preemption-centric overhead accounting is to inflate a task’s
WCET with a charge that accounts for the overheads that the task may experience in a worst-case scenario.
This provides a safe upper-bound on what a task may experience at runtime. We denote each overhead with
the symbol A, with the type of overhead expressed by the label in superscript. Table 2.3 contains a summary
of the parameters we use in overhead accounting.

Periodic interrupt sources are modeled as virtual tasks that always preempt non-virtual tasks.'> The

scheduler tick interrupt is modeled by the virtual task Tot"k. Release interrupts are modeled by a per-task

irq

virtual task 7;"*. These tasks take the following values:
tck A Atck id tck A tck & A 4AH
eOC _AC +AC! pOC _Q uOC £ Q
irq & Arel cid irg &) irg A A°4ACH
ejn = AT +A pi” = Ppi W= ==

Here, QO denotes the period of the scheduler tick, or quantum. The value of Q is set by the OS. Also, observe
that Tiirq is periodic, even if its associated task 7; is sporadic. This is done to safely bound utilization loss due

to release interrupts.

13We emphasize that this virtual-task approach can only be applied to interrupts that may be modeled with a periodic arrival pattern.
Interrupt overheads due to non-periodic interrupt sources, such as GPUs, must be accounted for in a different manner.

49

The total cost of one preemption due to these periodic interrupts is given by:

tck tck irg irg
e e +AY ug" + Y <i<n (Aev~ui +e;)
= " ” o . (2.41)
—ug" — Yi<i<nU;

We transform the task set 7 into the task set 7’ by inflating task execution times and shrinking task

periods, such that:
e; _|_2(Asch _|_Acxs) +Acpd

/ pre ipi
¢ = L —uf* — Y e u FRTAAT (242
SIsSn T
pi < pi—A”, (2.43)
di <di—A°. (2.44)

Once we have obtained 7’ using the above formulations by Brandenburg (2011b), we perform schedulability

analysis upon the task set 77, instead of 7, to safely test for schedulability.

2.1.8.2 Locking Protocol Overheads

Runtime overheads due to locking protocols must also be accounted for in overhead-aware schedulability
analysis. For instance, we must consider the time it may take to execute locking protocol logic to issue a
resource request. We must also consider scheduling decisions that may result from changes in job priorities
due to priority inheritance, boosting, or donation. We briefly discuss Brandenburg’s preemption-centric
overhead accounting methodology to account for such overheads. We direct the reader to Brandenburg
(2011b) for a full explanation of the following analysis.

Suspension-based locking protocols introduce four additional types of overheads:

» System call entry (sci) overhead is incurred when a job invokes the OS in order to issue a resource

request.

» System call return (sco) overhead is incurred when a resource request is satisfied, and the resource-

holding job resumes execution, switching control from the OS to the job.

Lock (lk) overhead represents the execution cost of issuing a request under a given locking protocol.

Unlock (ulk) overhead represents the execution cost of releasing a held resource.

50

Parameter Meaning

A% system call entry overhead
AN system call return overhead
AFF lock overhead

AVF unlock overhead

Table 2.4: Summary of locking protocol overheads considered by preemption-centric accounting.

These overheads are summarized in Table 2.4. Overheads affect both the execution time of jobs and increase

the lengths of critical sections.

Overheads and WCET. Brandenburg prescribes the following additional inflation to job WCET to account

for resource requests overheads, assuming suspension-based locking protocols:
¢ > e+ M- (20 + 2870 + A 4 A 4 3N 4 3ACS L 2APT 4 A (2.45)

We charge two instances of system call overheads (A*’ and A*°) to account for the calls made by a job to
request and release a resource, respectively. Likewise, we charge lock (A% and unlock (A“*) overheads
to account for the locking protocol’s handling of these calls. We charge two sets of scheduling, context
switch, and cache affinity loss overheads (2 A*" + 2 A 4+ 2 A%9) to cover the cost of self-suspension when
job J; is blocked. We incorporate the overhead of one IPI (A?") to account for the latency of waking up J;
after its request has been satisfied. Finally, we charge an additional set of scheduling and context switch
overheads (A*" + A®) to account for a potential change in priority of the resource-holding task triggered by
the blocked request of J;. (We do not make this charge for locking protocols where resource-holding jobs
cannot be preempted, such as the CK-OMLP.) We inflate ¢; using Equation (2.45) prior to the application of
Equation (2.42). In the application of Equation (2.42), we must also include an additional charge of n; - ¢™ if
processors are not shielded from interrupts, since tick and release interrupts may further delay the resumption

of job J; after it has acquired its resource.

Overheads and Critical Section Lengths. Overheads may also be incurred during the execution of a critical
section, effectively increasing the length of the critical section. This, in turn, affects blocking analysis. We

inflate critical section lengths to account for these overheads prior to blocking analysis. Brandenburg inflates

51

each critical section length for suspension-based locking protocols, such that:
L;’j7k > Li,j,k+2ASCh +2Acxs +ASCZ‘+ASCO +Aulk+Aipi. (246)

We charge an IPI overhead (A" to account for the delay in notifying a suspended job that it has obtained its
needed resource and that it may execute (i.e., the delay in waking up the waiting job). One set of scheduling
and context switch (A" + A®) overheads account for the time it takes a job to resume execution after
suspension. The remaining scheduling and context switch overheads account for the situation where a
resource-holding job may be preempted by another resource-holding job. (As in Equation (2.45), we do
not make this charge for locking protocols where resource-holding jobs cannot be preempted.) Finally, the

remaining overheads account for the time taken to free a resource (A% 4 AS° 4 Atlky.

2.1.9 Integration of PI-Blocking and Overhead Accounting

In this section, we tie together the pi-blocking and overhead accounting methods we discussed above
into a six-step procedure for performing overhead-aware schedulability tests. Our procedure is tailored to
s-oblivious analysis and the suspension-based locking protocols we use in this dissertation. We refer to values
that are computed in each step with a superscript. For example, el[.j ! denotes the bound for job execution time
of task 7; computed in the j™ step. We restate several formulas in order to give a consolidated presentation of

the procedure.

Step 1: Inflate Critical Sections

We begin our procedure by inflating the critical section lengths of each resource request:
LE]}',k L Li,j7k +2Asch LA +Asci - ASCO —|—Aulk—|—Aipi. (247)

This step corresponds to the application of Equation (2.46).

Step 2: Bound S-Oblivious PI-Blocking
Using the inflated critical section lengths computed in the prior step (i.e., Ll“]] «)» we compute bounds
on s-oblivious pi-blocking in according to the blocking analysis techniques prescribed by the locking

protocols that we employ. For example, we may bound pi-blocking under the k-FMLP using Equa-

52

tion (2.30). For each job, we compute the total bound on pi-blocking each job may experience, denoted

by b2,

Step 3: Convert S-Oblivious PI-Blocking to Execution Time

We inflate job execution time to incorporate our bounds on pi-blocking:

(2.48)

Step 4: Account for Locking Protocol Overheads
We inflate job execution time to account for the execution of locking protocol algorithms and associated

scheduling costs:
61[4] A el[_3] +1n;- (2Asci _|_2Asco +Alk+Aulk + 3Asch + A +2Acpd+Aipi) (249)

This step corresponds to the application of Equation (2.45).

Step 5: Account for General Overheads

We inflate job execution time according to the preemption-centric method:

[4] 2(ASCh 1 ACxs Acpd -
1[5} = .]+ (tck —;) +irq + (2 + le) T+ Alpla (2.50)
— Uy — Li<i<nlY;
A pi— A, 251
A58 g pe 2.52)
i i : '

This step corresponds to the application of Equations (2.42), (2.43), and (2.44). As we discussed in
the description of Equation (2.45), we incorporate an additional charge of 7); - ¢*’* because we assume

processors are not shielded from interrupts.

Step 6: Perform Schedulability Analysis
Steps 1 through 5 give rise to a transformed task set, 715, that accounts for pi-blocking and overheads.
We analyze 7 5] using “normal” (i.e., overhead- and locking-protocol-agnostic) schedulability analysis.

For example, we may test 70/ for bounded deadline tardiness under global fair-lateness (G-FL)

53

scheduling using Equation (2.23). If 7 5! has bounded deadline tardiness, then 7 is also has bounded

deadline tardiness.

This concludes our discussion of real-time task models, locking protocols, and overhead-aware real-time
schedulability analysis. We now shift our attention towards real-time operating systems and the services that

they provide to user-level applications.

2.2 Real-Time Operating Systems

In this section, we discuss the role of real-time operating systems (RTOSs) in the support of real-time
applications. We begin with a brief discussion of basic RTOS requirements that must be met in order to
support the realization of sound real-time systems. We then discuss LITMUSRT, an RTOS that we extend
in order to meet the needs of our real-time GPGPU applications. Finally, we conclude with an in-depth
discussion of interrupt handling techniques in general purpose and real-time OSs. This topic is relevant to us

as GPUs use interrupts to signal the completion of operations.

2.2.1 Basic RTOS Requirements

An RTOS is the underlying software that manages hardware resources and coordinates the execution
of user applications. It must meet the needs of the real-time applications that rely upon it. Of course, these
needs are application-specific. Due to the wide variety of real-time applications, there are a wide variety of
RTOSs. RTOSs range from small microcontroller environments to fully-featured OSs that are as capable as,
if not more capable than, general purpose OSs. Here, we only discuss basic RTOS requirements. We direct
the interested reader to a taxonomy and thorough survey of modern RTOSs by Brandenburg (2011b) for a
more in-depth discussion of RTOS capabilities.

Fundamentally, an RTOS is responsible for providing a deterministic and predictable environment for
user applications, while fulfilling other operating system requirements (such as memory management and
file system support). System designers require a high degree of confidence that the timing constraints of
their real-time applications are met. This is only possible if the underlying RTOS ensures deterministic and
predictable behavior, as far as it is able. These behaviors are predominantly realized by the RTOS scheduler,
which allocates processor time to user applications and other system services. The scheduler may employ

one or more real-time scheduling algorithms, such as those we discussed in Section 2.1.4.

54

System designers design and implement their application software in accordance to a real-time task
model, such as the sporadic or rate-based task models, that is supported by the RTOS scheduler. The designer
provisions tasks with resources (e.g., job execution time) and specifies task execution rates (e.g., task periods).
With this information, the designer may use schedulability analysis to model the real-time behaviors of
their system. Analysis provides feedback to the designer on whether their implemented system, as modeled,
meets application timing requirements. We stress that schedulability analysis only approximates real system
behavior and that nothing in analysis forces the implemented software to behave as modeled. Analytical

results hold only if the following requirements are met:

1. The RTOS scheduler adheres to the real-time scheduling algorithm modeled by the analysis.

2. Application behaviors are predictable.

The first requirement is achieved through the thoughtful design and implementation of the RTOS. The
RTOS must employ strategies that eliminate or minimize priority inversions (recall that, by definition, a
priority inversion is a deviation from the real-time scheduling algorithm). This impacts the types of algorithms
the RTOS may employ to schedule tasks and perform other system management operations. For example,
algorithms that are non-starvation free, retry-based, or use unpredictable heuristics, may be acceptable in a
general purpose OS, but are rarely so in an RTOS. Real-world constraints sometimes make priority inversions
unavoidable. However, techniques can be used to mitigate their negative effects on timeliness. For example,
in Section 2.2.3, we investigate strategies that minimize unavoidable priority inversions due to device interrupt
handling.

The second requirement above may be harder to achieve by an RTOS, since application behavior partly
depends upon the application itself. However, an RTOS may work in support of predictable behavior. For
instance, an RTOS may provide predictable mechanisms for coordinated access to shared resources (i.e.,
locking protocols). The RTOS may monitor the resources consumed by a task at runtime (e.g., execution time)
and use budget enforcement policies to prevent tasks from exceeding provisioned resources. If prevention is
not possible, the RTOS may penalize the offending task by denying future resources, and/or use techniques
that isolate the effects over-consumption may have on the rest of the system.

In this brief section, we have discussed RTOSs at only a high-level. We discuss our specific needs of an

RTOS in support of GPGPU real-time systems next.

55

2.2.2 LitmusRT

A major contribution of this dissertation is the design and implementation of real-time systems that
support the matrix of CPU/GPU organizational choices we discussed in Chapter 1 (see Figure 1.4). Unfor-
tunately, as Brandenburg (2011b) reports in a comprehensive survey of modern RTOSs, most RTOSs are
limited to fixed-priority scheduling. Further, these RTOSs lack robust support for resource sharing through
multiprocessor real-time locking protocols, such as those we discussed in Section 2.1.7. As we shall see
in Chapter 3, we require a more feature-rich RTOS to fully explore the CPU/GPU configuration options
depicted in Figure 1.4.

The GPU scheduling framework we present in Chapter 3 requires tight integration with the RTOS
scheduler. As a result, most of our framework is realized by extensions and modifications to an RTOS
kernel—specifically, the LITMUSRT kernel. LiTMUSRT (LInux Testbed for MUItiprocessor Scheduling
in Real-Time systems), is an open-source real-time extension to Linux which has a long development
history, beginning in 2006 (Calandrino ef al., 2006), and remains under continual development (Brandenburg,
2011b, 2014b). LiTMUSRT provides a plugin-based architecture that facilitates the implementation of, and
experimentation with, multiprocessor real-time scheduling algorithms and locking protocols. It includes
support for fixed-priority and deadline-based schedulers, among others. The flexibility of LITMUSRT enables
us to explore a variety of CPU/GPU configuration.

The use of a Linux-based operating system such as LITMUSRT

is critical to the research of this dissertation,
as it allows us to leverage support of GPGPU technology (e.g., GPU device drivers and GPGPU runtime
(described in Section 2.4.1)) in LITMUSRT. Moreover, high-performance GPUs capable of supporting modern
GPGPU applications are primarily limited to Windows, Mac, and Linux-based platforms. The open-source
nature of Linux grants us the ability to implement and effectively evaluate operating-system-level algorithms
for GPU-enabled real-time systems.

LiTMUSRT, being based on mainline Linux, cannot be used to host “true” (safety-critical) HRT workloads.
However, true HRT constraints are problematic in a GPU-enabled real-time system anyway due to hardware
complexity, the closed-source nature of GPU hardware and software, and the lack of timing analysis tools for
such platforms. Still, we do not believe this limitation totally precludes the use of GPUs in safety-related

applications. In an automotive setting, for example, the reaction time of an alert driver is about 700ms (Green,

2000). A GPU-based automotive component may only have to react to events within such a relatively lax time

56

window in order to be a viably safe system. Thus, we justify research into the use of GPUs in safety-related
applications in two ways. First, we expect that algorithms developed in LITMUSRT are transferable to
HRT operating systems in the future. Second, even if GPU technology cannot support HRT requirements
for GPU-related computations, GPUs may still be utilized in real-time systems with mixed hard and soft
requirements, also known as multi-criticality systems (Vestal, 2007), as long as SRT GPU-related operations

do not interfere with HRT CPU computations.

2.2.3 Interrupt Handling

Interrupts are a hardware signaling mechanism that may be used by asynchronously operating com-
puting elements (e.g., processors and peripheral devices) to communicate with one another. An interrupt
communicates the occurrence of an event. For example, a network card may raise an interrupt to signal the
arrival of a network packet—such an interrupt is received (or handled) by system CPUs. Interrupts may
also be transmitted among CPUs (i.e., IPIs). IPIs can be used to coordinate scheduling in a multiprocessor
system. Interrupts may also be used by high-resolution timing hardware to signal the expiry of a timer. These
timers may be leveraged to realize accurately timed job releases and precise budget enforcement features in
event-driven real-time schedulers.

In the case of device management, device drivers may bind, or register, an interrupt handler to a uniquely
identified interrupt, or interrupt line. A device driver may multiplex multiple events on one interrupt line.
Moreover, interrupt lines may sometimes be shared by multiple devices. In such cases, multiple interrupt
handlers may be executed in sequence upon receipt of an interrupt from a shared interrupt line.

Upon receipt of an interrupt, a CPU halts its currently executing task and invokes an interrupt handler,
which is a segment of code responsible for taking the appropriate actions to process the interrupt. An
interrupted task can only resume execution after the interrupt handler has completed. The CPU may be
prevented from handling other interrupts during this time as well. Interrupt handlers must execute quickly so
that the interrupted task can resume execution, and so the CPU can be responsive to other interrupts.

Interrupts require careful implementation and analysis in real-time systems. In uniprocessor and par-
titioned multiprocessor systems, an interrupt handler can be modeled as the highest-priority real-time
task (Jeffay and Stone, 1993; Liu, 2000), though the unpredictable nature of interrupts in some applications
may require conservative analysis. Such approaches can be extended to multiprocessor systems where tasks

may migrate between CPUs (Brandenburg et al., 2010). However, in such systems, the subtle difference

57

between an interruption and preemption creates an additional concern: an interrupted task cannot migrate
to another CPU. As a result, conservative analysis must also be used when accounting for interrupts in
these systems as well. A real-time system, both in analysis and in practice, benefits greatly by minimizing
interruption durations. Split interrupt handling is a common way of achieving this, even in non-real-time
systems.

Under split interrupt handling, an interrupt handler performs the minimum amount of processing
necessary to ensure proper functioning of hardware. This may include an acknowledgement of receipt and
any processing needed to identify the context of the interrupt (i.e., demultiplexing). We call this immediate
processing the interrupt handler’s fop-half. Additional work to be carried out in response to an interrupt
is deferred.'* We call this processing the interrupt handler’s bottom-half. Bottom-half computations are
executed at a more “opportune” time. However, each operating system may have a different notion of when

that opportune moment may be. We now discuss the implications of different interpretations.

2.2.3.1 Linux

We now review how Linux performs split interrupt handling. Despite its general-purpose origins, variants
of Linux are widely used in supporting real-time workloads.

During the initialization of the Linux kernel, device drivers register interrupt handlers with the kernel’s
interrupt services layer, mapping interrupt lines to interrupt service routines (ISRs)—ISRs are equivalent
to top-halves. By default, any CPU may receive a device interrupt, though CPUs may be later “shielded”
individually from specified interrupts through interrupt masks.

Upon receipt of an interrupt on a CPU, Linux immediately invokes the registered ISR(s). The ISR(s)
are executed within the “interrupt context,” meaning that the receipt of other interrupts is disabled. Deferred
work is issued by the ISRs in the form of a softirg, or tasklet (the terms are commonly used interchangeably).
The softirq is equivalent to an interrupt handler’s bottom-half. A pending softirq is enqueued on one of
several per-CPU FIFO queues, depending upon the source of the softirq. The number and designation of
these queues may vary with each kernel version. However, long-established queues include (in order highest

to lowest priority): HI_SOFTIRQ, NET_TX_SOFTIRQ, NET_RX_SOFTIRQ, and TASKLET_SOFTIRQ.

14Some interrupts can be, or may need to be, handled entirely within the top-half processing. This includes relatively lightweight
handlers for IPIs.

58

The Linux kernel executes softirgs using a heuristic. Immediately after executing a top-half, but before
exiting the interrupt context and resuming execution of the interrupted task, the kernel executes up to ten
softirgs. These softirgs are taken from the softirq queues, in order of priority. For example, all network-related
softirgs in the NET_TX_SOFTIRQ queue are processed before any in the TASKLET_SOFTIRQ queue. Any
remaining softirqs are dispatched to one of several (per-CPU) kernel threads dedicated to softirq processing;
these are the “ksoftirq” daemons. The ksoftirq daemons are scheduled with high priority, but are preemptible.

The Linux kernel is optimized for throughput. Excessive thread context-switch overheads are avoided
by executing a batch of tasklets before returning from a top-half. The FIFO queue structures also bias
the processing of some types of softirgs over others. However, this batch processing may introduce long
interrupt latencies, leading one to wonder if this can even be considered a split interrupt system. The original
motivation behind split interrupt handling is to minimize the duration of top-half execution, not extend
this duration with additional work. Moreover, in all likelihood, in a system experiencing few interrupts
(though it may still be heavily utilized), for every top-half that yields a tasklet (bottom-half), that tasklet will
subsequently be executed before the interrupted task is restored to the CPU. This essentially fuses the split
top-half and bottom-half into one non-split interrupt handler.

How does Linux’s softirq processing affect real-time analysis? It is generally impossible to model
Linux’s interrupt processing mechanisms. Even with a model of interrupt arrival patterns, it is difficult to
predict the delay experienced by an interrupted task since we do not know which or how may softirqs may be
processed before the interrupt handler returns. Moreover, if a bottom-half is deferred to a ksoftirq daemon, it
is generally not possible to analytically bound the length of the deferral since these daemons are not scheduled
with real-time priorities. Thus, we cannot predict how long a task may wait for a given bottom-half to be
processed.

Schedulability analysis under Linux is further complicated by its software architecture. Because each
softirq might execute within the interrupt context, softirq code may never suspend—it may never block
on I/O or utilize suspension-based synchronization mechanisms. If such processing is necessary, then the
bottom-half may defer additional work in yet another form. Specifically, a work item dispatched to one of
Linux’s per-CPU kworker daemons. The kworker daemons process deferred work, much like the ksoftirq
daemons, but allow work items to suspend. Also like the ksoftirq daemon, kworker threads are not scheduled

with real-time priorities, implying the same challenges to realizing real-time predictability.

59

]]

T Release IComplete T Block T Unblock

Priority Inversion

Figure 2.13: Fixed-priority assignment when an I/O device is used by a single thread.

2.2.3.2 PREEMPT_RT

The PREEMPT_RT patch to the Linux kernel alters the interrupt handling mechanisms of Linux to
reduce interrupt latency and improve real-time performance. PREEMPT_RT executes all deferred softirgs in
per-interrupt source (e.g., per-device) threads. Only performance-sensitive softirgs, such as high-resolution
timers, may be appended to top-half execution, as this avoids thread context switch overheads. A system
designer may assign an appropriate fixed priority to each softirq-handling thread, according to their application
needs. For example, disk I/O softirgs can be given a lower priority than softirqs from a GPU. Under vanilla
Linux, softirqs from both devices are processed with the same priority since these softirqs are put in the
TASKLET_SOFTIRQ FIFO queue.

There are scenarios where the priority assignment method of PREEMPT_RT for interrupt handling
threads is sufficient. Consider a uniprocessor real-time system with three independent threads, Ty, Ty,
and T;. Ty is assigned a high priority, 7), is assigned a middle priority, and 7} is assigned a low priority.
Suppose Ty issues a command to an I/O device and suspends from execution until an interrupt from the
device, indicating completion of the operation, has been processed. Tj; cannot resume execution until the
bottom-half of the interrupt has completed. What priority should be assigned to the interrupt handling thread,
denoted T7;, that will do this work? In order to avoid interference with other threads, 7; must have any priority
greater than or equal to T, but less than the priority of Ty. (To avoid ambiguity in scheduling, interrupt
handling threads are commonly given a priority slightly greater than their dependent threads.) We refer to

the priority of a task 7; with the function prio(T;). As depicted in Figure 2.13, with the priority assignment

60

.. |

T Release IComplete T Block T Unblock

Priority Inversion

Figure 2.14: Ty may suffer a long priority inversion dependent upon the execution time of T), if prio(T;) is
too low.

prio(Ty) > prio(Ty) > prio(Ty) > prio(Ty), the operations of Ty have less impact on Ty (priority inversions
due to top-halves are unavoidable); T3, and 7 only receive processing time when 7 is not ready to run.
Likewise, 77, can in no way delay the execution of 7;. Because of the lack of interference, this system is
also easy to analyze. However, the situation changes when the I/O device is shared by different threads of
differing priorities.

Let us reconsider the prior scenario with one change: suppose Ty and Ty, share the I/O device simulta-
neously, and Ty, does not use the device at all. Does this change the priority that should be assigned to 7;?
Indeed it does. If the priority of 7; is less than T}, then Ty can experience needlessly long priority inversions.
For example, this may occur when Ty suspends from execution after issuing a command to the I/O device and
suspends to wait for completion of the command. The interrupt indicating that the operation has completed
may be received, top-half executed, and bottom-half deferred to 77, but if prio(T;) < prio(Ty) and Ty is
scheduled, then 7; cannot execute and unblock Ty until Ty, gives up the processor. Thus, Ty indirectly suffers
a priority inversion with respect to Ty;. Such a scenario is illustrated in Figure 2.14. Observe that the duration
of this inversion largely is not dependent upon the time it takes to execute the interrupt bottom-half, but rather
upon the duration between when 7; is ready to run and 7y, relinquishes the processor. This dependency can
break analysis and real-time predictability may not be ensured.

The potential for such long priority inversions forces an alternative priority assignment where 7; is
assigned a priority great enough to ensure 7y cannot suffer this particular priority inversion. In general,

the priority of 7; must be no less than the highest-priority thread that may depend upon 7;. However, this

61

I

T Release IComplete T Block T Unblock

————— Priority Inversion

Figure 2.15: Ty may suffer a priority inversion when 7; processes a bottom-half for 7.

assignment introduces a different priority inversion scenario. What happens when 7; processes a bottom-half
for which Ty, blocks, as depicted in Figure 2.15? Since 7; has the greatest priority, it is immediately scheduled
whenever it is ready to run, so the bottom-half for 77 is immediately processed, resulting in the preemption of
any other threads, including 7. This is another priority inversion from which any threads with priorities less
than 77, but greater than 77, may suffer. The primary advantage to using a greater priority for 7; is that at
least these inversions are short—one inversion only lasts as long as the execution time of one bottom-half.
However, the priority assignment that we have been forced to use is susceptible to pathological cases. Suppose
that 7y rarely uses the 1/0O device and 7}, uses it very frequently, generating many interrupts. Or, suppose
there are many low-priority threads (e.g., Tr1,- - - , T1,) that use the I/O device. In either case, Ty and Ty may
experience many priority inversions, as illustrated in Figure 2.16.

Pathological cases are undesirable and become harder to avoid when many tasks of different priorities
share devices. Further, determination of a safe priority assignment for each interrupt handling thread becomes

increasingly difficult with additional interrupt sources.

2.2.3.3 Towards Ideal Real-Time Bottom-Half Scheduling

In this section, we discuss other approaches to real-time scheduling of interrupt bottom-halves. Ideally,
all bottom-halves should be explicitly scheduled in accordance with the analytical model used to determine
schedulability. Under the sporadic task model, bottom-half processing should be accounted for through the
addition of dedicated bottom-half processing sporadic tasks, or by somehow delegating the processing to

tasks already within the task model.

62

T T T T
Top-Halves L1 L2 Ln H
T U] T2 Tin T
=]
TH

= []]

=]
T kTM experiences many priority inversions

“ | |

T Release [Complete T Block T Unblock

g‘l
il

——— Priority Inversion

Figure 2.16: A pathological scenario for fixed-priority interrupt handling.

Dedicated Bottom-Half Servers. Although PREEMPT_RT uses dedicated threads to process bottom-halves,
they are not sporadic tasks. This leads to pessimistic analysis that must account for scenarios like that depicted
in Figure 2.16. To force bottom-half processing to better conform to the sporadic task model, Lewandowski
et al. (2007) and Manica et al. (2010) have employed dedicated sporadic tasks to handle bottom-half
processing in fixed-priority and deadline scheduled systems, respectively. These dedicated tasks take the
form of servers that receive a fixed amount of execution-time budget that is replenished periodically. This
approach works well for handling bottom-halves spawned by interrupts raised in response to external events,
such as the arrival of network packets—budgetary constraints ensure that the system is not overwhelmed by

events that are outside of its control.

Individually Prioritized Bottom-Halves. The usefulness of the server-based approach is limited in situa-
tions where a real-time task may block while waiting for an internal event to occur, such as when a task waits
for a GPU kernel to complete. This is because the time that the task is blocked depends upon the budget and
replenishment rate of the bottom-half-processing server. An alternative approach is to individually prioritize
and schedule each bottom-half with the priority of the task that is blocked waiting for the bottom-half to be
processed. This approach is attractive because the bottom-half execution time can be analytically incorporated
into the execution time of the waiting task itself. The operating system can determine a proper priority for a
bottom-half upon its arrival, provided it tracks every task that currently waits for a bottom-half from a given

device. Bottom-half-processing threads may dynamically inherit the priority of each bottom-half as it is

63

processed. This technique resolves the pathological case depicted in Figure 2.16, as 7; would only preempt
Ty when T; processes bottom-halves while Ty is waiting.

Individual prioritization of bottom-halves is employed by the commercial RTOS QNX Neutrino, which
has a microkernel architecture. Device drivers are implemented as threaded “servers” (not to confused with
the servers employed by Lewandowski et al. (2007) or Manica et al. (2010)). Servers receive and execute
I/0 requests from clients and also perform bottom-half processing. Characteristic to microkernel designs,
clients and servers communicate through message passing channels. Device drivers receive requests for I/O
operations as messages. In-bound messages are queued, in priority order, in the event that they are sent faster
than they can be serviced by the device driver.

In order to avoid priority inversions, device drivers inherit the in-bound message’s priority, which is
attached by the sender, when it is sent. The device driver inherits the maximum priority among queued, and
currently processing, messages. In addition to priority, device drivers also inherit the execution time budget of
their clients (a mechanism commonly referred to as “bandwidth inheritance”). This allows for the throttling
of I/0 workloads on a per-client basis.

Bottom-halves are delivered to the device driver for handling as event messages, and processed at the
priority inherited from I/O request messages. Academic microkernels Credo (Steinberg et al., 2005), an L4
extension, and NOVA (Steinberg et al., 2010), a microhypervisor, have employed similar techniques to QNX
Neutrino.

The benefits of threaded interrupt handling comes at the cost of additional thread context-switch overheads.
(Recall that the primary reason behind Linux’s interrupt handling mechanisms to avoid these overheads.)
To address these concerns, Zhang and West (2006) developed a “process-aware interrupt” (PAI) method,
which supports individually prioritized bottom-halves. Here, newly spawned bottom-halves are scheduled
immediately (before the interrupt top-half returns control to the interrupted task) if the bottom-half has
sufficient priority. Otherwise, the bottom-half is deferred, but it is not processed by a dedicated thread.
Instead, the scheduling of bottom-half processing takes place within the context-switch code path of the
operating system. Prior to a context switch, the priority of the highest-priority deferred bottom-half is
compared against that of the next thread to be scheduled on the processor. The context switch is skipped if
the bottom-half has greater priority, and the bottom-half is scheduled instead. The bottom-half temporarily

uses the program stack of the task that was scheduled prior to the aborted context switch. The resumption of

64

A A 1
CPU : U ’:T-H-iboﬂom-hal H U
A i
cPU, i ’ Ty (fop hal) i
time : ! .
t ta
T Release [Complete =~ =———= Priority Inversion

Figure 2.17: Priority inversion due to the co-scheduling of a bottom-half.

this task can be delayed since it may not be rescheduled until the bottom-half has completed, so the risk of

priority inversions is not completely avoided.

Asynchronous I/0 and Multiprocessors. The above techniques provide better real-time properties than
Linux or PREEMPT_RT, but they are not without their limitations. Thus far we have discussed device
interrupts within the context of synchronous operations. Here, a device-using task blocks until an operation
completes, as signaled by the completion of a bottom-half. However, interrupts are used in asynchronous
operations as well, where a task may issue an operation to a device and continue execution, perhaps blocking
for the operation to complete at a later time. Even with individual bottom-half prioritization, there is a risk of
priority inversions under global and clustered multiprocessors schedulers.

Most real-time analysis techniques assume single threaded workload models. As such, a thread that
has its priority inherited by another should never be scheduled simultaneously with that inheriting thread.
Otherwise, two threads may be scheduled at the same time under the same “identity” and the non-inheriting
thread analytically becomes multi-threaded, breaking analytical assumptions. Thus, it may not be correct to
schedule a bottom-half of an asynchronous operation with the priority of the dependent task. The danger
here is illustrated in Figure 2.17, where T}, suffers from a priority inversion within the time interval [f;,1]
on CPUj, when it is preempted by the bottom-half of 7. The inversion is due to the fact that 7 is already
scheduled on CPU,. We present a solution to this problem in Chapter 3, where the individual priority of a

bottom-half is conditioned on the state of its dependent task.

Engineering Challenges. We conclude this section with the remark that dynamically tracking tasks that are
blocked upon the completion of a bottom-half represents a software engineering challenge. QNX Neutrino,
Credo, and NOVA overcome this challenge in part by using a microkernel architecture, whose message-

passing-based architecture eases priority tracking. The same cannot be said for monolithic kernels, such

65

as Linux, especially where closed-source device drivers are concerned. We show how this is overcome by

GPUSync in Chapter 3.

2.3 Review of Embedded GPUs and Accelerators

In this section, we examine the current state of GPU technology in embedded applications; this review
includes a discussion of similar GPU-like accelerator technologies. This review demonstrates that there is a
market for data-parallel processor architectures in embedded systems, a domain where real-time constraints
are common. This confirms the relevance of the research presented in this dissertation.

GPUs may be “discrete” or “integrated.” Discrete GPUs (dGPUs) are those that plug into a host system
as a daughter card. Integrated GPUs (iGPUs) are found on the same physical chip as CPUs. iGPUs are
common to system-on-chip (SoC) processors targeted to embedded applications, including smartphones and
tablets. dGPUs are traditionally far more computationally capable than iGPUs. It is feasible to use a dGPU in
an embedded system, as long as the host platform supports the necessary I/O peripheral interconnects (e.g.,
PCle). Unfortunately, conventional dGPUs may not be well-suited to all embedded applications for several
reasons. First, dGPUs may be physically too large, taking up too much space. Second, dGPUs commonly
draw enough power (commonly between 150 watts to 250 watts) that they must rely upon active cooling,
which requires a fan and an unobstructed airflow. Third, the physical port where the dGPU connects to the
host system may be prone to physical vibration. However, these challenges are not insurmountable.

General Electric (General Electric, 2011) manufactures “ruggedized” dGPU platforms designed to
deal with harsh embedded environments. These dGPUs may be secured to the host computing platform
through reenforced I/O ports or soldered directly onto the motherboard of the computing system. Special
heat-dissipating enclosures cool the GPU without the need for free-flowing air. General Electric’s ruggedized
systems have been used in radar for unmanned aerial vehicles (Pilaud, 2012), sonar for unmanned underwater
vehicles (Keller, 2013), and situational awareness applications in manned armored vehicles (McMurray,
2011). However, these dGPUs may still not meet the needs of every embedded application due to several
limitations: (i) the heat-dissipating enclosures are large and heavy; (ii) ruggedized dGPUs draw the same
power as conventional counterparts; and (iii) they are expensive. General Electric’s platforms are clearly
meant for defense applications. What is affordable for a multi-million dollar military vehicle may not be

affordable for a mass-market automobile.

66

GPU Designer / GFLOPS GPGPU SoCs
Name Maker (single-precision) Runtime (not exhaustive)
GC2000 Vivante 328 OpenCL 1.2 (embedded) Freescale 1. MX6
SGX544 MP3 PowerVR 51P OpenCL 1.1 MediaTek MT6589
GC4000 Vivante 642 OpenCL 1.2 (embedded) hiSilicon K3V2
Mali-628 MP6 ARM 109°¢ OpenCL 1.1 Samsung Exynos 5422
G6400 PowerVR 2569 OpenCL 1.2 Renesas R-Car H2
GC7000 Vivante 2562 OpenCL 1.2 —
Radeon HD 8210 AMD 256° OpenCL 1.2 AMD A4-1340
HD Graphics 4000 Intel 2957 OpenCL 1.2 Intel BayTrail-T
Mali-760 MP16 ARM 326" OpenCL 1.2 —
GX6650 PowerVR 384° OpenCL 1.2 Apple A8 (iPhone 6)
K1 NVIDIA 384¢ OpenCL 1.2, CUDA NVIDIA Tegra K1
2 Vivante (2014) b Klug (2011) ¢ Sandhu (2013) 4 Shimpi (2013b)
¢ Smith (2014b) f Shimpi (2013a) h Athow (2013); Smith (2014b)

Table 2.5: Performance and GPGPU support of several embedded GPUs.

Although less capable, iGPUs may offer a viable alternative to dGPUs for some applications. iGPUs
lack the physical limitations of dGPUs. The size of an iGPU is negligible as it resides on-chip with CPUs.
The interconnect between the host system and iGPU is also on-chip, so it is not prone to physical vibration.
iGPUs require far less power; common SoCs with iGPUs commonly draw four watts of power, and rarely
more than eight watts. As a consequence, iGPUs seldom require active cooling. In addition to these ideal
physical characteristics, iGPUs are also more affordable, due to the economies of scale in the smartphone and
tablet markets.

We now examine recent trends in iGPU performance and capabilities. Table 2.5 lists several recent
iGPUs and their characteristics. We quantify computational capabilities in terms theoretical peak floating
point performance, measured in GFLOPS. Unfortunately, GPU manufacturers do not always provide these
numbers to the public. As a result, our data is gathered primarily from technology news websites. Each
source is cited by footnote. We caution that this data may not be entirely precise. Nevertheless, we are
confident that the GFLOPS reported in Table 2.5 are accurate enough to get a sense of performance.

We begin by observing trends in computational performance. The Freescale . MX6, which includes the
GC2000 iGPU, was first announced in early 2011. The NVIDIA Tegra K1, which includes the K1 GPU, was
first made available to developers in mid-2014. We see that the K1 is twelve times faster than the GC2000 (32
versus 384 GFLOPS). The K1°s performance is not unusual. The Mali-760 MP16 and the GX6650 perform
at a similar level. The K1, Mali-760 MP16, and GX6650 were released in 2014. Comparing the GFLOPS of

these recent iGPUs to the trends in Figure 1.1(a), we see that the performance of an iGPU today is roughly

67

equivalent to a high-end dGPU in 2006. We note, however, that dGPUs of that era regularly required over
150 watts of power. Contrast this with the four to eight watts of an entire SoC today.

In Table 2.5, we also observe wide adoption of GPGPU technology. Table 2.5 lists six different
GPU designers that produce iGPUs with GPGPU support. These GPUs are licensed by even more SoC
manufacturers. We see that OpenCL 1.2 is widely supported. Only the four least-performing GPUs are
limited to OpenCL 1.1 or the embedded profile of OpenCL 1.2.

iGPUs that support GPGPU also cross instruction-set boundaries. Although the SoCs in Table 2.5
predominantly use the ARM instruction set, we also see support for the x86 instruction set from the Intel
BayTrail-T and AMD A4-1340.

It is difficult to judge which GPUs best support an embedded real-time system, as this is not strictly
defined by the GPU. Other SoC features are important to consider as well. Freescale and Renesas have
an established presence in embedded markets. They have demonstrated an understanding and appreciation
of real-time system constraints. In contrast, Samsung, Apple, and NVIDIA largely focus on consumer
electronics like smartphones and tablets. Each tailors their SoC for their selected market. For example, the
Tegra K1 includes a modern cell phone radio for smartphones and tablets (NVIDIA, 2014f). However, it
lacks integrated support for CAN, a data bus commonly used in automotive electronics. The converse is true
of the Renesas R-Car H2—it supports CAN, but lacks a cellphone radio (Renesas, 2013).

There are also differences in software to consider. For instance, the CUDA programming language is
more succinct than OpenCL. Less code is necessary to perform the same operations. Moreover, NVIDIA has
developed a broad set of tuned CUDA libraries and development tools. As a result, development may proceed
faster on a K1 than it might on any of the other OpenCL-only GPUs. The instruction set of the SoC may also
affect development. For example, the Intel BayTrail-T and AMD A4-1340 support the x86 instruction set.
Development on these platforms benefits from a wide set of tools and software libraries originally developed
for desktops and servers. Also, prototypes developed on x86 workstations are easier to port to x86 SoCs, than
ARM SoCs.

Before concluding with this survey of iGPUs, we wish to discuss digital signal processors (DSPs)
designed to support computer vision computations. These DSPs function much like an iGPU that executed
GPU kernels. As such, we can apply the same GPU scheduling techniques we present in Chapter 3 to these

DSPs.

68

We begin with the G2-APEX DSP developed by CogniVue (CogniVue, 2014), which CogniVue licenses
to SoC manufacturers. CogniVue claims that the G2-APEX consumes only milliwatts of power, making it
more power efficient than iGPUs. The company provides development tools for implementing computer
vision applications, including a custom version of the popular OpenCV computer vision library (OpenCV,
2014). Freescale has licensed CogniVue technology for their own SoCs (Freescale, 2014).

The other computer vision accelerator is the IMP-X4 computer vision DSP, which is incorporated into
the Renesas R-Car H2 SoC (Renesas, 2013). Like CogniVue, Renesas also distributes a custom version of
OpenCV. What is unique to the R-Car H2 is that it also includes a G6400 iGPU from PowerVR. As we see
in Table 2.5, the G6400 is among the more modest iGPUs. However, such deficiencies may be offset when
paired with the IMP-X4. Unfortunately, we were unable to obtain benchmark information from Renesas or
other sources to support this speculation.

It is clear from this survey of ruggedized dGPUs, iGPUs, and unique accelerator DSPs, that there is a
market for data-parallel processor architectures in embedded systems. Solutions today range from expensive
military-grade hardware, to specialized embedded DSPs, to common consumer-grade electronics.

These technologies will evolve with time. What direction will this evolution take? Industry has already
signaled that we can expect CPUs and GPUs to become more tightly coupled. For instance, CUDA 6.0
(released in early 2014) introduced memory management features that automatically move data between
host and GPU local memory. This eases programming because it frees the programmer from the burden of
explicit memory management in their program code. A yet stronger signal for tightly coupled CPUs and
GPUs comes from the development of the “Heterogeneous System Architecture” (HSA), which is backed
by several industry leaders. HSA is a processor architecture where CPU and GPU memory subsystems are
tightly integrated with full cache coherency (HSA Foundation, 2014). A GPU is more of a peer to CPUs in
this architecture, rather than an I/O device as GPUs are today. Many of the advanced features of OpenCL 2.0
(the latest revision of the OpenCL standard) require HSA-like functionality from hardware. We speculate that
CPUs and GPUs with HSA-like functionality will first come from manufacturers that design both types of
processors, as they are in the best position to tightly integrate them. This includes companies such as Intel,
AMD, NVIDIA, and ARM. It may take more time for makers of licensed GPU processors, such as PowerVR
and Vivante. Also, although dGPUs typically lead iGPUs in functionality and performance, iGPUs are likely
support HSA-like features before dGPUs.

69

Application GPGPU

~ API
GPGPU
User Space Runtime
Kernel Space ~ioctl()
. T—_GPL
Linux Layer

Figure 2.18: Layered GPGPU software architecture on Linux with closed-source drivers.

2.4 GPGPU Mechanics

In this section, we discuss: the software stack that manages GPUs; the inherently data-parallel hardware
architecture of GPUs and other hardware components; and how GPUs are used in GPGPU applications.

We wish to define several terms before proceeding. The term “host” refers to CPUs and main system
memory. “Device” refers to the GPU. Hence, “host memory” and “device memory” refer to main system

99 <

memory and local GPU memory, respectively. The terms “process,” “application,” and “task,” all refer to
a single thread of a program. “Process” carries connotations to services offered by kernel- or user-space
daemons. “Application” refers to a general user-space program. “Task” refers to a program that performs a

repetitive operation (real-time, or not).

2.4.1 Software Architecture

A complex software stack sits between a user’s GPGPU application and the GPU hardware. Figure 2.18
provides a high-level illustration of this stack in the Linux operating system. There are four primary layers:
the application, the GPGPU runtime, the GPU device driver, and finally, the operating system. These layers
are split across the “user space” and “kernel space” boundaries, providing the necessary memory protections
between the application and operating system. We now discuss the role of each layer from top to bottom.

A GPGPU language is defined by programming language features, such as extensions to the C language,
and an application programming interface (API). At runtime, application-layer code interfaces, either directly
or indirectly, with the GPGPU runtime through the provided API. Direct interaction occurs when application
code calls API functions explicitly. For instance, the OpenCL API c1EnqueueWriteBuffer () is used by

the application to copy data to device memory. Indirect interaction occurs when elements of the GPGPU

70

programming language are converted into API calls at compile-time. For example, the “triple chevrons”
(i.e., <<<>>>) used to launch a GPU kernel in the CUDA language are transformed into calls to CUDA’s
cuLaunchKernel ().!3

The GPGPU runtime manages the application’s session with the GPU. One role of the runtime is to
implement GPGPU language features that do not require OS intervention. For example, both CUDA and
OpenCL allow an application to attach host-side callbacks to GPU operations. These callbacks are executed
by threads internal to the GPGPU runtime as GPU operations complete. (We discuss the implications these
threads have on a real-time system shortly.)

Another function of the GPGPU runtime is to translate API calls into commands given to the GPU device
driver. On Linux, these commands are passed to the driver through the ioct1 () system call. By design, this
system call does not have a strictly defined interface, as it is used by the callee to pass arbitrary data to a
device driver. In this way, a device driver exposes its own API to the runtime via ioct1 ().

The device driver is responsible for managing the GPU hardware. It communicates directly with the
GPU to carry out operations requested by the GPGPU runtime. The driver may arbitrate GPU access when
multiple applications wish to use the GPU at the same time. The driver is also responsible for providing
device management services to the OS. These include device initialization and interrupt handling. The driver
uses interfaces defined by the operating system to provide these services. This is true for even closed-source
device drivers. This is depicted in Figure 2.18, where a “GPL layer” mediates the interactions between the
driver and Linux. We call this the GPL layer since it bridges the closed-source driver with the Linux kernel
APIs made available under the second version of the GNU General Public License (GPL) (Free Software
Foundation, Inc., 1991).

For efficiency, the GPGPU runtime may also communicate directly to GPU hardware through a memory-
mapped interface. Here, the runtime is given direct access to a segment of GPU device memory and special
registers by mapping these elements into the virtual address space of the application. The GPGPU runtime
can submit some commands to the GPU through this interface, bypassing the GPU driver. Similarly, the
runtime can monitor the completion of commands by polling memory-mapped registers that reside on the
device, instead of waiting for an interrupt raised by the device. This has obvious implications on scheduling,

since neither the operating system nor the GPU driver is involved in GPU resource scheduling decisions.

15See line 7 in Figure 2.21 for an example of CUDA's triple chevrons.

71

Unfortunately, it is not always clear which GPU operations may be issued directly or which require support
from the driver. However, we do have some insights to offer. GPGPU runtimes commonly allow a CPU
thread to spin or suspend while waiting for a GPU operation to complete. Our experience suggests that
operation completion is actively monitored through memory-mapped registers when the user program elects
to spin. Operation completion is signaled by a device interrupt when the user program elects to suspend.
The GPGPU runtime and device driver are complex software packages that are usually developed and
maintained by the GPU manufacturer. Unfortunately, to date, all manufacture-produced software has been for

general purpose computing, not real-time systems. This raises several issues:

1. The GPGPU API provides no mechanisms to express real-time priority or time-related parameters

(such as deadlines).

2. The driver, or GPU hardware itself, may resolve contention for GPU resources using policies that are

not be amenable to real-time analysis.

3. The execution time of runtime and driver operations may vary widely, with extreme outliers in worst-

case behavior.
4. The software may employ synchronization techniques that break real-time scheduling.

We examine the first three issues in depth in Chapters 3 and 4. However, we further explore the remaining
issue regarding synchronization now, as this provides additional insight into how the GPGPU software stack
operates.

As mentioned earlier, the CUDA runtime supports the attachment of callbacks to the completion of
GPU operations. Callbacks are executed by host-side threads created and managed by the CUDA runtime.
These callbacks are also responsible for signaling (waking) user threads that have suspended from execution
to free up CPU resources while waiting for GPU operations to complete. That is, the callback threads are
used to synchronize GPU operations and user threads. This can lead to the problematic scenario depicted
by the schedule in Figure 2.19 for a uniprocessor system. At time ¢1, the high-priority task, 7y, suspends
while waiting for a GPU operation to complete. A low-priority task 77, is scheduled at this time. The GPU
operation completes some time shortly before time #,. At time #,, the callback thread of Ty, Tflb, is ready
to run and wake up Ty. However, Tflb was created by the real-time-oblivious CUDA runtime, so the thread

lacks the priority to preempt 7;. T5° is not scheduled until time #3. It completes at time #4. As a result, Ty

72

[
' ' "
L

L
t ty taty

T Release TComplete T Block T Unblock

Priority Inversion

Figure 2.19: Ty experiences a priority inversion if the callback thread, 75?, is not scheduled with a proper
real-time priority.

experiences an priority inversion during the time interval [f;,#3]. (The inversion ends at 3 instead of #4 since
Tﬁb performs work on behalf of Ty.) The execution time of TISb does not affect the duration of the priority
inversion—it remains constant even if #4 — 3 = 0. This scenario is not unlike the interrupt scheduling problem
of Figure 2.14.

We cannot be too critical of the CUDA runtime. It was not designed with real-time scheduling in
mind. The use of callback threads in dual roles of callback execution and signaling likely reduces software
complexity. The approach performs well under a general purpose scheduler, since callback threads are
unlikely to wait for a long time before being scheduled; such schedulers are generally responsive to threads
that execute infrequently and for short durations. However, the runtime’s implementation hinders any naive
attempt at real-time scheduling.

What can we do to resolve the issues raised by the manufacturer-provided GPGPU software stack? Can
it be altered? In many cases, the GPGPU software is distributed as closed-source, where direct alteration
is not possible. Can it be replaced? Open-source alternatives do exist for some GPUs (e.g., Gdev (Kato
et al., 2012) and Beignet (Segovia and Nanha, 2014)). We may alter the behavior of this software, but there
are several practical issues to consider. First, the software may also be oblivious to the needs of real-time
applications, despite being open-source. Second, the software may not support recent GPUs or all GPU
features. Third, the software may be unable to utilize a GPU to its full potential since the software may be

designed from knowledge gained through reverse engineering of GPU hardware. Finally, altered software

73

needs to be maintained. Replacement of manufacturer-provided GPGPU software is feasible, but it is a costly
endeavor and may require the sacrifice of some functionality.

As we explore in Chapter 3, there is another approach that can be applied to both closed- and open-
source software stacks: we can wrap the GPGPU runtime and device driver to force the software to respect
real-time scheduling priorities and behave more predictably. If proven effective, such an approach should be
preferred because it enables us to enjoy the benefits of manufacturer-provided GPGPU software and avoid

the significant investment of alteration and maintenance of open-source alternatives.

2.4.2 Hardware Architecture

We describe the GPU hardware architecture in a top-down manner, beginning with how a GPU integrates
into a host platform. We then discuss internal GPU components.

Recall from Section 2.3 that GPUs may be discrete (dGPUs) or integrated (iGPUs). For either type,
GPUs interface to the host system as I/O devices and are managed by device drivers. Discrete GPUs differ
from integrated GPUs in three ways: (i) they are much more computationally capable; (ii) they have local
high-speed memory (integrated GPUs use system memory); and (iii) they operate most efficiently upon
local GPU memory, which requires copying data to and from system memory. For most of this dissertation,
we focus our attention on dGPUs for their performance characteristics and interesting challenges posed by
memory management. However, the techniques developed herein remain applicable to iGPUs, except that
there is no need for GPU memory management.

Figure 2.20 depicts a high-level architecture of a multicore, multi-GPU system. The GPU is connected to
the host system via a full-duplex PClIe bus. PCle is a hierarchically organized packet-switched bus with an
I/0 hub at its root (for this reason, the I/O hub is technically referred to as the “root complex”). Switches
multiplex the bus to allow multiple devices to connect to the I/O hub. Unlike the older PCI bus, where only
one device on a bus may transmit data at a time, PCle devices can transmit data simultaneously. Traffic
is arbitrated at each switch using round-robin arbitration at the packet level in case of contention.!® The
structure depicted in Figure 2.20 may be replicated in large-scale NUMA platforms, with CPUs and I/O
hubs connected by high-speed interconnects. However, only devices that share an I/O hub may communicate

directly with each other as peers.

16The PCle specification allows for other arbitration schemes, but these appear to be rarely implemented (PCI-SIG, 2010).

74

GPU Memory
GPU Local
Memory Bus

CEq | | CE4 EE

Switch 1 E

System Multicore
Memory Processor 1/O Hub
Memory High-Speed
Bus Interconnect

Figure 2.20: Example high-level architecture. The I/O hub may be integrated onto some multicore chips.

Within each GPU device are several specialized processors. The processors of greatest concern to this
dissertation are labeled in Figure 2.20, using terminology partly defined by NVIDIA. These are the execution
engine (EE), which is used to perform computations, and the copy engines (CEs), which perform bulk
memory operations to interface with the host system and other I/O devices (including other GPUs). The EE
and CEs share a memory bus to local GPU memory. We take a moment to address GPGPU terminology
before discussing these engines in greater detail.

For the sake of consistency, we use terminology defined by NVIDIA throughout this dissertation. Our
only deviation from this is the use of the term “execution engine.” NVIDIA documentation may refer to this
component as the “compute engine.” We avoid this term to eschew an ambiguous abbreviation with the term
“copy engine.” Although GPU architectures from different manufacturers may differ greatly, there remain
many high-level similarities. Table 2.6 provides common equivalent GPGPU terminology for many of the
NVIDIA-based terms we use herein. We note that because the approach we present in Chapter 3 operates
by wrapping elements of the GPGPU runtime, we need not concern ourselves with lower-level differences
between GPU architectures—the high-level limitations that we discuss are consistent across GPU platforms

today.

75

Software
CUDA (NVIDIA) OpenCL (Khronos)
Thread Work-Item
Warp Wavefront
Block or Work-Group
Cooperative Thread Array (CTA)
Grid NDRange
Hardware
NVIDIA AMD
CUDA Processor or Lane Processing Element
Streaming Multiprocessor (SM) | Compute Unit (CU)
Copy Engine (CE) DMA Engine
Compute Engine Compute Device

Table 2.6: NVIDIA software and hardware terminology (NVIDIA, 2014c) with equivalent OpenCL (Khronos
Group, 2014a) and AMD (AMD, 2013) terminology.

2.4.2.1 Execution Engine

The execution engine consists of one or more parallel processors. GPU manufacturers scale the number of
processors in the EE to realize GPUs with different computational capabilities. This allows the manufacturer to
cover embedded, laptop, desktop, gaming enthusiast, and supercomputing markets with a common processor
architecture. The number of parallel processors in a GPU also varies with each hardware architecture—
especially among GPUs of different manufacturers. For example, recent NVIDIA GPUs typically have
between one to sixteen processors, while AMD GPUs may have up to 44 (Smith, 2013).

For NVIDIA GPUs, each parallel processor is called a “streaming multiprocessor” (SM). Each SM is
capable of executing a single instruction concurrently across several “lanes” of data operands. At any instant,
a group of tightly coupled user-defined threads, called “warps,” are bound to these lanes, one thread per lane.
Thus, the threads in a warp are executed in lock-step. If threads diverge on a conditional-code branch (e.g., an
if/else-branch), then each branch is executed in turn, with the appropriate threads “masked out” within each
branch to ensure each thread executes the correct branch.!”

Although an SM can only execute one warp at a time, an SM may be oversubscribed with several warps
at once. That is, several warps may be assigned to a single SM. This is done to facilitate the hiding of memory
latencies. The SM will quickly context switch to another ready warp if the currently executing warp stalls on

a memory access.

171t is for this reason that GPU performance on branchy code is poor.

76

1 // Operate on ‘input’ of size (x, y, z) in (4, 4, 4)-sized thread blocks
2 void kernel3d_host(int ***input, int x, int y, int z)

3 {

4 dim3 size3d(x, y, z);

5 dim3 blockSize (4, 4, 4);

6 dim3 gridSize(data.x / blockSize.x, data.y / blockSize.y, data.z / blockSize.z);
7 kernel3d_gpu<<<gridSize, blockSize>>>(input, size3d);

8 X

9

10 // A 3D CUDA kernmnel

11 __global__

12 void kernel3d_gpu(int ***input, dim3 size3d)

13 {

14 // Compute spatial location of thread within grid

15 int i = blockDim.x * blockIdx.x + threadIdx.x;

16 int j = blockDim.y * blockIdx.y + threadldx.y;

17 int k = blockDim.z * blockIdx.z + threadlIdx.z;

18

19 // Only operate on input if thread index is within boundaries
20 if ((i < size3d.x) && (j < size3d.y) && (k < size3d.z))

21 {

22

23 }

24}

Figure 2.21: Code fragments for a three-dimensional CUDA kernel.

To better understand how warps are assigned to the EE, we must first briefly discuss the general GPGPU
programming model. In GPGPU programs, threads are organized in a hierarchical and spatial manner. Warps
are groups of tightly-coupled user threads. Warps are grouped into one-, two-, or three-dimensional blocks.
Blocks are arranged into one-, two-, or three-dimensional grids. One grid represents all the threads used to
execute a single GPU kernel, as discussed in Chapter 1. Conceptually, it may help to think of individual
threads as mapped to a single inner-most iteration of a singly-, doubly-, or triply-nested loop. At execution
time, lane-specific hardware registers within the SM inform the currently executing thread of its location
within its grid. Using this information, user code can properly index input and output data structures.

A simple example is illustrated by the code fragments in Figure 2.21. In line 5, the host configures a
GPU kernel to process data in three-dimensional blocks of size 4x4x4 threads. The number of blocks in
the grid is computed in line 6, assuming that the problem size divides evenly by four. This dimensional
configuration of the kernel is provided at kernel launch, in line 7. The code in the function kernel3d_gpu ()
is programmed from the perspective of a single thread—one thread among many within the grid. This
thread determines its (i, j,k) coordinates within the grid on lines 15 through 17. If the coordinates are within
the bounds of the problem (line 20), then the thread operates on the input data. If the input problem has
the dimensions of 128x128x128, then the resulting grid has 32x32x32 blocks, each with 4x4x4 (or 64)

threads. This breakdown of the grid into threads is illustrated in Figure 2.22. Each multi-dimensional block is

77

Thread

et
=

32x32x32 4x4x4 1 AN
Blocks Threads Thread

Figure 2.22: Grid of 32x32x32 blocks, with blocks of 4x4x4 threads.

linearized and decomposed into warps. The threads of each warp are mapped to the hardware lanes. Although
not specified by the language, all warp sizes to date on NVIDIA GPUs have been 32 lanes, so under this
assumption, each block would be made up of two warps. This is illustrated in Figure 2.23.

The EEs of modern GPUs are capable of executing more than one kernel concurrently.'® This feature
can be leveraged to increase EE utilization. Consider the following situation. Suppose we have several
independent kernels to execute. We issue each kernel to the GPU, one at a time, waiting for each issued kernel
to complete before issuing the next. Recall that grid blocks are distributed among the EE’s SMs. Towards the
end of the execution of each kernel, SMs will begin to idle after completing their assigned blocks, while other
SMs continue executing their remaining work. At the instant before the last block completes, all but one SM
will be idle. However, if we issue the independent kernels to the GPU in quick succession, not waiting for
each issued kernel to complete before issuing the next, then SMs can be kept busy as they execute blocks of
grids that have already been queued up for execution.

A GPGPU kernel is decomposed into a collection of multidimensional blocks, which are made up of
threads that are grouped into warps. How is each SM assigned warps to execute? Although SMs execute the
instructions of a single warp at a time, SMs are not assigned individual warps. Instead, SMs are assigned
blocks, and the SMs independently schedule the warps within each block. How are blocks assigned to SMs?

In today’s technology, blocks are assigned to SMs by in-silicon hardware schedulers on the GPU (Bradley,

18There may be restrictions, however. For example, on NVIDIA GPUs, memory subsystems of the GPU require that concurrently
running kernels share the same address space.

78

\ block of 64 threads :
warp of 32 threads warp of 32 threads

I Y Y Y Y
32 lanes

Figure 2.23: Linearized block of threads decomposed into two warps, which are multiplexed on hardware
lanes.

2012). As software engineers, we have no direct control over how work is distributed among the SMs.!* We
merely provide the GPU with a collection of blocks, which are then scheduled by the GPU itself. This has

two important implications:
1. We cannot predictably schedule individual SMs.
2. We cannot predict how SMs may be shared among concurrent kernels.

It is for these reasons that we consider the SMs together as a single processor—the execution engine—rather
than individual processors.?’ We can predictably schedule the EE.

There is one more aspect of the EE that affects real-time predictability: the EE is non-preemptive. This
is understandable, given the complexities of the GPU’s hardware scheduler. Non-preemption has a significant
impact on any real-time system in two ways. First, it becomes impossible to strictly enforce budgets on task
execution time. At best, any real-time scheduling algorithm may only attempt to avoid and isolate the harmful
effects violations of provisioned execution times may have. Second, priority inversions become inevitable
under any work-conserving scheduler. It will always be the case that low-priority work may be scheduled

on an idle EE at time ¢ when higher-priority work for the EE arrives at time 7 + €. The higher-priority

19This holds true for AMD GPUs as well (AMD, 2013).

200penCL 1.2 supports an optional feature called Device Fission. This feature allows the system designer to divide a single compute
device into several logical compute devices. This may be exploited to reserve a segment of compute resources for high-priority
work. However, support for this feature is currently limited to OpenCL runtimes that execute on CPUs (including Intel’s Xeon Phi)
and tightly coupled heterogeneous processors, such as the Cell BE. We note that the problem of scheduling several logical devices
is very similar to scheduling a multi-GPU system.

79

work cannot be scheduled until the low-priority work completes. We must develop algorithms that limit the

duration of such inversions and account for them in analysis.

2.4.2.2 Copy Engines

The GPU copy engines transmit data between local GPU memory, remote I/O memory (e.g., other GPUs
or I/O devices such as network cards), and system memory. The CEs operate through DMA operations. GPUs
commonly have only one CE, and thus cannot send and receive data at the same time. However, high-end
GPUs (such as those used in high-performance computing applications) may have an additional CE, enabling
simultaneous bi-directional transmissions.

Each CE may only be tasked with one DMA operation at a time. The command to perform a DMA
operation must be issued by host-side code. That is, a GPU kernel cannot issue the DMA command itself.
This implies that any real-time DMA scheduling must be performed from the host.?! Like EEs, CEs are also
non-preemptive, incurring the same issues regarding budget enforcement and priority inversions.

DMA operations may only read or write data that is fixed, or “pinned,” to a physical memory address.
This is necessary in order to prevent data from being relocated by the OS while it is acted upon by a DMA
processor. GPGPU runtimes provide APIs that allow the user to pin data. However, if the user requests
a DMA operation that acts upon non-pinned data, then the GPGPU runtime must take extra measures to
orchestrate the operation—the particular steps depend upon the runtime implementation. For example, the
runtime may automatically copy data to a staging buffer that is pinned and perform the DMA operation on this
buffer. The operation may be performed incrementally if the staging buffer is smaller than the data accessed.
This method is inefficient, since it requires data to be temporarily copied to the staging buffer. Alternatively,
the runtime may dynamically pin and unpin user memory as needed. This method incurs overheads, since
pinning and unpinning requires support from the OS and device driver. In real-time programming, it is already
common practice to pin all application data in order to avoid page faults, which are harmful to real-time
predictability. We assume that this practice is extended to all GPU-related memory using provided GPGPU
runtime APIs.

Some GPUs, such as those made by NVIDIA, support peer-to-peer (P2P) DMA, where data is transmitted

directly between I/O devices (such as two GPUs). This is more efficient than passing data between two

21 pellizzoni (2010) has explored scheduling DMA operations through the use of specialized interposition hardware that sits between
the I/O device and the PCI bus. However, we consider this extreme method out of scope for this dissertation.

80

devices by way of a temporary buffer in main system memory. There are two restrictions to P2P DMA
operations. First, the two peers must share the same I/O hub (root complex), as depicted in Figure 2.20.
Second, in the case of P2P operations between two GPUs, it is unclear whether it is the CE of the sender,
receiver, or both that perform(s) the DMA operation. It is partly for this reason that we make the conservative
assumption that both CEs are utilized under our management approach described in Chapter 3. However, this
requires that we coordinate the schedules of the source and destination CEs.

The efficiency of a P2P DMA operation is partly dependent upon the distance between GPUs. Distance
is the number of links to the nearest common switch or I/O hub of two GPUs. For example, in Figure 2.20,
the distance between GPU, and GPUj is two (one link to a switch, a second link to a common I/O hub). P2P
DMA operations are generally more efficient over short distances, since there are fewer opportunities for bus

contention.

2.4.3 Other Data Transfer Mechanisms

The use of CEs to transfers data to and from GPU memory is the most widely supported method of data
transmission in GPGPU programming languages. However, GPUs may support other mechanisms. Fujii et al.
(2013) have explored two such mechanisms: “GPC” and “IORW.” We describe these in turn. We conclude
with a remark on unified memory models offered by recent versions of OpenCL and CUDA.

On NVIDIA GPUs, there are lightweight microcontrollers shared by clusters of SMs (or “graphics
processing clusters” (GPCs)) that are capable of performing DMA operations, much like the CEs. However,
this functionality is not normally exposed to the programmer. Fujii et al. enable microcontroller-based
“GPC” DMA with custom firmware that is loaded by an open-source driver.?> They found that GPC-based
memory transmissions can be as much as ten-times faster than CE-based memory transmissions for data
chunks of 4KB or less, with equivalent performance at roughly 16KB. The microcontroller outperforms the
CE on small memory transmissions because there is less overhead in initiating the DMA operation. However,
the GPC method has the significant drawback that it currently requires custom firmware, which must be a
complete functional replacement for the vendor-provided firmware. The IORW approach may be a reasonable

alternative if CEs cannot meet the memory transmission latency needs of an application.

22Q0ur use of the term “GPC” generalizes three similar microcontroller-based methods explored by Fujii ez al.

81

Under “memory-mapped I/O read and write” (IORW) data transmission, remote memory is mapped into
the address space of the CPU or GPU. For instance, GPU device memory may be mapped directly into the
address space of the CPUs. Host memory can also be mapped into the address space of the GPU processors.
Data is transmitted automatically as load and store instructions that operate upon memory-mapped addresses
are executed by CPUs or SMs. Fujii et al. showed that IORW can perform very fast and low-latency memory
transfers, especially for data transmissions from the host to GPU memory. IORW performs well in situations
where it is difficult to predict what data will be needed by a GPU kernel (e.g., graph traversal algorithms).
This is because it may be more efficient for the GPU to access data as-needed directly from the host, rather
than use a CE to transmit the entire problem dataset to the GPU prior to kernel launch. The IORW method
transmits less data in such a case. However, there are several potential drawbacks to IORW. One such
drawback is that IORW proves inefficient in cases where a memory-mapped address is accessed multiple
times by a remote processor. Each access incurs the relatively high penalty of transmitting data over the PCle
bus. In contrast, under the CE method, data is transmitted once over the PCle bus and then accessed locally.
Another drawback is that host-to-device IORW data transmissions are not always a supported. Fujii et al.
enabled this feature for NVIDIA GPUs through the use of an open-source GPU driver. We note, however,
that industry is moving towards bi-directional IORW support. This is demonstrated by industry backing of
HS A-like architectures, which we discussed at the end of Section 2.3.

The above drawbacks to IORW do not necessarily preclude its use in a real-time system. However, the
following may: we cannot directly schedule memory transfers under IORW. Instead, data is transmitted as
instructions are executed by a processor. This makes predicting the worst-case execution time of computations
more challenging. Any such predictions are highly likely to be exceedingly pessimistic, and thus result in poor
schedulability. Instruction-level interleaving of computation and memory transfers has another drawback:
we expend processor time to perform memory operations that could be offloaded to DMA processors. We
can achieve greater levels of system utilization by separately scheduling DMA-based memory transfers and
processor execution time.

Recently, OpenCL 2.0 and CUDA 6.0 have introduced memory models (“coarse-grained shared virtual
address spaces” in OpenCL 2.0 and “unified memory” in CUDA 6.0) that unify the CPU and GPU address
spaces. Under these models, the GPGPU runtime and device driver coordinate to automatically transmit data

between host and device memory on a page-based (4KB) granularity. However, these models are merely

82

5 (BB E)
I]
15 [B

Figure 2.24: Two streams made up of sequentially ordered GPU operations issued to a GPU.

GPU

abstractions built on top of other DMA-based (e.g., CE-based) mechanisms. Their use in real-time systems

may be ill-advised, since the abstractions prevent the use of a real-time scheduling policy.

2.4.4 Maintaining Engine Independence

The execution and copy engines of a GPU can operate independently, allowing us to schedule them
separately and model them as separate processors in real-time analysis. However, limitations of in-silicon
hardware schedulers that feed work to the EE and CEs can break our assumption of engine independence.
We must be aware of these limitations, so that we may design around them.

GPGPU applications issue sequentially ordered GPU operations in streams, as depicted in Figure 2.24.
Here, task T; issues GPU operations on stream S;, and task 7; issues GPU operations on stream S;. We
index and denote the engine used by each operation with a superscript. For example, the second GPU
operation issued by 7; uses the CE and is denoted by Si1 ¢, (For the sake of simplicity, we assume only a
single CE in this example.) New operations can be issued before prior ones have completed (i.e., they may
be batched). However, an operation may not begin execution until all prior operations issued to the same
stream have completed. A single stream is somewhat analogous to a single CPU thread, as both are made up
of sequentially ordered computational elements: CPU instructions for threads, GPU operations for streams.

All NVIDIA GPUs without the “Hyper-Q” stream scheduler suffer from a limitation that can break
our assumption of engine independence.?? On a non-Hyper-Q NVIDIA GPU, pending GPU operations of
every stream are combined into a single first-in-first-out (FIFO) queue. The engine scheduler dispatches
enqueued operations to the appropriate engines. However, the engine scheduler stalls if the GPU operation

at the head of the FIFO queue has an unsatisfied stream dependency on an unfinished operation. This

23This includes all Tesla, Fermi, and non-GK110 Kepler architecture GPUs.

83

T Release [Complete === Stalled

EE i EE i
CE si7 £ SjOCE CE SjoCE 5‘_7 £
A_ o o o A_ o o
50k 50kt
i — i N
glce T slee
! T ! A T
0, 0
50 | §0c
J J
time Il Il Il Il Il Il Il time Il Il Il Il Il Il
0 5 10 15 20 25 30 0 5 10 15 20 25
(a) Scheduler stalls because Sl.] ¢ depends upon S?EE . (b) No stall when S} E is released after S?EE completes.

Figure 2.25: Schedules of streamed GPU operations when engines are dependent due to hardware scheduler
limitations (a) and made independent through software (b).

stall prevents operations of other streams from being dispatched to idle engines. Such a case is illustrated
in Figure 2.25 (a). Here, task 7; issues GPU operations S?EE and Si1 £ on stream S; for the EE and CE,
respectively, to a completely idle GPU. Concurrently, task 7; issues operation S?CE for a CE on stream S ;.
These operations may be enqueued in the hardware FIFO in the order: [S?EE ,Sl-1 CE ,S?CE]. In this case, the
engine scheduler dispatches S?EE to the EE immediately. S 11 £ depends upon the completion of S?EE, so the
engine scheduler stalls until S?EE completes at time 15. S}CE is dispatched to the CE at this time, followed
by S?CE at time 25. Observe that S?CE is not scheduled at time 0, even though S?CE is ready and the CE
is idle—this is because S?CE has enqueued behind Si1 £ in the hardware FIFO queue. The engines are not
independent in such scenarios. The particular order of stream operation interleaving in the FIFO queue
occurs largely by chance. Observe that the illusion of engine independence would have been maintained if
the concurrently dispatched operations had been ordered [S?EE , S?CE .S 11 €£] in the hardware FIFO queue.
There are two ways to resolve the above engine-dependency issue in a real-time system. First, we
may model a GPU’s EE and CEs as a single notional processor. Unfortunately, such an approach results in
utilization loss in schedulability analysis. For instance, suppose for a particular task set that a GPU’s EE and
CE each have a utilization of 51%, when the EE and CE are modeled as independent processors. Combining
the EE and CE, we have a utilization of 102%. The notional processor is overutilized, so the task set is

unschedulable under this analysis. An alternative approach is to design around the limitations of the hardware

84

scheduler: in software, each application issues GPU operations to its stream one at a time, waiting for each
operation to complete before issuing the next. That is, applications “synchronize” with the GPU after issuing
an operation.”* It is impossible for the hardware scheduler to stall because the FIFO queue is prevented
from holding more than one operation per stream. This maintains engine independence, avoiding needless
utilization loss. Figure 2.25 (b) depicts the schedule for our prior example when engine independence is
enforced through software. Observe that the last operation completes at time 25 instead of time 30 because
the CE is used more efficiently.

Enforcing engine independence through software comes at the cost of additional overheads due to
synchronization. In the case where applications suspend while waiting for GPU operations to complete,
overheads include costs due to the CPU scheduler, thread context switches, and interrupt processing. These

overheads must be incorporated into schedulability analysis.

2.4.5 VectorAdd Revisited

In Chapter 1 (Section 1.4.1), we presented a schedule for a basic GPU kernel that adds two vectors
(Figure 1.3). As we have learned in this chapter, the actual schedule is far more complex. We revisit the
schedule of the VectorAdd routine of Chapter 1, with additional details to tie together the various operations
that occur in a simple GPGPU program. Figure 2.26 depicts the schedule for our VectorAdd program. The
upper-half of the figure depicts when various processors are scheduled. The lower-half of the figure depicts
the corresponding schedule for the threads and interrupts of the GPU-using task, 7;. For simplicity, the
schedule assumes that 7; executes alone on the system. Also, we assume 7; suspends from CPU execution
while waiting for a GPU operation to complete. We now walk through this schedule, step-by-step.

Task T7; is scheduled on the CPU and issues a command to copy data from the host to GPU memory at
time #;. 7; suspends while waiting for this operation to complete. The copy engine CEj is scheduled with the
DMA memory copy, which completes at time #,. The GPU issues an interrupt to the host to signal completion

of the copy. Several operations occur in quick succession:

1. The interrupt handler is invoked on the CPU at time t, and the interrupt top-half executes.

24Care must be taken in selecting a synchronization method. For instance, the CUDA API supports several synchronization methods:
cudaDeviceSynchronize (), cudaStreamSynchronize (), and cudaEventSynchronize(). cudaEventSynchronize ()
cannot be used to maintain engine independence because its use actually results in the injection of a synchronization op-
eration into the hardware FIFO queue, creating the very scenario we are trying to avoid. We recommend the use of
cudaStreamSynchronize (), based upon our own experience.

85

T Release [Complete T Block T Unblock % Interrupt n= Suspended

1 1
i gpu, vector_host(..)
1 1

1 1
)i i |
1 1
aMemcpy (gpd_b, b,.); icudaMemcpy (c, d
l 1
i i
1 1
1 1

3

vector_host(..) C u_c,.);

\

|

1 1
cudaMemépy (gpu_ja
1 1
1
1
1
1
1
1
1

————-g----

CPU

CEO

17
b

o

CE,

EE

Top-Halves

- bh
I

Figure 2.26: A detailed schedule depicting the interactions between the host system, GPU, and various
schedulable threads, for the simple vector_add () kernel of Figure 1.2.

2. The top-half spawns a bottom-half, which is processed by the thread Tibh, starting at time 3.

3. The bottom-half signals the callback thread of the GPGPU runtime, TiCb, which is awoken and scheduled

at time #4.
4. TiCb wakes the task 7; at time t5.

This sequence of operations repeat for the remaining memory copy operations and the GPU kernel beginning
at times fg, g, and f9.
At time #7, T; launches the GPU kernel. This kernel is scheduled on the EE and executes as many parallel

threads across the EE’s SMs. The kernel completes at time fg. At time f9, 7; issues the command to copy the

86

results of the GPU kernel into host memory. This operation is carried out by copy engine CE;. The copy
completes and 7; finishes its execution.

The schedule depicted in Figure 2.26 should give us an appreciation for the complexity of the problems
we face in developing a real-time system with GPUs. The VectorAdd program is simple compared to
real-world GPGPU programs that may invoke many more memory copies and GPU kernels within a single
real-time job. Despite this complexity, our CPU scheduler must schedule threads 7" and T,® with priorities
no less than 7; in order to avoid priority inversions, all while respecting the priorities of other real-time tasks
in the system. Access to EE, CEy, and CE; must be arbitrated among competing tasks with different real-time
priorities. Overheads related to scheduling, context switches, and interrupt handling, to name a few, must be
integrated into real-time schedulability analysis.

Figure 2.26 does not capture the full complexity of the system we propose to build. In Chapter 3,
we develop multi-GPU scheduling algorithms that allow tasks to migrate among GPUs. The multi-GPU
schedulers can be paired with a variety of multiprocessor CPU schedulers. Our proposed GPU scheduling
framework also supports budget enforcement mechanisms that isolate the effects of occasionally poorly
behaved tasks. Finally, we achieve this by wrapping the GPGPU runtime and device driver, rather than

implementing our own real-time GPU software stack from the ground up.

2.5 Prior Work on Accelerator Scheduling

In this section, we cover prior work related to the scheduling of compute accelerators, such as GPUs.
We begin with a discussion of the various directions real-time GPU scheduling has taken. We then examine
prior work on scheduling computational accelerators, such as digital signal processors (DSPs) and field-
programmable gate arrays (FPGAs). We conclude with brief survey of GPGPU scheduling techniques in

non-real-time systems.

2.5.1 Real-Time GPU Scheduling

Current real-time GPU research falls within three general categories: (i) techniques for persistent low-
latency GPU kernels, (ii) WCET analysis of GPU kernel code, or (iii) GPU resource scheduling. We review

these categories in turn.

87

2.5.1.1 Persistent Kernels

In the first category, a persistent GPU kernel executes on a dedicated GPU. These kernels never terminate;
they continually poll for work in a producer/consumer-styled software architecture. Research in this area
focuses on efficient data movement between a single GPU and the rest of the system. There is no need for
scheduling data-movement or GPU computations since there is only a single dedicated GPU and a single
persistent kernel. Instead, low-latency memory operations are of primary importance. Aumiller et al. (2012)
explored the tradeoffs between DMA memory transfers and various IORW-based data transfer mechanisms,
and Fujii et al. (2013) explore these matters in greater depth. This work was done in support of that by Rath
et al. (2012), wherein a GPU is used to actively adjust the magnetic field that contains plasma in a tokamak
fusion reactor. Using IORW-based data transfers, Rath ef al. (2012) report that their GPU-based solution can
react to changes in input sensor data within 10 us. These latencies could not be achieved using DMA-based

data transfers due to the overhead of setting up the CEs.

2.5.1.2 GPU Kernel WCET Estimation and Control

The second category of real-time GPU research has focused on bounding the execution time of GPU
program code, with no attention paid to scheduling or data-movement costs—it is assumed all data already
resides on the GPU. This work is useful within the context of real-time analysis. Berezovskyi has been the
primary investigator in developing methods for estimating the WCET of GPU kernels. In his first effort,
Berezovskyi et al. (2012) developed a model of GPU kernel execution in terms of the total number of lanes
in an SM, the number of threads within a GPU kernel, and the number of program instructions of the GPU
kernel. Under several simplifying assumptions, they developed a formulation of an integer linear program
(ILP) that computes the maximal execution time of the GPU kernel across the SMs. This work matured with
the development of heuristics to estimate WCET (Berezovskyi et al., 2013)—this heuristic method produces
a WCET estimate in several hours, instead of several days. Unfortunately, these approaches can only provide
a WCET for a GPU kernel that executes on a single SM. This limits the scope of this work to single-SM
GPUs. Thankfully, these are prevalent in iGPUs, such as those we discussed in Section 2.3.

Berezovskyi recently shifted focus towards WCET estimation through empirical measurements and
statistical analysis (Berezovskyi et al., 2014). This work is more practical than the prior approaches because

it accounts for memory subsystem overheads (such as cache misses), as well as being applicable to multi-SM

88

GPUs. Further, an empirical approach towards WCET estimation is generally sound for two reasons. First,
data parallel algorithms that execute efficiently on GPUs exhibit very regular memory and code path execution
patterns. Second, the GPU EE largely executes in isolation—they are not burdened with an operating system,

).23 For

memory paging, or even multi-tasking (assuming GPU kernels do not execute concurrently on the EE
these reasons, deviations in observed GPU kernel execution time are relatively small in most applications, so
violations of a statistically derived WCET should be rare.

Berezovskyi et al. are not the only ones to have researched GPU kernel WCET estimation. Betts and
Donaldson (2013) have developed two WCET-estimation methods that both utilize low-level GPU kernel
execution traces and the control flow graph of GPU kernel code. The first method proceeds by estimating
the start-time of the last warp executed on each SM (this is derived from empirical measurements), and then
estimating the execution time of the last warp. These two estimates combine to derive a final kernel WCET
estimate. Under the second method, the authors model the hardware scheduler that distributes blocks among
SMs. Using trace data, they estimate the execution-time costs due to inference among warps. These costs
accumulate through to the final warp. Betts and Donaldson tested their methods using a cycle-accurate GPU
simulator, and determined that the first method provides the most accurate results, and that the later is overly
pessimistic.

WCET-estimation can be useful in hardware provisioning and used in real-time schedulability analysis.
However, a WCET-estimate merely models system behavior—the estimate in and of itself does not guarantee
that a GPU kernel will actually complete within that time. Actual enforcement of GPU kernel execution time
is challenging since EEs are non-preemptive. It is possible to signal to a kernel that it should terminate once a
provisioned WCET has been exceeded. This is accomplished through the setting of an application-defined
variable (or flag) by the host, using IORW, that is checked by the GPU kernel at runtime. A kernel can
voluntarily self-terminate once it detects that its “should-terminate” flag has been raised. Unfortunately,
such an approach is not always practical as it can leave data in an unknown (or difficult to resume from)
state. However, Mangharam and Saba (2011) explain that just such an approach is practical for “anytime”
algorithms. Anytime algorithms are those that iteratively improve results as they execute; Mangharam and

Saba use the parallel version of the A* path-finding algorithm, called PAP*, as a motivating example. A

GPU kernel that implements an anytime algorithm may check its “should-terminate” flag at the top of each

25Contention on the GPU’s local memory bus can be a (minor) source of interference, as we show later in Chapter 4.

&9

iteration and terminate when requested, thereby adhering to the provisioned WCET (with some measurable

delay).

2.5.1.3 GPU Resource Scheduling

The final category of real-time GPU research is on the scheduling of GPU resources. That is, the problem
of scheduling both data movement and GPU computations on GPU(s) shared by competing jobs of different
priorities. Work in this area seeks to develop real-time GPU scheduling algorithms, as well as analytical
models to support schedulability analysis. This dissertation falls within this category.

TimeGraph is an early approach to the real-time scheduling of modern GPUs (Kato et al., 2011b).
TimeGraph plugs into an open-source GPU driver, where it intercepts the GPU commands issued by GPU-
using applications. TimeGraph schedules a GPU as a single processor, scheduling intercepted commands
according to a configurable scheduling policy. TimeGraph supports two scheduling policies: the “high-
throughput” (HT) policy, and the “predictable-response-time” (PRT) policy. The HT policy allows commands
from a task to be scheduled immediately, provided that the GPU is idle, or if commands from that task
are currently scheduled on the GPU and no other commands from higher-priority tasks are waiting to be
scheduled. This policy promotes throughput at the risk of introducing priority inversions—the scheduling of
new commands may extend the delay experienced by higher-priority commands issued soon after. The PRT
policy decreases the risk of lengthy priority inversions, as new GPU commands of a task are not scheduled
until all of its prior commands have completed. TimeGraph monitors the completion status of commands by
plugging into the interrupt handler of the open-source device driver.

GPU-using tasks under TimeGraph may be assigned a fixed-priority and GPU utilization budget.?®
A task’s GPU budget is drained as it executes commands on a GPU. TimeGraph supports two budget
enforcement mechanisms: “posterior enforcement” (PE) and “a priori enforcement” (AE). Under PE, the
budgetary deficits incurred by a task’s budget-overrun is recouped by delaying further scheduling of the
offending task until its budget has been replenished. The PE strategy is to recover from budget overruns.
Under AE, TimeGraph attempts to anticipate budget exhaustion. This is done by matching the sequence
of a task’s requested GPU commands against a historical record of prior-issued GPU command sequences.

The historical record contains an average execution time, which is taken as a predicted execution time of

26 TimeGraph also supports online priority assignment for graphics (i.e., non-compute) applications, where the foreground application
is allowed to consume additional GPU resources.

90

the requested commands. A task’s requested GPU commands are not eligible for scheduling until the task’s
budget is sufficient to cover the predicted execution time. Thus, the AE strategy is to avoid budget overruns.

TimeGraph is somewhat limited in the real-time GPGPU domain. As presented by Kato ef al. (2011b),
TimeGraph is targeted to graphics applications, such as video games and movie players, rather than GPGPU
applications. It focuses on providing a configurable quality-of-service for applications, while loosely adhering
to a fixed-priority real-time task model. TimeGraph also unifies the GPU EE and CE processors into one—we
discussed the negative effects on schedulability of such an approach in Section 2.4.4. TimeGraph is limited in
this way because it schedules GPU commands without inspecting them to determine their function. Separate
EE and CE scheduling is impossible without this inspection.

The developers of TimeGraph later developed RGEM, a real-time GPGPU scheduler (Kato et al., 2011a).
RGEM is similar to TimeGraph in that it also supports fixed-priority scheduling. However, RGEM operates
entirely within the user-space through a user-level API. The RGEM API provides functions for issuing DMA
operations and launching GPU kernels. These APIs invoke GPU scheduler routines. Because RGEM is
implemented in user-space, GPU scheduler state is maintained in shared memory accessed by each GPGPU
task. Tasks that are unable to be scheduled immediately on the GPU are suspended from the CPU, awaiting
for a message to proceed (delivered through a POSIX message queue). Perhaps the most notable of RGEM’s
contributions is how it addresses schedulability problems caused by long non-preemptive DMA operations.
Here, RGEM breaks large DMA operations into smaller chunks, reducing the duration of priority inversions
and thus improving schedulability.

RGEM has several advantages over TimeGraph for GPGPU applications. Unlike TimeGraph, RGEM
utilizes techniques that make it amenable to schedulability analysis under rate-monotonic scheduling. Also,
RGEM separately schedules a GPU’s EE and CEs. However, as presented in Kato et al. (2011a), RGEM
provides no budget enforcement mechanisms.

The notion of breaking large non-preemptive GPU operations into smaller ones has also been explored by
Basaran and Kang (2012). In addition to chunked DMA, Basaran and Kang also developed a mechanism for
breaking large GPU kernels into smaller ones. Here, the kernel’s grid of thread blocks is programmatically
split into smaller sub-grids that are launched as separate kernels. Unfortunately, this kernel-splitting requires
developers to modify GPGPU kernel code. As we discussed in Section 2.4.2.1, threads must compute their
spatial location (index) within a grid. Kernel-splitting requires the kernel code to include additional spatial

offsets in the index computation. Zhong and He (2014) recently developed a method to make these offset

91

calculations transparent to the programmer in a framework called Kernelet. Kernelet programmatically
analyzes kernel code and patches indexing calculations at runtime. However, no one has yet attempted to
apply this technique in a real-time setting—Kernelet’s just-in-time patching of GPU kernel code may present
a challenge to real-time analysis.

Kato et al. and Basaran and Kang examined GPU scheduling strictly in terms of the sporadic task model.
A different approach has been taken by Verner et al. (2012), where GPU operations of various jobs of sporadic
tasks are combined into a batch at runtime and scheduled jointly. Here, batches of GPU work execute in
a four-stage pipeline: data aggregation, DMA data transfer from host to device memory, kernel execution,
and DMA data transfer of results from device to host memory. GPU work is batched at a rate of %dmin, or
one quarter of the shortest relative deadline in the task set. Consecutive batches may execute concurrently,
each in a different stage of the pipeline.”’ Verner et al. has continued research on batched scheduling for
multi-GPU real-time systems in Verner et al. (2014a,b). Although their work is targeted to hard real-time
systems, Verner et al. only consider schedulability in terms of the GPUs only. The real-time scheduling of
the CPU-side GPGPU (i.e., triggering DMA and launching kernels) work remains unaddressed.

Thus far, we have discussed research in GPU resource scheduling largely in terms of systems development,
i.e., the design and implementation of real-time GPU scheduling algorithms. Research on developing new
analytical models has also been pursued. Kim et al. (2013) point out that conventional rate-monotonic
schedulability analysis cannot be applied to task sets where tasks may self-suspend, unless suspensions
are modeled as CPU execution time (i.e., suspension-oblivious analysis, as discussed in Section 2.1.6.3).
In order to reclaim CPU utilization that would otherwise be lost in suspension-oblivious analysis, Kim
et al. devised a task model whereby jobs are broken into sub-jobs, along the phases of CPU and GPU
execution. The challenge then becomes assigning a unique fixed priority to each sub-job. Kim et al. showed
that the determination of an optimal priority assignment is NP-hard. They presented and evaluated several

priority-assignment heuristics.

2.5.2 Real-Time DSPs and FPGA Scheduling

Digital signal processors are highly specialized processors optimized to provide a limited set of compu-

tational facilities. The generality of DSPs varies from processor to processor. At one end of the spectrum,

27For GPUs with one CE, the host-to-device DMA stage of batch N is combined with the device-to-host DMA stage of batch N + 2.

92

a DSP may be an application-specific integrated circuit (ASIC), capable of performing only one type of
computation, and thus lack generality. A coprocessor for performing fast Fourier transforms, a common SoC
DSP component, is an example of an ASIC DSP. At the other end of the spectrum, a DSP may be entirely
programmable, such as the Texas Instruments C66x processor, which can be programmed with standard C
code (Texas Instruments, 2013). Between these extremes are DSPs that are partially programmable, such as
the computer vision-focused G2-APEX discussed earlier in Section 2.3.

DSPs sacrifice some degree of generality in order to achieve greater energy efficiency and speed. Common
DSPs found on SoCs provide services for audio/video encoding and decoding, image sensor processing, and
cryptography. Although these features can be realized by software that executes on CPUs (or even a GPU), a
software-based approach may be slower and less energy efficient.

In most cases, DSPs execute non-preemptively. In this way, a DSP computation is not unlike a GPU
kernel scheduled on the EE. Similarly, the logic fabric of FPGAs may be configured to implement DSP-like
functionality. Researchers have examined the problem of scheduling non-preemptive DSPs, and similarly
configured FPGAs, in real-time systems.

Gai et al. (2002) examined the problem of fixed-priority scheduling on a hardware platform with one
CPU and one non-preemptive DSP. In their approach, ready jobs are classified as normal or DSP-using.
Normal jobs only execute on the CPU, while DSP-using jobs execute on both the CPU and the DSP. Ready
normal jobs enqueue on one ready queue, while ready DSP-using jobs enqueue on another. When the DSP is
idle, the scheduler selects the highest-priority job among both queues to scheduler. However, when the DSP is
in use, jobs in the DSP queue are ignored. Thus, the scheduler itself resolves contention for the DSP, since no
DSP-using job can preempt a scheduled DSP-using job. Gai et al. found that their approach was preferable in
terms of schedulability in comparison to a method where the DSP was treated as a shared resource, protected
by the DPCP locking protocol.

Non-preemptive DSP scheduling has also been researched by Pellizzoni and Lipari (2007) for deadline-
based scheduling. Pellizzoni and Lipari break DSP-using tasks into subtasks. Each subtask is designated
as normal or DSP-using, just as Gai et al. Pellizzoni and Lipari provided a heuristic based upon simulated
annealing to derive from task set parameters a relative deadline for each subtask. DSP access is arbitrated by
the SRP locking protocol. Pellizzoni and Lipari developed a schedulability test to account for the inter-task

dependencies among sub-tasks.

93

The approaches taken by Gai et al. (2002) and Pellizzoni and Lipari (2007) may be applied to GPU
kernel scheduling on iGPUs. However, these methods are not general enough to be extended to support
dGPUs, since DMA operations must also be scheduled. Also, these solutions do not address issues raised by
large complex drivers or interrupt handling. DSPs are generally less complex than GPUs, so the associated

drivers are similarly less complex.

2.5.3 Non-Real-Time GPU Scheduling

Before concluding this chapter, we examine prior work on GPU scheduling in the non-real-time domain.
This is a valuable exercise as it gives us greater insight into how GPGPU runtimes and GPU drivers can
be manipulated (or even replaced) to enact a scheduling policy, be it real-time or not. Non-real-time GPU
scheduling is a broad area of research, so we limit our attention to work where support for GPGPU applications
is explicit. That is, we ignore work that only examines scheduling graphics applications.

In general, non-real-time GPU scheduling research may be categorized into one of three categories:
(i) GPU virtualization; (ii) GPU resource maximization; and (iii) fair GPU resource sharing. Although the

research goals in each area may differ, we see that researchers often apply similar techniques.

2.5.3.1 GPU Virtualization

We now discuss the topic of GPU virtualization for GPGPU applications.

Services for cloud computing are a growing market in today’s computing industry. In order to avoid the
cost of purchasing and maintaining expensive data centers, companies may rent computing services from
cloud providers. Through virtualization technology, customers create their own virtual machines. From
the customer’s perspective, a virtual machine offers the same functionality as a physical computer. Cloud
providers multiplex several virtual machines onto a single physical computer; the virtual machines run
concurrently on the shared hardware.

There is interest in offering GPGPU support in cloud services. For example, Amazon offers “GPU
Instance” virtual machines that support CUDA and OpenCL (Amazon, 2014). However, the tight coupling
between the GPGPU runtime, GPU driver, and GPU hardware makes the multiplexing of multiple virtual
machines on a GPU non-trivial. Indeed, Amazon side-steps this issue entirely—each GPU Instance virtual

machine is allocated a dedicated GPU.

94

GPU virtualization solutions are starting to be produced by GPU manufacturers themselves. NVIDIA
recently announced a product called “vGPU,” where up to eight virtual machines may share a single physical
GPU (NVIDIA, 2014d). However, vGPU supports virtualization for graphics applications only. There is no
support for virtualization of GPGPU services—dedicated GPUs are still required.

Researchers have developed several prototypes for virtualizing GPGPU services: GViM by Gupta et al.
(2009), gVirtuS by Giunta et al. (2010), vCUDA by Shi et al. (2012), and GPUvm by Suzuki et al. (2014).
Implementation details differ among these prototypes, but they all (with the exception of GPUvm) share
the same RPC-styled software architecture. Here, GPGPU API calls made by processes within the virtual
machines are intercepted and translated into remote procedure calls that are executed within the environment
that hosts the virtual machines. API interception is handled by an API-compatible stub library that replaces
the GPGPU runtime within each virtual machine. The stub library communicates API calls to a GPGPU
backend user-space daemon that runs within the host environment, outside the purview of the virtual machines.
This backend services the remote procedure calls using the full GPGPU runtime to communicate with the
GPU driver and GPU. These GPGPU virtualization prototypes use different mechanisms for transmitting
remote procedure call data between the virtual machines and the host environment. In order to avoid costly
memory copy operations between the virtual machines and host environment, these prototypes also implement
mechanisms for remapping pages of memory between the virtual machines and the host environment.

GPUvm differs from the other GPU virtualization techniques in that it is not API-driven. Instead, GPUvm
presents a logical instance of a GPU to each virtual machine through the hypervisor. This is achieved by
creating “shadows” of memory regions, including GPU memory addresses. This technique allows applications
within the virtual machines to use standard GPGPU runtimes instead of stub libraries. A GPUvm backend
user-space daemon runs the host environment and monitors access to shadowed memory addresses, shuttling
GPU commands and results between the virtual machines and the physical GPU.

In the software architectures described above, GPU scheduling policies can be implemented within
the backend daemons that service remote procedure requests (or GPU commands, in the case of GPUvm).
For instance, requests can be serviced with a simple policy like first-come-first-serve or round-robin. More
advanced polices may also be employed. GViM and GPUvm use scheduling algorithms inspired by the
Xen hypervisor “credit” scheduler. Here, a budget for GPU operation execution time is assigned to each

virtual machine. The appropriate budget is drained as GPU operations from the associated virtual machine

95

are executed. Budgets are replenished periodically. GPU resources can be fairly allocated to virtual machines

by setting the appropriate budgets.

2.5.3.2 GPU Resource Maximization

The RPC-styled software architecture of the virtualization techniques discussed above can also be used to
maximize GPU resource utilization. Recall that an EE is capable of running several GPU kernels concurrently,

provided that these kernels share the same address space (see Section 2.4.2.1).28

A kernel completes when
the last block of its grid completes. If kernels are not executed concurrently, then all but one of an EE’s SMs
will always be left idle while the last block executes. However, these idle SMs can be kept busy if additional
kernels have been queued for concurrent execution.

By funneling all GPU operations through a single process, similar to the RPC backend in the virtualization
prototypes, a greater degree of EE utilization can be achieved. rCUDA is the first attempt at implementing
such a framework for the CUDA runtime (Duato et al., 2010). rCUDA consists of two major components: a
CUDA API-compatible stub library and an RPC backend daemon. In addition to servicing requests made by
local processes, the rCUDA RPC server can also service GPU operation requests from remote machines in a
compute cluster. VOCL provides a similar framework for the OpenCL runtime (Xiao et al., 2012). Recently,
NVIDIA released a framework of their own, called “Multi-Process Service” or MPS (NVIDIA, 2014b).
Unlike rCUDA or VOCL, MPS lacks the ability to service requests from remote machines.

With regards to GPU scheduling, the rCUDA daemon services requests from clients in a round-robin
fashion. VOCL’s daemon schedules work in first-come-first-serve order. These schedulers do not separately
schedule the EE and CEs, so engines may be left idle even though there may be work ready to be scheduled
on them. NVIDIA has not disclosed the scheduler employed by MPS.

We conclude with a remark relating these GPU resource maximization techniques to the virtualization
methods we discussed earlier. The authors of rCUDA and VOCL describe their approaches as a solution for
GPGPU virtualization. However, we opt to separate rCUDA and VOCL from the virtualization category
because their software architectures match that of a conventional RPC-based distributed system. No attempt

is made to take advantage of a virtualized environment. Specifically, they do not eliminate memory copies

Z8Technically speaking, in CUDA, these kernels must actually belong to the same CUDA “context.” A single context can be thought
of as a GPU address space. The CUDA runtime creates one default context per GPU for each process. A single process can create
multiple contexts for the same GPU using a low-level CUDA API, but this feature is rarely used.

96

between the client and server when they reside on the same physical machine; this could be done through
memory remapping. Instead, rCUDA and VOCL transmit all data between the client and server through

network sockets.?’

2.5.3.3 Fair GPU Scheduling

We now discuss several notable works on fair GPU scheduling. We begin with PTask (Rossbach et al.,
2011). The PTask framework defines a set of OS-managed abstractions. These abstractions give the OS insight
into an application’s various phases of execution on CPUs, EE, and CEs. This insight is leveraged by the OS
to schedule GPU resources as “first class” processors (i.e., exercise a degree of control commensurate to that
exerted on CPUs). In the PTask framework, GPU-using tasks are decomposed into a dataflow graph. Graph
vertices loosely represent a computation or operation on a CPU or EE. We describe this representation as
“loose” because EE vertices must still be scheduled on a CPU in order to initiate GPU operations. Moreover,
an EE vertex may still contain considerable CPU code, if desired by the programmer. Each vertex exposes
a set of input and output ports. Each port is backed by a data buffer. These data buffers reside either in
host memory or GPU memory. Ports are connected by channels, which represent the data dependencies
among vertices. CE operations are deduced by examining the memory type (host or GPU) of data buffers
that are connected by a channel. Connected ports with buffers of different memory types require the CE to
shuttle data between them. Connected ports with buffers of the same memory types are combined into one,
eliminating the need for memory copy operations.

GPU operations are initiated through a set of PTask-defined APIs that operate on the vertex, port, and
channel abstractions. These APIs call special PTask system calls before and after calling underlying GPGPU
runtime APIs. This allows the OS to actively monitor the state of GPU activities. The OS can exert control
over EE and CE scheduling by forcing tasks to delay or sleep within the PTask system calls. GPU EEs and
CE:s are scheduled separately, allowing the EE and CEs of a GPU to be utilized simultaneously. PTask also
supports automatic GPU allocation in multi-GPU systems. PTask includes a data-aware GPU scheduler that
attempts to greedily schedule GPU computations on the “best” available GPU at the time the operation is
issued, where “best” is defined by GPU capabilities (e.g., speed) and data locality. However, data migration

between GPUs must be performed by copying data to and from system memory (i.e., PTask does not use

2For the sake of completeness, we note that MPS transmits data through POSIX named pipes.

97

peer-to-peer DMA). Rossbach et al. propose several fairness-based schedulers for EE and CE scheduling.
The scheduling priority of a task is determined by a heuristic that considers parameters such as OS CPU
scheduling priority, waiting time for GPU resources, and expected GPU operation time.

Rossbach et al. are somewhat radical in their approach to GPU scheduling in that they define a new
programming model—GPGPU programs must be programmed to the PTask model. In contrast, Gdev
achieves non-real-time GPU scheduling while remaining transparent to GPGPU program code (Kato et al.,
2012). Gdev replaces the manufacturer-provided device driver with its own. Gdev also offers a replacement
GPGPU runtime stub library in order to prevent direct communication between tasks and GPU hardware by
way of the memory-mapped interface. This stub library calls into the replacement device driver to issue GPU
operations. Like the PTask framework, the OS (by way of the Gdev driver) can actively monitor the state of
GPU operations and control the issuance of future ones. Gdev employs a “bandwidth-aware non-preemptive
device” (BAND) scheduling algorithm to separately schedule the EE and CE. The BAND scheduler operates
much like the Xen’s credit scheduler, with enhancements for managing the non-preemptive nature of the GPU
engines in budget accounting. The BAND scheduler, in conjunction with unique GPU memory management
features offered by Gdev, can be used to partition a physical GPU into several logical GPUs as a form of
GPU virtualization. However, Gdev (as presented) does not integrate with any virtualization technologies
(such as Xen), so we opt to not include it in the earlier virtualization category.

PTask and Gdev are both API-driven in that APIs, be they provided by the framework (PTask) or inserted
by a stub library (Gdev), route the requests to perform GPU operations through a GPU scheduler. This
incurs a scheduling overhead for every request. Menychtas et al. (2014) make the observation that, in cases
where tasks submit all work to GPUs through a memory-mapped interface, a task can be prevented from
accessing a GPU by unmapping the memory interface from the task’s virtual address space. A task’s attempt
to issue work to a GPU can be then trapped within the OS’s page fault handler. The OS schedules the GPU by
restoring the memory-mapped interface and allowing the application to return from the page fault. Menychtas
et al. explored the implementation of several fairness-based schedulers based upon this mechanism in their
GPU scheduling framework called NEON. The NEON schedulers are passive in that GPU scheduling is not
in the code-path of each API call, so some scheduling overheads are avoided. Through reverse engineering of
the GPU driver, Menychtas et al. were able to use the stock GPGPU software stack. Although admirably

elegant, this approach has a drawback. Like TimeGraph, Menychtas et al.’s approach also operates at the

98

GPU command level. The scheduler does not disambiguate between commands that require an EE or CE, so

it must schedule the GPU as a single processor—engines may be left idle as a result.

2.6 Conclusion

Our review of the topics in this chapter should give us an appreciation for the challenges we face in
realizing a multi-GPU real-time system. GPUs have unique constraints that permeate the GPGPU runtime,
device driver, and GPU hardware. This marks GPU scheduling as distinct from CPU scheduling. GPUs
have the potential to enable new capabilities in real-time systems if we can overcome these challenges. In
this chapter, we have reviewed a variety of real-time techniques that we can use to address these issues.
Namely, real-time task models, schedulability analysis, scheduling algorithms, and locking protocols. In the
next chapter, we tie these techniques together to create a single cohesive and comprehensive framework for

real-time GPU scheduling.

99

CHAPTER 3: GPUSync!

In this chapter, we present the design of our real-time GPU scheduling framework, GPUSync. GPUSync
addresses issues in the three fundamental categories of allocation, budgeting, and integration. Allocation
issues include task-to-GPU assignment, the scheduling of GPU memory transfers, and the scheduling of GPU
computations. Budgeting issues arise when tasks utilize more GPU resources than allocated. Integration
issues relate to the technical challenges of integrating GPU hardware (and closed-source software) into a
real-time system.

In resolving these issues, we pay careful attention to managing GPU-related parallelism. For example,
modern GPUs can send data, receive data, and perform computations simultaneously. Ideally, these three
operations should be allowed to overlap in time to maximize performance. Additionally, data transmissions
result in increased traffic on shared buses used in parallel by other tasks. We carefully manage bus traffic to
limit the effect bus contention has on other real-time tasks.

If a system has multiple GPUs, then parallelism-related issues arise when allocating GPUs. As we
discussed in Chapter 1, it may be desirable to use a clustered or global GPU organization in order to avoid the
utilization loss common to partitioned approaches. However, a GPU-using task may develop memory-based
affinity for a particular GPU as it executes. In such cases, program state (data) is stored in GPU memory and
is accessed by the task each time it executes on that particular GPU. This state must be migrated each time
the task uses a GPU different from the one it used previously. Such migrations increase bus traffic and affect
system-wide performance and predictability. GPUSync supports clustered and global GPU organizations,

and supports efficient migration of program state between GPUs while maintaining real-time predictability.

! Portions of this chapter previously appeared in conference proceedings or journals. The original citations are as follows:

Elliott, G. and Anderson, J. (2012b). Robust real-time multiprocessor interrupt handling motivated by GPUs. In Proceedings of the
24th Euromicro Conference on Real-Time Systems, pages 267-276;

Elliott, G. and Anderson, J. (2013). An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time
Systems, 49(2):140-170;

Elliott, G., Ward, B., and Anderson, J. (2013). GPUSync: A framework for real-time GPU management. In Proceedings of the 34th
IEEE International Real-Time Systems Symposium, pages 33—44;

Elliott, G. and Anderson, J. (2014). Exploring the multitude of real-time multi-GPU configurations. In Proceedings of the 35th
IEEE International Real-Time Systems Symposium, pages 260-271.

100

The remainder of this chapter is organized as follows. We begin by contrasting API-driven and command-
driven GPU schedulers. We then discuss eight general software architectures that may be used by an
API-driven (real-time) GPU scheduler. There are tradeoffs to consider among these architectures, such
as ease of implementation, robustness, and real-time correctness. We carefully weigh these tradeoffs in
our selection of a general software architecture for GPUSync. Following this discussion, we describe our
synchronization-based philosophy to real-time GPU scheduling. With these concepts firmly in place, we
present the detailed design of GPUSync. This is done in three parts, each one addressing issues related to
allocation, budgeting, and integration, respectively. We then discuss a variety of implementation challenges.

We conclude with a few final remarks to summarize characteristics of GPUSync.

3.1 Software Architectures For GPU Schedulers

There are two importance choices to make in the design of a GPU scheduler. We must first decide
how the GPU scheduler is inserted between user applications and GPUs. We must then decide how tightly
our scheduler integrates with the underlying RTOS. We make tradeoffs in implementation effort, efficiency,
stability, and real-time correctness with each choice. We now explore these options and provide the rational

behind the choices we make for GPUSync.

3.1.1 API-Driven vs. Command-Driven GPU Schedulers

In Chapter 2, we mentioned two general approaches to GPU scheduling. A GPU scheduler may be
API-driven or command-driven. Under the API-driven model, explicit GPGPU API calls issued by user
applications are routed through a GPU scheduling software layer, which decides when an API call may
proceed. The scheduler is invoked by every API call that may issue work to a GPU. The GPU schedulers
RGEM, GViM, gVirtuS, vCUDA, rCUDA, VOCL, MPS, PTask, and Gdev, which we discussed in Section 2.5,
fall within this category. Under the command-driven model, GPGPU API calls are not scheduled. Instead,
the GPU command sequences generated by API calls are scheduled. These commands must be written to
an in-memory command buffer that is read by the GPU. A command-driven GPU scheduling framework
controls when an application may write its buffer and/or when the buffer is read by the GPU. The GPU
schedulers TimeGraph, NEON, and GPUvm, also discussed in Section 2.5, fall within this category.

We wish GPUSync to exhibit two properties:

101

1. The ability to separately schedule the EE and CEs of a GPU.

2. The ability to strictly arbitrate access to the EE and CEs of a GPU.

The first property enables efficient utilization of GPU resources. The second property allows us to model the
GPU scheduler in real-time analysis. We may imagine both API-driven and command-driven schedulers that
achieve these properties. However, these properties are far easier to achieve with an API-driven scheduler
than a command-driven scheduler.

The low level GPGPU runtime APIs that issue work to a GPU are cleanly divided between those that
perform memory copies (i.e., CE work) and those that launch GPU kernels (i.e., EE work). There is no API
call that invokes the EE and CEs of a GPU in a combined sequence of operations. Under the API-driven
approach, we can easily determine which engine is invoked by a given API call. This is not the case with the
command-driven approach. A call to a single GPGPU API may write a sequence of GPU commands to the
command buffer. After several GPGPU API calls, this buffer may contain a mix of CE and EE commands.
A command-driven scheduler that separately schedules the EE and CEs of a GPU must parse the buffered
commands in order to segment the buffer into EE and CE command sub-sequences. This scheduler must
then separately schedule these sub-sequences on the appropriate GPU engines. Parsing the command buffer
requires intimate knowledge of the structure and meaning of GPU commands. GPU manufacturers often
withhold such information, so obtaining this knowledge may require a non-trivial effort to reverse engineer.
Moreover, this process may have to be repeated for new versions of a given GPGPU runtime, as well as new
GPU devices. Due to these challenges, it should come as no surprise that no one has yet, to the best of our

knowledge, developed a command-driven GPU scheduler that separately schedules the EE and CEs of a GPU.

GPUSync Architectural Choice #1. The expressiveness of API-driven schedulers and the challenges
associated with command-driven GPU schedulers lead us to make the following decision: We use an

API-driven GPU scheduler in GPUSync.

3.1.2 Design-Space of API-Driven GPU Schedulers

In this section, we discuss several software architectures for API-driven GPU schedulers. An API-driven
GPU scheduling framework must determine when an intercepted API call may proceed. This scheduling
decision may be made centrally by a dedicated scheduling process (e.g., a daemon) or cooperatively by the

GPU-using tasks that share a GPU scheduling algorithm and scheduler state. In either case, the GPU scheduler

102

may be implemented in user-space or kernel-space. Also, a GPU scheduler may employ a mechanism that
enforces GPU scheduling decisions, or it may trust API callers to abide by them. In summary, scheduling
decisions may be: (i) made centrally or cooperatively; (ii) made in user-space or kernel-space; (iii) enforced
or not. These choices give rise to eight general software architectures for API-driven GPU schedulers. We
will describe and discuss the tradeoffs made by each approach. However, some additional background is
needed before proceeding.

Common to all eight general software architectures is the use of interposed or stub libraries. An
interposed library is inserted into the code paths of processes at dynamic link-time (i.e., when the process
is launched). The interposed library overrides the default linkage between application code the underlying
GPGPU runtime.”? An interposed library may invoke a GPU scheduling framework before passing an
intercepted API call on to the original GPGPU runtime. A stub library is similar to an interposed library,
excepting that the stub library does invoke the GPGPU runtime, but merely passes API calls onto another
software component that does. Stub libraries can be employed at either static or dynamic link-time. The
use of interposed and stub libraries is optional in the following architectures—an application may always
implement the functionality of these libraries itself.

In our consideration of the eight general software architectures, we make two important assumptions:
(i) the GPU device driver executes within the kernel-space of the RTOS; and (ii) we are not necessarily
constrained by microkernel RTOS design principles. These assumptions are consistent with the technical
constraints under which we prototype GPUSync (i.e., a Linux-based OS with standard GPU drivers and
GPGPU runtime).

We are now ready to discuss the architectural options of GPU schedulers. Some architectures exhibit the
same characteristics. In order to avoid being repetitive, we may paraphrase previously discussed characteris-

tics. Paraphrased characteristics are denoted by square brackets (e.g., “[paraphrased characteristic]”).

3.1.2.1 GPU Scheduling in User-Space

We first consider the class of software architectures for user-space GPU schedulers. Figure 3.1 depicts
several such architectures. We discuss each in turn, before discussing the tradeoffs between user-space and

kernel-space schedulers.

20n many UNIX-like systems, this can be accomplished through the use of the LD_PRELOAD environment variable.

103

4
| Memory Access
v

User Space

>

T

Ty

GPGPU
Stub Library

GPGPU
Stub Library

X

4

\ /

GPU Sched.

Daemon
———————m

| GPU Sched.
| Algorithm

~=--=-zcz-=-=Z

| GPU Sched.

! State

GPGPU
Runtime

Kernel Space

e o e e

.

GPU Device
Driver

Hardware

&
o |-
c

(a) Enforced centralized GPU scheduling.

User Space

GPGPU

Library

Interception

GPGPU

I
L

Ty

Interception
Library

GPU Sched. :
Algorithm

|
______ -

P

GPGPU
Runtime
Daemon

GPGPU
Runtime

4

Kernel Space

4
4

7
1
1
\

AY

N\
\,

i

GPU Device
Driver

Hardware

(c) Enforced cooperative GPU scheduling.

N, |

4

GPU

IPC]Function/System Call Ilnterrupf

m

Process Shared Code/Memory
el
User Space
T T
GPGPU GPGPU
Interception GPU Sched. Interception
Library Daemon Library
I Pl) =
GPGPU : GPU Sched. | GPGPU
Runtime R Algorithm | Runtime
R ,::::::::‘
\ | GPU Sched. |
\ I State |
\ SRR
\
\

A%

\
\ £ ’
%\ GPU Device

‘\\ Driver /

N

YR) ’
GPU

(b) Centralized GPU scheduling with trusted API callers.

Kernel Space

S

Hardware

User Space
N T

GPGPU GPGPU
Interception Interception

Library — Library
——————— —_—————— vl mm——_———a
1GPU Sched.} | _ __|GPU Sched.! __ 1l| GPU Sched. !
! State | I Algorithm 1
______ [(o Y

| E—|
GPGPU GPGPU
Runtime Runtime

Y
NN\
\ 7
Kernel Space \ /
%, GPUDevice
‘\ Driver /

Hardware

(d) Cooperative GPU scheduling with trusted API callers.

Figure 3.1: Several software architectures of API-driven GPU schedulers implemented in user-space.

104

Centralized Scheduling With Enforcement. Figure 3.1(a) depicts a common software architecture for
GPU scheduling in user-space. Here, GPGPU API calls are issued to a GPGPU stub library within each task.
The stub library redirects the API request over an IPC channel (e.g., UNIX domain socket, TCP/IP socket,
etc.) to a GPGPU scheduling daemon, which services requests according to a centralized scheduling policy.
The daemon executes all API calls itself, enforcing all scheduling decisions.

This software architecture makes the following tradeoffs.

Pros:

1. Scheduling policy is easy to implement since decisions are centralized.

2. Scheduling decisions are enforced, since scheduled API calls are executed by the GPGPU scheduling

daemon itself.
Cons:

1. The daemon must include, or be able to load, the GPU kernel code of constituent tasks. This can be
accomplished at compile-time when the daemon is compiled. Dynamic loading of GPU kernel code is

also possible, but is non-trivial to implement.
2. The IPC introduces overheads due to message passing between tasks and the daemon.

3. Barring the use of any memory remapping techniques, GPU kernel data must be transmitted through the
IPC channel. Performance of data-heavy GPGPU applications (e.g., a pedestrian detection application

that is fed data by a video camera) is poor.

4. The daemon itself must be scheduled. This introduces additional scheduler overheads. Moreover,
unless the RTOS provides a mechanism by which the daemon may inherit a priority from its constituent
tasks, schedulability analysis is not straight forward. We may work around this limitation by either
boosting the priority of the daemon, which hurts schedulability analysis (see Section 2.1.6.1), or we
may reserve a CPU exclusively for the daemon, which results in the loss of a CPU for other work.

Neither approach is desirable.

Remarks:
This popular architecture is employed by GViM, gVirtuS, vCUDA, rCUDA, and MPS. However, none of
these implement real-time GPU scheduling policies. We note that the overheads associated with transmitting

GPU kernel data over the IPC channel may lead to unacceptable performance for data-heavy applications.

105

Centralized Scheduling Without Enforcement. Figure 3.1(b) depicts another daemon-based scheduler.
Here, GPGPU API calls are intercepted by an interposed library. For each call, the library issues a request for
the appropriate GPU engine to the GPU scheduling daemon through an IPC channel. The library waits for
each request to be granted. The daemon grants requests according to a centralized scheduling policy. The
interposed library passes intercepted API calls on to the original GPGPU runtime once necessary resources
have been granted.

This software architecture makes the following tradeoffs.

Pros:

1. Easy to implement, since scheduling decisions are centralized and GPU kernel code remains local to

each constituent task.
2. GPU kernel data is not copied over the IPC channel. Data-heavy GPGPU applications perform well.
Cons:

1. GPU scheduling decisions cannot be enforced. It is possible for a misbehaved or malicious task to

bypass the interposition library and access the GPGPU runtime directly.
2. [The IPC introduces message passing overheads.]
3. [The daemon itself must be scheduled.]

Remarks:

This architecture sacrifices the enforcement of scheduling decisions to realize performance benefits for
data-heavy applications, as GPU kernel input and output data does not traverse an IPC channel. Also, this is
the easiest of the eight GPU scheduling architectures to implement. This is the architecture employed by the
Windows 7-based prototype of PTask, which is a non-real-time GPU scheduler. This is architecture is also

employed by RGEM, which is a real-time GPU scheduler.

Cooperative Scheduling With Enforcement. Figure 3.1(c) depicts the software architecture of a coopera-
tive GPU scheduler and a GPGPU runtime daemon. Here, an interposed library intercepts API calls. Each

instance of the library within each task invokes the same GPU scheduling algorithm, which is embedded

106

within the interposed library. A single instance of GPU scheduler state is stored in shared memory.> The
interposed library passes API calls to a daemon for actual execution.
This software architecture makes the following tradeoffs.

Pros:
1. GPU scheduling is efficient, as each task can access the GPU scheduler state directly.

2. Scheduling decisions are weakly enforced. Although the GPGPU runtime daemon centralizes all
accesses to the GPUs, misbehaved or malicious tasks may issue work directly to the daemon, bypassing

the cooperative GPU scheduler.
Cons:

1. Access to the shared GPU scheduler state must be coordinated (or synchronized) among tasks. De-
pending upon the synchronization mechanism used, tasks may need to execute non-preemptively while
executing scheduling algorithms (in order to avoid deadlock). This requires support from the RTOS or

access to privileged CPU instructions that temporarily disable preemption.

2. A misbehaved or malicious task may corrupt GPU scheduler state, as it may overwrite any data in

shared memory. Recovery from such faults may be difficult.

3. A misbehaved or malicious task may bypass the GPU scheduler and issue work directly to the GPGPU

runtime daemon, unless the daemon has a mechanism by which to validate requests.
4. [The IPC introduces message passing overheads.]
5. [GPU kernel data must be transmitted through the IPC channel.]
6. [The daemon itself must be scheduled.]

Remarks:

Any potential benefits of cooperative scheduling are obviated by IPC-related overheads in this architecture.
Moreover, the ability to enforce scheduling decisions is weakened by the fact that the GPU scheduler can
be bypassed. This architecture offers no apparent benefit over centralized scheduling with enforcement

(Figure 3.1(a)).

30n many UNIX-like systems, POSIX or SysV APIs may be used to allocate and manage memory shared among processes.

107

Cooperative Scheduling Without Enforcement. Figure 3.1(d) depicts the software architecture of a coop-
erative GPU scheduler, without the use of a daemon. Here, an interposed library intercepts API calls. As
before, tasks cooperatively execute the same GPU scheduling algorithm and operate upon the same shared
scheduler state. Intercepted API calls are passed on to the original GPGPU runtime when scheduled.

This software architecture makes the following tradeoffs.

Pros:
1. There are no IPC overheads. Data-heavy GPGPU applications perform well.

2. There is no daemon to schedule. This simplifies real-time analysis and requires less support from the

RTOS.
3. [Efficient GPU scheduling.]
Cons:
1. [Access to GPU scheduler state must be coordinated.]
2. [GPU scheduler state is vulnerable to corruption.]
3. [GPU scheduling decisions cannot be enforced.]

Remarks:

This is the most efficient user-space architecture we examine. It avoids all IPC overheads. It avoids
all overheads and analytical challenges raised by daemons. However, it is also the most fragile of all eight
architectures. We must trust tasks to: (i) not bypass the GPU scheduler; and (ii) not corrupt the GPU scheduler

state.

3.1.2.2 GPU Scheduling in Kernel-Space

GPU scheduling in user-space has several weakness. One weakness is that we may be unable to
sufficiently protect GPU scheduler data structures. This is the case with the cooperative scheduling approaches,
where GPU scheduler state can be corrupted by misbehaved or malicious tasks. However, the greatest
weakness in user-space scheduling is our inability to tightly integrate with the underlying RTOS—this has the
potential to prevent us from realizing a correct real-time system with any degree of confidence. RTOSs may

provide some mechanisms that allow real-time tasks to affect the scheduling priority of other tasks through

108

user-space actions (e.g., real-time locking protocols with priority-modifying progress mechanisms, as well as
system calls that directly manipulate priorities). These can be leveraged to add some real-time determinism
to a user-space GPU scheduler.* However, these mechanisms may be insufficient to minimize, and more
importantly, bound, GPU-related priority inversions.

Recall from Section 2.4.5 the challenge we face in scheduling interrupt and GPGPU-runtime-callback
threads. How do we dynamically bind the priorities of these threads to those of the appropriate real-time jobs,
which they themselves may have priorities that change dynamically? How can we ensure that the appropriate
job budgets are charged, and how do we handle budget exhaustion? Our ability resolve these issues are
severely limited from user-space. These problems are best addressed by tightly integrating the GPU scheduler
with the CPU scheduler and other OS components (e.g., interrupt handling services) within the RTOS kernel.

These issues motivate us to consider kernel-space GPU schedulers. Figure 3.2 depicts several high-level
software architectures of kernel-space GPU schedulers. We assume that all approaches benefit from the ability
to tightly integrate with the RTOS. (This ability is not explicitly reflected by the diagrams in Figure 3.2.) We

now discuss the tradeoffs among these kernel-space options.

Centralized Scheduling With Enforcement. Figure 3.2(a) depicts a software architecture with a centralized
scheduler daemon. The architecture bears a strong resemblance to the one depicted in Figure 3.1(a), and
functions much in the same manner. However, the GPU scheduling daemon now runs from kernel-space.
This has an important implication, which we discuss shortly.

This software architecture makes the following tradeoffs.

Pros:

1. GPU kernel data is not copied over the IPC channel. This is possible because the GPU scheduling
daemon may directly access the user-space memory of its constituent tasks. Data-heavy GPGPU

applications perform well.
2. [Scheduling policy is centralized.]
3. [Scheduling decisions are enforced.]

Cons:

4These mechanisms may require real-time tasks to have an escalated privilege to enable priority-modifying capabilities—this is
undesirable from a security perspective.

109

4
| Memory Access IPC Function/System Call Interrupt Process
\J

User Space
L T
GPGPU GPGPU
Stub Library Stub Library
1
Kernel Space | e
GPU Sched.
Daemon
| GPU Sched. |
! Algorithm |
! GPU Sched. |
! State :
GPGPU 'GPU Device
Runtime Driver ,

Hardware

(a) Enforced centralized GPU scheduling.

User Space
B T
GPGPU GPGPU
Stub Library Stub Library

\ /

Kernel Space ,ﬁ\:ﬂ_{
| GPU Sched. |

peeletaleateed p —
| GPU Sched.; GPU Device
| State | Driver
,:__________::
! GPGPU
I Runtime :
\ o ____
\‘
Hardware
GPU

(c) Enforced cooperative GPU scheduling.

Figure 3.2: Several software architectures of API-driven GPU schedulers implemented in kernel-space.

m

—

User Space

Shared Code/Memory

GPGPU

GPGPU
Interception |3
Library

Library

4

Interception

GPGPU GPGPU
Runtime Runtime

Ir N l ‘\

/ 44)
Kernel Space / \
! |GPU Sched. \
/| Daemon_ \
I
| || GPUSched. | "GPU Device |
1| Algorithm Driver |
[P i
' | GPU Sched. !
\\ ! State ’
N LTty
\\
N,
Hardware s
N

(b) Centralized GPU scheduling.

User Space

T Ty

GPGPU GPGPU

Interception
Library Library

Interception

-

/N /

GPGPU GPGPU
Runtime Runtime
T
/

\
! \
Kernel Space / \
|—£L|, ________
! 1 GPU Sched. | !
I' 1 Algorithm | \
i\ T GPU Device !
ot T N
\ ! GPU Sched. | Driver 1
‘\ ! State : 1
N / /
\ / J
N,
AN ’ —~
Hardware . o
GPU

(d) Cooperative GPU scheduling.

1. A kernel-space GPGPU runtime may be unavailable. To the best of our knowledge, all manufacturer-

provided GPGPU runtimes only run in user-space.

2. The daemon itself must be scheduled. This introduces additional system overheads. However, from
kernel-space, we may have more flexibility in properly prioritizing the daemon to ensure real-time

determinism.
3. [The daemon must include, or be able to load, the GPU kernel code of constituent tasks.]
4. [The IPC introduces message passing overheads.]

Remarks:

This architecture benefits from enforced centralized scheduling, without shuttling GPU kernel input and
output data across the IPC channel. This approach still suffers some IPC channel overheads due to message
passing. However, the greatest drawback of this approach is a practical one: the general unavailability of
kernel-space GPGPU runtimes. One must develop their own—we discussed the challenges behind such an
effort in Section 2.4.1. This is not an insurmountable challenge, as demonstrated by Gdev (which employs a

hybrid architecture of Figure 3.2(a) and Figure 3.2(d)), but difficult.

Centralized Scheduling Without Enforcement. Figure 3.2(b) depicts another software architecture with a
GPU scheduling daemon. Its architecture matches that of Figure 3.1(b), except that the daemon now runs in
kernel-space.

This software architecture makes the following tradeoffs.

Pros:
1. Uses a commonly available user-space GPGPU runtime.
2. [Scheduling policy is centralized.]
3. [GPU kernel data is not copied over the IPC channel.]
Cons:
1. [GPU scheduling decisions cannot be enforced.]

2. [The IPC introduces message passing overheads.]

111

3. [The daemon itself must be scheduled.]

Remarks:

This architecture strikes a compromise between kernel-space centralized scheduling and practical
constraints. Scheduling decisions are made within kernel-space, but carried out by individual tasks with
a user-space GPGPU runtime. Thus, the architecture cannot enforce its scheduling decisions. This is the

architecture employed by the Linux-based prototype of PTask, which is a non-real-time GPU scheduler.

Cooperative Scheduling With Enforcement. Figure 3.2(c) depicts a software architecture for a cooperative
GPU scheduler. Here, GPGPU API calls are routed to a stub library that invokes the kernel-space GPU
scheduler through an OS system call. GPU scheduler state is shared by all tasks, but this is stored in
kernel-space data structures. Scheduled API calls are executed by a kernel-space GPGPU runtime using the
program thread of the calling task.

This software architecture makes the following tradeoffs.

Pros:

1. GPU scheduler state is protected. Unlike cooperative user-space schedulers, the GPU scheduler state is

protected within kernel-space from corruption by misbehaved or malicious user-space tasks.

2. Synchronized access to GPU scheduler state is trivial within kernel-space. There is no need for an

escalated privilege to execute non-preemptively while GPU scheduler data structures are updated.
3. [GPU scheduling is efficient.]
4. [Scheduling decisions are enforced.]
Cons:
1. [Need for a kernel-space GPGPU runtime.]

Remarks:

This is the strongest of the eight architectures we examine from a performance perspective. Cooperative
scheduling decisions are efficient and enforced by the RTOS. The GPGPU runtime is executed within kernel-
space using the program stacks of the calling tasks, rather than a separately scheduled daemon. There are no

IPC overheads. The only limitation of this approach is the reliance upon a kernel-space GPGPU runtime.

112

Cooperative Scheduling Without Enforcement. Figure 3.2(d) depicts another software architecture for a
cooperative GPU scheduler. Here, an interposed library intercepts API calls, and invokes the kernel-space
GPU scheduler via system calls. As before, GPU scheduler state is shared by all tasks and protected from
misbehaved and malicious tasks. To schedule an API call, the GPU scheduler returns control to the interposed
library. The interposed library uses the user-space GPGPU runtime to execute the scheduled API call.

This software architecture makes the following tradeoffs.

Pros:
1. [Uses a commonly available user-space GPGPU runtime.]
2. [GPU scheduler state is protected.]
3. [Access to GPU scheduler state is easily synchronized.]
4. [GPU scheduling is efficient.]

Cons:
1. [GPU scheduling decisions cannot be enforced.]

Remarks:

In order to support a user-space GPGPU runtime, this architecture sacrifices enforcement capabilities,
trusting tasks to not bypass the interposed library by accessing the GPGPU runtime directly. Despite this
limitation, it is still a strong architecture from a performance perspective. Like the prior approach, scheduling
decisions are efficient. Also, there are no IPC- or daemon-related overheads. For a researcher or developer

willing to implement OS-level code, this architecture is the most practical high-performance option.

GPUSync Architectural Choice #2. After a careful consideration of the above software architectures, we
come to the following decision: We opt to use a kernel-space cooperative GPU scheduler without enforcement
in GPUSync.

We do so because:
1. It avoids overheads due to IPCs and daemons.

2. It supports the use of user-space GPGPU runtime libraries.

113

3. It enables tight integration with the RTOS, enabling us to fully explore the matrix of CPU/GPU
organizational choices we discussed in Chapter 1 (Figure 1.4) and support a variety of real-time

schedulers.

3.2 Design

We now describe the design of GPUSync in detail. We begin by explaining our synchronization-based
philosophy. We then describe our assumed task model supported by GPUSync. We then delve into the

software design details of GPUSync.

3.2.1 Synchronization-Based Philosophy

GPU management is often viewed as a scheduling problem. This is a natural extension to conventional
techniques. Similar to CPU scheduling (e.g., as in Figure 2.3), pending work for GPU engines is placed in
a ready queue. This pending work is prioritized and scheduled on the GPU engines. The implementation
of these approaches is straightforward, but the resulting mix of CPU and GPU scheduling algorithms is
difficult to analyze holistically. For example, existing schedulability analysis techniques for heterogeneous
processors, such as Gai et al. (2002); Baruah (2004); Pellizzoni and Lipari (2007); Kim et al. (2013), are
problematic in multi-GPU systems due to one or more of the following constraints: (i) they cannot account for
non-preemptive GPU execution; (ii) they require that tasks be partitioned among different types of processors,
yet our GPU-using tasks must make use of CPU, EE, and CE processors; (iii) they statically assign GPU-using
tasks to GPUs; (iv) they place restrictions on how GPUs may be shared among tasks; and (v) they place
limits on the number of CPUs and GPUs.

Instead, we view GPU scheduling as a synchronization problem. This perspective allows us to apply
existing techniques developed for real-time locking protocols towards GPU scheduling. This perspective
influences both the design of the GPU scheduler and real-time analysis. However, we wish to make clear
that the distinction between scheduling and synchronization approaches is somewhat blurred: the locking
protocols we use become GPU schedulers—these protocols prioritize ready GPU work and grant access
accordingly, just as any scheduler would. The differences lie in how work is prioritized and the use of locking
protocol progress mechanisms. Nonetheless, as we shall see, a synchronization-based approach gives us

established techniques to address problems relating to allocation, budgeting, and integration.

114

3.2.2 System Model

We consider a system with m CPUs, partitioned into clusters of ¢ CPUs each, and & GPUs, partitioned
into clusters of g GPUs each. We assume that the workload to be supported can be modeled as a traditional
sporadic real-time task system (as described in Section 2.1.1), with jobs being scheduled by a JLFP scheduler.
Furthermore, we assume that the scheduled system is a SRT system for which bounded deadline tardiness
is acceptable. While GPUSync’s design does not inherently preclude use in HRT systems, reliance upon
closed-source software would make a claim of HRT support premature. Thus, we focus on design strategies
that improve predictability and average-case performance, while maintaining SRT guarantees. We assume
that tasks can tolerate GPU migration at job boundaries, and that the per-job execution times of each task
remain relatively consistent, with overruns of provisioned bounds being uncommon events. We also assume

that tasks pre-allocate all necessary GPU memory on any GPU upon which its jobs may run.

3.2.3 Resource Allocation

In this section, we discuss how GPUSync assigns GPUs and GPU engines to jobs. We begin with a
high-level description of GPUSync’s resource allocation methods. We then describe the mechanisms behind
GPU allocation in detail. This is followed by a description of how GPUSync arbitrates access to GPU

engines.

3.2.3.1 High-Level Description

GPUSync uses a two-level nested locking structure. The high-level design of GPUSync’s allocation
mechanisms is illustrated in Figure 3.3. There are several components: a self-tuning execution Cost Predictor;
a GPU Allocator, based upon a real-time k-exclusion locking protocol, augmented with heuristics; and a set
of real-time Engine Locks, one per GPU engine, to arbitrate access to GPU engines.

We describe the general steps followed within GPUSync to allocate GPU resources. We refer to the
schedule in Figure 3.4 to help describe when GPU resources are requested by, and allocated to, a job. This
schedule corresponds to the simplified schedule for the VectorAdd program from Section 1.4.1 (Figure 1.3).

A GPU critical section is a region of code where a GPU-using task cannot tolerate a migration between
GPUs during a sequence of GPU operations. A job must acquire one of p tokens associated with a particular

GPU before entering a critical section that involves accessing that GPU. We call a GPU critical section

115

Engine Locks

GPU, @

D] A
GPU Allocator @ (D 0.0
request / —
>) pl D] > CE,
@ |:‘ k=pxg ii
——EE,
U U PR
v)
GPU
Cost Predictor ol

D - > CE,,

D - > CE,,

g-1

Figure 3.3: High-level design of GPUSync’s resource allocation mechanisms.

protected by a token a token critical section. We assume each job has at most one token critical section.> As
depicted in Figure 3.3, a job requests a token from the GPU Allocator in Step A (or time 5 in Figure 3.4).
Utilizing the cost predictor in Step B and internal heuristics, the GPU Allocator determines which token (and
by extension, which GPU) should be allocated to the request. The requesting job is allowed access to the
assigned GPU once it receives a token in Step C. In Step D, the job competes with other token-holding jobs
for GPU engines; access is arbitrated by the engine locks. A code region protected by an engine lock is an
engine critical section. A job may only issue GPU operations on its assigned GPU once its needed engine
locks have been acquired in Step E. For example, engine locks are requested at times 11, 22, 33, and 54 in
Figure 3.4. With the exception of peer-to-peer migrations, a job cannot hold more than one engine lock at a
time. This is reflected in Figure 3.4, where engine locks are released at times 21, 31, 53, and 64.

The general structure of GPUSync is straightforward: a GPU Allocator assigns jobs to GPUs and engine
locks arbitrate engine access. However, many questions remain. For example, how many tokens can each

GPU have? What queuing structures should be used to manage token and engine requests? How can we

SEnhancements to the Cost Predictor are necessary in order to support multiple token critical sections per job—we leave such
enhancements to future work.

116

Token Critical Section

Engine Critical Sections

CPU -'_".‘ o == e | e | o

o
II)
-
]
tH
1)]
)
1
|
)
)
1
)
|
!
M

CE,

EE

|

time P T S S S S S SR S A SR B S A S A A S A A
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

T Request Token I Acquire Token T Release Token
T Request Eng. Lock T Acquire Eng. Lock T Release Eng. Lock

Figure 3.4: A schedule of a job using GPU resources controlled by GPUSync.

enable GPU migration, yet minimize associated overheads? We now answer such questions, and provide

additional rationale for our design choices.

3.2.3.2 GPU Allocator

Each cluster of g GPUs is managed by one GPU Allocator; as such, we henceforth consider GPU
management only within a single GPU cluster. We associate p tokens, a configurable parameter, with each
GPU. All GPU tokens are pooled and managed by the GPU Allocator using a single k-exclusion lock, where
k=p-g.

The value of p directly affects the maximum parallelism that can be achieved by a GPU since it controls
the number of jobs that may directly compete for a GPU’s engines—p must be at least the number of engines
in a GPU if every engine is to ever be used in parallel. This implies that a large value should be used for
p. However, the value of p also strongly affects GPU migrations. Too great a value may make the GPU
Allocator too migration-averse, since tokens will likely be available for every job’s preferred GPU, even those
that are heavily utilized. Constraining p prevents GPUSync from overloading a GPU and promotes GPU

migration to distribute load.

117

m donors

Token
Holders

_________) k tokens

,,

Figure 3.5: The structure of a GPU allocator lock.

The GPU Allocator’s k-exclusion lock uses a hybrid queuing structure consisting of several fixed-size
FIFO queues FQ;, a priority queue PQ, and a donor queue DQ, as depicted in Figure 3.5. The FIFO queue
FQ; is associated with the i token. Token-requesting jobs are enqueued in a load-balancing manner until
every FQ is f jobs in length. (We will discuss mechanisms for load balancing shortly.) The parameter f is
configurable. Additional requests that cannot be placed in an FQ “overflow” into PQ or DQ. Jobs are moved
from PQ or DQ into an FQ as space becomes available. A job enqueued in FQ; suspends until it is at the
head of FQ;, in which case it is granted the i token.

The GPU Allocator adopts the structure and rules of the R2DGLP (Section 2.1.7.2), with some exceptions.
There are three key differences. First, unlike the R2DGLP, the maximum length of the GPU Allocator FIFO
queues is configurable by the system designer. Selecting different values for f allows the GPU Allocator
lock to take on different analytical properties. The GPU Allocator functions exactly as the RZDGLP when

f =[c/k], as the k-FMLP when f = e, and as a purely priority-based protocol when f = 1. A system

118

designer may tailor the GPU Allocator to their specific task sets and schedulers.® For instance, the k-FMLP
can outperform the R°’DGLP in some cases (see Ward et al. (2012) for more information). The purely
priority-based GPU Allocator may be used with a task-level static priority scheduler, such as RM, when
request interference on high-priority tasks must be minimized.

The second difference between the GPU Allocator and the RZDGLP is that, for cases where a GPU
cluster is shared by tasks of different CPU clusters, we adopt Rule C1 (i.e., the donation-at-job-release rule)
of the CK-OMLP. In this way, the GPU Allocator can be configured to mimic the CK-OMLP by using
f=1(c-v)/k], where v is the number of CPU clusters that share the GPU cluster in question. Such a
configuration differs from the CK-OMLP in that the GPU Allocator uses k shorter FIFO queues instead of a
single long one—this change does not alter bounds on pi-blocking. Also, the “request stealing” aspect of the
R?DGLP’s Rule R5 ensures similar work-conserving behavior at runtime. The addition of Rule C1 subsumes
the inheritance and donation rules of the RZDGLP. This is because Rule C1 ensures that token-holding jobs
are always scheduled on a CPU when ready to run—there is no need for other progress mechanisms. We note
that valid values of f must meet the constraint f > [m/k| when Rule C1 is enacted.

The last difference between the GPU Allocator and the R?DGLP is that the GPU Allocator augments
Rules R1a, Rlc, and R5 of the RZDGLP with heuristics to improve runtime performance. We discuss the
details of these heuristics next.

Real-time locking protocols are rarely designed to make use of online knowledge of critical section
lengths, even though critical sections figure prominently in schedulability analysis and system provisioning.
We augment the GPU Allocator lock to incorporate knowledge of token critical section lengths into queuing
decisions to reduce the frequency and cost of GPU migrations without preventing beneficial migrations. Most
of our heuristics use information provided by the Cost Predictor. For now, let us treat the Cost Predictor
as a black-box that returns a predicted token critical section length for a GPU request R; by a job J;, under
the hypothesis that R; is enqueued on FQ, and is eventually allocated the associated token—this prediction
includes the cost of migration. We say that the preferred GPU of a job J; is the GPU last used by task 7;, since
Ji may have affinity with this GPU. Let the function perf(J;) return the identity of the GPU preferred by J;.

We must define several additional terms and functions in order to describe our heuristics. Let L; denote

the provisioned token critical section length for R;. Let L ;d denote the predicted token critical section

SWe caution that not every configuration of the GPU Allocator (and GPUSync, in general) is necessarily amenable to real-time
analysis.

119

length provided by Cost Predictor, supposing R; is enqueued on FQ,. We assume 0 < L‘l” ;d <L;. We
use two methods to measure the length of FQ,. The first method uses the same function as the RZDGLP
(Equation 2.33), measuring length in terms of the number of enqueued requests. We repeat it here for a

consolidated presentation:

length(FQ,) = [FQ,|. (3.1

The second method measures the length in terms of the token critical section length predictions provided by
the Cost Predictor:

execLength(FQ,) = Z L?:f, (3.2)
RjEFQX

where we reindex the requests in FQ, with j. For a given GPU, we determine the set of tasks that make up
its “active users.” The set of tasks that last used, or are currently using, a GPU make up the GPU’s active
users. A task with no pending job can still be among the active users of a GPU because the next job of this
task is assumed to prefer the GPU used by the task’s prior job. Let the function numGpuUsers(FQ,) denote
the number of active users of the GPU associated with FQ,. We denote the distance between to GPUs with
function distance(GPU,,GPU,).” Finally, let the set ¥ = {FQ, | length(FQ,) < f}, denote the set of FQs
that are not full at any given time instant. The GPU Allocator employees the following four heuristics. We

use these heuristics simultaneously, as each controls a different operation within the GPU Allocator.

H1: Distribute Tasks Among GPUs
Conditions: This heuristic is employed when: (i) the GPU token request R; is the first such request of

any job of task 7;; and (ii) there exist multiple FQs that are not full (i.e.,

F|>2).

Description: Request R; is enqueued on an FQ from the set mingq e {numGpuUsers(FQ,)}. That
is, the request is enqueued on an FQ of a GPU with the fewest number of current users. There may
be several FQs that satisfy this criteria. The particular FQ is selected using the same methods of

Heuristic H2.

Rational: GPUSync is designed with sporadic task sets in mind. If a GPU-using task does not currently
require a GPU, there remains a high likelihood that it will in the near future. This heuristic exploits this

knowledge to distribute tasks among GPUs to reduce contention for preferred GPUs.

TRecall from Section 2.4.2.2 that distance is the number of PCIe links to the nearest common switch or I/O hub of two GPUs.

120

H2: Minimize Predicted Response Time
Conditions: This heuristic is employed when: (i) job J; issues request R; for a GPU token; and (ii)

there exist multiple FQs that are not full.
Description: Request R; is enqueued on an arbitrary FQ from the set mingq e ¢ { execLength(FQ,) + Lf_ ;d }.

Rational: This heuristic is meant to only allow a GPU migration if it is predicted to be beneficial. A
GPU migration is only beneficial if it expedites the completion of the token critical section of job J;.
Harmful GPU migrations are possible if we only expedite token acquisition. This heuristic not only
estimates how long J; must wait for a token, given by execLength(FQ,), but also how long it may take

for J; to complete its token critical section, given by L ;d, which includes predicted migration costs.

H3: Affinity-Aware Priority Donation
Conditions: This heuristic is employed when: (i) job J; issues request R; for a GPU token; (ii) all FQs

are full (i.e., | F| = k); and (iii) job J; must become a priority donor.

Description: We denote the set of eligible donee jobs by Z. Let eligibility be defined by Rule Rlc
of the RZDGLP. All eligible donees have requests in the FQs. Let x denote the index of the FQ in
which an eligible donee job J; has a request (i.e., FQ,). We select a donee from the set generated by
miny,c¢{distance(perf(J;),GPU ,/,|)}.® That is, we select an eligible donee with a request in an FQ
of a GPU that is closest to the preferred GPU of J;. If there are multiple such eligible donees, then we

select the one with the earliest predicted token critical section completion time.

Rational: Rule R1c dictates that a donor is immediately moved to an FQ when its donee completes its
critical section. This heuristic is meant to increase the likelihood that the request R; is moved from the

DQ to an FQ of job J;’s preferred GPU, or failing this, one nearby.

Additional Remarks: This heuristic is described in terms of priority donation as defined by the R?DGLP.

However, we may modify this heuristic to apply to configurations where the GPU Allocator is accessed
by jobs on different CPU clusters, i.e., when Rule C1 of the CK-OMLP is used, subsuming Rule R1c.
In such a configuration, this heuristic may be employed when a released job J; has a preferred GPU
and J; must become a priority donor, as defined by Rule C1. We note, however, that eligible donees

may include jobs that hold other inter-CPU-cluster (non-GPU-token) shared resources. This heuristic

SWe compute the index of a GPU in a cluster from the index of an FQ by dividing the FQ-index by the number of GPUs managed by
the GPU Allocator and rounding down to the nearest integer.

121

may be updated to avoid donating a priority to such jobs whenever possible. We also note that there is
a delay between when J; begins execution (after it is no longer a priority donor) and when it issues its
GPU token request R;—the FQ of J;’s donee may have been filled by other requests by the time R; is
issued. Ultimately, Heuristic H3 is very difficult to implement under Rule C1. Practically speaking, it

may be best to do without it in this case, unless there is a clear demonstrated need.

H4: Affinity-Aware Request Stealing
Conditions: This heuristic is employed when: (i) an FQ, is empty after the token for FQ, has been

released; (ii) the PQ and DQ are empty; and (iii) there exists an FQ, with length(FQy) > 1.

Description: Let w; denote the predicted time from completion if request R; if it remains in its
current FQ. This prediction is computed by summing the predicted token critical section lengths
of requests enqueued ahead of R; and R; itself. Let the function fg(R;) return the index of the FQ
in which R; is enqueued. Let % denote the set of unsatisfied requests of all FQs, i.e., all requests
waiting to become a resource holder. Let W denote the set of requests that are predicted to benefit by
obtaining the token of FQ, immediately, relative to waiting for a token in their respective FQs. Thus,
WEW\{R; | w; > L’;rf} An arbitrary request R, from the set maijEW{L’;z(Rj

from its associated FQ, say FQ,, and moved to FQ,. If the resource holder of FQ, inherited the priority

dy -
= L’;rx} is removed

of R;, then this inheritance relationship is ended, and the resource holder may inherit a new priority

from another request in FQ,. It is possible for 9 = 0, in which case no request is moved to FQ,.

Rational: This heuristic is meant to immediately grant the available token of FQ, to an unsatisfied
request in another FQ. The heuristic selects the request that is expected to benefit the most. In cases

where migration costs are high, it may be better to simply let FQ, idle, which this heuristic allows.

We briefly summarize the above heuristics. Heuristic H1 assigns the initial GPU to tasks in order to
distribute GPU affinity among the GPUs. Heuristic H2 enqueues request R; in the FQ that the Cost Predictor
predicts will lead to the earliest completion time of R;. Heuristic H3 guides priority donation towards jobs that
have (or are slated to obtain) a GPU that minimizes migration costs for request R;, increasing the likelihood
that R; will obtain the same GPU. Finally, Heuristic H4 grants a newly idle token to a request R; that is

waiting for another token, but only if doing so is expected to expedite the completion of R;.

122

3.2.3.3 Cost Predictor

The Cost Predictor provides predictions of the token critical section lengths of GPU-using jobs. These
predictions include the estimated cost of GPU migration. The Cost Predictor uses a record of observed token
critical section lengths to make its predictions.

The Cost Predictor makes estimates of token critical section lengths by tracking the accumulate CPU and
GPU execution time within the token critical section. Upon token assignment, the GPU Allocator informs
the Cost Predictor when it has allocated a GPU token to a job J;, along with the identity of the assigned
GPU. In response, the Cost Predictor resets an execution-time counter, records the identity of the newly
assigned GPU, and notes the distance between the last GPU used by task 7; and the newly assigned GPU.
The distance information enables the Cost Predictor to make different predictions for GPU migrations of
different distances.

The execution-time counter tracks the combined CPU and GPU execution time of a job while a token is
held. Execution delays due to preemption and blocking due to engine lock acquisition (explained later) are
not included, but CPU suspension durations due to GPU operations (memory copies, GPU kernels) are. This
tracking requires tight integration with the CPU scheduler.

When a job releases its GPU token, the accumulated execution time gives a total request execution cost
for both CPU and GPU operations and includes any delays due to migrations. However, this measurement is
for only a single observation and provides a poor basis for predicting future behavior, especially since these
measurements are strongly affected by PCle bus congestion. Thus, we use a more refined process to drive a
prediction model based upon statistical process control (Kim and Noble, 2001). Specifically, for each task
and GPU migration distance pair, we maintain an average and standard deviation over a window of recent
observations (our experimentation suggests that a window of twenty samples is suitable). The average and
standard deviation is recomputed after every new observation unless the observation falls more than two
standard deviations away from the average and at least ten prior observations have been made. This filtering
prevents unusual observations from overly-influencing future predictions.

One may be concerned that the heuristic nature of GPUSync’s Cost Predictor does not lend itself to
real-time predictability. However, the Cost Predictor derives its predictions from an average of observed
token critical section lengths. Assuming tasks never exceed provisioned execution times, the Cost Predictor

can never make a prediction that exceeds the provisioned execution time. Under-estimates are possible. The

123

effects of under-estimates are already accounted for in pi-blocking bounds derived from worst-case blocking

analysis.

3.2.3.4 Engine Locks

Engine locks enable the parallelism offered by GPUs to be exploited while obviating the need for the
(unpredictable) GPU driver or GPU hardware to make resource arbitration decisions.

A mutex is associated with each GPU copy and execution engine, as depicted in Figure 3.3. For GPUs
with two copy engines, one engine lock must be obtained before copying data to the GPU, and the other must
be obtained before copying data from the GPU. We require that all issued GPU operations are completed
before the associated engine lock is released. This is necessary in order to: (i) prevent the GPU driver
or hardware from interfering with GPUSync’s scheduling decisions; and (ii) support proper scheduling of
interrupt daemons and GPGPU callback threads (we discuss this shortly in Section 3.2.5). For GPUs that do
not ensure engine independence (Section 2.4.4), we also require that application code that issues several GPU
operations to the same engine within the same engine critical section wait for each operation to complete
before the next is issued. This is necessary to prevent the GPU hardware scheduler from stalling the other
engines.

Engine locks should be held for as little time as possible in order to prevent excessive blocking times that
degrade overall schedulability. For this reason, tasks are discouraged from issuing multiple GPU operations
within the same engine critical section, although this is not strictly prevented by GPUSync. Minimizing
the hold time of execution engine locks requires application-specific solutions to break kernels into small
operations. However, a generic approach is possible for copy engine locks. Chunking is a technique where
large memory copies are broken up into smaller copies. The effectiveness of this technique is demonstrated
by Kato et al. (2011a). GPUSync supports chunking of both regular and peer-to-peer memory copies by way
of a user-space library. Chunk size is fully configurable. The library also transparently handles copy engine
locking.

GPUSync can be configured to satisfy engine lock requests in either FIFO- or priority-order (all GPUs
within the same GPU cluster must use the same engine lock order). Blocked jobs suspend while waiting for
an engine. A job that holds an engine lock may inherit the effective priority of any job it blocks. We stress

effective priority, because the blocked job may itself inherit a priority from a job waiting for a token. In

124

order to reduce worst-case blocking, a job is allowed to hold at most one engine lock at a time, except during

peer-to-peer migrations.

Bus Scheduling Concerns. The copy engine locks indirectly impose a schedule on the PCle bus if we
assume that bus traffic from non-GPU devices is negligible. This is because these locks grant permission to
send/receive data to/from a particular GPU to one task at a time. It is true that traffic of other GPUs will cause
bus congestion and slow down a single memory transmission. However, since the PCle bus is packetized,
it is shared fluidly among copy engine lock holders. Thus, we can bound the effect of maximum PCle bus
congestion and incorporate it into real-time analysis. Deeper analysis or explicit bus scheduling techniques
may be necessary if very strict timing guarantees are required, but such approaches are beyond the scope of

this dissertation.

Migrations. GPUSync supports both peer-to-peer and system memory migrations, which are handled
differently.

For a peer-to-peer migration from one GPU to another, a job must hold copy engine locks for both GPUs.
Requests for both copy engine locks are issued together atomically to avoid deadlock.® This is accomplished
through the use of dynamic group locks (DGLs) (Section 2.1.6.2). The job may issue memory copies to carry
out the migration once both engine locks are held. Peer-to-peer migration isolates traffic to the PCle bus:
copied data does not traverse the high-speed processor interconnect or system memory buses—computations
utilizing these interconnects are not disturbed. However, gains from fast peer-to-peer migrations may be
offset by higher lock contention: unlikely scenarios exist where every token holder in a GPU cluster may
request the same copy engine lock simultaneously. However, unlikely scenarios must still be accounted for in
schedulability analysis.

If GPUSync is configured to perform migrations through system memory, then such migrations are
performed conservatively, i.e., they are always assumed to be necessary. Thus, state data is aggregated with
input and output data. State is always copied off of a GPU after per-job GPU computations have completed.
State is then copied back to the next GPU used by the corresponding task for its subsequent job if a different
GPU is allocated. An advantage of this approach over peer-to-peer migration is that a job never needs to
hold two copy engine locks at once. This conservative approach may seem heavy handed, especially when

migrations between GPUs may not always be necessary. An optimistic approach could be taken where state

9GPUSync also grants requests atomically to avoid deadlock if priority-ordered engine locks are used.

125

is only pulled off of a GPU once a migration is detected. However, this results in the same degree of copy

engine lock contention as peer-to-peer migrations, but without the benefits of isolated bus traffic.

Critical Section Fusion. Every GPU DMA memory copy must be protected by a copy engine critical section.
For chunked memory copies, a call to unlock a held copy engine lock may be immediately followed by a
call to reacquire the very same lock. There are cases where this results in needless system call overheads,
or worse, harm schedulability. For FIFO-ordered engine locks, such a case occurs when the engine lock in
question is not contended. For priority-ordered engine locks, this occurs when said engine lock has been
requested by only tasks with lower priorities than the engine lock holder.

In order to avoid needless overheads and improve schedulability, GPUSync provides a system call
interface that allows an engine-lock-holding callee to ask the question “Should I relinquish this lock?” (or in
the case of DGLs, “Should I relinquish these locks?””). Each engine lock instance answers this question in
accordance with its locking protocol (e.g., a FIFO-ordered engine lock always answers “yes” if the lock is
contended). If the answer is “yes,” then the callee should issue the necessary call to release its held engine
lock(s).!? Otherwise, the callee may proceed directly into its next critical section without releasing and
reacquiring its needed engine lock(s). This essentially fuses back-to-back engine lock critical sections of
a job that are protected by the same locks. Real-time correctness is maintained by the “preemption points”
inserted between each original critical section.

Critical section fusion for FIFO-ordered engine locks is primarily a runtime optimization. However,
fusion is important for priority-ordered engine locks, since it can strongly impact schedulability. Consider
the case where two tasks with different priorities contend for the same copy engine lock and both need to
perform a large chunked memory copy. Without fusion, the high and low priority chunks are interleaved by
the copy engine lock. This is due to that the low priority task may obtain the contended copy engine lock
after each time the high priority task exits a copy engine critical section. The locking protocol governing
the engine lock cannot know that the high priority task intends to immediately re-request the lock, since this
behavior is entirely application-defined. As a result, each copy engine lock request issued by the high priority
task may be delayed by one low priority copy engine critical section. The high priority task may suffer a

priority inversion each time it requests the copy engine. However, with fusion, the high priority task may

10We say “should” because the GPUSync cannot strictly enforce GPU scheduling decisions, we as discussed at the end of
Section 3.1.2.2.

126

suffer a priority inversion for only its first copy engine request, since it retains ownership of the engine lock

until its memory copies have completed. This can be reflected in schedulability analysis.

3.2.4 Budget Enforcement

Budget enforcement policies are necessary to ensure that a task’s resource utilization remains within its
provisioned budget. These policies are particularly important in a real-time GPU system that uses closed-
source GPU drivers and GPGPU runtimes. We first explain why execution time variance is usually due to
closed-source software, rather than GPU kernels or GPU hardware. We then describe the budget enforcement
policies provided by GPUSync.

GPU kernels usually exhibit consistent runtime behaviors. There are two reasons for this. First, high-
performance GPU algorithms usually depend upon very regular, non-divergent, execution patterns (recall
our discussion of the GPU EE in Section 2.4.2.1). For example, image processing algorithms usually fall
within this category, since computation commonly consists of applying the same operation to image pixels.
The second reason for GPU kernel execution time predictability stems from the relative simplicity of the EE.
Deep execution pipelines, branch predictors, memory prefetchers, and multiprocessor cache interference
all contribute towards variance in execution time on modern multiprocessor CPUs. However, in order to
maximize the number of transistors devoted to computation, the SMs of the EE eschew such average-case-
oriented features. For example, all CUDA-capable NVIDIA GPUs to date lack L1 cache coherency among
SMs.

GPU DMA operations also exhibit relatively consistent runtime behaviors. The execution time of
DMA operations are affected bus contention. However, as we show in Section ??, it is possible to perform
experiments to characterize worst-case behavior. Such experimental results may be incorporated into
schedulability analysis and budget provisioning. We cannot apply the same approach to program code, in
general.

In most cases, we can rule out GPU kernels or GPU hardware as the primary cause of overruns of
provisioned budgets. Ignoring user application software, this leaves the closed-source software as the most
likely culprit. This is understandable since this software has not been designed with real-time constraints in
mind—its implementation optimizes for average-case performance, not worst-case performance. As a result,
the execution time of operations that typically exhibit predictable runtime behavior may occasionally take

much longer to execute than usual. For example, we show that this is the case for the interrupt-handling

127

subsystem of a GPU driver in Section ??. We have already discussed the strong practical motivations for
using closed-source GPU software in a real-time system. However, we must recognize that the closed-source
software may sometimes act unpredictably. We must prepare for it.

Understanding the likely causes of budget overruns in a real-time GPU system can make us better
researchers and engineers, but it is not clear how this information can guide the design of budget enforcement
policies in GPUSync. Ultimately, it matters little if a budget overrun is due to user code, closed-source
software, GPU kernels, or GPU hardware. The consequence is the same: a budget is overrun. Thus, GPUSync
uses general budget enforcement policies that work regardless of whether an overrun is due to CPU or GPU
work.

Unfortunately, strict budget enforcement is difficult, if not impossible, to achieve due to limitations of
the GPU technology. Non-preemptivity of GPU operations makes budget enforcement problematic. Even if
limited preemption is provided by breaking a single GPU operation into multiple smaller operations, data on
a GPU may be in a transient state at a preemption point and thus be too difficult (or too costly) to resume on
another GPU at a later time. This motivates us to focus on budget enforcement based on overrun recovery
rather than strict enforcement to absolutely prevents overruns.

GPUSync provides three budget enforcement options: signaled overruns, early budget releasing, and a

bandwidth inheritance-based method.

Signaled Overruns. Under the signaled overrun policy, jobs are provisioned with a single budget equal to a
maximum CPU execution time, plus a maximum total GPU operation time. A job’s budget is drained when it
is scheduled on a CPU or GPU engine. The OS delivers a signal to the job if it exhausts its budget. In order
always maintain a consistent state with the GPGPU runtime, this signal is deferred if the job holds an engine
lock, and it is delivered immediately once the lock is released. The signal triggers the job to execute an
application-defined signal handler. The handler is application-defined since appropriate responses may vary
at different points of execution. As depicted in Figure 3.6, one way an application may respond to a signal is
to unwind the job’s stack (either by throwing an exception'! or a call to the standard function longjmp ())

and execute clean-up code before releasing its token lock.

"'Throwing exceptions from signal handlers may require platform support and special compiler options. For example, one must
specify the compiler options ~-fasynchronous-unwind-tables and -fnon-call-exceptions to the GCC compiler.

128

> Enabled/disabled on try-block enter/exit.

function BUDGETSIGNALHANDLER()
throw BudgetException();

end function

procedure DOJOB()
t < GetToken();
gpu < MapTokenToGpu(?);
try:
DoGpuWork(gpu); > Main job computation.
catch BudgetException:
CleanUpGpu(gpu); > Gracefully cleans up state.
finally:
FreeToken(z);
end procedure

Figure 3.6: Example of budget signal handling.

Early Releasing. The “early releasing” policy immediately refreshes the exhausted budget of a job with
the budget of the task’s next job. That is, the budget of the next job is released early. This is accomplished
by shifting (postponing) the job’s current deadline to that of its next job. In essence, the next job has been
sacrificed in order to complete the overrunning one. This policy penalizes an overrunning task by forcing it to
consume its own future budget allocations. This prevents the system from being overutilized in the long-term.
Under deadline schedulers, deadline postponement also helps to prevent the system from being overutilized
in the short-term. We note that deadline postponement is challenging to implement since it requires priority

inheritance relations established by locking protocols to be reevaluated.

Bandwidth Inheritance (BWI). A job that overruns its budget while holding a shared resource can neg-
atively affect other jobs, even non-resource-using ones. We use BWI to limit the effects of such overruns
to resource-sharing tasks. This is accomplished by draining the budget of a blocked job whose priority is

t.12 This can cause a blocked

currently inherited by a scheduled job in place of the scheduled job’s own budge
job to be penalized for the overrun of another, but improves temporal isolation for non-GPU-using tasks.
Under deadline-based scheduling, GPUSync takes additional measures to isolate the temporal effects of
overruns—specifically, the “abort/refresh/reissue” BWI technique we discussed in Section 2.1.6.1. If the

budget of a job waiting for a GPU token is exhausted, then: (i) the token request is immediately aborted;

(ii) the budget of the exhausted job is refreshed through early releasing, decreasing the job’s priority; and

1230bs must be provisioned with additional budget derived from analytical bounds on pi-blocking to cover budget that may be lost
via BWI under assumed conditions.

129

(iii) the token request is automatically reissued. Care must be taken in the implementation of this policy, as
decreasing the priority of the exhausted job also requires priority inheritance relations established by locking

protocols to be reevaluated.

3.2.5 Integration

Resource allocation techniques and budget enforcement policies make up the general elements of
GPUSync that may be applied to a variety of GPU technologies (i.e., GPUs from different manufacturers and
GPGPU runtimes) and RTOSs (when RTOS code is available). We now discuss elements of GPUSync that
address issues that arise due to reliance on specific non-real-time software. We discussed the deficiencies
of split interrupt handling in the Linux kernel in Section 2.2.3.1 and the challenges posed by the CUDA
runtime’s callback threads in Sections 2.4.1 and 2.4.5. In this section, we discuss how GPUSync resolves
these issues to improve real-time predictability. We present first the method we use to realize proper real-time

scheduling of GPU interrupts. We then apply similar techniques to schedule CUDA callback threads.

3.2.5.1 GPU Interrupt Handling

We must define scheduling policies for the execution of both top- and bottom-halves of GPU interrupts.

We discuss these in turn.

GPU Top-Halves. The disruptions imposed upon a real-time system by interrupt top-halves are inescapable.
However, we can isolate their effects in order to improve real-time predicability. We do so through CPU
shielding. CPU shielding allows the system designer to direct interrupts to a particular CPU, or group of
CPUs. To support this, the OS associates a CPU bitmask with every interrupt source, or more generally,
each interrupt identifier (i.e., a unique interrupt ID). These bitmasks are used by the OS to program the
underlying interrupt-handling hardware (e.g., the Advanced Programmable Interrupt Controller (APIC)) that
is responsible for delivering interrupts to each CPU.

Under GPUSync, we assume that the system designer applies the appropriate CPU bitmasks to direct
interrupts of a given GPU to the CPUs that may be scheduled with tasks that use that GPU. For example,
suppose GPU; is used by tasks that are scheduled on CPU; and CPUj. The system designer would configure
the CPU bitmasks to ensure that the interrupts of GPU; may only be handed by CPU; and CPU,. CPU; and

CPUy do not necessarily reside in the same CPU cluster. For instance, GPU; could be shared by CPU; and

130

CPUj under partitioned CPU scheduling. In this case, CPU; could be forced to handle GPU interrupts on
behalf of tasks that execute exclusively on CPU—this must be accounted for in schedulability analysis.
Under older interrupt handling mechanisms, a GPU may be forced to share the same interrupt identifier
with other GPUs and even other devices. This stems from limitations in legacy hardware where each
interrupt identifier maps to a physical interrupt pin or wire. This leads to scenarios where a GPU may
be forced to share an interrupt identifier with unrelated devices, such as network interface cards and disk
controllers. This sharing may make it difficult to isolate GPU interrupts on the proper CPUs. This has
negative effects on both runtime predictability and schedulability analysis. Historically, the NVIDIA driver
has configured GPUs to share interrupt identifiers. However, since late 2008, the GPL layer of the NVIDIA
driver includes a compile-time option to enable modern interrupt handling mechanisms (NVIDIA, 2014a),
specifically, Message Signaled Interrupts (MSI) (PCI-SIG, 2010).'3 Under MSI, interrupts are delivered
“in-band” through the PCle data pathways. Each GPU is assigned a unique interrupt identifier under MSI,
allowing us to direct GPU interrupts to the appropriate CPUs. We note that MSI is enabled by default in the

GPL layer of the NVIDIA driver, starting in late 2013 (NVIDIA, 2014a).

GPU Bottom-Halves. As we discuss in greater depth in Section 3.3, GPUSync is implemented within
the Linux-based LITMUSRT kernel. GPUSync introduces a new class of LITMUSRT-aware daemons called
klmirqd. This name is an abbreviation for “Litmus softirq daemon” and is prefixed with a “k” to indicate that
the daemon executes in kernel space. Klmirqd daemons may function under any LiTMUSRT-supported JLFP
scheduling algorithm.

We associate one dedicated klmirqd daemon with each GPU. Each daemon processes the Linux tasklets
(i.e., bottom-halves) issued by GPU ISRs (i.e., top-halves). These daemons may execute within the CPU
cluster(s) of the tasks that use the associated GPU. Each inherits the maximum effective priority of any
suspended job that is blocked waiting for a GPU operation of the associated GPU to complete. In effect, each
tasklet is scheduled under this inherited priority. If there are no suspended jobs waiting for the daemon’s
assigned GPU to complete an operation, then the daemon is scheduled with a base priority statically below
that of any real-time task. This allows the daemon to take advantage of CPUs left idle.

In order to properly schedule bottom-halves, we must identify: (i) the GPU associated with each bottom

half; (ii) the klmirqd daemon associated with each GPU; and (iii) the set of suspended jobs waiting for a

13MSI is enabled in the NVIDIA driver by asserting the __NV_ENABLE_MSI compile-time option.

131

tasklet_schedule() C

| — Is callback to the GPU driver?
callback
Driver Top-Half tasklet

0101101

GPU ID
1001110
klmirqd Registry
1«
@

klmirqd tasklet_schedule()

GPU Registry
GPU Allocator ——l klmirqd daemon

®
CPU Scheduler

L |

Figure 3.7: Architecture of GPU tasklet scheduling infrastructure using klmirqd.

GPU operation to complete on each GPU. This is non-trivial with closed-source GPU drivers. Nonetheless,
we achieve this by coordinating the GPU Allocator, CPU scheduler, and klmirqd daemons in a multi-step

process. This approach is summarized in Figure 3.7, which we now describe in detail.

Step A: Update GPU Registry
When the GPU Allocator assigns a token to a task, a record of the assignment is stored in a GPU
Registry. The GPU Registry maps a task identifier (i.e., a Linux task_struct pointer) to a GPU
identifier (an enumerated value). The appropriate record is removed from the GPU Registry when a

GPU token is freed.

Step B: Enable Inheritance
Upon job suspension, the CPU scheduler checks if the suspending job holds an engine lock. If so, the
scheduler retrieves the GPU identifier of the task’s allocated GPU from the GPU Registry. Using this
identifier, the scheduler then uses the Kimirqd Registry to look up the task identifier of the klmirqd
daemon assigned to that GPU. (Entries are inserted into the Klmirqd Registry at scheduler initialization-
time as klmirqd daemons are created.) The CPU scheduler allows the klmirqd daemon to inherit the
effective priority of the suspending task—this includes any priority that the suspending task itself may

inherit from a blocked task waiting for a GPU token in the GPU Allocator or waiting for engine locks.

132

The klmirqd daemon may inherit the suspended job’s effective priority until the suspended task is ready

to run.

Step C: Intercept GPU Tasklet
The closed-source GPU driver must interface with the open-source Linux-based kernel. We exploit this
fact to intercept tasklets dispatched by the driver. This is done by modifying the standard internal Linux

tasklet_schedule () function. This function is used to issue a tasklet to the kernel for execution.

When tasklet_schedule() is called, the callback entry point of the deferred work is specified
by a function pointer. We identify a tasklet as belonging to the closed-source GPU driver if this
function pointer points to a memory region allocated to the driver. It is possible to make this determi-
nation, since the driver is loaded as a module (or kernel plugin). We inspect every callback function
pointer of every dispatched tasklet, online, using Linux’s module-related routines.'* Thus, we alter
tasklet_schedule() to intercept tasklets from the GPU driver and override their scheduling. It
should be possible to use this technique to schedule tasklets of any driver in Linux that is loaded as a

module, not just GPU drivers.

Step D: Extract GPU Identifier
Merely intercepting GPU tasklets is not enough if a system has multiple GPUs; we must also identify
which GPU raised the initial interrupt in order to determine which klmirqd daemon should handle
the tasklet. It may be possible to perform this identification process at the lowest levels of interrupt
handling (i.e., when the OS looks up the appropriate ISR). However, this information must be passed
into the deeper interrupt handling layers, potentially requiring invasive changes to the OS’s internal

APIs and the users of those APIs. Instead, we opt for a simpler solution closer to tasklet scheduling.

The GPU driver attaches a memory address to each tasklet, providing input parameters for the tasklet
callback. This address points to a data block that contains a device identifier indicating which GPU
raised the interrupt. However, locating this identifier within the data block is challenging since it is

packaged in a driver-specific format.

Offline, we inspect the code of the driver’s GPL layer to reverse engineer the memory address offset of

the GPU identifier from the address that is attached to the tasklet. From code analysis, we find that

14This may sound like a costly operation, but it is actually quite a low-overhead process.

133

nv_linux state t e OxX

t def st t
{ype ef struc offset = OxY - 0xX

unsigned int device_num; device_num —s OxY

} nv_linux_state_t;

memory layout

Figure 3.8: Memory layout of nv_linux_state_t.

the attached address is a pointer to a C-struct with the type “nv_linux_state_t.” Embedded within
this struct is a 32-bit unsigned integer variable named “device_num.”!> Through experimentation, we
learn that this variable indicates the GPU that raised the interrupt. By modeling the memory layout of
nv_linux_state_t, we can determine the offset needed to locate device _num within the tasklet’s

data block. This is depicted in Figure 3.8.

From experience, we find that the memory layout of nv_linux_state_t may change with each new
version of the NVIDIA driver. Moreover, several compile-time options of the GPL layer can change the
layout of nv_linux_state_t, which may change the offset of device_num. Thus, a system designer
must repeat this reverse engineering process with each new version of the NVIDIA driver to determine
the proper offset. However, it may be feasible to automate this process by modifying the compilation

scripts of the NVIDIA driver.

Step E: Dispatch Tasklet
After completing Steps C and D, tasklet_schedule () passes intercepted GPU tasklets to the klmirqd
daemon by calling klmirqd_tasklet_schedule (). This function takes the tasklet and klmirqd task
identifier as arguments. The function inserts the tasklet into a queue of pending tasklets for the klmirqd
daemon. The daemon is awoken if it is suspended waiting for work. Steps A and B ensure that the

daemon is scheduled with the proper priority.

GPU “Bottom-Bottom-Halves.” In Section 2.2.3.1, we discussed how tasklets may never block on I/O or
suspend from the CPU, since tasklets may be executed within interrupt context. In order to carry out such

operations, a tasklet itself may defer additional “work items” to Linux kworker daemons. In a sense, these

151 recent versions of the GPL driver, this field has been renamed “minor_num.”

134

work items are “bottom-bottom-halves.” As with tasklets, we must also ensure that work items are properly
scheduled.

We apply the same methodology we use to intercept GPU tasklets to intercept GPU work items. This is
done by modifying the standard internal Linux schedule_work () function, which is normally used to pass
work to the kworker daemons. Each work item contains callback and attached memory addresses, similarly
to a tasklet—we identify GPU work items and associated GPU identifiers in the same way. Intercepted
GPU work items may be passed to a secondary klmirqd daemon dedicated to work-item processing, or it
may be passed to the klmirqd daemon that also processes tasklets. In the former case, we apply the same
mechanisms we use in Steps A and B above to ensure the daemon is scheduled with the proper priority. In
the latter case, the klmirqd daemon executes a single pending work item, if one exists, after executing each
tasklet. This essentially fuses the tasklet and work item into a single unit of work. GPUSync supports both
configurations. While the use of separate tasklet and work-time klmirqd daemons may improve performance
through parallelism, it breaks the sporadic task model since the two daemons may execute concurrently under

the same inherited priority.

3.2.5.2 CUDA Runtime Callback Threads

As we discussed in Sections 2.4.1 and 2.4.5, the CUDA runtime employs callback threads, one per
GPU, to signal (wake) user threads that have suspended from execution while waiting for GPU operations
to complete. These threads must be properly scheduled to avoid unbounded priority inversions. However,
applying a real-time scheduling policy to these threads is challenging, since the threads are created and
managed by closed-source software. Nonetheless, in our approach, we make no assumption of when the
CUDA runtime creates callback threads. We also assume that we do not know which callback threads are
associated with which GPUs. We now describe how GPUSync schedules the callback threads of the CUDA
runtime.

A GPU-using task makes a system call, set_helper_tasks (), to GPUSync during the task’s initializa-
tion phase. The system call takes two flag parameters: CURRENT and FUTURE. If the flag CURRENT is set, then
the OS to examines each thread within the process of the calling task. Any encountered non-real-time thread

is assumed to be a CUDA runtime callback thread. We apply a specialized LITMUSRT

scheduling policy to
each of these threads. If the flag FUTURE is set, then we automatically apply the same specialized scheduling

policy to any threads created (forked) in the future.

135

The specialized scheduling policy we apply to callback threads is very similar to the one we use for
klmirqd daemons. When job J; suspends waiting for a GPU operation to complete, all callback threads of
task 7; inherit the effective priority of J;. This is policy is enacted by the CPU scheduler when a task suspends
while holding an engine lock—this is the same mechanism we used to enable priority inheritance for klmirqd.
Normally, the simultaneous inheritance of J;’s effective priority by multiple threads would break the sporadic
task model, which assumes tasks are single threaded. However, it is safe in this particular instance because a
job may only use one GPU at a time under GPUSync—only one callback thread will ever need to execute at
a given moment. No two callback threads inheriting the same priority will ever execute simultaneously, so

the sporadic task model is not violated.

3.3 Implementation

In this section, we discuss the implementation of several key components in GPUSync. We have already
discussed several implementation-related issues that relate to the integration of GPUSync with LiTMUSRT
and the broader Linux kernel. We provide additional implementation details herein. We begin with general
information on the implementation of GPUSync. We then discuss the challenges of implementing priority
inheritance for the nested locking structure of GPUSync, while accommodating dynamic behaviors of
GPUSync. This is followed by a discussion of the plugin infrastructure supported by the GPU Allocator
to implement affinity-aware heuristics, such as the ones we discussed in Section 3.2.3.2. We conclude this
section with a description of the GPUSync user interface used by real-time applications to communicate GPU

resource requests to GPUSync.

3.3.1 General Information

We implemented GPUSync as an extension to LITMUSRT, version 2014.1, which is based upon the 3.10.5
Linux kernel.!® GPUSync adds approximately 20,000 lines of code to LITMUSRT. Contributions to this
total by category are approximately: GPU Allocator and locking protocols, 35%; scheduler enhancements,
budgeting, and nested inheritance, 35%; GPU interrupt and callback thread management, 20%; miscellaneous

SRT

infrastructural changes, 10%. For comparison, the LITMUS™" patch to the Linux 3.10.5 kernel is roughly

15,000 lines of code. The source code for GPUSync is available at

16We distribute GPUSync as open source under the GNU General Public License, version 2. The code is currently available at
www.github.com/GElliott.

136

www.github.com/GElliott

LiTMUSRT provides a plugin-based real-time scheduling framework within the Linux kernel, where
particular real-time scheduling algorithms are implemented as plugins. With the exception of modifications to
the tasklet and work-item processing of Linux (see Section 3.2.5), GPUSync is implemented almost entirely
within LITMUSRT—GPUSync rarely interfaces directly with Linux kernel components.

We limit the integration of GPUSync with LITMUSRT to LitmUsRT’s C-EDF plugin. This plugin can
be configured to cluster CPUs along different boundaries of the hardware memory hierarchy. For example,
if we cluster around CPU private caches (e.g., the L.1), then our C-EDF scheduler is equivalent to P-EDF.
Likewise, if we cluster around main memory, our C-EDF scheduler is equivalent to G-EDF. The LITMUSRT
C-EDF plugin provides us with the necessary flexibility to test a variety of CPU cluster configurations with
a single code base. We recognize that this flexibility may result in slightly greater system overheads. For
example, the LITMUSRT P-EDF plugin is more streamlined than its C-EDF counterpart (even when similarly
configured), since the uniprocessor nature of P-EDF admits assumptions that reduce code complexity. Finally,
we note that the C-EDF plugin requires only minor modifications to support fixed-priority scheduling, as
the programmer need only provide a new prioritization function for comparing the priority of two tasks. We
extended the LITMUSRT scheduler plugin API to expose the prioritization function used by a scheduler to
the GPU Allocator and engine locks, so changes in the prioritization function are transparent to GPUSync

components.

3.3.2 Scheduling Policies

Threads in Linux are generally scheduled under one of two primary policies: SCHED_OTHER or
SCHED_FIFO.!” The SCHED_OTHER policy is used to schedule general purpose, non-real-time, applica-
tions. SCHED_FIFO is used to schedule fixed-priority real-time tasks in accordance to the POSIX standard.
Linux prioritizes SCHED_FIFO threads above SCHED_OTHER threads, as illustrated in Figure 3.9(a).
LitMUsRT introduces a third scheduling policy: SCHED_LITMUS. All threads scheduled by the SCHED_
LITMUS policy have a greater priority than SCHED_FIFO threads. This is depicted in Figure 3.9(b).

The GPUSync implementation splits the SCHED__LITMUS scheduling policy into three sub-policies.
We use sub-policies within LITMUSRT as it allows us to quickly transition threads among them. In decreasing

static priority, these sub-policies are: normal, callback, and daemon. Conventional real-time tasks are

17Linux provides additional scheduling policies, such as SCHED_BATCH and SCHED_RR. These are similar to SCHED_OTHER
and SCHED_FIFO, respectively. We do not discuss them in order to simplify the presentation.

137

high priority

normal

SCHED_LITMUS callback

SCHED_LITMUS daemon

SCHED_FIFO SCHED_FIFO SCHED_FIFO
L] SCHED_OTHER SCHED_OTHER SCHED_OTHER
low priority
(a) Linux policies (simplified). (b) LiTMUSRT policies. (c) LitmusRT policies with GPUSync.

Figure 3.9: Relative static priorities among scheduling policies.

scheduled under the normal sub-policy. CUDA runtime callback threads are scheduled under the callback
sub-policy. Klmirqd threads are scheduled under the daemon sub-policy. We prioritize the callback sub-policy
over the daemon sub-policy in an effort to expedite completion of each GPU operation. CUDA callback and
klmirqd threads transition to the normal sub-policy when they inherit a priority from a normal real-time task.
Figure 3.9 depicts the relative static priorities of each scheduling policy.

Threads that share the same policy compete for CPU time in accordance to the policy’s CPU scheduler.
For example, we may configure LITMUSRT to schedule SCHED__LITMUS-policy tasks with C-EDF. Jobs
in LITMUSRT may have equal priorities. For instance, the deadlines of two jobs may coincide under
EDF scheduling. LITMUSRT implements several configurable mechanisms to break such ties in priority.
For GPUSync, we configure LITMUSRT to use tie-break heuristics that fairly distribute deadline lateness,
proportional to each task’s relative deadline, among tasks. This heuristic can have a significant effect on
the response time of jobs on a temporarily overloaded system. For callback and klmirqd threads that do not
actively inherit a priority from a normal LITMUSRT task, we break ties in a manner that fairly distributes CPU

time among them.

3.3.3 Priority Propagation

The two-level nested locking structure of GPUSync requires the propagation of inherited or donated
priorities along complex chains of dependent tasks.

Figure 3.10 illustrates a possible chain of task dependencies in GPUSync. In this example, suppose all
tasks are scheduled within the same CPU and GPU clusters. Here, task 77 is in the DQ of the GPU Allocator
and donates its priority to task 7> with a request enqueued in FQ, of the GPU Allocator. Task 73 holds the

token of FQ,, so it may inherit the effective priority of 7,. T3 has an unsatisfied request for the first CE of

138

T T

donor in DQ of waiting in FQ of
GPU Allocator GPU Allocator

T3

blocked on CE o

Ts
holds on CE, , and
blocked on CE] 1

Ty

waiting in FQ, of
GPU Allocator

Ts

blocked on CEO,O

T8
holds CE; ; and
suspended for DMA

Tz

klmirqd,
blocked on CE; ;

To
holds EE, and suspended

for GPU kernel

Figure 3.10: Example of a complex chain of execution dependencies for tasks using GPUSync.

GPUj, or CE . Another task 74 is enqueued on FQ, in the GPU Allocator. Let us assume that the token of
FQ; is associated with GPU. Task 75 holds the token of FQ,, so it may inherit the effective priority of Tj.
T5 also has an unsatisfied request for CE . Task 7¢ issued a DGL request for both CEg ¢ and CE; i, prior to
the CE requests of 73 and Ts, in order to perform a peer-to-peer migration between GPUg and GPU;. Ts’s
request for CEg o has been satisfied, but the task remains blocked waiting for CE; ;. Because Ts holds the
engine lock of CEy o, it may inherit either the effective priority of 73 or T5. Task 77 has an unsatisfied request
for CEy ;. Task T3 holds the engine lock for CE 1, so it may inherit either the effective priority of T or T7. Tg
has issued its DMA operation to CE; ;. The DMA is incomplete, so T3 is suspended. Thus, all of the callback
threads of T3 may inherit the effective priority of 73, including the callback thread for GPU, ng’ ', Task Tg
holds the engine lock for EE| and is waiting for a GPU kernel to complete, so Tg has also suspended. Finally,
the klmirqd daemon for GPU|, klmirqd,, may inherit the effective priority of either 73 or 79, since both tasks
have incomplete operations on GPU; and both tasks are suspended. What is the effective priority of T8Cb1 ?
It is the maximum priority among tasks 77 through 7g. What is the effective priority of klmirqd, ? It is the
maximum priority among tasks 77 through 7.

Implementing the necessary mechanism to propagate effective priorities through dependency chains
such as the one in Figure 3.10 is challenging since information about each task is distributed among several
data structures (e.g., the request queues of the various locks). We may imagine a recursive algorithm
that propagates the donated priority of 73 down the dependency change of Figure 3.10 when 7] issues its
token—indeed, such an algorithm is obviously necessary. Under conventional JLFP locking protocols, the

implementation of such an algorithm is straight forward due to the following two invariants:

I1 The effective priority of a job may only increase monotonically, unless such a job releases a held lock.

139

I2 The base priorities of jobs are fixed.

However, neither of these hold under certain configurations of GPUSync, so implementation is more complex.
Let us consider two cases where GPUSync breaks conventional Invariants I1 and I2.

In the first case, the request stealing rule (Rule RS of the R?DGLP) used by the GPU Allocator may
break Invariant 11, since the GPU Allocator may move a pending request from one FQ to another. Suppose
task 74 in Figure 3.10 has the highest base priority among all tasks, so Tgb1 and klmirqd, inherit the effective
priority of Ty. If Ty is moved to another FQ, say, FQ,, then we must determine a new effective priorities for
ng’1 and klmirqd, . ng’1 may draw an effective priority from the tasks 7} through Ty (except 7). klmirqd,
may draw an effective priority from the same tasks, in addition to task Ty9. Whatever these new effective
priorities may be, they are less than the base priority of T (which remains unchanged). Thus, the effective
priorities of ng" and klmirqd, decrease, breaking Invariant I1.

In the second case, GPUSync’s budget enforcement policies can cause the base priority of a job to
change under deadline-based schedulers, violating Invariant 12. This is clear under the early-releasing policy.
However, let us discuss a more complicated scenario under the BWI policy. With out loss of generality, let us
assume that the tasks in Figure 3.10 are synchronous (i.e., each task releases a job at the same time instant),
periodic, and have implicit deadlines. Thus, the j” jobs of all tasks share the same absolute deadline, since
they share a common release time and relative deadline. Jobs are prioritized by EDF and ties are broken by
task index such that 7; has greater priority than 7;, ;. Suppose job Jg ; of task 7g overruns its provisioned
budget. Jg ; drains the budget of job J; ; first since J ; has the highest priority. (Job J; ; has greater priority
than job J;; 1 ; due to tie-breaking.) Once exhausted, the priority of J; ; is decreased through early-releasing
and now has the lowest priority among all jobs, since Dy j+1 > D; j fori € {2,3,---,9}. As aresult, we must
determine a new effective priority for all other jobs that inherited the priority of J; ;. The job J ; now has
the highest priority among all jobs, so Jg ; begins consuming the budget of J; ;. Jg ; continues to exhaust the
budgets of jobs J> ; through J7 ;, until Jg ; begins to consume its own budget. The base priority of each job
decreases as its budget is exhausted, breaking Invariant 12.

We describe the situations that break Invariants I1 and 12 not because they imply a fundamental departure
from a recursive algorithm to propagate priorities through chains of dependent tasks, but rather to illustrate
the fact that effective priorities of tasks under GPUSync may be in flux. The core algorithm to propagate

effective priorities among tasks is embodied by a three-step recursive process where we detect a potential

140

-Start-
‘ GPU Allocator steals a request from an FQ ’

-Start-

-Start-
Budget enforcement actions

Resource request blocked

A

| Detect change in effective priority (P1) |4_

no Possible change in
effective priority of
a resource holder?

yes

Apply the change in effective priority of the resource holder (P2)

|

Is resource holder yes
itself blocked? _>| Propagate change (P3)

no

-End-

Figure 3.11: Recursive algorithm to propagate changes in effective priority.

change in the effective priority of a task, apply the change if necessary, and propagate that change if the
task is itself blocked for a resource. We summarize these steps with the flowchart depicted in Figure 3.11.
We now describe the algorithm we use to propagate effective priorities in more detail. We label each set of

operations that make up each step in our propagation algorithm.

P1: Detect
For every protected resource (token or engine lock), the implementation of the locking protocol tracks
the effective priorities of all pending requests from which a resource holder may inherit. This is done
by using a max-heap, ordered by effective priority. Consider the implementation of a FIFO-ordered

engine lock. In addition to a FIFO queue to order requests, a heap is populated with the unsatisfied

141

requests. We may efficiently determine the greatest effective priority among the unsatisfied requests by

examining the root note of the heap. Updates to the heap are logarithmic in runtime complexity.

P2: Apply
Each task may inherit an effective priority through any one of several locks it may hold concurrently.
Within the Linux kernel task_struct of each task, we maintain a max-heap of the effective priorities
that the task might inherit. The nodes in this heap reference the root nodes of the associated max-heaps
maintained by P1. A task inherits the effective priority of the root node of the task_struct-heap if the
task has a lower base priority. We update task_struct-heap whenever the root note of an associated
heap maintained by P1 changes. Concurrent updates to the task_struct-heap are serialized by a

per-task spinlock.

Additional measures are taken to propagate priorities to klmirqd daemons and callback threads. The
klmirqd daemon uses the task_struct-heap to determine its effective priority. However, instead of
referencing root nodes of the heaps maintained by P1, the nodes reference tasks suspended waiting for
GPU operations to complete. If the effective priority of a task changes while it is suspended holding an
engine lock, then we propagate the change to the klmirqd daemon assigned to the GPU for the token
held by the task and reevaluate the daemon’s effective priority. For callback threads, if the effective
priority of a task changes while it is suspended holding an engine lock, then the callback threads of the

task inherit the new effective priority.

P3: Propagate
Within each task_struct, we store a pointer to a lock for which a task is blocked.'® The value of this
pointer is null if the task is not blocked. If the effective priority of a task changes while it is blocked,

we update the max-heap maintained by P1. Changes are recursively propagated.

We take the following actions to support the request stealing rule used by the GPU Allocator. First, we
remove the request to steal from FQ,. We then update the max-heap used by the GPU Allocator to track the
effective priorities of requests in FQ,. We apply the potential change in the effective priority of the token

holder of FQ, by following P1 and any subsequent steps, as necessary.

18When DGLs are used, this pointer points to any single requested lock not held by the task.

142

We follow a multi-step process if the budget of a job is exhausted when GPUSync is configured to use

BWI and dynamic-priority JLFP scheduling (e.g., EDF):

1. If the job is blocked for a token, we coordinate with the GPU Allocator to abort the token request. This
may result in changes to a max-heap maintained by the GPU Allocator. We apply any potential change

in the effective priority of the token holder by following P1 and any subsequent steps, as necessary.
2. We decrease the base priority of the job through early-releasing.

3. If the job holds a resource lock, then we reevaluate the effective priority of the job by following P1 and
any subsequent steps, as necessary. This step is required since the job may need to inherit a priority a

due to its decreased base priority.

4. If we aborted a token request above, then we re-issue the request. This may result in changes to a

max-heap maintained by the GPU Allocator—changes in effective priorities are propagated.

We only perform steps 2 and 3 under the early-releasing policy under dynamic-priority JLFP scheduling.
We conclude this section with a remark on the challenges of implementing the above algorithms. These
algorithms require coordination among software components that implement locking protocols, schedulers,
and budget enforcement policies. Each component may use a variety of spinlocks to protect kernel data
structures. The implementation must be extremely careful with respect to when, and in what order, these

locks are acquired so that deadlock is avoided.

3.3.4 Heuristic Plugins for the GPU Allocator

We use a plugin-based software architecture for the GPU Allocator to implement the heuristics described
in Section 3.2.3.2. This provides a clean separation between the core GPU Allocator locking protocol
algorithm (R?DGLP or CK-OMLP), the heuristics, and other software components of GPUSync. The design
also facilities experimentation with new heuristics. A heuristic plugin defines a collection of heuristics used
to guide the actions of the GPU Allocator. We may use different plugins to implement a variety of strategies
such as “optimize the average case” or “aggressive migration.” We implement the heuristics discussed in
Section 3.2.3.2 as a single plugin.

Table 3.1 lists the heuristic plugin API. The advisory functions are invoked by the GPU Allocator to

request guidance from the plugin at key algorithmic decision points. For example, the GPU Allocator may

143

Advisory API

advise_enqueue() Recommend the FQ on which to enqueue a given request.

advise_steal() Recommend a request to steal from an FQ.
advise_donee_selection() Recommend a donee for a priority donor.
Notification API

notify_enqueue () A request has been enqueued on a specified FQ.

notify_dequeue() A request has been removed from a specified FQ.

notify_acquired() A specified token has been acquired by a specified job.
notify_freed() A specified token has been freed by a specified job.
notify_exit() A given task has terminated.

Table 3.1: Heuristic plugin interface for the GPU Allocator.

call advise_enqueue () to solicit advice from the plugin in deciding which FQ a given request should be
enqueued—we use this interface to implement Heuristics H1 and H2. The GPU Allocator is free to reject a
recommendation made by any advisory function. We do so in order to protect the real-time correctness of the
underlying GPU Allocator locking protocol algorithm from poor advice provided by the plugin.

The notification functions are invoked by the GPU Allocator to inform the plugin of the Allocator’s
actions. Heuristic plugins use these functions to maintain their own internal state. For instance, we use
notify_enqueue () and notify_dequeue () to maintain a cached estimate of the lengths of each FQ (i.e.,
Equation (3.2) of Section 3.2.3.2, which is necessary to efficiently implement Heuristic H2). Also, we use the
function notify_exit () to inform a plugin that a real-time task has terminated. This information is needed
to properly implement Heuristic H1, which attempts to distribute sporadic tasks among GPUs.

We also take advantage of the notification functions to interface with other software components. For
instance, we use notify_acquired() and notify_freed() to bridge the GPU Allocator and the GPU
Registry that is used for scheduling klmirqd daemons (Section 3.2.5.1). We also use these functions to
integrate the GPU Allocator and the Cost Predictor. When the GPU Allocator calls notify_acquired(),
the plugin begins tracking the combined CPU and GPU execution time of a job within the token critical
section, as described in Section 3.2.3.3. Similarly, the plugin provides the Cost Predictor with a new

observation when the GPU Allocator calls notify_freed().

3.3.5 User Interface

The developers of LITMUSRT provide a companion user-space library, called liblitmus, to ease the
development of real-time LITMUSRT tasks. The liblitmus API provides functions for creating and initializing

real-time tasks, assigning tasks to clusters, and job management.

144

We extend liblitmus to provide the user with an interface to GPUSync.!® This extended library does not
serve as a GPGPU interception library (Section 3.1.2). Rather, such an interception library would use the
services exposed by our GPUSync-modified liblitmus to enact scheduling policies. The extended library
includes functions for creating and configuring the GPU Allocator and engine locks. The API to create an
instance of a GPU Allocator requires the callee to specify which GPUs are to be managed by the allocator
and values for p (the maximum number of per-GPU concurrent users) and f (the maximum length of each
FQ). The callee may also specify which, if any, heuristic plugin should be employed by the GPU Allocator
instance. APIs for creating and configuring engine locks are also provided. Each GPU Allocator and engine
lock instance is given a unique name by the creating process. Other real-time tasks use these names to obtain
the necessary references to the created objects.

Additional extensions to the liblitmus API include functions for obtaining GPU tokens, locking and
unlocking engine locks (with or without the use of DGLs), and performing chunked memory copies. There

are also routines to facilitate exception-based handling of budget exhaustion signals.

3.4 Conclusion

This concludes our description of the design and implementation of GPUSync. Through the careful
consideration of tradeoffs among a variety of real-time GPU scheduler designs, we have designed GPUSync
to be an API-driven scheduler implemented within the operating system. We sacrifice the ability to strictly
enforce all GPU scheduling decisions in order to support closed-source software. GPUSync is designed
around a synchronization-based philosophy to real-time GPU scheduling. This provides us with a variety of

tools and methodologies we need to ensure real-time predicability.

19This extended version of liblitmus is currently available at www.github.com/GE11liott under the GNU General Public License,
version 2.

145

www.github.com/GElliott

CHAPTER 4: EVALUATION!

In this chapter, we evaluate real-time properties of GPUSync. Our evaluation is in two parts. In the first
part, we develop a theoretical model of GPUSync for our evaluation platform, a twelve-core, eight GPU,
system. This model incorporates carefully measured system overheads and overhead-aware schedulability
analysis. Upon this model, we perform a large-scale set of experiments where we evaluate the schedulability
of randomly generated task sets under a variety of GPUSync configurations. Although not exhaustive, this
evaluation is broad. It required over 85,000 CPU hours to complete, testing over 2.8 billion task sets for
schedulability. We show that real-time guarantees differ greatly among GPUSync configurations. In the
second part of our evaluation, we investigate the runtime performance of GPUSync. We first examine the
efficacy of GPUSync’s budget enforcement mechanisms, the accuracy of GPUSync’s Cost Predictor, and
the ability of GPUSync’s affinity-aware GPU token allocation heuristics to reduce costly GPU migrations.
We then evaluate a variety of GPUSync configurations through additional runtime experiments. Here, we
execute task sets made up of tasks that execute GPU-based computer vision algorithms. We report upon the
differences in observed real-time performance among the GPUSync configurations.

The remainder of this chapter is organized as follows. In Section 4.1, we describe the evaluation
platform upon which our schedulability and runtime evaluations are based. We then describe the platform
configurations (e.g., CPU and GPU cluster configurations) we consider in our evaluations in Section 4.2. In
Section 4.3, we develop our real-time model for evaluating task set schedulability under GPUSync. This
section includes a description of the methods used to gather empirical data of GPU-related system overheads—
we present this data as well. Section 4.3 also includes detailed blocking analysis of GPUSync’s engine and
token locks, and the methodology used to integrate GPU-related overheads into schedulability analysis. In

Section 4.4, we describe our runtime evaluation of GPUSync, and we present our results. We conclude in

I Portions of this chapter previously appeared in conference proceedings. The original citations are as follows:

Elliott, G., Ward, B., and Anderson, J. (2013). GPUSync: A framework for real-time GPU management. In Proceedings of the 34th
IEEE International Real-Time Systems Symposium, pages 33-44;

Elliott, G. and Anderson, J. (2014). Exploring the multitude of real-time multi-GPU configurations. In Proceedings of the 35th
IEEE International Real-Time Systems Symposium, pages 260-271.

146

Section 4.5, where we compare and contrast the results of our schedulability experiments with the empirical

results of our runtime evaluation.

4.1 Evaluation Platform

We evaluate our implementation of GPUSync on a high-end multicore, multi-GPU, platform. This
platform has two NUMA nodes, each like the system depicted in Figure 2.20. Each NUMA node is equipped
with one Xeon X5060 processor with six 2.67GHz cores, and four NVIDIA K5000 Quadro GPUs. In
total, our evaluation platform is equipped with twelve CPUs and eight GPUs. We first provide additional
details about our CPUs before describing our GPUs. Each CPU core has a private 32KB L1 cache for
instructions, and another of the same size for data. Each CPU core also has a private 256KB L2 cache. The
six cores on each X5060 processor share a single 12MB L3 cache. On our platform, the L3 is an inclusive
cache, meaning that it contains copies of the data stored in caches above it. Each Quadro K5000 GPU
connects to the platform through PCle 2.0, using 16 PCle lanes. The K5000 has two CEs, so each GPU is
capable of simultaneous bi-directional DMA operations. This GPU also supports peer-to-peer DMA. We
call peer-to-peer DMA operations between two GPUs that share the same PCle switch “near” peer-to-peer
DMA operations. Similarly, peer-to-peer DMA operations between two GPUs that share the same I/O hub,
but not a PCle switch, “far” peer-to-peer DMA operations. The hardware scheduler issues we discussed in
Section 2.4.4 limit the K5000. For all of the evaluations performed herein, we took the steps necessary to
ensure that GPU engines operated independently, maximizing the parallelism of our platform.

We justify our use of a high-end platform in lieu of a smaller embedded platform, such as those we
discussed in Section 2.3, in two ways. First, the complexity of the high-end platform enables research into
more complex scheduling problems (e.g., clustered GPU scheduling). Second, as technology advances,
embedded platforms often resemble earlier higher-end platforms. For example, NVIDIA recently announced
plans to develop a platform targeted to computer vision processing in automotive applications (Ho and Smith,
2015). This platform uses two Tegra chips, each containing four CPU cores and an integrated GPU. Although
details of this new product are currently unavailable, the high-level architecture of this platform appears to be

not unlike that of our multi-GPU NUMA platform.

147

CPU Scheduling

Partitioned Clustered lobal

° @ ‘o
B=EEnEEZ
el I e B L
TE=AE =28 N @ crv
g | S| ¢
+~ @) @)
S| &=s]:i |8 2 @ crv
o Y 4 (‘.1’\‘ o P
S 3 — HEG 1:\\@ i uster
S ‘@) o — ‘@ e
- - =4 I $ e
o e : @ : e —— Association
2 x= N
=2 77:%;37 7:\51771!17 73?:4:77 :7‘7 ---- NUMA Boundary
=13 . s ol e
S I I
‘o) ‘e ‘o] Ty ‘e
'@ @ o
‘9 \Q/

Figure 4.1: Concrete platform configurations.

4.2 Platform Configurations

As we described in Chapter 1 (see Figure 1.4), a multicore multi-GPU platform may organized in a
number of ways. We define a notational system to help us describe specific organizational configurations.
We use a matrix of several configurations, depicted in Figure 4.1, for a twelve-CPU, eight-GPU platform to
illustrate several examples. We refer to each cell in Figure 4.1 using a column-major tuple, with the indices P,
C, and G denoting partition, clustered, and global choices, respectively. The tuple (P, P) refers to the top-left
corner—a configuration with partitioned CPUs and GPUs. Likewise, (G,C) indicates the right-most middle
cell—globally scheduled CPUs with clustered GPUs. We use the wildcard * to refer to an entire row or
column: e.g., (P, x) refers to the left-most column—all configurations with partitioned CPUs. Within each
cell, individual CPUs and GPUs are shown on the left and right, respectively. Dashed boxes delineate CPU
and GPU clusters (no boxes are used in partitioned cases). The solid lines depict the association between
CPUs and GPUs. For example, the solid lines in (C,C) indicate that two GPU clusters are wholly assigned to
each CPU cluster. Finally, the horizontal dashed line across each cell denotes the NUMA boundary of the
system.

When necessary, we extend our notation to denote the number of CPUs or GPUs within a cluster by

using a subscript. For example, C; may denote a cluster of two GPUs. We must also disambiguate between

148

GPU clusters where migration is carried out by peer-to-peer DMA and those where migration is carried out
by DMA operations to and from system memory. To do so, we denote peer-to-peer configurations with the

superscript “P2P.” For instance, C}?F describes a cluster of four GPUs with peer-to-peer migration.

4.3 Schedulability Analysis

In this section, we develop a model of our evaluation platform for testing real-time schedulability. We
begin by examining and measuring GPU-related overheads. We show that the use of GPUs can lead to
significant system overheads in Section 4.3.1. Due to the large configuration space represented by the
combination of GPUSync parameters, platform organizational choices, and variety of JLFP schedulers
support by GPUSync, we scope our study to the subset of configurations we expect will show the most
promise, while still broadly covering a range of possible configurations. We describe our scope and rationale
in Section 4.3.2. In Section 4.3.3, we then discuss the task model we use to characterize sporadic task sets
with tasks that use GPUs. We then develop detailed pi-blocking analysis for token and engine lock requests,
which we must use in schedulability analysis in Section 4.3.4. In Section 4.3.5, we extend the overhead-
aware preemption-centric schedulability analysis we discussed in Section 2.1.8 to incorporate our measured
GPU-related overheads. Finally, we perform a broad set of schedulability experiments in Section 4.3.6. These
experiments are meant to determine the most theoretically promising GPUSync configurations, and serve to
show to what degree GPUs can increase computational capacity, despite heavy system overheads, under our

model of GPUSync.

4.3.1 Overhead Measurement

We now investigate and quantify overheads due to GPU processing. In general, we classify overheads
as being algorithmic or memory-related. Algorithmic overheads are those due to code execution and event
signaling. These include overheads due to thread context switching, scheduling, job release queuing, inter-
processor interrupt latency, CPU clock tick processing, and interrupt processing. Memory overheads are
those that increase execution time due to shared use of memory and data busses. These include overheads
due to cache preemption/migration delays and memory bus contention. We already discussed non-GPU-
related overheads from both categories in Sections 2.1.8 and 2.1.8.2 (and summarized in Tables 2.3 and 2.4).

Overheads due to GPU processing also fall within algorithmic and memory-related categories. Namely, GPU

149

interrupt handling (algorithmic) and DMA operations (memory-related). The process for quantifying GPU
interrupt handling overheads is relatively straightforward—we directly measure the execution time of GPU
interrupt-handling routines within the OS. However, the quantification of DMA overheads requires a more
nuanced approach, since the heavy load that DMA operations place on the system memory bus also affects
code executing on the CPUs. We now present the methodology we used for measuring and quantifying both

algorithmic and memory-related overheads.

4.3.1.1 Algorithmic Overheads

We measured algorithmic overheads using the lightweight tracing facilities of LITMUSRT while executing
workloads that stress the various hardware components managed by GPUSync. Measurements were taken
under different CPU and GPU cluster configurations, as well as with task sets of varying sizes (in order to
capture overhead trends dependent upon the number of tasks). Over 11GB of trace data was recorded (a
single trace event is only 16 bytes in size). We distilled this data into average and worst-case overheads
for each of the algorithmic overheads in Tables 2.3 and 2.4. The properties of non-GPU-related overheads
needed for preemption-centric accounting have been thoroughly studied by Brandenburg (2011b), so we will
not replicate his work here. However, we do discuss algorithmic overheads related to GPUs.

GPUs interact with the host platform through I/O interrupts. As we discussed in Section 2.2.3, interrupt
processing is split into “top” and “bottom” halves. Overhead-aware schedulability analysis requires that we
quantify the execution cost of top and bottom halves of GPU interrupt processing. In order to do so, we
stressed our evaluation platform with 30 GPU-using tasks that performed computer vision calculations on
pre-recorded video streams.” Tasks were assigned periods between 33ms and 100ms. GPUSync allocated
GPUs to jobs and arbitrated access to GPU engines. We instrumented the code paths of GPU top-half and
bottom-half routines to measure their execution times. We took execution time measurements over a duration
of 20 minutes.

Figure 4.2(a) gives the probability density function (PDF) derived from over 4,500,000 GPU top-half
execution time observations. In the PDF, to determine the probability that a given top-half execution time
measurement falls within the domain [a,b], we sum the area under the curve between x = a and x = b; the

total area under each curve is 1.0. The most striking aspects of this data are the outliers: the maximum value

2We describe this code in more detail later in Section 4.4.2.

150

Probability Density Function of Observed Top-Half Execution Times

L L L L L L L B L L B L B B L B LA B
Max: 87.19us _|
Mean: 8.01us

Median: 7.31us 7

T T T T T T T T T T T T T S A
20 30 40 50 60 70 80 90
Time (pus)

(a) All measurements.

0.3

Density
IS) 1)
o — o I
S o b >
T T T T

°

)

&
T

L L
0 5 10 15 20 25
Time (us)

o

(b) Measurements below the 99 percentile.

Figure 4.2: PDF of GPU top-half execution time.

is 87.19us, yet the mean and median are only 8.01us and 7.31ps, respectively. In order to better observe the
shape of the PDF, we plot the same data in Figure 4.2(b), but we clip the domain to include only measurements
below the 99" percentile. The four humps in the PDF (centered near x = 5.5us, x = 6.5us, x = 8.5us, and
x = 11ps, respectively) suggest that there may be at least four code paths commonly taken by the ISR.

Figure 4.3(a) gives the PDF derived from about 4,200,000 GPU bottom-half execution time observations.?
This PDF shares a similar characteristic with the PDF for top-halves in Figure 4.2(a): extreme outliers. Here,
we see that the maximum value is 1008.58us, yet the mean and median are only 66.14us and 54.68us,
respectively. Moreover, the maximum-to-median ratio for bottom-half execution time is approximately 18.4
(1008.58/54.68 ~ 18.4). In contrast, this ratio is roughly 11.9 (87.19/7.31 =~ 11.9) for top-half execution
time. In other words, the severity of outlier behavior in bottom-half execution time is worse. Figure 4.3(b)
plots the same data, but we clip the domain to stop at the 99" percentile. In this figure, we observe at
eight distinct humps in the PDF that span the approximate domain of [30us, 80us|; even if we ignore outlier
behavior, there is still a great deal of variance in bottom-half execution time.

We now examine the outlier behavior of top-half and bottom-half execution time in more detail. Figure 4.4

depicts the complement caumulative distribution function (CCDF) of top-half and bottom-half observations, in

3The number of bottom-half observations is less than top-half observations. This implies that not every top-half spawns a
corresponding bottom-half.

151

Probability Density Function of Observed Bottom-Half Execution Times
0.025 T
Max: 1008.581s
Mean: 66.14us
Median: 54.68us

o
Q
o

o
=4 o
P 2
= o

Density

0.005

T TS S S S R
600

T S S R R R R e e e b e e
400 800 1000 1200

Time (us)
(a) All measurements.
- Probability Density Function of Observed Bottom-Half Execution Times
. T L L L
0.02}— _
E 0.015 — —
g 0.01 |- -
0.005 [-
ol e T ey S
0 50 100 150 200 250 300

Time (ps)

(b) Measurements below the 99 percentile.

Figure 4.3: PDF of GPU bottom-half execution time.

insets (a) and (b), respectively. It is important to note that the y-axis is plotted on a log scale—the log scale
makes it easier for us to observe and reason about outlier characteristics. In Figure 4.4(a), we observe that
top-half outliers are rare. For instance, only 0.01% (y = 10~#) of observed top-halves had execution times
greater than about 50us. Moreover, only 0.001% of observed top-halves had execution times greater than
roughly 60us, and only 0.0001% of observed top-halves had execution times greater than about 78s.

Bottom-half outliers are also rare. In Figure 4.4(b), we observe that only 0.01% of observed bottom-
halves had execution times greater than about 550us. Moreover, only 0.001% of observed bottom-halves had
execution times greater than roughly 750us, and only 0.0001% of observed bottom-halves had execution
times greater than 1000us.

We conclude our discussion of GPU interrupt handling overheads by stressing the need for including
these overheads in schedulability analysis. The CPU time consumed by GPU interrupt handling is not
trivial. In our 20-minute experiment, we find that the system spent roughly 36.6 seconds executing top-
halves. Similarly, about 282.29 seconds were spent executing bottom-halves. Altogether, interrupt processing
consumed approximately 2.21% of available CPU time, across twelve CPUs. Moreover, schedulability

analysis must be mindful of the very clear discrepancies between worst-case and average measurements.

152

10°

z

S
&

P(Execution Time) >
3
S

10°

x

=)
&

P(Execution Time) >
3
2

Experimental CCDF of Top-Half Execution Times

55 0) L L
T T T T T T T T T O T T T T T T T S A A Y N M A O
0 10 20 30 40 50 60 70 80 90

Time (us)

(a) top-halves

Experimental CCDF of Bottom-Half Execution Times

E e B 3
. P P P P P .
200 400 600 800 1000 1200

Time (ps)

(b) bottom-halves

Figure 4.4: CCDFs of top-half and bottom-half execution times.

153

4.3.1.2 Memory Overheads

Although algorithmic overheads are important, those related to memory access are more so in a real-time
GPU system. As pointed out by Pellizzoni and Caccamo (2010), I/O memory bus traffic can significantly
impact the performance of tasks executing on CPUs due to system memory bus contention. Moreover, in
multi-GPU platforms, there is also contention for the PCle bus. We seek to quantify two memory-related
overheads. First, we want to determine the impact GPU memory traffic has on CPMDs. Second, we seek
to determine the speed at which data can be transmitted to and from system memory and directly between
GPUs. We incorporate the former into schedulability analysis. The latter is used to compute task execution

requirements on GPU CEs—ritical to real-time GPU schedulability.

The Effect of Bus Contention on CPMDs. To assess CPMDs, we used an experimental method modeled
after the “synthetic method” described by (Brandenburg, 2011b). A non-preemptive instrumented process
records the time taken to read a prescribed amount (a “working set size”) of sequential data from a “hot”
cache. The process suspends for a short duration, resumes on a random processor, and rereads said data
from the now “cold” cache. A cost is determined by subtracting the hot measurement from the cold. On our
evaluation platform, individual measurements fall into one of three categories: L2 preemption, L3 migration,
and memory migration. An L2 preemption measurement is one where the hot and cold measurements are
performed on the same CPU, since each CPU has a private L2 cache on our evaluation platform. An L3
migration measurement is one where the hot and cold measurements are performed on CPUs that share an
L3 cache; on our platform, these are CPUs within the same NUMA node. A memory migration is one where
hot and cold measurements are performed on CPUs that do not share a cache; on our platform, these CPUs
reside within different NUMA nodes.

We are concerned with two memory configurations since our test platform is a NUMA platform. Under
partitioned and clustered CPU scheduling (when clusters reside entirely within a NUMA node), memory can
be allocated locally to increase performance and reduce interference from NUMA-remote tasks. However,
under global CPU scheduling, one may inferleave memory pages across the NUMA nodes in order to obtain
good average case performance. We require overhead data for both configurations in order to accurately
model each CPU/GPU configuration described in Section 4.3.6.

Under both local and interleaved configurations, we collected three CPMD datasets: (i) An “idle” dataset

where the instrumented process runs alone; (ii) a “loaded” dataset where “cold” measurements are taken in

154

CPMD Cost (us)

CPMD Cost (us)

10000

1000

100

o°

0.1

0.01

10000

1000

100

o

0.1

0.01
4

Measured Max Overheads, Local Memory

E T T T T T T T T T I T T T T T T T T ‘ T T T T T T T T T ‘ T T T T T T T T T ‘ T T T T T T T T T T T T T T T T T 3
H~[1] L2, Idle]
[]-+-[2] L2, Loaded]
r-v[3] L2, Loaded + GPUs]
M—[4] L3,1dle - o
||-+[5] L3, Loaded ‘[’]’[’]‘/* |
F|-»-[6] L3, Loaded + GPUs T E
i T ey b
[//// o o 4
L - _ ’/../ [2] [5] |
T -
E e " -
[/,4’/// s

NN S| G

\
\
\
»
\
\
\
\
bk
\
\
\
3
A
\
\
*
\
\
&
\
il Ll ol Ll

I I I
1024 4096 16384

16 64 256
Working Set Size (KB)
(a) local
Measured Max Overheads, Interleaved Memory
e e e s e e e B e e e e e s e e e e M o e
H——[1] L2, Idle 1
[|-+[2] L2, Loaded]
- [3] L2, Loaded + GPUs L
H-a[4] L3, Idle B [6]/[9,]4/‘*_::'_,;
l-a-[5] L3, Loaded B]
F|-~[6] L3, Loaded + GPUs E
fl——[7] Mem, Idle y]
H-o--[8] Mem, Loaded e g]
H-o-[9] Mem, Loaded + GPUs ",:;:.w" |
—=3=
e E
P 1

WRT T T

256
‘Working Set Size (KB)

(b) interleaved

Figure 4.5: Considered CPMD maximum overheads due to GPU traffic.

155

Measured Mean Overheads, Local Memory

10000 —r—————— L | 3
F——[1] L2, Idle]
[l-+[2] L2, Loaded]
-+ [3] L2, Loaded + GPUs 1
M——[4] L3, Idle o

1000 L-++[5] L3, Loaded [3][6]”’ et sl

F[-a- [6] L3, Loaded + GPUs St tan B

C 7 P

[e l/' Ayt

|- /4/ 4
" [}

100 = e =
S L i
z
o 10 4
a E E
S r 1
) []
) F]

% E

£]

0.1 -

0.01 Ll Ll Ll L

4 16 64 256 1024 4096 16384
Working Set Size (KB)
(a) local
Measured Mean Overheads, Interleaved Memory
10000 "7 T T T T T T T T T [T T T T T T T3
H——[1] L2, Idle 1
[|-+[2] L2, Loaded]
- [3] L2, Loaded + GPUs 1
[-[4] L3,Idle BI6][9] s>t
1000 L -2[5] L3, Loaded ﬁ;f:—;:__.._./v;
El-»-[6] L3, Loaded + GPUs PO I 3
H——[7] Mem, Idle T 05]08]]
T
H-o-[8] Mem, Loaded P o 1
H—o- [9] Mem, Loaded + GPUs| P 1
- _/

100 =
3 L P d
S 10 b i
o) E 1
= F 1
o L]
9] L]

1 -

0.1 -
0.01 v b b L b

4 16 64 1024 4096 16384

256
‘Working Set Size (KB)

(b) interleaved

Figure 4.6: Considered CPMD mean overheads due to GPU traffic.

156

the presence of cache-trashing processes that introduce contention for both caches and memory bus; and
(iii) a “loaded+gpu” dataset where additional load is created by GPU-using processes, one for each CE,
that fully loads the bidirectional PCle bus with a constant stream of 512MB DMA memory transfers to and
from pinned pages in system memory. We gathered 5,000 samples apiece to measure L2 preemptions, L3
migrations, and memory migrations for each working set size. We distilled these samples into max and mean
values for each type of measurement.*

Figure 4.5 plots measured maximum costs for each type of CPMD. Figure 4.5(a) depicts measurements
where all accessed memory was local to the NUMA node of the CPU(s). This figure does not include
measurements for memory migrations, since there are no memory migrations when data is NUMA-local.
Figure 4.5(b) depicts measurements where accessed memory was evenly interleaved, with page granularity,
across the two NUMA nodes of our evaluation platform. In both of these figures, the x-axis uses a log, scale,

while the y-axis uses a log;, scale. We make two high-level observations from these graphs.
Observation 1. The cache offers little or no benefit in the presence of heavy load.

In Figure 4.5(b), observe that the curves for each type of measurement within the loaded data sets
practically coincide for working set sizes of 16KB or greater. For example, curves 2, 5, and 8 are virtually

indistinguishable. We can make similar observations in Figure 4.5(a).

Observation 2. CPMDs on an idle platform are characterized by two plateaus, with an abrupt increase
around working set sizes of 128KB for CPMDis for local memory access, and working set sizes of 64KB for

CPMD:s for interleaved memory access.

In Figure 4.5(a), find the curves for L2 preemptions (curve 1) and L3 migrations (curve 4). There is
very little variation among these CPMDs for working set sizes of 4KB, 8KB, 16KB, 32KB, and 64KB. Also,
these CPMDs are on the order of hundreds of nanoseconds—we expect CPMDs to be small because cache
reuse should be high in an idle platform. CMPDs increase abruptly for working set sizes of 128KB. However,
the increases level off for working set sizes of 256KB and greater. The increase in CPMDs for working set
sizes of 128KB is explained by L2 cache the utilization. Although a 256KB L2 cache is only half-filled by a

working set size of 128KB, this L2 may still hold other data such as program instructions, OS memory, and

4We distribute the measurement tools we developed to assess memory overheads as open source under the GNU General Public
License, version 2. The source code for these tools is currently available at www . github.com/GE1l1liott. Portions of this code is
derived from that developed by Brandenburg (2011b).

157

www.github.com/GElliott

the memory of other processes. The plateau for working set sizes no less than 256KB is explained by the
inclusive 12MB L3 cache, which is large enough to hold the bulk of the tested working sets (also, the relative
share of the L3 cache consumed by program code and the memory of the OS and other processes decreases
with the larger cache). It is not be surprising that CPMD costs begin to increase for working set sizes larger
than 12MB. We can make similar observations for CPMDs for interleaved memory access in Figure 4.5(b).

However, the first significant increase in CPMDs (curves 1, 4, and 7) occurs at working set sizes of 32KB.

Figure 4.6 plots measured mean costs for each type of CPMD. We see the same trends in Figure 4.6 that
we see in Figure 4.5.

For a deeper study of CPMDs, we direct the reader to the work of Brandenburg (2011b), which provides
a more in-depth investigation of CPMDs. We note that the general trends in Figures 4.5 and 4.6 are consistent
with those reported by Brandenburg. More relevant to the topics covered by this dissertation is the increase
in CPMDs due to GPU memory traffic. We investigate this next.

Figure 4.7 plots the relative increase in CPMD costs of select working set size “loaded+gpu’ datasets
with respect to the “loaded” data set. Figure 4.7(a) relates these increases in terms of maximum CPMD costs,

while Figure 4.7(b) relates these increases in terms of mean CPMD costs. We make two observations.

Observation 3. Maximum and mean CPMDs are affected similarly by GPU traffic.

The shape and magnitude of the corresponding curves in Figures 4.7(a) and 4.7(b) are very similar. For
example, the plots for L2 preemption CPMDs (curve 1) both exhibit a dip in costs for working set sizes

around 8192KB.

Observation 4. GPU traffic affects CPMDs for local memory access more strongly than CPMDs for
interleaved memory access: CPMDs for local memory access increase by factors between two and four, while

CPMD:s for interleaved memory access increase by factors between one and two.

In Figures 4.7(a) and 4.7(b), we observe that GPU traffic increased CPMDs for local memory access
by a factor between two and four for working set sizes larger than 32KB (curves 1 and 3). CPMDs for
interleaved memory access were affected to a lesser degree, with increases by a factor between approximately
1.1 and 1.9. However, CPMDs for interleaved memory access without GPU traffic are nearly as great as local
CPMDs with GPU traffic. For example, in Figure 4.6(a), find the L2 preemption CPMD cost for a platform

under load with GPUs (curve 3) for a working set size of 4096KB—it is roughly 650us. Compare this to

158

Relative Increase

Relative Increase

4.5

35

25

4.5

3.5

25

Relative Increase in Max CPMD Due to GPU Traffic

T I —
L2, Local
L2, Interleaved

L3, Local

L3, Interleaved
Memory, Interleaved

i

1 214, gimimiTiE ='g’-~.=._t' e
e g
| | L T T " L T 11
16 64 256 1024 4096 16384
Working Set Size (KB)
(a) maximum
Relative Increase in Mean CPMD Due to GPU Traffic
L e e s s e B B Bt M. e e s e s s sy s s s T T T
[1] L2, Local
[2] L2, Interleaved
[3] L3, Local
[4] L3, Interleaved
[5] Memory, Interleaved

é

ey b b b b b LT

256
Working Set Size (KB)

(b) mean

=)
21—
<3
L

Figure 4.7: Increase in considered CPMD overheads due to GPU traffic.

159

the L2 preemption CPMD cost for a platform under load without GPUs (curve 2) for interleaved memory in

Figure 4.6(b)—it is about 550ys.

The above measurements demonstrate that GPU traffic must be considered when deriving estimates
of CPMD overhead. Moreover, these considerations must be cognizant of memory locality on a NUMA

platform.

The Effect of Bus Contention on GPU DMA Costs. Under load, GPU DMAs experience contention for
the following buses: the GPU-internal memory bus, several PCle buses at various hierarchical levels), the
processor-1/0 hub interconnect, and the system memory bus. If memory is interleaved across NUMA nodes,
then additional contention can be experienced for the processor-processor (NUMA) interconnect as well as
the remote system memory bus.

We performed experiments to determine GPU DMA costs using a technique similar to the one we
used to determine CPMD overheads. An instrumented process performed DMA operations to and from
system memory and peer-to-peer DMA operations between GPUs. We tested both local and interleaved
configurations under idle and loaded scenarios. In addition to loading every GPU CE, we also executed
memory-heavy GPU kernels on the EE of GPUs used by the instrumented process in order to stress the GPU’s
own local memory bus. We took 50,000 measurements for each type of DMA operation for each tested DMA
operation size.

Figure 4.8 shows the maximum and mean DMA times for local and interleaved memory access that we

observed on idle platform.> We make two observations.

Observation 5. On an idle platform, all DMA operation types have similar performance curves: for smaller
DMA operations, setup costs are dominant, for larger DMA operations, the costs to transmitting data are

dominant.

In each of the four insets of Figure 4.8, we observe that all curves are similar. Overhead costs to setting
up DMA operations dominate for smaller DMA operations (those no greater than 64KB)—this is indicated
by the relatively flat portion the curves that connect the cost data-points of smaller DMA operation. The

cost of DMA operations begin to scale linearly with DMA operations size for larger DMA operations (those

5 Although peer-to-peer DMA operations should not be affected by interleaved memory access of system memory in an idle platform,
we include the costs of these operations in order to allow direct comparison against the costs of GPU-to-system and system-to-GPU
DMA operations.

160

Measured Max GPU Transmit Time
T T T

Measured Mean GPU Transmit Time
T T

10000 10000

T T
Peer-to-Peer, Near| —v—[1] Peer-to-Peer, Near|

—~[1

——[2] Peer-to-Peer, Far ——[2] Peer-to-Peer, Far
~+-[3] GPU-to-System ~+-[3] GPU-to-System
——[4] System-to-GPU 2 ——[4] System-to-GPU

1000 | 1000

o o
B g
E =
100 | B 100 | 4
10 1 i I I I L I 10 ¢ f I I I I I
4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384
Data Size (KB) Data Size (KB)
(a) local, maximum (b) local, mean
Measured Max GPU Transmit Time Measured Mean GPU Transmit Time
10000 : : . 10000 : : .
1000 1000 |- 4
o <
g g
& &

100

I L 10 ¢ i I L

. . |
1024 4096 16384 4 16 64 256
Data Size (KB)

. . |
256 1024 4096 16384
Data Size (KB)

(c) interleaved, maximum (d) interleaved, mean

Figure 4.8: GPU data transmission time in an idle system.

no less than 128KB). For example, in Figure 4.8(a), observe that far peer-to-peer DMA (curve 2) takes
approximately 200us for 1024KB, 400us for 2048KB, and 800us for 4048KB—cost doubles as DMA size
doubles. The curves for the other DMA operation types share the same slope as the one for far peer-to-peer
DMA, indicating the same trend. The data reflected by Figure 4.8 is very consistent with those reported

by Kato et al. (2011a) and Fujii et al. (2013).

Observation 6. On an idle platform, far peer-to-peer DMA operations may be more costly than DMA

operations to or from system memory.

In Figures 4.8(a) and 4.8(b) (local memory DMA), observe that the curve for far peer-to-peer DMA
operations (curve 2) lies above the other curves for DMA operations no less than 32KB. In Figures 4.8(a)
and 4.8(b) (interleaved memory DMA), the curve for GPU-to-system memory (curve 3) practically coincides
with that of far peer-to-peer DMA. The relative high cost of far peer-to-peer DMA is surprising, since data
only traverses the PCle bus in peer-to-peer DMA operations. We may rule out costs due to coordination

between the peer GPUs, since near peer-to-peer DMA operations would be equally costly if this were the

161

100000

10000

Measured Max GPU Transmit Time
T

T
Peer-to-Peer, Near|
Peer-to-Peer, Far
GPU-to-System
System-to-GPU

Measured Mean GPU Transmit Time

100000 : : .

T
Peer-to-Peer, Near|
Peer-to-Peer, Far
GPU-to-System
System-to-GPU

-1
—-[2]
——[3]
-4

10000 H

> 1000 3 1000
B g
& =1
100 100
10 f | | . | | 10 I | | |
4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384
Data Size (KB) Data Size (KB)
(a) local, maximum (b) local, mean
Measured Max GPU Transmit Time Measured Mean GPU Transmit Time
100000 T T T T 100000 T T T T
—+—[1] Peer-to-Peer, Near ——[1] Peer-to-Peer, Near|
——[2] Peer-to-Peer, Far ——[2] Peer-to-Peer, Far
——[3] GPU-to-System ——[3] GPU-to-System
10000 L|==—[4] System-to-GPU 10000 4] System-to-GPU
= 7
3 3
3 1000 3 1000
g E
& g

100

I L I
1024 4096 16384

256
Data Size (KB)

(c) interleaved, maximum

100

10 -

|
256 16384
Data Size (KB)

L L
1024 4096

(d) interleaved, mean

Figure 4.9: GPU data transmission time in system under load.

case. We can only speculate that the PCle root complex that connects far GPUs may not be as efficient as
the PCle switch that connects near GPUs. Nevertheless, the use of far peer-to-peer DMA may still be more
efficient for transmitting data between two GPUs than using two DMA operations to bounce the data through

system memory.

We now examine DMA operation costs when our evaluation platform is under load. Figure 4.9 shows the
maximum and mean DMA costs for local and interleaved memory access when the platform is under load.
We draw only high-level observations from Figure 4.9, deferring observations of comparative performance

against DMA costs in an idle platform to another set of figures.

Observation 7. System-to-GPU DMA is more costly than GPU-to-system DMA; GPU-to-system DMA is

more costly than far peer-to-peer DMA; far peer-to-peer DMA is more costly than near peer-to-peer DMA.

We may observe this in every inset of Figure 4.9. The DMA cost curve for system-to-GPU DMA
(curve 4) lies above the curve for GPU-to-system DMA (curve 3), even though the curves are relatively close

(especially for DMA operations no less than 1024KB). The curve for GPU-to-system DMA clearly lies above

162

the curve for far peer-to-peer DMA (curve 2). Similarly, the curve for far peer-to-peer DMA lies above the

curve for near peer-to-peer DMA (curve 1).

Observation 8. For DMA operations no less than 256KB, the mean cost of far peer-to-peer DMA is

approximately twice as much the mean cost of near peer-to-peer DMA.

We can make this observation in Figure 4.9(b). Find the value of curve 1 for near peer-to-peer for DMA
sizes of 256KB—it is approximately 50us. Find the value of curve 2 for far peer-to-peer DMA for the same
DMA size—it is approximately 110us, a little more than twice the cost for near peer-to-peer DMA. We
expect this behavior from the PCle bus topology of our evaluation platform. Under load, far peer-to-peer
DMA operations receive half as much PCle bandwidth, on average, as near peer-to-peer DMA operations.
This is because far peer-to-peer DMA operations must traverse an additional (loaded) PCle switch, which

reduces the available bandwidth to the DMA operation by half.

We now investigate the effect load and page interleaving has on DMA costs more directly. Figure 4.10

depicts observed increases in maximum and mean DMA costs due to load. We observe the following.

Observation 9. Load can cause significant increases in DMA costs, so it must be considered in schedulability

analysis.

Consider the case where four GPUs share a PCle bus, as they do in Figure 2.20. Under load, one might
assume that each GPU will obtain 25% of the PCle bus’s bandwidth—increasing DMA costs by a factor of
four. However, such an assumption ignores the effect of contention for the system memory bus. We see in
Figure 4.10 these cost increases can be considerably greater. For example, consider curves for GPU-to-system
and system-to-GPU DMA (curves 3 and 5, respectively) in both Figure 4.10(a) and Figure 4.10(b). Here, we
see that DMA costs generally increase by factors between five to eight times. DMA cost increases are even
greater when memory pages accessed by GPUs are interleaved across the NUMA nodes. To observe this, find
the curves for GPU-to-system and system-to-GPU DMA with interleaved system memory (curves 4 and 6,
respectively) in both Figure 4.10(a) and Figure 4.10(b). We see that the increase in DMA costs generally
increase between eight to ten times, but may still be as great as twelve times (curve 6, for data sizes of 64KB,
in Figure 4.10(a)).

Ultimately, this result shows us that bus contention must be accounted for in schedulability analysis. We

consider this a significant oversight of prior work in real-time GPU research.

163

Relative Increase in Max GPU Transmit Time Due to Load

Y L L s s |
r ——[1] Peer-to-Peer, Near B
r —+—[2] Peer-to-Peer, Far N
[——[3] GPU-to-System N
12 E . -o-[4] GPU-to-System, Interleaved]
r N, ——[5] System-to-GPU q
r _,./ IS - -o-[6] System-to-GPU, Interleaved|]
E 6] .=~ T]
1ol D R oo -
E ______‘{/’ e S _0_04,_3
;,__— ----- P S St S]
° E b [4] /,/'/ “““‘—"""‘"****-*—»%———v—»o—e—e’“‘v’f
§ 8- i 7
g r
£or 3
= r]
ES =
4 E
2f =
c [1
of ! L Ll Ll Ll e
4 16 64 256 1024 4096 16384
Data Size (KB)
(a) maximum
Relative Increase in Mean GPU Transmit Time Due to Load
12 -_———— -
F —+—[1] Peer-to-Peer, Near H
[A —+—[2] Peer-to-Peer, Far u
[AN N ——[3] GPU-to-System]
[e N -o-[4] GPU-to-System, Interleaved|]
10— /// o ——[5] System-to-GPU ut
[e g -o-[6] System-to-GPU, Interleaved]
r (6] «]
. .
L .
) E E
g =
g L]
N :
s E
5 i
=]
Y g
: 2] .
, ;\’/\‘\\\‘\A {
L 1]]
ol ! Ll Ll Ll Ll L1
4 16 64 1024 4096 16384

256
Data Size (KB)

(b) mean

Figure 4.10: Increase in DMA operation costs due to load.

164

Observation 10. Near peer-to-peer DMA operations are hardly affected by load. Far peer-to-peer operations

are moderately affected.

Despite added contention for the GPU’s local memory bus caused by the memory-heavy GPU kernel
executing on the EE of the tested GPU, we observe that load hardly affects near peer-to-peer DMA: curve 1
in both insets of Figure 4.10 are very close to 1.0 (never exceeding a factor of 1.1) for all tested data sizes.
Far peer-to-peer memory copies exhibit an increase factor between 2.1 to 3.5 for maximum DMA costs and
an increase factor between 1.7 to 2.6 for mean DMA costs, as respectively reflected in Figure 4.10(a) and
Figure 4.10(b) by curve 2. From this observation, we learn that costs due to contention for the PCle bus are

not negligible.

Figure 4.11 depicts observed increases in maximum and mean DMA costs caused by interleaving
memory pages across NUMA nodes in system memory. The insets in this figure do not include curves for

peer-to-peer DMA, since these operations do not touch interleaved pages in system memory.
Observation 11. In general, GPU DMA performance is not improved by page interleaving.

One may suspect that interleaving pages among NUMA nodes may actually improve GPU DMA
performance, since memory accesses in such a scenario may operate in parallel. However, in general,
interleaving pages across NUMA nodes usually increases GPU DMA costs, even when the platform is idle.
We see that nearly every data point for the curves in Figure 4.11(a) and Figure 4.11(b) lie above 1.0, indicating
increases in DMA cost. For example, maximum GPU-to-system DMA costs increased by roughly 20% and
40% for data sizes no less than 256KB on idle (curve 1) and loaded (curve 2) platforms, respectively, as
depicted in Figure 4.11(a). There are some exceptions where page interleaving may lead to decreased DMA
costs. For instance, in Figure 4.11(a), page interleaving reduced maximum DMA costs for some DMA data
sizes no greater than 32KB on an idle platform, as indicated by curves 1 and 3. However, practically speaking,
it is unlikely that DMA operations will always be performed on a completely idle platform. We claim that

meaningful performance benefits from page interleaving cannot be achieved on our evaluation platform.
Observation 12. Page interleaving has a stronger effect on DMA costs on a platform under load.

As we discussed above, interleaving may introduce additional bus contention, especially for the bus
connecting the two NUMA nodes. Here, from curves 2 and 4 in Figure 4.11(a) and Figure 4.11(b), we see

that the cross-traffic between NUMA nodes caused by interleaving results in increased DMA costs—these

165

Relative Increase

Relative Increase

UL RN R N e RN R R R R RN N AR

Relative Increase in Max GPU Transmit Time Due to Page Interleaving

——[1]
-o[2]
—=—[3]
- [4]

—
GPU-to-System, Idle
GPU-to-System, Loaded
System-to-GPU, Idle

System-to-GPU, Loaded

256 ‘ 10:
Data Size (KB)

(a) maximum

24

.
40

Relative Increase in Mean GPU Transmit Time Due to Page Interleaving

I
96 16384

T T T T T T T T T T T T T T T [T T T T T T T T T T T [DA T T T T T [T r T
i
4

—[1]
- [2]
=3
- (4]

e e s s e
GPU-to-System, Idle
GPU-to-System, Loaded
System-to-GPU, Idle

System-to-GPU, Loaded

B G L T S SN

¥

b

/

9
Liviigiin

141

256
Data Size (KB)

(b) mean

©
-3
=)
@
<3
R

Figure 4.11: Increase in DMA operation costs due to page interleaving.

166

curves always lie above those for an idle platform. Page interleaving increased maximum DMA operation
costs in a loaded platform between 40% and 65% (Figure 4.11(a)). The increase in mean DMA operation

costs fell within nearly the same range: between about 40% and 55% (Figure 4.11(b)).

This concludes our investigation of system overheads introduced by GPUs. Next, we discuss how we

incorporate these overheads into overhead-aware schedulability analysis.

4.3.2 Scope

GPUSync is highly configurable and adaptable. It may be used with any JLFP scheduler. It supports a
mix of CPU and GPU cluster configurations. GPUSync can support GPUs with zero, one, or two CEs.® Also,
the number of tokens per GPU and maximum FIFO length are configurable. GPU migration may be carried
out through peer-to-peer DMA or through a temporary buffer in system memory. In support of peer-to-peer
migration, CE locks may be requested one at a time, or once as a DGL. Engine locks may be configured to
satisfy pending requests in FIFO- or priority-order. Finally, any of the four GPU Allocator heuristics we
employ may be disabled without breaking real-time predictability. There are well over 100,000 different
GPUSync configurations that are worthy of study.

We must limit the scope of the configurations we examine in order to make our study tractable. This
scope must be focused enough so that we are not overwhelmed with data, and yet it must be broad enough so
that we may come to understand the tradeoffs among general classes of GPUSync configurations. For the
sake of presentation, we define our scope in its entirety here in one place. Our configuration choices are as

follows.

1. Twelve CPU/GPU configurations. We wish to understand the tradeoffs in schedulability among the
combinations of CPU and GPU cluster configurations, as we described in Chapter 1. As a consequence,
we must study every reasonable combination of CPU and GPU cluster configurations. Nine of the
twelve configurations we study are depicted in Figure 4.1. The remaining three configurations are
those where GPUs are put in larger clusters of four, rather than clusters of two. This enables us to

determine what effect far peer-to-peer migration costs may have on schedulability.

%In Section 2.3, we discussed integrated GPUs, which lack CEs. Although we do not focus on integrated GPUs in this dissertation,
we discuss GPUSync’s support for such GPUs in Chapter 6.

167

2. Peer-to-peer and system memory migration. As we discussed in Section 4.3.1.2, peer-to-peer DMA
has the potential to greatly reduce GPU migration costs, since data is handled less often and peer-to-peer
DMA can be significantly faster than DMAs that involve system memory. However, peer-to-peer DMA
requires a migrating task to hold two CE locks simultaneously. As we will see in Sections 4.3.4.2
and 4.3.4.3, this has a significant impact on pi-blocking analysis. Studying both peer-to-peer and
system memory migration methods allows us to determine if peer-to-peer DMA is efficient enough to

overcome more pessimistic pi-blocking bounds.

3. Optimal configurations of the GPU Allocator with the number of tokens per GPU defined as
p € {1,2,3}, and a limited set of non-optimal GPU Allocator configurations for p = . We
study a wide selection of values for p in order to determine if GPU engine parallelism can improve
schedulability. We primarily focus on (suspension-oblivious) optimal configurations of the GPU
Allocator where p € {1,2,3}. This gives us a spectrum of token values to study. Exclusive GPU
allocation is represented by p = 1, while the potential for full GPU engine utilization is represented
by p = 3. For partitioned GPU configurations, we also study the effect of essentially eliminating the

token lock. Here, we render all token lock request trivial by setting p = oo.

4. FL scheduling. We limit our study to FL-based schedulers. This may seem like an odd choice, given
our stated motivation for supporting automotive applications. EDF-like global and clustered schedulers,
such as C-FL, are commonly associated with soft real-time systems, i.e., those generally regarded as
non-safety-critical. This is partly due to generally weaker job response-time guarantees. However, in an
automotive setting, the reaction time of an alert driver is about 700ms (Green, 2000). Such a reaction
time is well within the realm of possibility under bounded deadline tardiness constraints. Moreover,
EDF-like schedulers come with the added benefit of the absence of severe utilization constraints. We
choose to investigate schedulability under FL-based schedulers because these schedulers have the best

known bounds on deadline tardiness.

5. FIFO-ordered engine locks. We limit our scope to FIFO-ordered engine locks because we expect
that they will yield better schedulability under FL scheduling than priority-ordered locks. Generally
speaking, FIFO-ordered locks result in less pessimistic bounds on pi-blocking for deadline-based
schedulers, since the analysis for priority-ordered locks under deadline-based schedulers must generally

assume that each issued request has the lowest priority for long durations of time.

168

6. Use of DGLs. DGLs limit the effect of transitive blocking under nested locking. For peer-to-peer
migrations, we assume that CE locks are acquired through atomic DGL requests, since this will give us

better schedulability results.

7. Two CEs per GPU. We focus our attention on GPUs with two CEs. We make this decision because
GPUs with two CEs provide us with a richer platform for schedulability studies. However, we recognize
the importance of GPUs with a single CE. For this reason, we present detailed blocking analysis for

such GPUs in Section 4.3.4.3. However, our schedulability experiments assume dual-CE GPUs.

8. IMB DMA chunk size. In our schedulability experiments, we assume that each type of DMA
operation (i.e., input, output, and state data) are broken into an integral number of 1IMB chunks, plus at
most one fractional chunk. We select this chunk size because it is large enough that it is not dominated
by setup cost overheads, while keeping DMA operation sizes small enough to prevent long durations

of CE blocking.

Choices 1, 2, and 3 give us a broad selection of GPUSync configurations to study. The remaining choices
help keep our study tractable, and are also meant to maximize real-time schedulability under GPUSync for

the systems we are motivated to study.

4.3.3 Task Model for GPU-using Sporadic Tasks

We require a task model that adequately describes a task set of GPU-using tasks. We extend the sporadic
task model described in Section 2.1.1 with additional notation.

We consider a task system, 7, comprised of » real-time tasks 71, - - - , T, that are scheduled on m CPUs,
partitioned into clusters of ¢ CPUs each. The subset 78" C T includes all tasks that require GPU resources
from the system’s 4 GPUs, partitioned into clusters of g GPUs each. The subset 7% £ 7'\ 78" are tasks
that do not use a GPU. The tasks in 7 are partitioned among the CPU and GPU clusters. We denote the set
of tasks assigned to the a” GPU cluster by 75, where a is a GPU cluster index, which starts from zero.
We similarly denote the set of tasks assigned to the @ CPU cluster by 7,. The parameter ¢; denotes T;’s

provisioned GPU execution time on an execution engine. The parameter £ denotes 7;’s total CPU execution

time requirements within its GPU critical section (note that we assume ef?’p " is included in e;). Each job Jij
sends 7! bytes of data as input to GPU computations. Similarly, each job Ji j receives z,O bytes of data as

output from GPU computations. The size of job J; ;’s state that may be migrated among GPUs is denoted

169

by zf . For convenience, we define the function xmit(z! ,Z[O,z,-S) to specify the total data transmission time

required by job J; ;. The value of this function can be computed given the empirical measurements described
in Section 4.3.1.2. We assume that a job of 7; € 78" may use any one arbitrary GPU in its GPU cluster. For
T; € 7", the parameters g;, z,l , ZI-O, and Z,-S are zero. Finally, we redefine task utilization to incorporate GPU

execution time, such that

R ks "’th(zf’zio’zl's). @.1)
1

We define several additional terms for the purpose of locking analysis. Let LX denote the maximum
token critical section length of task T;, bX denote the maximum time job Ji j may be blocked due to the token
lock, and bf denote the maximum time J; ;j may be blocked within a token critical section for all engine locks.
Let Z denote a configured DMA chunk size that is used to break large DMA operations into smaller ones. We
denote the number of chunks required to transmit task data by: N/ £ [/ /Z]; N® £ [29/Z]; N? £ [29/Z].
Let X/, X©, and XP?? denote the maximum time it takes to transmit a chunk of GPU data for input, output,
and peer-to-peer migration, respectively, and let X”*** denote the maximum of X/, X©, and X???. Finally, let

S; denote the maximum time to perform a GPU migration. For peer-to-peer migrations,

S; & xPP N3, 4.2)

For migrations through system memory,

S; & (X" +Xx9)-N?. 4.3)

For platform configurations with partitioned GPUs, S; = 0.
Table 4.1 summarizes these terms, as well as additional terms that we use later in analysis. In the

subsequent sections, we will refer to the terms listed in Tables 2.1, 2.2, and 4.1.

4.3.4 Blocking Analysis

We now discuss the method we use to bound the length of time a job may be pi-blocked due to GPU token

and engine lock requests. We begin by outlining our three-phase process to computing these bounds. We

170

Additional Task Set and Scheduler Parameters

h number of GPUs
8 GPU cluster size
ULl set of GPU-using tasks in the task set 7
qept set of CPU-only tasks in the task set T
T set of GPU-using tasks in the task set 74P that execute on the a'* GPU cluster
T, set of tasks scheduled on CPU clusters associated with the a'' GPU cluster
zZ DMA chunk size
Additional Parameters of Task 7;
qi job worst-case execution time on an GPU execution engine
e portion CPU execution time of a task within its token critical section
zll bytes sent to GPU as kernel input
27 bytes received from GPU as kernel output
z bytes of state data that resides on a GPU
Additional Blocking Analysis Parameters
LK token critical section length
bk token request blocking bound
\% number of token critical sections that may block job J;
bFE total of EE request blocking bounds
biCE total of CE request blocking bounds
bE total of engine lock request blocking bounds
NiI number of chunks to transmit z{
NP number of chunks to transmit z¢
NZ-S number of chunks to transmit zf
bl time to transmit a chunk to a GPU from system memory
X9 time to transmit a chunk to system memory from a GPU
xP2P time to transmit a chunk through peer-to-peer DMA
xmax maximum of X’, X%, and X?¥
Si time needed to perform a GPU migration
%’lk set of requests, sorted by L’; , for resource ¢ that may interfere with a request of job J; for ¢},
%’fE set of EE requests, sorted by L¥, that may interfere with a similar request of job J;
%iCE set of CE requests, sorted by L%, that may interfere with a CE request of job J;
Overhead-Aware Analysis Parameters
A number of GPU engines of a GPU
AP GPU interrupt top-half overhead
APot GPU interrupt bottom-half overhead
H; number of GPU interrupts that may interfere with job J;
Yi number of GPU engine operations issued by job J;

Table 4.1: Summary of additional parameters to describe and analyze sporadic task sets with GPUs.

171

then derive coarse-grain bounds on pi-blocking due to engine lock requests.” We call this analysis “coarse”
because it assumes that all engine critical sections have the same length. Although we do not use coarse
analysis in our own schedulability experiments (presented later in Section 4.3.6), this level of analysis gives us
an appreciation for the order of complexity of engine lock pi-blocking, in terms of the number of interfering
requests, and the tradeoffs between GPU migration through system memory and direct peer-to-peer DMA.
We then delve into detailed, or “fine-grain,” analysis to bound pi-blocking caused by engine lock and token

requests.

4.3.4.1 Three-Phase Blocking Analysis

The maximum total time a job may be pi-blocked accessing tokens and engine locks is given by the
equation

bi = b} +bf. (4.4)

Our challenge is to determine pi-blocking bounds on b% and bX.

We approach this problem using a three-phase process. In the first phase, we compute b% for each task
T; € 7. In the second phase, we use the computed bounds on engine lock pi-blocking to bound the length
of the token critical section of each GPU-using task, denoted by LX. More precisely, we bound LK with the
following equation:

LK = g+ xmit(],22,2]) + &P + bE. (4.5)

That is, LlK is bounded by the sum of: (i) the total time job J; executes on an EE (g;); (ii) the time to perform
all possible DMA operations (xmit(z{ , z?, ziS)); (i) the CPU execution time of J; that occurs within the token
critical section (ef”"); and finally, (iv) the total time J; may be pi-blocked waiting for engine locks. In the
third phase, we bound pi-blocking induced by GPU token requests using analysis appropriate for the GPU

Allocator configuration.

4.3.4.2 Coarse-Grain Blocking Analysis for Engine Locks

We now derive coarse-grain pi-blocking bounds for FIFO-ordered engine locks.

7We do not present coarse-grain bounds for token requests in this chapter, since we have already presented this analysis in
Sections 2.1.7.2 and 2.1.7.3 for the relevant GPU Allocator configurations.

172

Let b¥E denote T;’s maximum total pi-blocking time for the EE lock, let b{/ © denote its maximum total
pi-blocking time while waiting to transmit input and output chunks, and let ¥ 2P denote its maximum total

pi-blocking time while waiting for CE locks to perform a peer-to-peer migration. By construction,
b; = BEE 1 plO 1 pP2P. (4.6)

A job may be pi-blocked for every GPU kernel it executes when acquiring the EE lock of its allocated
GPU. At most p — 1 other jobs may compete simultaneously for this lock for a given request. Since requests

are FIFO-ordered, the resulting pi-blocking is bounded by

bEE = (p —1)-max{q; | T; € TS}, 4.7)

where task T; is assigned to the a" GPU cluster.
1/0 P2P : orath
Bounds for 5/ and b;“" depend partly on whether migrations are peer-to-peer or through system
memory. In our analysis, we assume that all migrations are performed using the same method, though

GPUSync can support both types in the same system.

CE blocking with peer-to-peer. Under peer-to-peer migrations, any task holding a GPU token may request
the CE lock of the GPU it used in its prior job in order to perform a migration. There are at most p - g such
tasks. In the worst case, they may all attempt to access the same CE lock at the same instant. Thus, any
request for a CE lock may be blocked by (p - g — 1) other requests. From the blocking analysis of DGLs
of Ward and Anderson (2013), the total number of interfering requests for a CE is at most (p - g —1). Since

no request requires more than X™* time to complete,

b0 = X" (N +NP)(p-g—1) (4.8)

and

pr?F = X" N3 (p-g—1). (4.9)

CE blocking with system memory migration. When migration between GPUs takes place via system
memory, CEs are only accessed by tasks that have been given a token for an allocated GPU, so at most p — 1

other jobs may compete for the CE lock at a given instant. Recall from Section 3.2.3.4 that state is aggregated

173

P2P _

with input and output data, in this case. Thus, 0. However, now

since state data must be handled twice.

Analytical bounds for peer-to-peer and system memory migrations differ. As seen above, CE lock
contention is O(p - g) and O(p) under peer-to-peer and system memory migrations, respectively. Despite
its inferior order of complexity, peer-to-peer migration may still result in better analytical bounds if the
advantages of fewer total DMA operations and faster peer-to-peer DMA operations can be exploited. Also,
there are benefits to peer-to-peer migrations that are not captured in the above analysis, namely, isolation

from the system memory bus and rarity of migrations due to the GPU Allocator’s heuristics.

4.3.4.3 Detailed Blocking Analysis for Engine Locks

Our detailed blocking analysis, whether for engine lock or token requests, follows the same general
approach, which we outline before delving into detailed analysis.® For task 7;, we first determine the number
of jobs of another task, T; where i # j, that may be ready to run at the same time as J; ,. This is characterized
by the task interference function, tif (T;, T;). From tif (T;, Tj), we generate a set of interfering resource requests
that the interfering jobs J;, may make when J; , requests a resource of the same fype, where type may be
GPU token, execution engine lock, or copy engine lock. This set is generated by the request interference
function, xif (T;, T}, {x), where ¢ is a given resource. We aggregate the set of interfering requests of all tasks
(excluding T;) into a single set of all interfering resource requests that may be made, as given by the total
request interference function, txif (T;, ().

Each interfering request, R;, has an associated length, L;. The set defined by ,@lk 2 txif (T;, 4y) is sorted
in descending order by length. To compute the pi-blocking experienced by J; , for a given single resource
request, the top y requests are removed from %’f‘ , depleting %’lk by y requests, and summed. This process is
repeated iteratively for each request of a given type made by J; ,,, terminating early if %lk becomes empty. In
general, the value of y depends upon the locking protocol used and resource organization. For example, under

GPUSync, y = (p-g— 1) for CE lock requests when peer-to-peer migrations are used. (This is derived directly

8We follow the general approach used by Brandenburg (2011b), so we adopt his terminology and formulas for modeling the set of
requests that may interfere with a request issued by a job of task 7;.

174

from the blocking complexity of peer-to-peer migrations, which we discussed at the end of Section 4.3.4.2.)
This entire process must be repeated for each resource: GPU token, EE lock, and CE lock(s).

In the case of soft real-time scheduling, if (7;,7;) depends upon tardiness bounds, which in turn depend
upon blocking bounds. A fixed-point iterative method must then also be used ensure schedulability, outlined

by the following steps:

1. Initialize tardiness bounds to zero.

2. Compute pi-blocking bounds.

3. Compute tardiness bounds.

4. Compute new pi-blocking bounds, incorporating tardiness bounds.

5. Check schedulability. Go back to step (3) if the task set is schedulable, but new pi-blocking bounds

from step (4) differ from bounds previously computed.

This method will terminate when either bounds on pi-blocking have reached a steady state or the task set
is unschedulable. This highlights a significant benefit of FL scheduling over EDF scheduling: the tighter
tardiness bounds offered by FL scheduling may reduce computed pi-blocking bounds.

Before proceeding, we state two important assumptions. First, we assume that the total number of
GPU-using tasks is greater than g; otherwise, GPU Allocator Heuristics H1 and H2 load-balance GPU token
requests such that no two tasks share a GPU and that each task always receives the same GPU for every
job—there is no blocking or migration under this scenario. Second, we assume that a GPU-using task only
requests a GPU token once per job. The following analysis can be extended to handle multiple token requests
per job, though it becomes cumbersome to express. We now proceed to define the above formulas. We direct

the reader towards the work of Brandenburg (2011b) for a detailed explanation of each formula.

Definition 4.1. For hard real-time systems,

4.11)

i (T, T) P’i”ﬂ ,

Pj

Definition 4.2. For soft real-time systems (under the “bounded tardiness” definition of soft real-time),

4.12)

tif (T;, T;) = [max(pi’ ri) + rﬂ .

Dj

175

tif (T;, T;) gives us the number of jobs of 7; that may interfere with a job J; ,. We use a different definition
of tif (T;, Tj) (Equation (4.12)) for soft real-time systems, since a job of 7; may be tardy—we must consider
a larger window of execution in which such a job may issue resource requests. We now derive the set of

requests from 7 that may interfere with requests of J; , for resource .

Definition 4.3. The set of requests of 7} that interfere with requests of a job of 7; for resource / is given by
xif (T, Tj, b)) = {Rjy | 1 <v <aif (T, T}) - Mk} (4.13)

where 1) ; is the maximum number of requests for ¢ that a job of 7; may make.

We say that xif (7;, T, ¢x) defines a set of generic requests because request R, € xif (T;, T}, {x) does not
denote the v request made by task T; after the release of 7;’s first job. Rather, R;, denotes the v resource
request in a worst-case string of consecutive requests of 7; that may interfere with request R; of T;.

Finally, we can derive an aggregate of all interfering requests.

Definition 4.4. The set of all interfering resource requests of other jobs that may interfere with requests of a

job of T; for resource /¢ is given by

wif (T, 0) = | xif (T, Tj,). (4.14)
T;eT\{Ti}

We these formulas defined, we can now present detailed pi-blocking analysis for engine lock and token

requests.

Detailed analysis for execution engine lock requests. We can now compute a bound on worst-case pi-
blocking job J; experiences when it requests an EE, bEE. Let the resource ¢, represent a particular execution
engine lock. Let the function fop(v, %f) denote the v longest requests in the set of requests %lk for ¢;. The
set %’," is given by txif (T;, ¢x), by construction. The total worst-case pi-blocking experienced by job J; while

waiting for an execution engine is bounded by

bEE = Z Lj, (4.15)
Rjctop((p—1)Nix, %F)

where 1); ; denotes the number of EE requests issued by job J; for /;.

176

Detailed analysis for copy engine lock requests with peer-to-peer migration. In Section 4.3.4.2, we
computed pi-blocking for kernel input/output DMA operations and peer-to-peer DMA operations separately,
denoted by the terms b”0 and bF?F, respectively. Under detailed analysis, it is easier to compute bounds on
pi-blocking for these different types of DMA operations jointly. We denote pi-blocking due to all CE requests
by biCE . We first present detailed analysis that holds for GPUs with either one or two CEs. We then present
tighter analysis for the dual-CE case.

Let ¢/, (9, and ¢F?F, represent the CE(s) of the same single GPU used by job J; to transmit kernel
input to a GPU, transmit kernel output from a GPU, and migrate state to a GPU, respectively. The CE(s)
represented by these resources may be one in the same. However, we generate the set of interfering requests
by considering them as separate resources, each dedicated to performing a particular type of DMA (e.g.,
input, output, or peer-to-peer migration). Let %/ denote the sorted set of requests for copying kernel input
data to a GPU that may interfere with a similar request of job J;; %! = txif (T;, (). Let Z#P denote the sorted
set of requests for copying kernel output data from a GPU that may interfere with a similar request of job
Jii BO £ txif (T;,£°). Let ZF?F denote the sorted set of requests of peer-to-peer DMA requests that may
interfere with a similar request of job J;: Z7?F £ txif (T;,47?F). %P?" includes interfering requests of jobs
that may migrate to and from the GPU allocated to job J;. The sorted set of all CE requests that may interfere
with a CE request of job J; is denoted by ZE: % £ !\ %) %" .

The total worst-case pi-blocking experienced by J; while waiting to receive the requested CE lock when

peer-to-peer migrations are used is bounded by

b¢E =) Lj, (4.16)
Rjetop((p-g—1)-(N}+NP+NF), #(F)
where L; is equal to the length of the associated CE operation (e.g., X I X9, or XP?F).

Observe that the above analysis does not take advantage of the fact that the GPU has two CEs. That is,
the above analysis holds when a GPU has only one CE. The transitive pi-blocking induced by peer-to-peer
migrations makes it difficult to derive tighter bounds for dual-CE GPUs. However, tighter analysis is possible.
We now describe this optimization.

Transitive pi-blocking due to peer-to-peer migrations is only possible when %2/?F = (. Recall that the
bt

computation of is iterative: requests from ,%iCE are extracted in groups of p - g —1 at a time.

177

Let %iCE’k denote the set of requests remaining after the &’ iteration of biCE’s computation. Let ,@II ka

,@iCE’k NZ!, denoting the sorted set of remaining interfering input requests in Q?IC EX Let 9?1-0 ko g?lc Bk N%2,

~

denoting the sorted set of remaining interfering output requests in @,C Ek Let QI-P 2Pk & %?lc Ek N%Fr,

denoting the sorted set of remaining interfering migration requests in %’f EX 1t %’ip ?PX — (then transitive pi-

blocking due to migrations is no longer possible, since no migration requests remain. From this observation,
we derive the following tighter analysis for dual-CE GPUs where b¢E is broken down into two terms,
bl-CE”“”S and be""’“”’, where pi-blocking complexity is O(p - g) and O(p), respectively. Let £ € N; denote the
smallest integer such that (ZE\top((p-g—1) -k, ZE)) N %P = 0. Observe that (Z E\top((p-g—1)-
k, #CE)) = BEX.

The total transitive worst-case pi-blocking experienced by J; while waiting for a CE to copy data to or

from a GPU when peer-to-peer migrations are used with dual-CE GPUs is bounded by

b =)» Lj. (4.17)
Rjetop((p-g—1)-k, ZFF)
The total direct worst-case pi-blocking experienced by J; while waiting for a CE to copy data to or from

a GPU when peer-to-peer migrations are used with dual-CE GPUs is bounded by

by B = Yy L;. (4.18)
Rjtop((p—1)-max(NI-+NO+NF—£.0), Z°)

By construction, the total worst-case pi-blocking experienced by J; while waiting for a CE to copy data

to or from a GPU when peer-to-peer migrations are used with dual-CE GPUs is bounded by
blCE — biCEtmns + biCEdirect . (4 19)
Blocking chains. Are tighter bounds on CE pi-blocking possible? Certainly. We call a sequence of CE
requests that may block a request of job J; a blocking chain. The number of all possible blocking chains is
finite, since each token holder may issue at most one DMA operation at a time. When g and p are relatively
small, it is feasible to enumerate each potential blocking chain. For example, Table 4.2 depicts all possible

representative blocking chains for outbound, inbound, and migration CE requests when g =2, p = 3, and

all GPUs have two CEs. In the table, “O,” “I,” and “M” represent outbound, inbound, and migration DMA

178

Outbound Inbound Migration
Chain \ Cost (us) Chain \ Cost (us) Chain \ Cost (us)

IIOoOM 4967 I00OM 5000 [1(0]0]0) 6006
I0OMM 3961 OOOMM 3994 I000M 5000
I0OM 3786 OOOM 3818 1000 4824
I1OM 3753 IOOM 3786 1(0]0) 4791
OOMMM 2956 OOMM 2780 OOOMM 3994
OOMM 2780 OOM 2604 OOOM 3818
IOMM 2747 IOM 2571 I0OM 3786
OOM 2604 I 2363 000 3643
IOM 2571 OMM 1566 100 3610
M 2538 OM 1390 1(0) 3577
00 2429 M 1357 OOMM 2780
OMMM 1741 I 1181 OOM 2604
OMM 1566 MM 351 IOM 2571
MM 1533 M 176 00 2429
OM 1390 - — 10 2396
M 1357 - — II 2363
(0] 1214 - — OMM 1566
MMM 527 - — OM 1390
MM 351 - - M 1357
M 176 — — (0] 1214
— — - - I 1181

— — — — MM 351

— — - - M 176

Table 4.2: All possible representative blocking chains that may delay a CE request for an outbound, inbound,
or migration operation for GPUs with two CEs, g =2, and p = 3. Costs computed assuming worst-case
conditions for a IMB DMA operation and non-interleaved system memory.

179

operations, respectively. An outbound DMA operation is one where a CE is used to copy data away from a
GPU. Likewise, an inbound DMA operation is one where a CE is used to copy data onto a GPU. A migration
DMA operation is simultaneously an inbound and an outbound DMA operation. Each letter (“I,” “O,” or
“M”) represents a type of CE request that interferes with a CE request of job J;. We say the chains in Table 4.2
are “‘representative,” since there may exist multiple DMA sequences (or “actual” blocking chains) that contain
the same frequency of request types, but differ in the order these requests appear within each sequence and
which particular GPUs handle each request. We derive the cost of each blocking chain (i.e., the time job J;
can be blocked by said chain) by summing the costs of the individual DMA operations within each chain.
Thus, blocking chains that have the same frequency of request types also have the same cost. We can identify
such requests with a single representative blocking chain. For example, the chains “IMO” and “MOI” each
contain one outbound, inbound, and migration operation, so these chains have the same cost. In Table 4.2, we
take the chain “IMO” to represent all equivalent chains.

The chains in Table 4.2 are sorted in order of decreasing cost. Here, we assume that all DMA operations
are 1MB in size. The costs of individual DMA operations are derived from our overhead model where we
assume worst-case overheads in a loaded system with non-interleaved system memory. We also assume that
all peer-to-peer migrations are “near,” as we discussed in Section 4.3.1.2, since g = 2.

Table 4.2 is divided into outbound, inbound, and migration columns to denote the sets of possible
blocking chains that may interfere with a CE request of job J; for outbound, inbound, and migration DMA
operations, respectively. Observe that no chain in Table 4.2 has a length of more than five operations. This
is consistent with the CE blocking bounds we derived in Section 4.3.4.2 for system configurations with
peer-to-peer migration, where we showed that each CE lock request is blocked by at most p-g—1 CE
requests: 2-3—1=25.

Although some representative chains appear in all three columns (e.g., “IOOM”), others do not. For
example, the chain “O0O” does not appear in the inbound column. This is because it is impossible for an
inbound CE lock request to be blocked exclusively by outbound CE lock requests, since GPUSync directs
inbound and outbound DMA operations to different CEs when a GPU has two CEs. A blocking chain where
an inbound CE lock request is blocked by an outbound CE lock request must include a migration CE lock
request in order to link the otherwise independent CEs.

Under GPUSync, peer-to-peer migrations are pulled from one GPU to another. That is, the job that issues

a migration CE request always holds a token for the destination GPU of the peer-to-peer DMA operation.

180

A peer-to-peer migration always uses the inbound CE of the requesting job’s assigned GPU. It is for this
reason that the set of blocking chains for inbound requests is a proper subset of the set of blocking chains
for migration requests. However, we cannot treat migration requests as inbound requests. This is because a
migration request may also contend with requests for the outbound CE of the source GPU of the peer-to-peer
DMA operation (even if the request experiences no contention for the inbound CE of the destination GPU).

The pull-based nature of peer-to-peer migrations also affects the blocking chains associated with outbound
CE requests. There may be at most p simultaneous inbound migration requests for GPU,’s inbound CE,
since only jobs assigned a token for GPU, ever access GPU,’s inbound CE. However, there may be as many
as p - (g — 1) simultaneous outbound migration requests for GPU,’s outbound CE. It is for this reason that

the inbound and outbound columns of Table 4.2 differ.

Computing all possible blocking chains. In support of the schedulability experiments we present in Sec-
tion 4.3.6, we computed tables of all possible blocking chains for system configuration defined by the unique
combinations of system configuration parameters g € {2,4} and p € {1,2,3}, for systems with dual-CE
GPUs.? We use a brute-force algorithm to perform an exhaustive search of all possible blocking chains for
outbound, inbound, and migration requests.

To compute the blocking chains for a given CE request of job J; on GPU,, we consider the situation
where all token holders may have incomplete CE requests that were issued prior to that of J;’s. Job J;,
assigned to GPU,, may have issued an outbound, inbound, or migration request from any of the other g — 1
GPUs. Job J; may also have not issued a request, which we represent with a place-holder “null” request.
Thus, J; may perform one of (14 1+ (g—1)+ 1) = g+ 2 possible operations. Since there are p - g — 1
token holders, excluding job J; in the cluster that includes GPU,, there may be as many as (p-g—1)(g+2)
different sets of incomplete requests issued before job J;’s request. The order in which these requests are
issued may affect the blocking experienced by job J;. There are (p - g — 1)! different ways in which we may
order the requests (including null requests) in each of these sets. This resultsin (p-g—1)(g+2)((p-g—1)!)
scenarios in which these requests issued by the token holders other than job J; may precede the request of job

Ji.

9We do not compute tables for configurations where g € {1,8}. Peer-to-peer migrations are not used when g = 1 (i.e., a partitioned
GPU configuration). On our evaluation platform, peer-to-peer migrations are not possible when g = 8, since peer-to-peer DMA
operations cannot cross NUMA boundaries.

181

Request Ry R; R3 R4 Rs
Request Type I M (0) O N
GPU(s) Handling Request | GPUg, | GPU, < GPU; | GPU; | GPU; —
GPU Assigned to Requesting Task | GPUg GPUj GPU; | GPU,; | GPU;

Table 4.3: A possible arrangement of copy engine requests where g =2 and p = 3.

With a procedure we discuss shortly, we evaluate each of these scenarios to construct a blocking chain
for each type of request that may be issued by job J;, and from it, we construct a representative blocking
chain. We insert this representative blocking chain into a hash table if it is not already stored therein. This
algorithm leaves much to be desired. It inspects (p -g—1)(g+2)((p - g — 1)!) scenarios. The procedure we
describe below takes O(p - g) to evaluate each scenario. As a result, our brute-force algorithm has a runtime
complexity of O((p2-g%)((p-g—1)!)). Still, we find that this algorithm takes no more than several hours
for small values of g and p, where g <3 and p < 3.10.11 Thig is acceptable, since the results can be stored
offline and reused in schedulability experiments.

We now describe the process we use to compute a blocking chain for each request scenario. Each scenario
is represented by a string of requests, where each type of request is denoted by a symbol (i.e., O, I, M, or
N (for null requests)). Each request is paired with a GPU identifier, indicating which GPU is to handle the
request. We interpret the order in which these requests are arranged, left to right, as a temporal ordering—the
most recent request is at the head of the string, and the least recent request at the tail. The row labeled
“Request Type” in Table 4.3 depicts such a string for a platform where g =2 and p = 3: {I, M, O, O, N}.
Table 4.3 also includes information about each request, such as the GPU handling each request and the
GPU to which the requesting task is assigned. Recall that migration requests are actually fwo copy engine
requests that are issued simultaneously and atomically through a DGL request (please refer to Sections 2.1.6.2
and 3.3.3 for details). This allows us to treat these dual-requests as a single request that spans two GPUs.
Request R; in Table 4.3 is such request. We use an arrow to describe the migration between GPUs. For
example, request R is for a migration from GPU; to GPUy, which is denoted by “GPUy <— GPU,;” in the

row labeled “GPU(s) Handling Request” in Table 4.3.

10When g = 4 and p = 3, we must make optimizations that allow us to consolidate computations for scenarios with common requests
in order to complete within a reasonable time frame.

"'The code for the implementation of our algorithm is freely available at www.github.com/GE1liott.

182

www.github.com/GElliott

Every prefix-substring of the string for a given scenario may be a chain of requests that blocks a request
issued by job J;. Whether a chain of requests actually blocks a request of job J; partly depends upon the
request type issued by J; and to which GPU(s) the request is directed. Without loss of generality, we assume
every request issued by J;, denoted by Ry, is for an inbound or outbound copy engine of GPUy. In the case of
migrations, we assume job J; migrates away from GPU; to GPUj. This is a safe generalization because our
ultimate goal is to find all representative blocking chains for a particular platform configuration. Since GPUs
are homogeneous under GPUSync, the set of actual blocking chains that may block a request of a given type
for GPUj is homomorphic to the set of actual blocking chains that block a request of the same type for GPU;.
Representative blocking chains only describe the frequency of each request type in a chain; information on
the order in which requests are issued, as well as to which GPU each request is issued, is stripped away when
a representative chain is constructed from an actual chain.

We use the recursive procedure COMPUTEBLOCKINGCHAIN, depicted in Figure 4.12(a), to compute a
blocking chain for a given scenario and initial request type. The procedure inspects the string of requests,
denoted by the function parameter requestString, and returns the maximal prefix-substring, in terms of string
length, that blocks the request on the top of the request stack, denoted by the function parameter stack. We
initialize the parameter stack with the request of job J; prior to the first call to COMPUTEBLOCKINGCHAIN,
as seen in insets (b), (c), and (d) of Figure 4.12, for inbound, outbound, and migration requests, respectively.
We now describe COMPUTEBLOCKINGCHAIN in more detail. If requestString is an empty string, then no
request in stack can be blocked. In this case (when line 2 evaluates to false), COMPUTEBLOCKINGCHAIN
returns a empty blocking chain at line 18. Otherwise, the procedure pops a request from stack (line 3) and
stores it in the variable request. The parameter stack is guaranteed to contain at least one request at line 3,
since a request is pushed onto the stack immediately prior to a call to COMPUTEBLOCKINGCHAIN (e.g.,
line 6), or stack is known to contain at least one request prior to calling COMPUTEBLOCKINGCHAIN (e.g.,
line 12). After extracting a request from stack, the procedure obtains a reference to the first element in
requestString (line 4); this request is stored in the variable next. We use the subroutine BLOCKEDBY to test
whether request is blocked by next (line 5). BLOCKEDBY returns true if requests request and next contend
for the same CEs; it returns false, otherwise. If next blocks request, then we push next onto stack (line 6),
and we recursively call COMPUTEBLOCKINGCHAIN (line 11) to process the requests that follow next in
requestString (the substring of requestString that makes up these requests is denoted by requestString[1:]).

At line 11, the procedure joins two lists of requests to create the returned blocking chain. The first list is

183

1:
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

N

L N

SANRANE I

procedure COMPUTEBLOCKINGCHAIN(stack, requestString)
if requestString # O then

request <— POP(stack) > Pop request from stack.
next < requestString|0] > Process request at head of requestString.
if BLOCKEDBY(request,next) then > True if next and request contend for same CE locks.
PUSH(stack, next) > Prepare to compute chain of what may block next.
if ISMIGRATIONREQUEST(next) then
PUSH(stack, next) > Push next twice, since migrations are two requests.
end if

> Recurse on next and remainder of requestString.
return {next} + COMPUTEBLOCKINGCHAIN(stack, requestString|[1 :])
else if stack not empty then
> Migration request at top of stack may be blocked by next; recurse.
return COMPUTEBLOCKINGCHAIN(stack, requestString)
end if
end if
> Return nothing if (a) no more requests or (b) next does not block request and stack is empty.
return {}
end procedure

(a) Recursive procedure for computing a blocking chain for a given scenario.

procedure COMPUTEINBOUNDBLOCKINGCHAIN(scenario)
stack + { CREATEINBOUNDREQUEST(GPUy) } > Initialize a stack with request on top.
return COMPUTEBLOCKINGCHAIN(stack, scenario)

end procedure

(b) Computes the blocking chain for an inbound request.

procedure COMPUTEOUTBOUNDBLOCKINGCHAIN(scenario)
stack + { CREATEOUTBOUNDREQUEST(GPUy) } > Initialize a stack with request on top.
return COMPUTEBLOCKINGCHAIN(stack, scenario)

end procedure

(c) Computes the blocking chain for an outbound request.

procedure COMPUTEMIGRATIONBLOCKINGCHAIN(scenario)
request <— CREATEMIGRATIONREQUEST(GPU,, GPU) > Migration from GPU; to GPUj.
> Initialize stack with request twice, since migrations are two requests.
stack < {request, request }
return COMPUTEBLOCKINGCHAIN(stack, scenario)
end procedure

(d) Computes the blocking chain for a migration request.

Figure 4.12: Procedures for computing blocking chains for a given request scenario.

184

composed of a single element, constructed from next. The second list is whatever is returned by the recursive
call to COMPUTEBLOCKINGCHAIN. The remaining lines of code in COMPUTEBLOCKINGCHAIN handle a
special case introduced by migration requests, which we discuss next.

Consider the following hypothetical situation. Suppose we removed lines 7, 8, and 12 through 14
from COMPUTEBLOCKINGCHAIN, and the procedure were called with stack = {(M,GPUy — GPU;)}
and requestString = {(I, GPUy), (O,GPU;)}. The broken procedure would correctly find that the request
(I, GPUy) blocks (M, GPUy — GPUyj), since both requests contend for the inbound CE of GPUj. In the
subsequent recursive call made from line 11, stack = {(I, GPUy)} and requestString = {(O,GPU;)}. As
result, our broken procedure would determine that request (I, GPUj) is not blocked by (O,GPUy) (which
is true), and the call would return the empty chain on line 18. Our broken version of COMPUTEBLOCK-
INGCHAIN would return the chain {(I, GPUy)} for request (M, GPUy — GPU}). This is incorrect. The
request (M, GPUy — GPU/) may be blocked by both requests (I, GPUy) and (O, GPU)), since the migration
request requires the inbound CE of GPUj and the outbound CE of GPUj in order to proceed. Recall from
Section 2.1.6.2 that only one job of the two jobs associated with requests (I, GPUp) and (O,GPU;) may
inherit the priority of the job that issued request (M, GPUy — GPU)) at a time. Even though the DMA
operations of requests (I, GPUyp) and (O, GPU) potentially execute in parallel, in the worst-case, requests
(I, GPUy) and (O,GPU;) complete serially. Hence, request (M, GPUy — GPU;) may be blocked by both
requests (I, GPUp) and (O, GPU), one after the other. In other words, request (M, GPUy — GPU|) may be
blocked by two parallel blocking chains, one starting from GPUj and the other starting from GPU, that are
encountered serially.

To correctly handle this case, COMPUTEBLOCKINGCHAIN checks whether a migration request is
blocked on both its source and destination GPUs. This is accomplished by pushing a migration request onto
stack a second time (e.g., at line 8 in Figure 4.12(a), as well as on line 4 in Figure 4.12(d)). This realizes
the following behavior: if COMPUTEBLOCKINGCHAIN reaches the potential end to a blocking chain, the
procedure “rolls back” to a prior encountered migration request that may still be blocked by requests in
requestStirng, and attempts to construct a parallel blocking chain. This parallel chain is naturally appended to
the already constructed partial chain. This roll-back-and-continue behavior is implemented through lines 12
through 14. At line 12, the procedure knows that request is not blocked by next. If stack is not empty, then

the procedure checks whether next blocks the newly exposed request on the top of stack—this request must

185

be a migration request, because all non-migration requests, which may only appear in stack once, are popped
from stack immediately after they are pushed onto stack (if requests in requestString remain to be evaluated).

Let us reconsider the prior hypothetical situation under the correct version of COMPUTEBLOCK-
INGCHAIN. COMPUTEBLOCKINGCHAIN is called with stack = { (M, GPUy — GPU,), (M, GPUy, — GPU,) }
and requestString = {(I, GPUy), (O,GPU)}. The first instance of the request (M, GPUy — GPU) in stack
is popped on line 3, and the procedure finds that request (I, GPUy) indeed blocks the migration request. We
recurse on line 11. On this call, stack = {(I, GPUy), (M, GPUy — GPU)} and requestString = {(O,GPU,)}.
Request (I, GPUy) is popped from stack. At line 5, the condition evaluates to false, since requests (I, GPUy)
and (O, GPUj) do not contend for the same CEs. Consequently, the procedure executes line 14, since stack
is not empty (it still holds request (M, GPUy — GPU))). The procedure recurses once again. Now, stack =
{(M,GPUy — GPU,)} and requestString = {(O,GPU;)}. At line 5, the procedure determines that request
(O,GPU;) blocks (M,GPUy — GPU), since these requests contend for the same outbound CE of GPU;.
As the recursive calls to COMPUTEBLOCKINGCHAIN unwind, the blocking chain {(I, GPUy), (O,GPU)} is
constructed for initial request (M, GPUy — GPU)).

The runtime complexity of an initial call to COMPUTEBLOCKINGCHAIN (e.g., in insets (b), (c), and (d)
of Figure 4.12) is a function of the request issued by job J; and the length of the input request string. Each
scenario we evaluate contains p - g — 1 requests, so each corresponding input request string is p - g — 1 requests
in length. Every request processed by COMPUTEBLOCKINGCHAIN, including the request issued by job J;,
appears on stack at most twice (e.g., when it is a migration request). Therefore, the stack may contain up to
2.p - g requests. COMPUTEBLOCKINGCHAIN processes one request from stack each time it is called. Thus,
we may upper-bound the number of calls to COMPUTEBLOCKINGCHAIN by 2 - p - g. Since the procedure
contains no loops, and all comparison, stack, and list concatenation operations are O(1) in complexity, the
runtime complexity of COMPUTEBLOCKINGCHAIN is O(p - g).

The insightful reader may have noticed that COMPUTEBLOCKINGCHAIN does not always find the
longest blocking chain for a given scenario. Let us return to our prior scenario, with the addition of a
null request in requestString. Suppose COMPUTEBLOCKINGCHAIN is called with stack = {(M,GPUy —
GPU,),(M,GPUy — GPU,)} and requestString = {(I, GPUy), (N, —),(0,GPU;)}. The null request in
requestString causes the procedure to terminate “early” and return the blocking chain {(I, GPUy)} for the mi-
gration request. Since a null request can never interfere with another request, one may suppose we should elim-

inate all null requests from requestString prior to processing. If this preprocessing step were taken, then COM-

186

PUTEBLOCKINGCHAIN would return the chain { (I, GPUy), (O,GPU})} for the initial request (M, GPUy —
GPU,). However, recall that our brute-force approach for finding all possible blocking chains evaluates
all permutations of request types and request orders. Although COMPUTEBLOCKINGCHAIN returns the
chain {(I, GPUy)} for request (M, GPUy — GPU,) with the request string {(I, GPUy), (N, —), (0,GPU,)},
at some point, we also evaluate the request string {(I, GPUyp), (O,GPU), (N, —)} for the same migration
request. With the null request at the end of the request string, COMPUTEBLOCKINGCHAIN returns the
chain {(I, GPUy), (O,GPU,)}. This brute-force approach also handles permuted request strings such as
{(I, GPUy), (0,GPUy), (I, GPUy), (O,GPU)} and {(I, GPUy), (I, GPUy), (O,GPU;), (O,GPU)}. For a mi-
gration request (M, GPUy — GPU|), COMPUTEBLOCKINGCHAIN returns the blocking chains {(I, GPUj),

(O,GPU)} and { (I, GPUy), (I, GPUy), (O,GPU), (O,GPU,)} for the respective request permutations.

Blocking analysis with blocking chains. We now discuss how we incorporate blocking chains, which have
been computed offline, into schedulability tests. Every CE request issued by job J; may be blocked by any
one of the possible blocking chains, until all requests R; € %l.CE have been counted. We compute a tighter
bound on bl-CE by finding the maximal sum of all possible chains that may block job J; across all CE requests
issued by J;. We can compute this sum using an ILP, given N/, Nl-O, Nis, %fE, a table of all representative
blocking chains, and assumed overhead costs. Of course, this is an undesirable solution since solving an
ILP is NP-hard in the strong sense. Can it be avoided? Does a greedy polynomial-time algorithm exist? In
general, the answer is negative. Consider the following case. Suppose job J; makes two inbound requests
to copy data to a GPU, so N/ = 2. Assume that job J; has no state to migrate (Nl-S = 0), but another job J;
does (N jS # 0). Further suppose Z<E is made up of six outbound requests and two migration requests. That
is, %’lCE = QZ-CE’O ={0,0, 0, 0, 0, 0, M, M}. Finally, suppose we consider a simple platform where g =2
and p = 3. Table 4.2 depicts all representative blocking chains for such a platform with associated costs.
Which two representative blocking chains, one for each request issued by job J;, can we construct from the
requests in %l-CE that maximizes the total blocking cost for job J;?

Under a greedy approach, we select the most costly chain that can be constructed from the available
requests in @iCE"k for each of the k requests issued by job J;. We continue to select the most costly chains
until a chain has been selected for each of the k requests, or until the pool of interfering requests has been
exhausted (i.e., %ﬁc Bk — 0). Returning to our example, we examine the “inbound” column of Table 4.2 for a

list of possible chains to select for job J;’s two inbound requests. We first select the chain “OO0OMM,” since

187

Parameter \ Description

%’? set of outbound requests that may interfere with a request of job J;

?]’l’ set of inbound requests that may interfere with a request of job J;
%f 2P set of migration requests that may interfere with a request of job J;

ez set of all representative outbound blocking chains for a given GPUSync configuration
" set of all representative inbound blocking chains for a given GPUSync configuration
™ set of all representative migration blocking chains for a given GPUSync configuration
X cost of the j™ chain in €%

X" cost of the k™ chain in €

X" cost of the /" chain in "¢

0;’-”’ number of outbound requests in the j chain in €%

O;»" number of inbound requests in the j™ chain in €%

o' number of migration requests in the j" chain in €

" number of outbound requests in the kT chain in €™

I,i" number of inbound requests in the <™ chain in €™

L number of migration requests in the k™ chain in ¢

M number of outbound requests in the /™ chain in €

M é" number of inbound requests in the /T chain in ¢
M,;" number of migration requests in the /! chain in €8

NiO number of outbound requests issued by job J;

N,{ number of inbound requests issued by job J;

NI.S number of migration requests issued by job J;

c‘j?”’ number of instances of the j™ chain in € that blocks job J;

cy! number of instances of the k™ chain in €™ that blocks job J;

o number of instances of the /" chain in %"¢ that blocks job J;

Table 4.4: Summary ILP parameters.

it is the greatest-cost chain that we can construct from the requests in %AQCE’O. @f Bl {0, O, O}. No chain
listed in the inbound column of Table 4.2 can be constructed from the requests in QZCE’] for job J;’s second
request. The total cost blocking cost for job J; is 3,994us (the cost of the chain “OOOMM”). What if we had
made a non-greedy choice for J;’s first request? Under a non-greedy approach, suppose we select “OO0OM”
for the first chain instead of “OOOMM.” Now @f El— {0, 0, 0, M}. We may select the chain “OOOM”
once again for the second chain. The total cost of these chains is 3,818us 4 3,818us = 7,636us—greater than
the greedy approach’s “bound.” This example demonstrates that the greedy approach fails to provide valid
upper-bounds on blocking costs. The fault in the approach is that it may prematurely exhausted @lc EX of
migration requests. This prevents the construction of subsequent chains that require them. We now describe
the ILP, solved once for each T; € T8P*, that we use to obtain correct bounds.

We begin by defining the variables of our ILP, which are summarized in Table 4.4. Let €°“ denote the
set of all representative outbound blocking chains for a given GPUSync configuration defined by p and g. For

example, €°“ is the set of outbound blocking chains in Table 4.2 when p = 3 and g = 2. Similarly, let €

188

and €™¢ denote the set of all representative inbound and migration blocking chains for the same GPUSync
configuration, respectively. We count the number of instances of the j* outbound blocking chain in €' that
interfere with inbound requests of job J; with the integer variable c?’” . We count the number of instances of
the kK inbound blocking chain in %" that interfere with inbound requests of job J; with the integer variable
c". Similarly, we count the number of instances of the ™ migration blocking chain in 4" that interfere with
migration requests of job J; with the integer variable cZﬁg . We now define the constants that appear in our ILP.
We count the number of outbound, inbound, and migration requests that appear in the j”* outbound blocking
chain with the constants O, 19", and M{"', respectively. For example, for the chain “IIOOM,” Ig"' = 2,
0" =2, and M§"" = 1, where each value corresponds to the number of inbound, outbound, and migration
requests that appear in the chain. We define similar constants, };”, I,i", and M, ,’;” for the k”* outbound blocking
chain, as well as Oznig , Ié"ig , and M;"ig for the ¢"* migration blocking chain. Several additional constants are
derived from the parameters of job J; and the set of CE requests that may interfere with a CE request of J;.
The number of outbound, inbound, and migration requests issued by job J; is bounded by Nl-O, N/, and NiS ,
respectively. We denote the total number of inbound, outbound, and migration requests that may interfere

with any CE request of job J; by | %/ |, | %io |, and | ZF?F |, respectively. We now derive the coefficients

that we use in the objective function of our ILP. Each coefficient denotes the cost of a single instance of a
blocking chain. The coefficient Xj”“’ represents the cost of the j outbound blocking chain. We compute
the value of X]‘-’“’ from our empirical measurements and types of requests that make up each blocking chain.
More precisely,

Xj(?ut é XO X O?m +X['IJO_MI +XP2P 'M})Lll' (420)

Similarly, X,i” represents the cost of the k& inbound blocking chain. The value of X,ﬁ” is computed by the
equation

xin & x0.0n 4 x!.im 4 xP2P . pin, 4.21)

Finally, X," 8 represents the cost of the ¢ migration blocking chain. The value of X ' ¢ is computed by the
equation

X" £ x0.0" 4 x!.1"8 - XP2P . M), (4.22)

189

With the above variables, constants, and coefficients defined, we now present the ILP we use to bound
the pi-blocking any job of task 7; may experience when issuing copy engine requests. We take the solution of

this ILP as the value of b<E.

|(gout|_1 |(5)i"‘—1 . . |(gmig‘_1))
Maximize: Y X{-cf+ Y X[+) X[(4.23)
|<€out| 1
Subject to: Z < NP, (4.24)
|%7l)l‘
Z <N, (425)
|$€””g\71)
Y <N, (4.26)
(=0
&1 -1 A
Z Iout out Z m X C;{n + Z Iznlg 'Czug §| %10 |7 (427)
j =0
|%/0Mf| 1 ‘(gﬂl | ‘(gmlg’| 1
Z OOW out+ Z Ok Ck + Z Omlg mtg <| %[| (428)
j=0
|(€out| 1 cgln - ‘(g”ﬂgl_l))
Z MO o Z M e Y M < P (4.29)
(=0

Inequality (4.24) constrains the total number of outbound chains that may interfere with job J; to the
number of outbound CE requests issued by J;. Similarly, Inequalities (4.25) and (4.26) constrain the total
number of inbound and migration chains that may interfere with job J; to the number of inbound and migration
CE requests issued by J;, respectively. Inequalities (4.27), (4.28), and (4.29) constrain the number CE requests
that are used to compose blocking chains, by type, to the maximum number of such requests that may interfere

with job J;. For example, suppose no task in 7 maintains state on a GPU. In this case, | 2" 2P |= 0, since no

job ever issues a migration request. Under these conditions, the constraint represented by Inequality (4.29)
ensures that no chain that contains an “M” is ever included in the calculation of bl-CE .

We make a noteworthy compromise in the above ILP. Observe that the cost of each blocking chain
is computed in terms integral numbers of X/, X, XP?P_ These values represent the cost of transmitting a
chunk of data. For example, the costs reflected in Table 4.2 are derived from the costs for IMB chunks.

What happens if a job transmits only a fractional chunk of data? The ILP will compute a pessimistic bound

for bl-CE. Although it may be possible to extend the above ILP to account for fractional chunks, such a

190

program is likely to become exceedingly complicated. Alternatively, one may assume smaller chunk sizes
to reduce pessimism. This approach increases the number of CE requests issued by each task, increasing
the computational complexity of the ILP. Moreover, smaller chunk sizes incur greater overheads due to
DMA setup costs (recall Observation 5 from Section 4.3.1.2). In large scale schedulability experiments,
such as the ones we present later in Section 4.3.6, we find that our ILP already boarders on the edge of
intractability within the bounds of the resources available to us on our university compute cluster, so we
accept the limitations of the ILP. For smaller scale experiments, or for a system designer attempting to
provision or validate a handful of task sets, more complex accounting methods may be considered feasible.

In contrast to the ILP, we can trivially support fractional chunk sizes in the request interference function,
xif (T3, Tj, ¢x) (Equation (4.13)). As such, the constructed set ,%lcE may incorporate fractional costs. For task
sets that transmit little data, bounds computed by Equation (4.19) may actually produce less pessimistic

bounds than our ILP.

Detailed analysis for copy engine lock requests with system memory migration. Detailed analysis of
pi-blocking for CEs under system memory migration is easier to conceptualize and compute since there can
be no transitive pi-blocking. We present detailed bounds for GPUs with two CEs first. As before, we denote
pi-blocking job J; experiences due to its CE requests with the term bl.CE . We redefine the terms %/, %io , and
KEE as needed.

We compute biCE in two parts: biCE’ and biCEO. Let %! denote the sorted set of requests for copying kernel
input data and task state to a GPU that may interfere with a similar request of job J;: %! 2 txif (T;,01). The
total worst-case pi-blocking experienced by J; while waiting to receive the requested CE lock when system

memory migrations are used with dual-CE GPUs is bounded by

byl = Y L, (4.30)
Rj€top((p—1)-(N/+N?). %)
where L; is equal to the length of the associated CE operation (e.g., X h,
Let ,%’iO denote the sorted set of requests for copying kernel output data and task state from a GPU that
may interfere with a similar request of job J;: %’io £ txif (T;,£°). The total worst-case pi-blocking experienced

by J; while waiting to receive the requested CE lock when system memory migrations are used with dual-CE

191

GPUs is bounded by

bt = y L, 431)
Rjctop((p—1)-(NO+N5), %°)

where L; is equal to the length of the associated CE operation (e.g., X 0,
By construction, the total worst-case pi-blocking experienced by J; while waiting for a CE lock when

system memory migrations are used with dual-CE GPUs is bounded by
bEE = pFr 4 pFo. (4.32)

Unlike the more complicated analysis for bounds when peer-to-peer migrations are used, bounds for inbound
and outbound CEs are completely isolated from one another.

For GPUs with a single CE, we combine input, output, and state operations to compute b jointly. In
this case, let %I-CE £ 7! U%io , denoting the sorted set of interfering requests for the CE of any single GPU.
The total worst-case pi-blocking experienced by J; while waiting to receive the requested CE lock when

system memory migrations are used with GPUs with a single CE is bounded by

bt =) L;, (4.33)
Rj€top((p—1)-(NJ+NP+2:N}), Z(F)
where L; is equal to the length of the associated CE operation (e.g., X" or X9). Migration operations are

counted twice, since state data is copied twice: once to system memory and once to GPU memory.

Obtaining tighter bounds in special cases. Before concluding this section, we discuss special cases where
we can improve our engine lock blocking analysis. The analysis presented thus far has assumed a worst-case
scenario where all of the p - g tokens are held at once, since this results in maximum engine lock contention.
However, there are two conditions where this degree of contention is impossible. The first condition is

straightforward: if the number of tasks in Z;"" is less than p - g, i.e., | T27" |< p - g, then at most | Z7 |

tokens may be held at a given time instant. The second condition is more nuanced. If the GPU Allocator is
configured like the CK-OMLP, then Rule C1 (i.e., the donation-at-job-release rule) may limit the number
simultaneously held tokens. Specifically, Rule C1 ensures that at most ¢, jobs may hold tokens at a time,

where ¢, denotes the number of CPUs where the tasks in 7" may execute.

192

We integrate these special cases into our engine lock blocking analysis. Let the variable Z take a boolean
value indicating whether the GPU Allocator is configured as the CK-OMLP (Z = 1) or not (z = 0). We make
the following substitutions our blocking calculations. First, we substitute all instances of “(p — 1) with
“(min(p, | ™|, z-¢,+—2-p) —1)” in Equations (4.10), (4.18), (4.30), (4.31), and (4.33). Also, we substi-
tute all instances of “(p-g— 1) with “(min(p, | 7" |, Z-¢,+—2-p)-g—1)” in Equations (4.8), (4.9), (4.16),
and (4.17). Finally, for detailed blocking analysis of copy engine requests when peer-to-peer migrations are
used, we further constrain the objective function expressed by Equation (4.23) to prevent the inclusion of

representative blocking chains greater than (min(p, | 7" |, z-¢,+—2Z-p)-g — 1) requests in length.

This concludes our detailed blocking analysis for engine locks.

4.3.4.4 Detailed Blocking Analysis for the GPU Allocator

In this section, we discuss detailed pi-blocking analysis for the GPU Allocator. After we have performed
engine lock pi-blocking analysis, we use Equation (4.5) to bound the token critical section length, LX,
of each T; € 7T4P*. We may use these bounds in the coarse-grain blocking analysis that we discussed in
Section 2.1.7.2 or 2.1.7.3, provided that the GPU Allocator is configured as the R2DGLP or CK-OMLP,
respectively. However, detailed blocking analysis for the GPU Allocator will yield better schedulability
results. We begin by presenting detailed analysis for the GPU Allocator when it is configured as the R2DGLP.

We then examine the case where the GPU Allocator is configured as the CK-OMLP.

Detailed analysis for token request pi-blocking under the R°>DGLP. Let | 77" | denote the number of
GPU-using tasks in the a” GPU cluster, which is managed by a single instance of the R?’DGLP. Let v; denote
the maximum number of token critical sections that may block a token request of task 7; € Z;*"". As described
by Ward et al. (2012), v; depends upon the number of tokens, task that request tokens, and CPU and GPU
cluster sizes. Given these parameters, v; may be bound using one of the equations for each of the three

following cases:

1. If | 78" | < p - g, then token requests are trivially satisfied, since there is always an available token for
any requesting task:

Vi = 0. (4.34)

193

2. If p-g <| 7" | < ¢, then no request ever overflows into the R2DGLP’s PQ or DQ (every request

enters an FQ immediately), so

gpu |
Vl‘ = \\WJ . (435)

Equation (4.35) assumes that the GPU Allocator simply load-balances the number of pending requests
among FIFO queues {FQ, - -+ ,FQ,.,_; }. The GPU Allocator behaves in this manner if heuristics are
disabled. However, if the GPU Allocator employs heuristics to reduce migration overheads, then the
number of requests in each FQ may become unbalanced—some queues are full while others are empty.

We may account for this by pessimistically assuming a bound on V; that is based upon maximum FQ

V; = min q"ﬂ | 7o \) ~1. (4.36)
p-g

If a task set is schedulable when Equation (4.35) is used in analysis, but not schedulable when

length:

Equation (4.36) is used, the system designer may reduce maximum FQ length from [c¢/(p - g)] to
as little as [| 757" | /(p - g)].'> We may make this alteration to the GPU Allocator without affecting
optimality, since | 7" |< c¢. When the maximum FQ length is constrained to [| Z™ | /(p - g)],
Equation (4.35) holds, even if the GPU Allocator employs heuristics. The choice to reduce maximum
FQ length reflects a tradeoff between analytical schedulability and potential benefits in average-case

runtime performance.

3. If | 72" | > ¢, then

vi=2 [Cw —1. (4.37)
Equation (4.37) reflects the bound given by Equation (2.34) of Section 2.1.7.2.

Once V; has been determined for each task, we may compute LX. Let ZX denote the sorted set of token
requests that may interfere with a token request of a job of 7;. When every task 7; € 78" requests a token
at most once per job, then ZX 2 1xif (T;, /%), where (X denotes the requested token. The total worst-case

pi-blocking experienced by job J; while waiting for a token is given by

b= Y L (4.38)
R_/El()p(\/,',ffik)

120ur implementation of GPUSync supports this degree of configurability.

194

where L; denotes a bound on the token critical section length of task 7.

Detailed analysis for token request pi-blocking under the CK-OMLP. We use the detailed analysis
provided by Brandenburg (2011b) for the CK-OMLP in our analysis of the GPU Allocator when it is
configured as the CK-OMLP. Recall from Section 2.1.7.3 that jobs experience both direct and indirect
pi-blocking under the CK-OMLP. Only jobs of tasks 7; € T4P* may experience direct pi-blocking. All jobs
may experience indirect pi-blocking.

We bound direct pi-blocking under the CK-OMLP with the following equations:

top(c, |J xif (T;, T}, £5)) if T; ¢ 7,
%ﬁl A Tie1, (4.39)
top(c—1, U xif (T, T;, 05)) if T; € 1T,
Te T \{Ti}
m/c—1
(@IK £ U %fw (4.40)
a=0
ble[rert — Z Lj A (441)

Rjetop([p‘—%-‘fl,%{()

Equation (4.39) computes the set of token requests, in the worst-case, of each CPU cluster that may directly
interfere with a request of 7;. This set of per-cluster requests is denoted by Q?ZKG Under Rule C1 (i.e., the
donation-at-job-release rule) of the CK-OMLP, the number of such requests is bound by ¢ for remote clusters
(T; ¢ 7,) and (c — 1) for the local cluster (T; € 7). This is represented by the two cases in Equation (4.39).
%lKa = 0 if the tasks T; € 7, do not share a GPU cluster with tasks T; € 7,. Equation (4.40) combines the
per-cluster sets of interfering requests into one, %ZX. Finally, Equation (4.41) computes a bound on direct
pi-blocking experienced by task 7;, by summing the ([¢/(p - g)] — 1)-longest token critical sections that may
directly interfere with a token request of task 7;.

We now bound indirect pi-blocking due to token requests. A job is pi-blocked indirectly while it donates
its priority to another task. The time a job acts as a priority donor is bounded by the time its donee is blocked,

plus the critical section length of the donee itself. In the worst-case, this is bounded by

blKindirect — max ({bfdirert +Lj ’]‘] c %\{T;} }) . (442)

195

With bounds on both direct and indirect pi-blocking computed, we may bound total pi-blocking experi-

enced by any task due to token requests with the following equation:

blK — bleirecl + blKindirecl . (443)

This concludes our discussion of detailed blocking analysis for GPUSync.

4.3.5 Overhead Accounting

We now discuss the methods we use to integrate GPU-related overheads into overhead-aware schedulabil-
ity analysis. We follow the preemption-centric interrupt accounting method that we discussed in Section 2.1.8.
‘We use all of the formulations described therein to account for non-GPU-related overheads. In this section,
we describe the enhancements we make to this analysis to account for GPU-related overheads. Specifically,
those relating to GPU interrupt processing. (We account for DM A -related overheads by using the data we
gathered in Section 4.3.1.2 to determine values for APe X1 X0 and XP?P)) We first discuss accounting for
top-half interrupt processing. We then discuss the inflation of critical sections under GPUSync to account for
locking-protocol-related self-suspensions and bottom-half interrupt processing.

Before we begin with our overhead analysis, let us define several terms and equations. We begin by
rewriting the preemption-centric equation for job execution time inflation, (i.e., Equation (2.42)), in the

following manner:

i 2 ei+2- (N4 A) + AP (4.44)
) é; -

= — — 2P 4 AP (4.45)
DU = Y

Here, in Equation (4.45), we represent the numerator of the fraction that appears in Equation (2.42) with é;,
defined by Equation (4.44). We will incrementally inflate é; to account for various GPUSync overheads. We
refer to values that are computed in each incremental step with a superscript, such that the superscript value

indicated within the square brackets matches the labeled step that defined the inflated value (e.g., él[.l]).

~

Definition 4.5. Let 7, denote the set of tasks that are scheduled on the CPUs of the CPU clusters that

are associated with the GPU cluster of 75", 7, may be made up of tasks from different CPU clusters

196

when GPU clusters are shared among CPU clusters (i.e., (P,G, *), (P,C,*), (P,CP??), and (C, G, *) cluster

configurations).

Definition 4.6. Let % denote the maximum number of times 7; € 7 performs a GPU engine operation (e.g.,
executes a kernel or transmits a chunk of data). Under the following analysis, we assume that all GPU-using
tasks are configured to suspend while waiting for GPU operations to complete. Thus, each job of 7; causes at

most ¥ interrupts to be raised by a GPU, where interrupt signals the completion of one operation.

Definition 4.7. Let A denote the number of engine locks assigned to each GPU. The value of A expresses

the maximum number of simultaneous operations that may be carried out by a single GPU.!?
Definition 4.8. Let A”? denote the execution cost of a top-half of a single GPU interrupt.
Definition 4.9. Let A”" denote the execution cost of a top-half of a single GPU interrupt.

We now use the above equations and terms to account for GPU-related overheads.

4.3.5.1 Accounting for Interrupt Top-Halves

We now account for top-half interrupt processing overheads. Interrupts always execute with maximum
priority, so accounting for priority-inversions due to the top-halves of GPU interrupts is straightforward: we
assume that a job J;, is affected (or “hit”) by every GPU top-half that may be raised while J; , executes.
We assume that GPU interrupts are arbitrarily delivered to CPUs where tasks T; € 7, may execute—other
CPUs are shielded from processing these interrupts. We compute the total number of these interrupts with the

following equation:

Hi= Y v-tf(T.T;). (4.46)
T/E%a\{T;}

Next, we inflate job execution cost to place an upper bound on the burden of processing GPU interrupt

top-halves:

M =6+ H;- AP, (4.47)

This bound is very pessimistic, but it is also safe.

I3This statement does not hold if multiple kernels are allowed to execute simultaneously on an execution engine. However,
GPUSync’s execution engine locks explicitly forbid this possibility.

197

4.3.5.2 Accounting for Interrupt Bottom-Halves

We now consider overheads associated with interrupt bottom-half processing. We account for these

overheads in two ways:

1. Inflate engine request lengths. Bottom-half processing overheads may be incurred by a job J; , while
it holds an engine lock, effectively lengthening the engine lock critical section. This may indirectly
delay any job waiting to obtain the engine lock in question. This must be accounted for in pi-blocking

analysis. We accomplish this by inflating engine request lengths prior to pi-blocking analysis.

2. Inflate job WCET. Bottom-half processing overheads may be incurred directly by a job J; ,. These

overheads represent the cost of OS and other system work that J; , may be required to perform.

We first consider request length inflation and then job WCET inflation.

Request length inflation. We begin with analysis of engine request lengths. The engine request length
of a job J;, can be affected by the GPU operations of other jobs assigned to the same GPU. Recall that
under GPUSync, all interrupt bottom-halves of each GPU are processed serially by a per-GPU klmirqd
thread. This thread inherits the maximum priority of any task that has suspended while waiting for a GPU
operation to complete. This ensures that all priority inversions are bounded. However, this does not isolate
this maximum-priority task from the GPU operations of other threads. Such a case is depicted in Figure 4.13.

In Figure 4.13(a), job J; issues an operation to an EE within an engine critical section, and J; suspends at
time # + 5. A number of bottom-halves are processed between time 7 + 16 and ¢ 4 53 by the klmirqd thread at
job J;’s priority—we examine these later when we discuss WCET inflation. At time ¢ + 64, three events occur
simultaneously: (i) a DMA operation of job J; on CE(completes; (ii) a DMA operation of job J; on CE;
completes; and (iii) the GPU kernel of job J; completes. As a result, three GPU interrupts are raised in quick
succession. In Figure 4.13(b), we examine what occurs next in greater detail (we change the timescale in this
figure to ease presentation). Here, CPU; processes the interrupt top-halves for the interrupts raised by the
GPU. The completion of the first top-half at time s + 4 triggers an IPI to be sent to CPUj to wake up and
schedule the associated klmirqd thread. This IPI is received at time s+ 13. This triggers the scheduler on
CPUj to run, and J; is preempted. This incurs both a scheduling (A*") and a context switch (A*) overhead.
At time s+ 21, the klmirqd thread begins processing pending bottom-halves. By the time the klmirqd thread

begins execution, the remaining GPU top-halves have already been enqueued for processing. The klmirqd

198

T Release T Complete T Block T Unblock

D CPU Overhead D Off-Chip Overhead

CE Jk Jk Jk Jk
0
CE, Jj Jj /Jj Jj
EE Ji \ |
v v v X l] v y N
J: bot| |bot bot bot | bot | bot J bot | bot | bot | J.
CPU, | ™ J; | | gk T T || s | AR
me t+0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
(a) High-level view of bottom-half overhead processing.
g P g
/\
. ipi
OFf.Chip
top | top | top
CPU]_Jdei
~—
klmirqd
\
CPUO Ji sch | cxs l}? bjj l?;r sch | cxs Ji
time L L e L [
s+0 5 10 15 20 25 30 35 40 45 50

(b) Scenario where overheads increase engine critical section length.

Figure 4.13: Schedules with overheads due to bottom-half interrupt processing.

199

thread executes each bottom-half, completing at time s+ 33. Job J; is unblocked once its bottom-half is

processed, so J; is scheduled next on CPUy, resulting in additional scheduling and context switch overheads.'*

We assume that a system designer incorporates the top-half and bottom-half processing overheads into
the provisioned execution time of job J;’s own GPU kernel. That is, we do not consider job J; to be delayed
by AIJ('_”’ or A?lf” (i.e., the top- and bottom-half overheads of J;). However, we do consider job J; to be delayed
for the duration that its bottom-half is ready for processing, but is not scheduled. IPIs and the bottom-halves
of other jobs cause these delays. In Figure 4.13(b), we see that the processing of J;’s bottom-half can be
delayed by up to one IPI and two scheduling and context switch operations. Also, in this particular example,
job J; is delayed by two top- and bottom-halves (those of jobs J; and J;). In general, job J; may be delayed by
up to min(A,p) — 1 top- and bottom-halves.

To account for these overheads, we inflate each engine request length, L; ,, x, of job J; , using the following
equation:

LP 2 L+ (min(A,p) — 1) - (AP 4 AP) - 2(AH 4 A7) 4 2A", (4.48)

iuk

We charge for two IPIs in the above equation. The first IPI overhead accounts for the situation we observed
in Figure 4.13(b). The second IPI charge accounts for the situation where job J; is scheduled on a different
CPU than the kImirqd thread. We may drop the IPI (A) component of Equation (4.48) when both CPUs and
GPUs are partitioned (i.e., (P, P, x)), since GPU top-halves, the klmirqd thread, and job J; are guaranteed to

be scheduled on the same CPU.

Overheads due to scheduling klmirqd threads are not the only scheduling overheads to consider. Recall
that in more recent version of the CUDA runtime, that user-space callback threads, one per GPU per process,
are responsible for waking jobs that are suspended waiting for their GPU operation to complete. This callback
thread is only active while it wakes the suspended thread, and it sleeps otherwise. GPUSync schedules the
callback thread with the current priority of the corresponding job J;, but only while J; is suspended waiting
for a GPU operation to complete. We assume the execution cost of the callback thread is already captured by
the provisioning of L; , .. However, we must include thread scheduling costs of the callback thread, since
these overheads delay the waking of job J;. System call overheads must also be considered, since the callback

thread executes in user-space, and wakes up the suspended task through a system call. These overheads are

141n this example, we ignore the effects of any GPGPU runtime callback threads. In actuality, in GPGPU runtimes where callback
threads are used, a callback thread of job J; would be scheduled at time ¢t = 41, not job J; itself. We examine the effects of callback
threads, shortly.

200

D CPU Overhead D Off-Chip Overhead

/\ /\
. ipi ipi
Off-Chip
Iy A}
klmirqd
CPU] E’;i sch | cxs Ji
] . callback
CPUO jﬂ:ﬂsco Ji sci
time B I N RS 2
#40 5 10 15 20 25 30 35 40 45 50 55 60 65

Figure 4.14: Schedule depicting callback overheads.

depicted in Figure 4.14. Figure 4.14 begins with the bottom-half processing to provide a frame of reference.
The overheads prior to time ¢t 4+ 21 have already been accounted for by Equation (4.48). At time ¢t 421, the
callback thread returns from any prior-made system call, as indicated by the system-call-out overhead, A*.
Since the callback thread relinquishes any inherited priority within a system call the moment it wakes up a
job, the callback thread may still be within the OS when it is scheduled at time 7 + 21. At time ¢ 4 34, the
callback thread makes the system call to wake job J;. This results in an IPI to schedule job J; on CPU;—in
general, we cannot guarantee that job J; will be scheduled on the same CPU as the callback thread. Job J; is
finally scheduled at time 7 + 55, where it can release its engine lock, completing its engine request.

We must inflate engine request lengths to account for delays due to these callback-related overheads. We
do so with the following equation:

LE3M]I{ A L[Z] _|_Asch +Acsx+Aipi+Asci' (4.49)

iuk

Here, we do not charge IPI, scheduling, and context switch costs to schedule the callback thread itself (i.e.,
events prior to time ¢ + 21 in Figure 4.14), since these are already captured by Equation (4.48). However, we
must still account for the overheads to wake and schedule job J;; we do so by inflating the engine request
lengths of J; , by A*" -+ A®¥ + APPi. We also inflate the request length by system call in and out (A**’ and A*°,
respectively) to account for system call overheads. As with Equation (4.48), we may also drop A”’ from

Equation (4.49) when both CPUs and GPUs are partitioned (i.e., (P, P, *)).

201

This completes the description of steps we use to inflate engine request lengths. Please note that addi-
tional inflations are necessary to account for standard locking protocol overheads by applying Equation (2.46)
to both engine and token lock requests. After this has been done, bounds on pi-blocking may be computed

(using the blocking analysis of Section 4.3.4.3) using the inflated request lengths.

WCET inflation. The incorporation of inflated engine request lengths in blocking analysis models how
bottom-half processing overheads incurred by job J; can increase the pi-blocking experienced by job J,. We
must also charge overheads caused by bottom-half and callback thread processing to J; itself.

In Figure 4.13(a), we see several bottom-halves that are processed by a klmirqd daemon in the interval
[t +16,t +52). These are scheduled under job J;’s priority. Under usual circumstances, we inflate the
provisioned execution time of job J; to cover any work performed under J;’s priority. However, when these
bottom-halves are scheduled on a CPU concurrently with job J; when it is scheduled on a GPU engine, there
is a “loophole” in suspension-oblivious analysis that we may exploit to cover bottom-half execution costs
without needing to inflate job J;’s provisioned execution time. Under suspension-oblivious analysis, all GPU
execution time of job J; is masked analytically by fictitious CPU demand. For example, in Figure 4.13(a),
the GPU kernel of job J; executes during the time interval [t + 5,7 + 64), for a total of 59 time units. Under
suspension-oblivious analysis, job J; is correspondingly provisioned with 59 time units of CPU execution
time. This CPU budget may only be consumed while job J; executes on a GPU, but J; cannot execute on a
CPU during this time, since it is blocked on the completion of a GPU operation. However, we may schedule
other useful work under job J;’s priority during this time, making use of J;’s otherwise unusable budget. This
is the loophole in suspension-oblivious analysis we exploit to cover the costs of processing bottom-halves
under job J;’s priority while J; executes on a GPU.

Job J; must only be provisioned with additional CPU budget to cover GPU-related overheads that the job
may incur while the job is not scheduled on a GPU. We already examined these overheads in the derivations
of Equations (4.48) and (4.49). We now apply them to inflate the provisioned execution time of job J; instead
of engine request lengths. We do so using the following two equations to account for bottom-half and callback
processing, respectively:

oM = 2,4+ 9 (min(A,p) - AP+ 2(A* 4 AF) 4 2APT), (4.50)

1

éI[S] _ é,['4] + 9 (Z(Asch +Acsx) +Asci+Asco _,'_Aipi)' (4.51)

202

For each of job J;’s of GPU operations, denoted by ¥, Equation (4.50) charges the cost of processing
min(A, p) bottom-halves (i.e., the cost of processing (min(A4,p) — 1) bottom-halves of other jobs, plus the
bottom-half of job J; itself) and the cost of scheduling the klmirqd daemon. Equation (4.51) charges the cost
of scheduling the callback thread, once for each of job J;’s GPU operations. After Equations (4.50) and (4.51)
have been used to account for GPU-related overheads, we must still apply Equation (2.45) to account for the
standard locking protocol overheads, with n; = 7Y; + 1, where we add one to ; to account for a single token

lock request of J;.

4.3.5.3 Limitations

In this section, we explain and justify three pragmatic compromises we make in the analysis presented in

Sections 4.3.5.1 and 4.3.5.2.

GPU interrupt processing and cache affinity. The observant reader may notice that we have not included
cache affinity loss overheads (e.g., AP or Ay in Equations (4.47), (4.48), (4.49), (4.50), or (4.51). This is
intentional. We expect the cache working set size of bottom-half and callback routines to be small, since
these routines merely route GPU kernel completion notifications to waiting tasks—there is no heavy data
processing to be done. Nevertheless, it would be desirable to include these overheads in analysis. However,
we lack a straightforward method for accurately determining the associated working set sizes of GPU top-half,
bottom-half, and callback processing. Moreover, we fear that the inclusion of overly pessimistic cache
affinity loss overheads in these equations would render our schedulability analysis too pessimistic to be
meaningful, since the costs of these overheads would be quickly compounded in blocking analysis. As a
result, the differences among different GPUSync configurations that we seek to highlight and explore would

be obscured.

Interrupt processing and engine request lengths. In Equation (4.48), we inflated each engine request
length to incorporate the bottom-half processing that may occur under J;’s priority before the pending
bottom-half of J; is itself is processed. Similarly, Brandenburg (2011b) argues that critical sections should
also be inflated to account for every interrupt that may occur within a critical section that is arbitrated by
any locking protocol that does not disable interrupts (e.g., suspension-based locking protocols). However,
he also acknowledges that such an approach results in “tremendous pessimism” that may increase critical

section lengths “by several orders of magnitude.” Partly motivated by a desire to explore hard real-time

203

schedulability, Brandenburg side-steps this issue by localizing all interrupt handling and scheduling decisions
on a specially designated “release-master” CPU.

Although GPUSync does not forbid the use of a release-master CPU, we opt to not use one in this
work for three reasons. First, a system CPU must be sacrificed if no real-time tasks are partitioned onto
(i.e., assigned to) the release-master CPU. This results in a compulsory CPU utilization loss of 1.0. This
is something that we would rather avoid. Second, if real-time tasks are partitioned onto the release-master
CPU, then these tasks experience a high-degree of interference from all system interrupts. Schedulability
analysis for this release-master partition will be very pessimistic. Finally, a release-master CPU can introduce
asymmetry in CPU clusters. For example, on our twelve-core evaluation platform, if we reserved one CPU
as a release-master and form CPU clusters along NUMA boundaries, then one CPU cluster would have
five CPUs, while the other would have six. This adds complications to task partitioning and schedulability
analysis.

As with GPU interrupt processing and cache affinity loss, if we were to inflate critical sections to account
for worst-case interrupt processing scenarios, the resulting schedulability analysis would be too pessimistic
to hold any meaning for us. Instead, we compromise by accounting for interrupts by inflating job execution
time (e.g., Equation (4.47)), and we do not further inflate critical section lengths. Since our stated research
goal is in discovering the best methods for supporting soft real-time systems with GPUs, we feel that this

more relaxed model has acceptable limitations and remains sufficiently conservative to model reality.

GPU interrupt latency. Throughout our preemption-centric analysis, we have used the overhead A7 to
account for delays in interprocessor interrupt latency. This overhead captures the latency between the time
when CPU,, sends a signal (i.e., an interrupt) to CPUy,, to the time when CPU,, actually receives said signal.
There are analogous interrupt latencies between CPUs and GPUs. For example, there is a delay between the
time a GPU raises an interrupt to notify the host platform of GPU operation completion, to the time a CPU
actually receives said interrupt. We do not directly account for these overhead latencies.

We ignore GPU interrupt latency overheads because we know of no reasonable method to measure them.
For CPUs, we can directly measure IPI latencies, since CPU clocks can be synchronized—we merely log a
timestamp each time an IPI is sent and received, and we take the time difference as an observed IPI latency.
Unfortunately, CPUs and GPUs do not share a synchronized clock, so we cannot apply the same methodology.

Alternatively, we could estimate GPU-related interrupt latencies with the following multi-step experiment,

204

where: (i) a GPU signals CPU; (ii) this CPU echoes back a signal to the GPU; (iii) we measure the delay
between when the GPU sends its signal to when it receives the echo; (iv) we divide this delay by two to
give an estimated signal latency. Unfortunately, it is not clear to us how this experiment can actually be
performed. While we may craft software that triggers these signals to be sent, this software must sit atop
several layers of closed-source software. The execution time of these additional layers prevents us from
making accurate measurements. Moreover, the above experiment assumes that CPU-to-GPU interrupt latency
is commensurate with GPU-to-CPU interrupt latency. We do not know if this assumption is well-founded.
Given these issues, we instead account for GPU-related interrupt latencies indirectly by including these
overheads in the provisioned GPU execution time of GPU kernels and DMA operations. Indeed, this what
was done in Section 4.3.1.2, where we characterized the cost of DMA operations. The time taken to complete
each DMA operation was measured by the CPU process that issued the work. Each DMA measurement
inherently includes both CPU-to-GPU and GPU-to-CPU interrupt latencies. This compromise prevents us
from possibly exploiting tighter analytical methods. For example, IPI latencies are not inflated to account for
CPU scheduler tick overheads in preemption-centric accounting, because the message-passing mechanisms
to deliver an IPI occur “off-chip” in parallel with CPU processing (see Figure 2.12). The message-passing
mechanisms that lead to latencies in GPU interrupts similarly occur off-chip. However, since we implicitly
incorporate these overheads into engine request lengths, these overheads are treated as CPU execution time
under suspension-oblivious analysis. Consequently, these overheads are incorporated into the numerator of
Equation (4.45), where they are inflated (by way of the denominator) to account for CPU scheduler ticks,
even though CPU scheduler ticks do not affect GPU interrupt latencies in reality. Ultimately, our approach is

more pessimistic, albeit safe.

This concludes our accounting of GPU overheads in schedulability analysis.

4.3.6 Schedulability Experiments

In this section, we assess tradeoffs among the configuration options we described in Section 4.3.2 by
presenting the results of overhead-aware schedulability studies. We randomly generated task sets of varying
characteristics and tested them for schedulability using the methods described above. We now describe the

experimental process we used.

205

4.3.6.1 Experimental Setup

There is a wide space of system configuration and task set parameters to explore. We evaluated each of
the nine high-level configurations illustrated in Figure 4.1, plus an additional three configurations where GPUs
are clustered into two clusters of four GPUs apiece. As we discussed in Section 4.3.2, these configurations
are not exhaustive, but we feel they are the simplest and most practical configurations for each combination
of CPU and GPU cluster configurations. For instance, in (P, P) of Figure 4.1, four partitioned CPUs have no
attached GPU; these CPUs may only schedule tasks of 7“. Such a configuration is a natural extension of
existing uniprocessor, uni-GPU methods. Each considered configuration was tested with several values of p:
p = 1 to examine schedulability under exclusive GPU allocation; p = 3 to explore schedulability when all
GPU engines (one EE and two CEs) are given the opportunity to operate simultaneously; and p = 2 to see if
there is a balance to strike between p = 1 and p = 3. The configuration (x, P) was also tested with p = oo
since p’s role in facilitating migrations is moot.

Random task sets for schedulability experiments were generated according to several parameters in
a multistep process. Task utilizations were generated using three uniform distributions: [0.01,0.1] (light),
[0.1,0.4] (medium), and [0.5,0.9] (heavy). Task periods were generated using two uniform distributions
with ranges [33ms, 100ms| (moderate), and [200ms, 1000ms] (long).!> Tasks were generated by selecting a
utilization and period until reaching a desired task set utilization. The task set was then randomly subdivided
into 78" and 7P*. The number of tasks in 74" was set to be: 33%, 66%, or 100% of the task set size. For
tasks in 787", kernel execution times were generated using three uniform distributions with ranges [10%,25%],
[25%,75%)], and [75%,95%] of task execution time (a corresponding amount of time was subtracted from
CPU execution time). For simplicity, we model each task in 78" as executing one kernel per job. Each such
job has one GPU critical section. Input/output data sizes were generated using three values: 256KB (light),
2MB (medium), and 8MB (heavy). A selected data size was evenly split between zll and ziO. Task GPU state
size was generated using three values: 0%, 25%, and 100% of 7;’s combined input/output data size. In order
to keep our study tractable, all tasks were assigned a CPU cache working set size of 4KB. For tasks in 78,
5% of its CPU execution time was determined to be within the task’s single GPU critical section. Overheads

and data transmission times were taken from four data sets: average-case (AC) observations in an idle system

I5These periods are inspired by the sensor streams GPUs may process. Moderate periods represent video-based sensors. Long
periods model slower sensors such as LIDAR.

206

(AC/M); AC observations in a loaded system (AC/L); worst-case (WC) observations in an idle system (WC/I);
and WC observations in a loaded system (WC/L). Due to the extremely long tails of the distributions of
observed for GPU top-half and bottom-half interrupt execution times (depicted in Figures 4.2(a) and 4.3(a),
respectively), we take the 99.9" percentiles of these measurements as our “worst-case.” We presume that
extreme outlier observations are the result of software bugs in the GPU driver that could be fixed before a
GPU were deployed in a serious real-time system.

A unique combination of the above system configurations and task set parameters defined a set of
experimental settings, 75,816 in all. Under each set of experimental parameters, for each 0.25 increment
in system utilization range (0, 12] (reflecting the range of system utilizations supported by our twelve-core
test platform), we generated between 500 and 4,000 task sets.! Task sets were partitioned to the CPU/GPU
clusters in three phases:

Phase 1: T8P* was partitioned among the GPU clusters, using the worst-fit heuristic in decreasing GPU

utilization order, where GPU utilization was given by

gpu 0 1 0 S
oou & 4it+€; +xmn‘(zi,zi ,Z,-)

1 pl

. (4.52)

Phase 2: T8P" was then partitioned among CPU clusters, in accordance with experimental parameters,
using the worst-fit heuristic in decreasing utilization order, where task utilization was given by
Equation (4.1). Bounds for pi-blocking terms were calculated and incorporated into each CPU
cluster’s (estimated) total utilization.

Phase 3: TP" was then partitioned among the CPU clusters using the worst-fit heuristic in decreasing
utilization order, where task utilization was calculated using Equation (2.5) (i.e., the standard
definition of task utilization under the sporadic task model).

Task sets were tested for bounded response time. Task execution time and request critical section
lengths were inflated to incorporate system overheads and s-oblivious pi-blocking. Tardiness bounds were
computed using CVA analysis of Erickson (2014) (see Section 2.1.5). Approximately 2.8 billion task sets
were tested. We used the KillDevil compute cluster at the University of North Carolina, at Chapel Hill, to

perform our experiments, consuming over 85,000 CPU hours on modern Intel Xeon processors (models

16 After testing a minimum of 500 task sets, additional task sets were generated until average schedulability fell within a three
percentage-point interval with 95% confidence, or until 4,000 task sets had been tested.

207

Area(A) > Area(B) = Rank(A) > Rank(B)

—
o

A

Average Schedulability

0 Task Set Utilization m

Figure 4.15: Illustrative ranking of configuration 4 against configuration 3.

X5670 and E5-2670). Our experimental tools were implemented on top of the schedulability test toolkit
SchedCAT (Brandenburg, 2011a). Although most of SchedCAT is implemented in the Python scripting
language, performance-critical paths are implemented in C/C++. Our experimental tools used the commercial
Gurobi optimization solver (Gurobi Optimization, Inc., 2015) to solve the ILP we use to bound pi-blocking
for configurations with peer-to-peer migration. We point out these implementation details of our experimental

tools to highlight the fact that our CPU hours were used with reasonable efficiency.

4.3.6.2 Results

With over 75,000 experiments, it is infeasible to compare different system configurations by examining
individual schedulability curves alone. Since our primary goal is to compare the effectiveness of each
configuration, we devised the following ranking method to collapse our results into something more man-
ageable. For every unique combination of task set parameters, we determined a “sub-rank” for each system
configuration from first to last place. These sub-rankings were determined by comparing the area under each
system configuration’s schedulability curve. A larger area under the curve indicates better schedulability.
An illustrative example is shown in Figure 4.15. In this example with two system configurations 4 and
B, configuration 4 has a first-place sub-rank since the area under 4’s curve is greater (i.e., more task sets
were schedulable under 4). A final rank for each system configuration was determined by computing for

each configuration, the median, average, and standard deviation of its sub-ranks. We then ranked system

208

configurations according to median sub-rank, tie-breaking by average sub-rank. This ranking approach was
applied separately to results from each of our four overhead datasets.

Tables 4.5, 4.6, 4.7, and 4.8 show configuration rankings assuming worst-case loaded system overheads
(WC/L), worst-case idle system overheads (WC/I), average-case loaded system overheads (AC/L), and
average-case idle system overheads (AC/I), respectively. The columns labeled ‘“Rank” give each configu-
ration’s final rank. Observe that each table is sorted according to final rankings. The following columns
give the median, average, and standard deviation of each configuration’s sub-ranks. Entries in the columns
labeled “(CPU,GPU,p)” identify the ranked system configuration. Here, we extend the tuple-notation from
Section 4.2 to include p. The next three columns give the final rank of a configuration under the other
overhead data sets. For a given row, we may compare the values of these columns against each other, and
the value in the “Rank” column, to discern how a system configuration’s ranking changes under different
overhead conditions. In order to fit each table onto a single page, the left-half of each table gives the rankings
for the top 29 ranked configurations, and the right-half gives the rankings for the remaining configurations.

We make the following observations.

Observation 13. Clustered CPU scheduling with partitioned GPUs and p = o« had the highest rank under

three of the four overhead conditions.

We may observe this in the first row of Table 4.5. We see that (C, P, o) ranked 1* under WC/L overheads.
In the same row, we see that (C,P,c) also ranked 1* under WC/I and AC/L overheads, and ranked 2"
under AC/I overheads. Under AC/I overheads, we see that (G, P,co) ranks 1*" . The considered overheads are
lightest under AC/I assumptions, so (G, P,e) does well. As observed by Brandenburg (2011b), global CPU
scheduling provides good soft real-time schedulability, provided that overheads are low; we see this here.

These results show, in the context of these experiments, that partitioned GPU scheduling, when paired

with clustered or global CPU scheduling, provides the best overall performance.

Observation 14. Clustered CPU scheduling with partitioned GPUs and p = o was not always the best

configuration.

We already observed that (G, P,e~) had the highest rank under AC/I overheads. However, we can also
recognize this observation in the remaining tables. In Tables 4.5, 4.6, and 4.7, compare the Median and

Average sub-rank values for (C,P, o). If (C,P,o0) always had the highest rank, then Median and Average

209

Rankings Under Worst-Case Overheads, Loaded

Rank |[Median Avg o |(CPU,GPU,p)|WC/T AC/1 AC/L|Rank|Median Avg o |(CPU,GPU,p)|WC/T AC/1 AC/L

1 182 272| (C,P) 1 2 1 |30] 29 2817 820 (G,Cs,3) | 29 25 28

4 572 500| (C,P2) 2 5 4 | 31| 31 2709 889 (C,Cp,1) | 32 34 32
4 573 555| (C,P3) 33 3 || 32| 32 3244 611 (GCE?P1) | 33 31 33
5 1090 10.03| (G,P,) 4 1 2 | 33| 33 33141194 (G,G,3) 31 27 30
7 9.02 845| (PPw) 8 7 7 || 34| 34 28761134| (C,cP?P1) | 35 36 35
8 1534 13.02| (G,P3) 6 4 5 | 35| 34 3430 616| (G,Co,1) | 34 33 34
9 1559 12.88| (G,P2) 5 6 6 | 36| 35 2977 1276| (C,Cy41) | 37 38 37
10 1284 7.15| (C¢,c5%P2) | 7 10 8 37 | 35 3378 855| (PC?P1) | 39 40 39

10 13.08 696 | (C,C5,2) 9 11 9 || 38 | 37 3430 934| (PCy1) | 41 41 41
12 13.86 849 | (PP3) 12 14 14 | 39| 37 3529 807| (GC{?P.1) | 36 35 36
12 13.89 895| (PP2) 10 13 16 || 40 | 38 36.17 9.01| (G,Cy1) | 38 37 38
1391 6.04| (C,P1) 11 18 10 || 41 | 39 3503 957 | (PG2) | 43 43 42
15 1506 7.22| (C,C5?P3) | 14 20 17 || 42 | 39 3537 946| (PCS?P2) | 42 42 43
15 1564 7.14| (C,C3,3) 17 23 18 || 43 | 40 3627 954 | (PCy3) | 45 45 44
15 16.03 6.09 | (C,C4,2) 15 12 13 || 44 | 40 3635 973 | (PRCI?P3) | 44 44 45
16 1652 6.82| (C,Cy?P2) | 13 15 15 || 45 | 44 4036 11.83| (G,G,1) 40 39 40
19 1894 7.80| (C,C¥?P.3) | 20 29 23 || 46 | 47 4525 675 | (PCYP.1) | 46 46 46
19 1917 757 | (C,Cy,3) | 22 28 20 || 47 | 47 4572 676 | (PCy1) | 47 47 47
19 22351116 (G,C5?P.2) | 16 8 11 || 48 | 48 4626 694 | (PCy2) | 49 48 48

b b b b b e e e
C X AN ELWR—,o PRI R W~
—
@®

20 | 20 22.66 10.78| (G,C»,2) 18 9 12 | 49 | 48 4650 679 | (PC?P2) | 48 49 49
21 22 1836 10.16| (PP1) 19 30 26 || 50 | 48 46.86 6.37| (P,C4,3) 50 50 50
22 | 22 2313 982 | (G,P1) 21 22 19 || 51 | 49 47.14 6.76| (P.C{?P3) | 51 51 51
23 23 2457 10.10| (G,c4?P)3) | 23 17 21 52 53 52.82 1.82 (P,G,1) 52 52 53
24 | 23 2554 972 | (G,C3,3) 25 21 22 || 53 53 5315 1.60 | (P,G,2) 53 54 54
25 24 2573 858 | (G,Cy,2) 26 16 24 || 54 | 53 5315 1.67| (PG,3) 55 55 55
26 | 26 2578 831 | (G,C{?P2) | 24 19 25 || 55 54 5295 279 | (C,G,1) 54 53 52
27 | 28 3121 1223 (G,G,2) 27 24 29 || 56| 56 5581 1.60| (C,G,3) 57 56 56
28 28 27.89 8.67| (G.Cf?P3) | 28 26 27 | 57 56 5583 1.61| (C,G,2) 56 57 57
29 | 29 2499 825| (C,C5%*P1) | 30 32 31

Table 4.5: Configuration rankings under WC/L.

210

Rankings Under Worst-Case Overheads, Idle

Rank |Median Avg o |(CPU,GPU,p)|AC/1 AC/L WC/L||Rank|Median Avg o |(CPU,GPU,p)|AC/1 AC/L WC/L
1 1 326 468| (C,Poo) 2 1 1 30 [30 27.17 689 (C,CF?P1) [32 31 29
2 3 484 468| (C,P2) 5 4 2 31 30 2758 947| (G,G,3) |27 30 33
3 4 512 502| (C,P3) 3 3 3 32 | 32 2947 7.17| (C,GCp1) |34 32 31
4 5 852 728| (G,P) 2 4 33 | 32 3123 560 (G,C5?P)1) | 31 33 32
5 7 1105 8.67| (G,P2) 6 6 7 34 | 34 3288 626| (G,Cy1) |33 34 35
6 7 1119 891 | (G,P3) 4 5 6 35 | 35 3147 10.13| (C,C?P1) | 36 35 34
7 9 1268 843 | (C,C5?P2) | 10 8 8 36 | 36 3431 8.63| (G,CH?P1) | 35 36 39
8 10 1229 9.67 | (PP) 7 7 5 37 | 37 3294 11.03| (C,Cs,1) | 38 37 36
9 11 1438 811 | (C,C5,2) | 11 9 9 38 | 38 3561 9.63| (G,C41) |37 38 40
10 12 1428 1024 (P,P2) 13 16 11 39 39 3759 582 | (PCS*P1) | 40 39 37
11 13 1420 652| (C,P1) 18 10 12 || 40 | 40 3672 13.48| (G,G,1) 39 40 45
12 13 15.14 9.74 (P,P3) 14 14 10 || 41 | 40 3840 518| (PC,,1) | 41 41 38
13 15 1551 679 | (C,ct?P2) | 15 15 16 42 41 39.64 505 | (PCi?P2) | 42 43 42
14 | 15 1562 876 | (C.C5?P3) | 20 17 13 || 43 | 41 40.10 489 | (P(p,2) | 43 42 41
15 15 1610 674 | (C,Cy,2) | 12 13 15 || 44 | 42 4108 502 | (PC{?P3) | 44 45 44
16 17 1879 9.02 | (G,CP?P2) | 8 11 19 || 45 | 43 4171 491 | (PCp,3) |45 44 43
17 18 1782 801 | (C,C»,3) |23 18 14 || 46 | 47 4648 344 | (PCI?P1) | 46 46 46
18 19 2036 885| (G,C3,2) 9 12 20 || 47 | 47 47.07 276 | (PC4 1) | 47 47 47
19 | 20 18.82 1042 (PP1) 30 26 21 || 48 | 48 4824 2.12| (PCYP2) | 49 49 49
20 | 20 1917 826 | (C,C?P3) | 29 23 17 || 49 | 48 4842 1.75| (PCy2) | 48 48 48
21 21 2022 755| (G,P1) 22 19 22 || 50 | 49 4901 1.92| (PC4,3) |50 50 50
22 | 22 2071 7.79| (C,Cy,3) | 28 20 18 || 51 | 49 49.10 1.97 | (P.Cf?P3) | 51 51 51
23 22 2212 846 | (G,C?P3) | 17 21 23 || 52| 53 5277 195| (PG,1) 52 53 52
24 | 22 2230 6.62| (G,C{?P2) | 19 25 26 || 53| 53 5337 L15| (PG.2) 54 54 53
25 | 23 2397 808| (G,(»,3) |21 22 24 || 54| 54 5288 2.84| (C,G,1) 53 52 55
26 | 24 2336 6.66 | (G,Cy,2) |16 24 25 || 55 | 54 5347 131 (P,G,3) 55 55 54
27 | 25 2507 8.13| (G,G2) |24 29 27 || 56| 56 5629 080| (C,G,2) 57 57 57
28 | 27 2467 749 | (G,CP?P3) | 26 27 28 || 57| 56 5629 0.84| (C,G,3) 56 56 56
20 | 28 2637 750| (G,C4,3) | 25 28 30

Table 4.6: Configuration rankings under WC/I.

211

Rankings Under Average-Case Overheads, Loaded

Rank [Median Avg o |[(CPU,GPU,p)[WC/I AC/l WC/L|[Rank|Median Avg o [(CPU,GPU,p)[WC/T AC/I WC/L
1 1 207 3.08| (C,Po) 1 2 1 30 [30 29.02 10.89] (G,G,3) 31 27 33
2 2 391 558| (G,P) 4 1 4 31 | 30 2695 7.65| (C,cB?P1) | 30 32 29
3 4 547 474 (C,P3) 33 3 32 | 32 2898 8.17| (C,Cp1) | 32 34 31
4 4 580 442| (C,P2) 2 5 2 33 | 32 3049 6.66| (G,C5?P1) | 33 31 32
5 5 920 996| (G,P3) 6 4 6 34 | 34 3250 695| (G,Cy1) | 34 33 35
6 6 980 977| (G,P2) 5 6 7 35 | 35 29.86 10.93| (C,c?P.1) | 35 36 34
7 9 11.39 859 | (PPoo) 8 7 5 36 | 35 33.08 928 | (G.C¥*P)1) | 36 35 39
8 11 1378 7.57| (C,c§*F2) | 7 10 8 37 | 37 3129 11.81| (C,Cy,1) | 37 38 36
9 11 1395 7.51 | (C,C3,2) 9 11 9 38 | 37 3469 980 | (G,Cy4,1) | 38 37 40
10| 15 1632 687| (C,P1) 1118 12 || 39 | 39 3802 6.12| (PCL?P1) | 39 40 37
11 15 1815 980 | (G,c{?P2) | 16 8 19 || 40 | 39 3850 11.84| (G,G,1) 40 39 45
12 | 15 1854 1005| (G,(»,2) | 18 9 20 || 41 | 40 3876 575| (PCy,1) | 41 41 38
13 | 16 1666 6.44 | (C,C4,2) 15 12 15 || 42 | 41 3946 578 | (PCy,2) | 43 43 41
14 | 16 17.14 8.12| (PP3) 12 14 10 || 43 | 41 39.63 594 | (PCi?P2) | 42 42 42
15| 16 1746 7.01 | (C,CH?P2) | 13 15 16 || 44 | 42 4051 580 | (PCy,3) | 45 45 43
16 | 16 1771 8.80| (PP2) 10 13 11 || 45 | 42 4077 581 | (PRCI?P3) | 44 44 44
17 17 1653 745| (C,C5?P3) | 14 20 13 || 46 | 47 4599 4.67| (PRCI?P)1) | 46 46 46
18 | 18 1729 7.30| (C,C3,3) 17 23 14 || 47 | 47 4646 417 | (PC41) | 47 47 47
19 | 20 2019 861| (G,P1) 21 22 22 || 48 | 48 4722 410| (PCy2) | 49 48 48
20 | 21 2036 7.37| (C,Cy3) | 22 28 I8 || 49 | 48 4734 447 | (PCP2) | 48 49 49
21 | 21 2132 989 | (G,c{?P)3) | 23 17 23 || 50 | 49 47.68 4.19| (P.C4,3) 50 50 50
22 | 21 21.64 989 | (G,(3,3) 25 21 24 || s1 49 4772 473 | (PCP?P)3) | 51 51 51
23 | 21 2015 732 (C,c?P3) | 20 29 17 || 52| 53 5281 292| (C,G,1) 54 53 55
24 | 22 2199 801| (G,Cy,2) | 26 16 25 | 53| 53 5301 217 | (PG,l) 52 52 52
25 | 22 2231 7.67| (G,C{?P2) | 24 19 26 || 54 | 53 5326 205| (PG,2) 53 54 53
26 | 25 2386 839| (PP1) 19 30 21 || 55| 54 5332 197| (PG,3) 55 55 54
27 | 26 24.14 843 | (G,C{?P;3) | 28 26 28 || 56 | 56 5586 1.84| (C,G,3) 57 56 56
28 | 26 2425 860 | (G,Cy,3) | 29 25 30 || 57 | 56 5589 1.80| (C,G,2) 56 57 57
29 | 27 27321060 (G,G,2) 27 24 27

Table 4.7: Configuration rankings under AC/L.

212

Rankings Under Average-Case Overheads, Idle

Rank [Median Avg o |(CPU,GPU,p)|WC/1 AC/L WC/L||Rank|Median Avg o |[(CPU,GPU,p)|WC/I AC/L WC/L
1 2 312 249 (G,P) 4 2 4 30 [25 2374 754 (PP1) 19 26 21
2 2 371 483| (C,P) 1 1 1 31 | 31 2931 7.79| (G,cP?P1) | 33 33 32
3 4 590 554 (C,P3) 3 3 3 32 | 32 3084 4.16| (C,C5%P1) | 30 31 29
4 5 508 337 (G,P3) 6 5 6 33 | 33 3045 8.10| (G,Cp,1) | 34 34 35
5 5 621 539 (C,P2) 2 4 2 34 | 33 3186 463| (C,Co,1) | 32 32 31
6 6 574 309 (G,P2) 5 6 7 35 | 36 3220 10.74| (G,cP?P1) | 36 36 39
7 10 13.44 930 (P,P,e) 8 7 5 36 | 36 3389 744 | (C,CH*P1) | 35 35 34
8 12 1523 827| (G,C§?P2) | 16 11 19 || 37 | 37 3326 1135 (G,C4,1) 38 38 40
9 12 1546 849| (G,(5,2) 18 12 20 || 38 | 37 3484 786| (C,Cy1) | 37 37 36
10 12 15.60 8.50| (C,C¥%F2) | 7 8 8 39 39 34.13 1547| (G,G,1) 40 40 45
11 121599 8.73| (C,(3,2) 9 9 9 40 | 39 3895 383 | (PRCI?P1) | 39 39 37
12 | 16 16.80 7.02| (C,C4,2) 15 13 15 || 41 | 40 3944 340| (PGy,1) 41 41 38
13 16 16.88 951 (PP?2) 100 16 11 42 | 42 4090 3.17 | (PCI?P2) | 42 43 42
14 | 17 1769 8.74| (P,P3) 12 14 10 || 43 | 42 4099 3.04| (PCy,2) 43 42 4
15 17 18.04 7.24| (C,ci?P2) | 13 15 16 || 44 | 43 4218 3.01 | (PCS?P3) | 44 45 44
16 | 18 1829 6.59| (G,C4,2) | 26 24 25 || 45 | 43 4221 3.15| (PCy,3) 45 44 43
17 18 18.69 8.86| (G,C5%P)3) | 23 21 23 || 46 | 47 4635 331 | (RCI?P)1) | 46 46 46
18 19 18.84 6.70| (C,P1) 1110 12 || 47 | 47 4675 3.00| (P,Cy1) 47 41 47
19 | 19 19.03 7.17| (G,c{?P2) | 24 25 26 || 48 | 48 4785 2.69| (P,C4,2) 49 48 48
20 19 19.03 8.64| (C,CE?P.3) | 14 17 13 || 49 | 48 4795 2.79| (P.C{?P2) | 48 49 49
21 19 19.44 846| (G,C2,3) | 25 22 24 || 50 | 49 4873 288 | (P,C4,3) 50 50 50
22 | 20 17.66 8.02| (G,P1) 21 19 22 || 51 49 4890 2.90| (PCH?P3) | 51 51 51
23 | 20 19.83 821| (C,(3,3) 17 18 14 || 52 | 53 5229 288 | (PG,1) 52 53 52
24 | 21 1927 798| (G,G,2) 27 29 27 || 53| 53 5233 339 (C,G,1) 54 52 55
25 | 24 2186795 (G,C4y,3) | 29 28 30 || 54 | 53 5297 252| (PG,2) 53 54 53
26 | 24 2197 795| (G,C¥?P.3) | 28 27 28 || 55| 54 5313 252| (PG.)3) 55 55 54
27 | 25 2266 9.34| (G,G,3) 31 30 33 || 56 | 56 5581 226 (C,G,3) 57 56 56
28 | 25 23.03 653 (C,C4,3) | 22 20 18 || 57 | 56 5583 224| (C,G,2) 56 57 57
29 | 25 2335677 (C,c?P3) | 20 23 17

Table 4.8: Configuration rankings under AC/I.

213

would both have a value of “1.” They do not. This result demonstrates that configurations other than (C, P, o)

perform better for some classes of task sets.

Observation 15. Under partitioned GPUs, schedulability tended to be maximized when p was large, espe-

cially when p = oo,

We may observe this by scanning the system configuration columns in Tables 4.5, 4.6, 4.7, and 4.8,
picking out entries matching (x, P,). Observe that entires that only differ by p generally tend to be ranked in
decreasing p-order. For instance, in Table 4.7, the configurations (C, P,*), (C,P,3), (C,P,2), and (C,P,1)
are ranked first, third, fourth, and tenth, respectively. There are minor exceptions to this general trend.
For example, in Table 4.5, (C,P,2) is ranked 2™, while (C,P,3) is ranked 3’¢. However, the average sub-
ranks of these configurations are very close: 5.72 and 5.73, respectively. We see similar exceptions for
(%, P,*) configurations, where those with p = 2 are occasionally ranked slightly higher than the similar
corresponding configuration with p = 3. This occurs under all overhead assumptions, so we cannot conclude
that these exceptions are due to overheads alone. Despite these exceptions, the general trend still holds:
under partitioned GPU scheduling, configurations with many GPU tokens perform best. This is a good
property, since it motivates the use of GPUSync configurations that maximize the opportunity for parallelism

at runtime.

Observation 16. With the exception of those where CPUs are partitioned, schedulability of clustered GPU

configurations tended to be maximized when p = 2.

To see this, locate the sets of clustered GPU configurations that only differ by their values for p in
Tables 4.5, 4.6, 4.7, and 4.8. With the exception of those with partitioned CPUs, entries where p = 2 have the
highest rank among similar configuration that only differ by p. For example, in Table 4.5, (C,C4,2) is ranked
15", while (C,Cy,3) is ranked 18", and (C,Cy, 1) is ranked 36 Similar trends can be observed for rankings
in the WC/L, AC/I, and AC/L columns, as well. This result is interesting because it indicates, in terms of
schedulability, that there is a “sweet spot” to the number of tokens for many clustered GPU configurations
that maximizes theoretical performance. As we see later in Chapter 5, the existence of token-number sweet

spots can be observed in runtime performance as well (see Observation 45).

Observation 17. Peer-to-peer migrations offered better schedulability than system memory migrations.

214

With the exception of configurations that use a GPU Allocator based upon the CK-OMLP, every clustered
GPU configuration where peer-to-peer migrations are used ranks higher than the similar configuration that use
system memory migration. In most cases, the system-memory-variant ranks closely below the corresponding
peer-to-peer configuration. For instance, (G,Cy??,2) ranks 167 while (G,C,,2) ranks 187 in Table 4.6. The
differences in ranking between similarly matched configurations under the other overhead data sets can also
be observed in Tables 4.5, 4.7, and 4.8.

This result differs from what we reported in prior work (Elliott et al., 2013). In that work, results from
schedulability experiments showed that system memory migration configurations outperformed correspond-
ing peer-to-peer configurations. The schedulability analysis for peer-to-peer configurations used in those
experiments was based upon the non-ILP fine-grain blocking analysis we described in Section 4.3.4.3. In
contrast, the schedulability analysis we use in this work employs our ILP-based blocking chain analysis. The
improvement in our results demonstrates the benefits of our ILP-based analysis. Also, as we see later in

Section 4.4, these improvements bring our analytical results more in line with observed runtime behavior.

Observation 18. Smaller GPU clusters, where g = 2, offered better schedulability than larger clusters,

where g = 4.

This observation holds for every evaluated configuration, even those that use a GPU Allocator based
upon the CK-OMLP, which have bucked many other trends observed here. We give a diverse set of examples.
Under WC/L overheads in Table 4.5, (P,C?F,3) (ranked 44 has an average sub-ranking of 36.35, while
(P,Ct?F 3) (ranked 51*) has an average sub-ranking of 47.14. Under WC/I overheads in Table 4.6, (C,C,2)
(ranked 9"*) has an average sub-ranking of 14.38, while (C,C4,2) (ranked 15" has an average sub-ranking
of 16.10. Under AC/L overheads in Table 4.7, (G,C5?P,2) (ranked 11") has an average sub-ranking of 18.15,
while (G,szp ,2) (ranked 25™) has an average sub-ranking of 22.31. Finally, under AC/I overheads in
Table 4.8, (C,C;,1) (ranked 34" has an average sub-ranking of 31.86, while (C,Cy4, 1) (ranked 38”") has an
average sub-ranking of 34.84.

There are two aspects of larger GPU clusters that explain this poor performance. First, for larger clusters
that use peer-to-peer migration, in Section 4.3.1.2 (see Observation 8), DMA overhead costs when g = 4 are
approximately twice those when g = 2. Second, with larger GPU clusters under both peer-to-peer and system
memory migration configurations, jobs that issue token and engine requests may experience worse blocking

in the worst-case. This is not only explained by the asymptotic blocking bounds for token and engine requests

215

that increase with g, but also by the fact that a single request potentially competes with the requests of more
tasks due to there being fewer GPU clusters. Since blocking analysis always assumes worst-case resource

request scenarios, the poor performance of lager cluster sizes is usually inevitable.

Observation 19. The clustered CPU and clustered GPU configuration, (C,CP?F 2), was competitive with

partitioned CPU and partitioned GPU configurations, (P, P,).

Under WC/L overheads, in Table 4.5 we see that (P, P,) is ranked 5", while (C,CF??,2) is ranked 8.
Under AC/L overheads, in Table 4.7, this rankings gap shrinks: (P, P,) is ranked 7, while (C,C?"2)
remains ranked 8. The relative performance of these configurations switch under WC/I overheads, as we see
in Table 4.6. Here, (C,C?P 2) is ranked 7", and (P, P,c) is ranked 8”. Under AC/I overheads, in Table 4.8
we see that (P, P,) is ranked 7" once again, while (C,C?" 2) is ranked 10"

We have already established that configurations (C, P,0) and (G, P,e0) have the best schedulability in
Observation 15. Why do we care about the comparative performance of (C,CF?P,2) against fully partitioned
alternatives? As we see later in Section 4.4.2, GPUSync’s affinity-aware heuristics greatly reduce the
likelihood of GPU migrations. As a result, GPUSync configurations with clustered GPUs can outperform
partitioned alternatives at runtime on average. We compare the best-performing clustered configuration,
(C,CP?F 2), against fully partitioned alternatives because these partitioned configurations represent the
approach one would expect from current industrial practice—one where all computations are statically
assigned to processor partitions. We highlight the analytical performance of (C,C"??,2) to show that a system
designer need only sacrifice a small degree of schedulability to realize potential runtime benefits of clustered

GPUs, with respect to the de facto alternative.
Observation 20. Schedulability was comparably poor under GPU Allocators based upon the CK-OMLP.

We observe in Table 4.5 that configurations (P, G, *), (P,C,), (P,C"??), and (C, G,) make up 18 of
the 21 lowest ranked configurations under WC/L. Similar trends hold under the other overhead data sets, as
can be seen in Tables 4.6, 4.7, and 4.8. The consistently poor performance of configurations that rely upon
the CK-OMLP for GPU token assignment clearly indicates that these configurations should be avoided (at
least in the absence of other compelling system requirements).

Recall from Section 2.1.7.3 what we know of the CK-OMLP: tasks that do not obtain a resource through

the CK-OMLP may still suffer s-oblivious pi-blocking due to priority donation. In general, the utilization

216

L NS TS SN e
L \\ \\ h Y _[1] (Gv P, OO)
09 ‘\ ' _[2] (C> P, OO)
o EteRe)
0.8 L \‘ “ - [4] (G» ngp’ 2)
i o —=[5] (C,C4,2)
07f “\ [6] (P,P,o0)
[‘| ‘| - [7] (G7 C4a 2)
206 SR --[8] (G,G,2)
E [' - [9] (P7 C’szpv 1)
1
-i‘; 05; \ ‘l [10] (P’CEZP’]_)
g [L --[11] (R,G,1)
2 04 . —_ Q2] (C,G1)
L ‘a
Wb 2 o
L \
L y
02f -
L LY
L L
0.1 A
[\\\\ AN \\ WA
0 1 2 3 4 5 6 7 8 9 10 11 12

Utilization (prior inflation)

Figure 4.16: Detailed schedulability result.

of every task that may share a CPU with a GPU-using tasks increases under the CK-OMLP—this severely

decreases schedulability. This explains the poor schedulability we see here.

This completes our high-level comparisons of the various system configurations. We now take a deeper
look at some of our results.

Figure 4.16 plots schedulability curves for the twelve highest-ranked configuration of each high-level
GPUSync configuration under AC/L overheads. The curves are numbered in descending order according to
the area under each curve. That is, curve 1 has the greatest area under its curve, while curve 12 has the least
area under its curve. In general, a curve with greater area reflects better performance in terms of schedulability.
The tasks of the schedulability experiment illustrated by Figure 4.16 had medium utilizations, moderate
periods, heavy data requirements, and each GPU-using task had a state size of 2MB (or 25% of the tasks’ data
requirement). GPU kernel execution times were sampled from a [25%,75%)] uniform distribution. Finally,
66% of the tasks in each task set used a GPU. Figure 4.16 represents a tiny portion of our schedulability
results. However, we examine these schedulability curves to reinforce the observations we made from the

ranking data and illustrate additional points. We make the following observations.

Observation 21. The clustered and global CPU configurations with partitioned GPUs gave the best schedu-

lability results.

217

Curves 1 and 2 plot schedulability for the configurations (G, P,e) and (C, P,), respectively. As we
see in Figure 4.16, these curves nearly completely overlap, reflecting roughly equivalent performance. We
also see in this figure that these curves reflect greater schedulability than those for the other configurations.
Although this result is immediately apparent in Figure 4.16, we consider task sets with a utilization of
about 5.0 (x = 5.0) to make more precise comparisons.

Roughly 98% of task sets with a utilization of about 5.0 are schedulable under (G, P, o) and (C, P,). In
comparison, only about 80% of task sets with that utilization are schedulable under (C ,Cf 2P 2) (curve 3)
and (G,CF 2P 2) (curve 4). Approximately 65% and 57% of task sets with a utilization of 5.0 are schedulable
under (C,Cy,2) (curve 5) and (C,C4,2) (curve 7), respectively; and roughly 50% and 25% of task sets with
a 5.0 utilization are schedulable under (P,P,) and (G,G,2), respectively. No task set with a utilization
of 5.0 was schedulable under (P,C{?F 1) (curve 9), (P,CF?F 1) (curve 10), (P,G,1) (curve 11), or (C,G, 1)

(curve 12) configurations.
Observation 22. The conventional configuration, (P, P,), did not give the best results.

We see in Figure 4.16 that, (C,CL??,2) (curve 3), (G,C5%F2) (curve 4), and (P, P,) (curve 6) offer
similar performance for task sets with utilizations no greater than 4.2. However, these curves begin to
diverge thereafter. Ultimately, configurations (C,C4?F,2) and (G,CL??,2) have better schedulability. The
configurations (C,Cy,2) (curve 5) and (G,C4,2) (curve 7) are arguably competitive with (P, P,eo) as well. We
see that these two configurations have better schedulability than (P, P, o) for task sets with utilizations greater
than approximately 4.8.

The curves in Figure 4.16 provide a concrete example in support of Observation 19, which noted that

better alternatives exist to the default industry approach of configuration (P, P,co).
Observation 23. Small GPU peer-to-peer clusters where g = 2 perform relatively well.

We make this observation by comparing the curves in Figure 4.16 for similar clustered GPU configurations
that differ in cluster size. For example, configuration (C,C5?F,2) (curve 3) dominates (C,Cy,2) (curve 5).
Similarly, (G,C5?P,2) (curve 4) dominates (G,Cy,2) (curve 7). Even (P,C{?F 1) (curve 9) dominates
(P, Cf 2P, 1) (curve 10). This observation reinforces Observation 18: smaller GPU cluster are better than large

GPU clusters.
Observation 24. Peer-to-peer GPU clusters do not always offer the best schedulability.

218

In Observation 17, we remarked on compelling evidence that GPU clusters with peer-to-peer migration
offered better schedulability than similar GPU clusters that use system memory migration. While this remains
true in general, as we see in Figure 4.16, there are exceptional cases.

Recall that Figure 4.16 plots only the schedulability curves of the twelve best high-level configurations.
We see that configurations (C,Cy4,2) and (G, C4,2) are plotted by curves 5 and 7, respectively. There are no
curves for configuration (C,C{?F,2) or (G,C?F,2). This is because configurations (C,Cy4,2) and (G, Cy,2)
had better schedulability. In this case, the benefits of ILP-based blocking chain analysis do not overcome
larger DMA overheads or asymptoticly more complex blocking bounds that are associated with large GPU

clusters with peer-to-peer migration.

Observation 25. Configurations where GPUs are shared among CPU clusters had inferior schedulability

results.

In Observation 20, we remarked that configurations where the GPU Allocator was based upon the
CK-OMLP offered poor schedulability. This claim is supported here by the four lowest curves in Figure 4.16.
Configurations (P,C5?F 1) (curve 9), (P,CY?P 1) (curve 10), (P,G,1) (curve 11), and (C,G, 1) (curve 12)
were unable to schedule task sets that other configurations were always able to schedule. For example, 100%
of the evaluated task sets with a utilization of 4.0 were schedulable by configurations (G, P,0) (curve 1)
and (C, P,) (curve 2). In contrast, practically no task sets with a utilization of 4.0 were schedulable under

(P,CL?P 1) (curve 9).

If we ended our study of schedulability results here, one may be left with the impression that GPUs only
harm schedulability. In Figure 4.16, no task set with a utilization of 8.0 or more is schedulable, and yet in
Section 4.3.2, we stated that task sets that fully utilize platform CPUs are schedulable with bounded deadline
tardiness under FL scheduling. Does this mean that no GPUSync configuration supports a computing capacity
of eight CPUs on our evaluation platform? The answer to this question is “no.” This is because the x-axis
of Figure 4.16 reflects only CPU utilization—it does not reflect the gains in computational capacity made
possible by GPUs. We illustrate these gains by considering what we call the effective utilization of a task set
with GPU-using tasks.

To find the effective utilization of a task set, we begin by supposing a GPU-to-CPU speed-up ratio. Let
us denote this ratio by .. We then analytically convert each GPU-using task into a functionally equivalent

CPU-only independent task by viewing each unit of time spent executing on an EE as § time units spent

219

[—

NS OO R R —[] (C,P,0)
0.9 L \\ \\ \\ \\ ~-‘}{}§\ =S _[2] (Ga P7 OO)

L . N

r ‘\ \\ \‘\‘ ' \\\‘\[\5] ‘\\ (3] (C, CZP 2P7 2)
08~ ‘\ “ \\ ' \\\ - -—[4] (G, C§2P: 2)

[V [N G —[5] (C.Ch2)
0.7 — vy “‘\ \ \\ ‘\‘ \: [6] (P7 P7 OO)

[! \‘ \ N \\ A\ 3 -7 (G,C4,2)
06| = Voo T B - {8} Eggpil)
= [\ \) -9 1
'._a L B ‘\‘ 2)
< o5l 'S Lo [10] (P,Cf?P,1)
2 ' ' \ N ol b Yy --[11] (P,G,1)

3 oal = I S\ -~ 12 (GG
: VA ! AN SN
! n2\ o opol) S
< ' \ N Ny N
[v \ N . N \
r . \ . LS
02 v \ ERS LA
L \‘ ‘\ \‘\ \\ \;\\ ‘\‘
o r - \\‘ N . \ \\ \\
R= [\, - VN
F N A\, A ==y N,
r vy AN AN SN
0' 1 1 1 1 1 1 1 1 ‘\l\\‘ﬁﬁi ‘-l L 1 i LJ._L_J‘:"_;—L—-LJ__‘_L_L_J__J_l_k_‘\..—‘_v-::\:i\‘;“:m.L L_L_l_i_J_.L_l_J
0 10 20 30 40 50 60 70 80 90 100 110

Effective Utilization

Figure 4.17: A detailed schedulability result showing schedulability and effective utilization.

executing on a CPU. We also discard all DMA operations and ignore all GPU-related overheads. The effective
utilization of a task set is the sum of all task utilizations after this conversion process.!”

We re-plot the schedulability curves of the task sets evaluated in Figure 4.16 in terms of effective
utilization in Figure 4.17, where we assume a speed-up ratio of § = 32. This is a reasonable speed-up

factor, since we are converting the execution time of data-parallel GPU computations to serialized CPU

computations. We make the following critical observation.
Observation 26. GPUs greatly increase the computational capacity of a platform.

Every GPUSync configuration represented by the curves in Figure 4.17 was able to schedule a task
set that has an effective utilization greater than 12.0 (the number of system CPUs). The best performing
configurations, (C, P,e) (curve 1) and (G, P,0) (curve 2), managed to schedule task sets that had effective
utilizations as great as 94.0. In Figure 4.16, we saw that these configurations were not able to schedule task
sets with utilizations greater than roughly 8.0—a utilization loss of 4.0. However, this utilization loss is not
truly a loss in light of utilization gains from the GPUs. In a way, we sacrifice 4.0 units of CPU capacity in

order to gain an equivalent of 90.0 (94.0 — 4.0) CPUs from the eight GPUs.

170Observe that two task sets with the same real CPU utilization and the same speed-up ratio may still have different effective
utilizations, since the tasks in each task set may use the EE to different degrees.

220

An effective utilization of 94.0 is a best-case schedulability scenario of the configurations represented
by Figure 4.17. Even when we consider more conservative cases, the benefits of GPUs remain clear. For
instance, about 90% of task sets with effective utilizations of 66.0 were schedulable under (C, P, o) (curve 1)
and (G, P,o0) (curve 2). Roughly 50% of task sets with effective utilizations of 76.0 were schedulable under
(C,P,) (curve 1) and (G, P,oo) (curve 2).

Configurations with clustered GPU scheduling also realized significant gains in computational capacity.
About 90% of task sets with effective utilizations of 50.0 were schedulable under (C, Cg 2P, 2) (curve 3) and
(G,CL?P,2) (curve 4). Roughly 50% of task sets with effective utilizations of 65.0 were schedulable under
these configurations.

This result supports a major part of this dissertation’s thesis: increases in computational capacity
outweigh analytical costs introduced by management overheads and limitations of GPU hardware and

software.

This concludes our schedulability analysis of GPUSync.

4.4 Runtime Evaluation

In this section, we evaluate GPUSync through runtime experiments. We present our evaluation in
two parts. First, we examine the effectiveness GPUSync’s budgeting mechanisms, Cost Predictor, and
affinity-aware GPU Allocator. Second, we assess the effectiveness of clustered GPU management and
peer-to-peer migrations through the scheduling of computer vision workloads. Before continuing, we note
that we evaluated schedulability under FL schedulers in the prior section, since the analytical techniques
associated with FL schedulers provide better bounds on deadline tardiness. However, the use of FL schedulers
in practice requires offline analysis (e.g., execution time analysis and derivation of blocking terms) in order
to properly determine task priority points. In this section, we forgo such analysis because FL scheduling
is not a core aspect of GPUSync. Instead, we evaluate GPUSync under EDF and RM schedulers, since
these are easier to use in practice. Up to this point, we have focused mainly on deadline-based scheduling
(e.g., FL and EDF). We include RM schedulers in our runtime evaluations, since fixed-priority schedulers
are more prevalent in RTOSs than deadline-based schedulers. Moreover, evaluations under RM schedulers

also highlight the flexibility of GPUSync’s design. However, as we discuss laster in Chapter 6, we leave the

221

development of overhead-aware schedulability tests for GPUSync under RM schedulers as future work. Such

analysis is not necessary in order to perform runtime experiments.

4.4.1 Budgeting, Cost Prediction, and Affinity

We used a mixed task set of CPU-only and GPU-using implicit-deadline periodic tasks to evaluate budget
enforcement, the Cost Predictor, and the GPU Allocator. We now describe our task set in more detail.

Numerical code was executed by tasks on both CPUs and GPUs to simulate real applications. Task
execution time was tightly controlled through the use of processor cycle counters on both CPUs and GPUs.
GPU-using tasks also transmitted data on the PCle bus. Task periods ranged from 10ms to 75ms, reflecting a
range of periods found in ADAS systems, such as those we described in Chapter 1 (see Table 1.1).

The task set consisted of 28 CPU-only tasks and 34 GPU-using tasks. Each task was assigned a utilization
based upon the combined processor time (CPU and GPU engines) a task’s job must receive before completing.
Of the CPU-only tasks, twelve had a utilization of 0.1, eight had a utilization of 0.2, and two had a utilization
of 0.3. Of the GPU-using tasks, fourteen had a utilization of 0.1, fourteen more had a utilization of 0.25,
and six had a utilization of 0.5. 90% of each GPU-using task’s utilization was devoted to GPU operations,
with 75% of that towards GPU kernels, and the remaining 25% towards memory copies. Each GPU-using
job had one GPU critical section. Within its critical section, each such job executed two GPU kernels of
equal execution time. The amount of memory to copy was determined based upon desired copy time and
worst-case bus congestion bandwidth derived from empirical measurements. Memory copies were evenly
split between input and output data. Task state size was set to twice the combined size of input and output
data. Additionally, DMA operations were broken up into 2MB chunks.

We configured our system to run as a cluster along NUMA boundaries. Thus, there were two clusters of
six CPUs and four GPUs apiece. The above task set was evenly partitioned between the two clusters. The task
set was scheduled under C-EDF and C-RM schedulers. Three tokens (p = 3) were allocated to each GPU in
order to allow all GPU engines to be used simultaneously. Under C-EDF, we configured the GPU Allocator
to be optimal under suspension-oblivious analysis, i.e., the GPU Allocator was configured as the R?>DGLP.
We realized this configuration by setting the maximum length of the FIFO queues of the GPU Allocator to
f=1lc/(g-p)] =[6/(4-3)] = 1. Under C-RM, the GPU Allocator was configured to be strictly priority-
ordered, as is common to locking protocols under fixed-priority schedulers. We realized this configuration by

setting f to the minimum size, or f = 1. These two configurations of the GPU Allocator are actually one in

222

the same, since our values for p and GPU cluster size are so great. The GPU Allocator under the C-EDF
and C-RM schedulers only differ by the method used to determine job priority (earliest-deadline-first for
C-EDF and shortest-period-first for C-RM). We used different engine lock configurations for each scheduler.
Engine locks were FIFO-ordered and priority-ordered under C-EDF and C-RM schedulers, respectively. GPU
migrations were performed using peer-to-peer DMA operations.

The task set was scheduled under two execution-behavior scenarios. Under the first scenario, tasks
adhered to their prescribed execution times as closely as possible. Under the second scenario, however,
eight GPU-using tasks in each cluster were configured to exhibit aberrant behaviors by executing for ten
times their normal execution time at random moments (roughly spaced by five seconds for each task). These
scenarios were scheduled for 180 seconds under both C-EDF and C-RM schedulers and measurements were
taken. We use data gathered during the execution of these scenarios as the basis of the evaluations described

in Sections 4.4.1.1,4.4.1.2, and 4.4.1.3.

4.4.1.1 Budget Performance

We analyze the ability of GPUSync to manage budgets (and penalize overrunning tasks) by examining
the long-term utilization of the execution engines. Here, we test GPUSync under the early releasing policy
described in Section 3.2.4, and compare performance against a no-budget-enforcement policy. We measure
execution engine utilization (GPU execution time divided by period) with respect to the hold time of execution
engine locks. This is an effective measure, even if the engine may idle while the engine lock is held, since all
other tasks are blocked from using the engine.

From the task set described in Section 4.4.1, we focus our attention on two of the 34 GPU-using tasks, 7}
and 7. T; has a period of 15ms and a utilization of 0.25. 7;’s ideal execution-engine utilization is 0.169,
and it sends and receives 512KB to and from the GPU. 75 has a period of 75ms, a utilization of 0.1, an ideal
execution-engine utilization of 0.068, and it sends and receive 1024KB to and from the GPU. We focus on
these tasks because of their short and long periods, respectively.

Figure 4.18 depicts the accumulated time (on the y-axis) tasks 77 and 7, hold an execution engine
lock over the duration of their execution (on the x-axis). Figure 4.18 also displays the equation for the
line-of-best-fit of each plotted line. The slope of each line-of-best-fit (i.e., the coefficient of the variable x)
approximates the accumulated time the associated task holds an engine lock, divided by task period. We

interpret this slope as a measure of long-term execution engine utilization. We make three observations.

223

Accumulated Time (ms)

35000

30000

25000

20000

15000

10000

5000

GPU Execution Engine Allocation
T

T

[1]C-RM T, = 0.164x - 157.08
[21 C-RM T, Abr. = 0.169x - 191.63
| [3] C-RM T, Abr. w/ Budget = 0.120x - 139.16
[4] CRM T, = 0.067x - 88.71
[5] C-RM T, Abr. = 0.075x - 57.01
I [6] C-RM T, Abr. w/ Budget = 0.069x - 33.74
[7]1 C-EDF T; = 0.165x - 170.30
[8] C-EDF T, Abr. = 0.169x - 214.08
[9] C-EDF T, Abr. w/ Budget = 0.153x - 13.03
" [10] C-EDF T, = 0.065x - 102.30
[11] C-EDF T, Abr. = 0.074x - 86.39
[12] C-EDF T, Abr. w/ Budget = 0.067x - 69.73

T

T

T

(2,8]
(1,7]

(9]

Il
100000

Time (ms)

Il
150000 200000

[1]C-RM T,

[2] C-RM T, Abr.

[3]1 C-RM T} Abr. w/ Budget
[4] C-RM T,

[5] C-RM T, Abr.

[6] C-RM T, Abr. w/ Budget

[7] C-EDF T,

[8] C-EDF T} Abr.

[9] C-EDF T} Abr. w/ Budget
[10] C-EDF T,

[11] C-EDF T, Abr.

[12] C-EDF T, Abr. w/ Budget

Figure 4.18: Allocated execution engine time.

224

Observation 27. A synchronization-based approach to GPU scheduling is effective at supplying GPU-using

tasks with provisioned execution time.

Ideally, the slope of the lines in Figure 4.18 should be equal to the task’s execution-engine utilization.
With the exception of line 3, the slopes of all the lines are very close to the desired utilization. For example,
when 75 is well-behaved under C-EDF scheduling (line 10), the slope is 0.065, this is commensurate with the

assigned utilization of 0.068
Observation 28. Budget enforcement can penalize aberrant tasks by allocating less execution time.

This may be observed in lines 3 and 9 for the aberrant task 77 under both C-RM and C-EDF scheduling
in Figure 4.18. As shown by line 3, 7’s utilization is 0.12—30%]ess than the provisioned 0.169, for C-RM.
Similarly, for C-EDF, T;’s utilization is 0.153—10% less than the provisioned 0.169, This loss of utilization
is a result of the early releasing budget policy where any surplus from an early-released budget is discarded

after an overrunning job completes.
Observation 29. C-RM and C-EDF can both perform well.

For this particular experiment, we observe that both C-RM and C-EDF are able to supply the needed
GPU execution time. This is an important result because it empowers system designers to select the scheduler

that suits their needs.

4.4.1.2 Cost Predictor Accuracy

We measured the overheads related to the Cost Predictor because of our concern that computing averages
and standard deviations can be computationally expensive. However, we found these worries to be unfounded.
Updating the Cost Predictor estimate took 0.294us on average, and 2.335u in the (observed) worst-case.

We now discuss the accuracy of the Cost Predictor. Figure 4.19 plots cumulative distribution functions
(CDFs) for the percentage error of the cost predictor for different migration distances under the aberrant
behavior scenario, without budget enforcement. Migration distance is denoted by d; d = O reflects no
migration, d = 1 denotes migrations to neighboring (i.e., near) GPUs, and d = 2 reflects migrations to distant

(i.e., far) GPUs. We continue to consider tasks 77 and 7, described earlier in Section 4.4.1.

Observation 30. The Cost Predictor is generally accurate at predicating token hold time, despite aberrant

task behavior.

225

Probability(|Percentage Error|) < z

Probability(|Percentage Error|) < x

1.0

,Q
3

0.6

CDF of Percentage Error, C-EDF W|th No Budgetlng

P R e

04 H
I — [11T1,d=0
— [21Th,d=1
— [3]T1,d =2
02 . [@4]Ty, d=0 (]
— - [B]l T, d=1
3] [6] T3, d =2
00 Il Il Il Il
0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
|Percentage Error|
(a) C-EDF
Lo CDF of Percentage Error, C-RM With No Budgeting
’ — - - —— - ===
[4L /. -~
0.8 = 8
(5]
(6]
0.6 i
A4 5
0 [T, d=0
— [21T1,d=1
— [BlT1,d=2
02 L 4Ty, d=0]
| . [BTnd=1
[6] T, d =2
OO Il Il Il Il
0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

|Percentage Error|

(b) C-RM

Figure 4.19: CDFs of percentage error in cost predictions.

226

As seen in Figure 4.19, under C-EDF (inset(a)), roughly 95% of all predictions for task 77 have a
percentage error of 5% or less (only one sample exists for 77 where d = 2). Accuracy is even better for T}
under C-RM. This is expected since 77 has a statically high priority due to its short period, and it is thus able

to avoid more interference from other tasks than under C-EDF.
Observation 31. The Cost Predictor is less accurate for tasks with longer execution times and periods.

Both Figure 4.19(a) and Figure 4.19(b) show that the Cost Predictor is less accurate for 7; than 7} in this
experiment. This is because 7> has a longer execution time and period than most other tasks in the task set.

Thus, 7> is more likely to experience interference from aberrant tasks.
Observation 32. The Cost Predictor is moderately less accurate under C-RM than C-EDF.

This can be seen by comparing insets (a) and (b) of Figure 4.19. For example, about 90% of predictions
for 7> with d = 1 under C-EDF (inset (a)) have a percentage error no greater than 20%. Compare this to

C-RM (inset(b)), where only 80% of d = 1 predictions for 7, have the same degree of accuracy.
Observation 33. The Cost Predictor is generally less accurate for longer migration distances.

A migrating job of a task must acquire additional copy engine locks and do more work than non-migrating
jobs. This