
EFFICIENT SYNCHRONIZATION FOR REAL-TIME SYSTEMS
WITH NESTED RESOURCE ACCESS

Catherine E. Nemitz

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill
2021

Approved by:

James H. Anderson

Andrea Bastoni

Björn B. Brandenburg

Samarjit Chakraborty

F. Donelson Smith

©2021
Catherine E. Nemitz

ALL RIGHTS RESERVED

ii

ABSTRACT

Catherine E. Nemitz: Efficient Synchronization for Real-Time Systems with Nested Resource Access
(Under the direction of James H. Anderson)

Real-time systems are comprised of tasks, each of which must be guaranteed to meet its timing re-

quirements. These tasks may request access to shared system components, called resources. Each such

request may experience delays before being granted resource access. These delays can be separated into two

categories: (i) those caused by the order in which tasks are granted resource access, and (ii) those caused by

the time it takes to coordinate this ordering. If these delays are too large, a task may be unable to meet its

timing requirements.

Tasks can require access to multiple resources concurrently, acquiring these resources in a nested fashion.

This nested resource access can cause significant delays to tasks; these delays can far exceed those when only

a single resource is required at a time, as certain request orderings cause delays between tasks that do not

share any resources.

This dissertation presents locking protocols and a protocol-independent approach to mitigate resource

access delays. Nested resource access can increase delays for all requests, including non-nested requests.

The first protocol eliminates these additional delays by separating requests by type and creating a fast-path

mechanism for non-nested requests. The next two protocols both reduce delays by reordering requests.

One protocol reorders requests as they are issued, and the other uses an offline process to determine which

requests may execute concurrently. These three protocols were compared to prior approaches in an evaluation

across a range of task systems; all three protocols resulted in more task systems guaranteed to meet their

timing requirements. Finally, a protocol-independent approach reduces delays by using a designated task to

execute the locking protocol on behalf of other tasks. When applied to two protocol variants, this approach

significantly reduced delays.

iii

ACKNOWLEDGEMENTS

I am so very grateful for the many people who made this dissertation possible and supported me along

the way. The completion of this dissertation would not have been possible without all of you.

First, I want to thank my adviser, Jim Anderson, who encouraged me to consider pursuing a doctorate,

gave me the opportunity to join the group, and guided me over the past six years. I would also like to thank

my dissertation committee members, Andrea Bastoni, Björn Brandenburg, Samarjit Chakraborty, and Don

Smith, for all of their feedback.

I want to express my gratitude to all of my coauthors and collaborators: Tanya Amert, Nathan Burrow,

Shai Caspin, Pontus Ekberg, Manish Goyal, Claire Nord, Brittany Subialdea, Bryan Ward, Kecheng Yang,

and Ming Yang, many of whom have been members of the real-time systems group at UNC. This dissertation

would not have been possible without their help. I have also appreciated the discussions with and feedback

from the other members of the real-time systems group: Shareef Ahmed, Joshua Bakita, Lee Barnett, Micaiah

Chisholm, Calvin Deutschbein, Zhishan Guo, Clara Hobbs, Namhoon Kim, Vance Miller, Mac Mollison,

Sims Osborne, Nathan Otterness, Sarah Rust, Abhishek Singh, Stephen Tang, Peter Tong, Sergey Voronov,

and Tyler Yandrofski, as well as the interactions with members of the broader Cyber-Physical Systems Group.

I want to especially recognize Tanya, who has been an amazing coauthor, encouraging office-mate, patient

teacher, and great friend.

I appreciate the staff in the Computer Science Department, who have done so much to keep everything

running smoothly and also build a sense of community, especially: Fay Alexander, Murray Anderegg, Robin

Brennan, David Cowhig, Brandi Day, Jodie Gregoritsch, the late Bil Hays, Alicia Holtz, Denise Kenney, Beth

Mayo, David Musick, Brett Piper, Gina Rozier, Mark Snyder, John Sopko, Mike Stone, Rosario Vila, Adia

Ware, Missy Wood, and Hope Woodhouse. I would also like to thank all of the faculty, and especially Sanjoy

Baruah, Gary Bishop, Fred Brooks, and Diane Pozefsky.

My time as a graduate student has been made more rich by multiple groups of people. I am thankful

for the friendship and encouragement of everyone who has been part of the Graduate Women in Computer

Science group, and especially for Tanya Amert, Bashima Islam, and Marie Nesfield. I appreciated serving

iv

as a Computer Science Student Association officer along with Tanya Amert, Marc Eder, and Alan Kuntz. I

have also enjoyed being part of both a reading group that has focused on Computer Science education and a

Bible study with other computer scientists. I am thankful for the support of the UNC Writing Center and

the encouragement from Nosh Mazandarani and the rest of the Accountabilibuddies group while writing my

dissertation.

The work in this dissertation builds on knowledge and skills that so many people have taught me along

the way. I am very thankful to have had so many wonderful teachers, coaches, instructors, and professors

over the years.

I am endlessly grateful to my parents for their love and support. I am thankful for all of my family, and

especially for the support of my brother, Colin, and all of my siblings-in-law: Amanda, Bradley, Margaret,

Natalie, and Trey. I would also like to thank my friends who have encouraged me, especially the Kaufmann

family.

Finally, I am grateful for Clay. He has encouraged me throughout the journey of graduate school, and

without his love and support, this dissertation would not have been possible.

The research in this dissertation was funded by NSF grants CNS 1115284, CNS 1218693, CNS 1409175,

CNS 1563845, CNS 1717589, CPS 1239135, CPS 1446631 CPS 1837337, CPS 2038855, and CPS 2038960,

AFOSR grant FA9550-14-1-0161 ARO grants W911NF-14-1-0499, W911NF-17-1-0294, W911NF-20-1-

0237, ONR grant N00014-20-1-2698, and funding from General Motors and FutureWei Corp. This material

is based upon work supported by the National Science Foundation Graduate Research Fellowship Program

under Grant No. DGS-1650116. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation. This work was also supported by a Dissertation Completion Fellowship from the Graduate

School at UNC.

v

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xvi

Chapter 1: Introduction . 1

1.1 Shared Resources . 1

1.2 Nested Resource Access . 2

1.3 Transitive Blocking Chain Problem . 2

1.4 Thesis Statement . 4

1.5 Contributions . 6

1.5.1 The Fast RW-RNLP . 6

1.5.2 The C-RNLP . 7

1.5.3 The CGLP . 7

1.5.4 Lock Servers . 8

1.6 Organization . 8

Chapter 2: Background . 9

2.1 Task Model . 9

2.2 Scheduling Algorithms . 10

2.3 Schedulability Analysis. 11

2.4 Resource Model . 13

2.4.1 Types of Resource Access . 14

2.4.2 General Methods for Handling Nested Resource Access . 14

2.4.2.1 Partial Ordering of Resources . 16

vi

2.4.2.2 Coarse-Grained Locking . 17

2.4.2.3 Dynamic Group Locking . 17

2.5 Metrics of Evaluation for Locking Protocols . 18

2.5.1 Analysis Assumptions . 19

2.5.2 Overhead . 19

2.5.3 Blocking . 19

2.5.4 Schedulability Analysis of Locking Protocols . 21

2.6 Existing Approaches to Synchronization. 22

2.6.1 General Classifications. 22

2.6.2 Locking Protocols for Non-Nested Resource Access. 22

2.6.2.1 The MCS Lock . 23

2.6.2.2 Real-Time Locking Protocols . 23

2.6.2.3 Reader/Writer Locking Protocols . 24

2.6.2.4 Other Resource-Sharing Paradigms . 25

2.6.3 Locking Protocols for Nested Resource Access . 25

2.6.3.1 Using Coarse-Grained Approaches . 25

2.6.3.2 Early approaches . 26

2.6.3.3 M-BWI . 26

2.6.3.4 MrsP . 27

2.6.3.5 RNLP Family . 27

2.6.4 Chapter Summary . 28

Chapter 3: Minimizing Impacts on Read and Non-nested Write Requests . 29

3.1 Reader-Only Phase-Fair Locks . 30

3.1.1 Reader-Reader Phase-Fair Locks . 30

3.1.2 Reader-Reader-Reader Phase-Fair Locks. 31

3.1.3 R3LP Implementation. 32

3.2 The Fast RW-RNLP . 35

vii

3.2.1 Protocol Structure . 36

3.2.2 The Fast RW-RNLP with the R3LP . 38

3.2.3 The RW-RNLP* . 40

3.2.4 RW-RNLP* Pi-Blocking Bounds . 46

3.2.5 The Fast RW-RNLP with the RW-RNLP*. 49

3.2.6 RW-RNLP* Implementation . 50

3.3 Evaluation . 54

3.3.1 Overhead and Blocking . 54

3.3.2 Schedulability study . 61

3.4 Additional Details . 67

3.4.1 Tight Blocking Bounds for the RW-RNLP* . 67

3.4.2 Corner Case for Nested Read Requests . 72

3.4.3 Linearizability . 72

3.4.4 Constraints used in Schedulability Study . 74

3.5 Chapter Summary . 77

Chapter 4: Minimizing Impacts on Nested Write Requests . 79

4.1 C-RNLP . 80

4.1.1 Safety . 80

4.1.2 Delay Preservation . 82

4.1.3 C-RNLP Rules . 84

4.1.4 Establishing a Bound . 89

4.1.5 Uniform C-RNLP . 90

4.2 Implementation . 92

4.3 Experimental Evaluation. 94

4.3.1 Measuring Lock/Unlock Overheads . 95

4.3.2 Runtime Performance . 98

4.4 Motivation for the CGLP . 99

viii

4.4.1 Transitive Blocking Chain Problem . 99

4.4.2 Request Timing Problem . 100

4.5 Concurrency Groups . 101

4.5.1 Offline Group Creation via Graph Coloring . 102

4.5.2 Implementation of Offline Component . 103

4.5.3 Group Arbitration . 105

4.5.4 Implementation of Online Component . 107

4.5.5 Bounding Blocking . 108

4.5.6 Refining the Blocking Bound . 109

4.6 Alternate Coloring Choices . 111

4.6.1 Motivation . 111

4.6.2 Minimizing Blocking . 112

4.7 Mixed-Type Requests . 114

4.7.1 Graph Creation . 115

4.7.2 Modifications to ILP . 116

4.8 Hierarchical Organization . 116

4.8.1 Hierarchical Request Satisfaction . 117

4.8.2 Bounding Blocking . 119

4.8.3 Assigning Groups to Slots . 121

4.9 Analysis of Offline Component . 123

4.10 Schedulability Study . 127

4.10.1 Experimental Setup . 127

4.10.2 Evaluation of the C-RNLP Variants . 129

4.10.3 Comparison of the CGLP to Existing Protocols . 130

4.10.4 Comparison of CGLP Variants . 131

4.11 Chapter Summary . 132

Chapter 5: Lock Servers . 133

ix

5.1 Static Lock Servers . 134

5.1.1 A Static Global Lock Server . 135

5.1.2 Static Local Lock Servers . 137

5.2 Floating Lock Servers . 139

5.2.1 A Floating Global Lock Server . 140

5.2.2 Floating Local Lock Servers . 141

5.3 Handling Non-Uniform Requests . 141

5.4 Evaluation . 144

5.4.1 Experimental Setup . 144

5.4.2 Overhead and Blocking without Lock Servers . 145

5.4.3 Applying Lock Servers . 146

5.4.4 Results on an Alternate Platform . 150

5.5 Local Lock Server Phase Management and Blocking Bounds . 152

5.6 Chapter Summary . 157

Chapter 6: Conclusion . 158

6.1 Summary of Results . 158

6.2 Other Related Work . 160

6.3 Future Work . 162

BIBLIOGRAPHY . 164

x

LIST OF TABLES

2.1 Notation. 15

3.1 Implementation-based worst-case acquisition delay under the fast RW-RNLP. 57

3.2 Best protocols per scenario by SUA. 65

3.3 Relative SUAs. 67

4.1 Five possible groupings of the requests from Example 4.10 with the RkLP blocking
bounds computed. Using the minimum of two groups does not result in the lowest
blocking. 112

4.2 Named parameter distributions. From each, a value is selected uniformly at random. 124

4.3 Schedulability study parameter choices. Critical-section lengths are assigned with
one of two methods: randomly for each request or within a range of the random
length assigned to a group. 124

4.4 Average size of a graph coloring problem for a system with total utilization of 16. 125

4.5 Blocking bounds and overhead of each protocol. For the C-RNLP bounds, Ni is the
number of requests which conflict withRi. (The reported overhead of the CGLP is
the maximum of that measured with between two and ten concurrency groups.) 128

xi

LIST OF FIGURES

1.1 Possible execution pattern. 3

2.1 Illustration of analysis window for BAR schedulability test. Figure adopted from
original presentation (Baruah, 2007). 13

2.2 Illustration of the modifications for each of the three methods of handling nesting. 16

2.3 Illustration of invocation blocking and direct blocking. 20

2.4 Illustration of phase-fair reader/writer locking protocol managing access to a resource. 25

3.1 R2LP illustration with read requests of Type 1 and Type 2. 31

3.2 R3LP illustration with read requests of Type 1, Type 2, and Type 3. 31

3.3 Bits in the shared s variable. 33

3.4 Fast RW-RNLP structure. 36

3.5 Example illustrating the rules of the RW-RNLP*. 41

3.6 System states without write expansion are labeled (i), and states with write expan-
sion (used in the RW-RNLP) are labeled (ii). 45

3.7 Bits in the per-resource rin and rout variables. (A very similar figure appears in
the presentation of PF-TLs (Brandenburg and Anderson, 2010).) . 51

3.8 (a) Overhead and (b) blocking for non-nested read and write requests when using
PF-TLs versus both variants of the fast RW-RNLP. For each requestRi, Lr

i = 40µs,
Lw

i = 40µs, nr = 64, |Di|= 1. Requests were randomly chosen to be a read (or a
write) with probability 0.5. 56

3.9 (a), (b) Overhead and (c), (d) blocking for nested and non-nested write requests
under the RW-RNLP and the fast RW-RNLP. Here, Lr

i = 40µs, Lw
i = 40µs, nr = 64,

|Di|= 1, for non-nested requests, and |Di|= 4, for nested requests. Requests were
chosen to be a read (or write) with probability 0.5. Data is plotted for the cases of
20% (left) and 80% (right) of requests being nested. Due to write expansion (recall
Figure 3.6), Di was inflated to include all 64 resources for writes under the RW-RNLP. 58

3.10 (a), (b) Overhead and (c), (d) blocking for nested and non-nested read requests
under the RW-RNLP and the fast RW-RNLP, in the same scenario as in Figure 3.9. 60

3.11 Blocking for nested and non-nested write requests under the RW-RNLP and the
fast RW-RNLP. The critical-section length varies, m = 36, nr = 64, |Di|= 1, for
non-nested requests, and |Di|= 4, for nested requests. (|Di| is inflated to 64 under
the RW-RNLP as above.) A request was chosen to be a write with probability 0.5. 61

xii

3.12 Hard real-time schedulability results with varying nested probabilities for the
scenario with medium task utilizations, long periods, long critical-section lengths,
and read probability 0.8. Nested probabilities are (a) 0.01, (b) 0.05, (c) 0.1, (d)
0.2, and (e) 0.5. 64

3.13 Hard real-time schedulability results with varying task utilizations and periods for
the scenario with short critical-section lengths, nested probability 0.1, and read
probability 0.2. Task utilizations and periods are, respectively, (a) medium and
short, (b) heavy and short, and (c) heavy and long. 66

3.14 A simple example that shows worst-case acquisition delay for a read request and
the acquisition delay a write may experience after becoming entitled. 68

3.15 An issuance order which may cause the maximum blocking after a write request
Rw

3 becomes the earliest-timestamped active write request for each of its resources,
here just `2. 68

3.16 A series of read and write requests that illustrate the worst-case acquisition delay
for nested and non-nested write requests. 70

3.17 Illustrates the edge case in which a write request (Rw
4) would need to wait unneces-

sarily behind a nested read request (Rr
3) if the extra code step had not been added

in Listing 5. 72

3.18 Illustration of a series of lock and unlock calls by requestsR1 throughR5 with the
linearization point of each operation shown with a circle. 74

4.1 A wait-for graph G and several positions at which R3 could be inserted. (The
legend also applies to subsequent figures. Note that edge weights are not used in
this particular figure.) . 81

4.2 A wait-for graph G that includes seven requests. 83

4.3 A wait-for graph G with two possible positions forR4. 85

4.4 A wait-for graph G with all possible positions shown. P1–P4 are `a-positions, P5–P8
are `b-positions, and P9–P11 are `c-positions. 87

4.5 G with worst-case blocking for request Ri requiring `a, with Li just greater than
L1, L3, and L5. 90

4.6 Illustration of G and Table. 92

4.7 Measured C-RNLP lock overhead as a function of |Di| for n = 36 and nr = 64. 96

4.8 Lock overhead as a function of task count n for nr = 64 and |Di|= 4. 97

4.9 Total blocking time of lock call as a function of critical-section length for n = 36,
nr = 64, and |Di|= 2. 98

4.10 FIFO-ordering. 100

xiii

4.11 Optimized offline ordering. 100

4.12 An illustration of the Request Timing Problem. R5 may not be inserted in the
earlier slot marked by an ‘X’, as this would delay an already issued request. 101

4.13 An example coloring. 102

4.14 Trace of executions of requests in Example 4.8. 106

4.15 An illustration of the maximum blocking forR1 in Example 4.9. 110

4.16 An alternate coloring. 111

4.17 For the requests in Example 4.10, the corresponding minimum coloring is on the
left, and the coloring that achieves the minimum blocking is on the right. 113

4.18 Graph of mixed-type requests. 115

4.19 Four concurrency groups for requests R1 to R6: G1 = {R1}, G2 = {R2,R3},
G3 = {R4,R5} and G4 = {R6}. 117

4.20 An illustration of execution under the hierarchical approach. 119

4.22 Scenarios in which periods were short, nested probability was 0.2, nesting depth
was 4, mixed probability was 0, and 100% of tasks issued requests. 130

4.23 For this scenario, nested probability was 0.5, nesting depth was 4, mixed probability
was 0.8, and 100% of tasks issued requests. 131

5.1 Test platform architecture. 135

5.2 Lock overhead under the U-C-RNLP with and without a lock server. 136

5.3 Three options: no lock servers (left), a single static global lock server (middle),
and two per-socket static local lock servers (right). 136

5.4 R5 is added to Row 3 of Table. 138

5.5 R6 is added to Table of Socket 2. 138

5.6 Scenarios with complicated phase management. 142

5.7 Blocking and lock/unlock overhead when no lock servers are used. For this
scenario, nr = 64,D= 4, and Li = 40µs for all i. 146

5.8 For this scenario, nr = 64,D= 4, and Li = 40µs for all i. 147

5.9 Worst-case blocking for the scenario in Figure 5.8 (a). 148

5.10 (a) Overhead as a function of critical-section length, for n= 34,nr = 64, andD= 4.
(b) Overhead and (c) blocking as a function of n, for nr = 64,D= 4, and Li = 1µs
for all i. 148

xiv

5.11 For this scenario, nr = 64,D = 4, and Li = 40µs for 75% of requests and Li =
100µs for the remaining 25% of requests. 149

5.12 Results of total request time comparison. 150

5.13 Same scenario as in Figure 5.8: nr = 64,D= 4, and Li = 40µs for all i. 151

5.14 Worst-case blocking for the scenario in Figure 5.13 (a). 151

xv

LIST OF ABBREVIATIONS

C-RNLP Contention-Sensitive Real-Time Nested Locking Protocol

CGLP Concurrency Group Locking Protocol

CPU Central Processing Unit

DGL Dynamic Group Lock

DPCP Distributed Priority Ceiling Protocol

EDF Earliest-Deadline First

fast RW-RNLP Fast Reader/Writer Real-Time Nested Locking Protocol

FIFO First-In, First-Out

FMLP Flexible Multiprocessor Locking Protocol

FMLP+ Flexible Multiprocessor Locking Protocol (improved)

FP Fixed Priority

G-C-RNLP General Contention-Sensitive Real-Time Nested Locking Protocol

G-EDF Global Earliest-Deadline First

GPU Graphics Processing Unit

ILP Integer Linear Program

L1 Level 1 (Cache)

L2 Level 2 (Cache)

L3 Level 3 (Cache)

M-BWI Multiprocessor Bandwidth Inheritance Protocol

MCS Mellor-Crummey and Scott Lock

MPCP Multiprocessor Priority Ceiling Protocol

MrsP Multiprocessor Resource Sharing Protocol

OMLP O(m) Locking Protocol

PCP Priority Ceiling Protocol

PF-TL Phase-Fair Ticket Lock

R2LP Reader-Reader Phase-Fair Locking Protocol

R3LP Reader-Reader-Reader Phase-Fair Locking Protocol

RCL Remote Core Locking

xvi

RkLP k-Phased Reader-Reader Phase-Fair Locking Protocol

RM Rate Monotonic

RNLP Real-Time Nested Locking Protocol

RW-RNLP Reader/Writer Real-Time Nested Locking Protocol

SUA Schedulable Utilization Area

U-C-RNLP Uniform Contention-Sensitive Real-Time Nested Locking Protocol

xvii

CHAPTER 1: INTRODUCTION

Real-time systems are distinguished by timing requirements in the form of task deadlines—the execution

of processes (called tasks) within a hard real-time system must complete by their respective deadlines. As

such, these systems differ from non-real-time ones in that they are evaluated on the basis of schedulability.

Schedulability is the required guarantee that all deadlines will be met in any possible invocation pattern of the

tasks in a system. The main focus of this requirement is predictability, in contrast to (perhaps more familiar)

throughput-oriented metrics and notions of correctness; a missed deadline can result in significant financial

loss and physical damage. Reasoning about schedulability requires considering sources of potential processing

capacity loss, such as delays introduced by synchronization requirements caused by shared resources. The

presentation and analysis of new approaches to handling shared resources can enable schedulability to be

guaranteed for a broader class of systems.

1.1 Shared Resources

Tasks in a real-time system often require protected access to non-CPU components of the system called

shared resources. (CPU access is granted by a separate mechanism, which is discussed in Chapter 2.) These

components can range from physical elements (e.g., a graphics processing unit) to data (e.g., a region of

shared memory).

Shared resources can be protected by locking protocols that guard access to each. For example, a locking

protocol can ensure that each resource is used by at most one task at any given time. This behavior upholds

the mutual-exclusion sharing paradigm. Without the appropriate protected access, a shared resource can enter

an unsafe state. For example, a region of shared memory may hold inconsistent, incorrect values if two tasks

attempt to update it concurrently.

Ensuring protected access by use of a locking protocol fundamentally introduces two types of delays.

Blocking is the delay as a task waits for access to a resource (such as while another task is granted access).

Overhead is the delay that occurs while a task waits for the protocol to determine if it may be granted access

immediately or to update the protocol data structures that maintain the list of tasks awaiting access to include

1

this task. Thus, when examining a specific protocol, blocking is caused by the access order that the protocol

specifies, and overhead is caused by how long it takes to manage the internal data structures that implement

that ordering.

The choice of synchronization method for use in a given system is crucial, as excessive delays can cause

missed deadlines and system failure. Schedulability is analyzed by determining whether there is sufficient

processing capacity in the system to support all tasks meeting their respective deadlines. As such, the delays

tasks can incur due to sharing resources with other tasks effectively reduces the available processing capacity;

each task must be guaranteed to be able to incur these delays and still meet its deadline. A schedulability test

is applied to a task system to determine if all task deadlines can be guaranteed to be met. The analysis of a

task system with a schedulability test must incorporate blocking and overhead delays. Significant processing

capacity can be lost to these delays (especially blocking), even if shared-resource access is rare at runtime.

This is because, in schedulability analysis, worst-case behavior must be assumed.

1.2 Nested Resource Access

Tasks may require access to multiple resources concurrently. Multi-resource access is also called nested

resource access. This term reflects the traditional manner in which resources are acquired, with one request

for access “nested” within another.

For example, multi-resource access could be used to transfer a value from one data structure to another

while maintaining a consistent value. Recent automotive industry specifications require an implementation

for nested resource access (AUTOSAR, 2019). Additionally, nested resource access occurs in current systems,

including the Linux kernel (Brandenburg and Anderson, 2007) and is reflected in benchmarks (Bacon et al.,

1998).

Unfortunately, allowing nested resource access can result in excessive blocking caused by transitive

blocking chains, described next. This further reduces system processing capacity.

1.3 Transitive Blocking Chain Problem

Transitive blocking chains can cause resource-requesting tasks, including those that do not require nested

resource access, to be blocked even when the resources they have requested are free. Because worst-case

2

A

D+E

C+D

B+C

A+B

Task τ5

Task τ1

Task τ2

Task τ3

Task τ4

task invocation

task deadline

task requires resource

A

normal computation

computation with Resource A

blocking

D

C

B

A

Figure 1.1: Possible execution pattern.

bounds must be applied in schedulability analysis, transitive blocking can be a key source of pessimism in

multiprocessor schedulability analysis.

Example 1.1. Consider the five tasks depicted in Figure 1.1. Each task executes on a different core and most

require access to two resources. For example, task τ1 requires Resource D after executing for one time unit

and then also requires Resource E after an additional time unit of execution. The illustrated execution pattern

exhibits the worst-case scenario of transitive blocking for τ5. It is blocked for over eleven time units, waiting

for access to Resource A, which is not being used for the majority of that time. τ5 is transitively blocked

by all of the other tasks, though its resource requirements overlap with only one them. This blocking chain

causes τ5 to miss its deadline. ♦

As shown in Example 1.1, a blocking chain can build such that all tasks are transitively waiting on a

single task. One might mistakenly assume that because τ5 shares resources with only one other task, it will

be blocked by at most one task execution. Instead, significant delays can be caused by the formation of a

transitive blocking chain.

These blocking chains delay non-nested resource access as well as nested resource access. This highlights

that the large blocking bounds caused by nested resource access can affect other types of access. As such,

resource access cannot be analyzed in isolation, and the possibility of nested resource access by some tasks

can impact every task.

The tasks described in Example 1.1 require mutually exclusive resource access (also called write access).

However, some resources can also be shared with read access, in which multiple tasks can concurrently

observe a shared resource without modifying it. Because read access can occur concurrently, one goal for

3

reader/writing locking protocols is to leverage this concurrent execution and grant read access with minimal

blocking and protocol overhead.

In Example 1.1, if τ5 required read access to Resource A, it could still experience the long waiting

time caused by the transitive blocking chain under the protocol illustrated in Figure 1.1. The fundamental

problem here is that access to Resource A is granted to task τ4 for the eight time units that τ4 is blocked

on Resource B, and it may be unsafe to revoke τ4’s access to Resource A. Thus, without a protocol that

fundamentally restructures access order or artificially delays access, such long blocking is inevitable.

In summary, the transitive blocking chains caused by nested resource access can delay all types of

resource access, causing capacity loss and potentially compromising schedulability.

1.4 Thesis Statement

The focus of this dissertation is spin-based, fine-grained locking protocols that support nested resource

access in hard real-time systems. A protocol is spin-based (as opposed to suspension-based) if a task

waiting for resource access continues to execute on the CPU rather than yielding the CPU to another task.

Additionally, this dissertation assumes non-preemptive execution from the moment any resource is requested

until the moment when all shared resources have been released. A locking protocol in fine-grained if access

is granted on a per-resource basis. This is in contrast to the coarse-grained approaches described in Chapter 2.

As illustrated above, by simply allowing nested resource access, significant delays can be caused, leading

to lost processing capacity. Incorporating excessive delays into the schedulability analysis can reveal that a

task system may not be guaranteed to meet all task deadlines. However, some system specifications require

support of nested resource access. The two types of delays, blocking and overhead, are interdependent; a

protocol with a more complex ordering for access satisfaction may reduce worst-case blocking at the cost of

increased overhead. Balancing these concerns is crucial to ensuring schedulability.

Safely supporting nested resource access is non-trivial. The modifications to or the creation of many

existing protocols to handle nested resource access has focused on safely sharing these resources. For

example, both deadlock and starvation must be prevented. Deadlock can occur when two tasks each hold

a resource that the other requires. Forward progress cannot be made without prevention of this scenario or

intervention to force one of the tasks to lose resource access prematurely. Starvation, in which a task waiting

4

for access to a resource is never granted access, can occur if no access order is enforced by the protocol. For

example, if the access order is random, a given task may never be guaranteed to be granted resource access.

Given the challenge of ensuring safe nested resource access, most existing work has been developed with

that goal at the forefront, without focusing on reducing blocking. However, as illustrated in Example 1.1,

without considering the resulting blocking as a primary concern, significant blocking can be caused.

Excessive blocking can cause tasks to miss their deadlines, resulting in an unsafe system. A simple

locking protocol comprised of only first-in-first-out (FIFO) queues results in worst-case blocking exponential

in nesting depth (Takada and Sakamura, 1995). More recent work has presented the RNLP family of

protocols (Ward, 2016; Ward and Anderson, 2012, 2013, 2014), which was designed specifically to bound

blocking to the number of processors in the case of the spin-based variant.

Blocking can be quantified on a per-request basis. For example, in an m-core system with no nesting

and non-preemptive execution of critical sections, a fine-grained FIFO protocol yields O(m) blocking for a

given request. Blocking can also be measured relative to the contention a request experiences, the number

of other requests with which it shares an overlapping set of resources. A protocol is contention-sensitive

if the worst-case blocking is upper-bounded by a constant factor of each request’s contention. Contention-

sensitive blocking is the ideal, as it ensures blocking is at most (a constant factor larger than) the number

of requests that require the same resource(s). It is not possible to achieve better blocking for all requests.

Contention-sensitivity serves as the underlying motivation at the heart of much of this work.

Reducing interference (blocking and overhead) is crucial to ensuring that deadlines of systems with

nested resource sharing can be met. In addition to evaluation on the basis of blocking and overhead, new

approaches are evaluated on schedulability by conducting a schedulability study, which is the application of

a schedulability test to a wide range of synthetic task systems with varying parameters. If new approaches

reduce overhead, lower blocking, and outperform prior approaches in a schedulability study, that indicates

that systems that could previously not be guaranteed to be schedulable can now have that guarantee. The

work contained in this dissertation was primarily motivated by a single question: can contention-sensitive

blocking (i.e., blocking that is dependent only on tasks that access the same resource) be achieved with low

overhead?

This leads to the following thesis statement:

5

New approaches to supporting nested resource access can mitigate or eliminate the transitive

blocking chains that could otherwise increase blocking, without significant overhead. This

can be accomplished with new locking protocols that isolate non-nested resource requests and

read requests, protocols that reorder the satisfaction of nested write requests, and a protocol-

independent approach to reducing overhead. These improvements in turn allow for schedulability

to be confirmed for more task systems.

1.5 Contributions

The thesis is supported by the following contributions.

1.5.1 The Fast RW-RNLP

A primary problem of nested resource access is its impact on tasks requiring only non-nested or read

access to shared resources. These types of access can be granted without forming transitive blocking chains,

but can be significantly delayed by nested resource access.

To reduce these impacts, read and non-nested write access can be isolated by the use of a novel fast-path

protocol. This protocol, the fast Reader/Writer Real-Time Nested Locking Protocol (fast RW-RNLP), is

presented in Chapter 3. The fast RW-RNLP is a modular protocol that uses separate components for each

access type (nested write, non-nested write, and read access). This separation removes negative interactions

between requests for different access types.

The use of access-type-specific components necessitates the use of an arbitration mechanism to coordinate

access between components. Two such arbitration mechanisms are presented in Chapter 3. The presented

fine-grained arbitration mechanism operates on a per-resource basis. The pathological cases that result in

unacceptable blocking with nested resource access are obviated by allowing only one request per resource

per type to compete for access at a time. The coarse-grained arbitration mechanism instead cycles through

the types, allowing one request per resource to execute during each type phase.

Chapter 3 also presents an evaluation of the fast RW-RNLP with both arbitration mechanisms. First, the

overhead of each protocol is compared to prior work, and then a large-scale schedulability study is presented.

6

1.5.2 The C-RNLP

As described above, nested resource access can cause excessive blocking, building blocking chains

between otherwise independent tasks. The Contention-sensitive Real-time Nested Locking Protocol (C-

RNLP) is instead designed to be contention-sensitive: the blocking a task experiences is proportional to the

number of other tasks that require an overlapping set of resources.

The C-RNLP, presented in Chapter 4, builds on an existing protocol, but instead allows a new request

for resource access to cut ahead of existing requests if no already-waiting request will be delayed as a

result. This runtime check is necessary to prevent starvation, but it requires maintaining data on each active

resource request and adds overhead as a result. The cutting-ahead mechanism, however, enables a significant

reduction in blocking: resource requests can skip ahead, filling gaps in the satisfaction order and preventing

the formation of transitive blocking chains. Chapter 4 presents a study that examines the schedulability

benefit of the reduced blocking at the cost of higher overhead.

1.5.3 The CGLP

While the C-RNLP improves blocking, it does so at the expense of higher protocol overhead. This

prompts reframing the challenge of granting nested resource access and focusing on a solution with low

overhead.

The Concurrency Group Locking Protocol (CGLP) is motivated by shifting from viewing a locking pro-

tocol as merely preventing resources from being accessed concurrently to instead viewing it as a mechanism

that safely allows concurrency with respect to shared resources. The CGLP forms concurrency groups—sets

of tasks that can safely execute concurrently (i.e., without requiring overlapping resources)—and arbitrates

among them. Chapter 4 presents multiple methods of forming the concurrency groups. For example, one of

these methods translates the resource requirements into a graph coloring problem in order to determine which

requests can execute concurrently.

The CGLP tackles the challenges of efficiency in blocking and overhead together by leveraging offline

computing capacity to determine the concurrency groups. Offline group formation allows a simpler locking

mechanism to be employed, resulting in lower runtime overhead.

7

Chapter 4 shows that concurrency groups can be formed with an integer linear programming approach in

a reasonable amount of time offline. Then, a large-scale schedulability study is presented, which demonstrates

the schedulability benefits of the reduced blocking and overhead from the CGLP.

1.5.4 Lock Servers

As described briefly above, some protocols that reduce blocking, such as the C-RNLP, do so by

maintaining extensive data compared to traditional approaches. Access to this data, which is part of the

state of the locking protocol, can cause significant delays. Use of the locking protocol updates this state,

invalidating cached state. As such, maintaining resource request data can cause significant protocol overhead.

Lock servers are presented in Chapter 5 as a method to reduce protocol overhead. A lock server is a

process that executes the locking protocol on behalf of resource-requiring tasks. This allows the protocol

state to remain cache-local for the lock server. Chapter 5 presents four possible lock server configurations.

These configurations can reflect the underlying cache structure and coordinate access between subsets of the

task system.

Lock servers can be applied to any protocol and can significantly reduce the protocol overhead by

centralizing the lock state and taking advantage of the underlying machine architecture. An experimental

evaluation shows that lock servers can significantly reduce protocol overhead.

1.6 Organization

The remainder of this document is organized as follows. Chapter 2 presents terminology, notation,

and related work. Chapter 3 proposes a modular protocol, the fast RW-RNLP, that significantly reduces

synchronization delays for non-nested and read access of shared resources. Two protocols that reduce delays

for nested resource access, the C-RNLP and the CGLP, are presented in Chapter 4. Both protocols build

on notions of reordering request satisfaction. Chapter 5 gives a protocol-independent method of reducing

overhead. Chapter 6 summarizes the contributions and poses open problems for future work.

8

CHAPTER 2: BACKGROUND

This section introduces relevant background information and related notation. Additionally, prior work

is discussed. First, the general task model is presented. Then, multiple scheduling algorithms are given,

followed by a discussion of schedulability analysis and a description of the most relevant approaches. Next,

the resource model is given along with a classification of resource access types and a summary of methods for

managing nested resource access. Then, metrics for the evaluation of synchronization protocols are presented

along with a discussion of how the protocol analysis is incorporated into schedulability analysis. The chapter

concludes with a summary of the most relevant locking protocols.

2.1 Task Model

This dissertation focuses on real-time systems that are comprised of recurrent programs called tasks on a

multiprocessor platform with m processors. An arbitrary task is denoted τi; the task system consists of n tasks

and is defined as the set Γ = {τ1, . . . ,τn}. Each invocation of τi is called a job. The jth job of τi is denoted

Ji, j. (An arbitrary job of τi is denoted simply Ji.) Each job of τi is invoked with some minimum separation,

which is the period of that task, denoted Ti; this corresponds to the classic sporadic task model (Mok, 1983).

(The sporadic model extends the periodic model, in which job invocations are separated by exactly the period

interval.) The relative deadline, denoted di, of a task τi is the span of time in which one of its jobs must

complete after its invocation (also called its arrival). If the relative deadline of a task equals its period, it has

an implicit deadline. A task has a constrained deadline if its relative deadline is at most its period, and an

arbitrary deadline otherwise. Implicit-deadline tasks are assumed in this dissertation. The absolute deadline

of a job is the point in time by which its execution must complete. The worst-case execution time of a task τi

is denoted Ci. In hard real-time systems, the focus of this dissertation, all task deadlines must be met; the

execution of each job must complete before its absolute deadline.

The utilization of τi is denoted ui and is defined as ui =
Ci
Ti

. The system utilization is denoted U and is the

summed utilization of all tasks. Thus, U = ∑
n
j=1 u j. The density of a task τi is denoted δi and is defined as

δi =
Ci

min(Ti, di)
.

9

2.2 Scheduling Algorithms

A task system is scheduled on a multiprocessor system by a scheduling algorithm. The discussion in this

section begins with uniprocessor scheduling algorithms.

A job is ready to be scheduled from the time it is invoked until it has completed its execution. The

job allowed to execute on a CPU at a given time is determined by the scheduling algorithm in use by the

operating system. This dissertation focuses on systems in which the job to schedule on a CPU is chosen at

runtime based on the priority of ready jobs. (This is in contrast to systems that use fixed schedules that are

determined offline, like with the Cyclic Executive scheduler (Baker and Shaw, 1988, 1989).)

With priority-based scheduling algorithms, the highest-priority ready job is allowed to execute. The

differences between these scheduling algorithms are in how priorities are assigned. (Under any approach, if

multiple jobs share the highest priority, some tie-breaking mechanism is required, such as breaking ties in

favor of the job with the lowest task ID.)

In particular, this work assumes the use of a job-level fixed-priority scheduling algorithm—the priority of

a given job will not change over time. The following two task-level priority definitions both result in job-level

fixed-priority assignments.

Fixed-priority (FP) scheduling algorithms use priorities assigned on a per-task basis prior to runtime—

each job of a given task will have the same priority. For example, the rate monotonic (RM) scheduling

algorithm (Liu and Layland, 1973) assigns priorities in order of period length; the task with the shortest period

has the highest priority. Similarly, the deadline monotonic scheduling algorithms (Leung and Whitehead,

1982) assigns priorities based on relative deadline, with the highest priority being assigned to the task with

the smallest relative deadline.

Dynamic-priority scheduling algorithms instead assign priorities on a per-job basis. For example, the

Earliest-Deadline-First (EDF) scheduling algorithm (Liu and Layland, 1973) assigns priorities based on

absolute deadlines: the highest priority is assigned to the job with the earliest deadline.

Both fixed-priority schedulers and dynamic-priority schedulers fall under the broader category of job-

level fixed-priority schedulers, as the priority of a job relative to other jobs does not change during its

execution under either type of scheduling algorithm.

Scheduling algorithms can also be distinguished by preemptivity: a non-preemptive scheduling algorithm

ensures that a job continuously executes without interruption until completion. In contrast, preemptive

10

schedulers consider each newly invoked job and may allow such a job to preempt an executing job before it

has completed (if it is not in a non-preemptive region). This dissertation focuses on the evaluation of systems

that use preemptive scheduling algorithms.

The above scheduling algorithms were developed for uniprocessor systems and have been extended

to multiprocessor systems in multiple ways. A multiprocessor system can employ global, clustered, or

partitioned scheduling. In a globally scheduled system, each task is allowed to execute on any of the m

processors. At any given time, all ready jobs are considered, and the (up to) m ready jobs with the highest

priorities are granted a processor. For example, the Global Earliest-Deadline First (G-EDF) scheduling

algorithm allows up to m ready jobs with the earliest absolute deadlines to execute on the m processors.

A partitioned system is scheduled on a per-processor basis; each task is assigned to a processor offline,

and scheduling decisions are then made on each processor using a uniprocessor scheduling algorithm. For

a clustered system, the task system is split into a pre-determined number of clusters, each of which are

scheduled on a subset of the processors. As such, a clustered system can be seen as a generalization of

global and partitioned systems (with 1 and m clusters, respectively). More nuanced approaches have also

been considered (Baruah and Brandenburg, 2013; Bastoni et al., 2011; Bonifaci et al., 2016, 2017; Cerqueira

et al., 2014; Tang and Anderson, 2020; Voronov and Anderson, 2018). These include semi-partitioned

systems (Anderson et al., 2005), which assign most tasks to a single processor, but allow a subset of tasks

to migrate. A generalization of this approach instead allows the assignment of processor affinities, which

specify a subset of the processors on which execution is allowed on a per-task basis.

2.3 Schedulability Analysis

A task set is schedulable if it can be guaranteed that all task deadlines will be met under the chosen

scheduling algorithm. A schedulability test yields a conclusion about whether the task system can be

guaranteed to meet all job deadlines under a given scheduling algorithm. A significant amount of research

has presented a range of tests for both uniprocessor and multiprocessor scheduling algorithms.

In the following discussion of classifications of schedulability tests, the utilization-based test of U ≤ 1

for a uniprocessor system scheduled with EDF (Liu and Layland, 1973) will be used as an example. For the

system being analyzed, if U > 1, then it fails the utilization test. If instead U ≤ 1, then the system passes the

test. Any test can be categorized by the implication of its result for the system to which it is applied.

11

A test is necessary if failure of the test implies that the system cannot be scheduled. The test of U ≤ 1

is necessary for all uniprocessor systems, regardless of the scheduler employed (Liu and Layland, 1973).

Intuitively, with a workload (U) larger than the capacity (1 for a uniprocessor), deadlines will be missed. A

schedulability test is sufficient if passing the test implies that the system to which it is applied is schedulable.

For a uniprocessor system scheduled with EDF, the test U ≤ 1 is sufficient (Liu and Layland, 1973). A

schedulability test is exact if it is both necessary and sufficient. For uniprocessor analysis, the test U ≤ 1 is

exact for EDF (assuming implicit deadlines): a task system is schedulable with EDF if and only if U ≤ 1.

The synchronization approaches presented in this dissertation can be applied to any system scheduled

with a job-level fixed-priority scheduler. However, in the evaluations in this dissertation, the use of G-EDF is

assumed and thus its analysis is the focus of the remainder of this section.

Prior work (Bertogna and Baruah, 2011) has summarized schedulability tests for G-EDF. Most of these

tests are incomparable, so this work also suggests a combined approach to determining schedulability, in

which a fast-running test is conducted first, before attempting slower, but possibly better-performing, tests.

Recall that if a sufficient but not necessary test fails, no conclusion can be drawn about schedulability.

Instead, the application of a different sufficient test may reveal that the task system is indeed schedulable.

A short summary of each of the tests used for G-EDF in this dissertation is given here. These tests are

applied in succession. Either failing a necessary test or passing a sufficient test terminates the application of

the sequence of tests, as schedulability has been determined. Conversely, passing a necessary test or failing a

sufficient test simply results in moving on to the next test. If, after the application of all tests, no answer has

been found, the task system is reported as not schedulable, as it could not be shown to be schedulable. As

described in prior work (Bertogna and Baruah, 2011), these tests have varying runtime costs, which influences

the order in which they are chosen to be applied.

First, a simple necessary test of the density is applied for each task (∀τi : δi ≤ 1): if any task’s execution

time exceeds its relative deadline or period, it cannot be scheduled. Next, the necessary utilization test U ≤m

is applied. Then, a sufficient window-based test, BAK (Baker, 2003, 2005), is checked. BAK is derived by

negating necessary conditions on the workload in a window of time preceding a missed deadline. Next, a

necessary density-based test, GFB (Goossens et al., 2003), is applied. GFB accounts for the total density of

the system and the maximum density of any task. Then, a second window-based test, BAR (Baruah, 2007),

is applied. For tests based on the workload during an interval of time, carry-in work, the execution of jobs

invoked before the window, must also be accounted for. In contrast to prior window-based schedulability tests

12

τk

job
invoked

deadline
misslast processor

idle prior to ta

t0 ta tb

dk

analysis window

Figure 2.1: Illustration of analysis window for BAR schedulability test. Figure adopted from original
presentation (Baruah, 2007).

for G-EDF that bound tasks contributing carry-in work by n (e.g., BAK and BCL (Bertogna et al., 2005)),

BAR considers a slightly different window and bounds the number of tasks contributing carry-in work by

m−1.

As BAR is the final test to be applied, it is explained in slightly more detail. This test is derived by

first considering the necessary conditions for an arbitrary task τk to miss a deadline by supposing that

one of its jobs misses a deadline at time td . This job was invoked at ta = td − dk. BAR considers a time

interval beginning at the latest instant in time at which at least one processor was idle, denoted t0. The term

I(τi) denotes the work done by jobs of τi over the interval [t0, td) during which each of the m processors

is busy with jobs other than the job of τk that misses its deadline. This analysis window is illustrated in

Figure 2.1. Between ta and td , the job of τk that missed its deadline was able to execute for less than Ck. Thus,

∑τi∈Γ I(τi)> m · (dk−Ck +(ta− t0)). The sufficient schedulability test BAR is derived by showing that for all

tasks, this inequality cannot be satisfied. This is accomplished by also considering the potential for carry-in

jobs (jobs invoked before t0 that contribute to I for that task) (Baruah, 2007).

2.4 Resource Model

When a job requires access to a shared resource, it issues a request. An arbitrary request is denotedRi,

and an arbitrary resource is denoted `a. There are nr shared resources in the system. A request is satisfied

once it (and thus, its issuing job) is granted access to the required resource(s), which the request holds until it

completes (when the job no longer requires access) and releases the resource(s). A request is active from the

time it is issued until it completes. A job is said to be within a critical section while it holds a resource. Thus,

each request corresponds to a critical section. The maximum critical-section length ofRi is denoted Li, and

13

the maximum critical-section length of any request is Lmax. As described below, a request may be issued for

one or more resources; the set of resources required byRi is denoted Di. The contention ofRi, denoted Ni,

is the maximum number of active requests for an overlapping set of resources whenRi is issued.

2.4.1 Types of Resource Access

Requests can be distinguished by the type of access required. Ri is a write request if it requires mutually

exclusive (write) access to Di or a read request if other requests may access Di concurrently withRi. When

the distinction of request types is important, a write request is denotedRw
i and a read requestRr

i . If the type

of a request is not specified, it is assumed to be a write request.

A request is a mixed request if it requires mutually exclusive access to some resources in Di and other

requests may concurrently access the remaining resources in Di. In this case, Dw
i is used to denote the set of

resources for which write access is required.

Additionally, some jobs require nested resource access, which occurs when a job requires access to

multiple resources simultaneously. Requests are assumed to be properly nested; all resources acquired while

a given resource is held are released before or concurrently with the release of that resource. The first request

issued in a series of nested requests is called an outermost request. Correspondingly, the outermost critical

section is the critical section corresponding to the first resource acquired (and thus the last released). Any

request Ri in a series of nested requests is denoted Rn
i , whereas a non-nested request Ri is denoted Rnn

i .

These superscripts can be combined with those denoting read or write requests. For example, a requestRi

that is a nested write request is denotedRw,n
i . As with the other superscripts and subscripts, the distinction of

nestedness is dropped when not relevant to a particular discussion. A summary of the notation is given in

Table 2.1.

2.4.2 General Methods for Handling Nested Resource Access

Existing synchronization protocols tend to employ one of three primary methods to handle nested

resource access. Recall from Section 1.4 that a locking protocol is fine-grained if each resource is protected

individually.

To demonstrate the different approaches, the following running example is used.

14

Term Explanation
m Number of processors
τi Task i
n Number of tasks
Γ Task set

Ji, j jth job of τi

Ji Arbitrary job of τi

Ti τi’s period
Ci τi’s worst-case execution time
di τi’s relative deadline
ui Utilization of τi

U Total system utilization
δi Density of τi

Ri Request i
`a Resource a
nr Number of shared resources
Li Maximum duration ofRi

Lmax Maximum critical-section length
Di Set of resources required byRi

Ni Contention forRi

Rn Nested request
Rnn Non-nested request
Rw Write request
Rr Read request
Rw,n Nested write request
Rw,nn Non-nested write request
Rr,n Nested read request
Rr,nn Non-nested read request

Table 2.1: Notation.

Example 2.1. Consider the four jobs depicted in Figure 2.2. A snippet of pseudocode is shown for each,

indicating which resources are required. For example, J1 requires resource `a and then, depending on some

expression x, may require `b. The request for `b would thus be nested within the request for `a. ♦

A key concern with nested resource access is that deadlock can be caused. Deadlock occurs when two or

more tasks cannot make progress due to waiting for each other. With locking protocols, this occurs when

unsatisfied requests will never become satisfied due to the resources currently held and the waiting resource

requests.

Example 2.1 (continued). Observe that, as originally written, J1 and J2 could cause deadlock. Suppose J1

acquires `a and J2 acquires `b. Then, if J1 requires `b, it must wait until `b is released by J2. However, J2

15

// Job 1
…
lock(la)
…
if (x):
 lock(lb)
 …
 unlock(lb)
unlock(la)

// Job 2
…
lock(lb)
…
lock(la)
…
unlock(la)
unlock(lb)

// Job 3
…
lock(lb)
…
lock(lc)
…
unlock(lc)
unlock(lb)

original code

// Job 1
…
lock(la)
…
if (x):
 lock(lb)
 …
 unlock(lb)
unlock(la)

// Job 2
…
lock(la)
lock(lb)
…
…
unlock(lb)
unlock(la)

// Job 3
…
lock(lb)
…
lock(lc)
…
unlock(lc)
unlock(lb)

partial ordering

// Job 1
…
lock(lg)
…
unlock(lg)

// Job 2
…
lock(lg)
…
unlock(lg)

// Job 3
…
lock(lg)
…
unlock(lg)

coarse-grained locking

// Job 1
…
lock(la,lb)
…
unlock(la,lb)

// Job 2
…
lock(la,lb)
…
unlock(la,lb)

// Job 3
…
lock(lb,lc)
…
unlock(lb,lc)

dynamic group locking

// Job 4
…
lock(lc)
…
unlock(lc)

// Job 4
…
lock(lc)
…
unlock(lc)

// Job 4
…
lock(lg)
…
unlock(lg)

// Job 4
…
lock(lc)
…
unlock(lc)

Figure 2.2: Illustration of the modifications for each of the three methods of handling nesting.

must similarly wait for the release of `a. With no intervention in this situation, deadlock occurs, and neither

task can make progress. ♦

The following approaches present different methods for preventing deadlock.

2.4.2.1 Partial Ordering of Resources

Frequently, nesting is realized by allowing jobs to request and acquire each resource individually in a

sequential fashion. Defining a partial order on the resources prevents deadlock if all resource acquisitions

respect this ordering (Dijkstra, 1978; Havender, 1968).

Example 2.1 (continued). As depicted in Figure 2.2, the partial ordering selected for this system is alphabet-

ical (once a resource has been acquired, only resources with identifiers later in the alphabet may be acquired).

As such, J2 must be modified to first acquire `a, and then `b. Any portion of J2’s execution which originally

required only `b can now occur after both resources have been acquired. ♦

16

This approach can result in long transitive blocking chains like the one described in Chapter 1. Addition-

ally, the individual acquisition of resources can significantly inflate the duration of a critical section, as the

outermost request is satisfied (and then the corresponding resource is held) while waiting for satisfaction of

a nested request. For instance, the blocking a job may experience while waiting to be granted access to a

second resource must be counted toward the critical-section length of the outermost request (illustrated in

Example 1.1), leading to delays exponential in nesting depth (Takada and Sakamura, 1995).

Some protocols (Takada and Sakamura, 1995; Ward, 2016; Ward and Anderson, 2012, 2013, 2014) apply

an approach very similar to this, but instead apply a time-stamping mechanism and delay the execution of

some requests in order to avoid potential deadlock scenarios. These approaches are protocol-specific, rather

than general approaches that are applied broadly.

2.4.2.2 Coarse-Grained Locking

Redefining the granularity of resources is an alternate approach to ensuring safe (deadlock-free) resource

access. By statically grouping the original set of resources into newly defined resources that represent one or

more of the original resources, nesting can be eliminated.

Example 2.1 (continued). In Figure 2.2, all resources have been redefined to be in the static group now

represented by `g. Thus, each job must acquire `g in order to proceed with its execution. ♦

Non-nested locking protocols can be directly applied to these newly defined resources. While this simple

approach removes the possibility of deadlock, it may also remove a significant amount of possible parallel

execution from the system, delaying the execution of some tasks and artificially reducing the number of

systems that are schedulable. Indeed, in the worst-case, all resources may be reduced to a single redefined

resource.

2.4.2.3 Dynamic Group Locking

The final common approach used by existing real-time nested locking protocols is to apply dynamic

group locks (DGLs) (Ward, 2016; Ward and Anderson, 2013). To do so, all nested requests can be dynamically

coalesced into a single request for all resources that may be required concurrently.

Example 2.1 (continued). This update is illustrated in Figure 2.2. Each task now issues only a single request

in place of the previous outermost request. ♦

17

In the case of conditional code, applying DGLs may cause a job to acquire resource that is not necessary.

Example 2.1 (continued). Observe that, in Figure 2.2, J1 issues a single request for both `a and `b under

the DGL formulation; both resources must be acquired, even if the conditional would not have applied in this

execution of the task. ♦

While this behavior may delay request satisfaction at runtime, this is not a significant detractor from the

use of DGLs, as the analysis of such a task must consider that either resource is required anyway, already

incorporating that pessimism.

DGLs provide a method of fine-grained locking, as each resource can be added to the dynamic group

individually; this functionality is different from the coarse-grained locking described above, which is used to

coordinate access to groups of resources that are statically determined offline.

Example 2.1 (continued). Note that τ2 and τ4 may execute concurrently, as they do not require any overlap-

ping resources when DGLs are applied. This is in contrast to the single, statically defined shared resource

required under the coarse-grained locking approach. ♦

With DGLs, each request can contain all resources that must be acquired in a nested fashion; once access

is granted to all of these resources, the request will complete before the task requires access to more resources.

As such, the applied locking protocol is given knowledge of the nested resource requirements, allowing

deadlock prevention. (This knowledge of what would otherwise be “future” requests prevents the basic

deadlock scenario, in which there is insufficient information in the locking protocol to prevent deadlock.)

To avoid critical-section inflation caused by resource ordering and lost parallelism caused by coarse-

grained locking, this dissertation assumes the use of DGLs: each issued request is for all resources that may

be required during the critical section of what would otherwise be the outermost request.

2.5 Metrics of Evaluation for Locking Protocols

Locking protocols are analyzed on the basis of overhead, blocking, and schedulability. All protocols can

cause both blocking and overhead delays, and often make tradeoffs between the two; for example, a protocol

that lowers blocking by reordering requests each time a new request is issued will likely have increased

overhead. The blocking and overhead delays introduced by a synchronization protocol can in turn impact the

schedulability of the system. These metrics of evaluation are discussed in more detail after some analysis

assumptions are given.

18

2.5.1 Analysis Assumptions

For real-time systems, a common assumption is that possible requests from each task must be known a

priori, as this information is required for determining schedulability.

Any locking protocol can cause a job to wait for resource access, and this dissertation assumes spin-based

waiting (also called busy-waiting). This waiting is coupled with a progress mechanism (Brandenburg, 2011;

Ward, 2016) that ensures a resource-holding task can complete its critical section and release its acquired

resources. Here a busy-waiting spinlock is coupled with non-preemptive execution1 for any active request.

As with prior work (Brandenburg, 2011; Ward, 2016), the number of critical sections and their durations

are considered to be constants in the analysis of blocking. In this analysis, m and n are considered to be

variables, as is the contention. Locking protocols can exhibit different scales of blocking. For example,

a protocol that yields O(m) blocking means that a single request may be blocked by O(m) other requests

(commonly one from each of the other m− 1 cores in spin-based non-preemptive request execution). As

described earlier, a contention-sensitive mutual-exclusion protocol achieves blocking asymptotically bounded

by the number of conflicting requests.

Contention-sensitivity was described above for mutual-exclusion locking protocols. A reader/writer

locking protocol ensures contention sensitivity for a requestRi if the worst-case blocking forRi is O(1) if it

is a read request, and O(Ni) if it is a write request.

2.5.2 Overhead

As mentioned in Chapter 1, locking protocols can cause a loss in processing capacity due to their

underlying logic. A job may be delayed by the execution of the protocol to determine when its request will

be satisfied; this delay can include the time required to update data structures required by the protocol, such

as a queue of requests. Any delay introduced by the execution of the protocol is overhead.

2.5.3 Blocking

The focus of this dissertation is non-preemptive spin-based waiting. As such, priority-inversion blocking

(pi-blocking) occurs when a job is prevented from executing by the execution of a lower-priority job. Thus, a

1The allowance of non-preemptive code sections is commonly assumed in real-time systems.

19

τ1

τ2

τ3

τ4

C
or

e
1

C
or

e
2

arrival
blocking

direct
blocking

direct
blocking

la

lb

la

lb

Figure 2.3: Illustration of invocation blocking and direct blocking.

job can be pi-blocked in the two scenarios described next. (Different pi-blocking definitions exist for systems

in which waiting is realized by suspension (Brandenburg, 2011).)

One source of pi-blocking is the delay a job incurs due to waiting for resource access: direct blocking

occurs when a job cannot execute because it has issued a request that is not yet satisfied due to the resource(s)

currently being held by other job(s). When considering an individual request that is waiting for access, this

waiting is referred to as acquisition delay. The ordering of request satisfaction by the protocol determines the

magnitude of direct blocking.

Example 2.2. Consider the four tasks shown in Figure 2.3. Suppose a locking protocol is used that requires

tasks with active resource requests to execute non-preemptively, in which tasks wait by busy-waiting. Direct

blocking is depicted in Figure 2.3 when τ1 is blocked while waiting for `b. ♦

Arrival blocking occurs when a job invocation is available but cannot execute because a lower-priority

job is executing non-preemptively. This priority-inversion blocking is caused by the progress mechanism

(here, non-preemptive execution), and is sometimes referred to as progress-mechanism-related blocking.

Example 2.2 (continued). In Figure 2.3, τ2 is arrival blocked while τ1 is executing its critical section

non-preemptively. ♦

When the type is not specified, blocking refers to direct blocking. (The maximum arrival blocking a job

may experience is asymptotically upper bounded by the maximum direct blocking of other jobs, so much of

the analysis focuses on direct blocking.)

20

2.5.4 Schedulability Analysis of Locking Protocols

In order to test schedulability, blocking analysis for the chosen locking protocol must be conducted. This

blocking analysis is then incorporated into schedulability analysis.

Schedulability can be assessed with well-known analysis techniques, like those described above for

G-EDF, by inflating the execution time for each job by the blocking and overhead delays it could incur. This is

a safe manner in which to account for non-preemptive regions (Brandenburg, 2011; Liu, 2000), though it can

introduce additional pessimism. As discussed more fully in later chapters, there is often a tradeoff between

blocking and overhead when comparing locking protocols; a more complex (higher overhead) protocol may

be able to yield lower blocking. While blocking tends to be the dominant factor in schedulability analysis,

accounting for overhead by inflating critical-section lengths magnifies the impact of overhead.

Within the context of protocols that grant access to resources in a non-nested fashion, computing reason-

ably tight blocking bounds has been an area of focus. For example, the impact of queue locks on low-priority

tasks scheduled with a global fixed-priority scheduler has been explored to improve schedulability (Chang

et al., 2010). Additionally, worst-case blocking bounds for a broad variety of lock types, including FIFO

and priority-ordered, were tightened by using mixed-integer linear programming (Wieder and Brandenburg,

2013). More recently, a linear programming framework for analyzing blocking under global fixed-priority

scheduling algorithms was presented and used to compare existing global semaphore protocols based on

six types of delay (direct pi-blocking, indirect pi-blocking, preemption pi-blocking, regular interference,

co-boosting interference, stalling interference) (Yang et al., 2015).

Challenges with analyzing arbitrary nesting have long been known. Computing a safe upper bound

on blocking for a FIFO-based spinlock protocol that uses resource ordering results in a blocking bound

exponential in nesting depth (Takada and Sakamura, 1995). Tightly bounding the blocking caused by

arbitrarily nested resource access is NP-hard (Wieder and Brandenburg, 2014). A graph-based abstraction

has been presented that serves as the basis for an integer linear program (ILP) to compute blocking for nested

FIFO spinlocks (Biondi et al., 2016).

While the per-request inflation-based approach is safe, it can be pessimistic. More recently, inflation-free

methods have been presented (Biondi and Brandenburg, 2016; Wieder and Brandenburg, 2013). These

approaches capture the worst-case blocking delays that can accrue over time. In contrast to the inflation-based

approach, these methods incorporate blocking directly within the schedulability-analysis framework, instead

21

of first inflating tasks. While these general frameworks can be extended, per-protocol analysis must first be

developed.

2.6 Existing Approaches to Synchronization

The past three decades of research has resulted in a rich body of work on real-time locking protocols.

This section summarizes the most relevant such approaches, and briefly discusses approaches beyond locking

protocols for coordinating access to shared resources and protocols developed for use outside of real-time

systems. For a more in-depth summary, see the recent systematic review (Brandenburg, 2019).

2.6.1 General Classifications

As described in Chapter 1, this dissertation focuses on the use of locking protocols to grant access to

shared resources. Alternatives to locking protocols include retry-based (Anderson and Ramamurthy, 1996;

Barros et al., 2015; Belwal and Cheng, 2011; Brandenburg et al., 2008; El-Shambakey, 2013; Ramamurthy,

1997; Sarni et al., 2009; Schoeberl and Hilber, 2010; Schoeberl et al., 2010; Yoo and Lee, 2008) and wait-

free (Anderson et al., 1997; Brandenburg et al., 2008; Cho et al., 2007) approaches, which must be analyzed

accordingly. For example, retry-based approaches require a job to repeatedly attempt to execute a critical

section until it has safely completed. Instead of blocking analysis, such systems are analyzed by considering

the maximum number of retries required.

In the remainder of this section, the most relevant locking protocols for non-nested and nested resource

access are presented. Some of these approaches assume suspension-based waiting or allow preemptive

spinning.

2.6.2 Locking Protocols for Non-Nested Resource Access

This section summarizes some key locking protocols that provide non-nested resource access. Some of

these protocols have been developed specifically for real-time systems, while others were developed for more

general systems and do not necessarily have accompanying real-time guarantees.

Recall from Section 2.4.2.2 that lock nesting can be trivially supported by redefining resources such that

no nesting occurs by using a coarse-grained group lock. However, this can cause significant unnecessary

blocking between tasks that do not actually share any resources. Thus, these approaches that do not handle

22

nested requests (except by means of a static, coarse-grained group lock) are discussed briefly before covering

prior work that allows fine-grained lock nesting.

2.6.2.1 The MCS Lock

The MCS lock, named for its authors, is a mutual-exclusion lock that grants access in FIFO order (Mellor-

Crummey and Scott, 1991a). The MCS lock is a queue-based lock. Each request busy-waits by spinning on a

separate flag variable, enabling O(1) memory references due to the issuance and completion of each request.

Additionally, a very small amount of space is required for each lock. The MCS lock was developed to have

very low overhead, which was achieved by the small memory footprint and minimal memory references. As

such, it is often taken as the gold standard for a low-overhead protocol.

2.6.2.2 Real-Time Locking Protocols

There is a significant body of work on locking protocols for use in multiprocessor real-time systems. An

overview of those that do not allow arbitrary nesting is given here, along with related work.

Several multiprocessor protocols expand on their uniprocessor counterparts. The distributed and multi-

processor priority ceiling protocols (DPCP and MPCP) (Rajkumar, 1990, 1991; Rajkumar et al., 1988) build

on ideas of the priority ceiling protocol (PCP) (Sha et al., 1990). The MPCP was then used as a basis for

developing a partitioning heuristic for resource-sharing tasks (Lakshmanan et al., 2009). The multiprocessor

stack resource protocol expands on the ideas of the stack resource protocol (Baker, 1991) by classifying

resources as local or global; access to global resources is coordinated in FIFO order, with waiting processes

spinning non-preemptively (Gai et al., 2001). This was then compared to the MPCP (Gai et al., 2003).

Beyond multiprocessor ceiling-based protocols (Chen and Tripathi, 1994), the FMLP (Block et al., 2007),

FMLP+ (Brandenburg, 2014), and OMLP (Brandenburg and Anderson, 2013) have been developed. Many

of the above protocols have been implemented and those implementations compared (Brandenburg, 2011;

Brandenburg and Anderson, 2008a,b). While some of these approaches allow some amount of request nesting,

such nesting is limited to only local resources or only coarse-grained resource groups. The focus of this

dissertation is on supporting fine-grained, unrestricted nested resource access.

Prior work has also investigated different priorities at which a blocked task may spin; at lower priorities,

spinning tasks may suspend (Afshar et al., 2014, 2017, 2018). Work has also been done to coordinate

23

resource sharing between independently developed system components that are then used modularly in a

larger system (Afshar et al., 2013, 2015; Nemati et al., 2011).

2.6.2.3 Reader/Writer Locking Protocols

Under a reader/writer locking protocol, read requests may be satisfied concurrently with other read

requests and mutual exclusion is enforced for write requests. Approaches to supporting reader/writer

access include reader-preference (respectively, writer-preference) locks, which allow for starvation of write

(respectively, read) requests (Courtois et al., 1971; Mellor-Crummey and Scott, 1991b). Another approach is

phase-fair locking, in which read phases and write phases alternate (Brandenburg and Anderson, 2010).

The fundamental ideas behind phase-fair locks are crucial to the development of some of the protocols

presented in this dissertation. As such, phase-fair reader/writer locking is described in detail here.

The phase-fair reader/writer lock is a non-preemptive spinlock. If both types of requests are active

concurrently, the protocol alternates between read phases wherein read requests are given preference, and

corresponding write phases.

At the start of a read phase for a resource, all active read requests for that resource are satisfied. Once

those requests complete, a write phase may begin. (If a read request is issued during a read phase and there is

a write request waiting, this newly issued read request must wait to be satisfied until the next read phase.) In

a write phase, a single write request is satisfied. Write requests are satisfied in FIFO ordering relative to other

active write requests. This specification ensures that each read request is blocked by at most one read phase

and one write phase, and that each write request is blocked by at most a series of read and write phases that is

bounded by the number of active write requests when that request was issued.

In Figure 2.4, gray shading indicates which requests will execute in the next phase.

Example 2.3. Figure 2.4 depicts the state of a phase-fair reader/writer lock at three time instants, t1, t2, and

t3, where t1 < t2 < t3. At time t1, four requests have been issued in increasing index order. Read requestRr
1

is satisfied, and write requestRw
2 will be satisfied after the read phase that includesRr

1 completes. Rr
3 and

Rw
4 have also enqueued in their corresponding queues. At time t2, Rw

2 is satisfied, and an additional read

request,Rr
5, has been issued. In the next read phase, all read requests will be satisfied, as indicated by the

gray shading. Indeed, at time t3,Rr
3 andRr

5 are satisfied. This read phase will be followed by a write phase,

in whichRw
4 will be satisfied. ♦

24

Read
Write

R3

R1
r

r

Read
Write

R3 R4
wrR2

w

Read
Write

R4
w

R2
w

R4
w R5

r

R3 , R5
r r

Time t1 Time t2 Time t3

Figure 2.4: Illustration of phase-fair reader/writer locking protocol managing access to a resource.

Phase-fair reader/writer locks are perhaps the best contention-sensitive option in terms of lock/unlock

costs (i.e., the time required to acquire or release a lock) if all requests are non-nested requests (Branden-

burg and Anderson, 2010). Several possible implementations of phase-fair locks were considered in prior

work (Brandenburg and Anderson, 2010). Brandenburg and Anderson found the phase-fair ticket-lock (PF-

TL) implementation to be comparable to or better than other phase-fair implementations from the perspective

of lock/unlock costs.

2.6.2.4 Other Resource-Sharing Paradigms

Prior work has also explored resource-sharing schemes beyond mutual exclusion and reader/writer

sharing. For example, k-exclusion locking protocols (Brandenburg and Anderson, 2011; Elliott and Anderson,

2013; Ward et al., 2012) allow up to k requests to access a shared resource concurrently. Also, new resource-

sharing paradigms like preemptive mutual exclusion and half-protected sharing, which supports two request

types (non-preemptive write requests and unprotected requests that are essentially preemptive read requests),

have been developed (Ward, 2015).

2.6.3 Locking Protocols for Nested Resource Access

This section highlights the exiting approaches to supporting nested resource access in real-time systems.

2.6.3.1 Using Coarse-Grained Approaches

As described above, applying static group locks allows protocols designed for non-nested locking

protocols to be applied to systems in which nested resource access is required. However, doing so necessitates

25

redefining the resources to coalesce all potentially overlapping resources into a group protected by a single

lock. This grouping of resources eliminates the concurrency that would otherwise be possible with a

fine-grained (per-resource) locking approach.

2.6.3.2 Early approaches

One early solution to the potential deadlock or long blocking caused by nested requests uses an online

schedulability test to determine if resource access would be granted (Schwan and Zhou, 1992). If satisfying

a request would cause a deadline miss (possibly due to either causing deadlock or simply excessively high

blocking), the request is denied, and the job must instead handle that exception.

In addition to showing that unrestricted lock nesting can lead to blocking exponential in nesting depth,

an early work presented a protocol that, for systems with nesting depth at most two, ensures O(m) block-

ing (Takada and Sakamura, 1995). However, if nesting depth exceeds two, this protocol again results in

exponential blocking.

A locking protocol that builds on the PCP achieves fine-grained locking by requiring all possibly required

resources to be requested prior to executing the critical section (Rhee and Martin, 1995). While waiting for

some of the required resources, a job may be required to release an already acquired resource to allow a

higher priority job to execute. Unfortunately, this approach only applies to a partitioned system.

Both the blocking caused by nested resource requests and the preemption of resource-holding jobs can

increase the blocking of waiting requests. To address this problem (but not the exponential blocking), two

priority-inheritance-based spinlock algorithms for nested resource access were proposed (Wang et al., 1996).

2.6.3.3 M-BWI

The multiprocessor bandwidth inheritance protocol (M-BWI) (Faggioli et al., 2010, 2012) expands the

original uniprocessor bandwidth inheritance protocol (Lipari et al., 2004), which uses a helping mechanism

to allow a resource-holding job to execute. (A helping mechanism provides a means for job waiting for

resource access to ensure progress for the resource-holding job.) The bandwidth of a task is a measure of

what proportion of execution time on a CPU it is granted. This protocol enables a resource-holding job that

would otherwise be suspended to instead continue executing by inheriting the bandwidth of a higher-priority

26

job. M-BWI accomplishes this by reasoning about resource reservation servers that grant bandwidth and

coordinating between such servers on different processors.

While M-BWI enables sharing bandwidth in order to reduce the time that a resource is held by an

unscheduled job, it does nothing to change from a FIFO order of request satisfaction. As such, long transitive

blocking chains can form under M-BWI as described in Chapter 1, resulting in exponential blocking (Takada

and Sakamura, 1995). Therefore, M-BWI cannot be considered a solution to the challenge of high blocking

in the presence of nested requests.

2.6.3.4 MrsP

As with a couple of non-nested protocols, the Multiprocessor Resource Sharing Protocol (MrsP) (Burns

and Wellings, 2013; Garrido et al., 2017; Zhao et al., 2017, 2020) builds upon the PCP by using the PCP

locally to bound accesses to global resources. It then employs a helping mechanism in which a blocked

task may allow a preempted task to execute. Nested resource access is allowed by MrsP, and the priority

ceilings of some resources may be recalculated if a nested resource access occurs while that resource is

held (Garrido et al., 2017). More recently, schedulability analysis has been refined for MrsP (Zhao et al., 2017,

2020). As with the M-BWI, MrsP requires a partial ordering on resources. This, along with the structure of

protocol, results in analysis that again must incorporate the blocking time incurred by inner requests into the

critical-section lengths or blocking for outer requests; the summed blocking plus critical-section length for

each resource is defined recursively on the resource(s) last in the partial order (Garrido et al., 2017; Zhao

et al., 2020). Similarly to prior approaches, MrsP does not propose methods to break the transitive blocking

chains that can occur with nested resource access.

2.6.3.5 RNLP Family

The remaining protocols that support nested resource access are in the real-time nested locking protocol

(RNLP) family of protocols. The RNLP (Ward, 2016; Ward and Anderson, 2012, 2013, 2014) is the first

set of protocols to provide asymptotically optimal pi-blocking for nested requests. It does so by employing

per-resource ordering and granting access on a timestamp-ordered basis.

27

The RNLP family of protocols allows waiting to be realized by spinning or suspension; different

mechanisms are used for dealing with priority inversions depending on how tasks are scheduled. For the

non-preemptive, spin-based variants, worst-case pi-blocking is O(m) for write requests.

Variants on the original protocol include incorporating the use of DGLs (Ward and Anderson, 2013)

and extending the approach to support reader/writer locking (Ward and Anderson, 2014). The reader/writer

RNLP (RW-RNLP), like the phase-fair reader/writer locking protocols, coordinates between reader and writer

phases on a per-resource basis.

The existing RNLP variants yield O(m) worst-case blocking for write requests when nesting is allowed.

While this is a significant improvement on prior approaches, the existing RNLP variants are not contention-

sensitive, even for non-nested write requests. This dissertation presents new contention-sensitive protocols to

the RNLP family.

2.6.4 Chapter Summary

This chapter has presented the task model and resource model assumed for the remainder of this

dissertation. A brief introduction to scheduling algorithms was given, followed by a discussion of how

those algorithms are analyzed for schedulability. Additional details were given for the analysis of systems

scheduled with G-EDF, which are used in the evaluations in this dissertation. Existing locking protocols were

discussed, along with the basis for the evaluation of protocols on overhead, blocking, and schedulability.

28

CHAPTER 3: MINIMIZING IMPACTS ON READ AND NON-NESTED WRITE REQUESTS1

Evidence suggests that while nested resource access does occur, non-nested resource access is more

common (Bacon et al., 1998; Brandenburg and Anderson, 2007). When resource requests may be nested,

the protocol used to control access must support nested requests. The only existing protocols that support

arbitrary nesting and yield asymptotically optimal blocking bounds are those in the RNLP family.

Unfortunately, this support comes at the cost of higher overhead for read requests and non-nested

write requests. Using a trivial solution like the resource-ordering approach illustrated in Example 1.1 can

instead result in unacceptably high blocking, as discussed in Chapter 1. All existing protocols either yield

non-contention-sensitive blocking for the most common resource access types or have increased overhead

compared to approaches that do not support nesting. Thus, these protocols support the less common nested

resource access to the detriment of more common resource access types. Though nested access may be rare

in a system, that system must still be able to safely support such access patterns.

These observations motivate a new fast-path mechanism for the RNLP family. It was designed with the

goal of ensuring that read access and non-nested write access both (i) are contention-sensitive and (ii) incur

low lock/unlock overhead comparable to that of single-resource protocols. This new protocol in the RNLP

family is called the fast RW-RNLP.2 This chapter presents the fast RW-RNLP with two versions for one of

the internal components: one, a protocol variant applied in a constrained setting called the RW-RNLP*, and

the other, a reader-reader-reader phase-fair locking protocol called the R3LP. This work builds directly on

phase-fair ticket locks (PF-TLs) and the RW-RNLP, both of which are described in more detail in Chapter 2.

In the fast RW-RNLP, non-nested requests are immune from the effects of transitive blocking chains

caused by nesting. This is achieved by employing a modular design that mostly separates concerns related to

1Contents of this chapter previously appeared in preliminary form in the following papers:

Nemitz, C., Amert, T., and Anderson, J. (2017). Real-time multiprocessor locks with nesting: Optimizing the common
case. In Proceedings of the 25th International Conference on Real-Time Networks and Systems.

Nemitz, C., Amert, T., and Anderson, J. (2019a). Real-time multiprocessor locks with nesting: Optimizing the common
case. Real-Time Systems, 55(2):296–348.

2The terminology “fast-in-the-common-case RW-RNLP,” which is obviously too verbose, would be more technically precise.

29

handling nested and non-nested requests. When no nested requests occur, the fast RW-RNLP can function

nearly identically to a set of per-resource PF-TLs, depending on the choice of one component.

This similarity to PF-TLs is reflected in experiments measuring lock/unlock overhead and observed

pi-blocking times. The fast RW-RNLP is also evaluated and compared to other protocols in a large-scale

schedulability study. The fast RW-RNLP variants, and the R3LP in particular, tended to outperform the other

protocols when non-nested requests are the common case.

This chapter begins with an introduction to reader-only phase-fair locking protocols, which are used

in two components of the fast RW-RNLP. Next the structure of fast RW-RNLP is presented, followed by

discussion of the R3LP and the RW-RNLP*, along with blocking bounds for both protocol variants. Then,

an evaluation of overhead, blocking, and schedulability is presented. The chapter concludes with some

additional details, including showing that the previously given blocking analysis is tight.

3.1 Reader-Only Phase-Fair Locks

Two components of the fast RW-RNLP employ reader-only phase-fair locks, which were introduced

in a restricted form to support the work presented in Chapter 5. Reader-only phase-fair locks build on the

mechanisms of phase-fair reader/writer locks (Brandenburg and Anderson, 2010), covered in more detail in

Chapter 2. In preparation for the presentation of the fast RW-RNLP, an implementation of and the bounds

on worst-case acquisition delay for a phase-fair variant is presented. As in prior work (Ward and Anderson,

2014), it is assumed that all lock and unlock invocations take no time.

3.1.1 Reader-Reader Phase-Fair Locks

The reader-reader phase-fair locking protocol (R2LP) arbitrates access to a resource between two types

of read requests; an arbitrary read request of Type 1 (respectively, Type 2) may execute concurrently with

requests of the same type but may not execute with requests of Type 2 (respectively, Type 1). (The problem

of supporting multiple types of read requests is similar to the group mutual exclusion problem (Joung, 2000;

Keane and Moir, 1999, 2001) except for the additional requirement of O(1) pi-blocking bounds.)

A read request of Type 1 is denoted asRr1
i and a read request of Type 2 asRr2

i . Under the R2LP, requests

enqueue in the “lane” corresponding to their type. For example, Rr1
3 in Figure 3.1 is enqueued in Lane 1.

The following example illustrates the phase transitions of the R2LP.

30

Lane 1
Lane 2

R3

R1
r1

r1

Lane 1
Lane 2

R3
r1R2

r2

Lane 1
Lane 2

R4
r2 R5

r1

R3 , R5
r1 r1

Time t1 Time t2 Time t3

R2 , R4
r2 r2

Figure 3.1: R2LP illustration with read requests of Type 1 and Type 2.

Lane 1
Lane 2

R3

R1
r1

r1

Lane 1
Lane 2

R3
r1R2

r3

Lane 1
Lane 2

R4
r3 R6

r1

Time t1 Time t2 Time t3

R2 , R4
r3 r3

Lane 3
Lane 3

Lane 3

R5
r2 R5

r2 R3
r1

R6
r1

R5
r2

Figure 3.2: R3LP illustration with read requests of Type 1, Type 2, and Type 3.

Example 3.1. As shown in Figure 3.1, at time t1, a read request of Type 1, Rr1
1 , is satisfied. The group of

requests in Lane 2,Rr2
2 andRr2

4 , will be satisfied in the next phase, as indicated by the gray shading. Though

Rr1
3 is of the same type as the satisfied request, it cannot be satisfied at t1; allowing such behavior could cause

starvation. Therefore, the R2LP prevents this and instead allows requests of the other type to be satisfied after

all currently satisfied requests complete.

At time t2,Rr1
1 has completed andRr2

2 andRr2
4 are satisfied. Additionally,Rr1

5 has been issued. At time

t3,Rr2
2 andRr2

4 have completed, and bothRr1
3 andRr1

5 are satisfied. ♦

3.1.2 Reader-Reader-Reader Phase-Fair Locks

The reader-reader-reader phase-fair locking protocol (R3LP) arbitrates resource access among three types

of read requests; read requests of one type may run concurrently with other read requests of the same type

but must be prevented from accessing the resource concurrently with requests of a different type.

Example 3.2. As shown in Figure 3.2, at time t1, a read request of Type 1, Rr1
1 , is satisfied. The group of

requests in Lane 3,Rr3
2 andRr3

4 , will be satisfied in the next phase, as indicated by the dark gray shading. In

31

Listing 1 R3LP Definitions
type type state: record

in, out, head, sat, phase: unsigned integer initially 0
shared variables

s: unsigned integer initially 0
r1 type, r2 type, r3 type: type state

constant
R1 PRES 0x2 // Type 1 present bit
R1 PHID 0x1 // Type 1 phase ID bit
R1 BITS 0xff // Type 1 bits in s
R2 PRES 0x200 // Type 2 present bit
R2 PHID 0x100 // Type 2 phase ID bit
R2 BITS 0xff00 // Type 2 bits in s
R3 PRES 0x20000 // Type 3 present bit
R3 PHID 0x10000 // Type 3 phase ID bit
R3 BITS 0xff0000 // Type 3 bits in s

the following phase,Rr2
5 will be satisfied, as indicated with the light gray shading. As with the R2LP, under

the R3LP,Rr1
3 cannot be satisfied at t1.

At time t2, Rr1
1 has completed and Rr3

2 and Rr3
4 are satisfied. Rr2

5 will be satisfied in the next phase,

and Rr1
3 and the newly issued Rr1

6 will be satisfied in the subsequent phase. At time t3, Rr3
2 and Rr3

4 have

completed, andRr2
5 is satisfied. ♦

This simple example gives intuition about how the R3LP functions. Phases cycle between the three types,

and the order of these phases depends on the order in which requests are issued and enqueued.

3.1.3 R3LP Implementation

The following presents the pseudocode for an implementation of the R3LP after first discussing the

shared variables used within the R3LP.

Shared variables of the R3LP. The set of variables used by the R3LP is presented in Listing 1. For each of

the three types, a set of variables are defined as part of the type state. The counters in and out represent how

many requests of the specified type have been issued and have completed, respectively, similar to a ticket

lock. The integer head indicates the ticket of the one request that modifies shared variables during the LOCK

call and determines when all the requests in its phase are satisfied. The variable sat stores the highest satisfied

ticket number, and the variable phase alternates between all 0’s and all 1’s to track different phases of this

same type.

The variable s, as shown in Figure 3.3, is the shared variable on which the different request types

synchronize. (The spacing between the pairs of bits for each phase is not required but makes the constant

32

24 23 17 16 1524 31 9 8 7 1 0

R2_PRES

R2_PHID

unusedunusedunused

R1_PRES

R1_PHID

R3_PRES

R3_PHID

unused

R3_BITS R2_BITS R1_BITS

Figure 3.3: Bits in the shared s variable.

values more readable for this presentation.) In this implementation, s must be marked volatile to ensure

stale values are never read, and operations on s are done via sync * functions to ensure atomic updates

with necessary memory barriers.

Pseudocode for the R3LP. The pseudocode for a request of Type 1 is shown in Listing 2. A request of

Type 1,Rr1
i , increments the in counter for Type 1, taking the previous value as its ticket value (Line 3). Rr1

i

then checks if it is the “head” request (Line 4). If it is not, Rr1
i waits until its ticket number is at least the

value sat, indicating that it is now satisfied (Lines 5-6),3 or until it is the “head” request. The “head” request

Rr1
j changes the phase (Line 7). Then, it sets the bits of s related to this specific type of request and queries

the presence of requests of the other two types (Line 8). After separating both types (Lines 9-10),Rr1
j waits

for a phase each of requests of Type 2 and 3, if necessary (Line 11). Specifically, for Type 2 it must ensure

that there were no requests present (r2 = 0) or that those requests have completed (r2 6= (s&R2 BITS)). It

performs the same checks for requests of Type 3. Finally, the request sets sat to indicate that access should be

granted to all requests of Type 1 currently holding a ticket (the highest of which is ticket in−1).

When a requestRr1
i completes, it increments out for its type (Line 16), then checks if it is the last request

of the phase to complete (Line 17). If so,Rr1
i clears the bits of s that correspond to its type (Line 18) and sets

the head to be the next ticket value (Line 19). This ticket may already be held by a request in the R3LP LOCK

procedure.

The following lemma bounds the acquisition delay of the R3LP based on the above description and

implementation. In this lemma, Lr1
max (respectively, Lr2

max and Lr3
max) indicates the maximum critical-section

length of a read request of Type 1 (respectively, Type 2 and Type 3).

3Line 5 can be modified to handle overflow in p�in and p�sat. In a spin-based implementation, at most m requests can be
active at once, so p�in and p�sat can be at most m apart. Therefore, the condition in Line 5 can be modified to [p�sat ≥
ticket] or [(p�sat+m)≥ (ticket+m)] to mitigate overflow.

33

Listing 2 R3LP Routine for Type 1

1: procedure R3LP LOCK(p: ptr to type state)
2: var ticket,r2r3,r2,r3: unsigned int
3: ticket := fetch&add(p�in,1)
4: while p�head 6= ticket: . Only head changes global variables
5: if p�sat≥ ticket:
6: return . Satisfied
7: p�phase := ∼(p�phase) . Flip phase bits
8: r2r3 := fetch&add(s,R1 PRES|(p�phase & R1 PHID)) . Mark present
9: r2 := r2r3 & R2 BITS . Get value for Type 2

10: r3 := r2r3 & R3 BITS . Get value for Type 3
11: await (((r2 = 0) or (r2 6= (s & R2 BITS))) and ((r3 = 0) or (r3 6= (s & R3 BITS))))
12: p�sat := p�in−1 . Satisfied
13: end procedure

14: procedure R3LP UNLOCK(p: ptr to type state)
15: var ticket: unsigned int
16: ticket := fetch&add(p�out,1)
17: if p�sat = ticket: . Last request of phase to finish
18: fetch&and(s,∼(R1 BITS)) . Clear R1 BITS

19: p�head := ticket+1 . Update head
20: end procedure

Lemma 3.1. Under the R3LP the worst-case acquisition delay of a request of any type is Lr1
max +Lr2

max +Lr3
max

time units.

Proof. A request of a given type may need to wait for the completion of phases of each of the other two

types of requests as well as a phase of its type. The implementation of the R3LP in Listing 2 ensures that the

duration of each such phase is at most the highest critical-section length of requests in that phase and that a

phase of a given type is repeated after at most one phase of each of the other types.

Suppose we focus on a request of interest that is of Type 1. Suppose also that one or more requests of

Type 1 are executing and that requests of both Type 2 and Type 3 are waiting at their corresponding Line 11.

Our request of interest is not initially the head (Line 4) as one of the satisfied requests is. Any later issued

requests of Type 1 also cannot become the head, so p�sat will not be updated and no new request of Type 1

can become satisfied. Thus, the current phase of requests of Type 1 will complete in at most Lr1
max time units,

as that is the maximum critical-section length of any request of Type 1.

Once the satisfied requests of Type 1 complete, requests of either Type 2 or Type 3 may execute. Without

loss of generality, suppose requests of Type 2 become satisfied. If our request of interest is not the head

(Line 4), some other request of Type 1 is. The head request executes Lines 7-10 and waits at Line 11, as

neither r2 nor r3 is zero and the phases represented in R2 BITS and R3 BITS have yet to change from the

recorded values (taken in Lines 9 and 10). Once Line 8 is executed, any new requests of Type 2 will wait

34

at the corresponding Line 11 for Type 2 for the phase containing our request of interest to complete, as the

phase shown in the R1 BITS of s will not change until after our request is satisfied and a request of Type 1

executes Line 18. Therefore, the phase of requests of Type 2 will complete in at most Lr2
max time units, by the

definition of Lr2
max. Similarly all active requests of Type 3 will become satisfied, but any new requests must

wait, and the phase of requests of Type 3 will complete within Lr3
max time units. Thus, our request of interest

of Type 1 may experience acquisition delay of up to Lr1
max +Lr2

max +Lr3
max time units in the worst case.

The analysis above applies to requests of Type 2 and Type 3 as well. If any of the types do not have

an active request while a request is active, it can only shorten the blocking experienced. Therefore, the

worst-case acquisition delay of a request of any type is Lr1
max +Lr2

max +Lr3
max time units under the R3LP.

Corollary 3.1. The bound given in Lemma 3.1 is tight.

Proof. This is illustrated in Example 3.2 and Figure 3.2 withRr1
3 .

Corollary 3.2. Under the R3LP, if no requests of Type 1 are present, the worst-case acquisition delay of a

request of Type 2 or Type 3 is Lr2
max +Lr3

max time units.

Proof. This follows directly from the proof of Lemma 3.1, as one fewer phase of execution is possible before

a request becomes satisfied.

The above proof is actually phase independent, so similar bounds exist regardless of which of the types

of request is not present.

3.2 The Fast RW-RNLP

The fast RW-RNLP is constructed in a modular fashion based on existing locking protocols and a choice

of two new protocols. These new protocols are the R3LP and the RW-RNLP*, which is a new variant of the

RW-RNLP. In this section, the structure of the fast RW-RNLP is presented and abstract pi-blocking analysis

is provided. Next, the pi-blocking analysis for the fast RW-RNLP variant with the R3LP is presented. Finally,

the RW-RNLP* is described and the pi-blocking analysis for the fast RW-RNLP variant with the RW-RNLP*

is presented.

35

l1 l2 ln -1 ln

...

rr
l1 l2

...

R R

R R

ln -1r
lnr

Figure 3.4: Fast RW-RNLP structure.

3.2.1 Protocol Structure

This section presents a description of the fast RW-RNLP protocol. The goals for this protocol are

threefold: (i) read and non-nested write requests should have low lock/unlock overhead; (ii) such requests

should have contention-sensitive worst-case pi-blocking bounds; (iii) nested write requests should have

worst-case pi-blocking bounds that are asymptotically the same as under the RW-RNLP. To achieve Goals (ii)

and (iii), requests are separated by type; Section 3.2.2 and Section 3.2.5 show that these goals can be achieved

with the R3LP or the RW-RNLP*, respectively. (Between these two protocols, there is a tradeoff between

optimizing for better analytical bounds and optimizing for better runtime performance.) Goal (i) is addressed

in Section 3.3 with an experimental evaluation of both implementations.

The fast RW-RNLP is defined by using the lock and unlock routines of other locking protocols as

subroutines. As shown in Figure 3.4, ordinary (not phase-fair) mutex ticket locks (TLs) (Mellor-Crummey

and Scott, 1991a) and the RNLP (Ward and Anderson, 2012) are used.

A non-nested write request first acquires a TL associated with its requested resource. A FIFO-ordered

TL provides mutex sharing for a single resource and ensures contention-sensitive pi-blocking. The lemma

below follows from the definition of a ticket lock.

Lemma 3.2. The worst-case acquisition delay of a requestRi under a ticket lock is upper bounded by the

product of the number of requests ahead ofRi and the longest time any such request holds the lock.

36

Similarly, a nested write request invokes the RNLP; recall from Section 2.6.3.5 that the RNLP provides

mutex sharing and supports nested requests. Under it, the worst-case pi-blocking of any request is O(m) (Ward

and Anderson, 2012). More specifically, the following lemma bounds acquisition delay in this context.

Lemma 3.3. (Ward and Anderson, 2012) The worst-case acquisition delay of a requestRi under the RNLP

is upper bounded by the product of the number of previously issued active requests in the system and the

longest time any such request holds the lock.

Note that instead of the RNLP, a different protocol could be used to arbitrate between nested write

requests without changing the overall structure of the fast RW-RNLP. Unless indicated otherwise, assume the

RNLP is used.

To arbitrate between the two types of write requests, as well as read requests, a global arbitration

mechanism is needed. Once a non-nested (respectively, nested) write request is granted the resource-specific

lock by a TL (respectively, the RNLP), it may enter the global arbitration mechanism, as depicted in Figure 3.4.

Any read requests may enter the global arbitration mechanism directly.

The global arbitration mechanism is applied in a specific context in the fast RW-RNLP, which can

be described by the following rules. With the exception of Rule P3, the rules below are standard for non-

preemptive spin-based locking protocols. As we shall see, Rule P3 enforces the restricted context and enables

contention-sensitive pi-blocking bounds for non-nested requests to be computed in the context of the fast

RW-RNLP. It is upheld by the structure explained above and depicted in Figure 3.4. Rule P3 is also trivially

upheld in systems with only single-writer resources.

P1 A resource-holding job is always scheduled.

P2 At most m jobs may have incomplete resource requests at any time, at most one per processor.

P3 There is at most one incomplete non-nested write request and one incomplete nested write request per

resource at any time.

In this chapter, two ways of implementing the global arbitration mechanism are presented: the R3LP,

presented earlier in Section 3.1, and a restricted variant of the RW-RNLP, the RW-RNLP*, presented later in

Section 3.2.3. Figure 3.4 shows how each type of request uses these locking protocols.4

4The lock and unlock routines for the R3LP or RW-RNLP* routines have been denoted in a slightly abbreviated way. For example,
W LOCKnn denotes the lock routine invoked by non-nested write requests under the chosen protocol.

37

The worst-case acquisition delay of a read request under the global arbitration mechanism is denoted

Gr. Similarly, the worst-case acquisition delay of a non-nested write request (respectively, nested write

request) under the global arbitration mechanism is denoted Gw,nn (respectively, Gw,n). The following theorem

incorporates these upper bounds directly. The maximum critical-section length of each request type is defined

similarly; for example, Lw,nn
max is the maximum critical-section length of any non-nested write request.

Theorem 3.1. Under the fast RW-RNLP, the worst-case acquisition delay of a requestRi is:

(i) Gr time units, ifRr
i is a read request;

(ii) Ni · (Lw,nn
max +Gw,nn)+Gw,nn time units, ifRw,nn

i is a non-nested write request;

(iii) (m−1) · (Lw,n
max +Gw,n)+Gw,n time units, ifRw,n

i is a nested write request.

Proof. In Case (i), a read requestRr
i enters the global arbitration protocol directly. Therefore, the worst-case

acquisition delay ofRr
i is Gr time units.

In Case (ii), a requestRw,nn
i must wait for each contending write request ahead of it in the TL associated

with its requested resource. There may be up to Ni contending write requests, each of which may face an

acquisition delay of up to Gw,nn time units within the global arbitration protocol while holding the ticket lock.

Additionally, each such request must then execute its critical section for up to Lw,nn
max time units. Thus,Rw,nn

i

may wait up to Ni · (Lw,nn
max +Gw,nn) time units before invoking the global arbitration protocol (Lemma 3.2),

after which it may experience an acquisition delay of up to Gw,nn time units. This yields a worst-case

acquisition delay of Ni · (Lw,nn
max +Gw,nn)+Gw,nn time units forRw,nn

i .

A requestRw,n
i in Case (iii) must wait for other requests within the RNLP to complete before invoking

the global arbitration protocol. There may be up to m− 1 such requests (Lemma 3.3 and Rule P2). By

using the same argument as before and applying Lemma 3.3, the worst-case acquisition delay of Rw,n is

(m−1) · (Lw,n
max +Gw,n)+Gw,n time units.

3.2.2 The Fast RW-RNLP with the R3LP

This section describes how to apply the R3LP as the global arbitration mechanism based on the structure

of the fast RW-RNLP provided in the previous section. Then, the worst-case acquisition delay a request of

each type may experience under the fast RW-RNLP with the R3LP is examined to show that this variant of

the fast RW-RNLP achieves Goals (ii) and (iii) presented in Section 3.2.1.

38

Given that Rule P3 ensures that there is at most one non-nested write request submitted to the R3LP per

resource at any given time, all non-nested write requests that are present can be allowed to execute together;

they must require different resources. In a sense, this means that all non-nested write requests can be treated

similarly to read requests relative to each other. The same holds true for the set of nested write requests at a

given time. Naturally, all read requests, nested or non-nested, can execute together.

It follows from this discussion that, to coordinate nested and non-nested write requests as well as read

requests, it suffices to use a protocol that can coordinate three different types of read requests: requests of the

same type can execute concurrently but requests of different types cannot. The R3LP can be used for this

purpose. The three types of requests processed by this application of the R3LP are non-nested write, nested

write, and read requests.

Next, the worst-case acquisition delay that any request can experience under the fast RW-RNLP with the

R3LP is bounded. These requests are distinguished by type: an arbitrary read requestRr
i , non-nested write

requestRw,nn
i , and nested write requestRw,n

i .

Theorem 3.2. Under the fast RW-RNLP with the R3LP, the worst-case acquisition delay for a requestRi is:

(i) Lw
max +Lr

max time units, ifRr
i is a read request and no nested write requests are active whileRr

i is active;

(ii) 2Lw
max+Lr

max time units, ifRr
i is a read request and nested write requests may be active whileRr

i is active;

(iii) Ni · (2Lw
max +Lr

max)+Lw
max +Lr

max time units, ifRw,nn
i is a non-nested write request and no nested write

requests are active whileRw,nn
i is active;

(iv) Ni · (3Lw
max +Lr

max)+ 2Lw
max +Lr

max time units, if Rw,nn
i is a non-nested write request and nested write

requests may be active whileRw,nn
i is active;

(v) (m−1) · (3Lw
max +Lr

max)+2Lw
max +Lr

max time units, ifRw,n
i is a nested write request.

Proof. Cases (ii), (iv), and (v) follow directly from Lemma 3.1 and Theorem 3.1. Here, Gr = Gw,nn = Gw,n =

2Lw
max +Lr

max.

When no nested write requests are active, as in Cases (i) and (iii), the above statements follow from

Corollary 3.2 and Theorem 3.1. Here, Gr = Gw,nn = Lw
max +Lr

max; there is no nested write phase.

Theorem 3.2 shows that non-nested requests have contention-sensitive blocking (Goal (ii)) and that

nested requests have blocking bounds asymptotically the same as under the RW-RNLP (Goal (iii)). Referring

to Goal (iii), note that the worst-case pi-blocking under the RW-RNLP is O(1) for read requests and O(m)

39

for write requests (Ward and Anderson, 2014).5 The pi-blocking bound for nested write requests under the

fast RW-RNLP with the R3LP has a higher coefficient than under the RW-RNLP. In practice, however, the

fast RW-RNLP with the R3LP outperforms the RW-RNLP, as discussed in Section 3.3.

3.2.3 The RW-RNLP*

While the R3LP arbitrates resource access correctly, it does so at the cost of some concurrency; access to

resources is coordinated in global phases. An alternate choice for the global arbitration mechanism is the

RW-RNLP*. Similarly to the R3LP, the RW-RNLP* must arbitrate resource access between read and write

requests. However, it arbitrates access on a per-resource basis, allowing increased concurrency in resource

accesses. It is obtained from the RW-RNLP by altering one aspect of its design and changing the context in

which it is applied (Rule P3). For each resource `a, the RW-RNLP* maintains two queues Qr
a and Qw

a , for

unsatisfied read and write requests, respectively.

Example 3.3. Figure 3.5 is used as a continuing example to illustrate important concepts in the design of the

RW-RNLP*. Each inset of this figure shows read and write queues for four resources: `1, `2, `3, and `4. At

the time illustrated in Figure 3.5 (a), the write requestRw
1 is satisfied for its requested resources D1 = {`1, `2},

as indicated by being positioned within the circles denoting the resources `1 and `2. BecauseRw
1 is satisfied,

it is not in any of the queues. Similarly, the read requestRr
2 for D2 = {`3, `4} is satisfied. ♦

Basic RW-RNLP* rules. The RW-RNLP* is described via a set of rules to which an implementation must

conform. The following are general rules that define how requests are processed.

G1 When Ji issuesRi at time t, the timestamp of the request is recorded: ts(Ri) := t.

G2 WhenRi is satisfied, it is dequeued from either Qr
a (if it is a read request) or Qw

a (if it is a write request)

for each `a ∈ Di.

G3 WhenRi completes, it unlocks all resources in Di.

G4 Each request issuance or completion occurs atomically. Therefore, there is a total order on timestamps,

and a request cannot be issued at the same time that a critical section completes.

5More precisely, the bounds presented are Lw
max +Lr

max and (m−1)(Lw
max +Lr

max) for read and write requests, respectively.

40

R3 , R5

R3

R3 , R5

Read
Write

R6

R7 R7

R7 R7R7

R7

R4

R4

R4R9

R5

(a)

(b)

(c)

(d)

Read
Write Read

Write Read
Write

R1

l1

R1

l2

R2

l3

R2

l4

R1

l1

R1

l2

R2

l3

R2

l4

R2

l4

R2

l4

R6

l2

l2

l1

R2 , R8

l3

R2 , R8

l3l1

B(R3,t) = { R1 }

Figure 3.5: Example illustrating the rules of the RW-RNLP*.

41

Example 3.3 (continued). Moving from inset (a) to inset (b) in Figure 3.5, four additional requests have

been issued. Timestamps are determined for these requests when they are issued (Rule G1). The issuance of

each request occurs atomically (Rule G4), so it is not possible for two requests to obtain the same timestamp.

The arrow from Rr
3 to Rw

1 indicates that Rr
3 is blocked by Rw

1 . This blocking relationship is formally

defined later and serves to represent just one such relationship in the system.

Figure 3.5 (c) depicts the system afterRw
1 has completed. By Rule G3, it released resources `1 and `2.

This enabled bothRr
3 andRr

5 to be satisfied for `1 and dequeued from Qr
1 (Rule G2). Similarly,Rw

6 became

satisfied for `2.

In moving from inset (b) to inset (c),Rw
7 andRr

8 have been issued, andRr
8 was satisfied immediately.

Notice that requestRw
7 for resources D7 = {`2, `3, `4} was atomically enqueued on Qw

2 , Qw
3 , and Qw

4 . Because

such an action is atomic, no cycles among blocked requests can exist. In an actual implementation, the

issuance and completion of a request would not really occur atomically. However, an implementation must

ensure that these actions have the “effect” of being atomic. Section 3.2.6 considers such issues. ♦

Read and write entitlement. Like the RW-RNLP, the RW-RNLP* functions by alternating read and write

phases. The mechanism for orchestrating these phases is entitlement, which is defined separately for read and

write requests below (these definitions are taken directly from (Ward and Anderson, 2014)). Intuitively, a

request is entitled when it should be satisfied in the next phase, thus only unsatisfied requests may be entitled.

Together with the reader and writer rules presented later, the definition of entitlement ensures progress

and allows us to upper-bound pi-blocking times. Below, E(Qw
a) is used to denote the earliest-timestamped

unsatisfied write request for resource `a.

Example 3.3 (continued). In Figure 3.5 (b), E(Qw
2) =Rw

6 . ♦

Definition 3.1. An unsatisfied read request Rr
i becomes entitled when there exists `a ∈ Di that is write

locked, and for each resource `a ∈ Di, E(Qw
a) is not entitled (see Definition 3.2).6 (Note that E(Qw

a) = /0

could hold. In this case, E(Qw
a) = /0 is considered to be a “null” request that is not entitled.) Rr

i remains

entitled until it is satisfied.

6Entitlement is a property of a request, and Definition 3.1 and Definition 3.2 give conditions upon which a request becomes entitled
in terms of the entitlement of other requests. Therefore, while Definition 3.1 and Definition 3.2 reference each other parenthetically
to aid the reader, they are not in fact circularly defined.

42

Definition 3.2. An unsatisfied write requestRw
i becomes entitled when for each `a ∈ Di,Rw

i = E(Qw
a), no

read request in Qr
a is entitled (see Definition 3.1),6 and `a is not write locked. Rw

i remains entitled until it is

satisfied.

Example 3.3 (continued). In Figure 3.5 (b),Rr
3 andRr

5 are both entitled (Definition 3.1): `1 is write locked,

and there exists no resource `a in D3 or D5 for which E(Qw
a) is entitled (Definition 3.2). Entitled requests

are indicated in Figure 3.5 by gray shading. In Figure 3.5 (c),Rw
4 is entitled: `1 is the only resource in D4,

E(Qw
1) =Rw

4 holds, there is no entitled read in Qr
1, and `1 is not write locked. In moving from inset (c) to

inset (d),Rw
6 completed and released `2. In Figure 3.5 (d),Rw

7 is entitled: Rw
7 was at the head of each of its

queues and there were no entitled read requests in the corresponding read queues, so the only condition that

preventedRw
7 from being entitled earlier wasRw

6 ’s lock on `2. ♦

Rules for read and write requests. The specification of the RW-RNLP* is completed by stating rules that

govern how read and write requests are processed. To state these rules, notation is required to identify the set

of requests on which an entitled requestRi (a read or a write) is blocked. Specifically, B(Ri, t) denotes the

set of requests on which such a requestRi is blocked at time t.

Example 3.3 (continued). In Figure 3.5 (b), there are two entitled requests, Rr
3 and Rr

5, both waiting on

the satisfied write request Rw
1 . If inset (b) reflects the system state at time t, then B(Rr

3, t) = {Rw
1 } and

B(Rr
5, t) = {Rw

1 }. Only one of these relationships is depicted with an arrow in the diagram to avoid clutter.

Similarly, if Figure 3.5 (c) reflects the system state at time t ′, then B(Rw
4 , t
′) = {Rr

3,Rr
5}. Note that there are

other blocking relationships throughout Figure 3.5, and B(Ri, t) is only defined forRi at a time t whenRi is

entitled. ♦

The rules for read requests are as follows.

R1 WhenRr
i is issued, for each `a ∈ Di,Rr

i is enqueued in Qr
a. IfRr

i does not conflict with any entitled or

satisfied write requests, then it is satisfied immediately.

R2 An entitled read requestRr
i is satisfied at the first time instant t such that B(Rr

i , t) = /0.

Example 3.3 (continued). WhenRr
3 andRr

5 were issued, by Rule R1, each was enqueued in Qr
1, as shown

in Figure 3.5 (b). When Rw
1 later completed at some time t, as shown in Figure 3.5 (c), B(Rr

3, t) = /0 and

B(Rr
5, t) = /0 were both established andRr

3 andRr
5 were both satisfied immediately, by Rule R2. Figure 3.5 (c)

43

also showsRr
8 being satisfied immediately after being issued. This occurred by Rule R1, as no satisfied or

entitled write requests for `3 existed at that time. ♦

The rules for write requests are as follows.

W1 WhenRw
i is issued, for each `a ∈Di,Rw

i is enqueued in timestamp order in the write queue Qw
a . IfRw

i

does not conflict with any entitled or satisfied requests (read or write), then it is satisfied immediately.

W2 An entitled write requestRw
i is satisfied at the first time instant t such that B(Rw

i , t) = /0.

Example 3.3 (continued). WhenRw
6 was issued prior to the system state depicted in Figure 3.5 (b), it was

enqueued in Qw
2 , and because it conflicted with the satisfied request Rw

1 , by Rule W1, it was not satisfied

immediately. RequestRw
1 later completed at some time t, as shown in Figure 3.5 (c), and at that time t,Rw

6

became entitled and B(Rw
6 , t) = /0 held, soRw

6 became satisfied, by Rule W2. ♦

Write expansion. Aside from Rule P3, the only other difference between the RW-RNLP* and the RW-RNLP

is with regard to a technique called write expansion, which is employed by the latter but not the former. Since

the RW-RNLP* does not employ write expansion, the necessary formal machinery to completely define

this technique is not introduced here. Instead, the general idea behind write expansion is conveyed with an

example.

Example 3.4. The general idea behind write expansion is as follows. If a write requestRw
i is issued, and if

a read requestRr
j that accesses resources in common withRw

i could possibly be active concurrently, then

the set of resources requested by Rw
i , Di, must be expanded to include all resources in D j. An example is

given in Figure 3.6. In inset (a), a write requestRw
1 is satisfied, holding the lock for `3. Inset (b) shows two

possible scenarios after the issuance ofRw
2 ,Rw

3 , andRr
4, with D2 = {`2, `3}, D3 = {`1}, and D4 = {`1, `2}.

Inset (b)(i), on the left, shows the situation with no write expansion. Rw
3 requires only resource `1 and thus is

immediately satisfied. Rr
4 is then entitled. In inset (b)(ii),Rw

2 andRw
3 are expanded: because there exists a

read request (namely,Rr
4) in the system that requires `1 and `2,Rw

2 must be issued for D2 = {`1, `2, `3} and

Rw
3 must be issued for D3 = {`1, `2}. Therefore, in inset (b)(ii),Rw

3 cannot be satisfied untilRw
2 completes,

even though they do not share resources.

Inset (c) shows the situation afterRw
1 has completed. As depicted in inset (c)(i), in the scenario without

write expansion, nothing new happens to the other requests, asRw
2 cannot proceed ahead of the entitled read

Rr
4. However, as shown in inset (c)(ii), in the scenario with write expansion, the completion ofRw

1 makes

Rw
2 entitled. ♦

44

write requests
not expanded

write requests
expanded

Read
Write Read

Write Read
Write

l1 l2 l3

l1 l2 l3

l1 l2 l3

l1 l2 l3

l1 l2 l3

(b)

(c)

(i)

(i)

(ii)

(ii)

(a)

R1

R1 R1

R2 R2

R2 R2 R2 R2

R2 R2
R2 R2R2

R3R3

R3R3

R4R4

R4R4

R3

R3 R4R4

R4
R4

R2

Figure 3.6: System states without write expansion are labeled (i), and states with write expansion (used in the
RW-RNLP) are labeled (ii).

One reason write expansion is used in the RW-RNLP is because it makes reasoning about the largest

possible pi-blocking for write requests easier. With write expansion, ifRw
i is the earliest-timestamped write

among all write requests, then it is either entitled or satisfied, as illustrated in Example 3.4 and proven by

Ward and Anderson (2014). Additionally, write expansion eases certain implementation challenges.

In the context of the global arbitration mechanism, write expansion is problematic, as the ultimate intent

is to speed the processing of non-nested requests. With write expansion, these could be converted into nested

requests. However, removing write expansion under the RW-RNLP* creates additional complexity with

respect to the pi-blocking scenarios that can occur, and increases worst-case pi-blocking bounds for write

requests by a constant factor compared to the bounds under the RW-RNLP.

45

3.2.4 RW-RNLP* Pi-Blocking Bounds

This section presents bounds on the worst-case acquisition delay experienced by a request under the

RW-RNLP*. The properties needed to derive acquisition-delay bounds are stated below. Lemma 3.4 and

Theorem 3.3 were proven by Ward and Anderson (2014) (appearing as Lemma 1 and Theorem 1 in that

paper), and those proofs are not affected by the changes made to the RW-RNLP to obtain the RW-RNLP*.

The remaining properties either require new proofs or are entirely new. Each of these properties is illustrated

below by refering to the prior example.

Lemma 3.4. Under the RW-RNLP*, a write requestRw
i experiences acquisition delay of at most Lr

max time

units after becoming entitled.

Example 3.3 (continued). In insets (c) and (d) of Figure 3.5, Rw
4 is simply waiting for all requests in

B(Rw
4 , te) to complete, where te is the time whenRw

4 became entitled. It can be shown that no new requests

can be added to B(Rw
4 , te) until Rw

4 is satisfied. Furthermore, by Definition 3.2, all of the requests in this

set are read requests. In this scenario,Rw
4 waits for two requests to complete before becoming satisfied, as

B(Rw
4 , te) = {Rr

3,Rr
5}. In the worst case,Rw

4 must wait for Lr
max time units. Note that having multiple reads

in the set B(Rw
4 , te) does not increase this worst-case acquisition delay. ♦

Theorem 3.3. Under the RW-RNLP*, the worst-case acquisition delay of a read request Rr
i is at most

Lw
max +Lr

max time units.

Example 3.3 (continued). Consider Rr
9 in Figure 3.5 (d). Resource `1 is currently in a read phase, as Rr

3

and Rr
5 are in their critical sections, and there is an entitled write request, Rw

4 . Therefore, before Rr
9 is

satisfied, the read requestsRr
3 andRr

5 could take up to Lr
max time units, and then the write requestRw

4 could

take up to Lw
max additional time units. ♦

Lemma 3.5 below is very similar to Lemma 2 in the paper that presented the RW-RNLP*, and much of

the proof given for it is taken verbatim from there (Ward and Anderson, 2014). However, new reasoning is

required as write expansion is not employed here.

Lemma 3.5. Under the RW-RNLP*, ifRw
i is the earliest-timestamped active write request for each resource

in Di, thenRw
i will be satisfied within Lw

max +Lr
max time units.

46

Proof. An unsatisfied write requestRw
i is either entitled or not. IfRw

i is entitled, then by Lemma 3.4, it will

become satisfied within Lr
max time units. Otherwise, by Definition 3.2, for some resource `a ∈ Di, either (i)

Rw
i 6= E(Qw

a), (ii) some request Rr
x ∈ Qr

a is entitled, or (iii) `a is write locked by some other request. By

Rule W1, Cases (i) and (iii) are not possible because the write queues are timestamp ordered, andRw
i is the

earliest-timestamped active write request for each resource in Di. For Case (ii), assume thatRr
x is entitled and

`a ∈Di∩Dx. Then, by Definition 3.1,Rr
x is blocked by at least one satisfied write requestRw

j . By Rule P1 (a

resource-holding job is continually scheduled), all such write requests will complete within Lw
max time units.

At the time t when all such write requests have completed, by Rule R2, eachRr
x in B(Rw

i , t) will be satisfied,

and by Definition 3.2, Rw
i will be entitled. By Lemma 3.4, Rw

i will subsequently experience at most Lr
max

additional time units of delay before being satisfied.

In systems for which each resource is a single-writer resource, each write request is the earliest-

timestamped active write request for all of its required resources upon issuance.

Corollary 3.3. Under the RW-RNLP*, if all resources are single-writer resources, then the worst-case

acquisition delay of a write requestRw
i is at most Lw

max +Lr
max time units.

The time it takes the earliest-timestamped active write request to become satisfied in the special scenario

of no active nested requests is similarly bounded.

Lemma 3.6. Under the RW-RNLP*, if no nested requests are active while the non-nested requestRw,nn
i is

active, and ifRw,nn
i is the earliest-timestamped active write request for its lone requested resource `a in Di,

thenRw,nn
i will be satisfied within Lr

max time units.

Proof. The proof of this lemma differs from that given above for Lemma 3.5 only in how Case (ii) is

addressed. For Case (ii) in the context of Lemma 3.6, if the non-nested request Rr,nn
x is entitled, then by

Definition 3.1, it must blocked by a satisfied write request Rw,nn
j for resource `a. However, Rw,nn

i is the

earliest-timestamped request for `a, so Case (ii) is actually impossible in the context of Lemma 3.6. Therefore,

Rw,nn
i must be either satisfied or entitled, and in the latter case, it becomes satisfied within Lr

max time units, by

Lemma 3.4.

The next two lemmas heavily exploit Rule P3, which requires that there be at most one incomplete

non-nested write request and one incomplete nested write request per resource at any time.

47

Lemma 3.7. Under the RW-RNLP*, after being issued, a nested write requestRw,n
i will become the earliest-

timestamped active write request for all of the resources in Di within 2Lw
max +Lr

max time units.

Proof. For any resource in Di for whichRw,n
i is not the earliest-timestamped write request, by Rule P3, the

earliest-timestamped write is a non-nested write request. By Lemma 3.5, each such request is satisfied within

Lw
max +Lr

max time units. By Rule P1, once satisfied, all such non-nested write requests will complete within

Lw
max time units. Summing these two bounds yields the worst-case bound of 2Lw

max +Lr
max time units.

Lemma 3.8. Under the RW-RNLP*, after being issued, a non-nested write requestRw,nn
i will become the

earliest-timestamped active write request for its lone requested resource `a in Di:

(i) immediately, if no nested write requests are active whileRw,nn
i is active;

(ii) within 4Lw
max +2Lr

max time units, if nested requests may be active whileRw,nn
i is active.

Proof. In Case (i), by Rule P3, there are no other write requests accessing `a, soRw,nn
i immediately becomes

the earliest-timestamped request for that resource.

In Case (ii), ifRw,nn
i is not immediately the earliest-timestamped write request for `a, then there exists

exactly one nested write request Rw,n
x that is the earliest-timestamped write request for `a (Rule P3). By

Lemma 3.7,Rw,n
x will be the earliest-timestamped request for all of its requested resources within 2Lw

max+Lr
max

time units. By Lemma 3.5, Rw,n
x will be satisfied within an additional Lw

max +Lr
max time units. Once it is

satisfied, by Rule P1, it will complete within Lw
max time units. At that time, Rw,nn

i will be the earliest-

timestamped write request for its requested resource. Summing all the bounds just stated, this occurs within

4Lw
max +2Lr

max time units in the worst case.

Theorem 3.4, given next, provides the desired acquisition-delay bounds. Together with Theorem 3.3, this

theorem implies that all pi-blocking bounds under the RW-RNLP* are O(1).

Theorem 3.4. Under the RW-RNLP*, the worst-case acquisition delay of a write requestRw
i is:

(i) Lr
max time units, ifRw,nn

i is a non-nested request and no nested requests are active whileRw,nn
i is active;

(ii) Lw
max +Lr

max time units, if Rw,nn
i is a non-nested request and no nested write requests are active while

Rw,nn
i is active;

(iii) 5Lw
max +3Lr

max time units, ifRw,nn
i is a non-nested request and nested requests may be active whileRw,nn

i

is active;

(iv) 3Lw
max +2Lr

max time units, ifRw,n
i is a nested request.

48

Proof. In Case (i), by Lemma 3.8 (i),Rw,nn
i will be the earliest-timestamped active write request for its lone

requested resource as soon as it is issued. By Lemma 3.6, it will be satisfied within Lr
max time units.

In Case (ii), by Lemma 3.8 (i), Rw,nn
i will be the earliest-timestamped active write request for its lone

requested resource as soon as it is issued. By Lemma 3.5, it will be satisfied within Lw
max +Lr

max time units.

In Case (iii), by Lemma 3.8 (ii), Rw,nn
i will be the earliest-timestamped active write request for its

lone requested resource within 4Lw
max + 2Lr

max time units. By Lemma 3.5, it will then be satisfied within

Lw
max +Lr

max time units, resulting in a worst-case acquisition delay of 5Lw
max +3Lr

max time units.

In Case (iv), by Lemma 3.7, Rw,n
i will be the earliest-timestamped active write request for all of its

requested resources within 2Lw
max +Lr

max time units. By Lemma 3.5, it is then satisfied within Lw
max +Lr

max

time units, resulting in a worst-case acquisition delay of 3Lw
max +2Lr

max time units.

In Section 3.4.1 it is shown that all of the blocking bounds in Theorem 3.4 are tight, i.e., scenarios exist

in which these exact bounds occur. Note that, by Theorem 3.3 and Theorem 3.4 (i), if non-nested requests

are not affected by nested requests, then read and write requests have worst-case pi-blocking bounds of only

Lw
max +Lr

max and Lr
max time units, respectively.

3.2.5 The Fast RW-RNLP with the RW-RNLP*

Referring back to the fast RW-RNLP structure in Figure 3.4, notice that all read requests (both nested

and non-nested) directly invoke the RW-RNLP*. Furthermore, Rule P3 ensures that at most one non-nested

write request and one nested write request per resource accesses the RW-RNLP* at a time.

Because read requests directly invoke the RW-RNLP*, the pi-blocking incurred by them is O(1) in the

worst case (Lmax is considered to be constant), as shown in the following theorem. Thus, Goals (ii) and (iii)

above are met for read requests: non-nested requests have contention-sensitive blocking and nested requests

have blocking bounds asymptotically the same as under the RW-RNLP. The following theorem also shows

that Goals (ii) and (iii) are met for write requests: the pi-blocking incurred by a non-nested write request

Rw,nn
i is O(Ni) in the worst case (recall from Section 2.4 that Ni is the contention experienced by requestRi),

and the pi-blocking incurred by a nested write request is O(m) in the worst case. As with the R3LP, the fast

RW-RNLP with the RW-RNLP* does result in a higher coefficient for blocking of nested write requests, but

the fast RW-RNLP outperforms the RW-RNLP in practice, as shown in Section 3.3.

49

Theorem 3.5. Under the fast RW-RNLP with the RW-RNLP*, the worst-case acquisition delay for a request

Ri is:

(i) Lw
max +Lr

max time units, ifRr
i is a read request;

(ii) Ni·(Lw
max+Lr

max)+Lr
max time units, ifRw,nn

i is a non-nested request and no nested requests are active while

Rw,nn
i is active;

(iii) Ni·(2Lw
max+Lr

max)+Lw
max +Lr

max time units, ifRw,nn
i is a non-nested request and no nested write requests

are active whileRw,nn
i is active;

(iv) Ni·(6Lw
max +3Lr

max)+5Lw
max +3Lr

max time units, ifRw,nn
i is a non-nested request and nested requests may

be active whileRw,nn
i is active;

(v) (m−1)·(4Lw
max +2Lr

max)+3Lw
max +2Lr

max time units, ifRw,n
i is a nested request.

Proof. Each case follows directly from Theorems 3.1, 3.3, and 3.4.

In a system with only single-writer resources, the RW-RNLP* alone is sufficient; other protocols are not

required to arbitrate access between write requests as no write requests will conflict. Thus, Corollary 3.3 can

be applied to show that all requests incur O(1) pi-blocking with very low constant factors.

To this point, the RW-RNLP* is fully specified abstractly. What remains is to devise an actual implemen-

tation of it with reasonable overhead.

3.2.6 RW-RNLP* Implementation

Of the building blocks used to construct the fast RW-RNLP, the TL and the RNLP have existing

implementations (Brandenburg and Anderson, 2010; Ward and Anderson, 2012). Section 3.1 provided an

implementation of the R3LP. Thus, it remains to provide an implementation of the RW-RNLP*. Recall that

the focus here is on a user-level, spin-based version.

The main challenge in implementing the RW-RNLP* lies in supporting the atomicity assumptions

inherent in the rule-based specification. Such assumptions could be supported by encapsulating certain

code regions within lock and unlock calls to an underlying mutex. Indeed, this approach was taken in

implementing the rules of the RW-RNLP (Ward and Anderson, 2014). While such an approach introduces

additional pi-blocking, the protected critical sections are usually very short, so such blocking is considered

to be part of the lock and unlock overhead of the protocol being implemented. Avoiding relying on the

use of mutex protocols in this way if possible is preferable, especially categorically precluding their use in

50

Listing 3 RW-RNLP* Definitions
type res state: record

rin, rout: unsigned integer initially 0
win, wout: unsigned integer initially 0

constant
RINC 0x100 // reader increment value
WBITS 0xff // writer bits in rin
PRES 0x80 // writer present bit
PHID 0x7f // writer phase ID bits

24 23

24 23 16 15

16 1524 31

24 31

 8 7 6

 8 7 6

 0

 0

unusedrout: count of completed read requests

rin: count of issued read requests

PRES: writer present boolean

PHID: writer phase ID

Figure 3.7: Bits in the per-resource rin and rout variables. (A very similar figure appears in the presentation
of PF-TLs (Brandenburg and Anderson, 2010).)

implementing the lock and unlock routines for non-nested requests, as efficiently implementing such routines

is the emphasis of this chapter.

The implementation of the RW-RNLP* is based on the same ideas underlying PF-TLs. The shared

variables used to track requests are described below and then the pseudocode for each type of request is

presented.

Shared variables of the RW-RNLP*. In the implementation, corresponding to each shared resource `a is a

pointer to a structure called res state, which consists of four shared counters, rin, rout, win, and wout, as

shown in Listing 3. Almost identical counters to these are used in the PF-TL (Brandenburg and Anderson,

2010). Counters win and wout track the number of write requests for resource `a that have been issued and

completed, respectively. Counters rin and rout similarly count read requests, with the added complexity of

storing information about writes in the bottom byte, as shown in Figure 3.7. Listing 3 shows various constant

bitmasks used in the code to access and manipulate certain bits in rin and rout. As with the R3LP, shared

state must be marked volatile and updated atomically.

Non-nested requests in the RW-RNLP*. The lock and unlock routines for non-nested requests in the

implementation are shown in Listing 4. These are nearly identical to those for the PF-TL, which is an efficient

reader/writer lock for single-resource requests (Brandenburg and Anderson, 2010). A non-nested read request

51

Listing 4 RW-RNLP* Routines for Non-Nested Requests
1: procedure R* LOCKnn(`: ptr to res state)
2: var w: unsigned int
3: w := fetch&add(`�rin,RINC) & WBITS . In read queue
4: await (w = 0) or (w 6= (`�rin & WBITS)) . Satisfied
5: end procedure

6: procedure R* UNLOCKnn(`: ptr to res state)
7: atomic add(`�rout,RINC)
8: end procedure

9: procedure W* LOCKnn(`: ptr to res state)
10: var rticket, wticket, w: unsigned int
11: wticket := fetch&add(`�win, 1) . In write queue
12: await (wticket = `�wout) . Head of write queue
13: w := PRES | (wticket & PHID)
14: rticket := fetch&add(`�rin, w) . Marked entitled now for all reads to see
15: await (rticket = `�rout) . Satisfied
16: end procedure

17: procedure W* UNLOCKnn(`: ptr to res state)
18: fetch&and(`�rin, ∼(WBITS)) . Clear WBITS
19: `�wout := `�wout+1
20: end procedure

Rr,nn
i for a resource `a is performed by simply incrementing the number of readers for `a (Line 3) and then

spinning if necessary (Line 4). In particular, if `a is currently being written, then Rr,nn
i waits for a single

write request to complete as indicated by either the PRES bit being cleared or the PHID bits being changed,

which indicates that a new writer has set those bits, and thus the prior write has completed. To unlock `a,

Rr,nn
i simply increments rout by RINC (Line 6).

A non-nested writeRw,nn
i of a resource `a waits until it holds the earliest ticket among all write requests

for `a (Lines 11–12). It then atomically sets the last byte of `a’s rin variable and determines the number

of read requests for `a upon which it must block (Lines 11–14). Next, it waits until those reads (if any)

are complete (Line 13). When Rw,nn
i completes, it clears the writer byte of `a’s rin variable (Line 15) and

increments its wout counter (Line 16).

Nested requests in the RW-RNLP*. The lock and unlock routines for nested requests are shown in Listing 5.

These routines are very similar to those in Listing 4, with two notable exceptions.

First, an extra phase has been added to the lock routine for read requests (Lines 3–6).7 The analysis in

Section 3.2.4 was based on the assumption that enqueueing takes no time; that is not the case in practice.

This extra phase handles a corner case in which unnecessary writer blocking occurs as a result of enqueueing

7This extra phase erroneously combined Lines 3–6 into a single loop in the conference paper (Nemitz et al., 2017), given there as
Listing 3, but the source code was correct. It has been corrected here.

52

Listing 5 RW-RNLP* Routines for Nested Requests
1: procedure R* LOCKn(D: set of ptr to res state)
2: var w`: unsigned int for each ` in D
3: for each ` in D:
4: w` := `�rin & WBITS

5: for each ` in D:
6: await (w` = 0) or (w` 6= (`�rin & WBITS))
7: R2LP LOCK(r type)
8: for each ` in D:
9: w` := fetch&add(`�rin, RINC) & WBITS . Marked entitled for all writes to see

10: R2LP UNLOCK(r type)
11: for each ` in D:
12: await (w`=0)or (w` 6=(`�rin & WBITS)) . Satisfied
13: end procedure

14: procedure R* UNLOCKn(D: set of ptr to res state)
15: for each ` in D:
16: atomic add(`�rout, RINC)
17: end procedure

18: procedure W* LOCKn(D: set of ptr to res state)
19: var rticket`,wticket`,w`: unsigned int for each ` in D
20: for each ` in D:
21: wticket` := fetch&add(`�win, 1) . In write queue
22: await (wticket` = `�wout) . Head of all requested write queues now
23: R2LP LOCK(w type)
24: for each ` in D:
25: w` := PRES | (wticket` & PHID)
26: rticket` := fetch&add(`�rin, w`) . Marked entitled for all reads to see
27: R2LP UNLOCK(w type)
28: for each ` in D:
29: await (rticket` = `�rout) . Satisfied
30: end procedure

31: procedure W* UNLOCKn(D: set of ptr to res state)
32: for each ` in D:
33: fetch&and(`�rin, ∼(WBITS)) . Clear WBITS
34: `�wout := `�wout+1
35: end procedure

taking some time; this corner case is explored in Section 3.4.2. This extra phase does add an additional

Lw
max +Lr

max time units to the acquisition delay for nested read requests. This additional blocking is accounted

for in the schedulability study in Section 3.3.2.

Second, because requests are now for sets of resources, such sets must be ensured to atomically enqueue

to prevent potential deadlock. (This is why, as discussed in Chapter 2, resources must be acquired according

to a predetermined order in the variant of the RNLP that does not use DGLs.) However, it turns out that the

only potential deadlock situation that can occur involves a race condition between nested readers and nested

writers. Furthermore, this race condition can be eliminated by coordinating access to the lock state with a

reader/reader locking protocol (R2LP). In this application of the R2LP, phases are defined such that read

53

requests are allowed to execute together and write requests may execute together, but read requests and write

requests are prevented from executing simultaneously. The calls to the R2LP lock and unlock routines in

Lines 7, 10, 23, and 27 specify their type as an input parameter. While using the R2LP introduces blocking

overhead, this overhead is only O(1) (Nemitz et al., 2018). This is preferable to the blocking overhead that

would result from using a mutex lock to prevent race conditions.

Clearly, the routines in the above implementation are not actually atomic: each executes over a duration

of time, not instantaneously. However, it can be formally shown that each routine is linearizable. That is, for

each routine, an instantaneous linearization point can be defined at which the routine “appears” to take effect

atomically (see Section 3.4.3). When viewed in this way, the routines can be shown to support the rule-based

specification of the RW-RNLP* given earlier.

3.3 Evaluation

In this section, both variants of the fast RW-RNLP are evaluated on the basis of overhead and blocking

via user-space experiments. Additionally, a large-scale overhead-aware schedulability study explores the

impact of the worst-case acquisition delays from Theorems 3.2 and 3.5 on system schedulability.

3.3.1 Overhead and Blocking

Given the focus of this chapter, overhead and blocking times for non-nested and read requests are

especially relevant. User-space evaluation was conducted on a dual-socket, 18-cores-per-socket, 2.3 GHz

Intel Xeon E5-2699 platform running Ubuntu 14.04.

A number of experimental parameters were varied in the evaluation, including the number of tasks

(n), nesting depth (D= |Di|), critical-section length (Li), probability of a request being nested (rather than

non-nested), and probability of a request being a read request (rather than a write request). The following

parameter ranges were considered: n ∈ {2,4, ...,36}, D ∈ {1,2, ...,10}, Li ∈ {0µs,10µs, ..., ,100µs}, and

nested and read probabilities independently in {0.0,0.1, ...,1.0}. A scenario is defined as choosing a value

for four of the parameters, and varying the fifth. Each task was pinned to a single core, and for task counts of

up to 18, all tasks were assigned to the same socket. To simulate behavior that would generate the worst-case

lock overhead and blocking times, each task was configured to issue lock and unlock calls 10,000 times, as

fast as possible. Each such lock-unlock call pair corresponded to a single request that was randomly chosen

54

to be nested (or non-nested) and a read (or a write) given the scenario’s parameters, for 1 or D resources

randomly chosen from nr = 64 possible resources for non-nested and nested requests, respectively.

In all of the graphs, worst-case values are shown, which were obtained by computing the 99th percentile

of all recorded results in order to filter out any spurious measurements (the measurements were taken at user

level, so there is no other means for filtering results impacted by interrupts). In the course of the experiments,

hundreds of graphs were produced. The protocol implementations and the full set of graphs can be found

online.8

Overhead and blocking. The considered protocols are compared on the basis of overhead and blocking:

recall from Section 1.1 that the overhead incurred by a resource request is the total time spent by it executing

lock logic within lock and unlock routines (including any time spent waiting to access underlying locks used

to enforce atomicity properties required by that logic); the blocking incurred by the request is the total time

spent by it waiting to access its requested resources. Both overhead and blocking were measured for a number

of different scenarios, using the experimental parameters defined above.

The design goals for both fast RW-RNLP variants were to ensure that (i) read and non-nested write

requests have low overhead and experience contention-sensitive pi-blocking and (ii) nested write requests

experience pi-blocking that is no worse (and hopefully better) than that under the RW-RNLP. Accordingly,

the use of per-resource PF-TLs (which exhibit very low overhead and are contention-sensitive) were used as

standards for comparison in assessing (i) and the RW-RNLP (of course) in assessing (ii). A few graphs that

are exemplars of trends seen generally are discussed in the following observations.

Observation 3.1. For non-nested read requests (respectively, non-nested write requests), the fast RW-RNLP

with the RW-RNLP* and PF-TLs exhibited comparable overhead (respectively, higher overhead).

This observation is supported by Figure 3.8 (a), which plots overhead for both reads and writes under

both the fast RW-RNLP and PF-TLs as a function of the task count, n. The data in this figure corresponds to

a scenario in which all requests were non-nested, evenly distributed between read and write requests, and the

total number of resources, nr, was set to 64. The critical section of each request was configured to have a

duration of 40µs. For comparison, overhead for both protocols held steady in the range of around 0.1µs to

0.5µs for up to 18 tasks, with the fast RW-RNLP with the RW-RNLP* having a higher write-lock overhead

than PF-TLs. Implementation-wise, the difference for write requests under the fast RW-RNLP with the

8See http://www.cs.unc.edu/~jarretc/dissertation/.

55

http://www.cs.unc.edu/~jarretc/dissertation/

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

W-NN - Fast RW-RNLP (R 3LP)

R-NN - Fast RW-RNLP (R 3LP)

W-NN - Fast RW-RNLP (RW-RNLP ∗)

R-NN - Fast RW-RNLP (RW-RNLP ∗)

W-NN - PF-TL

R-NN - PF-TL

Figure 3.8: (a) Overhead and (b) blocking for non-nested read and write requests when using PF-TLs versus
both variants of the fast RW-RNLP. For each requestRi, Lr

i = 40µs, Lw
i = 40µs, nr = 64, |Di|= 1. Requests

were randomly chosen to be a read (or a write) with probability 0.5.

RW-RNLP* is that each request must first acquire the ticket lock corresponding to its required resource; this

contributes additional overhead (if not also additional blocking). Beyond 18 tasks, overhead increased under

both protocols. This is because, beyond a task count of 18, tasks execute on both sockets of the considered

platform.

Observation 3.2. The fast RW-RNLP with the R3LP exhibited higher overhead than PF-TLs and the fast

RW-RNLP with the RW-RNLP*.

This trend is seen in Figure 3.8 (a) and is unsurprising; unlike the other protocols, the fast RW-RNLP

with the R3LP requires all requests to modify parts of the lock state based on request type rather than on a

per-resource basis. Therefore, in a system with more resources than request types, the R3LP approach is

likely to cause more cache invalidations, in turn causing higher overhead.

Observation 3.3. In general, overhead increased when using two sockets instead of one.

This trend is seen in Figure 3.8 (a), discussed earlier, and also in Figure 3.9 (a) and (b), considered

in detail below. When tasks execute on two sockets instead of one, overhead due to maintaining cache

coherency increases. Observe that, in Figure 3.8 (a), overhead under the fast RW-RNLP with the RW-RNLP*

is never more than around 1.0µs. This value is quite small compared to the 40µs critical-section length.

56

Table 3.1: Implementation-based worst-case acquisition delay under the fast RW-RNLP.

Request Case with the R3LP with the RW-RNLP*
Rr 2 Lw +Lr Lw +Lr

Rr 1 2Lw +Lr 2Lw +2Lr

Rw,nn 2 Ni · (2Lw +Lr)+Lw +Lr Ni·(Lw +Lr)+Lr

Rw,nn 3 Ni · (2Lw +Lr)+Lw +Lr Ni·(2Lw +Lr)+Lw +Lr

Rw,nn 1 Ni · (3Lw +Lr)+2Lw +Lr Ni·(6Lw +3Lr)+5Lw +3Lr

Rw,n 1 (m−1) · (3Lw +Lr)+2Lw +Lr (m−1)·(4Lw +2Lr)+3Lw +2Lr

Cases: [1] No restrictions [2] No nested requests [3] No nested write requests
Note that, for brevity, Lw (respectively, Lr) is used here to denote Lw

max (respectively, Lr
max).

For reference, the bounds of RW-RNLP: Lw +Lr forRr and (m−1)(Lw +Lr) forRw.

For the RW-RNLP with the R3LP, the overhead is as high as 3.2µs, but still significantly lower than the

critical-section length.

Observation 3.4. In scenarios with only non-nested requests, the fast RW-RNLP with the RW-RNLP* and

PF-TLs exhibited nearly identical blocking.

This observation is clearly supported by Figure 3.8 (b). Together with Observation 1, this observation

suggests the viability of providing the fast RW-RNLP with the RW-RNLP* as a general synchronization

solution. It can be used in systems in which nested requests do not occur with no detrimental impacts of note.

Observation 3.5. In general, the fast RW-RNLP with the R3LP exhibited higher observed blocking than

either PF-TLs or the fast RW-RNLP with the RW-RNLP*.

With requests of each type present, the R3LP cycles between phases in a manner that can easily cause the

worst-case acquisition delay to be experienced by requests. This is in contrast to the fast RW-RNLP with the

RW-RNLP*, which requires conflicting requests to be issued in precisely the worst order to actually realize

the worst-case blocking. This may be because the particular request issuance order required to generate

the worst-case did not occur during the experiments. Recall, however, that the R3LP has lower analytical

worst-case blocking bounds, as shown in Sections 3.2.2 and 3.2.5 and summarized in Table 3.1.

Observation 3.6. In scenarios with both nested and non-nested requests, overhead for write requests tended

to be much lower under both fast RW-RNLP variants than under the RW-RNLP.

This observation is supported by Figure 3.9 (a) and (b), which depict data from two different scenarios,

as detailed in the figure’s caption. The higher overhead under the RW-RNLP is partially due to the use of

write expansion (recall Figure 3.6), which increases resource contention. This increased contention impacts

57

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0

5

10

15

20

25

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

W-N - Fast RW-RNLP (R 3LP)

W-NN - Fast RW-RNLP (R 3LP)

W-N - Fast RW-RNLP (RW-RNLP ∗)

W-NN - Fast RW-RNLP (RW-RNLP ∗)

W-N - RW-RNLP

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0

5

10

15

20

25

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0

500

1000

1500

2000

2500

3000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(c)

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0

500

1000

1500

2000

2500

3000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(d)

Figure 3.9: (a), (b) Overhead and (c), (d) blocking for nested and non-nested write requests under the
RW-RNLP and the fast RW-RNLP. Here, Lr

i = 40µs, Lw
i = 40µs, nr = 64, |Di|= 1, for non-nested requests,

and |Di|= 4, for nested requests. Requests were chosen to be a read (or write) with probability 0.5. Data is
plotted for the cases of 20% (left) and 80% (right) of requests being nested. Due to write expansion (recall
Figure 3.6), Di was inflated to include all 64 resources for writes under the RW-RNLP.

the overhead of write requests, as they write-lock an underlying PF-TL to update all relevant resource queues

atomically (Ward and Anderson, 2014). Note that, under the RW-RNLP, write expansion forces non-nested

write requests to be processed like nested ones.

Observation 3.7. In scenarios with both nested and non-nested requests, blocking for write requests tended

to be much lower under both fast RW-RNLP variants than under the RW-RNLP.

This observation is supported by Figure 3.9 (c) and (d), which plot recorded worst-case blocking times

associated with the scenarios in Figure 3.9 (a) and (b). For m = 36, blocking was up to 18 times lower

(respectively, 12 times lower) under the fast RW-RNLP with the RW-RNLP* (respectively, with the R3LP)

58

than under the RW-RNLP; write expansion increases resource contention, which increases blocking times of

the RW-RNLP.

Observation 3.8. Non-nested write requests exhibited contention-sensitive blocking under the fast RW-

RNLP variants but not the RW-RNLP.

This observation is also supported by Figure 3.9 (c) and (d). Notice that, as the task count increases, the

potential for additional blocking increases due to transitive blocking, which negatively impacts any protocol

that provides no mechanisms for eliminating transitive blocking. Blocking for non-nested requests under the

fast RW-RNLP increases slowly as the task count increases; with more tasks, more contention is possible,

and a slow linear growth of contention (and thus blocking) with the number of tasks is expected. In contrast,

non-nested write requests are converted to nested ones under the RW-RNLP due to write expansion. As a

result, their blocking under that protocol is not O(N), but instead O(m). This translates to a faster linear

growth of blocking, as in Figure 3.9 (c) and (d).

Notice that Figure 3.9 pertains to write requests. The corresponding read request results are shown in

Figure 3.10. Both overhead and blocking were much lower for reads than for writes, as expected. Under

the fast RW-RNLP variants, non-nested read requests had higher blocking than under the RW-RNLP by

1-2 critical-section lengths, and nested read requests had higher blocking by 2-3 critical-section lengths, as

expected from the implementation-based worst-case acquisition delay bounds in Table 3.1.

Of relevance to the analysis presented in Section 3.2, Figure 3.11 demonstrates the results of varying the

critical-section length while holding the number of tasks n constant (in these experiments, m and n are equal).

In contrast, in Figure 3.9 (b) the number of tasks was varied, and the critical-section length was held constant;

the points in Figure 3.9 (c) at m = 36 are the same as those in Figure 3.11 for Li = 40µs. Note that varying m

effectively modifies the term Ni for each requestRi.

Observation 3.9. Blocking time scaled linearly with critical-section length for both the fast RW-RNLP

variants and the RW-RNLP.

Figure 3.11 illustrates this observation, which reflects expected behavior based on the blocking analysis;

for each type of request, the worst-case blocking bound contains both Lw
max and Lr

max terms with different

coefficients depending on the request type.

59

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

R-N - Fast RW-RNLP (R 3LP)

R-NN - Fast RW-RNLP (R 3LP)

R-N - Fast RW-RNLP (RW-RNLP ∗)

R-NN - Fast RW-RNLP (RW-RNLP ∗)

R-N - RW-RNLP

R-NN - RW-RNLP

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0

20

40

60

80

100

120

140

160

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(c)

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0

20

40

60

80

100

120

140

160

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(d)

Figure 3.10: (a), (b) Overhead and (c), (d) blocking for nested and non-nested read requests under the
RW-RNLP and the fast RW-RNLP, in the same scenario as in Figure 3.9.

Though the fast RW-RNLP results in higher coefficients for nested write requests than the bounds proven

for the RW-RNLP, lower blocking times were generally seen under both variants of the fast RW-RNLP. This

difference may be because, under the RW-RNLP, write expansion guarantees that all write requests conflict.

There were also differences between nested and non-nested write requests under the fast RW-RNLP

variants, highlighting the improvement of O(N) over O(m) blocking. Under the fast RW-RNLP, the O(N)

blocking of non-nested write requests was almost identical to the O(1) blocking of nested read requests.

Thus, there is a significant benefit that can be gained when contention is guaranteed to be low.

60

0 20 40 60 80 100
Critical-Section Length

0

1000

2000

3000

4000

5000

6000

7000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(b)

W-N - Fast RW-RNLP (RW-RNLP ∗)

R-N - Fast RW-RNLP (RW-RNLP ∗)

W-NN - Fast RW-RNLP (RW-RNLP ∗)

R-NN - Fast RW-RNLP (RW-RNLP ∗)

W-N - RW-RNLP

R-N - RW-RNLP

R-NN - RW-RNLP

0 20 40 60 80 100
Critical-Section Length

0

1000

2000

3000

4000

5000

6000

7000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(a)

W-N - Fast RW-RNLP (R 3LP)

R-N - Fast RW-RNLP (R 3LP)

W-NN - Fast RW-RNLP (R 3LP)

R-NN - Fast RW-RNLP (R 3LP)

W-N - RW-RNLP

R-N - RW-RNLP

R-NN - RW-RNLP

Figure 3.11: Blocking for nested and non-nested write requests under the RW-RNLP and the fast RW-RNLP.
The critical-section length varies, m = 36, nr = 64, |Di|= 1, for non-nested requests, and |Di|= 4, for nested
requests. (|Di| is inflated to 64 under the RW-RNLP as above.) A request was chosen to be a write with
probability 0.5.

3.3.2 Schedulability study

The results presented in Section 3.3.1 demonstrate the tradeoffs between protocols in experimentally

measured overhead and blocking times. This section presents an evaluation of the two fast RW-RNLP

variants on the basis of hard real-time schedulability. The large-scale study presented here varied a range of

parameters, detailed below, and took over 100 CPU-days on the platform described above.

This presentation begins by introducing several additional constraints that can be applied to tighten the

computed blocking. Each protocol analyzed is then discussed. Finally, the range of the schedulability study

and key findings are discussed.

Constraints. For each task system, blocking was calculated using the worst-case acquisition delay bounds

presented in Table 3.1. However, these bounds were tightened using several constraints. Instead of accounting

for the system-wide worst-case critical section as repeatedly causing Lmax blocking for other requests, period-

based constraints were imposed that limit the number of times each critical section can delay a given request

61

based on the period of each task. Based on the functionality of each protocol, if two write requests share a

resource queue, the FIFO nature of the protocol enforces that each such write can delay the write request

of interest at most once. This constraint on blocking is called the FIFO constraint. Similarly, the number

of critical sections of read requests is limited by the number of write requests that can be counted. This

is referred to as the read-write constraint. Finally, the blocking of non-nested write requests in the fast

RW-RNLP variants depends on contention. Because the only contending requests that impact blocking are

other non-nested write requests (recall Theorem 3.1), that number of requests is used for the contention

constraint. More details and examples of these constraints can be found in Section 3.4.4.

Protocols evaluated. Four protocols were evaluated in this study: the PF-TL, the RW-RNLP, the fast RW-

RNLP with the R3LP, and the fast RW-RNLP with the RW-RNLP*. The latter three protocols are as described

above, and the PF-TL is applied to protect the group of all resources; that is, all resources are statically

grouped, and this group is protected with a standard PF-TL, eliminating all nesting with the coarse-grained

grouping. This application of a PF-TL is referred to as a group PF-TL.

Experimental setup. SchedCAT (SchedCAT, 2019), an open-source real-time schedulability test toolkit,

was used to randomly generate task systems, implement blocking bound computations, and check for

schedulability on an 18-core platform with global EDF scheduling. A wide range of system parameters were

varied, and for each set, task sets were generated with system utilizations in {2.0,2.5, ...,18.0}. Tasks sets

with short ([3,33]ms), moderate ([10,100]ms), and long ([50,250]ms) task periods were examined. For each

of these ranges, per-task utilizations were varied between medium (uniformly chosen from [0.1,0.4]) and

heavy (uniformly chosen from [0.5,0.9]). Tasks were chosen to issue a single request with a probability

chosen from {0.1,0.2,0.5,1.0}. Each request was a read (as opposed to a write) request with a probability

in {0.0,0.2,0.5,0.8} and nested (as opposed to non-nested) with a probability in {0.01,0.05,0.1,0.2,0.5}.

Nested requests were all for four resources chosen randomly from a set of 64 resources. The critical-section

length for each request was chosen uniformly within short ([1,15]µs) or long ([100,1000]µs).

For each generated task system, the impact of blocking on each request was computed given the

constraints discussed above. Most types of overhead were ignored in this evaluation, such as migration

overhead and other overhead sources that impact each scheme similarly. However, the overhead incurred

by using a specific locking protocol was accounted for; the appropriate overhead values for nested and

non-nested read and write requests were applied based on the experimental results presented in Section 3.3.1.

62

The maximum values of lock and unlock overhead from relevant scenarios was chosen (eliminating scenarios

with 100% read requests and rerunning each protocol evaluation for a critical-section length of 1µs, the

shortest critical section used in the schedulability study). For the fast RW-RNLP with the RW-RNLP*, the

worst-case overhead values for short critical-section lengths were significantly higher than that for medium or

long critical-section lengths, so the correct overhead measurement was applied based on the given scenario.

For all other protocols, overhead values were chosen only based on request type (e.g., non-nested read).

The schedulability experiments resulted in 960 plots.9 The following figures and tables highlight a few

interesting trends.

Schedulability versus nested probability. In Figure 3.12, each plot shows the schedulability curve of each

protocol; a point on a given curve indicates that, given the system utilization shown, the corresponding fraction

of task systems generated for this scenario were deemed schedulable. After applying the appropriate blocking

bounds and protocol overhead values to each task, schedulability was checked with the tests described in

Chapter 2, culminating with Baruah’s G-EDF schedulability test (Baruah, 2007). For each point, between

1,000 and 100,000 task systems were generated at random from within the specified ranges. The line denoted

NOLOCK shows the fraction of task systems for a given utilization that were schedulable when no additional

interference was caused by non-preemptive critical sections or non-preemptive spin blocking.

For the plots shown in Figure 3.12, tasks systems were generated that had medium task utilization, long

periods, long critical sections, and with all tasks issuing resource requests. Requests were chosen to be read

requests with probability 0.8. Each of the subplots shows the schedulability results given a different percent

of nested requests.

In addition to highlighting key trends in the figures, this section presents data summarizing all results.

For each of the 960 graphs, the schedulable utilization area (SUA) of each protocol was computed; this is the

area under the curve for that protocol as approximated by a midpoint Riemann sum. In general, a higher SUA

indicates better schedulability. Table 3.2 presents a breakdown of the number of times each protocol was the

best (in terms of SUA) by scenario. All scenarios in which all four protocols performed equally (within 2%

of each other) were filtered out. The highest entry per nested probability is shown in bold.

Observation 3.10. For task systems in which non-nested requests are the common case, the fast RW-RNLP

with the R3LP outperformed the RW-RNLP and the group PF-TL.

9These plots are available at http://www.cs.unc.edu/~jarretc/dissertation/.

63

http://www.cs.unc.edu/~jarretc/dissertation/

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
H

R
T
 S

ch
e
d
u
la

b
ili

ty

[1][4]
[3,2,5]

(a)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][4]
[5,3,2]

(b)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1]

[5,4,3,2]

(c)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][3,2]
[5,4]

(d)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][3,2]
[5,4]

(e)

[1] NOLOCK

[2] PF-TL

[3] RW-RNLP

[4] R3LP

[5] RW-RNLP*

Figure 3.12: Hard real-time schedulability results with varying nested probabilities for the scenario with
medium task utilizations, long periods, long critical-section lengths, and read probability 0.8. Nested
probabilities are (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, and (e) 0.5.

Figure 3.12 (a), (b), and (c) reflect the observed trends as the percentage of requests which are nested

varies. When only 1%, 5%, or 10% of requests are nested, the fast RW-RNLP variant with R3LP tended to

perform as well or better than the two existing protocols. This trend is highlighted in Table 3.2.

64

Table 3.2: Best protocols per scenario by SUA.

Task
Util.

Nested
Prob.

PF-TL RW-RNLP R3LP RW-RNLP* All tied

0.01 15 1 75 13 18
0.05 28 5 75 14 18
0.1 44 10 68 10 18
0.2 66 30 31 5 17m

ed
iu

m

0.5 76 35 0 5 17
0.01 7 1 30 6 63
0.05 11 5 28 4 64
0.1 13 8 25 3 64
0.2 19 11 12 4 64

he
av

y

0.5 33 18 2 5 59

Number of scenarios with medium (top) and heavy (bottom) task utilizations in which each protocol had the
highest SUA. Each line contains 96 total scenarios, and any protocols within 2% of the highest SUA for that
scenario was also counted as the best.

Observation 3.11. For most task systems explored in which 50% of requests were nested, the group PF-TL

and RW-RNLP outperformed the other protocols.

This is reflected in Figure 3.12 (e) and quantified in Table 3.2.

Schedulability versus task utilization and period. In Figure 3.13, schedulability curves for each protocol

are shown for task systems with short critical-section lengths, nested probability 0.1, read probability 0.2,

and all tasks making requests.

Observation 3.12. The fast RW-RNLP with the R3LP resulted in higher schedulability than the fast RW-

RNLP with the RW-RNLP* in most task systems.

This trend can be observed in Figure 3.12 and Figure 3.13 (a) and (b). In some task systems, the fast

RW-RNLP variants displayed almost identical schedulability (as shown in Figure 3.13 (c)), and in very few

task systems did the RW-RNLP* variant outperform the R3LP variant. This trend is also reflected in Table 3.2,

in which the R3LP resulted in the highest SUA more often than the RW-RNLP*.

To compare groups of scenarios, the SUA of all scenarios in the group is summed. Table 3.3 presents the

ratio of each of these compared to NOLOCK. This serves to give some intuition about the impact of shared

resources managed by each protocol on schedulability with respect to the schedulability when no resource

management is required. As before, the highest entry per nested probability is bolded.

65

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
H

R
T
 S

ch
e
d
u
la

b
ili

ty

[1][4,2][3] [5]

(a)

[1] NOLOCK

[2] PF-TL

[3] RW-RNLP

[4] R3LP

[5] RW-RNLP*

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[5,4,2,1]
[3]

(b)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[3,5,2,4,1]

(c)

Figure 3.13: Hard real-time schedulability results with varying task utilizations and periods for the scenario
with short critical-section lengths, nested probability 0.1, and read probability 0.2. Task utilizations and
periods are, respectively, (a) medium and short, (b) heavy and short, and (c) heavy and long.

Observation 3.13. Given a scenario, changing from medium task utilization to heavy task utilization tended

to make all protocols have higher schedulability.

This is as expected; with each task having a higher utilization, generally fewer tasks (and thus possible

requests) are necessary to hit each utilization threshold. This is supported by Figure 3.13 (a) and (b), as well

as by Table 3.3. In Table 3.3, all relative SUAs increase when the task utilization changes from medium to

heavy.

Observation 3.14. For some task systems, the locking protocol chosen had a minimal effect on schedulability.

For task systems with medium task utilizations, approximately one-sixth of all scenarios resulted in

identical schedulability (within 2% difference) for each locking protocol considered. This effect is also

visible in Figure 3.13 (c). In scenarios with heavy task utilization, this effect is even more pronounced, with

approximately two-thirds of the scenarios having identical schedulability (Table 3.2).

66

Table 3.3: Relative SUAs.

Task
Util.

Nested
Prob.

PF-TL RW-RNLP R3LP RW-RNLP*

0.01 0.685 0.656 0.748 0.670
0.05 0.685 0.656 0.719 0.655
0.1 0.685 0.656 0.695 0.643
0.2 0.685 0.656 0.664 0.627m

ed
iu

m
0.5 0.685 0.656 0.620 0.601

0.01 0.830 0.825 0.865 0.815
0.05 0.830 0.825 0.852 0.811
0.1 0.830 0.825 0.839 0.806
0.2 0.830 0.825 0.822 0.800

he
av

y

0.5 0.830 0.825 0.796 0.788

Fraction of summed SUA for each protocol relative to the summed SUA of NOLOCK.

3.4 Additional Details

This section provides additional details on several claims made earlier in the chapter.

3.4.1 Tight Blocking Bounds for the RW-RNLP*

To show that each blocking bound proven for the RW-RNLP* is tight, the section illustrates that each

worst-case bound can actually occur by means of examples. An example corresponding to each lemma and

theorem about the RW-RNLP* is presented below in the order in which the lemmas and theorems appear in

Section 3.2.4. In each example, requests are numbered in the order in which they were issued.

Lemma 3.4 bounds the acquisition delay that a write request can experience after becoming entitled to

Lr
max.

Example 3.5. As shown in Figure 3.14, write requestRw
2 , issued just afterRr

1, is immediately entitled and

can experience Lr
max acquisition delay. This is exactly the upper bound presented in Lemma 3.4. ♦

Theorem 3.3 bounds the acquisition delay a read request can experience to Lw
max +Lr

max.

Example 3.6. In Figure 3.14, read request Rr
3 experiences an acquisition delay of up to Lw

max +Lr
max time

units. It was issued after the issuance of requestsRr
1 andRw

2 , all for the same resource. Rr
3 cannot be satisfied

67

R2

Re
ad

Wr
ite

R3

R1

l1

Figure 3.14: A simple example that shows worst-case acquisition delay for a read request and the acquisition
delay a write may experience after becoming entitled.

Re
ad

Wr
ite

R2

R1

l1 l2

Re
ad

Wr
ite

R2 R3

Figure 3.15: An issuance order which may cause the maximum blocking after a write requestRw
3 becomes

the earliest-timestamped active write request for each of its resources, here just `2.

initially, as Rw
2 is entitled. Therefore it waits for up to Lr

max time units for Rr
1 to complete. Once Rw

2 is

satisfied,Rr
3 waits for up to Lw

max time units forRw
2 to complete before acquiring the resource. ♦

According to Lemma 3.5, a write requestRw
i may experience up to Lw

max +Lr
max blocking after becoming

the earliest-timestamped active write request for each resource in Di.

Example 3.7. Similarly to the previous examples, in Figure 3.15, write request Rw
3 can experience the

worst-case delay stated in Lemma 3.5. Because requests were issued in increasing index order, Rw
3 can

potentially block for the entire critical sections of Rw
1 and Rr

2, which can be as high as Lw
max and Lr

max,

respectively. ♦

The earliest-timestamped non-nested write request with no nested requests present can experience

blocking of Lr
max. This upper bound proven in Lemma 3.6 is shown to be tight in Example 3.5 withRw

2 as

depicted in Figure 3.14.

68

Lemma 3.7 bounds the time a nested write request must wait before becoming the earliest-timestamped

write request for all of its resources to 2Lw
max +Lr

max. The following example shows this bound is tight.

Example 3.8. As shown in Figure 3.16 (a),Rw,n
4 is not the earliest-timestamped active write request for each

of D4 = {`2, `3} when it is issued. In fact, it must wait until Rw
3 has completed. Given that each of these

requests could have been issued immediately after each other and that Rw
4 will need to wait until Rw

1 , Rr
2,

and Rw
3 complete, Rw

4 may wait up to 2Lw
max +Lr

max time units to become the earliest-timestamped active

write request. ♦

69

Re
ad

Wr
ite

R3

(a)

(c)

Re
ad

Wr
ite

Re
ad

Wr
ite

Re
ad

Wr
ite

R1

l1 l2 l3 l4

l1

R3

l2 l3

R7

l4

R2R2

R4

R4R6

R4

R8R8 R4

R5

(d)

l1

R4

l2 l3 l4

R10 R5

R4

R3

(b)

l1 l2 l3 l4

R2R2

R4

R6 R4

R5

R5

R10

R9

Figure 3.16: A series of read and write requests that illustrate the worst-case acquisition delay for nested and
non-nested write requests.

70

Lemma 3.8 has two cases for how soon a non-nested write request Rw,nn
i will become the earliest-

timestamped request for each of its resources. Case (i) does not need an example: the worst-case delay for

Rw,nn
i becoming the earliest-timestamped active write request in the RW-RNLP* for Di is zero when no

nested requests are active. Case (ii) bounds this time to 4Lw
max +2Lr

max in the presence of nested requests.

Example 3.9. ConsiderRw
5 in Figure 3.16. This non-nested write request may wait for up to 4Lw

max +2Lr
max

time units to become the earliest-timestamped request for D5 = {`3}. To become the earliest-timestamped

request for D5,Rw
5 must wait forRw

4 to complete, which in turn must wait forRw
3 to complete. As shown in

Figure 3.16 (a),Rw
3 may wait for up to Lw

max time units to become entitled (the time forRw
1 to complete, after

whichRr
2 is no longer entitled). AfterRw

3 becomes entitled,Rr
6 is issued, as shown in (b). After up to Lr

max

time units afterRw
3 becomes entitled,Rr

2 completes andRw
3 is satisfied. Rw

3 may execute for just under Lw
max

time units beforeRw
7 andRr

8 are issued, as shown in (c). OnceRw
3 completes,Rw

4 may still wait for up to

Lw
max +Lr

max time units before becoming satisfied (forRw
7 andRr

8 to complete). AfterRw
4 is satisfied, it may

execute for Lw
max time units, after whichRw

5 is finally the earliest-timestamped request for D5 after waiting

for up to 4Lw
max +2Lr

max time units. ♦

Theorem 3.4 presents four bounds for write requests. Non-nested write requests may experience up to

Lr
max time units of acquisition delay if no nested requests are active (illustrated in Figure 3.14 and described

in Example 3.5). If nested read requests may be present but no nested write requests are active, non-nested

write requests may experience up to Lw
max +Lr

max time units of acquisition delay, as illustrated in Figure 3.15

and described in Example 3.7. The third bound presented in Theorem 3.4 is that non-nested write requests in

the presence of nested requests may experience up 5Lw
max +3Lr

max time units of acquisition delay (illustrated

below). Finally, nested write requests may experience acquisition delay of up to 3Lw
max+2Lr

max (also illustrated

below).

Example 3.10. As illustrated by Figure 3.16 and Example 3.9,Rw
5 may wait for 4Lw

max +2Lr
max time units to

become the earliest-timestamped request for its resources. Suppose just beforeRw
4 completes,Rw

9 andRr
10

are issued, as illustrated in Figure 3.16 (d). (This is similar to the situation in Example 3.9 whenRw
7 andRr

8

were issued just before the completion ofRw
3 .) Rw

5 may indeed need to wait an additional Lw
max +Lr

max time

units before being satisfied, making its total acquisition delay 5Lw
max +3Lr

max time units.

Figure 3.16 also illustrates that a nested write request, namely Rw
4 , may experience acquisition delay

of 3Lw
max +2Lr

max. Indeed, Rw
4 waits for the completion of three write requests (Rw

1 , Rw
3 , and Rw

7), which

71

R2

Re
ad

Wr
ite

R3

R1

l1 l2

Re
ad

Wr
ite

R3 R4

Figure 3.17: Illustrates the edge case in which a write request (Rw
4) would need to wait unnecessarily behind

a nested read request (Rr
3) if the extra code step had not been added in Listing 5.

may only barely overlap, and two read phases (those ofRr
2 andRr

8) that do not overlap with any of the write

requests. ♦

3.4.2 Corner Case for Nested Read Requests

If the extra phase in Lines 3-6 of Listing 5 is not included for the R* LOCKn routine, a potential edge

case exists, as demonstrated in Figure 3.17. In this edge case, write requests suffer unnecessary transitive

blocking caused by read requests incorrectly marking themselves entitled.

In this scenario, read requestRr,nn
1 is satisfied and write requestRw,nn

2 is entitled when read requestRr,n
3

is issued. At this point,Rr,nn
1 has completed the R* LOCKnn routine andRw,nn

2 is waiting at Line 15 for its

requested resource to become available.

Without Lines 3-6,Rr,n
3 immediately modifies `1’s rin variable, effectively marking itself entitled, and

waits at Line 12 forRw,nn
2 to complete. WhenRw,nn

4 is issued, it must wait at Line 15 (Listing 4) forRr,n
3 to

complete, even though it should have been immediately satisfied following the rules of the fast RW-RNLP.

Using the implementation given in Listing 5, however, Rr,n
3 must wait at Line 6 due to Rw,nn

2 having

marked itself present in the bottom byte of `1’s rin variable. This prevents Rr,n
3 from modifying `1’s rin

variable before it becomes entitled. Therefore, whenRw,nn
4 is issued, the condition at Line 15 in Listing 4 is

true for its single resource `2, so it is immediately satisfied.

3.4.3 Linearizability

Herlihy and Wing presented linearizability as a correctness condition for concurrent objects that “provides

the illusion that each operation applied by concurrent processes takes effect instantaneously at some point

72

between its invocation and its response.” Linearizability is a local property; if the operations on each object

can be linearized, the system as a whole is considered to be linearizable (Herlihy and Wing, 1990). In the

following discussion, the fast RW-RNLP with the RW-RNLP* is used as the example, but the fast RW-RNLP

with the R3LP is linearizable as well.

Section 3.2.6 claims that each routine presented has a linearization point; this is the point at which the

routine can be considered to take effect (atomically). For the non-nested routines, these points are clear. A

read request enqueues atomically at Line 3 (Listing 4) and can be viewed as executing the lock function as a

whole atomically at the end of the procedure. Similarly for R* UNLOCKnn, the routine’s linearization point

can be considered to be at its invocation. The non-nested write routines function similarly, with linearization

points at the end of the lock routine’s execution and the beginning of the execution of the unlock routine.

The nested routines grant access to groups of resources at a time (Listing 5). Considering the routines

themselves, each call of the lock routine can be said to linearize to the last point in its execution. That

is, no access to any of the requested resources occurs before that point in time, and the order of request

accesses to those resources is exactly the order of termination of the lock routines. (Recall that linearization

is defined relative to a specific resource; there may be requests for other resources occurring concurrently.

These requests are not granted access clearly before or after the non-conflicting request. Again, linearization

is a local property and there may be multiple legal sequential histories (Herlihy and Wing, 1990).) Just like

non-nested requests, the invocation of each unlock routine can be considered to be the linearization point of

the entire routine.

An example of the linearization of several objects is shown in Figure 3.18. An operation invocation op on

a set of shared resources Di by requestRi is indicated by Di opRi above a line whose length corresponds to

the duration of time each invocation takes. The linearization point of each operation’s execution is indicated

with a circle at some point during its execution. As discussed above, this point can always be selected at the

end of the execution of a lock operation and at the beginning of the execution of an unlock operation. In

Figure 3.18, time moves forward to the right.

Example 3.11. In Figure 3.18, Rw,n
1 is the first to begin executing the lock logic to gain mutually exclu-

sive access to D1 = {`1, `2}. Then, Rw,nn
2 is issued for D2 = {`2}. Rw,nn

2 calls W* LOCKnn for `2. It is

granted access to `2 first (at the end of the lock routine), and then enters its critical section before calling

W* UNLOCKnn. DuringRw,nn
2 ’s execution of the lock operation,Rr,n

3 invoked the lock call for D3 = {`1, `2}.

73

l2 R2
w,nn

lock

l1, l2 R1
w,n

lock

l2 R2
w,nn

unlock

l1, l2 R1
w,n

unlock

l1 R4
r,nn

lock

l1 R5
w,nn

lock

l1 R4
r,nn

unlock

l1 R5
w,nn

unlock

l1, l2 R3
r,n

lock l1, l2 R3
r,n

unlock

time

Figure 3.18: Illustration of a series of lock and unlock calls by requestsR1 throughR5 with the linearization
point of each operation shown with a circle.

At some pointRw,nn
2 completes its critical section and invokes the unlock routine. The unlock routine

can be linearized to the point indicated in the Figure 3.18, which clearly comes before the point at which

Rw,n
1 or Rr,n

3 has linearized its respective lock call. Note that this properly reflects the mutually exclusive

access forRw,nn
2 for `2; a request is considered to access the resource between the linearization point for its

call to the lock routine and the linearization point for its call to the unlock routine.

At a later point in time,Rw,n
1 finishes execution of the lock routine, enters its critical section, and then

calls the unlock routine.

WhileRw,n
1 is executing the unlock routine for D1 = {`1, `2},Rr,nn

4 andRw,nn
5 are issued for D4 = {`1}

and D5 = {`1}, respectively.

At some point in time afterRw,n
1 has updated the writer bits of `1’s rin variable,Rr,nn

4 becomes satisfied

and completes its call to the lock routine. Similarly, afterRw,n
1 has updated `2’s rin variable,Rr,n

3 becomes

satisfied and completes its call to the lock routine. Note that overlapping critical sections for `1 is expected

behavior for these requests; read requests may overlap.

Once the read requests finish accessing their respective resources, they both call the unlock routine. At a

future point in time,Rw,nn
5 completes its call to the lock routine and can begin its critical section. Note that

the linearization points correctly reflect mutually exclusive access for this request for `1. ♦

3.4.4 Constraints used in Schedulability Study

As mentioned in Section 3.3.2, the calculated blocking from the worst-case acquisition-delay bounds

presented in Table 3.1 is refined by applying several constraints. These are illustrated below with an example

using a ticket lock, followed by a discussion of how these can be applied to more complex protocols.

74

Example 3.12. Consider an application with four tasks (n = 4) and six processors (m = 6) in which all tasks

have the same period and access the same resource. The access of this resource is protected by a ticket

lock. The requests issued by these tasks areRw
1 , ...,Rw

4 , with critical-section lengths L1 = 50µs, L2 = 60µs,

L3 = 30µs, and L4 = 20µs. When calculating the worst-case blocking that the task issuing request Rw
1

may experience, the analytical bound for a ticket lock of (m−1)Lw
max, where Lw

max = 60µs can be used; the

blocking forRw
1 is bounded by 5 ·60 = 300µs. However, this blocking can never occur in practice. ♦

Period-based constraints. Based on the period of each task in the system, the number of jobs (and thus

requests) of each task that may be active while a given request is active can be computed. The analysis can

then be tightened by selecting only the longest instances of critical sections that may delay a given request.

Example 3.12 (continued). As all tasks have the same period, at most two jobs of a given task can overlap

with the job of interest. Thus, the job that issuesRw
2 can only issue it twice whileRw

1 is waiting or executing.

The analysis can be tightened to select the top m−1 instances of critical sections that may delayRw
1 . The new

bound on the worst-case blocking after applying period-based constraints is 60+60+30+30+20 = 200µs.

Note thatRw
1 is not counted as potentially increasing its own blocking. ♦

FIFO constraints. The write requests handled by a ticket lock are enqueued in a FIFO queue. Thus, each

request can only delay a given request once.

Example 3.12 (continued). By imposing FIFO constraints, worst-case blocking can be bounded to 60+

30+20 = 110µs. ♦

Example 3.13. For the next scenario, the task system presented in Example 3.12 is modified by adding a

read requestRr
5 with L5 = 3µs. The task that issuesRr

5 has a shorter period such that it could be issued six

times while a given write request is active. Instead of using a ticket lock, a PF-TL is applied here. When

considering the blockingRw
1 may experience, the above analysis still holds for the write requests. Now the

blockingRw
1 may experience due to read requests must be considered. ♦

Note that when considering locking protocols with both read and write requests, FIFO constraints may

apply to the write requests but will not apply to read requests; all reader/writer protocols considered here

handle read requests separately from write requests to yield constant-time blocking. Because of this, a given

read request may execute multiple times before a write request of interest. However, the total number of read

requests that must be included can be constrained by period-based constraints and a new constraint.

75

Read-write constraints. Each protocol examined in this chapter functions by alternative write and read

phases in some manner. Thus, the number of read phases by which a request is blocked is constrained by the

number of write phases possible, which may be limited by the above constraints.

Example 3.13 (continued). In this scenario, only three write requests could contribute to the blockingRw
1

experiences. In the worst case, before each of these write requests (includingRw
1), a read phase could occur.

This limits the worst case to including the four longest read critical-section instances in the blocking. Because

the read request Rr
5 could occur six times, its critical section can be counted for all four instances. Thus,

the blocking Rw
1 experiences due to read requests is at most 4 ·3 = 12µs and the total blocking is at most

110+12 = 122µs. ♦

While the above examples have focused on the blocking a write request may experience, the same

constraints may be applied when calculating the write and read critical sections that may block a read request.

Contention constraints. For both fast RW-RNLP variants, the blocking bound for non-nested write requests

depends on contention. Recall that in Theorem 3.1, the contending requests that contributed to blocking were

only other non-nested write requests for the same resource. Therefore, for each task system and each request,

the number of contending non-nested write requests is used for the value of contention.

Constraints applied to protocols. Recall that four protocols were evaluated: the PF-TL, the RW-RNLP,

the fast RW-RNLP with the R3LP, and the fast RW-RNLP with the RW-RNLP*. The PF-TL was applied as

group lock for a static group of all resources.

When the period-based, FIFO, and read-write constraints are applied to the group PF-TL, the blocking

computed for read and write requests may be tightened. The same analysis holds for the RW-RNLP.

While the RW-RNLP is a fine-grained locking protocol, its worst-case blocking for write requests is still

(m−1)(Lw
max +Lr

max) due to potential transitive blocking chains between nested write requests. Computing

these transitive blocking chains is an expensive process, and in a system with randomly requested resources,

write expansion and potential chains imply that it is likely that each write request could delay any other write

request. However, the FIFO manner in which the RW-RNLP functions allows us to use the FIFO constraint

to limit the contribution of each write request to blocking others only once. Without expensive tighter

analysis that considers possible transitive blocking chains, the tightened blocking bounds of the RW-RNLP

are identical to those of the group PF-TL.

76

FIFO constraints can also be applied to the fast RW-RNLP, but the modular structure means that FIFO

constraints cannot be applied to write requests of the opposite type. For example, a given nested write request

may enter the RNLP and then be allowed to execute by the global arbitration mechanism multiple times while

a non-nested write request waits behind other non-nested write requests in its ticket lock. The same scenario

can occur for nested write requests. Thus, the FIFO constraints can only be applied to nested write requests

which share at least one resource or non-nested write requests for the same resource. For any write requests

to which FIFO constraints cannot be applied, the period-based constraints can still be applied. Due to the

way in which requests are grouped by the R3LP, when accounting for blocking in the fast RW-RNLP with

the R3LP, the highest critical-section length instances of non-nested write requests and nested write requests

are added separately to get a tighter bound.

Based on the number of requests being generated in each scenario, it is possible that in some scenarios,

the manner in which the FIFO constraints can be applied in the context of the group PF-TL may greatly

reduce the number of critical sections that may be counted toward blocking. (Because it is a group lock, each

write can only effect the request of interest once by the FIFO constraint.) The FIFO constraint cannot be

applied as broadly to the fine-grained nesting protocols, as some requests may delay the request of interest

multiple times. This argues for tighter blocking analysis, though getting exact blocking analysis for nested

resource accesses is NP-hard (Wieder and Brandenburg, 2014).

3.5 Chapter Summary

This chapter has presented a new RNLP variant called the fast RW-RNLP. The fast RW-RNLP employs

a fast-path mechanism to provide contention-sensitive pi-blocking and low processing costs for read and

non-nested write requests requests, while preserving the RW-RNLP’s asymptotic pi-blocking bounds for

nested requests. This provides a solution for the common case while also supporting the less common

nested write requests. In the experimental evaluation, lock/unlock overhead for non-nested requests is nearly

identical under the fast RW-RNLP and PF-TLs. Additionally, observed pi-blocking times for such requests

are reduced compared to the RW-RNLP. This is because non-nested requests require less overhead and are

immune to transitive blocking effects under the fast RW-RNLP. These results for overhead and pi-blocking

are reflected in the large-scale schedulability study, in which the fast RW-RNLP variants, and the R3LP in

77

particular, tended to result in higher schedulability in scenarios in which non-nested resource access was the

common case.

Acknowledgment. The work presented in this chapter first appeared in papers written by Tanya Amert

and myself. Tanya was involved throughout the project, and in particular, she implemented both protocol

variants and led the evaluation.

78

CHAPTER 4: MINIMIZING IMPACTS ON NESTED WRITE REQUESTS1

The previous chapter presented approaches to mitigate the effect of transitive blocking chains on read

requests and on non-nested write requests. The focus of this chapter is on handling nested write requests.

As described in Chapter 2, existing RNLP variants yield asymptotically optimal blocking when n and

m are considered as variables. However, while the RNLP family of protocols grants fine-grained resource

access, the O(m) blocking for the non-preemptive spin-based variant is no better than the blocking under a

coarse-grained locking approach. This motivates the consideration of resource contention in both protocol

analysis and protocol development.

This chapter presents a new RNLP variant, the contention-sensitive RNLP (C-RNLP). The key idea

behind the C-RNLP is to allow requests to safely “cut ahead” of previously issued requests to yield contention-

sensitive blocking. This is accomplished by integrating critical-section lengths into the ordering logic of

the protocol. As critical-section lengths are required for schedulability analysis, their availability is not an

unreasonable assumption for real-time systems.

The C-RNLP is presented first as a set of rules that govern requests along with bounds on blocking

(Section 4.1). Then, details on its implementation are given (Section 4.2), followed by an experimental

evaluation of the overhead and blocking of the C-RNLP (Section 4.3).

The C-RNLP has high overhead, which motivates the development of an another protocol (Section 4.4).

This protocol, the Concurrency Group Locking Protocol (CGLP), achieves low overhead. Though the

CGLP is not strictly contention sensitive, depending on the system, it can significantly reduce the previous

state-of-the-art O(m) blocking. The CGLP is specified by both an offline and an online component, along

1Contents of this chapter previously appeared in preliminary form in the following papers:

Jarrett, C., Ward, B., and Anderson, J. (2015). A contention-sensitive fine-grained locking protocol for multiprocessor
real-time systems. In Proceedings of the 23rd International Conference on Real-Time Networks and Systems.

Nemitz, C., Amert, T., Goyal, M., and Anderson, J. (2019b). Concurrency groups: A new way to look at real-time mul-
tiprocessor lock nesting. In Proceedings of the 27th International Conference on Real-Time Networks and Systems.

Nemitz, C., Amert, T., Goyal, M., and Anderson, J. (2021a). Concurrency groups: A new way to look at real-time
multiprocessor lock nesting. Real-Time Systems, 57(1):190–226. Reproduced with permission from Springer Nature.

79

with bounds on blocking (Section 4.5). Extensions to the protocols are then presented (Sections 4.6–4.8).

Next, the CGLP is evaluated on the basis of overhead (Section 4.9).

Finally, both the C-RNLP and the CGLP are evaluated on the basis of schedulability with a large-scale

study (Section 4.10).

4.1 C-RNLP

The C-RNLP is the first fine-grained locking protocol with contention-sensitive worst-case blocking

for nested requests. This is accomplished by allowing some lock requests to “cut ahead” of other queued

requests, thereby limiting the length of transitive blocking chains. This enables blocking under the C-RNLP

to be O(min(m,Ni)), where m is the number of processors and Ni is the contention ofRi.

The C-RNLP is defined in two passes. First, an abstract description shows how the wait-for graph

representing active requests is updated as requests are issued and completed. Second, in Section 4.2, a more

concrete implementation that conforms to the abstract specification is described.

The ordering of requests is maintained in a directed, acyclic wait-for graph G = (V,E), where vertices

denote requests and edges denote waiting relationships, i.e., (Ri,R j) ∈ E means thatRi is blocked byR j.

Initially, G is empty, with V = /0 and E = /0. When a request is issued, it is added to the graph. This addition

of a request along with any associated edges is called an insertion. Likewise, when a request completes, the

removal of it and all of its edges is called a removal. The graph that results from G after an insertion or a

removal is denoted G′ = (V ′,E ′). (Similarly, primes are used in referring to notation relevant to G′.) The

graph G′ is instantiated when it results from applying an insertion or removal operation on G. For now, let us

assume that these operations are atomic and take zero time to apply. Ri is satisfied when it has no outgoing

edges. A resource `a requested byRi is locked byRi whenRi is satisfied. A protocol is considered safe if at

most one request can lock any one resource at a time. OnceRi is satisfied,Ri completes within Li time units.

Later, the implications of the violation of this assumption are explored. For now, a series of examples is used

to motivate the rules of the C-RNLP.

4.1.1 Safety

This first example motivates the rules presented later that ensure that the C-RNLP is safe.

80

P4

P3

R1

R2
{a}

{a}

P2

P5

P1

Ri

Pi

{a, b}

node in graph
for request Ri

potential
position Pi

edge in graph
with weight i

potential edge
with weight i

resources
needed for node

i

i

Ri

satisfied node
for request Ri

Figure 4.1: A wait-for graph G and several positions at whichR3 could be inserted. (The legend also applies
to subsequent figures. Note that edge weights are not used in this particular figure.)

Example 4.1. Consider the wait-for graph G shown in Figure 4.1. Each request requires only `a. R1 is

satisfied and holds `a and blocksR2, as shown by the directed arrow toR1. Now suppose thatR3 is issued

and requires `a. R3 is added to G, and we must consider which edges to add. Several positions for inserting

R3 are displayed in Figure 4.1, denoted as positions P1–P5. For now, it suffices to understand the notion of a

position intuitively, but later a formal definition is needed. Intuitively, when a request is inserted into G, it

is implicitly reserving a position. (Actually, with DGLs, a set of positions is reserved, but this additional

complication is ignored for now.) After presenting several definitions, these positions are examined. ♦

Definition 4.1. For any requestRi, let In(Ri) denote its incoming edges, In(Ri)= {(R j,Ri) : (R j,Ri)∈E},

and let Out(Ri) denote its outgoing edges, Out(Ri) = {(Ri,R j) : (Ri,R j) ∈ E}.

Definition 4.2. Let S be the set of satisfied requests: S = {Ri : Out(Ri) = /0}.

Definition 4.3. A requestRi precedesR j, denotedRi ≺R j, if there exists a directed path fromR j toRi.

Definition 4.4. A requestRi has cut ahead ofR j ∈V if G′ is obtained by the insertion ofRi andRi ≺R j

is established.

Example 4.1 (continued). Let us examine each of the positions P1–P5:

81

• P1. HereR3 would have no edges, and thus would be satisfied. However, this would lead to `a being

locked by bothR1 andR3, which violates safety. Therefore, the protocol should not allowR3 to be

placed at P1.

• P2. HereR3 would cut ahead ofR2 and would be waiting forR1 to finish. This position ensures safety,

i.e., `a will be locked by at most one request at a time.

• P3. HereR3 would not cut ahead of any request, and would be waiting forR2. This position is also

safe.

• P4. HereR3 would cut ahead ofR1 and wait forR2. This maintains safety, but creates deadlock in the

system.

• P5. HereR3 would be cutting ahead ofR1, which should be disallowed sinceR1 is already satisfied.

♦

Motivated by the above example, note that to ensure safety, there must be a single order in which each

request for the same resource will be processed. A newly inserted request should also avoid cutting ahead of

a request that has already been satisfied.

Definition 4.5. A set of requests Q⊆V has a unique ordering if and only if for any two distinct requestsRi

andR j in Q, eitherRi ≺R j orR j ≺Ri.

Definition 4.6. Let Qa be the set of requests that require the resource `a: Qa = {Ri :Ri ∈V ∧ `a ∈ Di}.

Definition 4.7. An insertion into G resulting in G′ is a safe insertion if: (i) for each resource `a, there is a

unique ordering on the set Q′a; and (ii) a new requestRi does not cut ahead of a satisfied request, i.e., for any

R j in V , (R j,Ri) ∈ E ′⇒R j /∈ S. (Note that S is the set of satisfied requests in G.)

4.1.2 Delay Preservation

Now that we have determined which insertions are safe, we investigate which are “best.” In order to do

so, information is added to G about how long each request will run.

Definition 4.8. The weight of an edge (Ri,R j) ∈ E is given by W (Ri,R j) = L j.

82

R4

R6

R5

R7

R2

R3

R1

5

3
8

4

2

4
4

{b}

{a, b}

{a}

{a, b, c}

{c}

{d}

{a}

Figure 4.2: A wait-for graph G that includes seven requests.

Example 4.2. Suppose G starts by containing nodesR1,R2, andR3 and the edges depicted between them

as shown in Figure 4.2, after which,R4,R5,R6, andR7 are inserted in order into G. Let us examine each of

those insertions.

• R4. The insertion of this request with no edges is clearly safe, as no other request in G requires `d .

• R5. This request cuts ahead ofR2. While this is a safe insertion, it increasesR2’s blocking time, as

R2 must now wait for up to L1 +L5 = 6 time units to execute, as opposed to waiting for at most L1 = 4

time units.

• R6. This request cuts ahead ofR3 and waits forR1 to complete. SinceR3 is already waiting for as

much as L1 +L2 = 9 time units,R6 cutting ahead is acceptable, as it would cause at most L1 +L6 = 7

time units of waiting time.

• R7. This request cuts ahead ofR3. Using the same reasoning as used withR6, note that L7 < L1 +L2.

However, since L7 > L2, ifR1 had already been running for close to L1 time units, then insertingR7

in this position could delayR3.

♦

As demonstrated in Example 4.2, it is necessary to know how long a satisfied request has been satisfied

in order to reason about where to insert a request.

83

Definition 4.9. The running time of a requestRi, denoted ri, is the time for whichRi has been satisfied.

Note that under the current assumption thatRi completes within Li time units, ri < Li.

Definition 4.10. A path in G fromRi ∈V toR j ∈V is denotedRi R j. The length of this path is given

by the sum of the weights of the included edges. This is denoted |Ri R j|.

As seen in Example 4.2, determining a request Ri’s maximum blocking time requires the maximum

distance traversed through G from Ri’s node to a satisfied node, and must take into account r j for any R j

that is satisfied. Ri’s maximum blocking time is given by the value |A(Ri)|, defined next.

Definition 4.11. If Ri /∈ S, then let A(Ri) denote a path Ri R j such that R j ∈ S and |Ri R j|− r j is

maximal; in this case, let us define |A(Ri)|= |Ri R j|− r j. IfRi ∈ S, then let us define |A(Ri)|= 0.

As suggested by Example 4.2, the goal for this protocol is to preserve the existing maximum delays for

each request. Requiring preservation of maximum delays would also prevent the possibility of deadlock as

shown in Example 4.1.

Definition 4.12. An insertion into G is delay-preserving if and only if (∀Ri ∈V :: |A′(Ri)| ≤ |A(Ri)|).

4.1.3 C-RNLP Rules

Motivated by the examples above, the C-RNLP implementation must satisfy the following rules:

Rule 1: All requests wait until satisfied.

Rule 2: Ri is removed whenRi completes.

Rule 3: A node is inserted at a safe, delay-preserving position in G that gives the lowest |A(Ri)|.

Rule 4: Insertions into and removals from G are atomic.

Using the rules of the C-RNLP, sometimes results in inserting requests into G in different positions than

if the RNLP were in use; the RNLP orders requests in the order they are issued, with no cutting ahead.

Refining Rule 3. The abstract rules that define the C-RNLP have been presented, but Rule 3 lacks sufficient

information to guide an actual implementation. Therefore, Rule 3 will be refined after giving some necessary

definitions. First, the notion of a position is refined.

Definition 4.13. Ri andR j are consecutive with respect to `a if {Ri,R j} ⊆ Qa∧Ri ≺R j ∧¬(∃Rl :Rl ∈

Qa ::Ri ≺Rl ≺R j).

84

P1

P2

R1

R2

{a, b}

L1

R3 {a, b}

{a}

L2

L1

L3

L4

Figure 4.3: A wait-for graph G with two possible positions forR4.

Example 4.3. Given the graph shown in Figure 4.3,R1 andR2 are consecutive with respect to `a, andR1

andR3 are consecutive with respect to `b. ♦

Definition 4.14. A position Pk has at most one incoming edge and at most one outgoing edge, which in an

abuse of previous notation (Definition 4.1), are denoted In(Pk) and Out(Pk), respectively.

• If In(Pk) = /0, then Pk is called a top-most position.

• If Out(Pk) = /0, then Pk is called a bottom-most position.

• Otherwise, if In(Pk) =Ri and Out(Pk) =R j, then Pk is called an inner position. An inner position

must have Out(Pk)≺ In(Pk).

A position is said to be an `a-position if In(Pk) and Out(Pk) are each either /0 or a request that includes `a.

When a requestRl is inserted into a graph G, it reserves a set of positions X , and In′(Rl) =
⋃

Pk∈X In(Pk)

and Out′(Rl) =
⋃

Pk∈X Out(Pk).

Example 4.3 now motivates the discussion of a position’s capacity, defined below.

Example 4.3 (continued). Suppose G is as shown in Figure 4.3, with requestR4 for resource `b about to be

added to the graph at either position P1 or position P2. Both positions would yield a safe insertion. Whether

R4’s insertion at P1 is delay-preserving depends on the values of L2 and L4 and how much longerR1 will be

85

executing in the worst case. For this insertion to be delay-preserving,R4 must finish at the latest whenR2

would finish in the worst case (where each request takes exactly its stated maximum time to execute), as this

would ensure that all later requests—onlyR3 in this scenario—would experience no additional worst-case

blocking. The concept of position capacity is introduced in order to reason about what values of L4 would

meet this condition. ♦

Definition 4.15. The capacity of a position Pk is defined as:

cap(Pk) =


∞ if In(Pk) = /0

|A(Ri)| if In(Pk) =Ri∧Out(Pk) = /0

ω−β otherwise

(4.1)

where ω = |A(Ri)|− |A(R j)| and β = (L j− r j) for In(Pk) =Ri∧Out(Pk) =R j.

Example 4.3 (continued). We can now reason about the capacities of P1 and P2. For P1, the capacity

computation yields cap(P1) = |A(R3)|− |A(R1)|− (L1− r1) = (L1+L2− r1)−0−L1+ r1 = L2. This value

indicates how long R3 will be waiting in the worst case due solely to its blocking on R2 and taking into

account that any request reserving position P1 would also be waiting forR1 to finish. Therefore, if L4 were

at most this value,R4 could be inserted into P1 and be delay-preserving. Because In(P2) = /0, cap(P2) = ∞.

Intuitively, a request of any length could be inserted into P2. ♦

Definition 4.16. Let PDi be a Di position set, such that for each `a ∈ Di there is an `a-position in PDi .

When a requestRi is issued, it must reserve all positions in a Di position set, PDi . In turn,Ri is inserted

into G, with In(Ri) =
⋃

Pk∈PDi
{In(Pk)} and Out(Ri) =

⋃
Pk∈PDi

{Out(Pk)}.

Definition 4.17. The capacity of the position set PDi is the smallest |A(Ri)| where Ri ∈ In(PDi) (or ∞ if

In(PDi) = /0) minus the largest |A(R j)|+L j whereR j ∈ Out(PDi) (or 0 if Out(PDi) = /0)

Note that the capacity of a position set is at most that of each individual position in the set.

Now that the concepts pertaining to positions are more fully developed, Rule 3 is replaced with Rule 3′,

which upholds Rule 3 and refines how safe and delay-preserving positions are found.

Rule 3′: Ri is inserted by reserving all positions in PDi where Li ≤ cap(PDi) and |A(Ri)| is minimized.

Example 4.4. Suppose G is as shown in Figure 4.4. (Note that all possible positions are shown.) Now that

Rule 3′ is defined, it is possible to easily examine all possible positions that a request Ri may reserve and

86

R1

R2

{a}

R3

{a}

R4

R5

{b}

R6

{b, c}

{a}
R7

{b} {c}

P6

P5

P9

P10P7

P3

P2

P8 P11

P4

P1

Figure 4.4: A wait-for graph G with all possible positions shown. P1–P4 are `a-positions, P5–P8 are `b-
positions, and P9–P11 are `c-positions.

determine which minimizes |A(Ri)|. If Di = {`a}, thenRi must reserve one of the positions P1–P4. If instead

Di = {`a, `b}, thenRi must reserve both an `a position P1–P4 and an `b position P5–P8. Thus,Ri will have at

least two edges. ♦

The fact that Rule 3′ upholds Rule 3 follows from the next three lemmas, the latter two of which are

stated without proof, as they are straightforward.

Lemma 4.1. Ri inserted under Rule 3′ is delay-preserving.

Proof. Suppose to the contrary that Ri reserves a set of positions PDi and the insertion of Ri is not delay-

preserving. Then, there is at least one node that obtains a new edge directed toRi that experiences increased

blocking. LetR j denote such a node. BecauseR j’s blocking increases,

|A′(R j)|> |A(R j)|. (4.2)

Because the insertion ofRi causedR j’s blocking to increase, |A′(R j)| depends onRi, which immediately

upon insertion has not yet had any running time (and may in fact be waiting on another request). Therefore,

by Definition 4.11,

|A′(R j)|= |A′(Ri)|+Li. (4.3)

87

LetRl denote a node to which an outgoing edge fromRi is directed due to the insertion such that the

value |A(Rl)|+Ll is maximized. If no such nodeRl exists, then the following establishes cap(PDi)< Li.

cap(PDi)≤ {by Definition 4.17}

|A(R j)|−0

< {by (4.2)}

|A′(R j)|

= {by (4.3)}

|A′(Ri)|+Li

= {by Definition 4.11, asRi ∈ S}

Li

If instead there does exist anRl , then, by Definition 4.11,

|A′(Ri)|= |A′(Rl)|+Ll− rl. (4.4)

Note that, after the insertion of Ri, there can be no path from Rl to Ri, for then a cycle would exist (and

hence, deadlock). More technically, if such a cycle were caused, then the set of positions PDi would have

zero or negative capacity by Definition 4.17, and thusRi would not have been inserted by Rule 3′. Because

the insertion ofRi does not result in any path fromRl toRi,

|A′(Rl)|= |A(Rl)|. (4.5)

The following reasoning establishes cap(PDi)< Li.

cap(PDi)≤ {by Definition 4.17}

|A(R j)|− (|A(Rl)|+Ll)

< {by (4.2)}

|A′(R j)|− (|A(Rl)|+Ll)

= {by (4.5)}

|A′(R j)|− (|A′(Rl)|+Ll)

= {by (4.3)}

|A′(Ri)|+Li− (|A′(Rl)|+Ll)

88

= {by (4.4)}

|A′(Rl)|+Ll− rl +Li− (|A′(Rl)|+Ll)

= {by simplification}

Li− rl

≤ {because rl ≥ 0}

Li

Therefore, for R j to have experienced increased blocking upon the insertion of Ri, Ri must have

reserved a set of positions with cap(PDi)< Li, which violates Rule 3′. Thus, such a set of reservations cannot

occur.

Lemma 4.2. Ri inserted under Rule 3′ is safe.

Lemma 4.3. Ri is inserted by following Rule 3′ with the same |A(Ri)| as by following Rule 3.

4.1.4 Establishing a Bound

Based on the rules for the C-RNLP, it is possible to bound the latest time at which a request could be

satisfied.

Lemma 4.4. Suppose that G is instantiated at time t and G′ is instantiated at time t ′. If |A(Ri)|> 0, then

|A′(Ri)| ≤ |A(Ri)|− (t ′− t).

Proof. The lemma follows because reservations are delay-preserving, and because all satisfied requests

blockingRi execute continuously between times t and t ′, due to their non-preemptive execution.

Definition 4.18. Let Bi = |A(Ri)| at the time ofRi’s insertion.

Lemma 4.5. Ri is satisfied within Bi time units from its initial insertion.

Proof. Follows directly from Lemma 4.4.

Lemma 4.6. Bi < Ni(Lmax +Li).

Proof. SupposeRi requires only one resource. By Rule 3′,Ri cannot be inserted into a position Pk where

cap(Pk)< Li. In the worst-case scenario,Ri would have to be inserted into a top-most position with all other

89

P2

P1 R1

R3

{a, b}

L5

R4

L2

L1

L3

L4

P3
R5

R6

{b}

{b}

R2

P4

{a, b}

{a, b}

{b}

L4

L2

L6

Figure 4.5: G with worst-case blocking for requestRi requiring `a, with Li just greater than L1, L3, and L5.

relevant positions having capacity just less than Li. This scenario is shown in Figure 4.5, whereRi requires

`a and L1, L3, and L5 are all just less than Li. In this case, Bi < NiLmax +NiLi.

In the more general case,Ri requires a set of resources. Again, the worst-case scenario would only allow

the insertion ofRi at a top-most position, with each other set of positions having capacity less than Li. This

scenario establishes the same bound. Therefore, Bi < Ni(Lmax +Li).

Theorem 4.1. A requestRi is satisfied within Ni(Lmax +Li) time units.

Proof. Follows from Lemma 4.5 and Lemma 4.6.

4.1.5 Uniform C-RNLP

Referring back to the proof of Lemma 4.6, when request Ri is inserted, a potential position for it can

be problematic if that position has a non-zero capacity that is less than Li. In the bound established in

Theorem 4.1, the term NiLi arises because there can be up to Ni problematic positions whenRi is inserted.

This gives rise to a second variant of the C-RNLP, which is called the uniform C-RNLP (U-C-RNLP), in

which problematic positions cannot occur.

90

In this variant, the time line is segmented into fixed-length frames of size Lmax. Wait-for graph modifi-

cations are allowed to occur only at frame boundaries, with all node removals occurring before any node

insertions (still assuming that these graph modifications take zero time), and all satisfied requests are required

to remain satisfied for exactly Lmax time units. With these modifications, all parameters that affect the graph’s

basic structure are a multiple of Lmax. Looking at Definition 4.15, notice that each position must have a

capacity that is a multiple of Lmax, or is 0, or is ∞. This implies that problematic positions cannot exist. As a

result, the bound in Theorem 4.1 reduces to NiLmax. However, because any request that occurs within a frame

is delayed until the next frame boundary, this blocking bound must be increased by Lmax (the frame size).

This discussion results in the following theorem.

Theorem 4.2. Under the U-C-RNLP, a requestRi is satisfied within (Ni +1)Lmax time units.

Corollary 4.1. Under either variant of the C-RNLP, worst-case request blocking is O(min(m,ci)).

Proof. Follows from Theorems 4.1 and 4.2, and the analysis assumptions and assumed progress mechanism

of non-preemptive execution, which limits contention to at most m.

Removal of assumptions. In the two variants of the C-RNLP just described, safety is maintained even if

resource-holding times are longer than specified. In fact, the stated blocking bounds actually remain unaltered

if a request Ri can hold a resource for longer than Li time units, provided no request holds any resource

for longer than Lmax time units. However, if a request is allowed to hold a resource for longer than Lmax

time units, then the bounds no longer hold. From a practical point of view, this really is not a deficiency,

because if reliable bounds on resource-holding times are not known, then it is pointless to attempt to conduct

schedulability analysis.

The discussion so far has assumed that all modifications to a wait-for graph take zero time. In reality,

of course, such modifications will entail some overhead. Such overheads can be factored into the blocking

bounds using straightforward techniques. If these overheads are regarded as constants (as assumed in prior

work on real-time locking protocols), then blocking times under both protocol variants remain contention

sensitive.

91

0

0

0

0

1

Table

Pending_requests: 4

la lb lc ld le

R1

{a, b}

1

{b, c}

{a, b}

R3

R4

1

R2

{c}

1

R1 R2

R3

R4

R1

R3

R4time

0

1

1

2

0

Lmax

bitmask

Head

0

1

2

3

4

Figure 4.6: Illustration of G and Table.

4.2 Implementation

The prior section described two variants of the C-RNLP at an abstract level. This section presents a

concrete implementation of the uniform variant.2

Data structures. Figure 4.6 depicts the key data structures of this implementation. A request acquires

resources by reserving a set of positions in a reservation table, Table, which is an array of bit masks. Each

bit in a bit mask represents a resource that can be reserved or locked for a frame of time of length Lmax. Bit

masks are used here because modern processors provide fast register-level operations for manipulating them.

A request reserves a set of positions by selecting a row in Table (wrapping if necessary) and by setting the

bits corresponding to its needed resources in that row’s bit mask. The arrays Enabled and Blocked are both

indexed by frame. A requestRi that has reserved a position given by row k is satisfied when Enabled[k] = 1

holds; such a row is said to be enabled. The manner in which Blocked is used is explained later. Several other

variables are used as well. Head indicates the currently enabled row of Table. Pending requests records the

number of pending (issued but not completed) requests. Size gives the size of each array, which must be at

least the number of pending requests at any time.

2Source code is available at https://www.cs.unc.edu/~jarretc/dissertation/.

92

https://www.cs.unc.edu/~jarretc/dissertation/

Listing 6 Uniform C-RNLP Lock
1: procedure U-C-RNLP LOCK(requested)
2: lock(Sublock)
3: if Pending requests > 0 then
4: start← (Head+1)modSIZE
5: while (Table[start] & requested) 6= 0 do
6: start← (start+1)modSIZE
7: end while
8: else
9: start← Head

10: end if
11: next← (start+1)modSIZE
12: Blocked[next]← Blocked[next]+1
13: Pending requests← Pending requests+1
14: Table[start]← Table[start] | requested
15: unlock(Sublock)
16: while Enabled[start] 6= 1 do
17: /∗ null ∗/
18: end while
19: end procedure

Pseudocode. The lock and unlock routines of this implementation are shown separately in Listing 6 and

Listing 7, respectively. Note that shared variables are capitalized, while variables specific to a request or a

function call are lowercase.

Figure 4.6 shows how a set of requests in a wait-for graph G would be represented in this implementation.

As in G, requests that will be fulfilled later appear higher in Table. R1 andR2 are satisfied, as is indicated by

Enabled[0] = 1. R3 has reserved `b and `c in Table[1]. The value 2 in Blocked[1] indicates thatR3 is waiting

for bothR1 andR2 to finish. R4 has similarly reserved `a and `b in Table[2]. The lock and unlock routines

are now explained by means of examples.

Example 4.5. SupposeR5 for `b and `c is issued when the system state is as in Figure 4.6. First, a lock on

Sublock is obtained at Line 2 of Listing 6 to serialize access to the protocol’s shared state. For the request

under consideration, the test in Line 3 would evaluate to true, so searching in Table for an available set of

positions would begin. This search occurs in the loop at Lines 5 and 6, where the bit masks of different

rows are checked. Upon termination of this search, the variable start indicates the corresponding row where

the available positions were found. Following the search, next is set, Blocked[next] and Pending requests

are incremented, and the appropriate row of Table is updated at Lines 11–14. The lock on Sublock is then

released at Line 15. The task issuing the request then spins on Enabled[start] at Lines 16 and 17. ♦

93

Listing 7 Uniform C-RNLP Unlock
20: procedure U-C-RNLP UNLOCK(requested)
21: lock(Sublock)
22: Table[Head]← Table[Head] & ∼requested
23: Blocked[next]← Blocked[next]−1
24: Pending requests← Pending requests−1
25: if Blocked[next] = 0 then
26: Enabled[Head]← 0
27: Head← next
28: Enabled[Head]← 1
29: end if
30: unlock(Sublock)
31: end procedure

Example 4.5 (continued). Now suppose that R2 completes. A lock on Sublock must first be obtained at

Line 21 in Listing 7. At Line 22, Table is cleared ofR2 by bit-wise ANDing the negation ofR2’s requested

bitmask and its row in Table. Note that Head now points to the acquired row of R2. Blocked[next] and

Pending requests are then decremented at Lines 23 and 24. If there are no more requests blocking requests in

the row indicated by next, i.e., Blocked[next] = 0 at Line 25, then that row is enabled and Head is updated at

Lines 26–28. Finally, the lock on Sublock is released at Line 30. ♦

The above implementation limits the total number of resources to be at most the number of bits per bit

mask, e.g., on a 64-bit machine, there could be at most 64 resources in total. This restriction can be eased by

applying results on the renaming problem, which is a classic problem in work on concurrent algorithms (Attiya

et al., 1987). In this problem, tasks that have identifiers over a large name space are “renamed” by giving them

identifiers over a small name space—such names can be both acquired and released (Moir and Anderson,

1995). A renaming algorithm could be applied in this context to assign a unique identifier to any resource

while it is being used. This would require merely limiting the total number of concurrently requested

resources to be at most the bit mask size. Renaming algorithms can be implemented with low overhead using

appropriate atomic instructions. Alternatively, it is possible to extend this implementation by using several

bit masks per row of Table, though this would increase lock/unlock overheads.

4.3 Experimental Evaluation

This C-RNLP implementation was evaluated by conducting a series of experiments in which lock/unlock

overheads were measured, as well as observed blocking and runtime performance.

94

These experiments were performed on a dual-socket, 18-cores-per-socket Intel Xeon E5-2699 platform.

The uniform variant of the C-RNLP was compared to the RNLP (Ward and Anderson, 2012) and Mellor-

Crummey and Scott’s queue lock (the MCS lock) (Mellor-Crummey and Scott, 1991a), applied as a coarse-

grained lock, treating all resources as one resource group.

4.3.1 Measuring Lock/Unlock Overheads

Lock and unlock overheads (i.e., the time it takes to perform the lock and unlock calls of each protocol)

were measured as a function of the number of requested resources, i.e., |Di|, the total number of managed

resources, nr, and the number of contending tasks, n. Tasks were statically pinned one per core.3 The

evaluation was comprised of the following variables: n ∈ {2,4, . . . ,36}, nr ∈ {2,4,8,16,24 . . . ,64}, and

|Di| ∈ {1,2,4,6,8,10} where |Di|< nr. Each contending task executed lock and unlock calls in a tight loop

1,000 times, with a negligible critical section, so as to maximize contention for shared variables within the

lock and unlock calls.4

The C-RNLP lock and unlock calls themselves acquire a lock (which is true of the RNLP as well). Thus,

blocking can occur within the lock/unlock logic. This blocking is part of the lock/unlock overhead, and we

therefore refer to it as overhead blocking, to differentiate it from the protocol blocking (Lines 16 and 17

in the U-C-RNLP) experienced while waiting for C-RNLP-protected resources to be released. Therefore,

when measuring lock/unlock overheads, we included overhead blocking in the measurement, but not protocol

blocking. A similar methodology was applied to the RNLP and the MCS lock (the latter has no overhead

blocking). These overheads were measured using the cycle counter, and the 99th percentile of observed

lock/unlock overheads is reported so as to filter any spurious measurements. Lock overhead is the focus of

the results presented here; a similar story emerges when considering unlock overhead.

Figure 4.7 gives several curves pertaining to the lock-overhead data collected for the C-RNLP. Each

curve is plotted with respect to the number of requested resources, |Di|. For the curve labeled serial, Di was

defined to be the same for all tasks (i.e., resources are accessed serially). For the curve labeled parallel, Di

was determined at random (i.e., resources can be accessed in parallel). These two curves include any overhead

blocking. One might argue that it is better to account for such blocking analytically rather than by relying

on measurement. To assess this possibility, we present two additional curves, serial analytic and parallel

3Tasks were pinned to cores on the same socket when possible.
4The source code and resulting graphs are available at https://www.cs.unc.edu/~jarretc/dissertation/.

95

https://www.cs.unc.edu/~jarretc/dissertation/

0 10 20 30 40 50
Resources Requested

0

20

40

60

80

100

Lo
ck

 O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s) parallel

serial
parallel analytic
serial analytic

Figure 4.7: Measured C-RNLP lock overhead as a function of |Di| for n = 36 and nr = 64.

analytic, which were derived by measuring lock overhead with overhead blocking excluded and by inflating

that measurement by accounting for overhead blocking analytically. Figure 4.7 leads to the following two

observations.

Observation 4.1. The complexity of the lock logic in the C-RNLP requires an analytical estimation of

worst-case overhead blocking as opposed to a purely measurement-based approach.

We observed a surprising overhead trend, supported by Figure 4.7, in the parallel case in that, as the

number of requested resources |Di| increased, the observed worst-case lock and unlock overheads decreased.

In comparison to the serial case, the observed overheads were higher, which was also surprising given the

potential that less of Table needed to be considered if more requests could be processed in parallel. Initially,

we conjectured this was because the experimental process was not able to produce the worst-case overhead

blocking. To address this, we considered overhead blocking analytically. The overheads using this analytical

approach are indeed much higher, and therefore in a truly hard-real-time safety-critical system, an analytically

rigorous approach must be taken to account for overhead blocking.

Interestingly, this observation has implications for other locking protocols that themselves employ a lock.

In particular, suspension-based locks, which are implemented in the kernel, often acquire kernel-based spin

locks. To truly bound the worst-case overheads of such protocols, a similar analytical approach should be

taken to account for overhead blocking.

Observation 4.2. Runtime parallelism can increase worst-case lock and unlock overheads for the C-RNLP.

This can be seen by comparing the curves for the serial cases in Figure 4.7 to those for the parallel cases.

We found the better performance in the serial cases quite surprising, because in these cases tasks do not

96

0 5 10 15 20 25 30 35 40
Tasks

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

d
(m

icr
os

ec
on

ds
) MCS

RNLP
C-RNLP

Figure 4.8: Lock overhead as a function of task count n for nr = 64 and |Di|= 4.

“share” rows of Table and hence longer searches through Table are needed (indeed, we confirmed that less

of Table was typically searched in the parallel case). However, at least in the context of this experimental

framework, greater parallelism allows requests to be issued at a faster rate, since they experience less protocol

blocking. This in turn increases contention for the shared variables in the C-RNLP implementation. We

conjecture this increased contention resulted in cache invalidations and additional coherence traffic, such as

inter-processor interrupts, that resulted in increased memory latency and therefore higher overheads.

The measurements discussed so far pertain only to the C-RNLP. Figure 4.8 plots measured lock overhead

for all three considered protocols as a function of the task count n (recall that in the experimental framework,

n≤ m). Two observations are supported by this data.

Observation 4.3. For the C-RNLP, observed overheads increased dramatically when resources were shared

across sockets.

This observation applies to the RNLP as well. It can be confirmed by examining the sharp rise in the

curves for both protocols between n = 18 and n = 20. This rise is due to increased memory latencies due to

cross-socket interactions.

Observation 4.4. The fine-grained locking protocols had higher overhead than the coarse-grained one.

This can be easily seen in Figure 4.8. This result is not surprising, as coarse-grained protocols require

far simpler lock/unlock logic. This exposes an interesting tradeoff: fine-grained protocols offer decreased

blocking with higher overheads, while coarse-grained protocols offer decreased overheads at the expense of

increased blocking.

97

0 20 40 60 80 100
Critical-Section Length (microseconds)

0

500

1000

1500

2000

2500

3000

3500

4000

Bl
oc

ki
ng

 (m
icr

os
ec

on
ds

)

MCS
RNLP
C-RNLP

Figure 4.9: Total blocking time of lock call as a function of critical-section length for n = 36, nr = 64, and
|Di|= 2.

4.3.2 Runtime Performance

To examine this tradeoff, we measured the total lock and unlock overhead (including overhead blocking)

and protocol blocking, which we hereafter simply refer to as total blocking. Specifically, we tested the same

configuration parameters as in the previous experiments, and we also varied critical-section lengths within

{1,10,20, . . . ,100} microseconds.5 Figure 4.9 is a sample graph from this study, where n = 36, nr = 64, and

|Di|= 2. Based on these results, we make the following observation.

Observation 4.5. When critical-section lengths were greater than several microseconds and some parallelism

was possible, the C-RNLP had less total blocking than previous protocols.

This can be seen quite dramatically in Figure 4.9, where both the RNLP and C-RNLP substantially

outperform the MCS lock, with the C-RNLP (because of the greater parallelism it affords) besting the RNLP.

Figure 4.9 was chosen to highlight the best-case scenario for the C-RNLP, i.e., the case in which the most

cutting ahead is possible. Obviously, for cases in which there is little if any cutting ahead (e.g., the serial

case described previously), the C-RNLP has inferior total blocking to the MCS lock as it results in the same

request ordering, but with higher overheads. Additionally, in other scenarios there exist cases in which the

overhead of the C-RNLP results in higher total blocking than the other protocols. These tradeoffs are explored

more fully in the context of schedulability in Section 4.10.

5The resulting graphs are available at https://www.cs.unc.edu/~jarretc/dissertation/.

98

https://www.cs.unc.edu/~jarretc/dissertation/

4.4 Motivation for the CGLP

The C-RNLP addressed the transitive blocking chain problem by reordering request satisfaction to allow

newly issued requests to cut ahead in certain scenarios. However, the additional data that must be maintained

by the locking protocol to ensure this is done safely results in overhead significantly higher than a simple

lock like the MCS lock. This motivates reframing the problem of granting nested write access in order to

realize a lower-overhead approach.

As described in Chapters 1 and 2, unrestricted lock nesting causes complications in real-time systems.

Many of these complications are rooted in the fact that it is difficult to avoid negating the parallelism that the

underlying hardware platform affords. This difficulty is due, at least in part, to two fundamental problems.

The first is the Transitive Blocking Chain Problem (Section 1.3). The second is a problem called the Request

Timing Problem: even in protocols designed to reap gains in parallelism, such gains can be negated by small

variations in resource request durations or other timing details. All existing real-time multiprocessor locking

protocols that allow nesting are subject to one or both of these problems.

The remainder of this chapter presents the CGLP, the first ever protocol designed to address both

problems. The design of the CGLP reflects a fundamentally different approach compared to prior work:

rather than viewing a locking protocol as merely preventing resources from being accessed concurrently, it

can instead be viewed it as a mechanism that safely allows concurrency with respect to shared resources.

The CGLP is designed around this new notion: groups of tasks that may safely execute concurrently.

Before further description of the CGLP, the two fundamental problems are described in more detail.

4.4.1 Transitive Blocking Chain Problem

As described in Chapter 1, using a FIFO request ordering can result in chains of requests all blocked by a

single request. Here, a small example illustrates how the Transitive Blocking Chain Problem can be solved

by forming concurrency groups.

Example 4.6. Consider a scenario with four tasks and five resources, `a through `e. Each task τi issues

a single request, Ri, for two resources for some duration. In Figure 4.10, resources are shown along the

horizontal axis, and requests have been issued and enqueued in task-index order. The maximum duration

of each request is illustrated by a box of that height. In Figure 4.10,R1 holds `a and `b. This preventsR2

from acquiring `b and `c. Thus, R2 is blocked by R1. A transitive blocking chain may form, as shown in

99

R1

R3

R2

R4

resources

l l l l l

tim
e

Figure 4.10: FIFO-ordering.

R1 R3

R2 R4

tim
e

resources

Group 1

Group 2

l l l l l

Figure 4.11: Optimized offline ordering.

Figure 4.10. Such a chain causesR4 to experience blocking for up to the duration of three critical-section

lengths. ♦

The CGLP uses an alternative approach to determine the order of request satisfaction.

Example 4.6 (continued). To solve the Transitive Blocking Chain Problem, the CGLP partitions the requests

in Figure 4.10 into two groups wherein concurrent execution is allowed, as shown in Figure 4.11. At runtime,

resource access is provided on a per-group basis. As seen in Figure 4.11, doing so prevents transitive blocking

chains from forming. ♦

Groups of tasks as just described are called concurrency groups. Such groups are determined offline

based on task-system characteristics.

4.4.2 Request Timing Problem

Although the C-RNLP has addressed the Transitive Blocking Chain Problem, worst-case blocking under

it can be heavily dependent on the timing of request issuances and differences in request durations. Such

timing-related variations can cause “gaps” in the underlying queues utilized by a protocol. These gaps inhibit

parallel execution.

Example 4.7. Consider requestsR1–R4, shown in Figure 4.12, issued in numerical order and enqueued. R5

is then issued and enqueued afterR4. (Both C-RNLP variants result inR5 being satisfied after the completion

ofR4.) Another “slot” that could have been considered is shown in Figure 4.12, butR5 cannot be inserted

here, as this would further delay R4. (Such delays are problematic because the number of later-arriving

requests is generally unbounded.) Observe how the timing of the issuance ofR2 caused a gap just after time

30 into which no conflicting request can fit. ♦

100

{lc, le}S2

S3 {lb, ld}R2 R1

tim
e

resources

0

30

60

90

R3

R4

R5

l l l l l l

Figure 4.12: An illustration of the Request Timing Problem. R5 may not be inserted in the earlier slot marked
by an ‘X’, as this would delay an already issued request.

In many protocols, having to deal with requests of different durations can also cause “gaps” similar to

that in Example 4.7. Thus, such differences are also a source of the Request Timing Problem. The CGLP

obviates such gaps by using task-system characteristics to pre-determine the “slots” into which requests are

inserted. Because this determination is made offline, it is not subject to runtime timing variations and can

account for duration differences.

This remainder of this chapter introduces the CGLP and describes its offline and online components. The

offline portion (for which several options are presented) is analyzed on its execution time, and the online

component on its overhead. Finally, the protocol as a whole is analyzed on the basis of schedulability.

4.5 Concurrency Groups

The Concurrency Group Locking Protocol (CGLP) is designed to address both the Transitive Blocking

Chain Problem and the Request Timing Problem. Recall the pathological case of transitive blocking presented

in Example 4.6. Although each nested request required only two resources, a FIFO-ordered synchronization

protocol could cause a long chain of transitive blocking, as illustrated in Figure 4.10. The blocking chain

in this example could be eliminated by partitioning the requests into the two groups shown in Figure 4.11

and allowing only one group to execute at any given time. This captures the basic intuition of the CGLP; the

protocol is described in detail below.

This section begins by discussing how to generate concurrency groups for an arbitrary set of write

requests. Next, a phase-based access protocol is extended to orchestrate all of the phases required by the

concurrency groups. This section concludes by bounding the worst-case blocking any request may incur

under the CGLP.

101

{l , l }

{l

, l

}V1

V2

V3V4

V5

{l , l }

{l , l }

{l , l }

a

e

c

e

b

da

b

d

e

Figure 4.13: An example coloring.

4.5.1 Offline Group Creation via Graph Coloring

The concurrency groups are established by using a graph coloring approach. Such an approach has been

used to solve a variety of other resource-allocation problems (Bandh et al., 2009; Barnier and Brisset, 2004;

Chaitin et al., 1981; Marx, 2004).

A k-coloring of a graph is a mapping of its vertices to a set of colors, K, such that |K|= k. A coloring

is proper if no two adjacent vertices are assigned the same color. A graph is k-colorable if it has a proper

k-coloring. The Vertex Coloring Problem (VCP) for a graph entails finding the chromatic number, defined as

the smallest integer k for which the graph is k-colorable.

When given a set of write requests, the offline component must be able to create concurrency groups. All

requests in a single group must not share any resources. The goal is to create the minimum number of groups,

as this maximizes the possible concurrency. This problem is transformed to the VCP in two steps. First, for

each requestRi, a corresponding vertex Vi is created. Once all vertices have been added to the graph, edges

are added. An edge is added between Vi and V j, where i 6= j, if Di∩D j 6= /0.

Example 4.8. Consider a task set that produces five requests: R1 for D1 = {`a, `e}, R2 for D2 = {`c, `e},

R3 for D3 = {`b, `d}, R4 for D4 = {`a, `b}, and R5 for D5 = {`d , `e}. The graph representation of these

requests is shown in Figure 4.13. For example, V4 is connected to V1 and V3 because D4∩D1 = {`a} and

D4∩D3 = {`b}. V4 does not have an edge to either V2 or V5, as D4∩D2 = /0 and D4∩D5 = /0. ♦

102

To determine the minimum number of concurrency groups, it suffices to find the minimum k such that

the graph can be colored with k colors. This results in k groups, G1 through Gk. A specific coloring informs

which requests belong in which group; if a vertex Vi is assigned Color g, thenRi ∈ Gg.

Example 4.8 (continued). This graph is 3-colorable, so only three concurrency groups are required. In

particular, the vertices can be colored as shown in Figure 4.13, which results in G1 = {R1,R3}, G2 =

{R2,R4}, and G3 = {R5}. ♦

By the construction of the graph and the constraints on a solution to the VCP, none of the requests in a

given concurrency group require any overlapping resources.

Theorem 4.1. All requests in a given concurrency group Gg created via a solution to the corresponding VCP

may be satisfied concurrently (i.e., mutual exclusion will not be violated).

Proof. Suppose not. Therefore, there exist two requestsRi andR j in the same concurrency group Gg that

share a resource (i.e., Di∩D j 6= /0). By the method of constructing the VCP described above, there is an edge

between Vi and V j. Thus, Vi and V j could not both be assigned Color g as a valid solution to the problem.

Therefore,Ri andR j cannot both be in Gg. Contradiction.

As is standard for the analysis of real-time systems, it is assumed that all possible requests are known a

priori. Thus, a k-colorability analysis can be run offline to determine the number of groups required for a

given system and add each request to a group based on its assigned color.

4.5.2 Implementation of Offline Component

An instance of the VCP as an Integer Linear Program (ILP) can be encoded by using binary variables

to indicate a color assignment for each vertex. The following formulation of this problem is based on a

description in prior work (Palladino, 2010).

Variables. The binary variable xi,g is used to indicate whether Vi is assigned Color g (i.e.,Ri belongs to Gg).

The binary variable colorg denotes whether Color g is used to color any vertex.

Constraints. The first constraint of the ILP enforces that each vertex is assigned exactly one color.

Constraint 1. ∀i : ∑c xi,c = 1

103

Using binary variables ensures xi,c ∈ {0,1}. Thus, summing xi,c across all colors for a given vertex Vi

yields the number of colors that the vertex has been assigned.

The second constraint enforces that adjacent vertices may not be assigned the same color.

Constraint 2. ∀c ∀Ri,R j :Ri 6=R j ∧Di∩D j 6= /0 : xi,c + x j,c ≤ 1

When considering adjacent vertices Vi and V j, for any color, at most one of the vertices may be assigned

that color.

The third constraint captures whether a given color has been used.

Constraint 3. ∀i ∀c : colorc ≥ xi,c

If any vertex is assigned Color c, colorc will be 1.

Finally, the objective function reflects the goal of minimizing the number of colors used.

Objective. min ∑c colorc

To describe this problem as an ILP, a variable must be included for each available color. This requires

pre-determining a sufficient number of colors. Two simple methods can be used to obtain a maximum number

of colors: (1) the maximum is bounded by the number of vertices, or (2) the maximum may be more tightly

bounded by applying a greedy coloring algorithm (described in Section 4.9).

Now let us specify the ILP corresponding to the running example from above.

Example 4.8 (continued). Let us suppose we have applied a greedy coloring approach that yielded four

colors. Thus, we know that the minimum k is at most four. For each request, Constraint 1 yields one equality,

resulting in five total. Constraint 2 results in inequalities for each color: for a given color, there is one

inequality per edge in the graph. This results in 24 inequalities. Finally, Constraint 3 results in 20 inequalities,

five per color, to enforce that each colorg variable accurately captures whether Color g has been assigned to

any vertex. This yields the following ILP.

min
c

4

∑
c=1

colorc

104

s.t. x1,1 + x1,2 + x1,3 + x1,4 = 1

repeat above equality for Vertices 2-5

x1,1 + x2,1 ≤ 1

x1,1 + x4,1 ≤ 1

x1,1 + x5,1 ≤ 1

x2,1 + x5,1 ≤ 1

x3,1 + x4,1 ≤ 1

x3,1 + x5,1 ≤ 1

repeat above six inequalities for Colors 2-4

color1 ≥ x1,1

color1 ≥ x2,1

color1 ≥ x3,1

color1 ≥ x4,1

color1 ≥ x5,1

repeat above five inequalities for Colors 2-4

♦

Though the VCP is NP-hard, it is shown in Section 4.9 that, for many systems, groups can be determined

in a reasonable amount of time. What remains is to coordinate access to these groups of requests during

runtime.

4.5.3 Group Arbitration

Arbitration among concurrency groups must occur online. At most one group may be allowed to be

satisfied at a time. All requests in a given group may run concurrently with each other, but requests from

different groups must not be allowed to execute together.

In this way, requests within the same group may be considered to be read requests relative to each other.

Thus, synchronization must be provided between k groups of readers. This is achieved with a protocol called

the RkLP, which is a k-phased extension to the 3-phased reader-reader locking protocol (Chapter 3).

105

tim
e

20

0

40

60

80

R1 R3 R2 R4 R5

G2 G3G1

request issuance request satisfaction

120

100

140

160

180

200

Figure 4.14: Trace of executions of requests in Example 4.8.

Example 4.8 (continued). No synchronization protection is required between requestsR1 andR3, both in

G1, as they do not share resources. However, G1 and G2 cannot be allowed to execute concurrently. ♦

The following rules encapsulate how the RkLP functions. The time during which a group is active is

called a phase.

G1 Each group is either active, waiting, or inactive, and at most one group is active at any time.

G2 If a request belonging to an inactive group is issued, then the group becomes active if no group is

active, or waiting if there is an active group.

G3 A waiting group becomes active once all groups that were active or waiting when this group entered

the waiting state have completed a single phase of execution.

G4 All active requests in a group that becomes active are satisfied immediately.

Example 4.8 (continued). As depicted in Figure 4.14,R1 is issued at time t = 10. Because no other groups

are active at t = 10, G1 becomes active immediately, by Rule G2. By Rule G4,R1 is satisfied immediately.

At t = 15, R5 is issued. At most one group can be active at any time, and G1 is still active, so G3 is now

106

waiting, by Rules G1 and G2. By Rules G3 and G4,R5 will be satisfied when G1 has completed a phase of

execution. This occurs at time t = 60. ♦

G5 All requests satisfied in a phase finish by the end of that phase.

G6 When all satisfied requests of a phase finish, the group enters the waiting state if there are any active

requests in the group. Otherwise it enters the inactive state.

G7 When all satisfied requests of a phase finish, the completion of the last request and the transition to a

new active phase, if there was a waiting group, happen atomically.

Example 4.8 (continued). G3 is active from t = 60 to t = 110. R5 completes by the end of that phase,

by Rule G5. When R5 completes, G3 becomes inactive, by Rule G6. At that time, G2 becomes active, by

Rules G3 and G7. ♦

G8 If a request belonging to the active group is issued while the group is active, it becomes satisfied

immediately as part of the current phase only if there are no waiting groups. (If there is a waiting group,

it will be satisfied in the next active phase of its group.)

Example 4.8 (continued). R3 is issued at time t = 25, while G1 is active and there are waiting groups, so

R3 must wait for the next active phase of G1, by Rule G8. (If R3 were instead satisfied immediately, the

current phase of G1 would not end until time t = 75, delaying the satisfaction ofR5 by 15 time units; such

delays could lead to starvation of waiting groups.) ♦

The above rules capture how the k concurrency groups alternate between active phases. These, along with

the non-preemptive execution of critical sections, prevent deadlock. Next, the spin-based implementation of

the RkLP is discussed.

4.5.4 Implementation of Online Component

The RkLP builds on the R3LP (Chapter 3). Here the key components of the RkLP implementation are

described broadly; it is very similar to that of the R3LP.

For each group, a set of counters is maintained. A newly issued request is assigned the current value of

the counter that tracks how many requests have been issued. This counter, along with two others, serves to

identify how many requests are active and distinguish which requests in the group are satisfied and which are

waiting.

107

The RkLP can be implemented without a mutex by instead using a standard atomic read-and-update

mechanism on a shared bit vector. Two bits per concurrency group are maintained in the shared bit vector;

one bit indicates that a request in the group is active, and the other denotes the phase of that group (to prevent

a race condition in which a request from a different group fails to read the bit vector between phases of

this group). Based on this construction, a 64-bit vector allows for 32 groups, or if using a double-width

compare-and-swap mechanism, 64 groups. While this may limit some applications, if the number of groups is

larger than the number of processors, m, minimal analytical advantage can be gained by forming concurrency

groups, as blocking under a non-preemptive, spin-based protocol is O(m) (see Section 4.10.1). Thus, this

constraint (at most 64 groups being supported without the use of a mutex) is primarily a concern for systems

with more than 64 processors.

4.5.5 Bounding Blocking

The essential component to determining schedulability given a locking protocol is the bound on worst-

case pi-blocking. With the RkLP, the bound depends on the time it takes each of the k groups to execute.

Intuitively, each phase may execute for up to the maximum critical-section length, Lmax. Below, a bound on

the worst-case acquisition delay is established.

Lemma 4.1. When there is at least one waiting group, the current phase of the active group ends within Lmax

time units.

Proof. When there is at least one waiting group, newly issued requests belonging to the active group are not

immediately satisfied, by Rule G8. Therefore, only the currently satisfied requests must complete before the

active group enters the waiting state. Any satisfied request executes for at most Lmax time units. Thus, the

current phase of the active group will end within Lmax time units, and the active group will become waiting or

inactive.

Theorem 4.2. In a system with k concurrency groups, a request Ri has a maximum acquisition delay of

k ·Lmax.

Proof. Upon being issued, if requestRi belonging to Gg is not satisfied immediately, then at least one group

is waiting, by Rules G2 and G8. Furthermore, Gg is either waiting or active.

108

Suppose Gg is waiting. Some other group must be active, by Rule G2. Because there is a waiting group

(Gg), the active group will complete within Lmax time units, by Lemma 4.1. By Rule G3, Gg will become

active once all groups that were active or waiting when Gg entered the waiting state have completed a single

phase of execution. Because there are at most k concurrency groups, at most k−1 other groups could have

been active or waiting when Gg entered the waiting state. Thus, at most k−1 other groups must complete a

phase, and each phase will last for at most Lmax time units. Hence, the maximum acquisition delay forRi is

(k−1) ·Lmax in this case. (By Rule G4, as soon as Gg becomes active,Ri will be satisfied.)

Suppose instead that Gg is active. BecauseRi is not satisfied immediately, there must be a waiting group

(preventingRi from being satisfied immediately due to Rule G8). Gg will complete its active phase within

Lmax time units. Its group will then transition to the waiting state by Rule G6. As reasoned above, the waiting

Gg will become active, and thusRi be satisfied, within (k−1) ·Lmax time units. Thus, in total, the worst-case

acquisition delay forRi is k ·Lmax time units.

Let us revisit the above example to see that this blocking bound is tight.

Example 4.8 (continued). WhenR3 is issued at t = 25 in Figure 4.14, it cannot be satisfied immediately,

by Rule G8. Its maximum acquisition delay is 3 ·Lmax, corresponding to a phase of each of G1, G3, and G2, as

illustrated in Figure 4.14. ♦

4.5.6 Refining the Blocking Bound

Up to this point, critical-section lengths were not specified, so each was treated as Lmax. When requests

have varying critical-section lengths, the bound in Theorem 4.2 may be overly pessimistic. When analyzing

the impact of each concurrency group on the blocking a given request may experience, the maximum

critical-section length of a group Gg is denoted LGg
max.

Example 4.9. Here, let us use the same set of requests from Example 4.8, but instead let the critical-section

lengths of the five requests be L1 = 10, L2 = 55, L3 = 60, L4 = 25, and L5 = 30 time units. Then, LG1
max = 60,

LG2
max = 55, and LG3

max = 30. ♦

Lemma 4.2. When there is at least one waiting group, the current phase of the active group Gg ends within

LGg
max time units.

109

tim
e

10

0

20

30

40

R1 R3 R2 R4 R5

G2 G3G1

60

50

70

80

90

100

110

120

130

140

150

request issuance request satisfaction

Figure 4.15: An illustration of the maximum blocking forR1 in Example 4.9.

Proof. As in Lemma 4.1, when at least one group is waiting, no new requests belonging to Gg may be

satisfied. Thus, the current phase of Gg will end once all satisfied requests complete, which occurs within

LGg
max time units.

Theorem 4.3. The acquisition delay a requestRi may experience is at most ∑
k
c=1 LGc

max time units.

Proof. As in Theorem 4.2,Ri may need to wait for the completion of at most one phase of each of the k groups,

including its own, before being satisfied. Thus, the maximum acquisition delay ofRi is ∑
k
c=1 LGc

max.

Example 4.9 (continued). Consider the execution trace shown in Figure 4.15. In this trace,R1 is released

at t = 45 and satisfied at time t = 145, so it is blocked for 100 time units. By Theorem 4.3, the worst-case

110

V1

V2

V3V4

V5
{l , l }

{l

, l

}

{l , l }

{l , l }

{l , l }

a

e

c

e

b

da

b

d

e

Figure 4.16: An alternate coloring.

blocking of R1 is 60+55+30 = 145 time units. Note that this is far less time than the 3 ·60 = 180 time

units given as a bound by Theorem 4.2. ♦

4.6 Alternate Coloring Choices

Now that the fundamental components of the CGLP have been explained, several extensions to the

protocol are discussed. In this section, the focus is on the benefits of allowing critical-section lengths to factor

into the group assignments. This alternative method minimizes the total blocking experienced by all tasks.

Therefore, when comparing protocols on the basis of schedulability, it is expected that this variant would

outperform the basic CGLP from Section 4.5; the results of this comparison are presented in Section 4.10

(Observation 4.14).

4.6.1 Motivation

In the basic version of the CGLP, an arbitrary coloring of the vertices that required the minimum number

of colors was chosen. However, there can be multiple ways to color a set of vertices with k colors, resulting

in different concurrency groups. The following examples motivate a different method of grouping requests.

Example 4.9 (continued). Continuing the running example from the prior section, there are multiple ways

to form concurrency groups for this set of requests. For example, instead of the coloring shown in Figure 4.13,

the coloring shown in Figure 4.16 would yield G1 = {R1}, G2 = {R2,R3}, and G3 = {R4,R5}. ♦

111

G1 G2 G3 G4 ∑
4
c=1 LGc

max

R1 R2 R3 R4 110
R1 R2,R4 R3 – 100
R1,R4 R2 R3 – 80
R1,R3 R2 R4 – 100
R1,R3 R2 R4 – – 90

Table 4.1: Five possible groupings of the requests from Example 4.10 with the RkLP blocking bounds
computed. Using the minimum of two groups does not result in the lowest blocking.

As an extension to the basic CGLP, the concurrency groups could be chosen in a manner that minimizes

blocking. This can be done by considering the critical-section lengths in light of the blocking bound given in

Theorem 4.3 when assigning groups.

Example 4.9 (continued). By Theorem 4.3, the worst-case blocking of any of the requests under the

grouping shown in Figure 4.13 is 60+55+30 = 145 time units. In contrast, the blocking under the grouping

of Figure 4.16 is at most 10+60+30 = 100 time units. Therefore, the grouping shown in Figure 4.16 should

be used instead of that in Figure 4.13. ♦

Example 4.9 highlights the improvements in worst-case blocking that can be achieved by creating

concurrency groups based on the critical-section lengths of the requests. In fact, taking minimizing blocking

as the primary goal may require more than k groups. This is illustrated with an example.

Example 4.10. Consider the following set of requests: R1 with D1 = {`a, `b}, R2 with D2 = {`b, `c}, R3

with D3 = {`c, `d}, and R4 with D4 = {`d , `e}. Here, L1 = 60, L2 = 10, L3 = 10, and L4 = 30 time units.

Table 4.1 shows all possible groupings of these requests; those with different group number assignments are

simply permutations of these groups and result in the same summed blocking. ♦

Example 4.10 illustrates that the minimum coloring does not always result in the lowest blocking. For

this task set, the lowest blocking is found by using three groups to yield a blocking bound of 80 time units

instead of the bound of 90 time units produced when only two groups are used. These choices of colorings

are depicted in Figure 4.17.

4.6.2 Minimizing Blocking

To minimize the impacts of synchronization on the system, it is possible to instead minimize blocking

with the assignment of requests to concurrency groups. This is achieved by developing an ILP that follows

112

V3V4

V2V1

V3V4

V2V1
{l , l }b

c {l , l }b

c{l , l }a

b{l , l }a

b

{l , l }d

e {l , l }c

d{l , l }d

e {l , l }c

d

Figure 4.17: For the requests in Example 4.10, the corresponding minimum coloring is on the left, and the
coloring that achieves the minimum blocking is on the right.

many of the same principles as the ILP presented in Section 4.5.2. First, the variables are described, and then

the details of the constraints are given.

Variables. As in Section 4.5.2, the notion of graph coloring to guides the approach. The binary variable

xi,g is used to indicate whether Vi is assigned Color g (i.e.,Ri belongs to Gg). To capture LGg
max, the variable

durationg is used. Here, the optimization problem is no longer to minimize the number of colors, as described

below. Thus, the number of colors in the ILP is given by the number of vertices in the graph.

Constraints. We now present our ILP to determine groups while minimizing blocking. Constraints 1 and 2

from Section 4.5.2 are used here and are restated below.

Constraint 1. ∀i : ∑c xi,c = 1

Constraint 2. ∀c ∀Ri,R j :Ri 6=R j ∧Di∩D j 6= /0 : xi,c + x j,c ≤ 1

The following constraint forces a given durationg to capture the largest critical-section length of the

requests in Gg.

Constraint 3. ∀i ∀c : durationc ≥ xi,c ·Li

Intuitively, if Ri is in Gg, then LGg
max must be at least Li. When the ILP is formed, the critical-section

lengths are incorporated into the model. Note that in the context of a given task system these are constants.

The objective function is to minimize ∑durationc over all possible colors. This minimizes overall

blocking, as computed by the expression in Theorem 4.3.

Objective. min ∑c durationc

113

Let us illustrate how this is used with the example task system from above.

Example 4.10 (continued). The ILP corresponding to this set of four requests is listed below. Constraint 1

results in four equalities, Constraint 2 results in twelve inequalities, and Constraint 3 results in sixteen

inequalities.

min
4

∑
c=1

durationc

s.t. x1,1 + x1,2 + x1,3 + x1,4 = 1

repeat above equality for Vertices 2-4

x1,1 + x2,1 ≤ 1

x2,1 + x3,1 ≤ 1

x3,1 + x4,1 ≤ 1

repeat above three inequalities for Colors 2-4

duration1 ≥ x1,1 ·60

duration1 ≥ x2,1 ·10

duration1 ≥ x3,1 ·10

duration1 ≥ x4,1 ·30

repeat above four inequalities for Colors 2-4

♦

4.7 Mixed-Type Requests

Recall from Section 2.4.1 that a mixed-type request is one in which the task requires write access for

one or more resources and only requires read access for some resources. Such a request may occur when a

task must read one or more values from various buffers or sensors before writing value(s) from a resulting

computation to some other region of shared memory. These different synchronization requirements can be

captured in a manner that enables exploiting the relaxed resource-sharing assumptions for read requests. This

is achieved by modifying how graphs are generated relative to the requests.

114

{l , l }
r w

V1

V2

V3

V4

a

b

{l , l }
r w
a

c

{l , l }
w w
c

d

{l , l }
w w
a

d

Figure 4.18: Graph of mixed-type requests.

4.7.1 Graph Creation

A vertex is created for each request, as before. However, the addition of edges is changed to reflect this

different sharing paradigm. When listing the set of resources Di required by a requestRi, the type of access

required (read or write) is denoted with a superscript. For example, Di = {`r
a, `

w
b } indicates thatRi requires

read access to `a and write access to `b.

Example 4.11. Consider a set of requests, R1 through R4, which require resources D1 = {`r
a, `

w
b }, D2 =

{`r
a, `

w
c }, D3 = {`w

c , `
w
d }, and D4 = {`w

a , `
w
d }. Here, R1 and R2 are mixed-type requests and R3 and R4 are

write requests. ♦

The set Dw
i = {`y|`w

y ∈ Di} is the set of resources to whichRi requires write access. An edge is added

between two vertices corresponding to requestsRi andR j ifRi 6=R j and (Dw
i ∩D j 6= /0)∨ (Di∩Dw

j 6= /0).

Example 4.11 (continued). The graph corresponding to this set of requests is shown in Figure 4.18. Here,

Dw
1 = {`b}. Although both R1 and R2 require `a, both read `a: when comparing R1 and R2, we check

(Dw
1 ∩D2) = ({`b}∩{`a, `c}) = /0 and (D1∩Dw

2) = ({`a, `b}∩{`c}) = /0, so no edge is added between V1

and V2. This fits the intuition thatR1 andR2 could be satisfied concurrently. ForR1 andR4, (D1∩Dw
4) =

({`a, `b}∩{`a, `d}) = {`a} 6= /0, so an edge is added between V1 and V4. ♦

Given graphs created in this manner, the blocking analysis presented in Section 4.5.6 can be applied.

115

4.7.2 Modifications to ILP

Both of the ILPs presented previously can be modified to account for mixed requests (or read requests)

by replacing Constraint 2 with the following:

Constraint 2. ∀c ∀Ri,R j :Ri 6=R j ∧ ((Dw
i ∩D j 6= /0)∨ (Di∩Dw

j 6= /0)) : xi,c + x j,c ≤ 1

As in Section 4.6.2, the number of colors in the ILP is given by the number of vertices in the graph.

Example 4.11 (continued). This updated Constraint 2 results in the following constraints for this set of

requests:

x1,1 + x4,1 ≤ 1

x2,1 + x3,1 ≤ 1

x2,1 + x4,1 ≤ 1

x3,1 + x4,1 ≤ 1

repeat above four inequalities for Colors 2-4

♦

4.8 Hierarchical Organization

The initial approaches to determining concurrency groups resulted in each request being satisfied with

the same frequency. This section explores adding a layer of hierarchy to the request-management scheme to

alter the frequency with which requests are satisfied. Let us begin by considering a group of six requests: the

five requests from Example 4.9 and one additional request.

Example 4.12. Consider the task set with the requests from Example 4.9 and a sixth request, R6, for

D6 = {`a, `e} with a critical-section length of at most L6 = 55 time units. Using the approach described in

Sections 4.5.1 and 4.6.2, we determine that four concurrency groups, as shown in Figure 4.19, are required

(adding G4 = {R6} to the three groups used in Example 4.9). This grouping results in worst-case blocking

for all requests of 10+60+30+55 = 155 time units.

116

V1

V2

V3

V4

V5

V6

{l

, l

}a

e

{l , l }

{l , l }

c

e

b

d

{l

, l

}a

e

{l , l }

{l , l }a

b

d

e

Figure 4.19: Four concurrency groups for requestsR1 toR6: G1 = {R1}, G2 = {R2,R3}, G3 = {R4,R5}
and G4 = {R6}.

This example highlights the impact a single request may have on the task system as a whole. Instead

of the worst-case acquisition delay of 100 time units from Example 4.9, each request in this example may

experience 155 time units of blocking. ♦

This section proposes a modification to the satisfaction order of concurrency groups that can lower the

worst-case blocking for most requests at the cost of increasing the worst-case blocking for a few requests.

4.8.1 Hierarchical Request Satisfaction

Under this scheme, a set of slots becomes active in a round-robin-like fashion like the group arbitration

process described in Section 4.5.3. When a given slot becomes active, one of the groups assigned to that

slot is granted an active phase. Groups within a slot compete as in Section 4.5.3, but now a group competes

with only the other groups in the same slot. Each group belongs to exactly one slot. The set of all groups

belonging to Slot a is denoted Sa.

Example 4.12 (continued). The concurrency groups depicted in Figure 4.19 may be assigned to slots such

that S1 = {G1}, S2 = {G2,G4}, and S3 = {G3}. ♦

All groups in Sa may compete to occupy Slot a in its active phase. The rules below add to those stated in

Section 4.5.3 in order to capture this new structure. All of the rules in Section 4.5.3 apply without modification

117

(e.g., note that G8 refers to any waiting group belonging to any slot) except for G3, which is replaced with a

modified version below.

The first set of rules are those governing the coordination between the slots.

G9 A slot is either active, waiting, or inactive, and at most one slot is active at any time.

G10 A slot is inactive if all of its groups are inactive.

G11 A waiting slot becomes active once all slots that were active or waiting when this slot entered the

waiting state have completed a single phase of execution.

The following rules govern how the groups interact with their respective slots.

G12 A group may only be active if it occupies its slot.

G13 At most one group can occupy a slot at a time.

G14 If a group belonging to an inactive slot becomes active, then the group immediately occupies the slot,

and the slot becomes active if no slot is active, or waiting if there is an active slot.

G15 When a slot becomes active, the group that occupies that slot becomes active.

G16 When the group that occupies the active slot completes, the active phase of the slot completes; if there

are waiting slots, this slot enters the waiting state if there are waiting groups in this slot, or enters the

inactive state otherwise.

These rules are illustrated with an example depicted in Figure 4.20 and described below.

Example 4.12 (continued). Before time t = 0, there are no active requests. Thus all groups are inactive and

all slots are inactive. At t = 0,R2 is issued, and by Rules G2, G12, G14, and G15, G2 occupies Slot 2, Slot 2

becomes active, and G2 becomes active. By Rule G4,R2 is therefore satisfied immediately. ♦

The new version of Rule G3 is:

G3’ A waiting group occupies its slot once all groups that were active or waiting in its slot when this

group entered the waiting state have completed a single phase of execution.

Example 4.12 (continued). As shown in Figure 4.20, at t = 5,R6 is issued. Because G2 occupies Slot 2, G4

can occupy the slot only after G2 has completed an active phase (Rule G3’), which occurs at t = 55. At this

time, by Rule G16, Slot 2 enters the waiting state, so by Rule G11, Slot 2 cannot become active until both

Slot 3 and Slot 1 have completed a single phase, which occurs at t = 95. ♦

118

tim
e

10

0

20

30

40

R1 R2 R3 R4 R5

G2 G4G1

60

50

70

80

90

100

110

120

130

140

150

request issuance request satisfaction

R6

G3

S1 S3S2

Figure 4.20: An illustration of execution under the hierarchical approach.

As described in the rules above, a FIFO ordering among groups competing for a given slot is enforced;

the group with the earliest-issued active request occupies the slot until all requests that were active when

the group became active have completed. This introduces an additional layer of hierarchy and additional

blocking for these requests; a request must now wait until its group occupies its slot and then for its slot to

become active before it can be satisfied.

4.8.2 Bounding Blocking

To reason about the worst-case acquisition delay under this hierarchical approach, LSa
max is defined such

that it upper-bounds the length of one phase of Slot a; LSa
max = maxGg∈Sa LGg

max.

Lemma 4.3. If there is an active request in a group in Sa, Slot a will become active within ∑b6=a LSb
max time

units.

119

Proof. Slot a must be either active or waiting, as at least one of its groups is not inactive (Rules G9 and G10).

If Slot a is waiting, it will become active once all slots that were active or waiting when this slot entered

the waiting state have completed a single phase of execution (Rule G11). The bound of ∑b6=a LSb
max follows

directly from the definition of LSa
max.

Example 4.12 (continued). At t = 45, R1 is issued, Slot 2 is active, and Slot 3 is waiting. By Rule G14,

Slot 1 enters the waiting state at t = 45. By Rule G11, Slot 1 will become active once Slot 2 and Slot 3 each

complete a phase of execution. By Lemma 4.3, this will occur within 60+30 = 90 time units. ♦

Theorem 4.4. The worst-case acquisition delay a request Ri in group Gg in Sa may experience is upper-

bounded by |Sa| ·∑b LSb
max.

Proof. When Ri is issued, if Gg does not occupy its slot, then a different group, Gd , occupies the slot.

Gd becomes active within ∑b6=a LSb
max time units (Lemma 4.3 and Rule G15), and then is active for up to

LGd
max ≤ LSa

max time units. By Rule G3’, Gg occupies its slot once all groups that were active or waiting in its

slot when it entered the waiting state have completed a phase of execution. There are at most |Sa|−1 such

groups, and as reasoned above with Gd , each takes at most ∑b 6=a LSb
max+LSa

max = ∑b LSb
max time units to complete

a phase of execution. Once Gg occupies its slot, it becomes active within ∑b6=a LSb
max time units (Lemma 4.3

and Rule G15). Thus Ri experiences an acquisition delay of up to (|Sa| − 1) · (∑b LSb
max)+∑b6=a LSb

max ≤

|Sa| ·∑b LSb
max.

Otherwise, Gg does occupy its slot whenRi is issued. Then Gg is either waiting or active (Rule G2). If

Gg is waiting, it becomes active within ∑b6=a LSb
max time units (Lemma 4.3 and Rule G15), at which timeRi is

satisfied (Rule G4).

If instead Gg is active, thenRi is either satisfied immediately (resulting in no acquisition delay) or there

must be waiting groups (Rule G8). If there are waiting groups, by Rule G8,Ri will not be satisfied until the

next active phase of Gg. The current active phase of Gg finishes within LGg
max ≤ LSa

max time units before entering

the waiting state. The remaining delayRi incurs depends on whether there are other groups in Sa that are

waiting.

If there are not other waiting groups in its slot, Gg occupies its slot andRi is satisfied when Gg becomes

active, within ∑b6=a LSb
max time units (Lemma 4.3 and Rules G4 and G15). ThusRi’s acquisition delay would

be bounded by LSa
max +∑b6=a LSb

max = ∑b LSb
max time units.

120

Finally, if there are other waiting groups belonging to Sa, then once Gg finishes its active phase, another

group occupies its slot (Rule G3’). Then, as above, at most |Sa|−1 groups occupy Sa before Gg again occupies

it; these complete within (|Sa|−1) ·(∑b LSb
max) time units. Then Gg becomes active again within ∑b6=a LSb

max time

units (by Lemma 4.3 and Rule G15). When Gg becomes active,Ri is satisfied (Rule G4). Thus, the worst-case

acquisition delay ofRi is bounded by LSa
max +(|Sa|−1) · (∑b LSb

max)+∑b6=a LSb
max = |Sa| ·∑b LSb

max.

Example 4.12 (continued). As depicted in Figure 4.20, whenR6 is released at t = 5, G4 does not occupy its

slot. With this new hierarchical approach, instead of being satisfied after all active groups have completed a

phase of execution (here, only G2), it is satisfied at t = 95. This acquisition delay is captured in Theorem 4.4:

R6 has acquisition delay bounded by |{G2,G4}|·∑3
b=1 LSb

max = 2 ·(10+60+30)= 200 time units (as doR2 and

R3). This benefitsR1,R4, andR5, which now have acquisition delay bounded by 1 · (10+60+30) = 100

time units. ♦

In essence, it is possible to increase blocking for some requests in order to lower blocking for other

requests. The decision of which groups of requests to map to the same slot can depend on multiple factors. In

general, some tasks may be able to incur a higher amount of blocking and still meet their deadlines; this will

depend on specific details of each task.

4.8.3 Assigning Groups to Slots

Although Theorem 4.4 upper-bounds the acquisition delay each request may experience, it does not

guide how to assign groups to slots. The following provides some intuition behind assignment decisions and

a few possible approaches. In general, the benefit of adding a layer of hierarchy in Example 4.12 is that less

blocking is incurred in the system as a whole: three requests may incur up to 200 time units of blocking and

three up to 100 time units as opposed to all six incurring up to 155 time units each. Thus, a first approach

would be to form an optimization process that minimizes the summed blocking. However, lowering total

blocking across all requests ignores the periods of the tasks issuing these requests and each task’s capacity to

incur higher blocking and still meet its deadlines. Thus, an approach that minimizes the summed blocking

may ignore crucial features for schedulability.

A second approach would be to pre-select tasks to belong to groups that share a slot with at least one

other group (with the remaining tasks being assigned to groups that would not share a slot). The underlying

motivation is that the slot-sharing groups should be comprised of tasks that are able to incur additional

121

blocking. Without knowing the resulting blocking ahead of time, these tasks could be selected by their low

utilization or high period, both of which are properties that give additional flexibility for incurring higher

blocking. Once the tasks are separated, the groups for each set could be determined (e.g., with the ILP in

Section 4.7.2). Thus two distinct ILPs would be solved to yield two sets of groups. The groups could then be

assigned to slots randomly, ensuring that the groups from the first set of tasks always share a slot and those

from the second never do.

The final approach that presented here enforces that each slot has either one or two groups and maximizes

the minimum anticipated relative slack for tasks of each group. Without the considerations of blocking, the

slack of a task τi is Ti−Ci (for implicit-deadline tasks); this captures the capacity τi has to incur delays and

still meet its deadline. The anticipated relative slack incorporates the expected blocking. The intuition behind

maximizing the minimum anticipated relative slack is to maximize the buffer tasks have to incur delay and

still meet their deadlines. This is specified as an optimization problem, and the approach is described in more

detail as each constraint is presented.

As before, a maximum number of colors must be encoded. This is chosen to be the number of request-

issuing tasks, denoted num req. Here, groups are pre-selected to share a slot: all groups with a number at

most split = bnum req
4 c ·2 will share a slot. Group Gg will be in Sb g

2 c+(gmod2) if g≤ split or Sg− split
2

otherwise.

Alternative choices of split may also be considered.

Now the constraints that are described. The constraints from Section 4.5.2 to enforce the basic coloring

restrictions are reused here.

Constraint 1. ∀i : ∑c xi,c = 1

Constraint 2. ∀c ∀Ri,R j :Ri 6=R j ∧Di∩D j 6= /0 : xi,c + x j,c ≤ 1

Next a set of variables is used to represent the maximum duration of each slot: durationa represents LSa
max.

Based on the construction of this hierarchical approach, each slot has either one or two groups that impact

LSa
max. This results in the following three constraints.

Constraint 3. ∀i ∀a : a≤ split
2 : durationa ≥ xi,2a−1 ·Li

Constraint 4. ∀i ∀a : a≤ split
2 : durationa ≥ xi,2a ·Li

Constraint 5. ∀i ∀a : a > split
2 : durationa ≥ xi,a+ split

2
·Li

122

The next constraint limits the variable summed duration, which upper-bounds the sum in Theorem 4.4.

Constraint 6. summed duration≥ ∑b durationb

The final constraints are those on the anticipated relative slack for each Gg, denoted slackg. Note that the

groups that share a slot (g≤ split) have a factor of 2 multiplying summed duration, while the other groups do

not. This reflects the upper bound of blocking presented in Theorem 4.4.

Constraint 7. ∀i ∀c : c≤ split : slackc ≤ Ti−(Ci+2·summed duration)xi,c
Ti

Constraint 8. ∀i ∀c : c > split : slackc ≤ Ti−(Ci+·summed duration)xi,c
Ti

The objective of this optimization problem is to maximize the summed slack over all groups. The

anticipated per-group relative slack can be between zero and one; a color with no tasks assigned to it has a

minimum per-group relative slack of one.

Objective. max ∑c slackc

The above optimization can be transformed in a straightforward manner with the approach shown in

Section 4.7 to handle mixed requests.

4.9 Analysis of Offline Component

The evaluation of the CGLP is comprised of two parts: measuring the time required for the offline group

formation and comparing its online performance to prior real-time locking protocols in a schedulability study.

This section focuses on evaluating the offline portion.

Here, three possibles approaches to implementing the offline component of the CGLP are evaluated.

Section 4.5.2 presented an ILP to assign concurrency groups such that the number of groups is minimized. This

approach is denoted BasicILP. Section 4.6.2 presented an optimization problem to instead minimize blocking,

denoted here as DurationILP. Finally, Section 4.7.2 showed how the above two optimization problems can be

modified to account for mixed requests in a more fine-grained manner. Here, this modification is applied to

the duration-based ILP, and the resulting approach is denoted RW-DurationILP.

These offline components are compared on the basis of how long determining the concurrency groups

takes across a range of task systems. In this evaluation, task systems were generated across broad space of

task-system parameters, varying the individual task utilization, the period, the percentage of tasks that issue

123

Category Name Value

Task Utilization Medium-Light [0.01,0.1]
Medium [0.1,0.4]
Heavy [0.5,0.9]

Critical-Section Moderate [15,100]
Length (µs) Bimodal [15,500] or [500,1000]

Weighted
Bimodal

[15,500] (prob: 0.7) or
[500,1000] (prob: 0.3)

Long [100,1000]

Period (ms) Short [3,33]
Long [50,250]

Table 4.2: Named parameter distributions. From each, a value is selected uniformly at random.

Category Options

Task Utilization Medium, Heavy
Period Short, Long
Percentage Issuing Requests 50%, 80%, 100%

Critical-Section Length
Moderate, Bimodal,
Weighted Bimodal, Long

Number of Resources 64
Nested Probability 0.1, 0.2, 0.5
Mixed Probability 0, 0.2, 0.5, 0.8
Nesting Depth 2, 4

Table 4.3: Schedulability study parameter choices. Critical-section lengths are assigned with one of two
methods: randomly for each request or within a range of the random length assigned to a group.

requests, the critical-section lengths, the probability that a given request is nested, the number of resources

requested for a nested request, and the probability that a nested request is mixed; named value sets are listed

in Table 4.2, and the set of parameters used for the evaluation are in Table 4.3. If a nested request is mixed, it

is randomly assigned to require read access to half of its resources and write access to its other resources. A

scenario is defined to be a setting of each of the above parameters. These parameter selections correspond to

those used for the schedulability study in Section 4.10.

To give a sense of the scale of these problems, Table 4.4 reports the average number of requests and

average minimum number of colors (using BasicILP) across 50 task sets. These task sets had a total utilization

of 16, every task issued a request, nested probability was varied, and nested requests required four random

resources. Note that for task sets with heavy per-task utilization, fewer tasks are needed to reach the given

124

Task
Utilization

Average Number
of Requests

Average
k

Heavy 23.4 3.7
Medium 64.7 6.7

Medium-Light 291.6 19.8

Table 4.4: Average size of a graph coloring problem for a system with total utilization of 16.

target system utilization; conversely, with medium-light per-task utilization, many more tasks are needed to

reach the target system utilization, and thus more colors are needed.

As described in the specification of each ILP, variables for each color that might be needed must be

created. In order to improve performance of BasicILP, this number can be restricted (thereby reducing the

number of variables, and thus, the problem size) based on the result of a greedy coloring algorithm. The

greedy coloring approach obtains a proper k-coloring of a graph. Although the value of k obtained from

greedy coloring is not necessarily minimal, it provides a tighter upper bound on the chromatic number than

simply using the total number of requests. Here, the greedy approach applied begins with a number of colors

equal to the number of vertices in the graph, and each color is labeled with a numerical identifier. Each vertex

is assigned the lowest numbered color that does not appear among its already colored neighbors.

To test how long it takes to determine concurrency groups for a given task set, random task sets across

the space of all scenarios were generated. For each task set, the setup time and the time required to solve each

ILP with an ILP solver (Gurobi, 2018) was measured. Figure 4.21 shows the 95th percentile of the solve time

for each ILP in a scenario with heavy per-task utilization, short periods, and 100% of tasks issuing requests

with long critical-section lengths. Each request was nested with the probabilities shown. Nested requests

required access to four randomly selected resources, and the probability of a request being mixed was 0.8.

For each scenario, 100 task sets were generated.

Observation 4.6. Although the connection of the problem of determining groups to the NP-hard Vertex

Coloring Problem may seem like a serious liability, the ILP solver was almost always able to quickly find

such groups across a wide spectrum of scenarios.

This is demonstrated in Figure 4.21, which depicts a scenario with higher-than-average ILP solve times

for tasks with heavy utilization; in this scenario, the maximum 95th percentile solve time was still less than 3s.

Based on these results, a timeout on the ILP solver was set for each ILP when running the schedulability study

(described in more detail in Section 4.10). For task sets with heavy per-task utilization, 0.1s was used for

125

2 4 6 8 10 12 14 16
System Utilization

0.0

0.5

1.0

1.5

2.0

2.5
Ti

m
e

to
 A

ss
ig

n
Gr

ou
ps

 (s
)

DurationILP - Nested:0.8
RW-DurationILP - Nested:0.8
DurationILP - Nested:0.5
RW-DurationILP - Nested:0.5
DurationILP - Nested:0.2
RW-DurationILP - Nested:0.2
BasicILP - Nested:0.8
BasicILP - Nested:0.5
BasicILP - Nested:0.2

Figure 4.21: Average time to solve each ILP. Each data point represents the 95th percentile from 100 random
task sets.

BasicILP and 2.7s for the two duration-based ILPs. In the schedulability experiments, these thresholds were

never exceeded. For task sets with medium per-task utilization, a timeout of 0.1s was enforced for BasicILP

and 120s for the duration-based ILPs. Across 16.7 million task sets, one of these limits was exceeded only

153 times.

Observation 4.7. The time to solve each ILP depended on the number of requests and the connectivity of

the graph formed from those requests.

This observation is supported by looking at a range of factors. The per-task utilization determines the

number of tasks in the systems, and the percentage of tasks which issue requests determines the total number

of requests. Systems with higher total utilization are comprised of more tasks (and thus more requests). The

connectedness of the graph depends on the probability of a given request being nested and the number of

resources required by nested requests. This is illustrated this with a small set of scenarios: Figure 4.21 shows

the time required to solve each ILP for a scenario in which each nested request requires four resources. As

shown in Figure 4.21, the nested probability has a significant impact on the time required to solve each ILP.

Additionally, we note that the solution times for the duration-based ILPs were significantly higher than

those for BasicILP. We hypothesize that the solution times for DurationILP and RW-DurationILP were higher

partially due to having so many additional variables; the greedy coloring could not be used to determine

the minimum number of colors required to enable the ILP to minimize blocking. (Recall the discussion in

126

Section 4.6.1 that minimizing colors may not minimize duration.) Therefore, the number of requests was

used as a safe upper bound on the number of colors for the duration-based ILPs.

4.10 Schedulability Study

This section presents an evaluation of the C-RNLP and the CGLP on the basis of schedulability with a

large-scale schedulability study. These protocols were compared to existing protocols across a variety of

task sets. The C-RNLP and the CGLP were compared to the RNLP and to simple group lock, for which

a single MCS lock (Mellor-Crummey and Scott, 1991a) is used to protect all resources. For the C-RNLP,

both the uniform variant (the U-C-RNLP) and the general variant specified by the rules of the protocol (the

G-C-RNLP) are considered.

4.10.1 Experimental Setup

The following schedulability experiments were conducted with SchedCAT (SchedCAT, 2019), an open-

source real-time schedulability test toolkit. SchedCAT was used to randomly generate task systems, compute

blocking bounds, and determine schedulability on a 16-core platform under G-EDF scheduling as described

in Chapter 2. The execution time of each task was inflated based on the locking protocol overhead and

blocking its requests may incur, as described in prior work (Brandenburg, 2011). The range of task systems

considered in this evaluation is given in Table 4.3.

The blocking bounds and overhead of each protocol are summarized in Table 4.5. Stated overhead values

are the 99th percentile of measurements taken on a dual-socket, 8-cores-per-socket machine with 32 GB

of DRAM, running Ubuntu 16.04. To maximize observed overhead, each task submitted a new request

immediately after completing the prior one. Each request was for four of 64 total resources, and there were

up to sixteen requests active at once.

As discussed above, the offline portion of the CGLP can be implemented with several different approaches;

the results for three of them are shown here. A timeout value was set for the ILP solver (see Section 4.9) for

each approach. If this limit is ever exceeded, groups are instead assigned with a greedy coloring approach.

When calculating the blocking bounds for the CGLP in the schedulability study, the expression presented

in Theorem 4.3 was used, along with additional refinements to bound the acquisition delayRi can experience.

127

Protocol
Worst-Case

Acquisition Delay
Total

Overhead (µs)
CGLP ∑c LGc

max 3.1
U-C-RNLP (Ni +1) ·Lmax 13.0
G-C-RNLP Ni ·Lmax +Ni ·Li 15.1

RNLP (m−1) ·Lmax 13.5
MCS (m−1) ·Lmax 0.7

Table 4.5: Blocking bounds and overhead of each protocol. For the C-RNLP bounds, Ni is the number of
requests which conflict withRi. (The reported overhead of the CGLP is the maximum of that measured with
between two and ten concurrency groups.)

For example, because the focus here is on a spin-based system with m processors, at most m−1 other

requests may be active at the time ofRi’s issuance. Thus, if there are more than m−1 concurrency groups,

only the m−1 largest LGc
max values are counted toward the blockingRi may experience. Additionally,Ri may

have the highest critical-section length of its group. In this case, when calculating the maximum blocking it

may experience due to an active phase of its group, the second-highest critical-section length of a request in

its group is used.

Similar refinements can be applied to the C-RNLP variants. Again, at most m−1 other requests may be

active for each variant. Tighter analysis is also applied to determine the longest critical sections that may

blockRi; this is different between the two variants, but for both it is possible to limit the number of times to

include the largest L j terms toward the blocking ofRi. These methods rely on how many times a requestR j

could be issued whileRi is active (based on the period of each task) and the structure of the given protocol,

especially with regard to a requests that share a set of resources withRi.

The schedulability study considered the 1,152 scenarios listed in Table 4.3. For each scenario, 1,000 task

systems were generated for every value of system utilization; the percentage of these that are schedulable is

plotted as the HRT Schedulability. Each plot includes a curve for when no synchronization delay is accounted

for (NOLOCK) and when synchronization delay results from each of the protocols compared.6

To compare the schedulability results under different protocols, the schedulable utilization area (SUA)

is computed for each by approximating the area under the curve with a midpoint Riemann sum. When

comparing protocols, 0.05 was used as a threshold for determining if two protocols performed about as well

6The full set of plots and the source code are available at https://www.cs.unc.edu/~jarretc/dissertation/.

128

https://www.cs.unc.edu/~jarretc/dissertation/

as each other; if their SUAs in a given scenario differed by less than 0.05, they are reported to have performed

roughly the same under that scenario.

The following sections present general observations from the schedulability study along with graphs that

showcase key trends.

4.10.2 Evaluation of the C-RNLP Variants

This evaluation begins by considering the 288 scenarios in which the probability of a nested request

being mixed is zero; the C-RNLP and the existing protocols do not handle mixed requests. The results from

these scenarios result in the following observations, which are illustrated in Figure 4.22 with four scenarios.

Each point on a protocol curve depicts the fraction of task sets at that system utilization that were deemed

schedulable when the analysis for the given protocol was applied.

Observation 4.8. The C-RNLP variants outperformed the group MCS lock.

The U-C-RNLP resulted in better SUA than MCS in 90.3% of scenarios, and the G-C-RNLP resulted

in better SUA than MCS in 91.0% of scenarios. Figure 4.22 illustrates a few of the scenarios in which the

C-RNLP variants outperformed the group lock.

Observation 4.9. The C-RNLP variants outperformed the RNLP.

The U-C-RNLP resulted in better SUA than MCS in 91.0% of scenarios, and the G-C-RNLP resulted in

better SUA than MCS in 91.7% of scenarios. Again, this is illustrated by the scenarios in Figure 4.22.

Observation 4.10. The G-C-RNLP tended to perform as well or better than the U-C-RNLP.

The G-C-RNLP resulted in a higher SUA than the U-C-RNLP in 49.3% of scenarios, and the U-C-RNLP

resulted in a higher SUA than the G-C-RNLP in only 17.0% of scenarios. The scenarios in which the

U-C-RNLP resulted in a higher SUA tended to be those that required more resource access (higher request

probability, nested probability, and number of resources requested), and many of these were scenarios with

moderate critical-section lengths. One such scenario is shown in Figure 4.22 (a). In fact, the G-C-RNLP

resulted in a higher SUA than the U-C-RNLP in only 15.3% of the scenarios with moderate critical-section

lengths.

129

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
BasicILP
DurationILP
RW-DurationILP

(a) Medium utilization, moderate critical-section length

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
BasicILP
DurationILP
RW-DurationILP

(b) Heavy utilization, moderate critical-section length

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
BasicILP
DurationILP
RW-DurationILP

(c) Medium utilization, weighted bimodal critical-section
length

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
BasicILP
DurationILP
RW-DurationILP

(d) Heavy utilization, weighted bimodal critical-section length

Figure 4.22: Scenarios in which periods were short, nested probability was 0.2, nesting depth was 4, mixed
probability was 0, and 100% of tasks issued requests.

4.10.3 Comparison of the CGLP to Existing Protocols

The CGLP was also compared to the C-RNLP variants and existing protocols for the 288 scenarios

without mixed requests. These comparisons resulted in the following observations.

Observation 4.11. The CGLP approaches performed as well as or better than the RNLP or the MCS in all

scenarios.

This is illustrated in Figure 4.22 (a-d). The CGLP resulted in a higher SUA than both the RNLP and the

MCS in 91.3% of scenarios.

Observation 4.12. The CGLP approaches performed as well as or better than the C-RNLP variants in many

scenarios.

This is illustrated in Figure 4.22 (a-c). The CGLP resulted in the highest SUA (tied or alone) in 66.3%

of scenarios. For task systems with moderate critical-section lengths, the CGLP approaches always had the

highest SUA (tied or alone). For medium per-task utilization, the CGLP approaches performed as well or

130

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
BasicILP
DurationILP
RW-DurationILP

(a) Medium per-task utilization, long periods, long critical-
section lengths

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
BasicILP
DurationILP
RW-DurationILP

(b) Heavy per-task utilization, short periods, moderate critical-
section lengths

Figure 4.23: For this scenario, nested probability was 0.5, nesting depth was 4, mixed probability was 0.8,
and 100% of tasks issued requests.

better than other approaches in 70.1% of scenarios, and in 54.9% of scenarios, the CGLP outperformed both

C-RNLP variants.

Observation 4.13. When a CGLP approach was not the best, the G-C-RNLP was the protocol that resulted

in the highest SUA.

In 33.7% of scenarios, the G-C-RNLP outperformed all other protocols. In 97.9% of these scenarios,

periods were short. One such scenario is illustrated in Figure 4.22 (d).

4.10.4 Comparison of CGLP Variants

In this section, the different offline CGLP components are compared. This evaluations considers all

values of mixed probability used in the schedulability study. Note that the analysis of existing protocols

and that of the C-RNLP variants does not handle mixed requests and instead must treat such requests as

write requests. The following observations are based on this study, and the results of two scenarios are

highlighted in Figure 4.23. Both of these scenarios had a nested probability of 0.5, a nesting depth of 4, a

mixed probability of 0.8, and 100% of the tasks issued requests.

Observation 4.14. DurationILP was never worse than BasicILP; frequently it was better.

DurationILP was better in 52.5% of scenarios. In each scenario in Figures 4.22 and 4.23, DurationILP is

better than BasicILP, as determined by comparing SUAs.

Observation 4.15. While RW-DurationILP frequently had a slightly higher SUA than DurationILP, it rarely

was significantly better.

131

The SUA of RW-DurationILP exceeds that of DurationILP by the 0.05 threshold in only eight scenarios,

all with medium per-task utilization, nested probability of 0.5, and mixed probability of 0.8. One such

scenario is shown in Figure 4.23 (a). A scenario in which the SUA of RW-DurationILP exceeds that of

DurationILP by less than 0.05 is shown in Figure 4.23 (b).

4.11 Chapter Summary

This chapter presented two variants of the C-RNLP, the first multiprocessor real-time locking protocol

to be contention sensitive in the presence of nested requests. The C-RNLP incorporates knowledge of

critical-section lengths to order requests in a way that breaks long transitive-blocking chains. This technique

increases lock and unlock overheads. However, in the context of the schedulability study presented herein,

this tradeoff of higher overheads still tended to result in better performance for the C-RNLP variants than

existing protocols.

Additionally, this chapter presented the CGLP, a real-time locking protocol that grants nested resource

access and solves both the Transitive Blocking Chain Problem and the Request Timing Problem. The offline

component of the CGLP determines concurrency groups and simplifies the arbitration of requests at runtime,

reducing overhead. Several versions of the offline component were presented, each of which examines

optimizations to the request ordering and yields analytical blocking advantages. These options were evaluated

with a schedulability study that found that the CGLP outperformed other protocols in most scenarios.

Acknowledgements. The work presented in this chapter originally appeared in several papers. The

C-RNLP was developed in a paper by Bryan Ward and myself. Bryan guided the development and implemen-

tation of the protocol and helped plan the experiments. The CGLP was presented in papers written by Tanya

Amert, Manish Goyal, and myself. Tanya was involved in the development of the CGLP, implemented the

G-C-RNLP, ran the overhead experiments, and assisted with the schedulability study. Manish implemented

the linear programming framework for the offline component of the CGLP.

132

CHAPTER 5: LOCK SERVERS1

The two C-RNLP variants provide contention-sensitive blocking by effectively “breaking” transitive

blocking chains. Unfortunately, the complex protocol logic required to enable such blocking can result in

high overhead.

To mitigate this issue, this chapter considers the usage of lock servers to reduce overhead. A lock server

is a special process that sequentially performs all lock and unlock functions of a given protocol. The main

advantage of using lock servers is that they can run cache hot (which is explained in the context of an example

platform in Section 5.1). The main disadvantage is the need to dedicate whole cores, or fractions of cores, to

performing synchronization functions. However, on machines with high core counts, this may be a reasonable

thing to do, as has been observed by others in other contexts (Hsiu et al., 2011; Lozi et al., 2012).

A number of server-based locking protocols employ notions similar to a lock server but for the purpose

of easing the calculation of pi-blocking bounds. The first such protocol was the DPCP (Rajkumar, 1990,

1991; Rajkumar et al., 1988), which statically binds resources to cores and requires tasks to perform lock and

unlock calls for a resource on the core assigned to that resource. Subsequently, a number of server-based

protocols were proposed that follow a similar approach (Burns and Wellings, 2013; Faggioli et al., 2010,

2012; Hsiu et al., 2011; Huang et al., 2016; Lakshmanan et al., 2009; Zhao et al., 2017). In contrast to these

server-based protocols, the goal of lock servers is to preserve the blocking bounds of a given protocol while

reducing its overhead.

Lock servers were partially inspired by work on a concept called remote core locking (RCL), which was

directed at improving the performance of legacy non-real-time code when moving it from a uniprocessor

system to a multiprocessor one (Lozi et al., 2012). In particular, RCL seeks to avoid cache-line bouncing

when a resource is accessed on different cores by requiring all resource accesses to occur on a designated

1Contents of this chapter previously appeared in preliminary form in the following paper:

Nemitz, C., Amert, T., and Anderson, J. (2018). Using lock servers to scale real-time locking protocols: Chasing ever-
increasing core counts. In Proceedings of the 30th Euromicro Conference on Real-Time Systems.

133

core. The emphasis in work on RCL is to enable critical sections to run cache hot. In contrast, the goal with

lock servers is for lock and unlock routines to run cache hot.

This chapter presents four lock-server paradigms that are defined by specifying servers as either static

or floating and either global or local. A static lock server is bound to a single core (Section 5.1), while a

floating one may migrate (Section 5.2). Lock servers are also specified by their locality: a global lock server

handles requests from all cores, while a local one handles requests from only its socket. These paradigms

are initially presented as they are applied to the U-C-RNLP, with a subsequent discussion of the changes

required for application to the G-C-RNLP (Section 5.3). Next, an experimental evaluation of each of the

proposed approaches is given (Section 5.4). Finally, additional details on the coordination between local lock

servers is given (Section 5.5).

5.1 Static Lock Servers

This sections considers the use of static lock servers to implement the U-C-RNLP. The distinctions of

the lock server paradigms are given in the context of a 36-core test platform.

Platform description. In order to describe the lock-server paradigms considered in this chapter more

concretely, their application on a particular test platform, a dual-socket, 18-cores-per-socket Intel Xeon

E5-2699, is the focus. This platform provides significant per-socket parallelism while allowing issues on

a multi-socket machine to be explored. As depicted in Figure 5.1, each core has a 32KB L1 data cache

and a 32KB L1 instruction cache. Pairs of cores share a unified 256KB L2 cache, and all cores on a socket

share a unified 45MB L3 cache. Lock state is considered to be cache hot if it maintains cache affinity in the

lowest-level cache shared among all cores on which the server may execute. Keeping the lock state cache hot

can reduce access time and cache coherence traffic, such as inter-processor interrupts.

The problem. Before delving into some of the nuances of using lock servers, let us examine the

problem that they are intended to solve. Figure 5.2 plots lock overhead as a function of core count (and thus

number of requests) for three possibilities: the U-C-RNLP as originally presented; the same protocol but

implemented using a single global lock server (denoted U-C-RNLP + SGLS); and an implementation in

which all resources are coalesced under one lock using Mellor-Crummey and Scott’s queue lock (denoted

MCS) (Mellor-Crummey and Scott, 1991a). The MCS is taken as the gold standard for low overhead. Notice

134

Socket 1 Socket 2

Core 0 Core 1

L2 (shared between two cores)

L3 (shared on socket)

L1 Data L1 Instr. L1 Data L1 Instr.

Figure 5.1: Test platform architecture.

the wide gap between the lock overhead for the U-C-RNLP compared to that for MCS. The objective in this

chapter is to narrow this gap, hopefully considerably. Many such graphs are carefully examined in Section 5.4,

and additional descriptions are given there.

Lock servers. Recall that the focus of this section is static lock servers that are pinned to dedicated

cores. Two variations of this idea are considered: using a global lock server that services requests from all

cores, and using (on the test platform) two local lock servers, each servicing requests coming from one socket.

Figure 5.3 depicts these two possibilities in comparison to a conventional locking protocol implementation

that does not use lock servers. The potential value of lock servers can be seen by comparing the curve for

U-C-RNLP + SGLS to the U-C-RNLP curve in Figure 5.2. (Again, graphs like this are considered in detail

later.)

5.1.1 A Static Global Lock Server

The simplest way to employ a lock server is to dedicate a single core to servicing all lock requests. The

server uses a special version of a given protocol’s LOCK call, denoted LS-LOCK, that updates the lock state to

add a given request and then, instead of waiting by spinning to be satisfied, returns the location of a variable

135

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

8

Lo
ck

 O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
MCS

Figure 5.2: Lock overhead under the U-C-RNLP with and without a lock server.

No Lock Servers Static Global Lock Server Static Local Lock Servers
Core 8

enqueue

critical section

dequeue

request
Core 8

submit

critical section

submit

request
Core 8

submit

critical section

submit

request

Core 32

submit

critical section

submit

request
Core 32

submit

critical section

submit

request
Core 32

enqueue

critical section

dequeue

request

Core 0

enqueue

dequeue

Lock Server

Core 0Core 0

enqueue

dequeue

Lock Server

Core 18

enqueue

dequeue

Lock Server

Figure 5.3: Three options: no lock servers (left), a single static global lock server (middle), and two per-socket
static local lock servers (right).

on which to spin. Similarly, a special version of UNLOCK, denoted LS-UNLOCK, is used. Note that these

routines require no underlying mutex, as no task other than the lock server will ever access the lock state.

The behavior of the lock server is as specified in Listing 8. It is continually active (Line 3), looping

through each core (Line 10). By limiting focus to non-preemptive, spin-based protocols, it is guaranteed

that each core will have at most one active request at a given time. For a specific core k, the server checks if

there is an active request that needs lock service (Line 4). If so, it uses LS-LOCK to add the request to the

lock state and determine the spin location for it (Line 5). In the case of the U-C-RNLP, this is the entry in

Enabled that corresponds to the row in Table to which the request was added. The server then indicates that

this core no longer requires service (Line 6). If instead, a request on core k requires unlock service (Line 7),

136

Listing 8 Static Global Lock Server
1: procedure SGLS(core: array of ptr to core data)
2: var k: unsigned int
3: while (TRUE):
4: if core[k]�service = LOCK SERVICE:
5: ˆcore[k]�spin location := LS-LOCK(core[k]�requested) . Non-blocking LS-LOCK returns spin location
6: core[k]�service := NULL

7: else if core[k]�service = UNLOCK SERVICE:
8: LS-UNLOCK(core[k]�requested)
9: core[k]�service := NULL

10: k := k+1modNR CPUS

11: end procedure

Listing 9 New “Lock” and “Unlock” Submit Routines
1: procedure SUBMIT-LOCK(c: ptr to core data, D: set of resources)
2: c�requested := D
3: c�service := LOCK SERVICE

4: await c�service = NULL

5: await c�spin location = TRUE

6: end procedure
6: procedure SUBMIT-UNLOCK(c: ptr to core data, D: set of resources)
7: c�requested := D
8: c�service := UNLOCK SERVICE

9: await c�service = NULL

10: end procedure

the server removes it from the lock state by calling LS-UNLOCK (Line 8). It then updates the service variable

indicating that core k no longer requires service (Line 9).

The next example illustrates the behavior of a requesting task.

Example 5.1. Figure 5.4 shows the result of processing a request R5 for D5 = {`a, `b} that is issued after

requests R1, R2, R3, and R4. With a single global lock server, R5 executes SUBMIT-LOCK as shown in

Listing 9. It first sets Requested (Line 2) for its core and then indicates that it is awaiting lock service by the

server (Line 3). After it has been serviced (Line 4), it spins on the location the server determined based on

the other active requests (Line 5). As implied by Figure 5.4,R5 spins on Enabled[3]. ♦

Using a global lock server in this manner has no impact on blocking; it simply changes the enqueuing

and dequeuing portions of request processing in order to reduce overhead.

5.1.2 Static Local Lock Servers

In contrast to a global lock server, a local one is allowed to handle resource requests from only one

socket. The test platform has two sockets, so two lock servers are required to handle all requests; they are

denoted as LS1 and LS2. In this section, the focus is on static lock servers, which means that each lock

137

R5 R5

R3 R3

R2 R2 R4

R1 R1 R1

0

0

0

0

1

Table Ena
bled

Pending_requests: 5

la lb lc ld le

1

1

2

1

0

Blo
cke
d

Head
0

1

2

3

4

Figure 5.4: R5 is added to Row 3 of Table.

R5 R5

R3 R3

R2 R2 R4

R1 R1 R1

0

0

0

0

1

Table Ena
bled

Pending_requests: 5

la lb lc ld le

1

1

2

1

0

Blo
cke
d

Head
0

1

2

3

4

R6 R6

0

0

0

0

0

Table Ena
bled

Pending_requests: 1

la lb lc ld le

0

0

0

1

0

Blo
cke
d

Head
0

1

2

3

4

Socket 1 Socket 2

Figure 5.5: R6 is added to Table of Socket 2.

server is pinned to a specific core on its socket. The advantage of having two lock servers is that each must

handle requests from only half the cores, and thus should execute with lower overhead. The disadvantage is

that some arbitration mechanism is needed to mediate conflicting requests managed by the two servers. The

nature of the needed mediation is illustrated with an example.

Example 5.1 (continued). Suppose that the requests in Figure 5.4 were actually issued on Socket 1. Suppose

now a request R6 for D6 = {`a, `b} is issued on Socket 2. This results in the two lock states shown in

Figure 5.5. ThoughR6 is the only request in LS2’s lock state, it should not be satisfied, as it conflicts with

requestR1 for resource `b. Thus, it must wait. ♦

Mediating requests from the two lock servers can be accomplished by allowing them to alternate execution

in phases. Section 5.5 presents a phase-management protocol to coordinate these phases. In the U-C-RNLP, a

138

Listing 10 Static Local Lock Server
1: procedure SLLS(core: array of ptr to core data, s: socket identifier)
2: Service lock and unlock requests like in Alg. 1, but with the following changes:
3: Only requests from the local socket s are handled
4: Coordinate Phase with other lock server
5: Set spin location := TRUE for requests that are eligible to be satisfied while Phase = s
6: end procedure

natural way to define which requests belong to a certain phase is to let each row of Table indicate a phase. As

shown in Section 5.5, when defining and managing phases in this way, the blocking experienced by request

Ri is at most (ci,s+1)(Lmax,1+Lmax,2) time units, where ci,s is the contentionRi experiences on Socket s and

Lmax,s is the maximum critical-section length on Socket s. In Listing 10, this boundary and change between

phases is coordinated in Line 4 and the current phase is stored in the variable Phase. The coordination must

ensure bounded time before a change of Phase when requests are waiting on the other socket. Thus, in Line 5,

a request must be able to be satisfied (e.g., it is in the active row of Table in the U-C-RNLP) and the phase

must be set to the local socket before the request can be marked as satisfied by updating its spin location.

5.2 Floating Lock Servers

The prior section implicitly assumed that static lock server(s) are to be supported by devoting full core(s)

to them. While this may be reasonable on a large platform, it would be possible to instead allow other work

to execute on the core(s) assigned to static lock servers(s) as long as that work executes at a lower priority.

The impact lock servers have on such work could be assessed similarly to how interrupt accounting is done.

This section explores a simpler alternative: floating lock servers. When using static lock servers, every

request executes a spin loop for each server interaction in order to wait for a response. When using floating

lock servers, the processor time wasted during these spin loops is reclaimed to execute lock-server code. This

approach is tantamount to employing a helping mechanism (Herlihy, 1991), but unlike the traditional sense of

helping, where one request may help another to complete a critical section, a request here performs only lock

logic on behalf of another request. The floating lock-server paradigm is described more fully below by first

considering global servers and then local ones.

139

Listing 11 Floating Global/Local Lock Server

1: global var Server exists: boolean initially FALSE

2: procedure FLOATING-LOCK(c: ptr to core data, D: set of resources)
3: var i am server: boolean initially FALSE

4: c�requested := D
5: c�service := LOCK SERVICE

6: i am server := WAIT-UNTIL(ˆ(c�service), NULL)
7: if (i am server = FALSE):
8: i am server := WAIT-UNTIL(ˆ(c�spin location), TRUE)
9: if (i am server = TRUE):

10: while (c�service 6= NULL) or (c�spin location 6= TRUE): . Until satisfied, be server
11: Perform lock server functionality
12: Server exists := FALSE

13: end procedure

14: procedure FLOATING-UNLOCK(c: ptr to core data, D: set of resources)
15: var i am server: boolean initially FALSE

16: c�requested := D
17: c�service := UNLOCK SERVICE

18: i am server := WAIT-UNTIL(ˆ(c�service), NULL)
19: if (i am server = TRUE):
20: if c�service 6= NULL: . This request has not been serviced
21: Perform unlock for this request
22: Server exists := FALSE

23: end procedure

24: procedure WAIT-UNTIL(location: ptr, value)
25: var t: unsigned int
26: t := TestAndSet(&Server exists)
27: while (t = TRUE) and (*location 6= value):
28: if (Server exists = FALSE):
29: t := TestAndSet(&Server exists) . TestAndSet return value of FALSE means . . .
30: return (t = FALSE) Server exists was FALSE so I am now server
31: end procedure

5.2.1 A Floating Global Lock Server

This section more carefully describes the notion of a floating global lock server. Unlike static lock

servers, in floating ones, request code and lock-server code are inextricably linked. Thus, how a floating

global lock server works is specified via one code listing in Listing 11.

In Listing 11, a request in its lock call performs the same logic as it would using a static server (marking

itself as requiring service, waiting for a location on which to spin, and then spinning), with intermediate

checks to ensure that some request is acting as the lock server. The existence of a lock server is maintained

in the global variable Server exists. The helper method WAIT-UNTIL waits until a designated location

holds a desired value, with the waiting terminated if the caller becomes the server (as determined in a

test-and-test-and-set manner). The return value of this method indicates whether the caller is now the server.

140

Examining the FLOATING-LOCK routine in a bit more detail, a request first marks that it is ready to

be serviced (Line 5). Then, it waits to be serviced (Line 6). If it is not the lock server, then it spins on

spin location (Line 8). If it becomes the lock server, then it performs the lock server functionality until it is

satisfied (Lines 10-11). Notice that whenever a request functions as the lock server here, it would have been

spinning in the global static lock server paradigm waiting for a server response.

The FLOATING-UNLOCK routine is similar, except that a request that becomes the lock server only

services itself (Line 21). This is because an unlock does not involve blocking, so servicing other requests

would not replace useless spinning, but would just slow the unlock.

5.2.2 Floating Local Lock Servers

While a floating global lock server has the benefit over static lock server(s) of not requiring dedicated

core(s), it also would be expected to suffer higher overhead due to eroded cache affinity when lock state

moves between sockets. Fortunately, there is a quick fix to keep lock state in cache: implement a floating

local lock server. In this paradigm, a request can only perform the functions of the lock server for the socket

from which it was issued. By restricting to a single socket, L3 cache affinity can be maintained. A floating

local lock server uses the structure found in Listing 11, but with the server logic in Lines 11 and 21 being that

of a local lock server (with phase arbitration).

5.3 Handling Non-Uniform Requests

Recall from Section 5.1 that the C-RNLP is defined in an abstract rule-based way and that the U-C-

RNLP is just one implementation of it. The U-C-RNLP can be used to handle non-uniform requests by

pessimistically viewing all critical sections as Lmax. However, this changes the worst-case blocking bound of

the general version from min(mLmax,ci(Lmax +Li)) to min(m,(ci +1))Lmax (Jarrett et al., 2015). This section

discusses an alternate non-uniform implementation, denoted as the G-C-RNLP, that maintains the original

bound.

The G-C-RNLP uses |Di| nodes to represent a requestRi, one corresponding to each resource in Di. A

separate queue is maintained for each resource in the system. WhenRi is processed, a satisfaction time is

recorded for it by considering the satisfaction times for other requests and the critical-section length of each.

Then, the queue for each resource in Di is updated by inserting a node forRi at a position that ensures that

141

la lb lc

R10

R13

R2
la lb

R4

R5

R7

R15

la lb lc

R3

R10

R13

R2

R8

(a) (b)

Socket 1 Socket 1

R9

la lb

R4

R5

R7

R8

R9

Phase 3

Phase 1

Phase 5

Phase 3

Phase 1

Phase 5

Phase 7Phase 7

Phase 9

R14

R1 R11

R12

R3

R15

R14

R1

R11

R12

Lmax
R6 R6

Figure 5.6: Scenarios with complicated phase management.

Ri will be at the head of its respective queues by its recorded satisfaction time. This protocol gives rise to

prohibitively high overhead if the tasks themselves execute the queuing logic concurrently. In particular,

when enqueuing a requestRi, |Di| queues must be checked for the satisfaction times of existing requests, and

|Di| nodes must be inserted (sometimes in the middle of queues). However, if this protocol is implemented

using lock servers,2 then the overhead becomes quite reasonable, as shown in Section 5.4.

Using global lock servers (Sections 5.1.1 and 5.2.1) to implement the G-C-RNLP is straightforward: it

merely requires using the G-C-RNLP instead of the U-C-RNLP in the LS-LOCK and LS-UNLOCK routines.

On the other hand, using local lock servers (Sections 5.1.2 and 5.2.2) is more problematic due to the phase

management such servers require. This problem is illustrated in the following two examples. For the time

being, assume that a basic phase-management protocol called Greedy Satisfaction is used that allows only

requests that can be satisfied at the start of a phase to be satisfied during that phase.

Example 5.2. Consider the requests shown in Figure 5.6 (a), all issued on Socket 1. R2,R11, andR12 are

“short” requests for resource `b and most of the other requests (for various resources) are longer. Under

Greedy Satisfaction, requests would be satisfied in phases as shown in the right half of Figure 5.6 (a), with

dashed lines indicating phase boundaries. Observe that, under this policy, onlyR1,R2, andR3 are satisfied

in the first phase. R11 and R12 are satisfied later. Notice that all of the phases have odd indicies. This is

because Socket 2 executes during even-indexed phases. ♦

2Although not reflected in the pseudocode given here, the lock-server implementations have been carefully honed using bit-vector
operations and other techniques to improve efficiency.

142

Example 5.2 shows that Greedy Satisfaction can unnecessarily delay requests: R11 andR12 both could

have completed by the time R3 completed. Instead, they are moved to two later phases. This is called

the Long-Short Problem: when requests vary in length, shorter requests can be delayed, further delaying

other requests. In this example,R13 in particular is delayed substantially by requests with which it does not

conflict.

Example 5.2 highlights the fact that, for some protocols, Greedy Satisfaction is inadequate. A better

solution is a policy called Timed Satisfaction, which allows requests that can finish within Lmax time units to

be satisfied in the same phase.

Example 5.3. In Figure 5.6 (b), Timed Satisfaction is applied to a different set of requests on Socket 1. On

the left, the requests are shown as they are ordered by the G-C-RNLP. On the right, the requests are shifted

to occupy the phases the lock server would enforce. R4 and R5 are satisfied at the start of Phase 1. After

R5 completes,R6 is also satisfied in this phase. However, afterR6 completes,R7 cannot be satisfied, as it

cannot be guaranteed to complete within Lmax time units from the start of the phase. Therefore,R7 must wait

until Socket 2 is allowed another phase, namely, Phase 3. ♦

Example 5.3 illustrates another source of added blocking: R7 is forced to delay until the start of the next

phase to be satisfied. Even if the time window were increased, the problem could arise again: another request

could be issued that cannot complete within the window. This difficulty is called the Overlap Problem. A

phase must end at some point to prevent the starvation of requests on the other socket. Whatever value is

chosen, requests may overlap a phase boundary and need to be delayed. The Overlap Problem can force a

request that could otherwise be satisfied to be delayed until the current phase of its lock server completes

followed by a full phase of the other lock server before being satisfied.

When considering the effect of local lock servers on blocking with the G-C-RNLP, Timed Satisfaction

was assumed as the phase-management policy. (Again, the issues just discussed are unique to local servers.)

As seen in Example 5.3, Timed Satisfaction is susceptible to the Overlap Problem. This is the reason why

the worst-case blocking bounds presented in Section 5.5 for the G-C-RNLP are worse than those for the

U-C-RNLP.

143

5.4 Evaluation

The primary reason for exploring lock servers is to minimize overhead by keeping all lock state cache

hot. For static global and static local servers, cache hot means the lock state should maintain L1 cache affinity

on the platform, whereas a floating local server should tend to execute out of its socket’s L3 cache. On the

other hand, a floating global server will likely not be able to maintain much cache affinity if tasks execute on

more than one socket.

Given these expectations, a number of questions arise. How do the different lock-server paradigms

presented previously differ with respect to overhead, and do these differences match the above expectations?

To what extent do lock servers lower overhead compared to not using lock servers? Are the overhead

improvements enough to make contention-sensitive locking practical? How do lock servers scale with

increasing core counts?

An experimental study was designed to answer these questions. Before covering the results revealed by

this study, the experimental setup is described.

5.4.1 Experimental Setup

Recall from Section 5.1 that the considered test platform is a dual-socket, 18-cores-per-socket platform.

This platform was used to evaluate the lock-server paradigms discussed previously by conducting experiments

involving tasks that repeatedly issue lock and unlock calls for random resources. A wide range of parameters

were varied to evaluate each parameter’s effect on overhead and blocking: the number of tasks, n, number

of resources, nr, nesting depth (which defines the number of resources required for request Ri), D = |Di|,

and critical-section length, Li. A scenario is an assignment of values to three of these parameters while

varying the fourth. The following parameter ranges were considered: n ∈ {2,4, ...,36}, nr ∈ {16,32,64},

D ∈ {1,2,4, ...,10}, and Li ∈ {1µs,20µs,40µs, ...,100µs}. In the experiments, all requests in a scenario

have the same nesting depth. Unless stated otherwise, they also all have the same critical-section length Li.

Overhead and blocking times were recorded at user level, with one task pinned to each core. This setup

ensures that requests execute non-preemptively. For a given scenario, each task to performed 10,000 lock

and unlock calls, with critical sections simulated by spinning for a duration of Li. For task systems running

on at most 18 cores, only the cores on one socket were used. When using more than 18 cores, all cores on

Socket 1 were used with the remainder on Socket 2. The workload is comprised solely of tasks making lock

144

and unlock calls as described above. Thus, this evaluation focuses on cache affinity losses inherent to running

a protocol and ignores potential evictions from other tasks; there exist techniques to keep cache affinity in

some systems (Altmeyer et al., 2014; Campoy et al., 2001; Chisholm et al., 2015; Herter et al., 2011; Kim

et al., 2013; Kirk and Strosnider, 1990; Ward et al., 2013; Xu et al., 2016, 2017; Yun et al., 2014).

In the graphs that follow, the 99th percentile measurements are plotted as worst-case values to filter out

any spurious measurements caused by performing measurements at user level.3 Across over 150 scenarios,

this generated approximately 1,000 graphs. The graphs shown in this section were chosen as examples of

trends seen across the entire collection of graphs.4

5.4.2 Overhead and Blocking without Lock Servers

Before delving into results pertaining to lock-server paradigms, let us examine a range of server-less

implementation options. To gauge the tradeoffs involved in supporting lock nesting, this experimental

evaluation includes two contention-sensitive options, the U-C-RNLP and the G-C-RNLP, both implemented

without lock servers, and the RNLP, which supports nesting but is not contention sensitive. As a baseline,

coalescing all resources under one MCS queue lock (Mellor-Crummey and Scott, 1991a) is also evaluated.

These options were compared on the basis of blocking and overhead.

The subsequent observations follow from the full range of scenarios considered in these experiments.

Each observation is illustrated using the graphs in Figure 5.7.5 In this figure, lock and unlock overhead are

presented separately to demonstrate their relative scale: enqueuing takes slightly longer than dequeuing, but

both operations require manipulating lock state, and thus both contribute to overhead. In later figures, lock

and unlock overheads are combined to yield one overhead graph.

Observation 5.1. Without using lock servers, both C-RNLP variants had dramatically higher overhead than

MCS.

This is expected behavior, as MCS implements just a single spin queue. As shown in insets (b) and (c) of

Figure 5.7, the U-C-RNLP had lock and unlock overhead up to 27.4 and 23.9 times that of MCS, respectively.

For the G-C-RNLP, these values were similarly high: up to 31.1 and 22.9 times, respectively.

3This filtering does not guarantee smoothness of all curves.
4The full set of plots and the source code are available at https://www.cs.unc.edu/~jarretc/dissertation/.
5In every such figure, the applicable scenario is stated in the figure’s caption. Note that not all curves extend to n = 36. This is
because up to two cores are reserved for lock servers and this number is scheme-dependent.

145

https://www.cs.unc.edu/~jarretc/dissertation/

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(a)

MCS RNLP U-C-RNLP G-C-RNLP

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

Lo
ck

 O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

U
n
lo

ck
 O

v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(c)

Figure 5.7: Blocking and lock/unlock overhead when no lock servers are used. For this scenario, nr =
64,D= 4, and Li = 40µs for all i.

Observation 5.2. Compared to MCS, contention-sensitive protocols demonstrated significantly better block-

ing bounds as the number of requests increases.

The low overhead of MCS (Observation 5.1) comes at the expense of unscalable blocking. As shown

in Figure 5.7 (a), worst-case blocking under MCS grew up to 5.3 and 2.9 times faster than that under the

U-C-RNLP and G-C-RNLP, respectively.

Considering the RNLP is instructive because it provides some insights into the extra cost of providing

contention sensitivity in addition to handling lock nesting. As shown in insets (b) and (c) of Figure 5.7, lock

and unlock overhead under the U-C-RNLP (respectively, G-C-RNLP) were up to 1.8 and 2.1 (respectively,

1.5 and 1.4) times that under the RNLP, respectively.

5.4.3 Applying Lock Servers

Sections 5.1 and 5.2 presented four lock-server paradigms, each of which can be applied to any locking

protocol. Experiments were conducted to explore how these paradigms differ when used to implement

the U-C-RNLP and the G-C-RNLP. The subsequent observations follow from the full range of scenarios

considered in these experiments. These observations are illustrated using the graphs in Figures 5.8 and 5.9.

In Figure 5.8 (a), the four possible lock-server variants of the U-C-RNLP are compared against the baselines

of MCS, the RNLP, and the U-C-RNLP without lock servers. Figure 5.8 (b) is similar, but is directed at the

G-C-RNLP instead of the U-C-RNLP. (Lock-server paradigms are abbreviated in figure captions, e.g., static

global lock server is SGLS.)

146

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

(a) U-C-RNLP overhead

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

(b) G-C-RNLP overhead

Figure 5.8: For this scenario, nr = 64,D= 4, and Li = 40µs for all i.

Observation 5.3. Using lock server(s) resulted in significantly lower overhead.

This can be seen both in Figure 5.8 (a) for the U-C-RNLP and in Figure 5.8 (b) for the G-C-RNLP.

Observe that using lock server(s) usually resulted in overhead even lower than that of the RNLP. In fact,

using local lock servers in this scenario reduced the overhead of the U-C-RNLP and the G-C-RNLP by up to

86% and 77%, respectively.

Observation 5.4. When there were requests on only one socket, static lock servers resulted in the largest

overhead reduction.

This trend appeared consistently across the results, and matches our intuition, as a static lock server can

maintain L1 cache affinity. In Figure 5.8, only one socket was used when n < 18 (it is strictly less because

the lock server uses one core).

Observation 5.5. When considering requests on two sockets, as the number of tasks increased, the overhead

of local lock servers scaled better than that of a global lock server.

For example, in Figure 5.8, the overhead of the U-C-RNLP (respectively, G-C-RNLP) with floating local

lock servers was up to 61% (respectively, 43%) lower than with a floating global lock server.

Observation 5.6. Floating global lock servers scaled the poorest of the four lock-server paradigms.

This observation was entirely expected and clearly evident in Figure 5.8. Note that a floating global lock

server still reduced overhead to be comparable to or better than the RNLP.

In Figure 5.9, worst-case blocking under the U-C-RNLP is plotted for each lock-server paradigm for the

same scenario presented in Figure 5.8.

147

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

Figure 5.9: Worst-case blocking for the scenario in Figure 5.8 (a).

0 20 40 60 80 100
Critical-Section Length

0

5

10

15

20

25

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

MCS RNLP U-C-RNLP U-C-RNLP + SGLS U-C-RNLP + SLLS

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

80

90

T
o
ta

l
R

e
q
u
e
st

 T
im

e
 (

m
ic

ro
se

co
n
d
s)

(c)

Figure 5.10: (a) Overhead as a function of critical-section length, for n = 34,nr = 64, and D = 4. (b)
Overhead and (c) blocking as a function of n, for nr = 64,D= 4, and Li = 1µs for all i.

Observation 5.7. Moving from one socket to two can negatively impact blocking of local lock servers.

This observation is evident in Figure 5.9. Two local lock servers are required if n ≥ 18. The extra

blocking is due to phase management and request imbalances between the two sockets. For example, for

n = 18, there were 17 requests on Socket 1 and one request on Socket 2. The request on Socket 2 would

have very low blocking, but requests on Socket 1 could experience twice as much blocking as when only one

socket was in use. Without the mitigation described in Section 5.5, blocking scaled poorly with increasing

socket counts (revisited in Section 5.4.4).

Requests with short critical sections. Inset (a) of Figure 5.10 plots overhead as a function of critical-

section length, while insets (b) and (c) provide data for a scenario with a short critical section of 1µs.

(The G-C-RNLP variants are omitted from this figure for clarity; overhead for them was higher than their

148

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

G-C-RNLP
G-C-RNLP + SGLS
U-C-RNLP
U-C-RNLP + SGLS
RNLP
MCS

(a) Blocking

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

G-C-RNLP
G-C-RNLP + SGLS
U-C-RNLP
U-C-RNLP + SGLS
RNLP
MCS

(b) Overhead

Figure 5.11: For this scenario, nr = 64,D= 4, and Li = 40µs for 75% of requests and Li = 100µs for the
remaining 25% of requests.

U-C-RNLP counterparts but followed similar trends.) Such short critical sections result in overhead being a

higher proportion of total request time (overhead plus blocking). Note that the blocking time of a request

includes the overhead of any request upon which it must wait, so reducing overhead additionally reduces

blocking.

Observation 5.8. Overhead was (mostly) constant for all U-C-RNLP variants with respect to Li.

This is demonstrated in Figure 5.10 (a). Note that, when static lock servers are used, overhead remained

low even for small Li.

Observation 5.9. When critical sections were short, lock servers greatly reduced the impact of overhead on

total request time.

The data in insets (b) and (c) of Figure 5.10 indicates that, under the U-C-RNLP, requests with 1µs

critical sections can experience worst-case overhead that is up to 23.4% of the total request time. When using

a static local lock server, this was reduced to 9.6%.

A case where the G-C-RNLP wins. From the results presented thus far, it is tempting to discount the

G-C-RNLP entirely. In cases where all critical sections were of the same duration, the G-C-RNLP suffered

worse overhead and blocking than the U-C-RNLP. Now let us explore scenarios in which the G-C-RNLP had

very competitive worst-case blocking; this occurred when a large fraction of requests have critical-section

lengths much less than Lmax. Such a scenario is depicted in Figure 5.11.

149

U-C-RNLP U-C-RNLP U-C-RNLP U-C-RNLP G-C-RNLP

+ SGLS + SLLS + FGLS + SGLS

Total Firsts 0 92 0 23 12

Total Seconds 1 26 18 70 4

Total Thirds 68 2 17 20 8

Total 69 120 35 113 24

Figure 5.12: Results of total request time comparison.

Observation 5.10. When most requests had critical sections much shorter than Lmax, the G-C-RNLP and

U-C-RNLP had similar performance when both used a static global lock server.

In Figure 5.11, the G-C-RNLP with a static global lock server has lower blocking and only slightly

higher overhead than the U-C-RNLP with the same lock-server setup.

Overall winner. Judging the lock-server paradigms should be done with a specific workload, but to

make a general summary, the “best” paradigm was determined to the extent possible in this experimental

framework as follows. For each considered scenario,6 a single “total request time” score (blocking plus

overhead) was calculated for each protocol variant by approximating the area under its curve using a midpoint

Riemann sum. The protocol variants are then ranked for that scenario. Figure 5.12 gives the total number of

first-, second-, and third-place finishes for each protocol variant. The U-C-RNLP with a static global lock

server was the overall winner. However, the experimental setup mostly generates scenarios in which critical

sections are uniform, which tends to make the G-C-RNLP variants less competitive. Still, these results show

there is value in using lock servers.

5.4.4 Results on an Alternate Platform

Recall from Section 5.1 that the original test platform is a dual-socket, 18-cores-per-socket platform. In

order to examine how these approaches scale with increasing socket count, the experiments in Figures 5.8

and 5.9 were repeated on an alternate experimental platform.

This alternate test platform is a four-socket, 6-cores-per-socket Intel Xeon L7455. On this machine, each

core has a 32KB L1 data cache and a 32KB L1 instruction cache. Additionally, there is a 3MB L2 cache, and

all cores on a socket share a 12MB L3 cache.

6Scenarios with D ∈ {8,10} were filtered out, as they require nearly coalescing all resources under a single lock, which has
non-contention-sensitive blocking.

150

0 5 10 15 20 25
Number of Tasks

0

10

20

30

40

50

60
Ov

er
he

ad
 (m

icr
os

ec
on

ds
)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

(a) U-C-RNLP overhead

0 5 10 15 20 25
Number of Tasks

0

10

20

30

40

50

60

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

(b) G-C-RNLP overhead

Figure 5.13: Same scenario as in Figure 5.8: nr = 64,D= 4, and Li = 40µs for all i.

0 5 10 15 20 25
Number of Tasks

0

200

400

600

800

1000

Bl
oc

ki
ng

 (m
icr

os
ec

on
ds

)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

Figure 5.14: Worst-case blocking for the scenario in Figure 5.13 (a).

Section 5.4 presented the results of using lock servers on up to two sockets. The experiments depicted in

Figures 5.8 and 5.9 were repeated on the alternate platform; these results are shown in Figures 5.13 and 5.14

for up to four sockets.

These figures validate Observations 5.3–5.6 on up to four sockets. Additionally, Observation 5.7 can be

extended to increasing socket counts, given by the following observation.

Observation 5.11. Blocking of local lock servers scaled poorly with increasing socket counts.

This observation is supported by Figure 5.14. In this case, for n ∈ [6,12), two sockets were required.

Similarly for n ∈ [12,18) and n≥ 18, three and four sockets were used, respectively. In this scenario, the

requests were not balanced between the four sockets, so for n = 6, Socket 1 had five requests and Socket 2

had the last one. As before, the mitigation in Section 5.5 was not used here, so the blocking scaled poorly as

the number of sockets continued to increase, to the point of being worse than that of the RNLP.

151

5.5 Local Lock Server Phase Management and Blocking Bounds

This section provides additional details concerning the phase-management protocol needed for the local

lock servers described in Sections 5.1.2 and 5.2.2. A local lock server must determine which requests will

execute in each of its phases in addition to managing phase changes.

Request selection. Each phase on Socket s is restricted to executing for at most the maximum critical-

section length on that socket, denoted Lmax,s. For the U-C-RNLP, the requests in a phase are determined by

selecting the row in Table pointed to by Head. For the G-C-RNLP, Timed Satisfaction (recall Section 5.2.2)

is used instead.

Phase coordination. Because all requests that can be satisfied simultaneously under C-RNLP rules

can run concurrently relative to each other, they may be processed like read requests. With this in mind, the

synchronization mechanism needed can be obtained by building on the idea of a phase-fair reader/writer

lock (Brandenburg and Anderson, 2010). Recall from Section 2.6.2.3 that in this locking protocol, read and

write phases alternate if both kinds of requests are present, and any number of reads can occur during a read

phase. The synchronization mechanism desired for lock servers similarly needs to support two kinds of

requests that execute in alternating phases, but in this case, any number of requests can execute in a given

phase. That is, a reader/reader lock is needed. This section presents a new phase-fair reader/reader locking

algorithm with corresponding blocking bounds. (Recall from Section 3.1.1 that the phase-fair reader/reader

problem is similar to the group mutual exclusion problem (Joung, 2000; Keane and Moir, 1999, 2001) except

that the phase-fair designation requires O(1) pi-blocking bounds.)

Phase management can be supported by a reader/reader protocol that adheres to the following rules.

Recall from Section 5.1.2 that LSs denotes the local lock server on Socket s and that Lmax,s denotes the

maximum critical-section length on Socket s.

S1 Each lock server is either active or passive and at most one lock server is active at any time. A maximal

interval of time when a lock server is active is called a phase.

S2 A request can be satisfied only if its lock server is active and if it can be satisfied under the variant of

the C-RNLP being used by that server.

152

S3 A passive lock server LS1 (respectively, LS2) with unsatisfied requests becomes active within Lmax,2

(respectively, Lmax,1) time units.

S4 All requests satisfied in a phase finish before the end of that phase.

S5 When the last request of a phase finishes, the completion of that request and the transition to a new

active phase happens atomically.

In the remainder of this section, bounds on worst-case acquisition delay are presented. In stating these

bounds, the contention a requestRi experiences on Socket s is denoted ci,s. A request on Socket s is entitled

if it could be satisfied under the C-RNLP variant used by LSs. In the U-C-RNLP, a request is entitled when

it is in the row pointed to by Head. Exactly one row is satisfied in each phase, as discussed above. For the

G-C-RNLP, a request is entitled if it is the head of the queue for all of its required resources. Here it is

assumed that the G-C-RNLP uses Timed Satisfaction as its phase management policy.

Lemma 5.1. Under the U-C-RNLP, a request Ri handled by server LS1 (respectively, LS2) becomes

satisfied within Lmax,2 (respectively, Lmax,1) time units after becoming entitled.

Proof. Let us begin by showing the bounds for requestRi on Socket 1. Consider the time instance t when

Ri becomes entitled. At t, LS1 is either active or passive (Rule S1). If LS1 is passive, it will become active

within Lmax,2 time units, at which point Ri would be satisfied (Rules S2 and S4). If instead LS1 is active,

then it must have become active at t. (Under the U-C-RNLP, requests are never added to the row pointed

to by Head when other requests are active, as discussed in Chapter 4. Also, the row does not change in the

middle of a phase when there are requests on the other socket (Rule S5).) Thus, t is the start of a phase, and

Ri can complete within Lmax time units because Li ≤ Lmax by definition.

The proof forRi on LS2 follows the same pattern.

Example 5.4. Consider a requestR1 on Socket 2 for D1 = {`a} that is satisfied at time t. R2 on Socket 1 for

D2 = {`a} issued at time t + ε is entitled; it is the only active request on Socket 1 and is in the row pointed to

by Head. It will be satisfied whenR1 completes, which will occur at time t +Lmax,2 at the latest. ♦

Theorem 5.11. A requestRi on Socket s that is serviced by a local lock server running the U-C-RNLP will

be satisfied within (ci,s +1)(Lmax,1 +Lmax,2) time units.

153

Proof. As in the proof of the original U-C-RNLP bound, there can be at most ci,s rows with requests that

conflict withRi ahead ofRi. In the worst case, the first such request may have entered Table at row Head+1

(instead of row Head). Therefore, in the worst case, ci,s + 1 rows of requests must complete before Ri

is satisfied. If Ri is on Socket 1 (respectively, Socket 2), each request in the row pointed to by Head is

entitled and becomes satisfied within Lmax,2 (respectively, Lmax,1) time units (Lemma 5.1) and then completes

within Lmax,1 (respectively, Lmax,2) times units. Thus, from the time the requests are entitled until they have

completed is (Lmax,1 +Lmax,2) time units. Once all requests in that row have completed, Head is moved to

point to the next row, and all those requests are entitled. Because ci,s +1 rows of requests may be entitled and

then satisfied before Ri’s row, Ri will be satisfied within (ci,s +1)(Lmax,1 +Lmax,2) time units in the worst

case.

Reasoning about the G-C-RNLP requires considering the capacity as defined in Chapter 4; the capacity

of a position is essentially the longest critical section length a request could have to be inserted in that position

in the queue without delaying previously issued requests (required by all C-RNLP variants).

Lemma 5.2. Under the G-C-RNLP, a requestRi on Socket s becomes satisfied within Lmax,1 +Lmax,2 time

units after becoming entitled.

Proof. In the worst case, Socket s is active and an entitled request Ri on that socket cannot finish before

the end of the phase (based on the phase and dictated by Rule S3). Instead, it must wait for this phase to

complete (at most Lmax,s) and for a phase from the other socket to complete (Rules S3 and S4). It total, this is

at most Lmax,1 +Lmax,2 time units.

A group of requests with ordered indices R1 to Rp are considered to be consecutive if they would be

satisfied immediately after one another by following the rules of the chosen C-RNLP variant (that is, for

i ∈ [1, p],Ri is entitled at the time instance whenRi−1 completes).

Lemma 5.3. A group of requests on Socket s with critical section lengths summing to L ≤ Lmax,s and being

satisfied consecutively will complete within Lmax,1 +Lmax,2 +L time units.

Proof. Consider a group of p consecutive requests, indexed in the order in which they are enqueued. Thus,

R1 is the first request to be satisfied. Consider an arbitrary request in the groupRi that is not the first request.

154

Suppose thatR1 was satisfied at time t ′ in the phase that started at time t. The phase in whichRi was

satisfied started at time t ′′. If all requests ran in the phase starting at time t, they would clearly complete

within Lmax,1 +Lmax,2 +L time units by Lemma 5.2.

Suppose instead Ri is the first request that cannot execute in the same phase as R1. There are two

potential causes for this. (1)Ri is not entitled because another request is blockingRi, and this request delays

it beyond when it ought to be satisfied. This situation cannot occur; the requests considered are consecutive,

and neither C-RNLP variant would allow a request to be inserted that delayedRi. (2)Ri is entitled but would

not complete before the end of the phase thatR1 was in that started at time t. Given that there are a series of

requests to be satisfied, the phase that started at t will be active until time t +Lmax. The length of time of that

requests R1 through Ri will execute is λi = ∑
i
y=1 Ly. Thus, if Ri cannot execute in the same phase as R1,

t +Lmax,s < t ′+λi. Therefore, we can conclude that R1 did not wait for any time after becoming entitled

before becoming satisfied (λi−Lmax,s < 0⇒ t < t ′, soRi was satisfied sometime in the middle of the phase

and did not have to wait after becoming entitled to become satisfied). Thus, whenRi could be satisfied under

the C-RNLP variant, but is delayed because of the restrictions on phases,Ri is entitled and will be satisfied

within Lmax,1 +Lmax,2 time units (Lemma 5.2).

Given thatRi was delayed into a later phase, such a delay (time between becoming entitled and satisfied)

cannot occur for any R j such that j > i. No request can delay it enough to force it into a later phase (as

argued in (1)), and it will certainly be able to complete in the same phase asRi, which started at t ′′; the phase

ends at t ′′+Lmax,s, and t ′′+∑
p
y= j Ly < t ′′+L< t ′′+Lmax,s, so this request will complete in this phase.

Since Ri was the first request to experience delay and no later request experiences delay, a group of

consecutive requests on Socket s with critical section lengths summing to L ≤ Lmax,s will complete within

Lmax,1 +Lmax,2 +L time units.

Theorem 5.12. A request Ri on Socket 1 (respectively, Socket 2) that is serviced by a local lock server

running the G-C-RNLP will be satisfied within ci,1(3Lmax,1 + 2Lmax,2 + Li) (respectively, ci,1(2Lmax,1 +

3Lmax,2 +Li)) time units.
Proof. The bound on the G-C-RNLP was established in Chapter 4 by considering that a request Ri may

block behind at most ci conflicting requests with at most ci positions that would allow satisfaction between

those conflicting requests into whichRi could not be inserted without increasing the blocking. Thus, these

positions have a capacity less than Li. (This yielded the original bound of ci(Lmax +Li.) Let us now reason

about those same two components: the conflicting requests and the positions that are too small.

155

Consider Ri on Socket 1 (respectively, Socket 2). The conflicting requests each execute for up to

Lmax,1 (respectively, Lmax,2) time units after becoming satisfied. Additionally, each may block for up to

Lmax,1 +Lmax,2 time units while entitled before becoming satisfied. In total, these requests can causeRi to

block for ci,1(2Lmax,1 +Lmax,2) (respectively, ci,1(Lmax,1 +2Lmax,2)) time units.

Next, consider the positions with capacities too small. These positions are created by groups of requests

that do not conflict withRi but prevent the requests that conflict withRi from being satisfied earlier. In the

worst case, there is a group of consecutive requests with lengths summing to at most Li for each such position.

Each of these groups contribute up to ci,1(Lmax,1 +Lmax,2 +Li) time units of blocking.

Thus, in total, the blocking ofRi is upper bounded by ci,1(3Lmax,1+2Lmax,2+Li) whenRi is on Socket 1.

Similarly, ifRi were on Socket 2, its worst-case blocking would be upper bounded by ci,1(2Lmax,1+3Lmax,2+

Li)

The bounds given in Theorem 5.11 and Theorem 5.12 have implications regarding how to partition a

workload under schedulers that assign tasks to execute on specific cores or clusters of cores. This point is

illustrated in the context of the U-C-RNLP with the following example.

To begin, suppose that the requests for each resource can be evenly split between sockets such that

Lmax,1 = Lmax,2 = Lmax. Then, ci,1 = ci,2 =
1
2 ci, and the blocking bound in Theorem 5.11 reduces to (1

2 ci +

1)(2Lmax) = (ci +2)Lmax, which is only one critical-section length longer than that for the original protocol.

While splitting contention evenly like this may be desirable, a system designer could instead choose to

assign tasks so as to decrease ci,1 at the expense of ci,2, which may be a more effective strategy if critical

sections of different lengths exist. To see this, suppose that a fraction α of all requests have critical sections

of at most β · Lmax time units, where 0 < β ≤ 1. If tasks can be assigned so that these shorter requests

are all issued from Socket 1 and all others from Socket 2, then the bound from Theorem 5.11 becomes

(αci + 1)(βLmax +Lmax) = (αci + 1)(β + 1)Lmax when applied to Socket 1, and ((1−α)ci + 1)(βLmax +

Lmax) = ((1−α)ci +1)(β +1)Lmax for Socket 2. Depending on the system, such a task assignment could

lower the bounds applicable to all requests, as seen in the following example.

Example 5.5. Suppose ci = 10, Lmax = 100µs, α = 1
5 , and β = 1

10 . With the partitioning of requests

described above, the bound on Socket 1 is (1
5 ·10+1)(1

10 ·100+100)µs = 330µs, and the bound on Socket 2

is 990µs, both of which are lower than the bound of (ci +1)Lmax = (10+1)100 = 1100µs for a server-less

system (recall the U-C-RNLP discussion in Section 5.1). ♦

156

Note that the improvement in the above example holds for both sockets, not just the one with lower

critical-section lengths.

5.6 Chapter Summary

This chapter considers the use of lock servers on large multicore platforms to lessen overhead associated

with contention-sensitive real-time locking protocols. Four specific lock-server paradigms were presented in

the context of both the U-C-RNLP and the G-C-RNLP.

Additionally, an experimental study of all four paradigms applied to both C-RNLP variants demonstrated

the overhead reductions enabled by these paradigms. In these experiments, the use of lock servers often

reduced overhead dramatically. For example, the paradigm that generally performed best, static global lock

servers, typically exhibited overhead reductions in the range of 25%–75% compared to not using lock servers.

Finally, this chapter presented the use of a reader/reader locking protocol to coordinate between multiple

local lock servers, along with the associated blocking analysis and a discussion of the related tradeoffs.

Acknowledgment. The work presented in this chapter originally appeared in a paper written by Tanya

Amert and myself. In addition to being involved throughout the project, Tanya implemented the lock servers,

conducted the evaluation, and analyzed the resulting data.

157

CHAPTER 6: CONCLUSION

Nested resource requests enable a task to access multiple resources concurrently. Unfortunately, most

existing approaches that grant nested resource access result in high blocking, which can cause tasks to miss

deadlines. The primary challenge in supporting nested resource access is the Transitive Blocking Chain

Problem discussed in Section 1.3. Requests can enqueue in a manner that forms a long chain of blocking,

even when many requests do not require an overlapping set of resources. The blocking chains formed by

nested requests also impact read requests and non-nested write requests.

Transitive blocking chains can be broken by reordering requests, but this can cause significant protocol

overhead. Both overhead and blocking must be considered in schedulability analysis. These observations

motivated the development of locking protocols efficient in both overhead and blocking, with a focus on

contention-sensitive protocols.

The remainder of this chapter summarizes the results of this dissertation (Section 6.1), other related

work of the author that was not included in this dissertation (Section 6.2), and directions for future work

(Section 6.3).

6.1 Summary of Results

This section summarizes the key contributions of this dissertation.

Efficient resource access for read requests and non-nested write requests. In systems with nested re-

quests, both read requests and non-nested write requests can experience significant blocking. However, it

is relatively straightforward to grant contention-sensitive resource access in the absence of nested resource

access. This observation motivated the development of the fast RW-RNLP, which was presented in Chapter 3.

The fast RW-RNLP provides a fast-path mechanism for read requests and non-nested write requests. By

handling each type of request separately, it prevents transitive blocking chains from impacting read and

non-nested write requests.

158

This separation of requests requires the use of an arbitration mechanism between request types. Two

arbitration mechanisms were presented: the R3LP and the RW-RNLP*. The protocol as a whole was evaluated

on the basis of schedulability. In the study presented in Chapter 3, the fast RW-RNLP resulted in higher

schedulability than prior protocols when non-nested resource access was the common case. Additionally, the

study showed that the fast RW-RNLP with the R3LP arbitration mechanism tended to outperform the fast

RW-RNLP with the RW-RNLP*.

Efficient resource access for nested write requests. Chapter 4 presented two protocols to handle nested

write requests. Both protocols reorder requests as they are issued in order to reduce blocking. The C-RNLP

is the first multiprocessor real-time locking protocol to grant contention-sensitive nested resource access. A

newly issued request is inserted into the earliest queue position that ensures safety and preserves delays for

previously issued requests. This cutting-ahead mechanism breaks transitive blocking chains. Two variants

of the C-RNLP were presented. The general variant, the G-C-RNLP, requires maintaining a node in the

appropriate resource queue(s) for each active request and considers the different per-request maximum

critical-section lengths when determining when a newly issued request will be satisfied. The uniform variant,

the U-C-RNLP, instead maintains a set of slots in which requests may be satisfied, each of which allows

one request to be satisfied per resource and for a duration of up to the maximum critical-section length.

This simplifies some of the protocol logic, which in turn results in slightly lower overhead than the general

variant. These two C-RNLP variants both result in contention-sensitive blocking, with slightly different

blocking bounds. In the presented schedulability study, both variants outperformed existing approaches, and

the G-C-RNLP tended to result in higher schedulability than the U-C-RNLP.

Chapter 4 also presented the CGLP, which was developed in response to the higher protocol overhead

of C-RNLP and the description of an additional challenge with granting nested write access: the Request

Timing Problem. The CGLP is comprised of an offline component that determines the concurrency groups

for a given task system and an online component that arbitrates between these groups. Chapter 4 presented

several options for the offline component that optimize the group creation based on task system parameters

in order to reduce the blocking. The online component coordinates request satisfaction by group with low

overhead. The CGLP outperformed existing approaches in the presented schedulability study, and in many

scenarios, outperformed the C-RNLP variants. In the scenarios in which the CGLP did not result in the

highest schedulability, the G-C-RNLP resulted in the highest schedulability.

159

Protocol-independent overhead reduction. Lock servers were presented in Chapter 5 as a protocol-

independent method of reducing protocol overhead. Locking protocols must store some state in order

to safely grant resources access. The accessing of protocol-specific data structures causes a portion of the

overall protocol overhead; when this state is not cached, it must be loaded from memory. While cache

evictions can be caused by unrelated task execution, the execution of the locking protocol itself invalidates

cached data on other cores when updating the lock state.

Lock servers are dedicated processes that execute locking protocol logic on behalf of tasks in order to

reduce cache evictions and thereby reduce overhead of the protocol. Chapter 5 presented four configurations

for lock servers, distinguished by their locality and mobility. These configurations are based on knowledge of

the underlying cache structure and offer different tradeoffs. The development of lock severs was motivated by

the high overhead of the C-RNLP variants, which is caused in part by the additional timing information about

requests that must be maintained. When lock servers were applied to the C-RNLP variants, they significantly

reduced overhead, especially under the configuration with a static global lock server.

6.2 Other Related Work

Two publications to which the author contributed fall beyond the scope of this dissertation. These

contributions are summarized briefly here.

Replicated resources.1 The use of a k-exclusion locking protocol enables granting lock access to k replicas

of a resource, granting access to one replica per request. This sharing paradigm can be extended to a more

general notion of replicated resources, in which there are k replicas and a task may request between one and

k of these replicas. This work was motivated by two use cases for which the primary source of delays is

caused by different factors. One use case has long critical-section lengths, and blocking is the limiting factor

in performance. For the other use case, overhead has a more significant impact on schedulability.

To address these challenges, we presented three replica allocation protocols. Two of these achieve low

overhead at the expense of non-optimal blocking. The third results in optimal blocking (ignoring constant

factors), but at the cost of higher overhead. The low blocking approach uses the notion of cutting-ahead, but

1This work previously appeared in:

Nemitz, C., Yang, K., Yang, M., Ekberg, P., and Anderson, J. (2016). Multiprocessor real-time locking protocols for
replicated resources. In Proceedings of the 28th Euromicro Conference on Real-Time Systems.

160

for replicas instead of nested resources. Additionally, we distinguished between the allocation and assignment

problems: a task requiring replica allocation simply needs to be granted arbitrary replicas, while a task

requiring replica assignment must know which replica(s) it was granted. For example, tokens that limit

system contention may be allocated, but assignment is required for granting access to specific GPUs or other

accelerators.

Phase-fair locking.2 The phase-fair reader/writer locking protocol coordinates non-nested read and write

access to a shared resource (Brandenburg and Anderson, 2010). It differs from prior reader/write protocols in

the way unsatisfied read and write requests are ordered. The phase-fair approach alternates between read

phases, in which all active read requests are satisfied, and write phases, in which a single active write request

is satisfied. This results in better blocking bounds for real-time systems than prior approaches (some of which

have unbounded blocking).

Using an existing implementation of the phase-fair locking protocol revealed that throughput in a read-

dominated or a read-only workload was much lower than expected. Further investigation showed that read

requests interfere in updating the protocol state, resulting in overhead that reduces throughput. Each newly

issued read request updates a global count of read requests, frequently requiring a remote memory reference

and invalidating the cached protocol state on other cores. This insight led us to develop a new implementation

of the phase-fair locking protocol. Our implementation uses per-core variables for maintaining protocol state

on active read requests, ensuring isolation between read requests, which dramatically reduced overhead. This

requires write requests to check additional protocol data structures, resulting in higher overhead for write

requests. This tradeoff resulted in manageable overhead and significantly improved throughput.

Use of the phase-fair locking protocol in a real-time system also necessitates incorporating its blocking

analysis into schedulability analysis. Existing blocking analysis for phase-fair locking was inflation-based,

inflating each task by the blocking it may incur. We instead provided inflation-free blocking analysis that

extends prior analysis (Biondi and Brandenburg, 2016). This analysis fits into an existing schedulability

framework, which requires the maximum synchronization delay during a given interval. Thus, we produced

an optimization problem that maximizes these delays subject to constraints on how read requests and

2This work previously appeared in:

Nemitz, C., Caspin, S., Anderson, J., and Ward, B. (2021b). Light reading: Optimizing reader/writer locking for read-
dominant real-time workloads. In Proceedings of the 33rd Euromicro Conference on Real-Time Systems.

161

write requests can interact under the phase-fair locking protocol. This new inflation-free approach yielded

significant improvements in a schedulability study.

6.3 Future Work

There are multiple directions for future work based on the contributions of this dissertation.

Inflation-free blocking analysis. As mentioned briefly above, recent work has incorporated inflation-free

blocking analysis into schedulability analysis for a few protocols. An extension to this work would be to

specify optimization problems that correspond to the protocols in this dissertation. As these protocols reorder

requests, new constraints must be developed to reflect the request orderings. For example, for the C-RNLP

variants, requests cannot be assumed to execute in FIFO order, but constraints could be developed to reflect

that safety and delay preservation are always upheld.

Blocking and overhead comparison. With the inflation-based analysis used in this dissertation, the impact

of overhead was magnified by the computed blocking when checking schedulability. A future study could

separate these delays in order to determine which has the greater impact on certain types of scenarios. This

knowledge could be especially helpful for task systems that are not deemed schedulable. For example, it

could indicate that the blocking is too high, regardless of the overhead, or that the overhead is too high relative

to the critical-section lengths.

Suspension-based protocol variants. For some applications, suspension-based protocols are likely to result

in better schedulability than spin-based ones. For example, if critical sections are long relative to some task

periods, it may be beneficial for a blocked task to yield the processor to another task. Suspension-based

protocols require different progress mechanisms and blocking analysis.

To reap the full benefit of a suspension-based approach, several aspects must be explored. For example,

it may be possible to separate requests by duration, with some requests spinning and others suspending (Ward

and Anderson, 2013).

Under the fast RW-RNLP, blocking can occur in two stages: first in the type-specific component, and

then in the global arbitration mechanism. Thus, developing a suspension-based version of the fast RW-RNLP

requires implementing a progress mechanism to reflect this. This two-staged blocking also gives two decision

points for spinning or suspending.

162

For the C-RNLP, the decision for certain requests to spin or suspend could be made at runtime, as the

protocol already maintains timing information on all active requests. This would necessitate blocking analysis

that incorporate these options in addition to the potential for requests to cut ahead.

Lock servers were developed for spin-based locking protocols. However, the notion of a lock server lends

itself to a kernel-based implementation. A dedicated task could be established to act as a lock server, and this

task may be able to run alongside other kernel services. Transitioning to suspension-based protocols would

require adjusting some assumptions. For example, in the spin-based version, a blocked (spinning) task can

temporarily serve as the lock server. Enabling this behavior for a suspension-based protocol would require

updating the schedulability analysis to reflect that all but one blocked task will suspend. Additionally, there

may exist alternate lock server configurations that better reflect the needs of a suspension-based protocol.

Evaluation with other scheduling algorithms. Ultimately, in hard real-time systems, locking protocols are

evaluated on the basis of enabling schedulability for task systems. Schedulability is impacted by system

design decisions beyond the locking protocol and its resulting overhead and blocking. These decisions

include the chosen scheduler along with any partitioning or cluster assignments.

The schedulability studies presented in this dissertation assumed the use of G-EDF. However, other

scheduling algorithms introduce additional questions. For example, can the blocking analysis of each of the

presented protocols be refined for a clustered system?

Considering the use of lock servers under different scheduling algorithms also raises new possibilities.

For instance, some lock server configurations require a dedicated task pinned to a single core. This type

of tradeoff (losing a core for general processing to reduce protocol overhead) can be investigated in the

context of different scheduling choices. To yield a benefit, it might be necessary to provably ensure that

lock servers always execute in cache. Such assurances could be provided by integrating lock servers with

cache-isolation techniques explored elsewhere (Altmeyer et al., 2014; Campoy et al., 2001; Chisholm et al.,

2015; Herter et al., 2011; Kim et al., 2013; Kirk and Strosnider, 1990; Ward et al., 2013; Xu et al., 2016,

2017; Yun et al., 2014). Finally, the amount of cache space to dedicate to a lock server may depend on the

scheduling algorithm selection and the tradeoff of instead allowing tasks to use that space.

163

BIBLIOGRAPHY

Afshar, S., Behnam, M., Bril, R., and Nolte, T. (2014). Flexible spin-lock model for resource sharing in
multiprocessor real-time systems. In Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems.

Afshar, S., Behnam, M., Bril, R., and Nolte, T. (2017). An optimal spin-lock priority assignment algorithm for
real-time multi-core systems. In Proceedings of the 23rd IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications.

Afshar, S., Behnam, M., Bril, R., and Nolte, T. (2018). Per processor spin-based protocols for multiprocessor
real-time systems. Leibniz Transactions on Embedded Systems, 4(2):03:1–03:30.

Afshar, S., Behnam, M., and Nolte, T. (2013). Integrating independently developed real-time applications on
a shared multi-core architecture. ACM SIGBED Review, 10(3):49–56.

Afshar, S., Khalilzad, N., Nemati, F., and Nolte, T. (2015). Resource sharing among prioritized real-time
applications on multiprocessors. ACM SIGBED Review, 12(1):46–55.

Altmeyer, S., Douma, R., Lunniss, W., and Davis, R. (2014). Evaluation of cache partitioning for hard
real-time systems. In Proceedings of the 26th Euromicro Conference on Real-Time Systems.

Anderson, J., Bud, V., and Devi, U. (2005). An EDF-based scheduling algorithm for multiprocessor soft
real-time systems. In Proceedings of the 17th Euromicro Conference on Real-Time Systems.

Anderson, J., Jain, R., and Ramamurthy, S. (1997). Wait-free object-sharing schemes for real-time uniproces-
sors and multiprocessors. In Proceedings of the 18th IEEE Real-Time Systems Symposium.

Anderson, J. and Ramamurthy, S. (1996). A framework for implementing objects and scheduling tasks in
lock-free real-time systems. In Proceedings of the 17th IEEE Real-Time Systems Symposium.

Attiya, H., Bar-Noy, A., Dolev, D., Koller, D., Peleg, D., and Reischuk, R. (1987). Achievable cases in an
asynchronous environment. In Proceedings of the 28th Annual Symposium on Foundations of Computer
Science.

AUTOSAR (2019). AUTOSAR Release 4.4, Classic Platform, Specification of Operating System. https:
//www.autosar.org/.

Bacon, D., Konuru, R., Murthy, C., and Serrano, M. (1998). Thin locks: Featherweight synchronization for
Java. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation.

Baker, T. (1991). Stack-based scheduling of realtime processes. Real-Time Systems, 3(1):67–99.

Baker, T. (2003). Multiprocessor EDF and deadline monotonic schedulability analysis. In Proceedings of the
24th IEEE Real-Time Systems Symposium.

Baker, T. (2005). An analysis of EDF schedulability on a multiprocessor. IEEE Transactions on Parallel and
Distributed Systems, 16(8):760–768.

Baker, T. and Shaw, A. (1988). The cyclic executive model and Ada. In Proceedings of the 9th IEEE
Real-Time Systems Symposium.

Baker, T. and Shaw, A. (1989). The cyclic executive model and Ada. Real-Time Systems, 1(1):7–25.

164

https://www.autosar.org/
https://www.autosar.org/

Bandh, T., Carle, G., and Sanneck, H. (2009). Graph coloring based physical-cell-ID assignment for LTE
networks. In Proceedings of the 2009 International Wireless Communications and Mobile Computing
Conference.

Barnier, N. and Brisset, P. (2004). Graph coloring for air traffic flow management. Annals of Operations
Research, 130(1-4):163–178.

Barros, A., Pinho, L., and Yomsi, P. (2015). Non-preemptive and SRP-based fully-preemptive scheduling of
real-time software transactional memory. Journal of Systems Architecture, 61(10):553–566.

Baruah, S. (2007). Techniques for multiprocessor global schedulability analysis. In Proceedings of the 28th
IEEE Real-Time Systems Symposium.

Baruah, S. and Brandenburg, B. (2013). Multiprocessor feasibility analysis of recurrent task systems with
specified processor affinities. In Proceedings of the 34th IEEE Real-Time Systems Symposium.

Bastoni, A., Brandenburg, B., and Anderson, J. (2011). Is semi-partitioned scheduling practical? In
Proceedings of the 23rd Euromicro Conference on Real-Time Systems.

Belwal, C. and Cheng, A. (2011). Lazy versus eager conflict detection in software transactional memory: A
real-time schedulability perspective. Embedded Systems Letters, 3(1):37–41.

Bertogna, M. and Baruah, S. (2011). Tests for global EDF schedulability analysis. Journal of Systems
Architecture, 57(5):487–497.

Bertogna, M., Cirinei, M., and Lipari, G. (2005). Improved schedulability analysis of EDF on multiprocessor
platforms. In Proceedings of the 17th Euromicro Conference on Real-Time Systems.

Biondi, A. and Brandenburg, B. (2016). Lightweight real-time synchronization under P-EDF on symmetric
and asymmetric multiprocessors. In Proceedings of the 28th Euromicro Conference on Real-Time
Systems.

Biondi, A., Brandenburg, B., and Wieder, A. (2016). A blocking bound for nested FIFO spin locks. In
Proceedings of the 37th IEEE Real-Time Systems Symposium.

Block, A., Leontyev, H., Brandenburg, B., and Anderson, J. (2007). A flexible real-time locking protocol
for multiprocessors. In Proceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications.

Bonifaci, V., Brandenburg, B., D’Angelo, G., and Marchetti-Spaccamela, A. (2016). Multiprocessor real-time
scheduling with hierarchical processor affinities. In Proceedings of the 28th Euromicro Conference on
Real-Time Systems.

Bonifaci, V., D’Angelo, G., and Marchetti-Spaccamela, A. (2017). Algorithms for hierarchical and semi-
partitioned parallel scheduling. In Proceedings of the 31st IEEE International Parallel and Distributed
Processing Symposium.

Brandenburg, B. (2011). Scheduling and Locking in Multiprocessor Real-Time Operating Systems. PhD
thesis, University of North Carolina at Chapel Hill.

Brandenburg, B. (2014). The FMLP+: An asymptotically optimal real-time locking protocol for suspension-
aware analysis. In Proceedings of the 26th Euromicro Conference on Real-Time Systems.

165

Brandenburg, B. (2019). Multiprocessor real-time locking protocols: A systematic review. arXiv preprint
arXiv:1909.09600.

Brandenburg, B. and Anderson, J. (2007). Feather-trace: A lightweight event tracing toolkit. In Proceedings of
the 3rd International Workshop on Operating Systems Platforms for Embedded Real-Time Applications.

Brandenburg, B. and Anderson, J. (2008a). A comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT.
In Proceedings of the International Conference on Principles of Distributed Systems.

Brandenburg, B. and Anderson, J. (2008b). An implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP
real-time synchronization protocols in LITMUSRT. In Proceedings of the 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications.

Brandenburg, B. and Anderson, J. (2010). Spin-based reader-writer synchronization for multiprocessor
real-time systems. Real-Time Systems, 46(1):25–87.

Brandenburg, B. and Anderson, J. (2011). Real-time resource-sharing under clustered scheduling: Mutex,
reader-writer, and k-exclusion locks. In Proceedings of the 9th ACM International Conference on
Embedded Software.

Brandenburg, B. and Anderson, J. (2013). The OMLP family of optimal multiprocessor real-time locking
protocols. Design Automation for Embedded Systems, 17(2):277–342.

Brandenburg, B., Calandrino, J., Block, A., Leontyev, H., and Anderson, J. (2008). Real-time synchronization
on multiprocessors: To block or not to block, to suspend or spin? In Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Applications Symposium.

Burns, A. and Wellings, A. (2013). A schedulability compatible multiprocessor resource sharing protocol -
MrsP. In Proceedings of the 25th Euromicro Conference on Real-Time Systems.

Campoy, M., Ivars, A., and Busquets-Mataix, J. (2001). Static use of locking caches in multitask preemptive
real-time systems. In Proceedings of the IEEE/IEE Real-Time Embedded Systems Workshop.

Cerqueira, F., Gujarati, A., and Brandenburg, B. (2014). Linux’s processor affinity API, refined: Shifting
real-time tasks towards higher schedulability. In Proceedings of the 35th IEEE Real-Time Systems
Symposium.

Chaitin, G., Auslander, M., Chandra, A., Cocke, J., Hopkins, M., and Markstein, P. (1981). Register allocation
via coloring. Computer Languages, 6(1):47–57.

Chang, Y., Davis, R., and Wellings, A. (2010). Reducing queue lock pessimism in multiprocessor schedu-
lability analysis. In Proceedings of the 18th International Conference on Real-Time Networks and
Systems.

Chen, C. and Tripathi, S. (1994). Multiprocessor priority ceiling based protocols. Department of Computer
Science, University of Maryland. Technical report, CS-TR-3252.

Chisholm, M., Ward, B., Kim, N., and Anderson, J. (2015). Cache sharing and isolation tradeoffs in multicore
mixed-criticality systems. In Proceedings of the 36th IEEE Real-Time Systems Symposium.

Cho, H., Ravindran, B., and Jensen, E. D. (2007). Space-optimal, wait-free real-time synchronization. IEEE
Transactions on Computers, 56(3):373–384.

166

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with readers and writers. Communica-
tions of the ACM, 14(10):667–668.

Dijkstra, E. (1978). Two starvation free solutions to a general exclusion problem. EWD 625, Plataanstraat 5,
5671 Al Nuenen, The Netherlands.

El-Shambakey, M. (2013). Real-Time Software Transactional Memory: Contention Managers, Time Bounds,
and Implementations. PhD thesis, Virginia Polytechnic Institute.

Elliott, G. and Anderson, J. (2013). An optimal k-exclusion real-time locking protocol motivated by multi-
GPU systems. Real-Time Systems, 49(2):140–170.

Faggioli, D., Lipari, G., and Cucinotta, T. (2010). The multiprocessor bandwidth inheritance protocol. In
Proceedings of the 22nd Euromicro Conference on Real-Time Systems.

Faggioli, D., Lipari, G., and Cucinotta, T. (2012). Analysis and implementation of the multiprocessor
bandwidth inheritance protocol. Real-Time Systems, 48(6):789–825.

Gai, P., Di Natale, M., Lipari, G., Ferrari, A., Gabellini, C., and Marceca, P. (2003). A comparison of MPCP
and MSRP when sharing resources in the Janus multiple-processor on a chip platform. In Proceedings
of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium.

Gai, P., Lipari, G., and Di Natale, M. (2001). Minimizing memory utilization of real-time task sets in
single and multi-processor systems-on-a-chip. In Proceedings of the 22nd IEEE Real-Time Systems
Symposium.

Garrido, J., Zhao, S., Burns, A., and Wellings, A. (2017). Supporting nested resources in MrsP. In Proceedings
of the Ada-Europe International Conference on Reliable Software Technologies.

Goossens, J., Funk, S., and Baruah, S. (2003). Priority-driven scheduling of periodic task systems on
multiprocessors. Real-Time Systems, 25(2):187–205.

Gurobi (2018). Gurobi optimizer reference manual. http://www.gurobi.com.

Havender, J. (1968). Avoiding deadlock in multitasking systems. IBM Systems Journal, 7(2):74–84.

Herlihy, M. (1991). Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149.

Herlihy, M. and Wing, J. (1990). Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492.

Herter, J., Backes, P., Haupenthal, F., and Reineke, J. (2011). CAMA: A predictable cache-aware memory
allocator. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems.

Hsiu, P., Lee, D., and Kuo, T. (2011). Task synchronization and allocation for many-core real-time systems.
In Proceedings of the 9th ACM International Conference on Embedded Software.

Huang, W., Yang, M., and Chen, J. (2016). Resource-oriented partitioned scheduling in multiprocessor
systems: How to partition and how to share? In Proceedings of the 37th IEEE Real-Time Systems
Symposium.

Jarrett, C., Ward, B., and Anderson, J. (2015). A contention-sensitive fine-grained locking protocol for
multiprocessor real-time systems. In Proceedings of the 23rd International Conference on Real-Time
Networks and Systems.

167

http://www.gurobi.com

Joung, Y. (2000). Asynchronous group mutual exclusion. Distributed Computing, 13(4):189–206.

Keane, P. and Moir, M. (1999). A simple local-spin group mutual exclusion algorithm. In Proceedings of the
18th Annual ACM Symposium on Principles of Distributed Computing.

Keane, P. and Moir, M. (2001). A simple local-spin group mutual exclusion algorithm. IEEE Transactions
on Parallel and Distributed Systems, 12(7):673–685.

Kim, H., Kandhalu, A., and Rajkumar, R. (2013). A coordinated approach for practical OS-level cache
management in multi-core real-time systems. In Proceedings of the 25th Euromicro Conference on
Real-Time Systems.

Kirk, D. and Strosnider, J. (1990). SMART (strategic memory allocation for real-time) cache design using
the MIPS R3000. In Proceedings of the 11th IEEE Real-Time Systems Symposium.

Lakshmanan, K., de Niz, D., and Rajkumar, R. (2009). Coordinated task scheduling, allocation and
synchronization on multiprocessors. In Proceedings of the 30th IEEE Real-Time Systems Symposium.

Leung, J. and Whitehead, J. (1982). On the complexity of fixed-priority scheduling of periodic, real-time
tasks. Performance Evaluation, 2(4):237–250.

Lipari, G., Lamastra, G., and Abeni, L. (2004). Task synchronization in reservation-based real-time systems.
IEEE Transactions on Computers, 53(12):1591–1601.

Liu, C. and Layland, J. (1973). Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61.

Liu, J. (2000). Real-Time Systems. Prentice Hall.

Lozi, J., David, F., Thomas, G., Lawall, J., and Muller, G. (2012). Remote core locking: Migrating critical-
section execution to improve the performance of multithreaded applications. In Proceedings of the 2012
USENIX Annual Technical Conference.

Marx, D. (2004). Graph colouring problems and their applications in scheduling. Periodica Polytechnica
Electrical Engineering, 48(1-2):11–16.

Mellor-Crummey, J. and Scott, M. (1991a). Algorithms for scalable synchronization of shared-memory
multiprocessors. Transactions on Computer Systems, 9(1):21–65.

Mellor-Crummey, J. and Scott, M. (1991b). Scalable reader-writer synchronization for shared-memory
multiprocessors. In Proceedings of the 3rd ACM Symposium on Principles and Practice of Parallel
Programming.

Moir, M. and Anderson, J. (1995). Wait-free algorithms for fast, long-lived renaming. Science of Computer
Programming, 25(1):1–39.

Mok, A. (1983). Fundamental design problems of distributed systems for the hard-real-time environment.
PhD thesis, Massachusetts Institute of Technology.

Nemati, F., Behnam, M., and Nolte, T. (2011). Independently-developed real-time systems on multi-cores
with shared resources. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems.

Nemitz, C., Amert, T., and Anderson, J. (2017). Real-time multiprocessor locks with nesting: Optimizing
the common case. In Proceedings of the 25th International Conference on Real-Time Networks and
Systems.

168

Nemitz, C., Amert, T., and Anderson, J. (2018). Using lock servers to scale real-time locking protocols:
Chasing ever-increasing core counts. In Proceedings of the 30th Euromicro Conference on Real-Time
Systems.

Nemitz, C., Amert, T., and Anderson, J. (2019a). Real-time multiprocessor locks with nesting: Optimizing
the common case. Real-Time Systems, 55(2):296–348.

Nemitz, C., Amert, T., Goyal, M., and Anderson, J. (2019b). Concurrency groups: A new way to look at
real-time multiprocessor lock nesting. In Proceedings of the 27th International Conference on Real-Time
Networks and Systems.

Nemitz, C., Amert, T., Goyal, M., and Anderson, J. (2021a). Concurrency groups: A new way to look at
real-time multiprocessor lock nesting. Real-Time Systems, 57(1):190–226.

Nemitz, C., Caspin, S., Anderson, J., and Ward, B. (2021b). Light reading: Optimizing reader/writer locking
for read-dominant real-time workloads. In Proceedings of the 33rd Euromicro Conference on Real-Time
Systems.

Nemitz, C., Yang, K., Yang, M., Ekberg, P., and Anderson, J. (2016). Multiprocessor real-time locking
protocols for replicated resources. In Proceedings of the 28th Euromicro Conference on Real-Time
Systems.

Palladino, S. (2010). Modelling graph coloring with integer linear programming. https://manas.tech/
blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html.

Rajkumar, R. (1990). Real-time synchronization protocols for shared memory multiprocessors. In Proceedings
of the 10th International Conference on Distributed Computing Systems.

Rajkumar, R. (1991). Synchronization in real-time systems: A priority inheritance approach. Kluwer
Academic Publishers.

Rajkumar, R., Sha, L., and Lehoczky, J. (1988). Real-time synchronization protocols for multiprocessors. In
Proceedings of the 9th IEEE Real-Time Systems Symposium.

Ramamurthy, S. (1997). A Lock-Free Approach to Object Sharing in Real-Time Systems. PhD thesis,
University of North Carolina at Chapel Hill.

Rhee, I. and Martin, G. R. (1995). A scalable real-time synchronization protocol for distributed systems. In
Proceedings of the 16th IEEE Real-Time Systems Symposium.

Sarni, T., Queudet, A., and Valduriez, P. (2009). Real-time support for software transactional memory.
In Proceedings of the 15th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications.

SchedCAT (2019). SchedCAT: Schedulability test collection and toolkit. https://github.com/
brandenburg/schedcat.

Schoeberl, M., Brander, F., and Vitek, J. (2010). RTTM: Real-time transactional memory. In Proceedings of
the 25th ACM Symposium on Applied Computing.

Schoeberl, M. and Hilber, P. (2010). Design and implementation of real-time transactional memory. In
Proceedings of the 2010 International Conference on Field Programmable Logic and Applications.

169

https://manas.tech/blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html
https://manas.tech/blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html
https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat

Schwan, K. and Zhou, H. (1992). Multiprocessor real-time threads. ACM SIGOPS Operating Systems Review,
26(1):54–65.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on computers, 39(9):1175–1185.

Takada, H. and Sakamura, K. (1995). Real-time scalability of nested spin locks. In Proceedings of the 2nd
International Workshop on Real-Time Computing Systems and Applications.

Tang, S. and Anderson, J. (2020). Towards practical multiprocessor EDF with affinities. In Proceedings of
the 41st IEEE Real-Time Systems Symposium.

Voronov, S. and Anderson, J. (2018). An optimal semi-partitioned scheduler assuming arbitrary affinity
masks. In Proceedings of the 39th IEEE Real-Time Systems Symposium.

Wang, C., Takada, H., and Sakamura, K. (1996). Priority inheritance spin locks for multiprocessor real-time
systems. In Proceedings of the 2nd International Symposium on Parallel Architectures, Algorithms, and
Networks.

Ward, B. (2015). Relaxing resource-sharing constraints for improved hardware management and schedulabil-
ity. In Proceedings of the 36th IEEE Real-Time Systems Symposium.

Ward, B. (2016). Sharing Non-Processor Resources in Multiprocessor Real-Time Systems. PhD thesis,
University of North Carolina at Chapel Hill.

Ward, B. and Anderson, J. (2012). Supporting nested locking in multiprocessor real-time systems. In
Proceedings of the 24th Euromicro Conference on Real-Time Systems.

Ward, B. and Anderson, J. (2013). Fine-grained multiprocessor real-time locking with improved blocking. In
Proceedings of the 21st International Conference on Real-Time Networks and Systems.

Ward, B. and Anderson, J. (2014). Multi-resource real-time reader/writer locks for multiprocessors. In
Proceedings of the 28th IEEE International Parallel and Distributed Processing Symposium.

Ward, B., Elliott, G., and Anderson, J. (2012). Replica-request priority donation: A real-time progress
mechanism for global locking protocols. In Proceedings of the 18th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications.

Ward, B., Herman, J., Kenna, C., and Anderson, J. (2013). Making shared caches more predictable on
multicore platforms. In Proceedings of the 25th Euromicro Conference on Real-Time Systems.

Wieder, A. and Brandenburg, B. (2013). On spin locks in AUTOSAR: Blocking analysis of FIFO, unordered,
and priority-ordered spin locks. In Proceedings of the 34th IEEE Real-Time Systems Symposium.

Wieder, A. and Brandenburg, B. (2014). On the complexity of worst-case blocking analysis of nested critical
sections. In Proceedings of the 35th IEEE Real-Time Systems Symposium.

Xu, M., Phan, L. T. X., Choi, H.-Y., and Lee, I. (2016). Analysis and implementation of global preemptive
fixed-priority scheduling with dynamic cache allocation. In Proceedings of the 22nd IEEE Real-Time
and Embedded Technology and Applications Symposium.

Xu, M., Phan, L. T. X., Choi, H.-Y., and Lee, I. (2017). vCAT: Dynamic cache management using CAT
virtualization. In Proceedings of the 23rd IEEE Real-Time and Embedded Technology and Applications
Symposium.

170

Yang, M., Wieder, A., and Brandenburg, B. (2015). Global real-time semaphore protocols: A survey, unified
analysis, and comparison. In Proceedings of the 36th IEEE Real-Time Systems Symposium.

Yoo, R. and Lee, H.-H. (2008). Adaptive transaction scheduling for transactional memory systems. In
Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and Architectures.

Yun, H., Mancuso, R., Wu, Z., and Pellizzoni, R. (2014). PALLOC: DRAM bank-aware memory allocator
for performance isolation on multicore platforms. In Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Applications Symposium.

Zhao, S., Garrido, J., Burns, A., and Wellings, A. (2017). New schedulability analysis for MrsP. In
Proceedings of the 23rd IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications.

Zhao, S., Garrido, J., Wei, R., Burns, A., Wellings, A., and Juan, A. (2020). A complete run-time overhead-
aware schedulability analysis for MrsP under nested resources. Journal of Systems and Software,
159:110449.

171

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	 Introduction
	Shared Resources
	Nested Resource Access
	Transitive Blocking Chain Problem
	Thesis Statement
	Contributions
	The Fast RW-RNLP
	The C-RNLP
	The CGLP
	Lock Servers

	Organization

	Background
	Task Model
	Scheduling Algorithms
	Schedulability Analysis
	Resource Model
	Types of Resource Access
	General Methods for Handling Nested Resource Access
	Partial Ordering of Resources
	Coarse-Grained Locking
	Dynamic Group Locking

	Metrics of Evaluation for Locking Protocols
	Analysis Assumptions
	Overhead
	Blocking
	Schedulability Analysis of Locking Protocols

	Existing Approaches to Synchronization
	General Classifications
	Locking Protocols for Non-Nested Resource Access
	The MCS Lock
	Real-Time Locking Protocols
	Reader/Writer Locking Protocols
	Other Resource-Sharing Paradigms

	Locking Protocols for Nested Resource Access
	Using Coarse-Grained Approaches
	Early approaches
	M-BWI
	MrsP
	RNLP Family

	Chapter Summary

	Minimizing Impacts on Read and Non-nested Write Requests
	Reader-Only Phase-Fair Locks
	Reader-Reader Phase-Fair Locks
	Reader-Reader-Reader Phase-Fair Locks
	 Implementation

	The Fast RW-RNLP
	Protocol Structure
	The Fast RW-RNLP with the
	The RW-RNLP*
	RW-RNLP* Pi-Blocking Bounds
	The Fast RW-RNLP with the RW-RNLP*
	RW-RNLP* Implementation

	Evaluation
	Overhead and Blocking
	Schedulability study

	Additional Details
	Tight Blocking Bounds for the RW-RNLP*
	Corner Case for Nested Read Requests
	Linearizability
	Constraints used in Schedulability Study

	Chapter Summary

	Minimizing Impacts on Nested Write Requests
	C-RNLP
	Safety
	Delay Preservation
	C-RNLP Rules
	Establishing a Bound
	Uniform C-RNLP

	Implementation
	Experimental Evaluation
	Measuring Lock/Unlock Overheads
	Runtime Performance

	Motivation for the CGLP
	Transitive Blocking Chain Problem
	Request Timing Problem

	Concurrency Groups
	Offline Group Creation via Graph Coloring
	Implementation of Offline Component
	Group Arbitration
	Implementation of Online Component
	Bounding Blocking
	Refining the Blocking Bound

	Alternate Coloring Choices
	Motivation
	Minimizing Blocking

	Mixed-Type Requests
	Graph Creation
	Modifications to ILP

	Hierarchical Organization
	Hierarchical Request Satisfaction
	Bounding Blocking
	Assigning Groups to Slots

	Analysis of Offline Component
	Schedulability Study
	Experimental Setup
	Evaluation of the C-RNLP Variants
	Comparison of the CGLP to Existing Protocols
	Comparison of CGLP Variants

	Chapter Summary

	Lock Servers
	Static Lock Servers
	A Static Global Lock Server
	Static Local Lock Servers

	Floating Lock Servers
	A Floating Global Lock Server
	Floating Local Lock Servers

	Handling Non-Uniform Requests
	Evaluation
	Experimental Setup
	Overhead and Blocking without Lock Servers
	Applying Lock Servers
	Results on an Alternate Platform

	Local Lock Server Phase Management and Blocking Bounds
	Chapter Summary

	Conclusion
	Summary of Results
	Other Related Work
	Future Work

	BIBLIOGRAPHY

