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ABSTRACT

Sims Osborne: Using Simultaneous Mulithreading to Support Real-Time Scheduling
(Under the direction of James H. Anderson)

The goal of real-time scheduling is to find a way to schedule every program in a specified system without

unacceptable deadline misses. If doing so on a given hardware platform is not possible, then the question to

ask is “What can be changed?”

Simultaneous multithreading (SMT) is a technology that allows a single computer core to execute

multiple programs at once, at the cost of increasing the time required to execute individual programs. SMT

has been shown to improve performance in many areas of computing, but SMT has seen little application to

the real-time domain. Reasons for not using SMT in real-time systems include the difficulty of knowing how

much execution time a program will require when SMT is in use, concerns that longer execution times could

cause unacceptable deadline misses, and the difficulty of deciding which programs should and should not use

SMT to share a core.

This dissertation shows how SMT can be used to support real-time scheduling in both the hard real-time

(HRT) case, where deadline misses are never acceptable, and the soft real-time (SRT) case, where deadline

misses are undesirable but tolerable. Contributions can be divided into three categories. First, the effects of

SMT on execution times are measured and parameters for modeling the effects of SMT are given. Second,

scheduling algorithms for the SRT case that take advantage of SMT are given and evaluated. Third, scheduling

algorithms for the HRT case are given and evaluated. In both the SRT and HRT cases, using the proposed

algorithms do not lead to unacceptable deadline misses and can have effects similar to increasing a platform’s

core count by a third or more.
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CHAPTER 1: INTRODUCTION

Imagine a very simple drone that must adjust speeds on its rotors every 50 milliseconds. If the drone ever

fails to calculate and implement a new set of rotor speeds within this time limit, then it will crash. This drone

is a real-time system.

More generally, a real-time system is a computer system that includes programs that must finish on

time to be correct. Applications that include real-time components can range from toy drones to airliners

to streaming media services. These applications may include dozens of programs, or tasks, each with their

own deadlines to meet. Typically, each program will need to execute repeatedly, with a separate deadline

for each repetition. The goal of real-time scheduling is to find a way to schedule every repetition of every

program without unacceptable deadline misses. If acceptably doing so on a given hardware platform is not

possible—what counts as acceptable is discussed in Secs. 1.2 and 2.2.2—then the question to ask is “What

can be changed?”

It is tempting to say deadline misses can be avoided by using more or better hardware, but doing so is

often impractical or even impossible due to limits on hardware size, weight, power, and cost (SWaP-C). For

this reason, making the most efficient use possible of a given hardware platform is a vital concern.

One means to do so, the focus of this dissertation, is simultaneous multithreading.

1.1 Simultaneous Multithreading

Simultaneous multithreading (SMT) is a technology that allows a single computer core to execute

multiple programs at once, at the cost of increasing the time required to execute individual programs (Eggers

et al., 1997; Tullsen et al., 1995).

Example 1.1. At the top of Fig. 1.1, two programs execute sequentially without SMT. The dark-colored

program begins at time 0 and finishes at time 6.0. The light-colored program begins at time 6.0 and finishes

at time 12.0.
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Job 1 ଵ Job 2 ଶ

Figure 1.1: Execution without SMT (top) and with SMT (bottom).

In the bottom of the figure, the same programs use SMT to execute in parallel on a single core. They

execute more slowly than before, but both programs now finish at time 8.0: earlier for the light program, but

later for the dark program. ♢

In the example, SMT allows two programs, rather than one, to finish within 8.0 time units. The potential

benefits of completing more work within a set amount of time are clear. Unfortunately, SMT poses two

problems for real-time work. First, SMT increases the execution time of individual programs. Second, SMT

causes every program’s execution time to be dependent on what other programs are executing at the same

time, potentially making execution times less predictable. For these reasons, SMT has been largely ignored

by the real-time community, despite its widespread adaptation in other areas.

This dissertation demonstrates the value of using SMT within a real-time context. Specifically, we show

how to overcome the problems SMT poses for real-time systems and how to use SMT to increase the number

of systems that can be scheduled on a given hardware platform without unacceptable deadline misses. We

consider both hard real-time (HRT) systems, where no deadline misses are acceptable, and soft real-time

(SRT) systems, where limited deadline misses are acceptable. For the HRT case we consider both the case

where individual programs are limited to sequential execution and also the case where each program is

modeled as a directed acyclic graph (DAG) consisting of may subtasks that may be executed in parallel.

1.2 Real-Time Systems

A real-time system τ is defined as a number of tasks, denoted τ1, τ2,...τn. A task is a program that will be

repeatedly invoked, such as flight stabilization in our drone model. Each individual invocation is termed a

job. We give a more detailed description of real-time systems in Sec. 2.2.
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Tasks are defined, in part, by their deadlines. For HRT systems, τ is correctly scheduled if and only if

all jobs finish before their deadlines. As real-time systems are often assumed to continue running forever,

systems can include an infinite number of jobs. For SRT systems, τ is correctly scheduled if and only if the

maximum amount of time by which any job will miss its deadline has, with high probability, a finite upper

bound. We elaborate on this definition in Sec. 2.2.2.

Two key characteristics of any real-time system are its feasibility and schedulability.

Definition 1.1. A system is feasible on a given hardware platform if it is possible to correctly schedule it on

that platform. ◀

Definition 1.2. A system is schedulable under scheduling algorithm A on a given hardware platform if using

algorithm A to decide when each job executes results in the system being scheduled correctly. ◀

We are interested in schedulability under practical algorithms. Informally, we say a scheduling algorithm

is practical if its real-world performance is close to its theoretical performance,which relies on simplifying

assumptions. We do not attempt to formally define what makes an algorithm practical, but instead will discuss

the practicality of existing scheduling algorithms in Sec. 2.3 and of algorithms we propose as they come up

in Chapters 4 and 5.

1.3 Hardware Assumptions

The ability to correctly schedule a real-time system is dependent on the hardware platform used. We

consider platforms of m identical CPU cores for scheduling. The practical result of identical CPU cores is

that a task’s execution time will be constant regardless of where it is executed. This model is simpler than

many actual hardware platforms. In particular, it does not account for different computing cores having

separate caches. In practice, preempting a task and then resuming its execution on a different core may lead

to increases in execution time due to cache affinity loss, an issue we discuss further in Secs. 2.1 and 2.3.

SMT may be enabled on a per-core basis. If SMT is in use, then it provides two hardware threads per core.

These threads are identical; given that two programs are executing on a single core, it does not matter which

program is assigned to which hardware thread. When two tasks are sharing a core, our analysis assumes it is

not possible to speed up one task at the expense of the other. Our assumptions regarding SMT are discussed

in more detail in Sec. 2.6
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1.4 Thesis

We have found that careful use of SMT can increase the number of real-time systems that are schedulable

on a given hardware platform. Equivalently, using SMT can decrease the number of computer cores needed

to correctly schedule a given system. This result holds for both HRT and SRT systems. Our thesis builds on

our findings.

Thesis: For a wide variety of both soft and hard real-time systems, simultaneous multithreading (SMT)

can be used to make otherwise infeasible systems schedulable by practical algorithms. The results of using

SMT can be similar to the results of increasing the number of available computer cores by 25% or more.

Using SMT does not weaken existing real-time guarantees. The effects of using SMT can be seen both

analytically and empirically.

We consider SRT and HRT separately. Within each of these areas, we show how to determine execution

times with SMT and how to apply SMT to a system to get the maximum use out of a given hardware platform.

A key part of our thesis is that we do not weaken existing real-time guarantees. This claim requires some

background on real-time scheduling without SMT. The strongest possible guarantee of correctness would be

knowing all tasks’ worst-case execution times (WCETs) with perfect confidence and having a mathematical

proof that given those WCETs, no deadline will ever be missed.

Unfortunately, perfect knowledge of WCETs is impossible, in part because with SMT, a task’s execution

time requirement is dependent on the scheduling of other tasks. However, this problem is not exclusive

to systems using SMT: knowing execution times with absolute certainty is essentially impossible on any

multicore platform (Wilhelm, 2020). Even so, the relevance of multicore scheduling research is unquestioned.

There are two ways to reconcile the relevance of multicore scheduling research with the weakness of

any guarantee based on potentially incorrect WCETs. First, for some applications the possibility of deadline

misses due to incorrectly stated WCETs may be considered an acceptable risk. In this case, showing that SMT

does not increase the probability of stated WCETs being incorrect implies that the possibility of deadline

misses due to incorrectly stated WCETs in the presence of SMT is also an acceptable risk.

Second, avoiding deadline misses due to scheduling tasks with known execution times and avoiding

deadline misses due to unknown execution times are separate concerns. This view allows results in multicore

scheduling to be significant while understanding that many applications must wait on a breakthrough in

determining execution times or a significant change in multicore architecture.
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Both of these arguments apply to SMT scheduling as well as to multicore scheduling. Our burden is not

to show that execution times with SMT can be perfectly determined, but rather to demonstrate that SMT does

not cause real-time guarantees to be any weaker than they presently are in multicore scheduling.

1.5 Contributions

In this section, we describe the contributions that support our thesis: we measure how SMT affects

execution times in practice and develop SMT-aware methods for scheduling both SRT and HRT systems.

1.5.1 Characterizing Execution Times with SMT

The ability of SMT to support real-time scheduling is dependent on both how SMT affects execution times

and how confident we can be in our knowledge of those execution times. For this reason, our first contribution

is to measure how SMT affects execution times and to assess our confidence in those measurements.

With SMT, a task’s execution time will be influenced by any task being executed on the other half of the

same core. We therefore measure each task’s execution time for every possible task with which it could share

a core. For HRT tasks, we reduce execution-time variation by requiring that two jobs sharing a core must

begin execution simultaneously.

For HRT tasks, we are estimating WCETs. For SRT tasks, knowing average-case execution times

(ACETs) is often sufficient to determine if a system is correctly scheduled. For this reason, upper-bounding

ACETs of tasks using SMT may be acceptable for SRT systems.

We empirically assess our estimates via additional observations. This process serves two purposes.

First, by showing that execution times can be reliably estimated, we show that meaningful comparisons of

schedulability with and without SMT are possible and we support our claim that SMT need not weaken real-

time guarantees. Second, characterizing SMT’s effects on execution allows us to generate an infinite number

of synthetic real-time systems. Synthetic task systems are a key method for evaluating the effectiveness of

different scheduling algorithms both in this dissertation and in real-time research generally. However, such

evaluations are meaningful only if generated systems exhibit plausible behaviors. For example, we could

easily show that SMT is always beneficial in cases where SMT does not increase execution times at all, but

this case is essentially non-existent, making such a result meaningless. By analyzing the effects of SMT on
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real benchmark programs, we can use the results of experiments conducted on synthetic systems to provide

meaningful insights about the real world.

1.5.2 Soft Real-Time Scheduling

Our next contribution, presented in Chapter 3, is to show the benefits of SMT in scheduling SRT systems.

As knowing ACETs is often sufficient for SRT scheduling, it follows that much of the execution time cost

uncertainty caused by SMT is tolerable in an SRT settting. For this reason, tasks using SMT are scheduled

using existing scheduling methods as if each hardware thread were a separate core; at any time, any task

using SMT can execute alongside any other task using SMT.

However, not all tasks should use SMT; in some cases, the increase in execution time caused by SMT

will be too great. For example, if SMT would more than double a task’s execution time, then using SMT for

that task would make scheduling the systems harder. Therefore, SRT tasks should be divided into at least

two subsystems: one that does use SMT, and one that does not. Each subsystem can then be scheduled on a

dedicated set of processors that have SMT enabled or disabled as appropriate.

We give a mathematical test for determining whether a given workload can be correctly scheduled on a

platform with SMT and empirically evaluate the benefits of SMT for SRT systems.

1.5.3 Hard Real-Time Scheduling

Our next contribution is to show how SMT can be used to schedule HRT systems. Since the requirement

in these cases is to never miss a deadline, execution times with SMT must be known to the same level of

certainty as execution times without SMT. For this reason, our HRT work focuses on scheduling pairs of

tasks whose joint execution times have been determined, as discussed in Section 1.5.1.

This approach gives us two problems to consider: which tasks should be paired and how those pairs

should be scheduled. As pairing tasks influences execution times, which in turn influence the range of

possible scheduling choices, finding an optimal solution—i.e. the minimum number of cores necessary to

schedule a given HRT system under the paired-jobs paradigm—would have exponential complexity.

We do give an optimal algorithm that is guaranteed, given sufficient time, to schedule any feasible

system, but find that it is practical only for small task systems. For larger systems, we consider two heuristic

approaches: first pairing tasks heuristically and then scheduling the resulting pairs, or first dividing a task

system into smaller subsystems and then scheduling the smaller subsystem either optimally or through use of
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a task-pairing heuristic. We find that through these heuristics, it is possible to obtain results similar to those

that use the optimal approach.

We consider one variation on HRT scheduling that uses different assumptions.

1.5.3.1 Parallelizable Tasks

In the simplest model of a real-time system, jobs are not parallelizable. SMT may allow for the execution

of more jobs at once, but its parallelism cannot decrease the time needed to execute indiviudual jobs.

However, parallelism is an essential part of scheduling real-time workloads in modern applications such

as image recognition (Amert et al., 2021; Elliott et al., 2015; Houssam-Eddine et al., 2019; Yang et al., 2015),

autonomous vehicles (Guo et al., 2019; Houssam-Eddine et al., 2021; Kato et al., 2015), and aviation (Melani

et al., 2017). When the total processor time required for a task exceeds the task’s relative deadline—a frequent

occurrence in some domains—scheduling a task without parallelism becomes impossible.

Such tasks can be completed in a timely manner if they include segments that can be executed in parallel.

These parallelizable workloads can be modeled using directed acyclic graphs, or DAGs. A DAG task is

modeled in part as a graph G = (V,E) with V denoting a set of vertices and E denoting a set of edges. Each

vertex v ∈V represents a portion of the task, or subtask, and each directed edge (vi,v j) indicates that subtask

vi must be completed before subtask v j can begin. Vertices that are not connected may be executed in parallel

(Baruah et al., 2012). SMT can be used to improve the schedulability of DAG tasks by executing selected

vertices in parallel on a single core.

Example 1.2. Consider the DAG shown in Fig. 1.2. Each subtask has its own execution cost, giving the

overall DAG-task a total execution cost of 130. The DAG’s length gives the minimum amount of time needed

for it to complete given unlimited processors. In this case, the DAG can complete in 70 time units given two

processors by allowing v2 and v4 to execute on one core in parallel to v3 and v5 on a second core.

Suppose that if subtasks v2 and v5 use SMT to execute on a single core, then 75 time units are required

for both to complete. Then applying SMT to v2 and v5 produces the DAG shown in Fig. 1.3. All precedence

constraints from the original DAG are maintained. The new DAG has a reduced total execution cost of 105

time units. ♢
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Figure 1.2: A DAG task consisting of six subtasks.
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Figure 1.3: The same DAG task; subtasks v2 and v5 paired via SMT.

Selecting vertices with which to use SMT is complicated by the presence of precedence constraints.

Clearly, two subtasks with a precedence relationship cannot be scheduled at the same time. More subtly,

scheduling subtasks to execute together can create additional precedence constraints.

Example 1.3. In Fig. 1.2, executing v5 and v4 in parallel with SMT would effectively make both of v2 and v3

predecessors to both v4 and v5, potentially eliminating the benefits of using SMT. ♢

We give an algorithm that applies SMT to a DAG task so as to minimize its utilization without introducing

additional precedence constraints that make the DAG unschedulable. By doing so, we can make dramatic

reductions in both the utilization and core requirements of DAGs. Our algorithm is optimal in terms of

minimizing total utilization, but has exponential time complexity. To assist with using SMT with large DAGs,

we include a tunable parameter that allows for tradeoffs between optimality and running time. We evaluate

our work in terms of both individual DAGs and of systems of DAG tasks.

1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present background information.

In Chapter 3, we present our findings on the effects of SMT on execution times and our confidence in our
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execution time estimates. We give our work on SRT scheduling in Chapter 4. We give our work on the basic

version of HRT scheduling in Chapter 5, and on our DAG scheduling variation in Chapter 6. Finally, in Chapter

7 we summarize our findings and suggest directions for future work. Additional materials, including the code

used to produce our results, are available online at https://www.cs.unc.edu/~shosborn/dissertation.
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CHAPTER 2: BACKGROUND

In this chapter, we present the existing work that this dissertation builds on. Specifically, we provide

more detailed information on our assumed hardware platform, the modeling and scheduling of real-time

systems, the challenges of determining execution times on multicore platforms, and SMT.

2.1 Hardware

In this section, we provide more detail on the hardware model briefly described in Section 1.3. We

assume the use of a Symmetric Multiprocessor (SMP). In this design, each individual core has one or more

levels of cache available only to that core. In addition, clusters of cores share a common lowest-level cache

(LLC). All cores have equal access to shared DRAM memory. Typical access times are in the range of 0.5-1.0

ns for L1 cache, 3-10 ns for L2 cache, 10-20 ns for L3 cache (typically the lowest level), and 50-100 ns for

main memory (Hennessy and Patterson, 2019).

If a process is preempted, its total execution time may be increased due to cache affinity loss. If a

preempted process migrates, or resumes execution on a different core, bringing needed data into the new

core’s cache will take time, increasing total execution cost. This cost will typically be greater if execution

resumes on a different cluster, as the process will have lost access to all cache, not merely the higher levels

of cache. Even when a process resumes execution on the same core, cache affinity loss will occur if other

processes evict the original process’ data from cache. However, eviction can often, though not always, be

avoided by using cache partitioning to assign each process a dedicated fraction of the cache (Altmeyer et al.,

2014, 2016; Bakita et al., 2021; Chisholm et al., 2015, 2017; Guo et al., 2020; Kim et al., 2013; Kirk, 1988;

Liedtke et al., 1997; Mueller, 1995; Wolfe, 1993; Ye et al., 2014). We do not explicitly consider the effects of

cache affinity loss in our work, but our choice of scheduling algorithms, discussed in Section 2.3, is informed

by existing works that do so.
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2.2 Real-Time Systems

In this section, we detail how real-time systems are modeled and scheduled in existing work. Some of

the information here duplicates that in Section 1.2, but is included to make reading easier.

2.2.1 The Sporadic Task Model

We use the sporadic task model. In this model, real-time systems are modeled on the basis of tasks and

jobs. A task is a recurring computation and a job is an instance of a task tied to a particular time or input

set (Liu and Layland, 1973). A task system—denoted τ—consists of n tasks, denoted τ1, τ2, ...τn. Each

task is defined by its cost, denoted Ci, and period, denoted Ti (both terms are discussed below). We write

τi = (Ci,Ti).

We assume that time is discrete but not necessarily integral. When needed, we use ε to denote the

smallest possible unit of time; all costs and periods are integer multiples of ε. This is an unusual view of time;

most works use either continuous time or time that is both discrete and integral. In our case, expressing the

effects of SMT on execution time is easier when we do not restrict ourselves to integer time, but continuous

time would make our analysis of DAGs more difficult.

Each instance of a task is a job. When a job becomes available for execution, it is released by the

associated task. The maximum difference between the completion and release times of any job of τi is given

by τi’s response time, denoted Ri. Unless otherwise specified, all jobs and tasks are strictly sequential; jobs

cannot execute in parallel either with themselves or with other jobs of the same task. If the underlying task

system is periodic, then every task τi releases a job once every Ti time units (Liu and Layland, 1973). If the

system is sporadic, then every task τi releases a job at most once every Ti time units (Mok, 1983). We assume

implicit deadlines: all jobs have absolute deadlines equal to their release times plus Ti.

The exact definition of task cost can vary and will be specified for each problem we consider. The simplest

and most intuitive definition for Ci is that it gives τi’s WCET. This definition is analytically convenient, but

can be problematic given the difficulties of determining WCETs that will be discussed in Section 2.5 below.

Alternatively, Ci can be defined as a task’s ACET or even as a particular percentile; for example, we could

define a task so that Ci will be greater than the actual execution time for 99% of all jobs.
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If Ci is less than τi’s WCET, then a scheduling algorithm must include provisions for the actual execution

time of some job τi, j exceeding Ci. We discuss this possibility in Section 2.3.3.5. When not stated otherwise,

we assume that Ci gives a task’s WCET.

The utilization of task τi—intuitively, the fraction of a core that the task needs in the long run—is given

by ui =
Ci
Ti
. The total utilization for the system is given by

U =
n

∑
i=1

ui. (2.1)

We assume that all tasks are independent; no precedence constraints exist between jobs of different

tasks. Furthermore, we assume there are no critical sections or other constraints that could limit specific task

combinations from executing concurrently. Given these assumptions, a task system is feasible on m cores if

and only if

∀i : ui ≤ 1 and (2.2)

U ≤ m (2.3)

hold. This result applies to both sporadic and periodic systems.

For HRT systems, the necessity of (2.2) is self evident: ui > 1 implies Ci > Ti, which in turn implies

no deadline for any job of τi will be met. Exp. (2.2) is necessary for SRT systems as well: should Ci > Ti

hold, then the first job of τi will have a minimum tardiness of Ci−Ti time units. Assuming all jobs release as

fast as possible, the minimum tardiness will increase by Ci−Ti with every subsequent job of τi, leading to

unbounded tardiness.

As for (2.3), its necessity was given by Leung and Merril for periodic systems (Leung and Merrill, 1980).

As periodic systems are a subset of sporadic systems, this result implies necessity for sporadic systems as

well. The sufficiency of both conditions for sporadic systems was proved by Mok (Mok, 1983).

Note that not all feasible task systems can be correctly scheduled in practice. An algorithm capable of

correctly scheduling all feasible systems is optimal.

Definition 2.1. A scheduling algorithm is optimal if and only if it will correctly schedule all feasible task

systems. ◀
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Particularly for HRT systems, optimal scheduling algorithms capable of scheduling all feasible systems

tend to rely on unrealistic assumptions such as zero-cost context switches. For example, PFair scheduling

requires subdividing each task into many subtasks so that the task will be preempted at each subtask boundary

(Baruah et al., 1993; Srinivasan and Anderson, 2006). When the time taken up by these preemptions is

accounted for, PFair algorithms are inferior to many scheduling algorithms that are not theoretically optimal

(Brandenburg, 2011).

2.2.2 Correctness Definitions

An HRT system is correctly scheduled if it can be shown that so long as cost values Ci are accurate for

all tasks, no deadline will ever be missed. Formally,

Definition 2.2. An HRT system is correctly scheduled if and only if the following holds:

∀i : Ri ≤ Ti.◀ (2.4)

For SRT systems, a job’s tardiness is the difference between its completion time and deadline, if the job

completes after its deadline, and zero otherwise. A task’s tardiness is the maximum tardiness of any of its

jobs. In our model, the scheduling of an SRT system is strictly correct if bounded tardiness is guaranteed, i.e.

a finite upper limit on tardiness exists for all tasks. Formally,

Definition 2.3. An SRT system is strictly correct if and only if it is scheduled such that the following holds:

∀i : Ri < ∞.◀ (2.5)

What we term strictly correct is the only correctness condition considered in much of the literature

considering bounded tardiness. Achieving strict correctness requires that WCETs are known or upper-bounded

for all tasks.

As an alternative to strict correctness, we say that scheduling for an SRT system is probabilistically

correct if the bounded tardiness property holds with probability approaching one. We state this requirement

more formally in terms of probabilistic deadlines:

Definition 2.4. τi meets the probabilistic deadline of (δi,ηi) if the probability of any job’s response time

exceeding δi is at most ηi. ◀
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Definition 2.5. τ is probabilistically correct if all tasks meet probabilistic deadlines for which δi < ∞ and ηi

approaches one. ◀

In our review of scheduling algorithms below, we discuss conditions for strict SRT correctness first in

Section 2.3 and then discuss the modifications needed to achieve probabilistic correctness in the presence of

unknown WCETs in Section 2.3.3.5. We consider probabilistic correctness to be a variation of the bounded

tardiness approach.

Other definitions for SRT correctness exist. The weakly hard model was introduced by Bernat et al. in

2001 for systems that can tolerate limited deadline misses. In that model, a system is correct so long as at

most h deadlines are missed by any sequence of K consecutive jobs of a given task (Bernat et al., 2001). 1

This model has received considerable attention in recent years (Choi et al., 2021; Hammadeh et al., 2019;

Huang et al., 2019; Pazzaglia et al., 2020; Sun and Natale, 2017), motivated largely by new use cases in

embedded real-time systems and the Internet of Things.

Predating both the bounded tardiness and weakly-hard correctness definitions, some sources define SRT

correctness in terms of the percent of deadline misses occurring over an observed interval. One such example

is Jain et al.’s (Jain et al., 2002) paper comparing SRT scheduling with and without SMT, which is discussed

in more detail in Section 2.6. This definition has since been largely replaced by correctness definitions such

as bounded tardiness and weakly hard that consider the behavior of a theoretically infinite stream of jobs.

2.3 Real-Time Scheduling Algorithms

In this section, we discuss the role of scheduling algorithms in general, followed by an overview of

common scheduling algorithms used for both HRT and SRT systems. When not otherwise specified, we

continue to assume that for all tasks, Ci is at least the task’s WCET.

2.3.1 The Role of Scheduling Algorithms

A task system is executed on a specified platform using a scheduling algorithm responsible for deter-

mining when each job will execute and on what core. In our model, real-time systems are assumed to keep

executing forever. Consequently, correctness requires either a pre-computed job-by-job schedule that can be

1The original paper uses different notation; (h,K) is the most common notation for this model used today.
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repeated indefinitely, or an algorithm that will provably schedule all jobs to complete by their deadlines (for

HRT) or within a bounded margin of their deadlines (to achieve strict correctness for SRT).

Of the many real-time scheduling algorithms that are the subject of ongoing research, we focus on two

families of scheduling algorithms: Cyclic Executive (CE) scheduling and Earliest Deadline First (EDF)

scheduling. Our goal in this section is to justify our use of these algorithms in our work and provide sufficient

context on them for our work to be understood.

2.3.2 Cyclic Executive Scheduling for HRT Systems

CE scheduling was developed to schedule HRT, periodic systems with high predictability and low

run-time overheads (Baker and Shaw, 1989). Disadvantages to CE scheduling include potentially high costs

to compute a schedule, the necessity of computing an entirely new schedule should even one task in the

system need to be changed, and, in many cases, frequent preemptions.

The essence of CE scheduling is to pre-compute a table stating when every job should execute. A

correct schedule is built by assigning jobs to equal-length intervals called frames—one job can span multiple

frames—such that no job is assigned to a frame that begins before its release and all jobs will complete in a

frame that ends no later than each job’s deadline. It follows that the maximum frame length is given by the

shortest period in the system. Multiple jobs can be assigned to a single frame so long as the total scheduled

execution time does not exceed the length of the frame. A key concept for CE schedules is the hyperperiod.

Definition 2.6. The longest common multiple of all task periods in a system gives the system’s hyperperiod,

denoted H. If all periods apart from the smallest are integer multiples of all smaller periods, then the system

is harmonic. ◀

A CE schedule is correct if the rules stated in Def. 2.7 below, adapted from Baker and Shaw (Baker and

Shaw, 1989), hold.

Definition 2.7. A CE schedule is correct if over the course of each hyperperiod: (i) all jobs are scheduled;

(ii) any non-preemptable job is scheduled in one frame; (iii) every job completes in a frame that ends no later

than its deadline; (iv) no job executes in a frame that begins before its release; (v) the total execution time

scheduled in each frame is no greater than the frame size; and (vi) no job executes in parallel with itself. ◀

For unicore systems, determining a correct schedule for a given frame size, or else determining that no

such schedule exists, can be computed with time complexity that is polynomially related to the number of
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Figure 2.1: Cyclic executive scheduling.

jobs in the hyperperiod plus the number of frames in the hyperperiod as a variation of the Max Flow problem

(Martel, 1982). Note that rule (vi) of Def. 2.7 is a non-issue for unicore systems. However, the hyperperiod

length, and therefore the number of jobs in the hyperperiod, can be an exponential function of the number of

tasks in the system; if all task periods are relatively prime, then the hyperperiod will be the product of all

individual task periods. Fortunately, harmonic task systems are common in safety-critical real-time systems

where CE scheduling may be called for. In this case, the largest period in the system is the hyperperiod.

In an idealized model where job executions can be preempted at any point without adding to the

execution time—frame boundaries are effectively preemptions—frames can be arbitrarily small. In a more

practical model, larger frame sizes that minimize the number of preemptions may be preferable. Determining

acceptable frame sizes with all factors taken into account is beyond the scope of our present work.

On multicore systems, the basic idea of CE scheduling is the same: create a repeatable assignment of

jobs to frames so that all jobs can complete by their deadlines. Rule (vi) becomes a concern in this case, and

determining CE schedulability on a multicore system is NP hard (Burns et al., 2015).

Example 2.1. Figure 2.1 shows a possible CE schedule on two cores for a task system consisting of tasks

τ1 = (2,3), τ2 = (5,6), and τ3 = (3,6) with a frame size of two. Jobs τ2,1 and τ3,1 are both split across

multiple frames; the final frame includes portions of jobs τ2,1 and τ3,1 on a single core. This task system can

also be scheduled with a frame size of one or three. ♢

While scheduling SRT systems with this method is possible, it is not typically done. We do not give

separate correctness conditions for SRT systems using this algorithm.
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Figure 2.2: Task system scheduled with EDF.

Despite the frequent overheads caused by frame boundaries and the potentially exponential complexity,

CE scheduling is often the algorithm of choice for safety-critical systems due to the high level of control it

offers. With CE scheduling, it can be known in advance which jobs will execute at the same time, knowledge

that can be useful in avoiding cache eviction and other means by which jobs on different cores can influence

one another’s execution times. Recent work on CE scheduling for multicore platforms has focused on mixed-

criticalty scheduling (Burns et al., 2015; Burns and Baruah, 2017) and more efficient schedule computation

(Deutschbein et al., 2019).

2.3.3 Earliest Deadline First Scheduling

EDF scheduling, as the name implies, gives highest priority to the job with the earliest absolute deadline.

We first consider EDF scheduling on unicore systems. Although our work considers multicore systems,

unicore EDF provides a theoretical building block used in multicore schedulers.

On a unicore system, fully preemptive EDF is optimal for both HRT and SRT systems .

Theorem 2.1. (Liu and Layland, 1973) A task system can be correctly scheduled using EDF on a single core

if and only if

U ≤ 1

holds. This result holds for both sporadic and periodic systems.

Example 2.2. Let τ be a periodic system of two tasks, τ1 = (1,2) and τ2 = (3,8). We have

U =
1
2
+

3
8
= 0.875.

EDF schedules τ without deadline misses; see Figure 2.2. Multiple jobs of τ1 preempt τ2,1. ♢
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Non-preemptive EDF. In practice, not all tasks are fully preemptable. For some task systems, the associ-

ated cache affinity loss may be unacceptable. System calls may be non-preemptable, and non-preemptivity

is one means of enforcing mutually exclusive critical sections; one example is the kernelized monitors

proposed by Mok (Mok, 1983). In some cases, which we consider in Chapter 5, tasks using SMT should be

non-preemptable. For these reasons, it is important to consider the schedulability of systems that include non-

preemptive elements. For SRT systems, the condition of Thm. 2.1 remains the same, and Non-Preempteive

EDF (NP-EDF) remains optimal, even when some tasks include segments that are not preemptable (Devi and

Anderson, 2005). However, a different condition is needed for HRT systems that include non-preemptive

segments.

A uniprocessor EDF schedulability test that accounts for non-preemptable sections within otherwise

preemptable tasks is given by Liu (Liu, 2000).

Definition 2.8. Let τi’s blocking term bi be the maximum total time for which a job of task τi may be

prevented from executing by lower-priority jobs. ◀

More specifically, if b′i gives the length of the maximum non-preemptable segment of any task τ j such

that Tj > Ti, then

bi = b′i− ε

holds. The worst-case scenario for τi occurs when τ j begins its non-preemptable segment immediately before

τi releases a job. If no preemptions at all are allowed, then this model can be used by defining the entirety of

each task as a non-preemptable segment.

Theorem 2.2. (Liu, 2000) (Chapter 6) Scheduling τ via EDF on a uniprocessor will result in all deadlines

being met if
n

∑
k=1

uk +
bi

Ti
≤ 1 (2.6)

holds for all τi ∈ τ.

Example 2.3. Scheduling a periodic task system consisting of τ1 = (1,2) and τ2 = (3,8)—the same system

as in Example 2.2—using NP-EDF will cause job τ1,2 to miss its deadline. The resulting schedule is depicted

in Figure 2.3. While this deadline miss means the schedule is incorrect for HRT, the schedule is still correct

for an SRT system; no job will miss its deadline by more than a single time unit. ♢
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Figure 2.3: Task system scheduled with NP-EDF.

2.3.3.1 Partitioned EDF

Perhaps the most intuitive means to apply EDF to multicore systems is partitioned EDF, or P-EDF. In

this algorithm, tasks are first assigned to individual cores and then scheduled using unicore EDF scheduling

so long as all tasks assigned to each core have a total utilization no greater than one. Partitioning is generally

similar to bin-packing and can be done using bin-packing-inspired algorithms. While this approach seems

simple, it is at least NP-hard in the strong sense, and in some cases much harder (Ekberg and Baruah, 2021).

P-EDF is nearly as predictable as CE scheduling; the difference is that P-EDF does not allow control

over what tasks are executing at the same time on different cores. Like CE scheduling, P-EDF can eliminate

cache affinity loss due to job migration between cores.

Unlike CE scheduling, P-EDF does not require building an entirely new schedule for every change in the

target system. Additionally, P-EDF is easier to use with sporadic systems than CE scheduling.

The disadvantage for P-EDF is that the number of cores required to schedule a system may be significantly

more than the total utilization. If a system consists of n tasks each with ui > 0.5, n cores are required to

correctly schedule it. This result holds for both SRT and HRT systems.

Example 2.4. Consider scheduling the system from Example 2.1—τ1 = (2,3),τ2 = (5,6),τ3 = (3,6)—using

G-EDF. The system has a total utilization of

2
3
+

5
6
+

3
6
= 2.

As shown in Example 2.1 and Figure 2.1, it can be correctly scheduled on two cores. However, no two tasks

can be scheduled entirely on the same core, as any two tasks have a combined utilization greater than one.

Consequently, three cores, one per task, are required. This scenario is depicted in Figure 2.4. ♢
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Figure 2.4: Example of P-EDF scheduling.

The worst case for P-EDF occurs when all tasks have a utilization of slightly more than 0.5. In this

scenario, only one task can be assigned to each core; compared to an optimal scheduler, nearly half the

available hardware goes unused.

2.3.3.2 Global EDF

Global EDF (G-EDF) again gives highest priority to jobs with earlier deadlines, but allows any job to be

scheduled on any core.

Example 2.5. Figure 2.5 shows the scheduling of a three-task system—τ1 = (2,4),τ2 = (5,8),τ3 = (4,10)—

on two cores with G-EDF. Deadline ties are broken in favor of the task with the lower index. Note that after

τ3,1 is preempted, it resumes execution on a different core. ♢

G-EDF is optimal for SRT systems, i.e. any system for which U ≤ m holds and ui is at most one for all

tasks will be correctly scheduled (Devi and Anderson, 2005). For HRT systems, G-EDF is not optimal. In

fact, for any hardware platform with at least two cores, there exist task systems with utilization arbitrarily

close to one that cannot be scheduled using G-EDF (Dhall and Liu, 1978); this is known as the Dhall Effect.

Example 2.6. Consider a task system with m tasks for which τi = (2ε,1) and one task for which τi =

(1,1+ ε.) This system has a total utilization of

m ·2ε +
1

1+ ε
≈ 1.
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Figure 2.5: Example of G-EDF scheduling

However, correctly scheduling this system on m cores with G-EDF is impossible for HRT. Figure 2.6 depicts

such a system with m = 2 and three tasks; the first two jobs of τ3 both miss their deadlines. However,

the system as scheduled does satisfy the bounded tardiness condition for SRT. The same system could be

scheduled correctly for HRT with P-EDF on two cores by assigning the cost one task to one core all other

tasks to the second core. ♢

For HRT systems, G-EDF scheduling is generally less effective than either CE or P-EDF scheduling due

to both the Dhall effect and the increased difficulty of determining exact execution times when tasks can

potentially be scheduled on any core.

2.3.3.3 Clustered EDF

Clustered EDF (C-EDF) combines aspects of G-EDF and P-EDF. In clustered scheduling, tasks are first

assigned to a cluster of cores and then scheduled “globally” within each cluster among cores in that cluster.

The problem of assigning cores to clusters is similar to the partitioned scheduling problem, but with much

less capacity loss for SRT systems.

Recall that in P-EDF, every core can be assigned tasks with total maximum utilization of one. When

using C-EDF for SRT, a cluster can be assigned tasks with total utilization equal to the cluster size.

Example 2.7. Consider scheduling a SRT system of twelve tasks, each with ui =
2
3 . Under P-EDF, twelve

cores would be required. However, with four-core clusters, each cluster could support total utilization of four,

i.e. six tasks. Therefore, only eight total cores would be required. ♢
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Figure 2.6: The Dhall Effect with G-EDF Scheduling.

Example 2.7 demonstrates one reason to use C-EDF: a given system may require fewer cores with C-EDF

than with P-EDF. The second reason is to reduce the cost of cache affinity loss compared to G-EDF. When a

job is preempted in unicore EDF, it is guaranteed to resume its execution on the same processor; this happens

to τ2,1 in Figure 2.2. The same is true within P-EDF. In both cases, it is possible that the preempted job’s data

will remain in cache.

With G-EDF, however, a preempted job can resume on any core. While Figure 2.5 depicts only two

cores, the preempted job τ3,1 could resume on any core if the three tasks in Figure 2.5 were only part of a

larger system scheduled globally across many cores.

Consequently, task costs must account for the possibility of all data having to be re-acquired from main

memory. Recall from Section 2.1 that while an L1 or L2 cache reference will typically take less than 10 ns, a

single main memory reference can take 50-100 ns. C-EDF mitigates this problem by restricting each task to a

subset of cores. If all cores in each cluster share a common lowest-level cache (LLC), then it is possible to

provide assurances that a preempted job will at least partially retain its LLC affinity. The actual time lost to

cache affinity problems will vary with the task’s memory usage; tasks with higher memory use will suffer

more from a loss of cache affinity.
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Brandenburg (Brandenburg, 2011) has extensively documented the costs of context switching, cache

affinity loss, and the time required for the scheduling algorithm itself to run in many different schedulers,

including all three of P-EDF, G-EDF, and C-EDF. He found when these costs are accounted for, P-EDF

is the best choice provided that the task set can be efficiently partitioned, i.e., tasks with ui > 0.5 are rare.

When P-EDF does not work well, Brandenburg found that G-EDF was preferred for tasks with low memory

requirements and C-EDF for tasks with larger memory requirements.

2.3.3.4 Partially Available Cores

So far, we have been assuming that every core supporting a task system executes work belonging only to

that task system. However, in Chapter 4 we will allow one core per platform to alternate between scheduling

tasks that do and do not use SMT. Our analysis incorporates existing work on partially available cores.

Devi and Anderson’s algorithm EDF-high-low (EDF-HL) shows how to schedule an SRT system of “low”

priority tasks where each core may also be required to schedule at most one “high” priority task (Devi and

Anderson, 2006). High tasks are always prioritized over low tasks; from the perspective of the low tasks,

a core is available only when no high task is executing. Low tasks are scheduled globally across all cores,

subject to any lack of availability caused by the high tasks.

Example 2.8. Figure 2.7 depicts two cores from the perspective of a system of low tasks. The first core has

limited availability due to the higher priority task τH
1 = (1,4). Black boxes indicate the times when the core

is unavailable. The second core supports no high tasks and is therefore fully available for low work. ♢

Example 2.9. Figure 2.8 shows the EDF-HL schedule for a system of three low tasks, τ1 = (2,4),τ2 = (5,8),

and τ3 = (4,10) subject to interruption by a single high task τH
1 = (1,4). Note that the low portion of this

task system is the same as in Example 2.5 and Figure 2.5. ♢

In our work, a core that can support tasks using or not using SMT will be unavailable to whatever group

of tasks it is not currently supporting. Analytically, we can view the time this core spends not supporting one

group of tasks as an interruption from a high task. In Figure 2.8, τh
1 is equivalent to time the core spends

executing tasks that use SMT and being unavailable to tasks that do not use SMT. We discuss this idea in

more detail in Chapter 4.

The following definitions are used in connection with EDF-HL.
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Figure 2.8: Scheduling with EDF-HL.

Definition 2.9. Let τH be the set of all high tasks, τL be the set of all low tasks, umax(τL) the highest-utilization

task within τL, Usum be the total utilization of both τH and τL, UH be the sum of all the utilizations of all tasks

in τH , nL be the number of tasks in τL, and UL be the sum of the min(⌈Usum⌉−2,nL) largest utilization of

tasks in τL.

Devi and Anderson have shown the following:

Theorem 2.3. (Devi and Anderson, 2006) EDF-HL guarantees bounded tardiness to every task τi of τL if

|τH | ≤ m, Usum ≤ m, and at least one of (4.3) or (4.4) holds.

m−|τH |−UL > 0 (2.7)

m−max(|τH |−1,0) ·umax(τL)−UL−UH > 0 (2.8)
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In Example 2.9, |τh|= 1 and Usum = 1.775. τH ≤ m and Usum ≤ m both hold. Furthermore,

UL = min(⌈1.775⌉−2,3) = 0.

Expression 4.3 holds:

m−|τH |−UL > 0

2−1−0 > 0.

It follows that the system of Example 2.9 is schedulable with bounded tardiness.

2.3.3.5 Probabilistic Correctness and Average Costs

The algorithms above use the assumption that for all tasks, Ci upper-bounds the WCET. In that case, a

job will always compete once it has executed for Ci time units.

Rather than assuming Ci upper-bounds WCETs, Ci can be used as a per-job execution budget. If a job

does not complete after Ci units of execution time, the task is prohibited from receiving additional processor

time until it receives additional budget. Ci units of budget are allocated when (1) Ti time units have passed

since the last job release and (2) there is a released but incomplete job of τi. Essentially, a job of τi that does

not complete within its own budget will borrow time from the next job of τi.

Example 2.10. Let τ consist of two tasks, τ1 = (1,2) and τ2 = (3,8). These parameters are the same as

the task system of Example 2.2 and Figure 2.2. The difference is that here, Ci is a budget rather than a

WCET. In this example, the first four jobs of τ1 have the actual costs of C1,1 = 1.5, C1,2 = 1.0, C1,3 = 0.5,

and C1,4 = 1.0 while job τ2,1 has cost C2,1 = 3. The resulting schedule is shown in Figure 2.9 While τ1,1

overruns its execution budget, it still executes only in time that was allocated to τ1; τ2 is not affected. The

long runtime for τ1,1 pushes back the execution of τ1,2, causing it to be late as well, despite requiring only its

budgeted execution time of 1.0. However, τ1,3 requires less time than budgeted—-0.5—which allows both it

and τ1,4 to complete on time. ♢

In statistics, a random variable takes on a value dependent on random events. For example, the random

variable D might be used to represent the possible outcomes of rolling a six-sided die; potential values of

D would be the integers one through six. A random variable’s expected value is the average of all possible
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Figure 2.9: Ci used as a budget within an EDF schedule.

outcomes weighted by the probability of each value occurring. If D represents outcomes on a fair die, its

expected value would be 3.5. If the die were weighted so that half of all rolls would give a six and the

probability of rolling each number from one through five were 1
10 , the the expected value of D would be 4.5.

If we view a task’s execution times as a random variable, then the expected value of a task’s execution

time is equivalent to its ACET, assuming that “average” refers to the average of all execution times and not

merely the observed execution times. Since an equivalent assumption is in place for WCETs—a task’s WCET

is its worst possible execution time, not merely its worst observed execution time—we are justified in this

assumption.

Mills and Anderson (Mills and Anderson, 2011) have shown that if (1) Ci is used as budget as in

Example 2.10; (2) for all tasks, Ci is greater than the expected execution time; and (3) τ as an SRT system

would be strictly correct if Ci upper-bounded WCETs, then τ is probabilistically correct per Def. 2.5.

Defining Ci in this way may be useful when WCETs are unknown—realistically, this is always the case in

multicore systems with unpredictable cross-core task interactions (Wilhelm, 2020)—or orders of magnitude

larger than ACETs.

2.4 Directed Acyclic Graphs

The scheduling discussions above apply to tasks where each job must be executed sequentially. However,

as already discussed in Section 1.5.3.1, parallelism is an essential part of many modern applications and is

widely modeled using DAGs.

The basic idea of the DAG task model was given in Section 1.5.3.1. Here we introduce some additional

terminology for the DAG model and a brief survey of existing scheduling approaches. We duplicate Figure 1.2

from Section 1.5.3.1 for easy reference.
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2.4.1 Model Overview

A DAG task is defined as τi = (Gi,Ti), where Gi = (Vi,Ei) is a DAG. Ti, as in the standard sporadic task

model, gives the period of τi, which releases a DAG job at most once every Ti time units, beginning at time 0.

As before, we assume implicit deadlines: every DAG job must complete within Ti time units of its release.

DAG-specific terminology. Each DAG task τi consists of |Vi| subtasks, with each subtask corresponding

to a vertex in Gi. The cost of subtask vk is given by ck, assumed to be its WCET. The sum of all subtask

costs gives the task’s total cost Ci. We use capital letters to refer to characteristics of tasks and lower-case

letters for characteristics of subtasks. When unambiguous, we omit subscripts from the capital letters. Each

DAG job consists of one subjob for each subtask in the DAG. The DAG job is complete once all component

subjobs have completed.

If within G there exists a path from vertex v1 to v2, then v1 is a predecessor of v2 and v2 is a successor

of v1. Otherwise, they are unconnected and the corresponding subjobs within a single job can execute in

any order, including simultaneously. If the vertices connect via a one-edge path, then the two are immediate

predecessors and successors. We require that subtask indices follow a topological order, i.e., if i < j holds,

then v j is not a predecessor of vi.

Definition 2.10. A chain is a sequence of vertices in which all but the last are followed by one immediate

successor. ◀

Definition 2.11. A DAG’s total length L is equal to the maximum length of any chain in G. This value gives

the minimum amount of time required to fully execute all jobs given an unlimited number of processors. ◀

Cost: 130
Length: 70

v1
5

v6
5

v3
10

v4
10

v2
50

v5
50

Figure 2.10: A DAG task consisting of six subtasks. Duplicate of Fig. 1.2
.
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Example 2.11. In Figure 2.10, the sum of all subtask costs gives the DAG’s cost of 130. The two longest

chains in the DAG are v1,v2,v4,v6 and v1,v3,v5,v6. Both chains have a length of 70, giving the DAG L = 70.

♢

Length is the formal term for the minimum task completion time of 70 without SMT in Examples 1.2

and 2.11. We require that L≤ T holds for all tasks; otherwise, the task cannot be scheduled. While the term

length is common in the DAG-scheduling literature, some sources use the term critical path.

A task’s total utilization is defined as U = C
T . While purely sequential tasks must have U ≤ 1 to be

schedulable, DAG tasks with U > 1 are schedulable, given a sufficient number of cores, if L ≤ T holds

(Baruah et al., 2012). We differentiate between heavy and light tasks.

Definition 2.12. τi is heavy if U > 1 holds and light otherwise. ◀

While light tasks can be scheduled sequentially on a single core without parallelism, heavy tasks can be

scheduled only by executing subtasks in parallel across multiple cores.

2.4.2 Scheduling Single Heavy DAGs

Even without SMT, determining the minimum number of cores needed to schedule a heavy DAG is NP-

hard in the strong sense (Baruah, 2015) (light tasks can be scheduled sequentially on one core). To determine

how many cores are needed by a heavy task, we follow Baruah (Baruah, 2015) by using Algorithm 1. In this

algorithm, a job begins execution as soon as all of its predecessors have been allocated their WCETs and at

least one core is free.

The maximum number of cores that a greedy algorithm such as Algorithm 1 will assign to a given DAG

is bounded.

Theorem 2.4. (Li et al., 2014) If an implicit-deadline deterministic parallel task is assigned

m =

⌈
C−L
T −L

⌉
(2.9)

dedicated cores by a greedy algorithm, then all jobs will meet the relative deadline of T.

Expression 2.9 is undefined when T = L. However,

m =
C−L

ε
+1 (2.10)
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Algorithm 1 Assign Cores (Baruah, 2015); incorporates elements from (Graham, 1969)
.

1: Maintain ready as the set of all subjobs without incomplete predecessors.
2: Maintain mr as the number of cores not currently executing a subjob.
3: m = ⌈U⌉
4: Let t be the time and D the DAG deadline.
5: while True do
6: t = 0
7: mr← m
8: ready← subjobs without predecessors
9: while t ≤ D do

10: while ready ̸= /0∧mr > 0 do
11: Assign ready subjobs to cores.
12: end while
13: t← next subjob completion time
14: if all subjobs are complete and t ≤ D then
15: {m-core schedule found.}
16: return m
17: end if
18: end while
19: {No m-core schedule found; increment m.}
20: m← m+1
21: end while

is a necessary and sufficient condition to schedule a DAG given C, L, and T parameters but arbitrary

internal structure (Li et al., 2014).

Example 2.12. Figure 2.11 shows a DAG-task with C = 10, L = 6, and T = 7. As predicted by Theorem 2.4,

it can be scheduled to meet its deadline on four cores. In this case, four cores is optimal. ♢

It follows from Theorem 2.4 that if T > L holds, then the outermost loop of Algorithm 1 will have at

most ⌈
C−L
T −L

⌉
−⌈U⌉+1.

iterations. If T = L, then the outermost loop will have at most

⌈
C−L

ε

⌉
−⌈U⌉+2

iterations. In both cases, Algorithm 1 first attempts to find a schedule on ⌈U⌉ cores (the minimum possible

number) and increments m until a correct schedule is found; the maximum number of iterations needed is

one more than the difference between the maximum number of cores needed and ⌈U⌉.
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Figure 2.11: A DAG task scheduled on four cores.

Theorem (2.4) is pessimistic; it considers only the task parameters C, L, and T. Depending on the exact

structure of the DAG, fewer cores may be possible.

Example 2.13. Figure 2.12 shows a second DAG-task with C = 10, L = 6, and T = 7. Although these

parameters are the same is those of Ex. 2.12, this task can be scheduled via Algorithm 1 on only two cores.

While this result is optimal, the algorithm is not: if v2, v3, v4, and v5 are all scheduled before v1, then

Algorithm 1 would assign fail to find a two-core schedule and would instead assign three cores. ♢

Algorithm 1 has a speedup bound of

b = 2− 1
m

(2.11)

i.e. if an optimal algorithm can schedule the DAG on m unit-speed cores, then Algorithm 1 can schedule the

same DAG on m speed b cores (Baruah, 2015). An optimal algorithm would, by definition, have a speedup

bound of 1.0. Informally, this result shows that using Algorithm 1 instead of an optimal algorithm has an

effect no worse than using the optimal algorithm on half-speed cores.

The bound of Theorem 2.4 was recently improved by He et al. (He et al., 2022) through means of

considering many chains within the DAG rather than only the DAG’s length, total cost, and period; the authors

found experimentally that their bound could call for as few as 20% of the cores called for by Theorem 2.4.
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Figure 2.12: A DAG task scheduled on two cores.

2.4.3 Federated Scheduling and Related Methods

In research on scheduling systems of DAGs, federated scheduling on shared hardware is a prominent and

well-studied approach. In this method, a system of DAG tasks is scheduled by executing each heavy task on a

set of dedicated cores and partitioning light tasks among the remaining cores (Li et al., 2014). Heavy tasks

may be over-assigned capacity; for example, the task of Ex. 2.12 and Figure 2.11 requires four cores despite

having a utilization of only 10
7 ≈ 1.43.

Despite the potential capacity loss of federated scheduling, it has generally good theoretical performance,

low scheduling overheads, and avoids cache affinity loss (Li et al., 2022). For these reasons, we use federated

scheduling as the basis for our work in Chapter 5 on SMT and DAGs.

For soft real-time tasks, where some deadline misses are allowable, cores can be reclaimed by work

stealing, where idle cores “steal” work from busy ones (Li et al., 2016). Other methods to reduce the capacity

loss of federated scheduling include semi-federated scheduling (Jiang et al., 2017) and reservation-based

federated scheduling (Ueter et al., 2018). In semi-federated scheduling, portions of heavy tasks are scheduled

as if they were light tasks; the task of Ex. 2.12 and Figure 2.11 that would be assigned three cores under

federated scheduling would be assigned one dedicated cores under semi-federated scheduling, with the

remaining portion of the task scheduled independently. In reservation-based federated scheduling, DAG tasks

are assigned reservation servers that can be scheduled sequentially.
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2.5 Timing Analysis

So far, we have considered scheduling analysis but not timing analysis; all of the schedulability results in

Sec. 2.2 require that for all tasks τi, Ci upper-bounds either its WCET or ACET. Here, we show why that

assumption is non-trivial and discuss existing means to estimate execution costs.

Historically, there has been a separation of concerns in the real-time community between timing analysis

(determining a task’s execution time) and schedulability analysis (determining whether a set of tasks with

known execution times can be correctly scheduled). There are good reasons for this separation: both topics

are complex on their own, making it difficult to address both within a single work.

2.5.1 Difficulties of Determining WCETs

There are two problems with modeling a task based on its WCET. First, determining the true WCET

may be prohibitively difficult, especially on a multicore machine. The classical approach to determining

WCETs is static timing analysis, which relies on detailed knowledge of the task being executed and the

platform executing it. When multiple tasks can interfere with one another, knowing the exact state of the

platform becomes essentially impossible, preventing static analysis (Wilhelm, 2020). Possible ways a job

may change the state of the platform, and hence affect the execution of other jobs, include causing cache

conflicts (Altmeyer et al., 2014; Bui et al., 2008; Chisholm et al., 2015; Kirk, 1989; Mancuso et al., 2013;

Ward et al., 2013; Xu et al., 2016), DRAM conflicts (Guo and Pellizzoni, 2017; Hassan et al., 2015; Reder

and Becker, 2020; Valsan et al., 2016; Yun et al., 2014, 2013), memory bus conflicts (Muench et al., 2014;

Seetanadi et al., 2017; Xu et al., 2019), and I/O conflicts (Kim et al., 2014; Pellizzoni et al., 2008). A recent

survey on the difficulties associated with WCET verification has been presented by Maiza et al. (Maiza et al.,

2019). Industrial-quality WCET analysis requires both sophisticated tools and expert analysis; the process

cannot be entirely automated (Rapita Systems, 2021).

Second, if the WCET can be determined, it may be a very rare event that a job actually requires that

many units of execution time, leading to very pessimistic scheduling if it is assumed that every job of τi will

require its WCET; depending on the application, this pessimism may be unnecessary.

One possible alternative to finding WCETs is probabilistic worst-case exeuction times, or pWCETs.

Definition 2.13. Ei is a random variable equal to the execution time of a randomly selected future job of τi.

◀
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Definition 2.14. τi has the pWCET Cp
i if and only if execution times for τi follow a probability distribution2

such that

Pr(Ei ≤Cp
i ) = p (2.12)

holds. We refer to p as the provisioning level of τi. ◀

However, finding a task’s pWCET has its own problems. Validating that Cp
i is a pWCET for a task τi

requires a detailed understanding of the task’s behavior in many possible execution states and of the likelihood

of those states occurring. It can be argued that determining a pWCET is no more practical than determining a

WCET. Furthermore, it is potentially dangerous to determine a pWCET based only on observed run-times.

To understand why, consider a simpler problem: rolling a die. Finding exact probabilities of a given die roll

result, which is analogous to a pWCET, requires detailed knowledge of the die’s physical properties, which is

analogous to perfect knowledge of a task’s behavior. Lacking detailed knowledge of a die or task, we can

make predictions based on observed past rolls or execution times. This method is practical, but does not

produce a pWCET for the task.

Example 2.14. We wish to know Pr(an arbitrary future roll≤ 5) for a given die, but we do not know any

of the die’s properties, such as how many sides it has or whether it is balanced. We cannot examine the

die directly; we can only tabulate rolls. Suppose that out of ten roles, the maximum was five. Any of the

following are possible: the die has no faces greater than five, the die has faces greater than five but these are

unlikely to be rolled, or the die has faces greater than five, which are reasonably likely to be rolled, but our

set of ten rolls was not representative of the die’s true long term behavior. To illustrate the last case, rolling a

fair six-sided die ten times gives

Pr(ten rolls≤ 5 | a fair six-sided die) =
(

5
6

)10

≈ 0.162.

Consequently, a naı̈ve interpretation of observed results, such as the rule that getting zero sixes out of ten

rolls means a six is less likely than other roles, will frequently be wrong. ♢

Inferring probabilities from measured random data forms the basis of a family of methods known as

Measurement-Based Probabilistic Timing Analysis (MBPTA). These methods attempt to probabilistically

bound task execution times by examining a small sample of jobs (Cazorla et al., 2019; Davis and Cucu-

2In some sources, the distribution itself is referred to as the pWCET
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Grosjean, 2019). MBPTA was first proposed by Burns and Edgar in 2000 (Burns and Edgar, 2000), in part as

a means to address the difficulty of timing analysis on complex processors; concerns over the practicality of

static timing analysis predate multicore computing. With MBPTA, each trial is used to gather data, similarly

to each roll of a die. A set of execution times is called a trace.

Definition 2.15. A trace is an ordered set of consecutive execution times for a task and a finite-sized

sample from the population of all possible execution times for that task. For trace A with |A| elements, let

{A1,A2, ...A|A|} be the ordered sample times within the trace. Let the maximum of the trace be denoted by

Amax. Note that the Ak values refer to times within a finite-sized sample, while Ei is from the entire population

of execution times. ◀

The trace is analyzed to produce an estimate of future behavior. The difficulty is that measured values

are themselves random variables. Statements of the form

Pr(arbitrary future roll or execution time≤ Y )≥ p

cannot be correctly evaluated without the understanding that Y, when based on measurement data, is itself a

random variable. An additional challenge is that unlike dice rolls, execution times cannot be assumed to be

independent.

In statistics, results of a repeated random trial are independent if and only if the results of one trial reveal

nothing about the results of any other trial. Dice rolls are independent: when rolling a die, each roll reveals

nothing about the next roll. Other examples of independent events include repeated coin flips and roulette

wheel spins. Independence is not the same as having equal-probability outcomes; even if a coin is weighted

to land on heads with probability 0.75 the probability of the next flip being heads is the same regardless of

previous flips.

Unfortunately, execution times are not independent; if the execution time of one job is exceptionally

long, the probability that the next job’s execution time will also be long often increases. Safely addressing

these factors—measurements are themselves potentially random, but not necessarily independent—lies at the

heart of MBPTA analysis.

A concept related to independence is identical distribution. Random events are identically distributed if

and only if the same underlying probability distribution applies to every event. For example, a series of dice

rolls is not identically distributed if a different die is used for each roll.
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The ideal situation for analysis is that random trials—equivalently, random variables—are independent

and identically distributed (IID). A vast number of statistical results, including several we consider in this

section and Chapter 3 hold only for IID random variables.

2.5.2 Extreme Value Theory

The majority of recent MBPTA work has focused on a family of methods known as extreme value

theory (EVT). Although we do not use EVT ourselves, a brief discussion provides insight into the difficulties

associated with timing analysis. The use of EVT in real-time scheduling predates the ubiquity of multicore

scheduling; it was first considered in the field to aid in determining execution times on unicore platforms

(Burns and Edgar, 2000).

EVT is built around the Fisher-Tippett-Gnedenko Theorem (Fisher and Tippett, 1928):

Theorem 2.5. Let X1, X2, ...Xn be a sequence of IID random variables with cumulative distribution function

F. Suppose there exist two sequences of real numbers an > 0 and bn ∈ R such that the following limits

converge to a non-degenerate distribution function:

lim
n→∞

Pr
(

maxX1, ...,Xn−bn

an
≤ X

)
= G(x).

Then the limit distribution G belongs to either the Gumbel, the Frechet, or the Weibull family.

Informally, this theorem can be summarized by saying that the extremes of independent and identically

distributed random variables converge to one of three possible distributions. All three distributions are

depicted in Figure 2.13.

The Gumbel distribution supports an infinite range of values, whereas the Frechet distribution has infinite

support on the right only and the Weibull has infinite support on the left only. The Frechet distribution has a

fatter right tail than the Gumbel distribution.

To apply EVT to execution time data, a practitioner attempts to fit one or more of the listed distributions

to the extremes of a sample data set. Extremes are defined as either the set of all values greater than a specified

threshold (the peak-over-threshold method, PoT) or the set of local maximums when the sample execution

time data is divided into equal size blocks (the block maxima method, BM). For example, given a trace of

1000 execution times, a practioner might, in the PoT method, define the threshold as the 90th percentile

and use the largest 100 values to select and parameterize an EVT distribution. Alternatively, using the BM
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Figure 2.13: Probability density functions (pdfs) for the Gumbel, Frechet and Weibull distributions with location
parameter 0 and scale parameter 1.

method, he might use the maxima of the first ten execution times, second ten, and so on. In either case, the

best-fitting distribution is then used as the basis for further predictions regarding WCETs.

However, this approach contains multiple potential pitfalls. There is no universal agreement on either

what block size to use or how thresholds should be set (Davis and Cucu-Grosjean, 2019). As stated in

Theorem 2.5 and subsequently reaffirmed, EVT requires IID observations (Balkema and De Haan, 1974;

Fisher and Tippett, 1928; Pickands, 1975), and tends to be highly sensitive to violations of this requirement.

Unfortunately, real execution times frequently do include unavoidable dependencies. There is currently no

agreement on how to work around this issue (Cazorla et al., 2019; Davis and Cucu-Grosjean, 2019; Jiménez

Gil et al., 2017). Although research on testing the reliability of EVT is ongoing (Arcaro et al., 2020), it is in

many ways still immature with regards to WCET estimation (Reghenzani et al., 2019).
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2.5.3 Adding in SMT

The challenges throughout this section exist even without SMT. While SMT does add additional factors

to be considered, we will show they are small in comparison to the many sources of timing difficulty that

already exist on a multicore platform without SMT. We do not intend to solve the existing timing analysis

problem, but we do show that timing analysis with SMT is comparable to timing analysis without.

2.6 Simultaneous Multithreading

In this section, we provide more details on both what SMT is and how it has been used in the past.

2.6.1 Technical Information

In many modern processors, each core uses instruction-level parallelism within jobs to execute multiple

instructions per cycle. SMT builds on this behavior to allow two or more jobs to execute instructions within

a single cycle. An overview of SMT execution is given in Examples 1.1 and 2.15. Further details on the

fundamentals of SMT can be found in the work of Eggers et al. (Eggers et al., 1997) .

Example 2.15. Let τ1 and τ2 be two real-time tasks. At the top of Figure 2.14, jobs of τ1 (darker) and τ2

(lighter) execute sequentially without SMT on a core that can accept two instructions per cycle. When fewer

than two instructions are can be executed, as in cycles three and four, cycles are wasted. τ1 finishes at the

end of six cycles and τ2 at the end of twelve. In the second part of the figure, the same jobs employ SMT to

execute in parallel, thereby reducing the number of lost cycles. τ1 finishes after eight cycles and τ2 after ten

cycles. SMT thus delays the completion of τ1, but speeds up the completion of τ2 since it does not have to

wait for τ1 to complete before beginning its own execution. In the bottom portion of the figure, τ2 begins

execution first and initially has sole use of the core, with τ1 beginning later. ♢

Figure 2.14 gives a more detailed view of SMT than Figure 1.1; whereas Figure 1.1 focuses entirely on

SMT’s effects on execution times, Figure 2.14 begins to show what is happening at the hardware level.

To understand SMT in more detail, some background on processor design is necessary. To that end, we

list below the five steps of the classic reduced instruction set computer (RISC) pipeline (Patterson and Sequin,

1981). While many modern processors include additional steps (Fog, 2018; Hennessy and Patterson, 2019),

the classic pipeline is useful to illustrate key concepts.
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Figure 2.14:
Top: task execution without SMT.
Middle: execution with SMT.
Bottom: execution with SMT, different start times.

1. Instruction fetch. An instruction is retrieved from memory or an instruction cache.

2. Instruction decode.

3. Execute. Operations are performed using processor components such as an arithmetic logic unit (ALU)

or bit shifter. If the instruction is for memory access, the effective memory address is determined.

4. Memory access. If the instruction is to load or store data, memory is read from or written to, respectively.

Otherwise, this stage is skipped.

5. Writeback. Results—either from a memory load or the execution step—are written to the register file.

With pipelining in place, it is possible for one processor to complete one instruction per clock cycle

even though each instruction requires multiple cycles. Ideally, every clock cycle will see one instruction at

each stage of the pipeline. Modern superscalar processors enable instruction-level parallelism by including

wide-issue pipelines that can process multiple instructions per pipeline phase, per clock cycle. In theory, such

a processor can execute as many instructions per cycle as the pipeline is wide. The Skylake architecture,

which we use in our experiments, can execute up to four instructions per clock cycle (Fog, 2018). In practice,

an architecture’s maximum degree of instruction-level parallelism is not always achieved. Dependencies

between instructions and memory stalls can lead to a lack of executable instructions, preventing the use of

available processor resources.
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SMT addresses this problem by allowing each fetch to pull from multiple processes. The rate at which

a task executes while using SMT is in part determined by the rate at which instructions from that task are

fetched (Tullsen et al., 1996; Fog, 2018). However, early research on SMT focused on techniques designed to

maximize throughput while minimizing slowdowns to any one task. For example, Tullsen et al. (Tullsen

et al., 1996) proposed multiple techniques for deciding which instructions should be fetched in each cycle.

These include:

• ICount: prioritize the task with the fewest instructions in the queue;

• BrCount: prioritize the task with the fewest unresolved branches.

• MissCount: prioritize the task with the fewest data cache misses.

For all three of these policies, the underlying idea is to protect tasks that make efficient use of the

processor from pointless interference.

Example 2.16. Consider a processor capable of fetching a constant f instructions per cycle. Two tasks are

co-scheduled on this processor. All instructions for τ1 can progress through the pipeline at one stage per

cycle once fetched. The execution speed of τ1 is therefore limited only by the average number of instructions

fetched per cycle.

τ2’s execution speed is more limited; due to a combination of branching code, data dependency, and

high-latency instructions, τ2 can writeback an average of at most w instructions per cycle no matter how

quickly instructions are fetched. Allowing τ2 to fetch more than w instructions per cycle on average will not

increase the execution speed, i.e., decrease the execution cost, of τ2 but doing so will decrease the execution

speed, i.e., increase the execution cost of τ1.

Suppose the two tasks initially have equal fetch priority. If f
2 < w holds, then enqueued instructions for

τ2 will increase over time. If the ICount policy is in use, τ2’s average instructions fetched per cycle will

decrease until its average fetch is equal to w. This change benefits τ1 without harming τ2. ♢

ICount was found by Tulsen et al. to be the most successful in terms of maximizing throughput and has

been used by subsequent works that simulate SMT-enabled processors (Eggers et al., 1997; Jain et al., 2002).

ICount effectively encapsulates both BrCount and MissCount; both cache misses and unresolved instructions

will lead to the presence of more unresolved instructions.
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Unfortunately, chip manufactures tend to be secretive about the exact methods used to pick instructions

for fetching. For this reason, we will be determining execution times with SMT using a measurement-

based process. However, knowledge of potential instruction-picking criteria can help in both making rough

predictions of SMT behavior and as a sanity check for observed behavior.

In general, memory-intensive programs experience minimal slowdown when using SMT, presumably

because they experience high latency to begin with. In contrast, CPU-intensive programs, such as a cache-

aware matrix multiplication program, tend to see their performance reduced dramatically.

2.6.2 Use Outside of Real-Time Computing

SMT became widely available in 2002 with the Pentium 4 processor (Marr et al., 2002). Numerous

papers were published in the early 2000s benchmarking the average-case performance of SMT; in the majority

of scenarios tested, programs utilizing SMT were found to execute at 50% to 95% of their execution speeds

without SMT (Bulpin and Pratt, 2004; Bulpin, 2005; Tuck and Tullsen, 2003). Further analysis of these

results seem to indicate policies that prioritize a combination of throughput and fairness. More recent work

comparing execution times with and without SMT is rare; there seems to be a consensus (outside of real-time

computing) that using SMT is generally the best choice and that further benchmarking is not warranted. In

fact, modern machines have SMT enabled by default. SMT can be turned off by accessing advanced boot

options or, in Linux, by using the command

sudo echo 0 > /sys/devices/system/cpu/cpuX/online

to turn off one processor—Linux views each hardware thread as an individual processor—per physical

core with X giving appropriate processor numbers. Which processors share a physical core can be discovered

by viewing system information with the command cat/proc/cpuinfo.

2.6.3 Past Uses in Real-Time Computing

The first attempt to utilize SMT in a real-time context was made in 2002 by Jain et al. (Jain et al., 2002),

who showed that, by enabling SMT and making every thread available for real-time work, it is possible to

schedule workloads with total utilizations up to 50 percent greater than what would be possible on the same

platform without SMT. While Jain et al. gave ample experimental evidence that SMT can enable systems
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with higher utilization to be supported, neither they nor anyone else, to our knowledge, has provided an

analytic schedulability test that takes SMT into account

Since then, work on SMT in real-time systems has been sparse. One line of work has considered changing

how co-scheduled tasks are prioritized against each other to ensure that a favored task has sufficient execution

time; it is co-scheduled with an unfavored task that has fewer guarantees (Dorai et al., 2003; Lo et al., 2005).

Related to this work are attempts to provide a greater level of control over how different tasks using

SMT are prioritized (Anantaraman et al., 2003; Cazorla et al., 2006; Gomes et al., 2016, 2015) or purpose-

built processors (Zimmer et al., 2014). Unfortunately, the only hardware currently available that allows

prioritization between co-scheduled threads is the IBM Power series, and even that offers less control over

priority between co-scheduled tasks than would be ideal for this work.

Mische has considered using SMT to hid context-switch times by using threads to switch task state in

and out in the background (Mische et al., 2010). While intriguing, this idea does not seem to have been

pursued further.

2.7 Chapter Summary

In this chapter, we have set the stage for our contributions by defining the problems and tools we have

to build on. We stated our assumptions regarding hardware use and gave a detailed explanation of how

real-time systems can be modeled, including what it means for a system to be correct. We next gave an

overview of the scheduling algorithms we will be building on: cyclic executive scheduling and earliest-

deadline-first scheduling, with the latter category including unicore, global, partitioned, and clustered variants.

We summarized the advantages and disadvantages of each of these approaches. We also considered the

modifications to our scheduling model and additional algorithms used to scheduled tasks with internal

parallelism, modeled as DAGs. We briefly touched on the difficulties of achieving a sound timing analysis in

practice. Finally, we explained what SMT is and briefly described its history.
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CHAPTER 3: TIMING

In this chapter, we document our experiments to observe SMT’s effects on execution times within a

real-time context. In addition, we show how to model these effects for the purpose of creating randomly

generated synthetic task systems.

The purpose of this chapter’s experiments is to gain a general understanding of SMT’s effects on

execution times. Strictly speaking, our conclusions only apply to one set of benchmark tasks running on a

specific hardware platform using a specific operating system. If SMT is being evaluated for use in a specific

application, one of the first steps in that evaluation should be running benchmark experiments with that

application’s tasks, hardware platform, and operating system.

In Section 3.1, we give our approach for timing and modeling the effects of SMT in the context of SRT

systems. In Section 3.2, we make the case that HRT systems that use SMT are no less safe than HRT systems

without SMT. In Section 3.3, we measure the effects of SMT in an HRT context and give our approach to

modelling for that case. Finally, in Section 3.4 we summarize our efforts and suggest directions for future

work. All experiments in this chapter used an Intel Xeon Silver 4110 2.1 GHz Skylake CPU running Linux

5.17.0. We leave the question of SMT on different architectures to future work.

3.1 Timing Analysis for SRT Systems

In this section, we present our work defining, measuring, and modeling task costs with SMT in an SRT

context. We begin by briefly describing our scheduling method for SMT-aware SRT scheduling, which we

will discuss in more detail in Chapter 4. We then define task costs in the context of our method and describe

the experiments we conducted to understand the relationships between task costs with and without SMT.

Based on our experiments, we give parameters for probability distributions that can be used to realistically

model SMT’s effects. This section builds on work first published in 2019 (Osborne et al., 2019). Table 3.1

summarizes the notation used in this section.
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Table 3.1: Summary of notation used in Sec. 3.1

Symbol Description Reference Sections Used

Ci( j) Cost of an SRT task τi when co-scheduled with τ j Def. 3.1 3.1
τh Set of all tasks with which τi can be co-scheduled Def. 3.2 3.1
Ch

i Threaded cost; max∀ τ j ∈ τh : i ̸= j Ci( j) Def. 3.2 3.1

Mi( j) SRT Multithreading Score;
Ci( j)−Ci

Ci
Def. 3.3 3.1

Vi Vulnerability of task τi Defs. 3.4 and 3.21 3.1, 3.3
ah Multiplier for harmful tasks Def. 3.5 3.1
as Multiplier for standard tasks Def. 3.5 3.1
H j Binary random variable indicating if τ j is harmful Def. 3.6 3.1
h Probability of a task being harmful Def. 3.6 3.1
r ah

as
Def. 3.6 3.1

3.1.1 Scheduling Method Overview

We schedule SRT tasks as if each SMT-provided thread were a separate core. We use a variation of

C-EDF scheduling (see Section 2.3.3.3) in which all tasks using SMT and assigned to the same cluster can

potentially be co-scheduled.

Example 3.1. Let τ consist of three tasks, τ1 = (3,4), τ2 = (5,8), and τ3 = (4,10). The given costs denote

each task’s expected execution time when SMT is used; how to fully define costs with SMT is covered in

Section 3.1.2. A possible EDF schedule is shown in Figure 3.1. While τ1,1 is co-scheduled only with τ2,1, τ2,1

is co-scheduled with jobs of both τ1 and τ3. τ3,1 is first co-scheduled with τ2,1, briefly has no co-scheduled

job, and then is co-scheduled with τ1,2. The system is sporadic; note that τ1,2 does not release until time 6.

Consequently, it is impossible to know in advance exactly how jobs will be co-scheduled. ♢

Assigning tasks to clusters and deciding which tasks should use SMT is covered in Chapter 4.

3.1.2 Defining an Appropriate Cost

In order to bound tardiness in a scenario similar to Example 3.1, each task’s cost needs to account for

all co-scheduling possibilities. Unfortunately, it is not possible to observe all possible ways in which jobs

of even just two tasks may interact. To do so, we would need to test the two tasks τi and τ j when starting

simultaneously, when τi starts at any point in an already-running τ j, and when τ j starts at any point in an

already-running τi. The possibilities are essentially limitless. For this reason, our experiments focus on
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Time0 4

Tasks Defined by Expected Cost
ଵ r=release time
ଶ d=absolute deadline
ଷ 

2 6 8

r=0; d=4

r=0; d=8 r=6; d=10

r=0; d=10

Figure 3.1: Scheduling as if each SMT thread were a separate core.

determining the execution times for each task τi given that each job of τi is co-scheduled with one or more

jobs of any one task τ j.

Definition 3.1. The costs for tasks τi and τ j when co-scheduled using SMT are given by Ci( j) and C j(i),

where Ci( j) is the cost of a job of τi given that the entire job is co-scheduled with one or more jobs of task τ j

and Ci( j) is the reverse. For i = j, Ci( j) is the cost of one job of τi given that it is co-scheduled with a second

copy of itself. ◀

Because we are using SMT in an SRT system where upper-bounding expected costs is sufficient for

bounded tardiness (see Section 2.3.3.5), we are primarily interested in Ci( j) and C j(i) as average costs; both

values are averages unless stated otherwise.

Example 3.2. Figure 3.2 shows the process used to determine C1(2) and C2(1). One hardware thread contin-

uously runs jobs of τ1, while the second thread continuously runs jobs of τ2. Periods are irrelevant; each

job begins as soon as the previous job completes. Observe that each job of τ1 is co-scheduled with different

portions of τ2; the reverse is true as well. In this case, we have

C1(2) =
1.0+1.5+1.0+2.0+0.7+1.8

6
= 1.33 and C2(1) =

2.0+1.0+3.0+2.0
4

= 2.0.

♢
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c=1.0 c=1.5 c=1.0 c=2.0 c=0.7 c=1.8

c=2.0 c=1.0 c=3.0 c=2.0

Figure 3.2: High-level depiction of measuring costs for an SRT system.

In a system of n tasks, each task τi will have a cost without SMT, Ci, plus a different cost Ci( j) for every

j ̸= i. It is not always practical to consider n separate possible costs for every task. In some cases, we make

scheduling decisions as if each task τi had only two costs, one without SMT, i.e., Ci, and one with SMT.

Definition 3.2. Let τh be the set of all tasks with which τi can possibly be co-scheduled.1 The threaded cost

of τi is then given by

Ch
i = max

∀ τ j ∈ τh : i ̸= j
Ci( j). (3.1)

We rely on Assumption 3.1 to justify our use of Ch
i :

Assumption 3.1. The average cost of τi given that it can be co-scheduled with any combination of jobs

belonging to tasks in set J is at most the greatest value of Ci( j) for all j in J. ◀

3.1.3 Experiments: Setup and Execution without SMT

To observe the effects of SMT on execution times, we ran a series of experiments using the TACLeBench

sequential benchmarks (Falk et al., 2016), which consist of 23 C implementations of functions commonly

found in embedded and real-time systems. We first used this approach in 2019 (Osborne et al., 2019); here

we incorporate refinements to the benchmarking process from (Bakita et al., 2021). Details of the benchmark

tasks are given in Table 3.2.

To get baseline execution times without SMT, we executed each benchmark 1,000 times. We used

the Linux command chrt to give benchmarks real-time priority above all normal tasks and the command

taskset to pin each benchmark to a single core. In addition, we used isolcpu to prevent Linux from

1We use h rather than t for threaded so as to avoid confusion with t for time.
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Table 3.2: Summary of TACLeBench Sequential Benchmarks (Falk et al., 2016)

Name Description

adpcm dec ADPCM decorder
adpcm enc ADPCM encoder
ammunition C compiler arithmetic stress test
anagram Word anagram computation
audiobeam Audio beam former
cjpeg transuff JPEG image transcoding routines
cjpeg wrbmp JPEG image bitmap writing code
dijkstra All pairs shortest path
epic Efficient pyramid image coder
fmref Software FM radio with equalizer
g723 enc CCITT G.723 encoder
gsm dec GSM provisional standard decoder
gsm enc GSM provisional standard encoder
h264 dec H.264 block decoding functions
huff dec Huffman decoding with file source to decompress
huff enc Huffman encoding with file source to compress
mpeg2 MPEG2 motion estimation
ndes Complex embedded code
petrinet Petri net simulation
rijndael dec Rijndael AES decryption
rijndael enc Rijndael AES encryption
statemate Statechart simulation of a car window lift control
susan MR image recognition algorithm

executing any additional processes on the core executing our benchmark and we redirected all interrupt

requests (IRQs) to a different core. This setup is the same as what we used in (Bakita et al., 2021). We

executed benchmarks one at a time on a dedicated machine; the only other processes running were automatic

kernel processes.

For each benchmark, we added a loop enclosing the algorithm’s main function. We allowed two iterations,

but only recorded the execution time for the second loop iteration. Algorithm 2 shows the structure of our

benchmark tasks, including the portion of each task that we timed. The first iteration of the loop brings all

data into main memory; the Linux command mlockall() ensures that all data will stay in memory. As

secondary storage access times can be three to five orders of magnitude greater than main memory access

times (Hennessy and Patterson, 2019), locking data in main memory is common practice for real-time systems.

At the end of the first loop, we evict all data from the cache to guarantee that the timed data will start with a
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cold cache. Using a cold cache adds an additional level of pessimism to our measurements, strengthening

Assumption 3.1.

Algorithm 2 Overview of benchmark code.
1: mlockall()
2: Execute one-time setup code.
3: for i in {1, 2} do
4: Begin timer.
5: Do work.
6: Stop timer.
7: Clear cache.
8: end for
9: Record time of second loop only.

In practice, real-time programs are frequently structured as endless loops with each job corresponding to

one iteration. At the end of each job, the process goes to sleep. This structure is illustrated in Algorithm 3.

Unfortunately for us, benchmarks that are widely used in the real-time community are not generally structured

as endless or long-running loops. We realize that enclosing an existing benchmark in a loop may cause its

execution time to differ from what it would have been without the loop. However, our main interest is in

discovering how SMT changes execution times. Any changes to program behavior as a result of the added

loop will also apply when SMT is used and will therefore not invalidate our results.

Algorithm 3 Code structure of a real-time task.
1: Execute one-time setup code.
2: while True do
3: Do work.
4: Sleep until next job.
5: end while

Our baseline results are summarized in Table 3.3. To make comparisons between tasks easier, 99th

percentiles, maximum observed times, and standard deviations are all given relative to each task’s mean.

As expected, given that we are repeatedly running identical code, each task shows little variation between

its mean and maximum execution times. Benchmarks petrinet and statemate at first appear to be

exceptions—their maximum execution times are 3.79 and 3.89 times their means, respectively. However, both

of these benchmarks have extremely short runtimes of a few hundred to a few thousand nanoseconds. For all

tasks, absolute differences between mean and maximum runtimes ranged from less than two microseconds

(petrinet) to almost four hundred microseconds (dijkstra).
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Table 3.3: Summary of SRT baseline execution times

Benchmark Mean (ns) 99th percentile/mean max/mean Std. Dev./mean

adpcm dec 84,183 1.18 1.22 0.021
adpcm enc 84,520 1.19 1.22 0.025
ammunition 19,643,488 1.01 1.01 0.003
anagram 321,219 1.05 1.18 0.015
audiobeam 53,491 1.27 1.44 0.035
cjpeg transupp 240,596 1.07 1.08 0.019
cjpeg wrbmp 25,436 1.05 1.72 0.047
dijkstra 6,617,518 1.03 1.06 0.011
epic 342,677 1.05 1.09 0.014
fmref 49,960 1.29 1.38 0.039
g723 enc 63,900 1.23 1.29 0.030
gsm dec 209,780 1.08 1.09 0.019
gsm enc 503,814 1.03 1.04 0.011
h264 dec 23,819 1.04 1.93 0.051
huff dec 37,271 1.08 1.50 0.049
huff enc 96,053 1.17 1.22 0.026
mpeg2 24,541,106 1.00 1.00 0.001
ndes 11,454 1.11 1.24 0.040
petrinet 619 2.35 3.79 0.325
rijndael dec 351,366 1.07 1.13 0.016
rijndael enc 333,479 1.06 1.14 0.016
statemate 5,875 1.15 3.89 0.152
susan 3,157,534 1.01 1.01 0.002

The range of per-task execution times is quite large, running from less than one microsecond for

petrinet to more than 20 ms for mpeg2. This distribution is not ideal for our purposes, but the advantages

of using a well-established benchmark set outweigh the disadvantages.

3.1.4 Experiments: Execution Times with SMT

To obtain execution times with SMT, we executed every benchmark alongside every other benchmark.

For each pair, we designated a “measured” task and an “interfering” task. The measured task’s execution

was identical to the baseline setup described in Section 3.1.3. The interfering task was pinned to the second

hardware thread of the same core2 and run in a loop until we had collected 1,000 measurements for the

measured task. For the interfering task, we did not clear the cache after each loop nor did we repeatedly start

and stop the benchmark as we did for the measured task. If we did so, we would be observing the effects of

2In Linux terminology, each thread is a separate processor.
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context switches and cache clearing on the measured task rather than the effect of the interfering task. After

collecting all measurements for the measured task, we changed the measured and interfering designations;

for every task pair τi and τ j, we observed both the execution of τi under SMT interference from τ j and the

execution of τ j under the interference of τi. In addition, we observed each τi when the interfering task was a

second copy of the same task.

To evaluate the effect of SMT on each task, we define a multithreading score as the percent increase in

τi’s execution time caused by interference from τ j.

Definition 3.3. The SRT multithreading score Mi( j) is defined as

Mi( j) =
Ci( j)−Ci

Ci

when τi is the measured task and τ j the interfering task. ◀

Example 3.3. Let Ci = 10 and Ci( j) = 15. Mi( j) = 0.5 holds, i.e., interference from τ j causes the execution

time of τi to increase by 50%. ♢

Mi( j) = 0 would indicate that applying SMT does not increase the execution time of τi at all; Mi( j) > 1

would indicate that τi’s execution time is more than doubled by SMT. SMT is potentially useful so long as

Mi( j) < 1 holds. There is no expectation that Mi( j) = M j(i) will hold.

Theoretically, a negative value for Mi( j) implies that using SMT reduces the execution time of τi. Our

experiments did produce some negative Mi( j) values. For all of these values, petrinet was the measured

task. As seen in Table 3.3, this task has an extremely low baseline execution time and an observed maximum

nearly four times its average. For this reason, we pessimistically assume our observed negative Mi( j) values

reflect unexpectedly high values of Ci rather than indicating that SMT is truly decreasing execution times.

Therefore, to avoid adding unwarranted optimism to our results, we report negative values as observed

but replace them with 0.01 for all summary statistics and calculations. In future work, we will attempt to

determine alternative explanations for negative values. For example, does SMT allow for improvements due

to cache pre-fetching? If SMT can be used to reliably reduce execution times, benefits could be significant.

In previous work on SMT and SRT systems (Osborne et al., 2019; Bakita et al., 2021), we reported task

costs with SMT divided by task costs without SMT. We use a different metric here for consistency with our

reporting on SMT and HRT tasks, discussed in Section 3.3.
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Because Ci and Ci( j) can be defined as average costs, worst observed costs, or other metrics, Mi( j) values

are dependent on the exact definitions used for the C values. We consider three different definitions for Mi( j):

with both Ci and Ci( j) defined as (1) mean, (2) 99th percentile, and (3) worst-observed costs.

While we are mainly interested in Ci( j) as an average, SMT-aware scheduling algorithms do not have to

be based on average costs. Reporting 99th percentile and worst-observed costs provides a starting point for

future work. Even when scheduling decisions are based on average costs, knowledge of extreme execution

times is helpful; the more a job exceeds its budgeted execution time, the more future jobs of the same task

will be delayed. If the effect of SMT on maximum costs were much greater than its effect on average costs,

then using SMT might be undesirable even if it appeared useful based on average costs alone. We intend to

integrate this consideration into our analysis in future work.

3.1.4.1 Summary Statistics

Summary statistics for all three versions of Mi( j) values are given in Table 3.4. In these summary statistics,

and the rest of our calculations, negative Mi( j) values are replaced with Mi( j) = 0.01.

We saw mean Mi( j) values ranging from 0.29 to 0.34, median Mi( j) values from 0.24 to 0.30, and 75th

percentile Mi( j) values from 0.34 to 0.37. All mean-based values were under 1.0, as were almost all 99th

percentile and maximum-based values. These results indicate that given our experimental setup, co-scheduling

two tasks similar to our benchmarks will almost always take less time than scheduling them sequentially.

This finding is similar to existing results (Bulpin, 2005; Bulpin and Pratt, 2004; Tuck and Tullsen, 2003), but

past results have considered only average costs within average conditions.

SMT does not appear to become less effective as we move from comparing mean costs to 99th percentiles

and observed maximums. While mean Mi( j) is largest when comparing maximum C values and smallest

when comparing means, the reverse is true for both the median and 75th percentile of Mi( j). If SMT did

become less effective as the definition of cost becomes more extreme, we would expect to see Mi( j) values

increase for all summary statistics, not just the mean, as we changed our definition of Mi( j) from being based

on averages to 99th percentiles to maximum observed costs.

3.1.4.2 A More Detailed View

In this subsection we consider all Mi( j) values, not merely summary statistics.
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Table 3.4: Summary statistics for Mi( j).

Cost Defs. mean Mi( j) median Mi( j) 75th per. Mi( j) % of Mi( j) < 1 Std. Dev.

mean 0.29 0.27 0.36 100.00% 0.18
99th per. 0.30 0.30 0.37 99.81% 0.20
max 0.34 0.24 0.34 98.87% 0.65
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adpcm_dec 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02
adpcm_enc 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02
ammunition 0.32 0.32 0.56 0.37 0.33 0.36 0.32 0.47 0.37 0.32 0.33 0.33 0.35 0.32 0.32 0.33 0.67 0.32 0.32 0.36 0.37 0.32 0.45 0.37
anagram 0.30 0.30 0.49 0.28 0.30 0.30 0.30 0.53 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.58 0.30 0.30 0.30 0.30 0.30 0.29 0.33
audiobeam 0.48 0.48 0.61 0.49 0.46 0.49 0.48 0.87 0.49 0.48 0.49 0.49 0.50 0.48 0.48 0.49 0.72 0.48 0.48 0.49 0.49 0.48 0.48 0.52
cjpeg_transupp 0.35 0.35 0.72 0.35 0.34 0.34 0.35 0.75 0.35 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.79 0.35 0.34 0.34 0.35 0.35 0.34 0.40
cjpeg_wrbmp 0.13 0.13 0.12 0.14 0.13 0.14 0.13 0.16 0.14 0.13 0.14 0.13 0.14 0.14 0.13 0.14 0.06 0.13 0.13 0.13 0.14 0.13 0.13 0.13
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fmref 0.43 0.44 0.49 0.44 0.44 0.44 0.43 0.55 0.43 0.41 0.44 0.43 0.44 0.44 0.44 0.44 0.51 0.44 0.43 0.43 0.44 0.43 0.43 0.45
g723_enc 0.37 0.38 0.79 0.39 0.38 0.37 0.38 0.79 0.38 0.37 0.34 0.37 0.39 0.37 0.37 0.37 0.96 0.37 0.38 0.38 0.37 0.38 0.37 0.44
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Figure 3.3: Mi( j) values given both Ci and Ci( j) are average observed cost.

The full set of Mi( j) values are given in Figs. 3.3 through 3.5 . For each Mi( j) value task τi, i.e., the

measured task, is on the left; task τ j, i.e., the interfering task, is along the top. The right-most column and

bottom row give means excluding any negative Mi( j) values for each row and column, respectively. The

figures are color-coded so that larger values are darker and redder. Color-coding is consistent across all three

figures. The relationships between values in the same row or column are arguably more important than exact

numerical values. The color coding makes these relationships easier to see. Exact definitions of Ci and Ci( j)

used to determine the Mi( j) values are included in each figure’s caption.

For most tasks, increases in execution time when using SMT are fairly consistent regardless of the

interfering task. We quantify this observation in Table 3.5, which summarizes the coefficient of variation3

(C.V.) of Mi( j) for each measured task τi across all possible interfering tasks τ j. Visually, this can be seen

3The standard deviation divided by the mean.
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Figure 3.4: Mi( j) values given both Ci and Ci( j) are 99th percentiles
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Figure 3.5: Mi( j) values given both Ci and Ci( j) are maximum observed values.
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Table 3.5: C.V. of Mi( j) for each measured task τi across all possible interfering tasks τ j. Values in parentheses
exclude interference from the three tasks (ammunition, dijkstra, mpeg2) that cause the highest levels
of interference.

mean 99th per. max

minimum 0.067 (0.001) 0.053 (0.001) 0.097 (0.038)
median 0.336 (0.025) 0.368 (0.081) 0.426 (0.122)
mean 0.354 (0.065) 0.447 (0.158) 0.554 (0.339)
maximum 1.063 (0.259) 1.145 (0.775) 1.920 (1.760)

Table 3.6: C.V. of Mi( j) for each interfering task τ j across all possible measured tasks τi.

mean 99th per. max

minimum 0.49 0.46 0.67
median 0.55 0.60 1.06
mean 0.55 0.59 1.34
maximum 0.61 0.67 2.58

in each of Figs. 3.3–3.5 as rows where the color remains largely the same across the entire row; a low C.V.

corresponds to a uniformly colored row.

In all three figures, Mi( j) values are noticeably higher when τ j is one of ammunition, dijkstra, or

mpeg2. Visually, these higher values result in dark red-orange vertical stripes.. If the interfering effects of

these three tasks are not considered, then Mi( j) values for each measured task τi are even more consistent.

The parenthetical values in Table 3.5 show the even smaller C.V. values that result when Mi( j) values with j

corresponding to ammunition, dijkstra, or mpeg2 are excluded.

Without these tasks, the coefficient of variation is less than 0.2 in most cases. Although these three tasks

have the highest execution times of our benchmarks (see Table 3.3), recall that interfering tasks are executed

as a single endless loop. Per-job execution times are therefore irrelevant. For this reason, we do not suspect a

causative relation between execution time and interference.

While timing is largely consistent for τi as τ j changes, the reverse is not true; the degree to which τ j

increases the execution time of τi varies dramatically as τi changes. Table 3.6 shows for every task τ j, the

coefficient of variation of Mi( j) across all possible values of i; no matter what C definitions are used for

Mi( j) the minimum coefficient of variation is at least 0.49; in all cases, the mean and median coefficients of

variation are greater than 0.5.
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We were surprised that co-scheduling a task with a second copy of itself does not result in exceptionally

poor, i.e., high, Mi( j) values. We expected that tasks competing for the same execution units, e.g., floating-

point multipliers, would fare poorly with SMT, but this does not seem to be the case. If co-scheduling tasks

with themselves did result in poor performance, the main diagonals of Figs. 3.3 through 3.5 would appear as

dark red stripes. Because Mi(i) is generally close to the average of Mi( j) across all values of j, co-scheduling

a task with itself may be a reasonable method for a low-effort first-pass evaluation of SMT effectiveness. It

may be that if Mi(i) is large, then either Mi( j) or M j(i) will be large for all j, meaning there would be little

benefit to using SMT with τi. We plan to investigate this possibility in future work.

3.1.4.3 Key Timing Behaviors Associated with SMT

Before moving on to how we model SMT’s effects, we briefly recap four key findings.

First, using SMT given our benchmark tasks, architecture, and execution conditions increases execution

times by less than 40% in the majority of cases and by less than 100% in almost all cases. Second, the

increase a given task sees to its execution time varies little as the task causing interference changes. Third,

execution-time increases caused by each interfering task are not consistent, but vary by measured task.

However, a small number of tasks seem to cause significantly greater interference than others. Finally,

co-scheduling a task with a second copy of itself may be predictive of its overall behavior when using SMT.

3.1.4.4 The Effects of Varying Inputs

In our experiments, every job of each benchmark uses identical hard-coded “input” data. In a real

application, inputs will vary across jobs. We have not considered how changing input values may affect

execution times either with or without SMT; determining appropriate test inputs for timing analysis is a

complex topic even without SMT.

3.1.5 Modeling SMT Timing Behavior: SRT

In this section, we give a process for modeling the timing behavior we have observed. This process can

be used to generate systems of synthetic tasks in which cost parameters have relationships that are similar to

what we have observed. Our process consists of four steps, detailed below: determining an overall expected

value, modeling each task’s vulnerability to SMT, modeling the degree to which each task interferes with
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others, and finally determining individual Mi( j) values as a function of vulnerability, interference, and possibly

random variation. This process allows us to separate expected Mi( j) values from how those values are related

to each other. For example, we could create two systems with the same expected value Mi( j) that would allow

for different degrees of correlation between values.

3.1.5.1 Overall Expected Value

Our first step is to give an overall expected value µ for all Mi( j) values. We use 0.2, 0.4, and 0.6. The

first value, 0.2, is optimistic: it is lower than our observed mean when comparing average Ci to average Ci( j)

values. µ = 0.4 is pessimistic with respect to our observed means, and µ = 0.6 is more pessimistic still. We

refer to these values as optimistic, mid-range, and pessimistic.

3.1.5.2 Vulnerability

Based on our observation that Mi( j) varies little as j changes, we model each task as having an inherent

level of vulnerability to SMT.

Definition 3.4. If τi is an SRT benchmark task, let its vulnerability, Vi, be equal to the observed average of

Mi( j) across all possible values of j. If τi is a synthetic SRT task, let Vi be defined as the expected value of

Mi( j), i.e.,

E[Mi( j)] =Vi.◀ (3.2)

Allowing Vi < 0 could be overly optimistic, as Vi < 0 would indicate that the expected result for co-

scheduling τi was to see τi’s execution time decrease. For this reason, we select each Vi value from the

Exponential distribution with mean µ ; Exponential random variables are never negative. We also considered

using the Normal and Uniform distributions for Vi. However, using either of those distributions would add

unjustified optimism to our model; the Normal distribution can produce negative values, and the Uniform

distribution would imply an upper bound on Mi( j).

The exponential distribution has the probability density function (pdf) and cumulative distribution

functions (cdf) given by

f (x,β ) =
1
β
· e−

x
β and
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Figure 3.6: Probability density function (pdf, top) and cumulative distribution function (cdf, bottom) for the exponential
distributions with expected value 0.25,0.5, and 0.75.

F(x,β ) = 1− e
x
β ,

respectively; β gives the expected value for the distribution. These functions are shown in Figure 3.6.

The median of the exponential is given by µ ln(2). An exponential distribution using µ = 0.4 thus has a

median of 0.27, which is equal or close to the medians reported in Table 3.4.

The exponential distribution is not the only possible choice for Vi; so long as all Vi values are selected

from distributions with expected value µ, it follows from Expression (3.17) that E[Mi( j)] = µ will hold.
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3.1.5.3 Interference

We model interfering tasks as being either standard or harmful. In our observations, ammunition,

dijkstra, and mpeg2 would be considered harmful; all other benchmarks would be standard. We define

harmful and standard tasks in our model as follows:

Definition 3.5. If τ j is harmful, then

E[Mi( j)] = ah ·Vi

holds for a constant ah ≥ 1. Likewise, if τ j is standard, then

E[Mi( j)] = as ·Vi

holds for a constant 0 < as ≤ 1. ◀

We use the binary random variable H j to denote the event that τ j is either harmful or standard.

Definition 3.6. Let H j be a random variable equal to one if τ j is harmful and 0 otherwise. Furthermore, let h

give the probability of a task being harmful, i.e.,

Pr(H j = 1) = h and Pr(H j = 0) = (1−h).◀

We can use Definition 3.6 to restate Definition 3.5 in purely mathematical terms:

E[Mi( j) | H j = 1] = ah ·Vi (3.3)

E[Mi( j) | H j = 0] = as ·Vi (3.4)

Proposition 3.1. In probability, the principle of linearity of expectations states that if X can take on values

x1, x2,... xn with probabilities p1, p2,...pn, then

E[X ] =
n

∑
i=1

pi · xi.

We can use Proposition 3.1 to state the expected value of Mi( j) in terms of h, ah, and as.

E[Mi( j)] = h ·ah ·Vi +(1−h) ·as ·Vi (3.5)
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When considering the effect of harmful tasks, it is more intuitive to think of how much worse a harmful

task is than a standard task. For this reason, we use

r =
ah

as
(3.6)

to describe the effects of a harmful task. Stating both h and r gives all information needed to determine the

effects of harmful and standard tasks.

Theorem 3.1. Given a task system model with interference defined by constants r and h > 0 it follows that

as =
1

h · (r−1)+1
and ah =

r
h · (r−1)+1

.

Proof. The result is obtained by algebraically solving Expressions (3.17), (3.5), and (3.6) for as and ah.

Starting from Expression (3.17), we have

E[Mi( j)] =Vi

⇒ {By Exp. (3.5)}

Vi = h ·ah ·Vi +(1−h) ·asVi

⇒

1 = h ·ah +(1−h) ·as

⇒{Exp. (3.6) implies ah = r ·as}

1 = h · r ·as +(1−h)as

⇒
1

h(r−1)+1
= as

The result for ah follows from Expression (3.6); ah = r ·as.

Defining h = 0 is equivalent to saying all tasks will be standard; in that case we set as = 1.
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In our experiments, we use r = 2 and h values of 0, 1
8 , and 1

4 . r = 2 and h= 1
8 are based on our observations.

The remaining h values are included to make our schedulability results more broadly applicable.

3.1.5.4 Determining Mi( j)

We have shown how to determine E[Mi( j)], but not how to actually select Mi( j). We consider two basic

approaches. In the fixed approach, we do not use a probability distribution at all, but set

Mi( j) = E[Mi( j)].

This approach models the scenario where Mi( j) is entirely determined by the vulnerability of τi and the

harmfulness of τ j. This scenario is not very realistic, but it can be useful in making comparisons.

The second approach is to model Mi( j) as a random variable with the appropriate expected value. We

choose to use an exponential distribution with mean Vi; our reasons are similar to those given in Section 3.1.5.2.

We refer to this as the exponential approach.

3.2 Timing Analysis for HRT Systems: Is SMT Safe?

“SMT cannot be used for hard real-time because execution times cannot be safely analyzed.” This belief

is common in the real-time community and something we have heard frequently. In this section, we make

the case that if it is possible to analyze execution times to a given standard when not considering SMT, it is

reasonable to apply the same standard to execution times with SMT.

Table 3.7 summarizes the notation used in this section and Section 3.3; entries are organized by the order

they appear in this section and Section 3.3. The work in this section and Section 3.3 is a continuation of work

first done in 2020 (Osborne and Anderson, 2020).

3.2.1 Scheduling Overview and Cost Definition

We start by eliminating as much SMT-induced timing uncertainty as possible. We do so via an approach

called simultaneous co-scheduling.

Definition 3.7. We say that two jobs are simultaneously co-scheduled if both begin execution simultaneously

on hardware threads belonging to the same physical core, and when one job completes, the remaining job
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Table 3.7: Summary of notation used in Secs. 3.2 and 3.3.

Symbol Description Reference Sections Used

τi.a: j.b Simultaneously co-scheduled HRT jobs Def. 3.7 3.2
C(1)

i( j) Cost of HRT task τi when simul. co-scheduled with τ j Def. 3.9 3.2, 3.3
Ei Random variable for execution time of a future job of τi Def. 2.13 2.5, 3.2
Sq

i sWCET; Pr(Ei ≤ Sq
i ) = q holds for random variable Sq

i Def. 3.10 3.2
q safety level of task τi; Pr(Ei ≤ Sq

i ) Def. 3.10 3.2
A Trace: ordered set of consecutive execution times Def. 2.15 2.5
Ak kth element of trace A Def. 2.15 2.5
Amax maximum of trace A Def. 2.15 2.5
Cp

i Pr(Ei ≤Cp
i ) = p holds for constant Cp

i Def. 2.14 2.5
qb(|A|) Lower bound of q given trace of size |A| Def. 3.13 3.2
A+ Pop. of execution times within experimental world Def. 3.14 3.2
z Count of values in A+ but not A no greater than Amax Def. 3.15 3.2
qc(|A|) Computed value of q given a trace A and population A+ Def. 3.16 3.2
Cp

i pWCET of τi: Pr(Ei ≤Cp
i ) = p Def. 2.14 2.5, 3.2

fi Linear regression function Def. 3.19 3.3
Vi Vulnerability of task τi Defs. 3.4 and 3.21 3.1, 3.3

continues on the same core until complete. No other job can be scheduled on the core until both jobs have

completed. We use τi.a: j.b to denote the simultaneously co-scheduled jobs τi.a and τ j.b. ◀

Definition 3.8. We say that two tasks are simultaneously co-scheduled if all of their jobs will be simultane-

ously co-scheduled. ◀

Simultaneous co-scheduling requires additional cost definitions.

Definition 3.9. The cost of τi given that it is simultaneously co-scheduled with τ j is given by C(1)
i( j). Likewise,

the cost of τ j given that it is simultaneously co-scheduled with τi is given by C(1)
j(i). The (1) superscript

distinguishes C(1)
i( j) from the Ci( j) parameter used to describe costs for SRT purposes; the idea behind our

notation is that C(1)
i( j) gives the cost of τi when co-scheduled with one job of τ j. ◀

Example 3.4. In Fig. 3.7, C(1)
1(2) = 6 and C(1)

2(1) = 4. Notice that when τ2,1 completes, τ1,1 continues its

execution alone. ♢

We implement simultaneous co-scheduling using barrier synchronization; neither task can proceed

until both are ready. When measuring C(1)
i( j) (respectively, C(1)

j(i)), we record the difference between τi’s (τ j’s)

completion time and the starting time of the first of the two jobs to begin. In the unlikely event that the job of

τi begins significantly later than the job of τ j, the measured C(1)
i( j) value will include both the actual execution

time of τi and the synchronization delay.
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Time0 42 6

Figure 3.7: Example of simultaneous co-scheduling.

3.2.2 Quantifying Timing Analysis Safety

To show that C(1)
i: j can be determined as safely as costs without SMT, we must first define what it means

for one cost to be as safe as another. However, our ability to compare costs is limited by our underlying

knowledge.

Example 3.5. Consider again rolling a single die. If we know the die has sides numbered one through six,

and that each side has equal probability of being rolled, we can say

Pr(randomly selected roll)≤ 5 =
5
6
. (3.7)

However, this claim relies on our knowledge of the die’s physical properties. If our only knowledge of the die

is a record of its past rolls—we cannot actually examine the die—we might compute

Pr(randomly selected roll)≤maximum observed roll (3.8)

Both quantities—the randomly selected roll and the maximum observed roll—are random variables. ♢

We define the safety of a given cost similarly to Expression (3.8); we are concerned with the probability

that one random variable, a random future execution, is no greater than an observed maximum, which is also

a random variable.

Definition 3.10. Given a task τi and a random variable Ei corresponding to the execution time of a random

future job of τi (Definition 2.13), a safe WCET (sWCET) Sq
i is a random variable such that

Pr(Ei ≤ Sq
i ) = q (3.9)
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holds. We refer to q as the safety level4 of τi. ◀

As with the die example, Sq
i is a sample maximum. More specifically, it is the maximum of trace A

(Definition 2.15).

Definition 3.11. Given task τi and trace A, Sq
i = Amax. ◀

Definition 3.10 is similar to the definition of a pWCET (Definition 2.14, Section 2.5). The difference is

that, Sq
i is a random variable, whereas Definition 2.14 is concerned with the probability of Ei exceeding a

constant.

We define the execution-cost parameters Ci, C(1)
i( j), and C(1)

j(i) in our model so that Ci = Sq
i , C(1)

i( j) = Sq
i( j) and

C(1)
j(i) = Sq

j(i)hold for a specified q. The traditional notion of correctness—all jobs are guaranteed to complete

on time—cannot be adhered to without known upper bounds on all job execution times. For this reason, we

supplement the binary idea of correctness with a quantifiable level of safety.

Definition 3.12. Task system τ is q-safe if all tasks and simultaneously co-scheduled task pairs have sWCETs

with safety level at least q, and the system would be correctly scheduled if all tasks had true WCETs no

greater than the stated sWCETs. ◀

Some may question the wisdom of using sWCETs within a safety-critical context. However, probabilistic

reasoning is already present within HRT contexts. In particular, FAA standards for commercial aircraft state

acceptable failure rates, essentially giving a probabilistic bound. We are not weakening HRT correctness; we

are making explicit a dependence on timing analysis that is often left implicit.

Determining an appropriate safety level is an application-specific decision. Our concept of safety is

applicable to any system designed around an acceptable failure rate, which could theoretically include

applications ranging from streaming media to aviation. We highlight aviation rules to show that probabilistic

timing analysis does not preclude systems that have both HRT and safety-critical requirements. However, the

number of trials we require increases inversely to the acceptable failure rate, leading to scalability problems

for applications with extremely small acceptable failure rates.

3.2.3 Safety Given a True Random Sample

In this subsection, we formally state our assumptions regarding the randomness of our trace A and show

what trace size is needed to guarantee a given safety level q given those assumptions.

4Note that q is unrelated to safety integrity levels used in risk analysis, despite the similar name.
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Assumption 3.2. The following properties hold for Ei—by Definition 2.13, the execution time of a randomly

selected future job of τi—and all elements Ak of trace A: First, both Ei and all values within A are drawn from

the same probability distribution; second, individual Ak values are not dependent on their position within A as

denoted by k; and third, individual Ak values are not dependent on other values within A. ◀

If we schedule our system using Amax = Sq
i as the task cost, what must q be?

Combining Definition 3.11 and Definition 3.10 gives

Pr(Ei ≤ Amax) = q. (3.10)

We want to determine the value of q. To do so, we need to consider both the relationship between Ei and

Amax and that between Amax = Sq
i and Cp

i for an arbitrary value of p. We make use of three basic rules of

probability to determine q, given below. Using these rules, we give a lower bound for q in terms of p and |A|

in Lemma 3.1 below.

Proposition 3.2. Let events Y1 through Yv partition a probability space, and let X be an event belonging to

the same probability space. The law of total probability states that the following property holds: Pr(X) =

∑
v
i=1 Pr(X |Yi) ·Pr(Yi).◀

Proposition 3.3. Let X be a possible outcome of a repeated random trial. It follows for a series of trials,

where each trial’s result is independent from all previous results, that Pr(X holds for some trial) = 1−

Pr(X holds for no trials) holds. ◀

Proposition 3.4. Let X be a possible outcome of v repeated, independent trials. Then, Pr(X holds for all trials)=

Pr(X)v.◀

Lemma 3.1. Assume Assumptions 3.2 and 3.11 hold. Given a trace A and an arbitrary p associated with

some value for Cp
i , the following holds:

q≥ p ·
(

1− p|A|
)
. (3.11)

Note that since (3.11) holds for an arbitrary p, q is not a function of p.
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Proof. The lemma is established by the following derivation:

q

= {by Exp. (3.10)}

Pr(Ei ≤ Amax)

= {by Prop. 3.2}

Pr
(
Ei≤Amax|Amax≥Cp

i

)
·Pr
(
Amax≥Cp

i

)
+Pr

(
Ei≤Amax|Amax<Cp

i

)
·Pr
(
Amax<Cp

i

)
≥ {since Pr

(
Ei ≤ Amax | Amax <Cp

i

)
·Pr
(
Amax <Cp

i

)
≥ 0}

Pr
(
Ei ≤ Amax | Amax ≥Cp

i

)
·Pr
(
Amax ≥Cp

i

)
≥ {since Pr

(
Ei ≤ Amax | Amax ≥Cp

i

)
≥ Pr(Ei ≤Cp

i )}

Pr(Ei ≤Cp
i ) ·Pr

(
Amax ≥Cp

i

)
= {by Exp. (2.12)}

p ·Pr
(
Amax ≥Cp

i

)
= {by the definition of Amax (Definition 2.15)}

p ·Pr(Ak ≥Cp
i holds for some Ak ∈ A)

= {by Prop. 3.3}

p · (1−Pr(Ak <Cp
i holds for all Ak ∈ A))

= {by Prop. 3.4}

p · (1−Pr(Ak <Cp
i )
|A|)

= {since Ak terms are independent and from the same distribution as Ei, per Pre. 3.2}

p · (1−Pr(Ei <Cp
i )
|A|)

≥ {since Pr(Ei <Cp
i )≤ Pr(Ei ≤Cp

i ) }

p · (1−Pr(Ei ≤Cp
i )
|A|)

= {by Exp. (2.12)}

p · (1− p|A|).
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We can now lower-bound q in terms of |A| alone.

Theorem 3.2. Let Assumptions 3.2 and 3.11 hold. Then it follows that

q≥
(

1
|A|+1

) 1
|A|
·
(

1− 1
|A|+1

)
(3.12)

Proof. We first define the lower bound of q given in Expression (3.11) as q∗, i.e., q≥ q∗ holds, where

q∗ = p(1− p|A|).

Maximizing q∗ will give a lower bound for q in terms of |A| alone. To maximize q∗, we find the value of p

for which the first derivative of q∗ with respect to p equals 0 and the second derivative is negative. The first

derivative is given by
dq∗

d p
= 1− (|A|+1) · p|A|,

and the second by
d2q∗

d p2 =−|A| · (|A|+1) · p|A|−1.

Observe that d2q∗

d p2 < 0 holds for all p > 0. Consequently, q∗ is maximized when dq∗
d p = 0.

Solving dq∗
d p = 0 for p gives the value of p that maximizes q∗.

dq∗

d p
= 1− (|A|+1) · p|A|

⇒

0 = 1− (|A|+1) · p|A|

⇒

(|A|+1) · p|A| = 1

⇒

p|A| =
1

|A|+1

p =

(
1

|A|+1

) 1
|A|
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Inserting this value into Expression (3.11) in the place of p gives the result.

q≥ p
(

1− p|A|
)

⇒

q≥
(

1
|A|+1

) 1
|A|
·

(
1−

[(
1

|A|+1

) 1
|A|
]|A|)

⇒

q≥
(

1
|A|+1

) 1
|A|
·
(

1− 1
|A|+1

)

Definition 3.13. We refer to the lower bound of Expression (3.12) given trace size |A| as qb(|A|). ◀

For reference, qb(1000) ≈ 0.99212.

In Section 3.2.5, we will use this result to compare the safety of tasks that do and do not use SMT.

The greatest potential shortfall of this approach is the reliance on Assumption 3.2, which may not hold in

practice. However, this obstacle is not unique to us; as mentioned in Section 2.5, EVT methods must also

contend with data that may not be as independent as desired. In Secs. 3.2.4 and 3.2.5, we empirically test

what happens when Assumption 3.2 does not hold.

3.2.4 Safety Without True Randomness: Obtaining Execution Times

So far, our timing analysis has been theoretical; we have shown that if Assumptions 3.2 and 3.11 hold,

then we can safely place a lower bound on the value of q, which we denote as qb(|R|) per Definition 3.13 (“b”

denotes our theoretical bound). In practice, however, Assumption 3.2 may not hold. What can we say about

timing safety and q in a more realistic setting?

Experimental studies are typically done within a framework that defines an “artificial world,” and

definitive conclusions can only really be drawn with respect to that “world”—further conclusions concerning

the “real” world, though often interesting and relevant, are necessarily speculative. In our context, we need

to be able to compare Amax values determined from relatively small traces to entire populations. Thus,

throughout this section, we assume an artificial world in which only the 23 programs of the TACLeBench
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sequential benchmarks (Falk et al., 2016) are of interest. Furthermore, we assume that the entire population

of execution times for the task in this world is given by a sequence of 100,000 job executions for each

benchmark, which we denote as A+.

Definition 3.14. Let A+ be a sequence of 100,000 execution times. Within the artificial world of our

experiments, we assume that A+ gives the entire population of execution times for the task of interest. ◀

In the “real” world, we typically would not have the entire population of possible execution times; if we

somehow did, this analysis technique would be unnecessary. With this setup in place, our world thus consists

of 23 solo tasks and 529 task pairs, each with 100,000 jobs or job pairs.

As we did for the SRT case in Section 3.1, we executed each benchmark using the Linux command chrt

to give benchmarks real-time priority, taskset to pin each benchmark to a single core, isolcpu to prevent

the execution of additional processes on the test core, and redirected all IRQs to different CPUs. Also as

before, we included an initial untimed loop to bring all data into memory—we use mlockall to keep it in

memory—and cleared the cache after every job to approximate worst-case running conditions.

Each possible pair of tasks was executed using simultaneous co-scheduling. Within each pair of jobs, the

first job to finish would go to sleep until the second job had finished as well. Once both jobs had finished, the

cache for both was cleared.

Unlike our SRT experiments, we executed each benchmark and pair of benchmarks as a loop, without

stopping execution, until timing data for all jobs had been collected. Algorithm 4 shows this approach.

In the “real” world, appropriately dealing with task inputs in timing analysis is a complex issue. In

our setting here, the initial “input” for each benchmark is hard-coded, but the program structure causes the

inputs processed by each loop to vary; each job may change the inputs that will be processed by the next job,

creating dependencies between sequential execution times.5

When we executed benchmarks as we did for the SRT case (Algorithm 2), terminating and restarting the

program after every timed loop creates a strong argument that recorded execution times will be independent.

In many circumstances, independent execution times are desirable, but if we used fully independent execution

times for our HRT benchmark results, we would have no evidence that our results hold for anything other

data that fully fits Assumption 3.2. By deliberately using data that violates Assumption 3.2, we show that our

5We do not consider whether looping our benchmarks would produce meaningful results; we are using them solely to produce
realistic timing data.
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Algorithm 4 Overview of HRT benchmark code.
1: mlockall()
2: Execute one-time setup code.
3: for i in {1...|A+| + 1} do
4: Begin timer.
5: Do work.
6: Stop timer.
7: Record time.
8: Clear cache.
9: end for

main result for this section—timing analysis with SMT is not inherently inferior to timing analysis without

SMT—holds within an experimental world that departs from the assumption of perfect independence.

3.2.5 Safety Without True Randomness: Analyzing Execution Times

In this subsection, we compare the ability of actual 1,000-job traces to predict the execution time behavior

of 100,000 job “populations” to the prediction computed from Expression (3.12) with |A| = 1,000 that a

future execution time has probability at least 0.99212 of being no greater than the maximum of a 1,000-job

trace.

We denote the number of “future” jobs—execution times in A+ but not in A—no greater than Amax as z.

Definition 3.15. Let z be the number of values in A+ but not A, i.e., A+ with the first |A| values excluded,

and no value greater than Amax.

To avoid overloading q, we define a term for the value we actually compute given a trace and population.

Definition 3.16. Given a trace size |A| and a population A+, and assuming that A consists of the first |A|

execution times in A+, let the result of computing q per Expression (3.10) be denoted qc(|A|) (“c” denotes a

computed value of q). ◀

We can calculate qc(|A|) as the number of future jobs no greater than Amax divided by the total number of

future jobs. In other words,

qc(|A|) =
z

|A+|− |A|
(3.13)

We compare qc(|A|) and qb(|A|) to assess our ability to safely schedule a task system. When

qc(|A|) ≥ qb(|A|) (3.14)
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holds for a given task then we know, at least within the artificial world of our experiments, that scheduling a

system on the basis of observed maximums is qb(|A|) safe (Definition 3.12).

Example 3.6. Let A consist of the five execution times (3,3,4,8,6). Per Definition 3.13, qb(5) is given by

(
1

|A|+1

) 1
|A|
·
(

1− 1
|A|+1

)
=

(
1
6

) 1
5

·
(

1− 1
6

)
≈ 0.63.

This result tells us that if Assumption 3.2 holds, then the probability q that a future value drawn from the

same population will be no greater than the sample maximum, eight, is at least 0.63.

Now suppose we have knowledge of the population from which A is drawn: A+=(3,3,4,8,6,1,6,10,4,4).6

It follows that z = 4 ; A+ excluding A has 4 values no greater than 5. We have

qc(5)

=
z

|A+|− |A|

=
4
5
.

Because qc(5) ≥ qb(5) holds ( 4
5 ≥ 0.63), we conclude that using Amax as an sWCET with q = 0.63 is safe.

♢

We can compute qc(|A|) only within artificial worlds where we can view the entire population A+. Within

such an artificial world, we ask whether tasks using SMT can be as safe as tasks not using SMT.

3.2.6 Safety Without True Randomness: Results

When we calculated qc(1000) for each of our 23 solo tasks, we found a minimum qc(1000) of 0.995, a mean

of 0.999, and a maximum of 1.0. We conclude from qc(1000) > 0.992 holding that these tasks, which are part

of our artificial world, are safe. This conclusion holds even without Assumption 3.2. Table 3.8 shows all

qc(1000) values along with additional summary statistics.

6We ignore for the moment that A+ has, by definition, 100,000 elements.
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Table 3.8: Summary of HRT baseline execution times.

First 1,000 jobs All 100,000 jobs
Benchmark mean (ns) max (ns) mean (ns) max (ns) qc(1000)

adpcm dec 84,666 145,183 84,583 145,398 0.99999
adpcm enc 84,620 103,613 84,678 113,240 0.99876
ammunition 19,629,643 19,766,332 19,642,379 234,097,200 0.99886
anagram 310,793 331,264 309,347 529,686 0.99508
audiobeam 52,056 74,748 51,993 80,338 0.99987
cjpeg transupp 240,626 265,175 239,256 271,531 0.99981
cjpeg wrbmp 25,467 46,021 25,530 52,447 0.99959
dijkstra 6,580,290 6,789,719 6,583,733 220,840,048 0.99734
epic 334,410 356,238 334,066 368,017 0.99981
fmref 52,864 111,731 43,178 111,731 1.00000
g723 enc 62,569 86,057 62,632 94,841 0.99981
gsm dec 208,810 230,989 209,386 269,162 0.99965
gsm enc 490,436 510,441 490,001 737,621 0.99770
h264 dec 23,096 48,088 23,146 105,186 0.99990
huff dec 29,096 47,322 29,126 59,734 0.99774
huff enc 79,499 97,636 79,421 107,618 0.99398
mpeg2 24,519,668 24,565,208 24,546,819 614,412,800 0.99939
ndes 10,467 15,355 10,610 38,213 0.99873
petrinet 164 821 223 18,951 0.99983
rijndael dec 352,363 373,130 352,365 404,731 0.99913
rijndael enc 332,262 351,646 332,287 406,740 0.99587
statemate 5,883 33,254 5,887 33,254 1.00000
susan 3,144,910 3,160,378 3,151,315 217,072,704 0.99973

Now we change one element of our world: we allow SMT. Are the tasks still safe?

For our 529 task pairs using SMT, the mean and maximum qc(1000) across all pairs—values for Ci( j) and

C j(i) are calculated separately—were found to be 0.999 and 1.0, respectively. Additional results, saved as a

CSV file, are included in our online appendix ( https://www.cs.unc.edu/~shosborn/dissertation/).

More importantly than mean and maximum values, the minimum qc(1000) value was 0.993, which is

greater than our threshold of 0.992. The answer to the question of safety is yes: when we allow SMT into our

world, execution times remain safe.

3.2.7 Rules for Using SMT

Based on our comparisons of qc(1000) and qb(1000) with and without SMT, we propose the following rules

for applying SMT to HRT scheduling.
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1. SMT shall only be used via means of simultaneous co-scheduling.

2. If |A| execution time samples are considered safe to upper-bound execution times without SMT, then

|A| samples shall be considered safe to upper-bound execution times with SMT.

When these rules are followed, simultaneously co-scheduled task pairs can be part of a qb(|A|)-safe system,

at least within our experimental world. At first glance, this result may seem rather weak; our artificial world

is not the real world. However, scheduling research is most often done in an artificial world where execution

times are known. Our results indicate that an artificial world where SMT is safe is no less reasonable than the

artificial worlds already used in research.

3.3 HRT Benchmark Results: Characterizing Execution Times

Our next task is to examine how SMT affects the execution times of simultaneously co-scheduled tasks

relative to their execution times without SMT. In this section, we give our observations regarding execution

time and develop a method for modeling SMT’s effects in an HRT context. Continuing from our rules for

using SMT in Section 3.2.7, we define Ci, C j, and C(1)
i( j) for each task and pair of tasks in our benchmark data

as the maximum of each sample.

3.3.1 The HRT Multithreading Score

Definition 3.17. Let the HRT multithreading score M(1)
i( j) denote the increase in τi’s execution time when

co-scheduled with τ j relative to the minimum of Ci and C j, e.g.,

M(1)
i( j) =

C(1)
i( j)−Ci

min(Ci,C j)
or, (3.15)

C(1)
i( j) =Ci +M(1)

i( j) ·min(Ci,C j). (3.16)

The exact interpretation of M(1)
i( j) depends on the relative values of Ci and C j.

If C j ≤Ci holds, then M(1)
i( j) give the cost to τi of being co-scheduled with τ j per unit of τ j’s execution

time. If Ci ≥C j holds, then M(1)
i( j) is equivalent to the SRT metric of Mi( j) (Def. 3.3); it gives the percent

increase to τi’s execution time given that τi is co-scheduled with τ j.

If Ci ≥C j and M(1)
i( j) ≥ 1 both hold, then there is no benefit to pairing τi and τ j together. If M(1)

i( j) < 1

holds, then pairing jobs of the two tasks is potentially beneficial, with lower values indicating greater benefit.
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If M(1)
i( j) < 0 holds, then τi: j actually requires less measured time to execute than τi alone. If Ci <C j holds,

then co-scheduling the tasks may still be beneficial even if M(1)
i( j) ≥ 1 so long as M(1)

j(i) ≤ 1 holds.

Example 3.7. Let τ1 and τ2 be such that C1 = 5, C2 = 20, C(1)
1(2) = 12, and C(1)

2(1) = 22. It follows that

M(1)
1(2) =

12−5
5

=
7
5

and

M(1)
2(1) =

22−20
5

=
2
5
.

Using SMT saves time; the co-scheduled tasks require 22 time units, whereas 25 units would be required to

schedule the tasks sequentially. However, looking at M(1)
1(2) could incorrectly give the impresssion that SMT is

not helpful. ♢

Fig. 3.8 shows M(1)
i( j) calculated for all pairs of tasks. The figure is organized with tasks ordered from top

to bottom and left to right by decreasing baseline execution time; Ci >C j holds for all pairs above and to the

right of the main diagonal, with C j decreasing as we move to the right and Ci decreasing as we move down.

Within each row, Ci
C j

is minimized on the left and maximized on the right, with the main diagonal having

Ci
C j

= 1. Fig. 3.9 shows only the main diagonal and lower half of Fig. 3.8, i.e., M(1)
i( j) values for which Ci ≤C j

holds. Fig. 3.10 shows only M(1)
i( j) values for which C j ≤Ci holds. As with the SRT case, the figures are

color-coded so that greater M(1)
i( j) values are darker and redder. Color-coding is consistent across all figures.

When Ci ≤C j holds, in Fig. 3.9 and the bottom half of Fig. 3.8, M(1)
i( j) appears uncorrelated with Ci

C j
.

Visually, rows do not show a left-to-right color gradation. From the perspective of τi, it makes no difference

whether τ j completes at the same time as τi or much later.

When Ci ≥C j holds, in Fig. 3.10 and the top half of Fig. 3.8, then a positive correlation between M(1)
i( j)

and Ci
C j

is obvious; rows get redder and darker to the right. This correlation indicates that combining tasks

tends to become less efficient as the difference between their costs increases.

Example 3.8. Let τ1, τ2, and τ3 be such that C1 = 20, C2 = 10, and C3 = 5. If C(1)
1(2) and C(1)

1(3) are both equal

to 25, then M(1)
1(2) =

5
10 = 0.5 and M(1)

1(3) =
5
5 = 1. While co-scheduling τ1 and τ2 reduces the total time required

to schedule both tasks, co-scheduling τ1 and τ3 does not do so. ♢
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petrinet

mpeg2 0.94 0.76 0.51 0.86 0.74 0.76 5.13 0.80 0.83 0.74 0.73 0.43 0.66 14.64 1.08 0.94 1.01 0.74 1.16 0.99 0.97 1.99 35.62
ammunition 0.70 0.66 0.42 0.68 0.20 0.17 6.15 -0.08 -0.01 -0.41 -0.30 -1.30 -1.79 5.51 -1.86 18.19 -2.53 -5.84 -4.01 -6.76 -5.59 -6.88 -188.80
dijkstra 0.25 0.27 0.25 0.36 0.37 2.48 2.40 -0.08 3.14 3.92 4.43 7.05 6.85 0.16 0.57 -0.31 10.44 1.08 17.63 16.33 1.00 65.77 924.16
susan 0.95 0.78 0.87 0.96 4.77 0.81 0.93 6.85 7.21 9.10 10.45 16.07 0.57 0.58 24.66 0.90 0.83 0.65 49.88 50.68 51.15 8.07 2893.55
gsm_enc 0.57 0.58 0.56 0.55 0.62 0.60 0.74 0.63 0.79 0.92 1.06 1.51 2.08 2.13 2.41 2.61 2.95 4.52 4.91 4.86 6.41 0.73 262.34
rijndael_dec 0.67 0.61 0.83 0.64 0.68 0.73 0.66 0.72 0.64 0.57 0.79 1.12 0.32 0.42 0.51 1.72 2.17 3.33 3.29 0.29 0.10 10.25 186.88
epic 0.91 0.81 0.77 0.87 0.91 0.81 0.88 0.79 0.77 0.74 0.67 0.32 0.47 0.44 0.68 0.74 3.20 0.49 4.78 4.89 6.98 15.52 287.38
rijndael_enc 0.72 0.72 0.88 0.69 0.71 0.77 0.69 0.76 0.69 0.79 0.90 1.27 1.53 1.64 1.87 2.05 2.37 0.43 3.43 3.72 5.12 11.40 213.03
anagram 0.67 0.67 0.60 0.68 0.66 0.63 0.66 0.66 0.69 0.64 0.81 0.29 1.46 1.64 1.81 1.97 0.55 3.36 3.51 3.36 4.77 0.36 185.67
cjpeg_transupp 0.55 0.57 0.56 0.58 0.58 0.55 0.63 0.61 0.61 0.64 0.51 0.60 0.82 0.80 0.32 1.25 1.35 1.91 2.27 -0.29 2.77 6.35 122.26
gsm_dec 0.38 0.41 0.35 0.43 0.38 0.37 0.42 0.41 0.40 0.43 0.41 0.46 0.16 0.58 0.56 0.70 0.14 -0.27 1.12 1.15 1.70 3.63 68.84
adpcm_dec -0.26 -0.25 -0.26 -0.26 -0.26 -0.27 -0.26 -0.27 -0.23 -0.26 -0.23 -0.27 -0.34 -0.38 -0.40 -0.43 -0.51 -0.94 -0.94 -0.84 -1.33 -2.95 -55.67
fmref 0.31 0.31 0.30 0.32 0.33 0.27 0.30 0.26 0.32 0.29 0.30 0.28 0.25 0.31 0.33 0.34 0.36 0.30 0.36 0.43 0.23 0.64 3.46
adpcm_enc 0.10 0.04 0.05 0.03 0.06 0.01 0.03 0.04 0.04 0.04 0.03 0.03 0.05 0.05 0.03 0.05 0.08 -0.03 0.06 0.17 -0.12 -0.22 -5.90
huff_enc 0.67 0.63 0.72 0.47 0.66 0.47 0.55 0.48 0.62 0.51 0.53 0.35 0.39 0.36 0.46 0.54 0.52 0.66 0.49 0.38 0.91 1.54 36.98
g723_enc 0.57 0.68 0.50 0.63 0.62 0.52 0.68 0.60 0.65 0.65 0.67 0.45 0.46 0.47 0.63 0.64 0.54 0.43 0.71 0.37 0.12 1.72 -4.62
audiobeam 0.52 0.57 0.65 0.53 0.50 0.46 0.49 0.46 0.52 0.54 0.47 0.58 0.41 0.53 0.52 0.46 0.52 0.29 0.29 0.22 0.01 0.68 19.96
h264_dec 0.04 0.12 0.24 0.08 0.13 -0.28 -0.10 0.03 0.22 -0.02 -0.03 0.07 -0.08 0.04 -0.04 -0.03 0.11 0.01 -0.01 -0.03 -0.12 -0.21 -22.16
huff_dec 0.64 0.48 0.48 0.31 0.47 0.22 0.15 0.32 0.37 0.36 0.33 0.23 0.41 0.25 0.62 0.42 0.28 0.33 0.28 0.27 0.09 0.31 1.86
cjpeg_wrbmp 0.06 0.26 0.09 0.14 0.06 -0.05 0.01 0.06 0.10 0.17 0.09 0.02 0.08 0.10 0.12 0.04 0.12 -0.06 0.00 0.18 -0.03 -0.10 -3.75
statemate -0.22 -0.17 -0.27 -0.30 -0.46 -0.32 -0.13 -0.28 -0.34 0.00 -0.32 -0.73 -0.71 -0.73 -0.14 -0.48 -0.25 -0.23 -0.29 -0.20 -0.62 -0.62 -14.82
ndes 1.12 0.97 0.09 0.98 0.07 1.30 1.02 1.53 1.05 0.98 1.42 0.95 0.86 1.08 0.02 0.94 1.04 0.13 0.62 0.61 0.69 0.91 12.05
petrinet 0.70 1.07 10.28 1.07 0.73 2.56 0.91 10.82 1.06 0.83 0.92 1.00 1.15 1.18 0.64 0.86 0.80 0.57 3.57 11.53 0.85 0.67 0.38

intefering
task

measured
task

Figure 3.8: M(1)
i( j) values for all pairs.
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mpeg2 0.94 x x x x x x x x x x x x x x x x x x x x x x
ammunition 0.70 0.66 x x x x x x x x x x x x x x x x x x x x x
dijkstra 0.25 0.27 0.25 x x x x x x x x x x x x x x x x x x x x
susan 0.95 0.78 0.87 0.96 x x x x x x x x x x x x x x x x x x x
gsm_enc 0.57 0.58 0.56 0.55 0.62 x x x x x x x x x x x x x x x x x x
rijndael_dec 0.67 0.61 0.83 0.64 0.68 0.73 x x x x x x x x x x x x x x x x x
epic 0.91 0.81 0.77 0.87 0.91 0.81 0.88 x x x x x x x x x x x x x x x x
rijndael_enc 0.72 0.72 0.88 0.69 0.71 0.77 0.69 0.76 x x x x x x x x x x x x x x x
anagram 0.67 0.67 0.60 0.68 0.66 0.63 0.66 0.66 0.69 x x x x x x x x x x x x x x
cjpeg_transupp 0.55 0.57 0.56 0.58 0.58 0.55 0.63 0.61 0.61 0.64 x x x x x x x x x x x x x
gsm_dec 0.38 0.41 0.35 0.43 0.38 0.37 0.42 0.41 0.40 0.43 0.41 x x x x x x x x x x x x
adpcm_dec -0.26 -0.25 -0.26 -0.26 -0.26 -0.27 -0.26 -0.27 -0.23 -0.26 -0.23 -0.27 x x x x x x x x x x x
fmref 0.31 0.31 0.30 0.32 0.33 0.27 0.30 0.26 0.32 0.29 0.30 0.28 0.25 x x x x x x x x x x
adpcm_enc 0.10 0.04 0.05 0.03 0.06 0.01 0.03 0.04 0.04 0.04 0.03 0.03 0.05 0.05 x x x x x x x x x
huff_enc 0.67 0.63 0.72 0.47 0.66 0.47 0.55 0.48 0.62 0.51 0.53 0.35 0.39 0.36 0.46 x x x x x x x x
g723_enc 0.57 0.68 0.50 0.63 0.62 0.52 0.68 0.60 0.65 0.65 0.67 0.45 0.46 0.47 0.63 0.64 x x x x x x x
audiobeam 0.52 0.57 0.65 0.53 0.50 0.46 0.49 0.46 0.52 0.54 0.47 0.58 0.41 0.53 0.52 0.46 0.52 x x x x x x
h264_dec 0.04 0.12 0.24 0.08 0.13 -0.28 -0.10 0.03 0.22 -0.02 -0.03 0.07 -0.08 0.04 -0.04 -0.03 0.11 0.01 x x x x x
huff_dec 0.64 0.48 0.48 0.31 0.47 0.22 0.15 0.32 0.37 0.36 0.33 0.23 0.41 0.25 0.62 0.42 0.28 0.33 0.28 x x x x
cjpeg_wrbmp 0.06 0.26 0.09 0.14 0.06 -0.05 0.01 0.06 0.10 0.17 0.09 0.02 0.08 0.10 0.12 0.04 0.12 -0.06 0.00 0.18 x x x
statemate -0.22 -0.17 -0.27 -0.30 -0.46 -0.32 -0.13 -0.28 -0.34 0.00 -0.32 -0.73 -0.71 -0.73 -0.14 -0.48 -0.25 -0.23 -0.29 -0.20 -0.62 x x
ndes 1.12 0.97 0.09 0.98 0.07 1.30 1.02 1.53 1.05 0.98 1.42 0.95 0.86 1.08 0.02 0.94 1.04 0.13 0.62 0.61 0.69 0.91 x
petrinet 0.70 1.07 10.28 1.07 0.73 2.56 0.91 10.82 1.06 0.83 0.92 1.00 1.15 1.18 0.64 0.86 0.80 0.57 3.57 11.53 0.85 0.67 0.38
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Figure 3.9: M(1)
i( j) values where C j ≥Ci holds.
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mpeg2 0.94 0.76 0.51 0.86 0.74 0.76 5.13 0.80 0.83 0.74 0.73 0.43 0.66 14.64 1.08 0.94 1.01 0.74 1.16 0.99 0.97 1.99 35.62
ammunition x 0.66 0.42 0.68 0.20 0.17 6.15 -0.08 -0.01 -0.41 -0.30 -1.30 -1.79 5.51 -1.86 18.19 -2.53 -5.84 -4.01 -6.76 -5.59 -6.88 -188.80
dijkstra x x 0.25 0.36 0.37 2.48 2.40 -0.08 3.14 3.92 4.43 7.05 6.85 0.16 0.57 -0.31 10.44 1.08 17.63 16.33 1.00 65.77 924.16
susan x x x 0.96 4.77 0.81 0.93 6.85 7.21 9.10 10.45 16.07 0.57 0.58 24.66 0.90 0.83 0.65 49.88 50.68 51.15 8.07 2893.55
gsm_enc x x x x 0.62 0.60 0.74 0.63 0.79 0.92 1.06 1.51 2.08 2.13 2.41 2.61 2.95 4.52 4.91 4.86 6.41 0.73 262.34
rijndael_dec x x x x x 0.73 0.66 0.72 0.64 0.57 0.79 1.12 0.32 0.42 0.51 1.72 2.17 3.33 3.29 0.29 0.10 10.25 186.88
epic x x x x x x 0.88 0.79 0.77 0.74 0.67 0.32 0.47 0.44 0.68 0.74 3.20 0.49 4.78 4.89 6.98 15.52 287.38
rijndael_enc x x x x x x x 0.76 0.69 0.79 0.90 1.27 1.53 1.64 1.87 2.05 2.37 0.43 3.43 3.72 5.12 11.40 213.03
anagram x x x x x x x x 0.69 0.64 0.81 0.29 1.46 1.64 1.81 1.97 0.55 3.36 3.51 3.36 4.77 0.36 185.67
cjpeg_transupp x x x x x x x x x 0.64 0.51 0.60 0.82 0.80 0.32 1.25 1.35 1.91 2.27 -0.29 2.77 6.35 122.26
gsm_dec x x x x x x x x x x 0.41 0.46 0.16 0.58 0.56 0.70 0.14 -0.27 1.12 1.15 1.70 3.63 68.84
adpcm_dec x x x x x x x x x x x -0.27 -0.34 -0.38 -0.40 -0.43 -0.51 -0.94 -0.94 -0.84 -1.33 -2.95 -55.67
fmref x x x x x x x x x x x x 0.25 0.31 0.33 0.34 0.36 0.30 0.36 0.43 0.23 0.64 3.46
adpcm_enc x x x x x x x x x x x x x 0.05 0.03 0.05 0.08 -0.03 0.06 0.17 -0.12 -0.22 -5.90
huff_enc x x x x x x x x x x x x x x 0.46 0.54 0.52 0.66 0.49 0.38 0.91 1.54 36.98
g723_enc x x x x x x x x x x x x x x x 0.64 0.54 0.43 0.71 0.37 0.12 1.72 -4.62
audiobeam x x x x x x x x x x x x x x x x 0.52 0.29 0.29 0.22 0.01 0.68 19.96
h264_dec x x x x x x x x x x x x x x x x x 0.01 -0.01 -0.03 -0.12 -0.21 -22.16
huff_dec x x x x x x x x x x x x x x x x x x 0.28 0.27 0.09 0.31 1.86
cjpeg_wrbmp x x x x x x x x x x x x x x x x x x x 0.18 -0.03 -0.10 -3.75
statemate x x x x x x x x x x x x x x x x x x x x -0.62 -0.62 -14.82
ndes x x x x x x x x x x x x x x x x x x x x x 0.91 12.05
petrinet x x x x x x x x x x x x x x x x x x x x x x 0.38
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task

Figure 3.10: M(1)
i( j) values where C j ≤Ci holds.

3.3.2 M(1)
i( j) as a Function of Ci

C j

To better understand the relationship between M(1)
i( j) and Ci

C j
, we plotted M(1)

i( j) as a function of Ci
C j
. To

account for the correlation not existing when Ci
C j
≤ 1 holds, we define the adjusted cost ratio.

Definition 3.18. Let the adjusted cost ratio of τi and τ j be defined as

max
(

Ci

C j
,1
)
.

For each τi, we only consider τ j when Ci
C j
≤ 10 holds. This restriction—10 is a somewhat arbitrary

threshold—allows us to focus on the most relevant cases, as we do not expect co-scheduling tasks with

dramatically different baseline execution times to be beneficial. Fig. 3.11 shows M(1)
i( j) values for all task pairs

where Ci
C j
≤ 10 holds.

In our summary statistics and analysis, we replace negative M(1)
i( j) values with 0.01. Our reasons for doing

so are the same as for the SRT case discussed in Section 3.1.4.

Graphs of M(1)
i( j) as a function of adjusted cost ratio are shown in Figs. 3.12 through 3.15, organized

alphabetically by benchmark name. We do not include graphs for ndes or petrinet; for those benchmarks,
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petrinet

mpeg2 0.94 0.76 0.51 0.86 x x x x x x x x x x x x x x x x x x x
ammunition 0.70 0.66 0.42 0.68 x x x x x x x x x x x x x x x x x x x
dijkstra 0.25 0.27 0.25 0.36 x x x x x x x x x x x x x x x x x x x
susan 0.95 0.78 0.87 0.96 4.77 0.81 0.93 6.85 7.21 x x x x x x x x x x x x x x
gsm_enc 0.57 0.58 0.56 0.55 0.62 0.60 0.74 0.63 0.79 0.92 1.06 1.51 2.08 2.13 2.41 2.61 2.95 x x x x x x
rijndael_dec 0.67 0.61 0.83 0.64 0.68 0.73 0.66 0.72 0.64 0.57 0.79 1.12 0.32 0.42 0.51 1.72 2.17 3.33 3.29 0.29 x x x
epic 0.91 0.81 0.77 0.87 0.91 0.81 0.88 0.79 0.77 0.74 0.67 0.32 0.47 0.44 0.68 0.74 3.20 0.49 4.78 4.89 x x x
rijndael_enc 0.72 0.72 0.88 0.69 0.71 0.77 0.69 0.76 0.69 0.79 0.90 1.27 1.53 1.64 1.87 2.05 2.37 0.43 3.43 3.72 x x x
anagram 0.67 0.67 0.60 0.68 0.66 0.63 0.66 0.66 0.69 0.64 0.81 0.29 1.46 1.64 1.81 1.97 0.55 3.36 3.51 3.36 4.77 x x
cjpeg_transupp 0.55 0.57 0.56 0.58 0.58 0.55 0.63 0.61 0.61 0.64 0.51 0.60 0.82 0.80 0.32 1.25 1.35 1.91 2.27 -0.29 2.77 x x
gsm_dec 0.38 0.41 0.35 0.43 0.38 0.37 0.42 0.41 0.40 0.43 0.41 0.46 0.16 0.58 0.56 0.70 0.14 -0.27 1.12 1.15 1.70 x x
adpcm_dec -0.26 -0.25 -0.26 -0.26 -0.26 -0.27 -0.26 -0.27 -0.23 -0.26 -0.23 -0.27 -0.34 -0.38 -0.40 -0.43 -0.51 -0.94 -0.94 -0.84 -1.33 -2.95 x
fmref 0.31 0.31 0.30 0.32 0.33 0.27 0.30 0.26 0.32 0.29 0.30 0.28 0.25 0.31 0.33 0.34 0.36 0.30 0.36 0.43 0.23 0.64 x
adpcm_enc 0.10 0.04 0.05 0.03 0.06 0.01 0.03 0.04 0.04 0.04 0.03 0.03 0.05 0.05 0.03 0.05 0.08 -0.03 0.06 0.17 -0.12 -0.22 x
huff_enc 0.67 0.63 0.72 0.47 0.66 0.47 0.55 0.48 0.62 0.51 0.53 0.35 0.39 0.36 0.46 0.54 0.52 0.66 0.49 0.38 0.91 1.54 x
g723_enc 0.57 0.68 0.50 0.63 0.62 0.52 0.68 0.60 0.65 0.65 0.67 0.45 0.46 0.47 0.63 0.64 0.54 0.43 0.71 0.37 0.12 1.72 x
audiobeam 0.52 0.57 0.65 0.53 0.50 0.46 0.49 0.46 0.52 0.54 0.47 0.58 0.41 0.53 0.52 0.46 0.52 0.29 0.29 0.22 0.01 0.68 x
h264_dec 0.04 0.12 0.24 0.08 0.13 -0.28 -0.10 0.03 0.22 -0.02 -0.03 0.07 -0.08 0.04 -0.04 -0.03 0.11 0.01 -0.01 -0.03 -0.12 -0.21 x
huff_dec 0.64 0.48 0.48 0.31 0.47 0.22 0.15 0.32 0.37 0.36 0.33 0.23 0.41 0.25 0.62 0.42 0.28 0.33 0.28 0.27 0.09 0.31 x
cjpeg_wrbmp 0.06 0.26 0.09 0.14 0.06 -0.05 0.01 0.06 0.10 0.17 0.09 0.02 0.08 0.10 0.12 0.04 0.12 -0.06 0.00 0.18 -0.03 -0.10 x
statemate -0.22 -0.17 -0.27 -0.30 -0.46 -0.32 -0.13 -0.28 -0.34 0.00 -0.32 -0.73 -0.71 -0.73 -0.14 -0.48 -0.25 -0.23 -0.29 -0.20 -0.62 -0.62 x
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Figure 3.11: M(1)
i( j) values where Ci

C j
≤ 10 holds.

no Ci
C j

values fall between 1 and 10, making any calculated regression function meaningless. Due to the wide

range of possible values, each graph has a different scale. All graphs are summarized in Table 3.9. For each

graph, we include a linear function fi

(
max(Ci

C j
,1)
)

to quantify the relationship between Ci
C j

and M(1)
i( j).

Definition 3.19. Let fi

(
max(Ci

C j
,1)
)

be a linear function that approximates M(1)
i( j) as a function of max(Ci

C j
,1)

using the least-squares method.

In regression analysis, the residual for a given data point (xℓ,yℓ), where x is the dependent variable and

y the independent variable, is defined as yℓ− f (xℓ), i.e., the difference between the actual value yℓ and the

predicted value f (xℓ). The least-squares method finds the linear function f that minimizes the sum of the

residuals squared.

R2 gives the proportion of total variation in dependent values that is explained by variation in independent

values. In our case, R2 = 1 would mean that M(1)
i( j) is perfectly modeled as a linear function of max(Ci

C j
,1).

R2 = 0.75 implies that variation in max(Ci
C j
,1) accounts for 75% of variation in M(1)

i( j).

Definition 3.20. Given a set of (x1,y1), (x2,y2),...(xn,yn) and a linear function f (x),

R2 =
∑∀ℓ(yℓ− f (xℓ))2

∑∀ℓ(yℓ− ȳ)2 .◀
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Figure 3.12: M(1)
i( j) as a function of max

(
Ci
C j
,1
)

for benchmarks adpcm dec, adpcm enc, ammunition,anagram,
audiobeam, and cjpeg transupp.
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Figure 3.13: M(1)
i( j) as a function of max

(
Ci
C j
,1
)

for benchmarks cjpeg wrbmp, dijkstra, epic,fmref, g723 enc,
and gsm dec.
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Figure 3.14: M(1)
i( j) as a function of max

(
Ci
C j
,1
)

for benchmarks gsm enc, h264 dec, huff dec,huff enc, mpeg2,
and rijndael dec.
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Figure 3.15: M(1)
i( j) as a function of max

(
Ci
C j
,1
)

for benchmarks rijndael enc, statemate, and susan.
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Table 3.9: Summary of M(1)
i( j) as a function of Ci

C j

Summary of linear regression f
(

max
(

Ci
C j
,1
))

Summary for Ci
C j

task slope intercept R2 fi(1) mean C.V.
adpcm dec -0.200 0.010 0.000 0.010 0.010 0.000
adpcm enc -0.004 0.053 0.023 0.049 0.044 0.467
ammunition -0.002 0.620 0.001 0.618 0.679 0.036
anagram 0.447 0.094 0.894 0.542 0.659 0.044
audiobeam -0.006 0.473 0.001 0.467 0.514 0.111
cjpeg transupp 0.240 0.283 0.546 0.524 0.588 0.056
cjpeg wrbmp -0.043 0.128 0.076 0.085 0.087 0.763
dijkstra 0.089 0.166 0.975 0.255 0.255 0.039
epic 0.386 0.160 0.458 0.546 0.849 0.065
fmref 0.045 0.251 0.626 0.296 0.295 0.083
g723 enc 0.184 0.347 0.447 0.531 0.588 0.139
gsm dec 0.148 0.194 0.464 0.342 0.398 0.064
gsm enc 0.418 0.125 0.995 0.542 0.578 0.046
h264 dec -0.027 0.086 0.031 0.059 0.066 1.130
huff dec -0.044 0.395 0.022 0.351 0.365 0.356
huff enc 0.178 0.321 0.734 0.499 0.525 0.221
mpeg2 -0.001 0.771 0.000 0.770 0.939 NA
ndes NA NA NA 0.010 0.835 0.510
petrinet NA NA NA 0.010 2.355 1.464
rijndael dec 0.231 0.359 0.415 0.589 0.694 0.113
rijndael enc 0.304 0.485 0.580 0.789 0.742 0.085
statemate 0.000 0.010 0.000 0.010 0.010 0.000
susan 0.427 0.497 0.381 0.924 0.892 0.093
minimum -0.200 0.010 0.000 0.010 0.010 0.000
median 0.089 0.251 0.415 0.467 0.578 0.089
mean 0.132 0.277 0.365 0.383 0.564 0.268
maximum 0.447 0.771 0.995 0.924 2.355 1.464

The title of each graph includes the line’s intercept, slope, the line’s value at

max
(

Ci

C j
,1
)
= 1,

e.g., fi(1), and R2 value. These values, along with additional summary data, are also included in Table 3.9.

Of our 21 graphs, 12 had a positive slope, with values ranging from 0.447 (anagram) to 0.045 (fmref).

Among the positively sloped graphs, the mean slope was 0.258 and the median slope was 0.226 (mean of

cjpeg transupp and rijndael dec). R2 values for the positively sloped graphs ranged from a maximum

of 0.995 (gsm enc) to a minimum of 0.381 (susan), with a mean of 0.626 and a median of 0.563.
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Of the 11 graphs with zero or negative slopes, adpcm dec had a zero slope due to negative M(1)
i( j) values

being set to 0.01. The minimum slope was -0.04 (huff dec). The mean was -0.012 and the median -0.002

(ammunition). R2 values for negatively sloped graphs were all close to zero, with a maximum of 0.076, a

mean of 0.014, and a median of 0.001.

Based on these observations, particularly the small magnitude of negative slopes, we conclude that

modeling M(1)
i( j) as a positively-sloped linear function of the adjusted cost ratio for τi and τ j is a reasonable

choice. We discuss the construction of fi in the next section.

3.3.3 Modeling SMT Timing Behavior: HRT

In this subsection, we describe, in the context of producing synthetic task systems, how we determine

M(1)
i( j), and thereby C(1)

i( j), given Ci and C j.

As before, we assign each task a vulnerability value Vi. The definition of Vi (Def. 3.4) is expanded to

include HRT tasks.

Definition 3.21. If τi is an HRT benchmark task, let its vulnerability, Vi, be equal to the observed average

of M(1)
i( j) across all values of j for which Ci ≤C j holds. If τi is a synthetic HRT task, let Vi be defined as the

expected value of M(1)
i( j) given that Ci ≤C j holds, i.e.,

E
[
M(1)

i( j) |Ci ≤C j

]
=Vi.◀ (3.17)

In terms of the linear regression function fi, Vi gives the functions value when Ci
C j
≤ 1 holds, i.e.,

fi(1) =Vi. (3.18)

As in the SRT case, we choose Vi from an exponential distribution. We allow the optimistic, mid-range,

and pessimistic means, respectively, of 0.35, 0.55, and 0.75. The mid-range mean is slightly less than the

mean of M(1)
i( j) when Ci

C j
≤ 1 holds, as seen in the right-side portion of Table 3.9.

We justify our continued use of vulnerability by the generally low C.V. values in Table 3.9. These values

correspond to the rows of Fig. 3.9, which shows only task pairs where Ci
C j
≤ 1 holds, having little variation in

color. We do not see evidence for harmfulness as we did for the SRT case. For this reaon, we do not model

harmfulness for HRT tasks.
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For the slope of fi, we allow three possible values: 0, 0.15, and 0.30. The middle value, 0.15, is slightly

greater than the average of our observed slopes. Within each synthetic task system, all fi functions will have

the same slope. This approach is not very realistic, but it will allow us to easily evaluate the impact of SMT

becoming less effective as Ci
C j

increases on schedulability.

With a slope and the value of fi defined for fi(1), we can easily calculate f (i) for any value of Ci
C j
.

However, if Ci
C j

> 10 holds, then we do not allow τi and τ j to be co-scheduled and thus have no need to model

M(1)
i( j). We use fi to determine the expected value of M(1)

i( j), i.e.,

E
[
M(1)

i( j)

]
= fi

(
max

(
Ci

C j
,1
))

(3.19)

Finally, we determine M(1)
i( j). In the fixed approach, we again allow no additional randomization; we

simply have

M(1)
i( j) = fi

(
max

(
Ci

C j
,1
))

.

Alternatively, we again use the exponential approach where M(1)
i( j) is drawn from an exponential function

with a mean equal to fi(
Ci
C j
).

3.4 Conclusions and Future Work

In this chapter, we have evaluated the timing effects of SMT in both SRT and HRT contexts. We measured

the execution times of benchmark tasks with and without SMT enabled, with the SMT-enabled case allowing

for interference from all other tasks using SMT. Our data suggest SMT has benefits in both SRT and HRT

contexts; we explore these benefits in detail in the remaining chapters.

In Sec. 3.2, we have shown that when SMT-enabled jobs are scheduled with care, producing a safe,

measurement-based timing analysis is comparable in difficulty to doing the same for jobs not using SMT.

We have also highlighted a subtlety of measurement-based timing analysis—any estimate based on random

measured data is itself a random variable—that is not always emphasized, and that could compromise safety,

if not accounted for. In Sec. 3.3, we gave our observations on SMT’s effects on execution times, including

the importance of the relative execution times of the two tasks involved. Based on these observations, we

gave a model for creating plausible synthetic execution times.
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In the future, we want to look more deeply in the negative multithreading scores we observed in both the

SRT and HRT cases. If we determine that negative values are more than statistical noise, we will develop

scheduling algorithms to exploit this behavior. In addition, we aim to expand the measurement-based analysis

of this chapter into a code-based analysis, conduct micro-benchmark experiments to learn more about SMT

implementation details, take a deeper look at the statistical aspects of sound timing analysis methods and

modeling, and investigate the effects of changing job inputs on SMT’s timing effects.
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CHAPTER 4: SCHEDULING SOFT REAL-TIME SYSTEMS WITH SMT

In this chapter, we discuss our work on enabling SMT-aware scheduling for SRT systems. We divide the

overall problem of using SMT to support SRT systems into two sub-problems. First, in Section 4.1, we show

how to schedule a system of tasks where some, but not all, tasks use SMT. Second, in Section 4.2 we decide

which tasks should actually use SMT. The difficulty here is that how using SMT will affect any given task is

a function of what other tasks are using SMT, creating a circular problem. Finally, in Section 4.3, we evaluate

our methods by testing their ability to schedule millions of synthetic task systems. The work in this chapter is

based on (Osborne et al., 2019). Notation for this chapter is summarized in Tables 4.1 and 4.2. Terms are

organized by the order they appear within this chapter.

4.1 Scheduling With and Without SMT

In this section, we assume a task system has already been split into two sub-systems: a set of tasks that

will be using SMT, and a set of tasks that will not be using SMT. Based on such a split system, we give a

mathematical test to determine if scheduling the overall system on a given hardware platform is possible.

Definition 4.1. Physical tasks are tasks that are only allowed to execute without SMT, i.e., using the full

physical core. Subsystem τ p is the set of all physical tasks in τ. Threaded tasks are tasks that are allowed to

use SMT. Subsystem τh is the set of all threaded tasks in τ. The number of tasks per subsystem is denoted by

np and nh, respectively. ◀

Physical tasks have cost Ci and utilization up
i = ui exactly as they would without SMT. We omit the

superscript p when the meaning is unambiguous. Threaded tasks have cost

Ch
i = max

∀ τ j ∈ τh : i ̸= j
Ci( j)

(the expression duplicates Exp. (3.1); we repeat it for convenience) and utilizations

ui( j) =
Ci( j)

Ti
and (4.1)
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Table 4.1: Summary of notation used in Chapter 4.

Symbol Description Reference Sections Used

τ p Tasks that do not use SMT Def. 4.1 4.1, 4.2
τh Tasks that do use SMT Def. 4.1 4.1, 4.2
Ci( j) Cost of an SRT task τi when co-scheduled with τ j Def. 3.1 3.1, 4.1
Ch

i max∀ τ j ∈ τh : i ̸= j Ci( j). Def. 3.2 3.1, 4.1
ui( j) util. of an SRT task τi when co-scheduled with τ j Exp. 4.1 4.1, 4.2
uh

i max∀ τ j ∈ τh : i ̸= j ui( j). Exp. 4.2 4.1, 4.2
nh, np Counts of tasks using/ not using SMT. Def. 4.1 4.1
Uh Total util. of all tasks using SMT Def. 4.2 4.1
U p Total util. of all tasks not using SMT. Def. 4.2 4.1
UE Effective Utilization: U p + Uh

2 Def. 4.2 4.1
πh Sub-platform scheduling only tasks using SMT. Def. 4.3 4.1
π p Sub-platform scheduling only tasks not using SMT. Def. 4.3 4.1
mh, mp Number of whole cores for tasks with/ without SMT Def. 4.3 4.1
bh Proportion of shared core for tasks using SMT. Def. 4.3 4.1
bp Proportion of shared core for tasks not using SMT. Def. 4.3 4.1
Mi( j) SRT Multithreading Score;

Ci( j)−Ci

Ci
Def. 3.3 3.1, 4.3

Vi Vulnerability of task τi Defs. 3.4 and 3.21 3.1, 3.3, 4.3
h Probability of a task being harmful Def. 3.6 3.1, 4.3
RSA Relative Schedulable Area Def. 4.7 4.3

Table 4.2: Notation originally from (Devi and Anderson, 2006).

Symbol Description Reference Section Used

τH , τL Sets of all “high” and “low” tasks Def. 4.5 4.1
umax(τL) Util. of highest-util task in τL. Def. 4.5 4.1
Usum Total util. of both τH and τL Def. 4.5 4.1
UL Sum of the min(⌈Usum⌉−2,n) largest util. tasks in τL Def. 4.5 4.1

uh
i =

Ch
i

Ti
. (4.2)

We will use uh
i to decide whether a system is schedulable once tasks have been divided into τ p and τh

and ui( j) to determine how tasks should be divided.

Definition 4.2. The total utilizations of τ p and τh are given by

U p =
np

∑
i=1

up
i and

Uh =
nh

∑
i=1

uh
i
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respectively. To measure the total demand placed on the platform, we define effective utilization as

UE =U p +
Uh

2
.

Uh is halved to reflect each threaded task requiring only half a core at a time to execute. ◀

Example 4.1 shows why τ p and τh must be scheduled separately.

Example 4.1. Suppose we attempt to schedule a task system τ using G-EDF. Let τ1 be a threaded task and

τ2 a physical task such that at time t, a job of τ1with a deadline of t +1 is contending for a single core with a

job of τ2 with a deadline of t +2. We have three choices. First, giving τ1 priority would respect G-EDF rules.

However, if no other threaded task has an active job at time t, then doing so will cause the second threaded

processor of the chosen core to be unused, negating any advantage of SMT. Second, giving τ2 priority avoids

wasting execution resources, but breaks G-EDF priority rules, potentially causing τ1 to finish late. Third,

co-scheduling the two jobs despite τ2 being a physical task will cause τ2 to have a longer than anticipated

execution time, potentially causing it to finish late. None of these options are particularly satisfactory. ♢

The solution is to never allow this situation to happen: threaded and physical tasks must never contend

for the same core. To enforce this rule and prevent a situation such as Example 4.1 from occurring, we divide

platform π into sub-platforms π p and πh.

Definition 4.3. π p is the sub-platform of π that schedules only tasks in τ p. It includes mp = ⌊U p⌋ fully

available cores and one partially available core. Given a length-W interval, denoted a window, the partially

available core belongs to π p for bpW time units per window, where bp =U p−⌊U p⌋. π p can exist only if

U p ≤ m. ◀

Definition 4.4. πh is the sub-platform of π that schedules only tasks in τh. It has mh = m−⌈U p⌉ fully

available cores and one core available for bhW time units per window, where bh = ⌈U p⌉−U p. Consequently,

mh +bh = m−U p. If bp > 0, then bh = 1−bp. ◀

We refer to the core shared by both platforms as the shared core. If there is no shared core, then

bp = bh = 0. Otherwise, bp +bh = 1. Note that mp +bp +mh +bh = m must hold.

Example 4.2. In Fig. 4.1, π p is shown in dark gray and πh in light gray. The figure depicts two separate

platforms on the left and right; only the right platform has a shared core. The sub-platforms on the left
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Figure 4.1: Two configurations of a platform supporting both SMT and non-SMT workloads.

are defined by by mp = 2, mh = 2, W = 4, and bp = bh = 0. The sub-platforms on the right are defined by

mp = 2, mh = 1, W = 4, and bp = bh = 1
2 . ♢

When the only requirement is to establish a schedule for which tardiness is bounded, the value of W

is theoretically irrelevant. When tardiness is taken into consideration, lower values will produce smaller

tardiness bounds. However, lower values for W will also cause more frequent task preemptions and greater

scheduling overheads, potentially leading to greater tardiness bounds in practice. In future work, we will

examine the effects of different values for W.

We now give schedulability results for τ p and τh individually and then combine those conditions to get

an overall schedulability result. For the most part, we will focus on the case where a shared core exists.

Our results are based on Devi and Anderson’s EDF-high-low (EDF-HL) algorithm (Devi and Anderson,

2006). EDF-HL gives schedulability conditions and tardiness bounds for “low” SRT tasks that are scheduled

according to G-EDF but are subject to interruption from periodic “high” hard real-time tasks, with at most

one such task fixed on each processor. For our purposes, we can view τ p as a set of low tasks scheduled

on mp + ⌈bp⌉ processors and subject to preemption by a single high task with period W and cost bhW. This

reflects the fact that, from the perspective of τ p, work on the shared core is periodically preempted. Likewise,

we can view τh as a set of low tasks scheduled on 2(mh + ⌈bp⌉) processors that are periodically preempted

by two high tasks, both with period W and cost bpW. The following definitions apply to the EDF-HL results.

Definition 4.5. Devi and Anderson define τH as the set of all high tasks, τL as the set of all low tasks, umax(τL)

as the highest-utilization task within τL, Usum as the total utilization of both τH and τL, UH as the sum of all

the utilizations of all tasks in τH , and UL as the sum of the min(⌈Usum⌉−2,n) largest utilization of tasks in τL.

We state an abridged version of Theorem 1 in (Devi and Anderson, 2006) here.
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Theorem 4.1. EDF-HL ensures a tardiness bound of at most B to every task τi of τL if |τH | ≤m and Usum ≤m

and at least one of (4.3) or (4.4) holds.

m−|τH |−UL > 0 (4.3)

m−max(|τH |−1,0)umax(τL)−UL−UH > 0 (4.4)

Returning to our problem of scheduling tasks with and without SMT seperately, our schedulabilty

conditions rely on the following assumptions. These assumptions allow us to schedule τ p and τh as if they

both consisted of standard sporadic tasks.

Assumptions 4.1 will be addressed in Sec. 4.2. Assumption 4.2 can be fulfilled by following the timing

procedures given in Sec. 3.1.

Assumption 4.1. Tasks have been divided into threaded and physical tasks such that ∀τ p
i ∈ τ p,up

i ≤ 1 and

∀τh
i ∈ τh,uh

i ≤ 1 both hold. Without loss of generality, we assume that the tasks in each of the sets τ p and τh

are indexed in decreasing-utilization order, e.g., up
1 (resp., uh

1) is the largest utilization in τ p (resp., τh).

Assumption 4.2. Costs for physical and threaded tasks have been determined.

Assumption 4.3. Physical tasks are not permitted to execute on processors in πh.1 Likewise, threaded tasks

are not permitted to execute on processors in π p.

With these assumptions in place, we can address the schedulability of τ p and τh on the two platforms.

Lemma 4.1. τ p is schedulable on π p under G-EDF such that all tasks have guaranteed bounded tardiness if

(4.5) holds.

U p ≤ mp +bp. (4.5)

Proof. If bp = 0, then the result restates the SRT feasibility condition for m identical, fully available processors

that was given in Sec. 2.3.3. Because G-EDF is known to be SRT-optimal (Devi and Anderson, 2005), the

result follows. If mp = 0, then it can easily be shown that the system is schedulable only if U p ≤ bp.

In the rest of the proof, we consider the remaining possibility, i.e., that bp > 0 and mp > 0 both hold. For

this case, we show that Theorem 4.1 can be applied.

1When the shared core belongs to π p, it supports a physical processor, not a threaded processor.
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From the perspective of τ p, there exists a set of low tasks τ p with total utilization U p, one high task

with utilization bh, and mp + 1 processors. Thus, we want to apply Theorem 4.1 with the substitutions

m←mp +1, τL← τ p, Usum←U p +bh, and |τH |= 1. With these substitutions, (4.5), and Definition 4.4, it is

straightforward to see that both |τH | ≤ m and Usum ≤ m hold, as required by Theorem 4.1. We now show that

(4.3) holds, from which bounded tardiness for the tasks in τL, i.e., those in τ p, follows. To see this, note that

from Definition 4.4 and Usum =U p +bh, we have

UL =
min(⌈U p+bh⌉−2,np)

∑
i=1

up
i

= {by Defs. 4.3 and 4.4, U p +bh = mp +1}

UL =
min(mp−1,np)

∑
i=1

up
i

⇒{because up
i ≤ 1 holds, by Assumption 4.1}

UL < mp.

From this inequality, we have m−|τH |−UL = mp +1−1−UL > 0, as required by (4.3).

The schedulability condition for τh is complicated by the potential for two partially available processors.

Lemma 4.2. τh is schedulable on πh under GEDF such that all tasks have guaranteed bounded tardiness if

(4.6) and at least one of (4.7) or (4.8) hold, where umax(τ
h) denotes the maximum task utilization in τh.

Uh ≤ 2(mh +bh) (4.6)

2mh >
min(2mh,nh)

∑
i=1

uh
i (4.7)

2(mh +bh)−umax(τ
h)>

min(2mh,nh)

∑
i=1

uh
i (4.8)

Proof. As in the prior proof, the proof is straightforward if either bh = 0 holds or mh = 0 holds, so we focus

on the remaining possibility, i.e, mh > 0 and ah > 0 both hold; note that the latter implies that bp > 0 holds as

well. As before, we will use Theorem 4.1. In this case, we are attempting to schedule a set of low tasks τh

with total utilization Uh on 2(mh +1) processors given two high tasks, each with utilization bp. Thus, we

want to apply Theorem 4.1 with the substitutions m← 2(mh +1), τL← τh, Usum←Uh +2bp, and |τH |= 2.
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With these substitutions, (4.6), and Definition 4.4, it is straightforward to see that both |τH | ≤m and Usum ≤m

hold, as required by Theorem 4.1. In the rest of the proof, we show that, with these substitutions, (4.7) implies

(4.3) and (4.8) implies (4.4), from which bounded tardiness for the tasks in τL, i.e., those in τh, follows.

To see that (4.7) implies (4.3), first note that, because mh is an integer, we have ⌈Usum⌉−2≤ ⌈m⌉−2 =

⌈2(mh +1)⌉−2 = ⌈2mh⌉= 2mh. Therefore,

2mh >
min(2mh,nh)

∑
i=1

uh
i

⇒{because ⌈Usum⌉−2≤ 2mh}

2mh >
min(⌈Usum⌉−2,nh)

∑
i=1

uh
i

= {by the definition of UL in Def. 4.5}

2mh >UL,

i.e., 2mh−UL > 0 holds, which is equivalent to (4.3), since m = 2(mh +1) and |τH |= 2.

To see that (4.8) implies (4.4), observe that

2(mh +ah)−umax(τ
h)>

min(2mh,nh)

∑
i=1

uh
i

⇒{reasoning as above}

2(mh +bh)−umax(τ
h)>UL

= {because bh = 1−bp}

2(mh +1−bp)−umax(τ
h)>UL,

= {in our context umax(τ
h) = umax(τL), |τH |−1 = 2, UH = 2bp, and m = 2(mh +1)}

m−max(|τH |−1,0)umax(τL)−UH >UL,

which is equivalent to (4.4).

A special case applies when there is no shared core.

Lemma 4.3. If bh = 0, then τh is schedulable on πh under GEDF if and only if Uh ≤ 2mh holds.
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Proof. With no shared core, the platform consists of 2mh identical cores. The standard SRT feasibility test

from (Devi and Anderson, 2005)—a system is feasible if and only if U ≤ m holds—applies.

Our next step is to give a schedulability condition for τ p and τh combined on π. This condition is a

straightforward extension of the preceding lemmas, but it has the benefit of letting us focus on τ rather than

on how π is partitioned.

Theorem 4.2. Platform π can be partitioned such that τ p is schedulable on π p and τh is schedulable on πh,

both under G-EDF, if (4.9) and at least one of (4.10) or (4.11) hold.

UE ≤ m (4.9)

2(m−⌈U p⌉)>
min(2(m−⌈U p⌉),np)

∑
i=1

uh
i (4.10)

2(m−U p)−uh
1 >

min(2(m−⌈U p⌉),np)

∑
i=1

uh
i (4.11)

Proof. In order to define mp and bp so that mp + bp = U p holds, as in Definition 4.3, we merely require

U p≤m to hold, and by Definition 4.2, this is implied by (4.9). Note that mp+bp =U p satisfies Condition (4.5)

in Lemma 4.1.

Schedulability of τ p on π p is implied by (4.9):

UE ≤ m

= {by Def. 4.2, UE =U p +
Uh

2
}

U p ≤ m

= {by Def. 4.3, mp +bp =U p}

U p = mp +bp,

which is the condition for τ p per Lemma 4.1.

We next show that (4.9) implies Condition (4.6) of Lemma 4.2. To see this, observe that, by Definition

4.2, UE ≤ m ⇒ Uh

2 ≤ m−U p. Also, by Definition 4.4, mh +bh = m−U p. Putting these facts together, we

have Uh ≤ 2(mh +bh), which is (4.6).
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We conclude the proof by showing that (4.10) is equivalent to Condition (4.7) of Lemma 4.2, and that

(4.10) is equivalent to Condition (4.8) of Lemma 4.2. To see the former, note the following.

2(m−⌈U p⌉)>
min(2(m−⌈U p⌉),nh)

∑
i=1

uh
i

= {by Def. 4.4, m−⌈U p⌉= mh}

2mh >
min(2mh,nh)

∑
i=1

uh
i

Similarly, to see that (4.11) holds, note the following.

2(m−U p)−uh
1 >

min(2(m−⌈U p⌉),nh)

∑
i=1

uh
i

= {by Def. 4.4, m−⌈U p⌉= mh.}

2(mh +bh)−uh
1 >

min(2mh,nh)

∑
i=1

uh
i .

Having verified all conditions of Lemmas 4.1 and 4.2, we conclude that τ p is schedulable on π p and τh is

schedulable on πh.

Again, a special case applies if U p is integral.

Corollary 4.1. If U p is integral, then both τ p and τh are schedulable on their respective sub-platforms under

GEDF so long as UE ≤ m holds.

Proof. Similar to the proof of Lemma 4.3.

It is not strictly necessary that π p be defined as we do here. If we allow other design considerations, such

as maximizing cache affinity or minimizing tardiness, different platform definitions may be preferable, but

we defer those possibilities to future work.

By themselves, the results of this section are not very useful, since there are an exponential number

of possible ways to partition π. In the next section, we show how to efficiently find τ p and τh that will be

schedulable under Theorem 4.2.
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4.2 Dividing the Tasks

In this section we give algorithms for determining which tasks should and should not use SMT. In a

system of n tasks, there are 2n possible ways to partition the system into τ p and τh. We attempt to quickly

find a good partition by heuristically minimizing UE . In many cases, doing so will minimize the number of

cores needed to schedule a given system.

Oblivious scheduling. We first work through a simple example of dividing a task system and then

formalize that approach into what we term symbiosis-oblivious partitioning.2 We then show how our approach

can be improved. Symbiosis-oblivious partitioning is based a simple rule:

Proposition 4.1. τi should be assigned to τh if and only if

max
∀ j ̸=i

ui( j) ≤ 1 and

max
∀ j ̸=i

ui( j) ≤
up

i
2

hold.

Furthermore, if nh = 1 holds, then all tasks must be scheduled without SMT. ◀

If we allowed for exactly one threaded task, then the “threaded” task would in fact always execute

without SMT, giving no overall schedulability benefits. Algorithm 5 implements Prop. 4.1.

Example 4.3. Table 4.3 gives utilizations for a system of five tasks. Without SMT, the system has total

utilization of
5

∑
i=1

up
i = 3.1

and requires four cores to schedule. When we apply Prop. 4.1, τ3, τ4, and τ5 are assigned to τ p; τ1 and τ2 are

assigned to τh. The resulting system has effective utilization of

U p +
Uh

2

= 0.6+1.0+0.3+
1.0+0.9

2

= 2.85

2The terms symbiosis-oblivious and symbiosis-aware scheduling were previously used by Jain et al.(Jain et al., 2002).
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Table 4.3: Sample task system with five tasks.

ui( j)
measured
task

up
i τ1 τ2 τ3 τ4 τ5 max∀ j ̸=i ui( j)

τ1 0.6 NA 0.8 0.9 1.0 1.0 1.0
τ2 0.6 0.8 NA 0.9 0.9 0.9 0.9
τ3 0.6 0.7 0.7 NA 1.1 0.9 1.1
τ4 1.0 1.2 1.4 1.2 NA 1.5 1.5
τ5 0.3 1.0 0.9 0.7 0.7 NA 0.7

and can be scheduled on three cores. ♢

Symbiosis-oblivious partitioning can be effective at reducing the number of cores needed to schedule a

system. However, it overlooks a way to achieve further reductions.

Example 4.4. In Example 4.3, we decided that τ3 should be assigned to τ p. However, u3( j) > 1 holds only

for j = 4. With τ4 in τ p, we can reassign τ3 to τh. This partition, with τh = {τ1,τ2,τ3} and τ p = {τ4,τ5} has

effective utilization of

U p +
Uh

2

= 1.0+0.3+
0.9+0.9+0.7

2

= 2.55.

Note that we use uh
1 = 0.9 and uh

2 = 0.7; because τ1 and τ2 will not experience interference from τ4 or τ5, we

need not consider their effects. ♢

Algorithm 6 formalizes the scheduling approach of Example 4.4. The algorithm seeks to minimize UE

by repeatedly moving a task from τ p to τh, or vice versa, to give the greatest decrease in UE . It does so

until either a specified maximum number of attempts has been made or it reaches a partition that cannot be

improved by the movement of any single task. The algorithm is not optimal, even given an unlimited number

of attempts, as there may exist partitions of τ that cannot be improved by moving any one task but can be

improved by moving two or more tasks.
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Algorithm 5 Oblivious Partitioning

1: for all τi ∈ τ do
2: Ch

i ←max∀ j ̸=iCi( j)

3: if Ch
i ≤ Ti and Ci

Ch
i
≥ 2 then

4: τh← τh∪ τi

5: else
6: Cp

i ←Ci

7: τ p← τ p∪ τi

8: end if
9: end for

10: if |τh|< 2 then
11: τ p← τ p∪ τh

12: τh← /0
13: end if
14: return τ p,τh

Algorithm 6 will never create a partition that cannot be scheduled even given an unlimited number of

cores—this situation would occur if τh is such that uh
i > 1 holds for at least on τi—or that will cause τh to

have exactly one component tasks. We refer to a task system with these two properties as being legal.

Definition 4.6. A partition of τ into τ p and τh is legal if and only if ∀ τh
i ∈ τh, uh

i ≤ 1 and |τh| ̸= 1 hold. ◀

Algorithm 6 assumes, and maintains as an invariant, that the partition is legal. To begin Algorithm 6, τ

must already be in a legal partition. We propose three ways to achieve this. First, in the greedy-threaded

approach, we begin with all tasks in τh and then place into τ p all tasks for which any possible Ch
i value will

give uh
i > 1. Intuitively, putting tasks in τh whenever possible should be beneficial, so we should start with as

many tasks in τh as possible.

Second, in the greedy-physical approach, we start with all tasks in τ p apart from the single pair of tasks

that will give the greatest decrease to UE . This can be done by defining the decrease to UE associated with a

single pair of tasks (τi,τ j) as

∀ (i, j),∆(i, j) = up
i +up

j −
1
2
(ui( j)+u j(i))

and adding to τh the pair of tasks that maximize ∆(i, j) subject to ui( j) ≤ 1 and u j(i) ≤ 1.

When τi and τ j are placed into τh, up
i and up

j are no longer part of U p and can be subtracted from UE .

However, we must add half of the new Uh value, ui( j)+u j(i) to UE . We expect this approach will be more

efficient than the first one in task systems where up
i is typically large or ui( j) is typically small, since there
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will be relatively few tasks that can be placed in τh, making it more efficient to begin with the majority of

tasks in τ p. If no satisfactory pair of tasks exists, then we conclude that SMT should not be used.

Algorithm 6 Greedy Partitioning

Require: τ partitioned such that ∀τi ∈ τh,uh
i ≤ 1 and |τh| ≥ 2

1: for ℓ← 1...maxLoops do
2: ▷ Identify best move from τ p to τh

3: for all τi ∈ τ p do
4: Ch

i = max∀τ j∈τh, j ̸=iCi( j)

5: uh
i =

Ch
i

Ti

6: if uh
i > 1 then

7: continue
8: end if
9: ▷ Calculate how adding τi to τh will affect tasks already in τh

10: if moving τi to τh will cause uh
j ≥ 1 for any τ j ∈ τh then

11: continue
12: end if
13: I(τh

i )← total increase in util. of tasks already in τh caused by moving τi

14: ▷ ∆(i) gives decrease to UE caused by moving τi.

15: ∆(i)← up
i −

uh
i +I(τh

i )
2

16: end for
17: ▷ Identify best move from τh to τ p

18: if |τh|> 2 then
19: for all τ j ∈ τh do
20: D(τh

j )← total decrease in util. of tasks already in τh caused by moving τ j

21: ▷ ∆( j) gives decrease to UE caused by moving τ j.

22: ∆( j)← uh
j+D(τh

j )

2 −up
j

23: end for
24: end if
25: if no task has a positive ∆ value then
26: break
27: end if
28: Move task with maximum ∆ to other subsystem and update threaded costs
29: end for
30: return(τ p,τh)

Third, in the greedy-mixed approach, we first apply Prop. 4.1 via Algorithm 5 and then use the partition

given by doing so as our starting point. Intuitively, Prop. 4.1 by itself should give a partition with a lower UE

value than either of the other two approaches, so using it is a starting point should yield better results. As

with the greedy-physical approach, if Algorithm 5 places no tasks in τh, then we conclude that SMT should

not be used. We compare these three approaches in our schedulability experiments, presented in Sec. 5. We
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found that for all three versions of Algorithm 6, there existed task systems that were schedulable according to

that version alone. However, the greedy-physical approach had the best overall performance.

Regardless of how we obtain the initial legal partition for Algorithm 6, the for loop of lines 3 through 16

determines, for every τi in τ p, the benefit of moving that task to τh. Line 4 tests what Ch
i would be if τi were

in τh. Lines 10 through 13 calculate the change to tasks already in τh caused by moving τi, and line 15 gives

the total change to UE caused by moving τi to τh.

The for loop of lines 19 through 23 determines the benefit of moving τ j to τ p, for every τ j currently in

τh. Line 20 gives the change to tasks remaining in τh caused by moving τ j, and line 22 gives the total change

to UE caused by moving τ j to τ p. The if of line 25 guarantees that no task will be moved unless moving that

task will decrease UE , preventing the algorithm from placing τ into any one partition more than once.

4.3 Schedulability Studies

To evaluate our work, we conducted a large scale synthetic-task schedulability study. A synthetic task is

defined by parameters specifying its period, cost, and, in our case, costs when co-scheduled with other tasks.

In a synthetic-task schedulability study, scheduling algorithms are evaluated by comparing their ability to

schedule systems of synthetic tasks. The advantage of this approach is that a nearly-unlimited number of

task systems can be created with exactly the properties we are most interested in testing. For example, we

can evaluate an algorithm’s system to schedule harmful tasks, as discussed in Section 3.1.5, by creating task

systems that use different values of h while holding all other values constant.

In our study, we evaluate the ability of the Algorithms of Section 4.2 to schedule task systems that would

be unschedulable without SMT. We first use each of the four algorithms to divide each task system into τ p

and τh and then use Theorem 4.2 to decide if the resulting partitioned system is schedulable.

4.3.1 Schedulability Study Overview

Whether or not one synthetic system can be scheduled is not very informative. For this reason, we

consider scheduling scenarios defined by a per-task utilization range (without SMT), and the number of cores

m on the (synthetic) target platform, and a model for SMT interaction. We give details on these parameters in

Section 4.3.2. For each scenario, we created synthetic systems with total utilizations ranging from m to 2m.

Each scenario is summarized in a graph that shows the percentage of systems schedulable at each utilization
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level in increments of 0.1 for four and eight core platforms or 0.2 for 16-core platforms. Each point on our

graphs corresponds at least 500 task systems. Each scenario is further summarized by its relative schedulable

area, or RSA.

Definition 4.7. The relative schedulable area is defined as the area under the curve in a schedulability graph

divided by the core count m for the scenario. ◀

In calculating RSAs, we assume that all systems with utilization no greater than m are schedulable. This

assumption is based on the ability of G-EDF to correctly schedule all SRT systems for which U ≤ m holds;

we did not actually test systems with U < m. A G-EDF scheduler not using SMT will have an RSA of 1.0;

RSAs therefore indicate how much additional work can be accommodated on a given platform by enabling

SMT. A scheduler capable of scheduling all systems with U ≤ 1.2m and no systems with U > 1.2m would

have an RSA of 1.2.

4.3.2 Schedulability Test Parameters

We use five parameters to define each scenario. The first parameter, core count (m), specifies the number

of cores in our target platform. Possible values are four, eight, and sixteen.

The second parameter determines task utilizations before accounting for SMT. In scenarios using the

light distribution, task utilizations are assigned from the Uniform probability distribution (0,0.4). In the

medium, wide, and heavy distributions, utilizations are assigned from the Uniform distributions (0.3, 0.7), (0,

1), and (0.6, 1), respectively.

The remaining three parameters govern the effects of SMT on execution times. Recall from Definition 3.3

a task’s multithreading score is given by

Mi( j) =
Ci( j)−Ci

Ci
,

i.e. Ci( j) =Ci · (Mi( j)+1).

We allow three possible values for the overall expected value of all Mi( j) values, denoted µ: 0.2

(optimistic), 0.4 (mid-range), and 0.6 (pessimistic). The parameter h (Definition 3.6) gives the probability

that a specific tasks will be more harmful, i.e., cause the execution times of other tasks to increase more.

Possible values for h are 0, 0.125, and 0.25. Finally, the distribution parameter determines whether Ci( j) is

deterministic given τi and τ j (fixed) or involves an additional randomization step (exponential).
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Table 4.4: Summary of parameters used to define schedulability scenarios

Parameter description Parameter symbol Possible Values

core count m 4, 8, 16

per-task util. distribution none U(0, 0.4) (light); U(0.3, 0.7) (medium);
U(0, 1) (wide); U(0.6, 1.0) (heavy)

expected Mi( j) µ 0.2, (optimistic); 0.4, (mid-range);
0.6 (pessimistic)

probability of task being harmful h 0, 0.125, 0.25

distribution for Mi( j)
given τi and τ j

none fixed
exponential

Parameter choices are summarized in Table 4.4. In total, our parameter choices allow us to define 216

scheduling scenarios, with each scheduling scenario consisting of tens of thousands of task systems. Creating

and testing all systems in our scenarios required approximately six weeks of CPU time.

4.3.3 Schedulability Test Results

Our full set of graphs and scenario results is included in Appendix A. Here, we use a subset of our graphs

to illustrate key observations from our data. The first two lines of each graph’s title indicate the scenario it

represents. The last line of the title gives the RSA for that scenarios best-performing partitioning algorithm.

These values ranged from a minimum of 1.03 to a maximum of 1.54. Mean and average RSAs were both

1.21.

Example 4.5. Figure 4.3 depicts scheduling systems of medium-weight tasks on a four core platform (first

line of graph title) give µ = 0.6, h = 0, and the fixed distribution is used for Mi( j) (second line of title).

The greedy-physical algorithm gave the best performance, with an RSA of 1.29 (third line of title). The

greedy-threaded, greedy-mixed, and oblivious partitioning algorithms all were slightly less able to partition

task systems into something that could be scheduled. The greedy physical algorithm was able to schedule

almost all task systems with U ≤ 4.25, roughly half of task systems with U = 5.25, and almost no systems

with U > 6. ♢

Observation 4.1. When using SMT, a large majority of task systems that would require m+1 cores without

SMT, i.e., with utilization in the range (m,m+ 1], could be scheduled on m cores. Table 4.5 gives the
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Table 4.5: Schedulability of systems with U in range (m,m+1].

best
scenario

mean
scenario

median
scenario

worst
scenario

m = 4 99.9% 66.2% 78.0% 9.6%
m = 8 100% 83.8% 86.1% 20.1%
m = 16 100% 87.7% 92.3% 26.3%

percentage of task systems with utilizations in this range that can be scheduled on m cores under various

scenarios. The best scenario in the context of Table 4.5 is the scenario where the maximum number of

systems with m <U ≤ m+1 are schedulable. Likewise, the worst scenario is the scenario with the fewest

schedulable systems in that utilization range.

Observation 4.2. SMT is beneficial even if Mi( j) values are greater than what we observed. Figure 4.2 shows

an average scenario among those with pessimistic µ values. The graph has an RSA of 1.15. In the best cases,

scenarios with µ = 0.6 can have RSA values as high as 1.29; 4.3 shows the best-case scenario for µ = 0.6

Smaller values of µ naturally yield greater RSAs. Figs. 4.4 through 4.7 show average and best scenarios

for µ = 0.4 and µ = 0.2.

Observation 4.3. High utilization tasks have a negative impact on SMT. In the worst case, using SMT with

heavy per-task utilizations shows few benefits (Figure 4.8). Even an average scenario given heavy per-task

utilization (Figure 4.9) is worse than the worst scenarios for both light and medium per-task utilization

(Figs. 4.10 and 4.11).

The presence of high-utilization tasks appears more important than average per-task utilization. The

medium and wide distributions both have average utilization of 0.5, but the medium average case (Figure 4.12)

is noticeably better than the wide average case (Figure 4.13).

The importance of per-task utilization is not surprising; if a task has utilization close to 1.0 even without

SMT, even a small difference between Ch
i and Ci can cause uh

i > 1.0 told hold, making scheduling impossible

if τi uses SMT.

Observation 4.4. Scenarios using the fixed Mi( j) distribution saw greater benefits from SMT than those with

the exponential distribution. Figs. 4.14 and 4.15 show average cases for both distributions, with all other

parameters held constant. All of our best scenarios depicted (Figs. 4.3, 4.5, and 4.7) used the fixed distribution,

whereas all of our worst scenarios depicted (Figs. 4.8, 4.10, 4.11) use the exponential distribution.
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Figure 4.2: An average scenario for µ = 0.6
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Figure 4.3: The best scenario for µ = 0.6
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Figure 4.4: An average scenario for µ = 0.4
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Figure 4.5: The best scenario for µ = 0.4
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Figure 4.6: An average scenario for µ = 0.2

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

4 Cores, Task Util. ~ U(0.3, 0.7)
0.2, h=0 , fixed
Best RSA: 1.54

Oblivious
Greedy-Thread
Greedy-Physical
Greedy-Mixed

Figure 4.7: The best scenario for µ = 0.2
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Figure 4.8: The worst scenario for heavy per-task
utilization.
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Figure 4.9: An average scenario for heavy per-
task utilization.
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Figure 4.10: The worst scenario for low per-task
utilization.
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Figure 4.11: The worst scenario for medium per-
task utilization..
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Figure 4.12: An average scenario for medium
per-task utilization.
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Figure 4.13: An average scenario for wide per-
task utilization.
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Figure 4.14: An average scenario for the fixed
per-task Mi( j) distribution.
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Figure 4.15: An average scenario for the expo-
nential per-task Mi( j) distribution.
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Figure 4.16: The best 16-core scenario; h = 0.
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Figure 4.17: Scenario with h = 0.25.

More broadly, the fixed and exponential distributions can be interpreted as stand-ins for how much Mi( j)

varies as j changes. When Mi( j) is near-constant with respect to j, then using SMT is more likely to be either

always helpful or always harmful.

Observation 4.5. Increasing h appears to have a slight harmful effect. Scenarios with h = 0, h = 0.125, and

h = 0.25 have average RSAs of 1.22, 1.21, and 1.21, respectively, and maximum RSAs of 1.53, 1.51, and

1.49. The effects of h become more pronounced as core count increases, presumably because each task can

then cause interference to more other tasks.

Figure 4.16 shows the best 16-core scenario; h = 0. Figure 4.17 shows a slightly inferior scenario with

h = 0.25 and otherwise identical parameters.
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Observation 4.6. Increasing core count has a slight negative effect. Scenarios with four, eight, and 16 have

mean RSAs of 1.23, 1.21, and 1.19, respectively, and maximums of 1.53, 1.49, and 1.45. Figure 4.7 is both

the best overall scenario and the best 4-core scenario; Figure 4.16 is the best 16-core scenario. As already

mentioned, more cores imply more tasks that may have the opportunity to interfer with one another.

Observation 4.7. No single algorithm was consistently dominant. Of the three forms of the greedy algorithm,

the greedy-physical algorithm gave the best overall performance; it was dominant in 138 scenarios, or nearly

two-thirds of the time. The greedy-mixed algorithm was dominant in 60 scenarios, all of which used the

exponential rather than fixed Mi( j) distribution. Note that the greedy-mixed algorithm always dominates the

oblivious algorithm. The greedy-threaded algorithm was dominant in 18 out of 216 scenarios, all of which

used the heavy per-task utilization range. However, in all of these 18 scenarios, the greedy-threaded algorithm

was either identical to the greedy-mixed algorithm or only gave a very slight improvement.

4.4 Conclusions and future work

In this chapter, we have given a schedulability test and four related algorithms for using SMT to support

SRT systems. We have shown, within the context of our schedulabilty study, that SMT can, in the best cases,

allow a given platform to schedule systems with utilization 1.5 times greater than what it could schedule

without SMT.

In future work, we plan to develop partitioning algorithms that account for cache affinity and use SMT to

decrease tardiness rather than simply guaranteeing bounded tardiness.
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CHAPTER 5: SCHEDULING HARD REAL-TIME SYSTEMS WITH SMT

In this chapter, we give two approaches to scheduling periodic HRT systems. First, in Section 5.1, we

describe the CERT-MT (Controlled Execution of Real-Time with Multi-Threading) scheduler. In Section 5.2,

we give the results of testing CERT-MT with a synthetic-task schedulability study. We show that CERT-MT

can be effective at leveraging SMT in small platforms, but that scalability problems make it less useful for

large platforms. Second, in Section 5.3, we introduce an alternative scheduler that is more scalable and

arguably easier to implement. We evaluate this scheduler in Section 5.4.

Both schedulers of this chapter make use of mathematical optimization programs. To solve them, we

used Gurobi Optimizer (Gurobi Optimization LLC, 2023), a commercial optimization program solver with

free academic licensing.

The notation used in this chapter is summarized in Table 5.1. The work of this chapter is a continuation

of that in (Osborne and Anderson, 2020; Osborne et al., 2020).

5.1 CERT-MT: Controlled Execution of Real-Time with Multithreading

In this section, we present the CERT-MT scheduler, a cyclic executive (CE) scheduler (see Section 2.3.2)

that allows for SMT. CERT-MT allows for RSAs as high as 1.34, but suffers from significant scalability

problems.

We repeat the definition of simultaneous co-scheduling (Definition 3.7) for easy reference.

Definition 5.1. We say that two jobs are simultaneously co-scheduled if both begin execution simultaneously

on hardware threads belonging to the same physical core, and when one job completes, the remaining job

continues on the same core until complete. No other job can be scheduled on the core until both jobs have

completed. We use τi.a: j.b to denote the simultaneously co-scheduled jobs τi.a and τ j.b. ◀
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Table 5.1: Summary of notation used in Chapter 5.

Symbol Description Reference Sections Used

τi.a: j.b Simultaneously co-scheduled HRT jobs Def. 3.7 3.2, 5.1
C(1)

i( j) Cost of HRT task τi co-scheduled with τ j Def. 3.9 3.2, 3.3, 5.1
φ(ℓ) Frame size on core ℓ Def. 5.2 5.1
H Hyperiod length Def. 2.6 2.3, 5.1
C+

i( j) max(C(1)
i( j),C

(1)
i( j)) Def. 5.3 5.1, 5.3

r(i.a, j.b) max(Ti · (a−1),Tj · (b−1)) Def. 5.4 5.1
d(i.a, j.b) min(Ti ·a,Tj ·b) Def. 5.4 5.1
x(i.a, j.b, ℓ,g) Decision variable for τi.a: j.b Def. 5.6 5.1
τi: j Paired tasks Def. 5.8 5.3
xi: j Decision variable for τi: j Def. 5.10 5.3
bi Blocking term for τi. Def. 2.8 2.3, 5.3
C−i( j) min(C(1)

i( j),C
(1)
i( j)) Def. 5.11 5.3

min
(

Ci
C j
,1
)

Adjusted Score Ratio Def. 3.18 3.3, 5.2, 5.4

fi(min
(

Ci
C j
,1
)
) Linear regression function Def. 3.19 3.3, 5.2, 5.4

RSA Relative Schedulable Area Def. 4.7 4.3, 5.2, 5.4

5.1.1 Scheduling Definition and Limitations

To ensure that CERT-MT operates within the bounds of the timing analysis work in Section 3.2, we

require that all jobs using SMT must be simultaneously co-scheduled and executed non-preemptively;

scheduler interruptions are included as preemptions. As we did not consider the effects of preemption in

Section 3.2, allowing preemptions while using SMT here would lack justification. We do allow preemptions

when not using SMT. In addition, as stated in Section 3.3, we do not allow tasks with baseline execution

times that differ by more than a factor of 10 to be co-scheduled.

Requiring non-preemptive scheduling to stay within the bounds of our timing analysis can make otherwise

schedulable systems unschedulable, as shown in Example 5.1 below. The example does not explicitly

reference SMT or co-scheduled jobs; Definitions 5.3 and 5.4, presented later in this subsection, will allow us

to treat co-scheduled jobs as a single schedulable unit.

Example 5.1. Let τ be a task system with periods in the set {10,20} such that Ci > 10 holds for at least one

task. Consider the frame size f 1 needed to execute τ non-preemptively. If f > 10 holds, then no job with

Ti = 10 can be scheduled, since the first frame will not complete until after the deadline of the first job, so

1Unrelated to the linear regression function discussed in Section 3.3.
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such a job could miss its deadline. If f ≤ 10 holds, then no job with Ci > 10 can be scheduled, since the

frame boundary causes a preemption by the scheduler. ♢

To facilitate the scheduling of non-preemptive jobs, we allow the frame size to be defined per-core, rather

than requiring one frame size for the entire platform. We replace the notation f for a platform-wide frame

size—the standard in CE scheduling—with φ(ℓ).

Definition 5.2. A frame is a time interval of length φ(ℓ) on core ℓ. Frames are indexed using g, starting from

g = 1, such that the gth frame on core ℓ starts at time (g−1) ·φ(ℓ) and ends at time g ·φ(ℓ). We require that

no frame extends beyond the hyperperiod2 boundary, allowing the schedule to repeat every hyperperiod. The

last frame per hyperperiod on core ℓ has index g =
⌊

H
φ(ℓ)

⌋
. ◀

As a consequence of allowing multiple frame sizes, frames with the same indices may cover different

lengths of time on different cores. For example, suppose that on a two-core system, φ(1) = 10 and φ(2) = 20.

Frames 1, 2, and 3 of core 1 would start at times 0, 10, and 20, but frames 1, 2, and 3 of core 2 would start at

times 0, 20, and 40. In addition, the maximum valid frame index varies based on φ(ℓ); since we only need to

define a schedule for the first hyperperiod, we do not consider frames for which g ·φ(ℓ)> H holds.

We define three scheduling parameters for co-scheduled job pairs: outer cost, joint release, and joint

deadline. These parameters allow us to treat pairs of jobs as schedulable entities.

Definition 5.3. The outer cost to simultaneously execute jobs of τi and τ j is given by C+
i( j), defined as the

execution time for both jobs assuming they begin simultaneously, i.e.,

C+
i( j) = max

(
C(1)

i( j),C
(1)
j(i)

)
.

If i = j, then C+
i( j) =Ci, indicating solo execution for τi. Jobs with nothing co-scheduled are solo jobs. ◀

We make the pessimistic assumption that when co-scheduled, both jobs require execution time C+
i( j) to

complete; neither job gets credit for completing until both jobs have done so. This assumption simplifies our

scheduling problem considerably.

Definition 5.4. Given τi.a: j.b, the joint release and joint deadline are given, respectively, by

r(i.a, j.b) = max(Ti · (a−1),Tj · (b−1)) and

2Recall from Definition 2.6 that the hyperperiod is denoted by H
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d(i.a, j.b) = min(Ti ·a,Tj ·b).

For the case where i = j and a = b—i.e., a solo job—the r and d terms are simply the job’s release time and

absolute deadline. ◀

In order for both jobs of a pair to finish on time, the pair must begin no sooner than r(i.a, j.b)—both jobs

must have been released—and must finish no later than d(i.a, j.b)—neither job can miss its deadline.

5.1.2 Creating a Schedule

In this subsection, we review what it means for a CE scheduler to be correct and generalize standard CE

rules to allow for the use of SMT and varied frame sizes. A CE schedule is correct if the rules previously

stated in Definition 2.7, adapted from Baker and Shaw (Baker and Shaw, 1989), hold. We repeat the definition

here.

Definition 5.5. A CE schedule is correct if over the course of each hyperperiod: (i) all jobs are scheduled;

(ii) any non-preemptable job is scheduled in one frame; (iii) every job completes in a frame that ends no later

than its deadline; (iv) no job executes in a frame that begins before its release; (v) the total execution time

scheduled in each frame is no greater than the frame size; and (vi) no job executes in parallel with itself. ◀

If we allow a particular job to execute on multiple cores, rule (vi) of Definition 2.7 becomes quite

challenging. For this reason, we require each job, with or without SMT, to execute on only one core. However,

a task may execute different jobs on different cores.

In a conventional CE scheduler, which does not permit SMT and which requries one frame size across all

cores, the primary scheduling decision is how to assign jobs to frames. With CERT-MT, additional decisions

are needed: what frame size should be used for each core, on what core should each job be scheduled—with

different frame sizes, cores are not interchangeable—and how, if at all, should jobs be co-scheduled? Even

so, the requirements given for correctness in Definition 2.7 are unchanged.

However, these correctness requirements are more complicated, particularly since the scheduling de-

cisions needed cannot be made independently. To make them, we employ a mathematical optimization

program. To convert our correctness conditions into mathematical form, we define a variable for every

possible combination of jobs, cores, and frames.
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Time 20 30 40100

Core 1

Core 2

Figure 5.1: A possible schedule and
corresponding x variables for the task
system of Ex. 5.2.
x(1.1, 2.1, 1, 1)=x(2.1, 1.1, 1, 1)=1
x(1.2, 3.1, 1, 2)=x(3.1, 1.2, 1, 2)=1
x(1.3, 2.2, 1, 3)=x(2.2, 1.3, 1, 3)=1
x(1.4, 3.2, 1, 4)=x(3.2, 1.4, 1, 4)=1
x(4.1, 4.1, 2, 1)=1
x(5.1, 5.1, 2, 1)=0.5
x(4.2, 4.2, 2, 2)=1
x(5.1, 5.1, 2, 2)=0.5

Definition 5.6. For i ̸= j, let the variable x(i.a, j.b, ℓ,g) be defined as

x(i.a, j.b, ℓ,g) =
time budgeted for τi.a: j.b on core ℓ in frame g

C+
i( j)

.

This actually defines two variables for every pair of distinct jobs: one for which i < j holds, and a second

for which the opposite is true. For i = j, we define the variable only for a = b and keep the same definition

with the provision that a solo job is said to be “simultaneously co-scheduled” with itself.3 We refer to these

variables as the x variables. ◀

Example 5.2. Let the task system τ consist of τ1 = (7.5,10), τ2 = (5,20), τ3 = (5,20), τ4 = (10,20), and

τ5 = (20,40). Furthermore, let C+
1(2) and C+

1(3) = 10. Figure 5.1 shows a possible schedule for τ on two cores

(note that τ has total utilization of 2.25; it cannot be scheduled on two cores without SMT), along with the

non-zero corresponding x variables. Frame borders are indicated by dashed lines; we have φ(1) = 10 and

φ(2) = 20. The first two variables, x(1.1,2.1,1,1) and x(2.1,1.1,1,1), show that the first jobs of τ1 and τ2 are

co-scheduled in frame 1 of core 1 for 10 time units, their joint cost. The last variable listed, x(5.1,5.1,2,2),

shows that job 1 of τ5 is scheduled in frame 2 of core 2 for half of its total cost. The preemption of τ5.1 by the

scheduler at time 20 is permitted, as our non-preemption requirement only applies to jobs using SMT. ♢

We outline the mathematical constraints needed to fulfill the requirements of Definition 2.7 (i.e., Defini-

tion 5.5). These constraints can be used to build an optimization program such that solving the program, i.e.,

assigning values to the x and frame-size variables so that all constraints hold, produces a correct schedule.

3We do not propose scheduling a job with a second copy of itself; we overload the term “simultaneously co-scheduled” to avoid
constantly addressing solo jobs as a special case.
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Our first constraint addresses the existence of two variables for every pair of jobs. We require that

x(i.a, j.b, ℓ,g) = x( j.b, i.a, ℓ,g) (5.1)

holds. In Figure 5.1, we see the first eight variables listed as pairs for this reason. Our remaining constraints

fulfill the requirements of Definition 5.5.

(i) All jobs are scheduled. To guarantee that all jobs released over the hyperperiod are scheduled, we

require that for any job τi.a released within the first hyperperiod, the x variables corresponding to it

must sum to 1. Mathematically,4

∀i,a
n

∑
j=i

H
Tj

∑
b=1

m

∑
ℓ=1

⌊
H

φ(ℓ)

⌋
∑
g=1

x(i.a, j.b, ℓ,g) = 1.0.

In Example 5.2, τ1 through τ4 fulfill this requirement by having one variable valued at 1 for each

job within the hyperperiod; τ5 has two non-zero variables for its one job, which is scheduled in two

different frames of core 2; each variable is valued at 0.5

(ii) Any non-preemptable job must be scheduled in exactly one frame. For i ̸= j, we require that x

equal either zero or one. This requirement can be seen with the variables corresponding to τ1 through

τ3 in Example5.2. While each job of τ4 is also scheduled in a single frame, doing so is not necessary

for a correct schedule, since τ4 does not use SMT.

(iii) Every job completes in a frame that ends no later than its deadline. Frame g of core ℓ ends at time

g ·φ(ℓ). We make the per-core frame size into a variable—φ(ℓ) for all ℓ ≤ m—and require that if a

job is scheduled in a given frame, then its deadline can be no sooner than the end of the frame. In our

optimization program, we express this rule using the following constraint:

∀i.a, j.b, ℓ,g,⌈x(i.a, j.b, ℓ,g)⌉ ·g ·φ(ℓ)≤ d(i.a, j.b).

If ⌈x(i.a, j.b, ℓ,g)⌉= 1 holds, then the restriction is true if and only if the frame’s end time, g ·φ(ℓ), is

no more than the deadline. If ⌈x(i.a, j.b, ℓ,g)⌉= 0 holds, i.e., the job(s) is (are) not scheduled in frame g

4Variables for which i = j and a ̸= b technically do not exist per Definition 5.6. Here and elsewhere when i = j, ∑

H
Tj
b=1 would more

properly written as ∑
a
b=a. We leave it as is for the sake of brevity.
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of core ℓ, making the frame size irrelevant, then the constraint is always true. While the ceiling operator

is meaningless for non-preemptable co-scheduled jobs, which already have x(i.a, j.b, ℓ,g) ∈ {0,1}, it

is necessary for the solo jobs to test whether any portion of the job is within frame g.

This constraint holds in Figure 5.1; using the first jobs of τ1 and τ2 as an example, we have

⌈x(1.1,2.1,1,1)⌉ ·1 ·φ(1)≤ d(1.1,2.1)

1 ·1 ·10≤ 10.

Observe also that scheduling τ1.1 anywhere other than frame 1 of core 1, given that φ(2) = 20, would

violate this constraint. In addition, constraint (v) below guarantees that every job can execute for its

scheduled time within each frame.

(iv) No job executes in a frame that begins before its release. Frame g of core ℓ begins at time

(g−1) ·φ(ℓ). Consequently, we require that

⌈x(i.a, j.b, ℓ,g)⌉ · r(i.a, j.b)≤ (g−1)φ(ℓ)

holds. The logic here is similar to that in (iii); if x(i.a, j.b, ℓ,g) = 0 holds, then the constraint will

always be true. Otherwise, the job’s release must fall no later than the beginning of the frame for the

constraint to hold. In Figure 5.1, using the third job of τ1 and the second job of τ2 as examples, we have

⌈x(1.3,2.2,1,2)⌉ · r(1.3,2.2)≤ (3−1) ·φ(1)

1 ·20≤ 2 ·10.

(v) The total execution time scheduled in each frame is no greater than the frame size. Each x variable

requires that x(i.a, j.b, ℓ,g) ·C+
i( j) units of time be allocated to the corresponding job in the selected

frame. We must avoid overscheduling frames. The following constraint accomplishes that goal:

∀ ℓ,g :
n

∑
i=1

H
Ti

∑
a=1

n

∑
j=i

H
Tj

∑
b=1

x(i.a, j.b, ℓ,g) ·C+
i( j) ≤ φ(ℓ).
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For example, C+
1(2) and f (1) are equal to 10 in Example 5.2, giving us

x(1.1,2.1,1,1) ·C+
1(2) ≤ φ(1)

1 ·10≤ 10

for frame 1 of core 1; note that all other variables connected to this frame, apart from x(2.1,1.1,1,1),

are equal to 0.

(vi) No job executes in parallel with itself. For non-preemptable jobs, this rule holds automatically, since

every job is scheduled in exactly one frame. For preemptable solo jobs, we add the constraint

∀i,a, ℓ

⌊
H

φ(ℓ)

⌋
∑
g=1

x(i.a, i.a, ℓ,g) ∈ {0,1},

which states that for every solo job, either all or none of it must be on a given core. In Example 5.2,

this constrains each job of τ4 and τ5 to a single core.

If a correct schedule exists, then an optimization program that follows the above constraints can find

one. Despite the name, there is no objective function that needs to be optimized; if a set of decision variables

that fulfills all restrictions exists, a correct schedule can be formed by making the scheduling choices

corresponding to those variables.

5.2 CERT-MT Schedulability Studies

To evaluate our work, we conducted a large scale synthetic-task schedulability study. As in Chapter 4,

we define scenarios by a per-task utilization range, core count, and SMT parameters and summarize each

scenario in a single graph. Parameters are described in Section 5.2.1 below.

For each scenario, we created synthetic systems with total utilizations ranging from 3m
4 to 2m. In

preliminary observations, we found that not all task systems with utilization m could be scheduled on m

cores, but all task systems with utilization 3m
4 could be. We calculated RSAs on the assumption that all

systems with utilization less than 3m
4 were schedulable. We plotted graphs showing the percentage of systems

schedulable at each utilization level in increments of 0.25. Each point on our graphs corresponds to at least
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50 task systems. We use larger increments and smaller sample sizes than we did in Chapter 4 due to the

increased time required to test each task system.

An ideal scheduler without SMT but with the ability to preempt and migrate jobs without restrictions

would have an RSA of 1.0; it could schedule all task systems with total utilization at most m and no task

systems with greater utilization. However, many HRT schedulers fall far short of this mark. For any multicore

platform, there exist HRT task systems with utilization arbitrarily close to one that cannot be scheduled using

G-EDF (Dhall and Liu, 1978); this is known as the Dhall Effect and was described in Section 2.3.3. As

another example of HRT schedulers being less than ideal, under partitioned scheduling a system of n tasks

each with ui > 0.5 requires n cores to schedule (see Section 2.3.3), potentially causing RSA to be as low as

0.5+ ε. A detailed look at the limitations of HRT schedulers can be found in (Carpenter et al., 2004).

5.2.1 Schedulability Test Parameters

We use five parameters, summarized in Table 5.2, to define each scenario. The first parameter, core

count (m), specifies the number of cores in our target platform. Possible values are four and eight; due to the

complexity of our scheduling problem, we were unable to conduct sixteen-core schedulability studies.

The second parameter again determines task utilizations before accounting for SMT. We use the light,

medium, wide, and heavy per-task utilization ranges, defined identically to their use in Section 4.3.

Whereas we only needed to know utilizations for SRT scheduling, task costs and periods are relevant in

this case. Each task had a period randomly selected from the set {10,20,40,80}, with each possible period

being equally likely. Baseline costs without SMT were computed as the product of period and utilization.

The remaining three parameters—E[ fi(1)], slope, and distribution—govern the effects of SMT on

execution time. They are slightly different from those used in Chapter 4. E[ fi(1)] gives the overall expected

value for M(1)
i( j) given that Ci ≤C j holds. Possible values are 0.35 (optimistic), 0.55 (mid-range), and 0.75

(pessimistic). For each task τi, we set fi(1) (see Definition 3.19) equal to a random exponential variable with

mean E[ fi(1)]. The slope parameter is used in conjunction with fi(1) to define the linear regression function

fi

(
min

(
Ci
C j
,1
))

. Possible values are 0.0, 0.15, and 0.30.

Finally, the distribution parameter determines whether M(1)
i( j) is equal to fi

(
min

(
Ci
C j
,1
))

—the fixed

distribution—or equal to an exponential random variable with mean fi

(
min

(
Ci
C j
,1
))

; the exponential

distribution, abbreviated as expo. Parameter choices are summarized in Table 5.2. The parameters used for
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Table 5.2: Summary of parameters used to define schedulability scenarios

Parameter description Parameter symbol Possible Values

core count m 4, 8

per-task util. distribution none U(0, 0.4) (light); U(0.3, 0.7) (medium);
U(0, 1) (wide); U(0.6, 1.0) (heavy)

expected M(1)
i( j) given Ci ≤C j E[ f (1)] 0.2, (optimistic); 0.4, (mid-range);

0.6 (pessimistic)

slope of regression function none 0.0, 0.15, 0.30

distribution for M(1)
i( j)

given fi

none
fixed, exponential

each graph are given in the graph’s title. In the graph titles, we write f (1) rather than E[ f (1)] to improve

readability.

In addition, we specified a timeout value for each scenario: if a feasible solution for a system could not

be found within the timeout, we counted the system as being unschedulable. For most of our scenarios, we

used a 60-second timeout. Because we observed many systems deemed unschedulable due to timeouts rather

than true impossibility, we repeated a subset of our experiments using a 300-second timeout.

5.2.2 Schedulability Test Results: Four Cores and 60 Second Timeouts

We tested 72 four-core systems using all combinations of task system parameters and a 60-second

timeout. We discuss our observations from those scenarios here. The graphs depicted here are chosen to

illustrate the trends we observed; complete graphs are available in Appendix B. Results using a 300-second

timeout and results for eight-core systems are discussed in Sections 5.2.3 and 5.2.4.

Observation 5.1. In the best case, CERT-MT produced an RSA of 1.22. The best-case scenario is shown in

Figure 5.2. We were able to do better when allowing a 300-second timeout, getting an RSA as high as 1.34.

Observation 5.2. In the worst case, CERT-MT produced an RSA of 0.95. Figure 5.3 shows our worst scenario.

While this result falls short of an ideal scheduler without SMT, it does outperform many commonly-used

schedulers, such as P-EDF.
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Figure 5.2: The best scenario.
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Figure 5.3: The worst scenario.
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Figure 5.4: The median scenario.
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Figure 5.5: A mean scenario.

Observation 5.3. CERT-MT was beneficial even compared to an ideal scheduler in more than half of

scenarios tested, with a median RSA of 1.11. Figure 5.4 depicts our median scenario and Figure 5.5 depicts a

mean scenario.

Observation 5.4. CERT-MT performed the best given the light per-task utilization ranges and saw the

poorest performance given heavy per-task utilization. The per-task distribution range was the single most

important factor influencing RSA. Our best result (Figure 5.2) uses light per-task utilization and our worst

result (Figure 5.3) uses heavy per-task utilization. Figures 5.6 through 5.9 show scenarios with the same SMT

parameters but different per-task utilizations. Figure 5.6, depicting light per-task utilization, has an RSA of
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Figure 5.6: Light per-task utilization.
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Figure 5.7: Moderate per-task utilization.
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Figure 5.8: Wide per-task utilization.
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Figure 5.9: Heavy per-task utilization.

1.19, whereas Figure 5.9 has an RSA of 1.03. This effect is similar to what we saw in the SRT case; tasks

with baselines utilizations close to 1.0 are less likely be to be able to take advantage of SMT.

Observation 5.5. Scenarios using the exponential distribution tended to perform better than those using

the fixed distribution. This is the opposite of what we say saw for the SRT case in Chapter 4. For example,

Figures 5.5 and 5.15 differ only in that Figure 5.5 uses the fixed distribution and Figure 5.15 uses the

exponential distribution, but Figure 5.5 has an RSA of 1.1, whereas Figure 5.15 has an RSA of 1.17. Note

also that our best-case scenario (Figure 5.2) uses the exponential distribution while our worst (Figure 5.3) uses

the fixed distribution. In the SRT case, every task using SMT was assumed to affect every other task using
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Figure 5.10: E[ f (1)] = 0.35, slope 0.

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

4 Cores, Task Util. ~ U(0.3, 0.7)
f(1)=0.35, slope=0.3, fixed

RSA: 1.14, Timeout: 60

Figure 5.11: E[ f (1)] = 0.35, slope 0.3.
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Figure 5.12: E[ f (1)] = 0.55, slope 0.
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Figure 5.13: E[ f (1)] = 0.55, slope 0.3.

SMT; thus any parameter causing additional variation tended to be harmful. Here, that effect is mitigated by

pairing tasks individually.

Observation 5.6. Changing the slope of fi generally had a smaller impact than changing the expected value

of fi(1). For example, see Figures 5.10 through 5.13. When comparing Figure 5.10 to Figure 5.12, RSA

decreases from 1.16 to 1.11, a drop of 0.05. When comparing Figure 5.11 to 5.13, RSA drops again drops by

0.05, from 1.14 to 1.09. In both of these comparisons, E[ f (1)] changes as slope remains constant.

The decrease in RSA is less when comparing graphs with the same f (1) values but different slopes, i.e.,

comparing graphs on the left and right as Figures 5.10 through 5.13 are arragned. Between both left-right

pairs, RSA decreases by only 0.02.
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Observation 5.7. One-minute timeouts were a significant issue on four-core systems, particularly with light

per-task utilizations.

For each of our 72 scenarios, we counted how many task systems were deemed unschedulable due

to timeouts and how many were “true failures” where the system was actually shown to be infeasible. In

21 scenarios, all failures were due to timeouts rather than determining the system was not feasible; in an

additional 33 scenarios, timeout failures outnumbered true failures. True failures outnumbered timeout

failures only when wide per-task utilization was used. These scenarios would also have the fewest tasks.

Given the frequency of timeouts, it seems likely that our timeout requirement caused CERT-MT results to be

understated for all systems using the moderate, wide, and light per-task utilizations. To be clear, scenarios

were evaluated using a shared research cluster; we had no control over the exact schedule or quality of service.

For this reason, our observations on the time required to test individual task systems are useful mainly for

order-of-magnitude comparisons.

5.2.3 Schedulability Test Results: Four Cores and 300 Second Timeouts

We repeated our schedulability studies with a 300-second timeout for eighteen four-core scenarios: all

four per-task utilization distributions, all three possible values for E[ fi(1)], a slope of 0.15, and both the

fixed and exponential distributions. We summarize the effects of increasing the timeout for each of the four

utilization descriptions.

Definition 5.7. When comparing two scenarios with different time values and otherwise identical parameters,

let the timing-related change be defined as the RSA of the scenario with the longer timeout value—here 300

seconds—divide by the RSA of scenario with the shorter timeout value. ◀

A value of 1.0 for timing-related change indicates no change; a value greater than 1.0 indicates that

increasing the timeout allowed for otherwise unschedulable systems to be schedulable.

For the heavy, moderate, and wide distributions, increasing the timeout had minimal effect; timing related

changes across all three distributions ranged from 0.98 to 1.02, with means of 1.00 for the heavy and wide

cases and 1.01 for the moderate case. For the heavy scenarios, two had no timeout-induced scheduling

failures and four had one each. For the wide scenarios, timeout-induced failures outnumbered true failures by

an approximately two to one margin. For the moderate scenarios, timeout failures outnumbered true failures

by as much as 100 to 1.
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Figure 5.14: Light per-task utilization,
300-second timeout.
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Figure 5.15: Moderate per-task utilization,
300-second timeout.
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Figure 5.16: Wide per-task utilization,
300-second timeout.
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Figure 5.17: Heavy per-task utilization,
300-second timeout.
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For the light scenarios, we continued to see no true failures. However, the longer timeout did allow for

significantly better schedulability; values on timing related changes ranged from 1.07 to 1.11, with a mean

of 1.08. RSA values ranged from 1.15 to 1.34, with a mean of 1.25. Among all 60-second scenarios, the

maximum RSA was 1.22.

Figures 5.14 through 5.17 show the scenarios for E[ fi(1)] = 0.55, the exponential method, and all four

per-task utilization ranges; apart from the changed timeout value, these scenarios are the same as those of

Figures 5.6 through 5.9.

5.2.4 Schedulability Test Results: Eight Cores

We ran schedulability studies for eight eight-core scenarios: all four per-task utilization distributions,

E[ fi(1)] = 0.55, a slope of 0.15, and both the fixed and exponential distributions.

When using light per-task utilization with eight cores and a 60-second timeout, almost every attempt to

find a schedule timed out.

For the wide and moderate distributions, RSA was slightly lower in eight-core scenarios. For the heavy

distribution, RSA stayed the same when using the fixed distribution but increased slightly when using the

exponential distribution.

When we repeated the eight-core experiments with a 300-second timeout, RSAs for the moderate, wide,

and heavy eight-core scenario were equal to or slightly greater the corresponding scenario with four cores

and a 60-second timeout, but less than the corresponding four-core scenario with a 300-second timeout. The

light scenario saw its RSA improve to 1.02 with a 300-second timeout; much better than the 60-second case,

but still inferior to both the four-core scenario and eight-core scenarios with different per-task utilizations.

Figures 5.18 through 5.21 show the scenarios for E[ fi(1)] = 0.55, the exponential method, all four

per-task utilization ranges, and a 60-second timeout. apart from the changed core count, these scenarios are

the same as those of Figures 5.6 through 5.9. Figures 5.22 through 5.25 show the same eight-core scenarios

with a 300-second timeout.

5.3 A More Practical Approach to SMT-Aware Scheduling

In this section, we give an SMT-aware HRT scheduler designed to address two key weaknesses of

CERT-MT: scalability problems and the use of CE scheduling. The disadvantages of poor scalability, as
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Figure 5.18: Light per-task utilization,
eight cores, 60-second timeout.
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Figure 5.19: Moderate per-task utilization,
eight cores, 60-second timeout.
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Figure 5.20: Wide per-task utilization,
eight cores, 60-second timeout.
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Figure 5.21: Heavy per-task utilization,
eight cores, 60-second timeout.

121



6 8 10 12 14 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

8 Cores, Task Util. ~ U(0, 0.4)
f(1)=0.55, slope=0.15, expo

RSA: 1.02, Timeout: 300

Figure 5.22: Light per-task utilization,
eight cores, 300-second timeout.
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Figure 5.23: Moderate per-task utilization,
eight cores, 300-second timeout.
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Figure 5.24: Wide per-task utilization,
eight cores, 300-second timeout.
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Figure 5.25: Heavy per-task utilization,
eight cores, 300-second timeout.
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seen in Section 5.2.4, are obvious. Disadvantages of CE scheduling include the need to recalculate the entire

schedule should even one task change and the fact that many existing systems use priority-driven scheduling,

in which each job has a priority and scheduling consists of executing jobs with the highest priority first. EDF

is as an example of priority-driven scheduling. Another example is rate-monotonic (RM) scheduling, in

which highest priority goes to the job belonging to the task with the shortest period. For existing systems

using priority-driven approaches, implementing SMT-aware scheduling may be easier if the priority-driven

framework can be maintained, possibly making SMT a more attractive option.

Our priority-driven scheduling method consists of three steps, which are depicted graphically in Fig-

ure 5.26. First, we use an optimization program to tranform a task system τ into a system τR that uses SMT.5

The decision to use SMT is made on a per-task basis. This choice is fundamental to the rest of our process, as

SMT usage affects many aspects of task behavior. Second, we partition τR into subsystems that are assigned

to individual cores, with subsystem τRℓ denoting the set of tasks assigned to core ℓ. Third, we schedule

subsystems on each core using a priority-driven method such as EDF scheduling.

Even for the largest systems tested, our transformation step consistently requires less than three seconds

to perform; this stage of testing potential systems will not become a bottleneck in the development process.

The cost of our quick transformation is that our methods only apply to systems in which many tasks share

common periods. However, this restriction is an easy price to pay, given that industrial-oriented task systems

are commonly built around only a few distinct periods. We evaluate this approach in Section 5.4 via a

large-scale schedulability study in which we track both the proportion of task systems that can be scheduled

on a given platform and how much time is needed to conduct each test.

5.3.1 Transforming the System

In this subsection we show how to transform τ into an equivalent system τR in which some tasks are

replaced by paired tasks.

Definition 5.8. Two tasks τi and τ j are paired if a decision has been made that all jobs of τi will be

simultaneously co-scheduled (Definition 3.7) with a job of τ j and all jobs of τ j will be co-scheduled with a

job of τi. τi and τ j can be paired only if they share a common period. The paired task is treated as a single

schedulable unit τi: j with cost C+
i( j) (Definition 5.3). ◀

5We use the “R” superscript to avoid any confusion with T for time.
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Figure 5.26: Overview of the Priority-Driven approach to SMT scheduling.

“Equivalent” here means that if τR is scheduled correctly, then τ is also scheduled correctly. Because we

require that paired tasks share a period, a paired task τi: j has the same relative deadline as its component tasks

τi and τ j. Consequently, if τi: j is scheduled correctly, then τi and τ j are also scheduled correctly. It follows

that τ can be correctly scheduled by combining some tasks into pairs and then correctly scheduling all solo

tasks and all task pairs, treating each task pair as if it were a single task.

To aid in our explanations, we define a system’s total utilization when task pairs are treated as if they

were individual tasks.

Definition 5.9. The transformed utilization UR of system τR is given by

∑
∀i:τi is a solo task

ui + ∑
∀i, j:i> j,τi and τ j are paired

C+
i( j)

Ti
. (5.2)

We use URℓ for the equivalent term when considering only tasks and task-pairs assigned to a single core ℓ. ◀

5.3.1.1 Which Tasks Should be Paired?

Given the role that total utilization plays in determining schedulability, it is reasonable to define task

pairs so as to minimize total paired utilization. We can do so using an optimization program with decision

variables xi: j for all tasks τi and τ j within τ.
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Definition 5.10. For all i and all j such that Ti = Tj, let xi: j equal 1 if τi and τ j are paired with each other and

0 otherwise. For i = j, let xi: j equal 1 if τi is a solo task in τR and 0 otherwise. Since we do not consider

pairing tasks where Ti ̸= Tj, we define xi: j = 0 for those cases. ◀

With Definition 5.10 in place we can write UR as follows:

n

∑
i=1

n

∑
j=i

xi: j ·
C+

i( j)

Ti
. (5.3)

Recall from Definition 5.3 that for solo tasks, we define C+
i( j) =Ci; hence for i = j,

C+
i( j)
Ti

= ui.

5.3.1.2 Optimization Program Constraints

In order for τR to be equivalent to τ, all tasks within τ must be accounted for in τR. To enforce this rule,

we require that

∀i≤ n :
n

∑
j=1

xi: j = 1 (5.4)

holds; essentially, all tasks within τ must appear in τR either as a solo task or as part of a paired task.

Additionally, just as τ will be unschedulable under our assumption of implicit deadlines if Ci > Ti holds

for any task, τR will be unschedulable if C+
i( j) > Ti holds for any paired task τi: j. We therefore require that the

following holds:

xi: j ·C+
i( j) ≤ Ti, (5.5)

i.e., τi and τ j may be paired only if C+
i( j) ≤ Ti holds. Since we require that only tasks sharing a period may be

paired, we do not need a separate restriction governing the relative values of C+
i( j) and Tj.

Finally, note that Definition 5.10 actually defines both xi: j and x j:i for each possible task pair. To avoid

any inconsistencies, we add the restriction that

∀i, j : xi: j = x j:i. (5.6)

We define our optimization program as an integer linear program minimizing Exp. (5.3) subject to

Exps. (5.4) through (5.6). Although integer linear programming has exponential complexity relative to the

number of variables, our program executed quickly in the experiments presented in Sec. 5.4. We discuss

execution times in more detail as part of our experimental evaluation.
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5.3.2 Partitioning the Transformed System

After defining τR, our next step is to partition it onto the cores of π. Even without non-preemptive

sections, assigning tasks and task pairs to cores so that all cores are schedulable is a bin-packing problem.

While bin-packing is NP-complete in the strong sense, multiple well-studied approximation algorithms for it

exist. We use two of these algorithms—worst-fit decreasing and best-fit decreasing bin-packing—and two

algorithm variations of our own, giving us a total of four partitioning algorithms. In all cases, we assign tasks

to cores in non-increasing order of
C+

i( j)
Ti

and view each core as a single bin with capacity 1.0.

Worst-fit decreasing and best-fit decreasing. In worst-fit bin packing, each task or paired task is placed

on the core that will maximize remaining capacity on the selected core. In best-fit bin packing, each task or

paired task is placed on the core that will minimize remaining capacity on the selected core.

Period-aware bin-packing. In our second two algorithms, we modify the worst-fit and best-fit algo-

rithms in an attempt to limit the number of different periods on any one core. Having all tasks on a core

share a common period eliminates the ability of non-preemptable tasks to block higher-priority tasks; one

consequence of Definition 2.8 and Theorem 2.2 is that if all tasks on a given core share the same period, then

no task is subject to priority-inversion blocking. In this case, the core is schedulable if and only if URℓ ≤ 1

holds.

In period-aware worst-fit partitioning, we again attempt to place tasks and task-pairs on cores in non-

increasing order of
C+

i( j)
Ti

. In this method, we potentially make two attempts to assign each task to a core. In

the first attempt, we use worst-fit bin-packing to assign a task or paired task to a core, but we consider only

cores on which all previously assigned tasks have the same period as the current task. If a task or paired task

is assigned to a core at this point, we move on to the next task or paired task. If the task or pair cannot be

placed onto a core using this method, we consider all cores of the platform and assign the task using the

standard worst-fit decision process.

Period-aware best-fit partitioning is similar, but uses the best-fit approach instead.

5.3.3 Testing Individual Cores

Our final step is to test each core for schedulability. To do so, we treat each paired task as if it were a

single task. After tasks have been partitioned, the process is no different from uniprocessor scheduling without

SMT. While we use EDF in this paper, there is no reason why another uniprocessor scheduling algorithm,

126



such as RM, cannot be used; the only change needed to use a different per-core scheduling algorithm would

be to use a different schedulability test.

We consider three approaches to task preemption, described below. Strictly speaking, the timing analysis

of Chapter 3 only allows for non-preemptive scheduling. However, experimenting with preemption can guide

future work to enable safe timing analysis for more cases.

No preemption. In this model, our first and most pessimistic, we make every paired task non-preemptable.

This is the model used for CERT-MT in Sections 5.1 and 5.2. In this case, τi may be blocked by any task pair

τ j:k for which Tj > Ti holds for time C+
j(k).

Limited preemption. Our next approach allows paired tasks to be preempted after one job has completed,

i.e., SMT is not in use at the moment of preemption. To define when we can preempt, we need an additional

cost definition. We define the inner cost of a paired task as the lesser of the two tasks’ execution times, i.e.,

the time during which SMT is actually in use.

Definition 5.11. The inner cost to simultaneously execute jobs of τi and τ j is given by C−i( j), defined as the

execution time for both jobs assuming they begin simultaneously, i.e.,

C−i( j) = min(C(1)
i( j),C

(1)
j(i)).

If i = j, then C−i( j) =Ci, indicating solo execution for τi. ◀

In the limited preemption model, we make each paired task non-preemptable during the first C−i( j) units

of their execution, but fully preemptable afterwards. In this case, τi may still be blocked by any task pair τ j:k

on the same core for which Tj > Ti holds, but but blocking time can be at most C−j(k).

Full preemption. Here we assumed that all tasks are fully preemptable, even when there are paired jobs

running at the same time. In practice, allowing unrestricted preemptions along with SMT would tend to make

timing analysis even harder, possibly making it impossible to guarantee a safe timing analysis for HRT tasks.

However, testing this approach allowed us to see the cost of limiting preemptions. In addition, this approach

may be viable for SRT and non-safety-critical systems, where some additional uncertainty in timing analysis

may be tolerable. With full preemption, τi is never blocked; it follows that bi = 0.

In all three cases, schedulability can be tested by applying Theorem 2.2 to test the whether the subsystems

assigned to each core can be scheduled using EDF.6

6Jeffay et al. (Jeffay et al., 1991) provide a tighter, but more complex, test.
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5.4 Priority Driven Schedulability Studies

The parameters for our schedulability tests were almost identical to those described in Section 5.2.

There were two differences. First, we considered core counts of four, eight, and sixteen instead of four

and eight. Second, we differentiate between four period and eight period scenarios. In four period sce-

narios, as in Section 5.2, each task had a period randomly selected from the set {10,20,40,80}, with

each possible period being equally likely. In eight period scenarios, periods were selected from the set

{5,10,20,40,80,160,320,640}, again with equal probability.

We tested scenarios for all possible parameter combinations, giving us 216 total graphs; the full set of

graphs is in Appendix C.

For each scenario, we give four schedulability curves. Three of them, no preemption, limited preemption,

and full preemption were described in Section 5.3.3. The fourth, baseline, shows schedulabilty for a fully

preemptive partitioned EDF scheduler with partitioning done using worst-fit bin-packing. Each of the three

curves other than baseline shows the results of the partitioning algorithm—best fit, worst fit, period-aware

best fit, or period-aware worst fit—that gave the best results. Since all four partitioning algorithms execute

quickly, it is entirely practical to run all four for each task system and then choose the best result.

For each scenario, we created synthetic systems with total utilizations ranging from m
2 to 2m. We used m

2

as a starting point to ensure that our baseline scenario would consistently be able to schedule all task systems.

We calculated RSAs on the assumption that all systems with utilization less than m
2 were schedulable. Our

graphs show the percentage of systems schedulable at each utilization level in increments of 0.25. Each point

on our graphs corresponds at least 500 task systems.

We use two metrics to summarize the proportion of systems that are schedulable under each scenario.

We use RSA, as before, but a second metric, relative improvement.

Definition 5.12. Let the relative improvement (RI) of a given scheduling algorithm be equal to its RSA

divided by the RSA of a specified baseline algorithm. ◀

We use RI to show the benefit of our methods in cases where partitioned scheduling without SMT falls

well short of an ideal scheduler to begin with.
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Observation 5.8. In the best scenario, RSA and RI were both greater than 1.7 with full preemption and

greater than 1.55 with no or partial preemption. Figure 5.27 shows the best scenario for all three preemption

models, under either metric.

Observation 5.9. With partial preemption or no preemption, the worst cases for SMT occurred when the

number of periods was greater than the number of cores and the best cases when cores outnumbered periods.

Figure 5.28 shows the worst scenario for both the partial and no preemption models. The scenario considers

scheduling task systems with eight periods on a four-core system; it is impossible to partition tasks so that

only one period is represented on each core. Consequently, tasks would be subject to extensive blocking,

making the system unschedulable.

At first glance, the parameters of Figure 5.28 seem very favorable for SMT; it uses the optimistic µ

value, has a slope of zero, and uses the light per-task utilization distribution, which in both Sections 4.3

and 5.2 appeared beneficial to SMT. These parameters do cause excellent performance when SMT is fully

preemptable, but when SMT is not preemptable, “optimistic” parameters that allow all tasks to use SMT have

the side effect of making all tasks non-preemptable. Figure 5.27 shows the reverse case: cores outnumber

periods, meaning that the effects of non-preemption can be mitigated by limiting the number of periods

represented on each core. In practice, we would never use SMT when it decreases overall schedulability, i.e.,

RI is less than one. The best way to use SMT in that case would be to not use it at all.

Observation 5.10. For all three preemption models, SMT improved schedulability in more than half of tested

cases. Figures 5.31 and 5.32 depict scenarios with RIs of 1.18 (the median for full preemption) and 1.07 (the

median for no and partial preemption median).

Observation 5.11. Heavy per-task utilization makes SMT less effective under full preemption, but may not

change the effectiveness of SMT given partial or no preemption. Figures 5.33 through 5.36 depict scenarios

using all four utilization ranges and otherwise identical parameters. For the full preemption model, RSA

drops as average per-task utilization increases. For the partial and no preemption models, RSA is highest

given light per-task utilization, but is otherwise almost constant.

As per-task utilization increase, baseline schedulabilty using partitioned EDF declines as well. Conse-

quently, the no preemption and partial preemption models have equal RIs given either light or heavy per-task

utilization.
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Figure 5.27: The best scenario under all
preemption models.
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Figure 5.28: The worst scenario with partial
or no preemption.
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Figure 5.29: The worst scenario by RI for
full preemption.
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Figure 5.30: The worst scenario by RSA for
full preemption.
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Figure 5.31: A median scenario by RI for
full preemption.
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Figure 5.32: A median scenario by RI for
partial and no preemption.
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Figure 5.33: Light per-task utilization
and average SMT parameters.
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Figure 5.34: Medium per-task utilization
and average SMT parameters.
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Figure 5.35: Wide per-task utilization
and average SMT parameters.
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Figure 5.36: Heavy per-task utilization
and average SMT parameters.
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Figure 5.37: Identical parameters to
Graph 5.28 apart from core count.
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Figure 5.38: Identical to Graph 5.37 apart from using
the exponential distribution.
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Observation 5.12. SMT is beneficial even given pessimistic assumptions about its timing effects. When

using our most pessimistic SMT model—µ = 0.75 and slope of 0.3—SMT was beneficial in all cases for full

preemption, as shown in Figures 5.29 and 5.30. For the no preemption and partial preemption models, the

median RI given those SMT parameters was 1.02. Figures 5.29 and 5.30 show RI values for no preemption

and partial preemption of 1.01 and 1.03, respectively.

Observation 5.13. There is little difference between limited and no preemption. In all of our graphs shown,

the lines for limited and no preemption scheduling are either identical or very close. In the graphs that appear

to have only three schedulability curves, the two are surimposed. Limited preemption would be significantly

different from no preemption only if C(1)
i( j) and C(1)

j(i) are dissimilar for many paired tasks τi: j. However, since

utilization is reduced the most when tasks have similar costs, our optimization program will tend to pair tasks

with similar execution times.

Observation 5.14. SMT becomes more effective as core counts increase. For example, Figure 5.37 differs

from Figure 5.28 only by the core count, but shows vastly improved SMT effectiveness. For the full-

preemption model, two effects are in play: more tasks means better opportunities for the optimization

program to find good pairs, and partitioning is more effective on larger platforms, even without SMT. For the

partial and no preemption models, an additional difference is that in Figure 5.37, cores outnumber periods.

Observation 5.15. As with CERT-MT, SMT is more beneficial when using the exponential than the fixed

distribution. Our best graph, Figure 5.27, uses the exponential distribution, whereas all three of our worst

graphs, 5.28, 5.29, and 5.30, used the fixed distribution. In addition, compare Figures 5.37 and 5.38, which

differ only in that respect; Figure 5.38 is clearly better.

Observation 5.16. For all three preemption models, changing the slope of fi generally had a smaller impact

than changing the expected value of fi(1). For example, see Figures 5.39 through 5.42. When comparing

Figure 5.39 to Figure 5.41, RSAs for all three preemption models drop by 0.07 or more as fi(1) increases

from 0.35 to 0.55. When comparing Figure 5.40 to 5.42, RSA drops by 0.1 for the full preemption model and

by 0.06 for the other two models.

The decrease in RSA is much less when comparing graphs with the same f (1) values but different slopes,

i.e., comparing graphs on the left and right. Between Figures 5.39 and 5.40, no RSA decreases by more than

0.6; the same is true between Figures 5.41 and 5.42. A similar result was seen for CERT-MT in Section 5.2.
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Figure 5.39: E[ f (1)] = 0.35 with slope 0.0.
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Figure 5.40: E[ f (1)] = 0.35 with slope 0.3.
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Figure 5.41: E[ f (1)] = 0.55 with slope 0.0.
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Figure 5.42: E[ f (1)] = 0.55 with slope 0.3.
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Observation 5.17. In no case did our preemption program require more than three seconds to execute. For

every scenario, we recorded the maximum time for the preemption program to run on any task system in that

scenario; all values were under one second. We executed sets of twelve scenarios in parallel on 24-core nodes

of a large research cluster. We did not dictate how multiple cores were were to be used. However, even if 24

cores were used in parallel, we would still expect that optimization programs such as those used here could

be run on less than ninety seconds on a single core.

As with Section 5.2, scenarios were tested on a shared cluster. For this reason, times needed to schedule

scenarios may vary considerably from our observations.

5.5 Conclusions and future work

In this chapter, we have given two algorithms for using SMT to support HRT systems while using

simultaneous co-scheduling. We have shown, within the context of our schedulabilty study, that SMT can, in

the best cases, allow a given platform to schedule systems with utilization more than 1.5 times greater than

what it could schedule without SMT.

In future work, we plan to look for algorithmic shortcuts to make the CERT-MT scheduler more practical

and larger systems and improve the ability of our priority-driven scheduler to manage non-preemptive task

systems.
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CHAPTER 6: APPLYING SMT TO HRT DAGS

So far, we have only considered systems where all tasks are strictly sequential, i.e., no job may execute

in parallel with itself. In this chapter, we show how to use SMT to support HRT DAG tasks, which were

described in Section 2.4.1. In Section 6.1 we give a method for using SMT to minimize the utilization of a

single DAG by simultaneously co-scheduling selected subtasks. In Section 6.2, we evaluate our method via a

schedulability study. We consider both the effects of SMT on individual DAGs and the effects of SMT on

multi-DAG systems. In Section 6.3, we conclude and give directions for future work. This chapter is based

on work first done in 2022 (Osborne et al., 2022).

6.1 Applying SMT to DAG Tasks

SMT can be used to improve the schedulability of DAG tasks by executing vertices in parallel on a single

core. Informally, our approach can be described as using SMT to make DAGs skinnier. Figures 6.1 and 6.2

(duplicates of Figures 1.2 and 1.3) show a DAG before and after using SMT to combine vertices v2 and v5.

To decide which vertices to combine, we use an optimization program that minimizes total utilization—

we will shortly redefine utilization to account for SMT—without violating precedence constraints or making

the DAG infeasible. A DAG is infeasible if its deadline is less than its length, i.e., D < L holds. After

applying this program, we use Algorithm 1 to determine how many cores are required to schedule the DAG,

with combined vertices being simultaneously co-scheduled on a single core. Essentially, we are reducing

utilization as a heuristic to reduce the number of cores required.

6.1.1 Cost and Utilization for DAGs using SMT

To denote costs, we define ci( j) and c+i( j) identically to C(1)
i( j) and C+

i( j) (Definitions. 3.9 and 5.3); the only

difference is that here we are considering subtasks rather than individual tasks.

Definition 6.1. Let ci be the cost to execute subtask vi. Unless stated otherwise, ci is vi’s WCET. ◀

135



Cost: 130
Length: 70

v1
5

v6
5

v3
10

v4
10

v2
50

v5
50

Figure 6.1: A DAG task consisting of six subtasks.
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Figure 6.2: The same DAG task; subtasks v2 and v5 paired via SMT.

Definition 6.2. Given subtasks vi and v j, let ci( j) be the cost to execute vi given it is simultaneously co-

scheduled with v j, c j(i) the cost to execute v j given it is simultaneously co-scheduled with vi, and c+i( j) the

maximum of ci( j) and ci( j). If i = j, then all three values are equal to ci. ◀

Because we are considering DAG scheduling only with simultaneous co-scheduling, we do not include

the (1) superscript on ci( j). We use c+i( j) to give an SMT-aware definition of a DAG’s utilization.

Definition 6.3. The utilization of a DAG task is given by

U = ∑
∀i:vi is a solo task

ci

Ti
+ ∑
∀i, j:i> j,vi and v j are paired

c+i( j)

Ti
.◀ (6.1)

6.1.2 Optimization Decision Variables and Objective

To mathematically denote which vertices should be paired, we use a binary decision variable.

Definition 6.4. Let xi: j be defined to equal 1 if subtasks vi and v j are paired and 0 otherwise. For i = j, let

xi: j equal 1 if vi is to be executed without SMT and 0 otherwise. In all cases, we require that xi: j = x j:i holds.

We refer to these variables as the x variables. ◀
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Combining Definitions 6.3 and 6.4 allows us to express a DAG’s utilization in terms of the x variables.

Recall from Section 2.4.1 that V is the set of all vertices in a DAG and each vertex corresponds to a subtask;

|V | is therefore the subtask count.

U =
|V |

∑
i=1

|V |

∑
j=i

xi: j ·
c+i( j)

T
(6.2)

We use a second set of decision variables to track possible start and finish times for each subtask in the

presence of SMT.

Definition 6.5. Let si and fi give possible start and finish times, respectively, for subtask vi. ◀

Note that si and fi are only possible start and finish times and may not correspond to how vi is eventually

scheduled. Their purpose is not to construct a schedule, but to ensure that pairing subtasks does not create a

DAG that is infeasible.

We define our optimization program as minimizing Expression (6.2) subject to the constraints of

Section 6.1.3.

6.1.3 Optimization Constraints

(i) Every subtask executes either alone or with at most one other subtask. This restriction guarantees

that all subtasks actually execute and implements the requirement of simultaneous co-scheduling

(Definition 3.8) that every task can be co-scheduled with at most one other task.

∀i :
|V |

∑
j=i

xi: j = 1

(ii) Paired subtasks begin simultaneously. This restriction is required by Definition 3.8. For unpaired vi

and v j, where xi: j = 0, the expression below is trivially true.

∀i, j : si · xi: j = s j · xi: j
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(iii) All subtasks finish only after executing for sufficient time. If vi and v j are paired, then vi finishes at

time fi = si + ci( j). Notice that fi is only dependent on si and ci( j), not on c j(i).

∀i : fi = si + xi: j · ci( j)

(iv) All subtasks finish prior to the DAG’s deadline D. This restriction preserves feasibility.

∀i : fi ≤ D

(v) Precedence constraints are respected. No subtask begins until all of its predecessors have completed.

∀i : ∀ j :: v j precedes vi : si ≥ f j

Rule (v) does not require that a job waits until any subtasks paired with its predecessors have completed.

Example 6.1. Suppose that v1 and v2 begin executing at time 0 and are paired together; c1(2) = 10, and

c2(1) = 15. Let v3 have v1 but not v2 as a predecessor. Assuming a core is available at time 10 when v1

completes, v3 may begin executing at time 10 and does not need to wait for v2 to finish at time 15. ♢

Notice that (v) combined with (ii) prohibits precedence-constrained tasks from executing as pairs.

The optimization program outputs pairing decisions via the value of all x variables. Pairs can then

be assigned to cores using Algorithm 1 or another DAG-scheduling algorithm. While this optimization

program is not optimal with respect to minimizing core count, we have found that for large-utilization DAGs,

reductions in core count closely track reductions in utilization made using our methods. We further discuss

this in Section 6.2.

Limiting the number of variables. The optimization program’s complexity is exponential relative to

the number of variables, and the number of x variables needed is proportionate to |V |2. Thus for large DAGs

optimization may be unmanageable. For those cases, we provide an additional restriction.

(vi) Only subtasks with indices that differ by at most some constant K can be paired.

|i− j|> K→ xi: j = 0
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In practice, not defining xi: j when |i− j|> K provides a greater performance benefit than restricting xi: j

to zero. Note that K can be at most |V |.

In our experiments, K = 10 allowed our optimization program to handle DAGs with as many as one

hundred subtasks while still giving near-optimal reductions in utilization. The effects of different K values

are discussed more in Section 6.2.2.

6.2 Applying SMT to HRT DAGs: Schedulability Studies

In this section, we present our synthetic task experiments and results. We simulated over 70 thousand

DAGs and over four million subtasks across more than one thousand scenarios. For each scenario, we test the

ability of our optimization program to reduce per-DAG utilization and, when combined with Algorithm 1, to

reduce the cores required per DAG. We consider individual DAGs first, followed by systems of DAGs using

federated scheduling.

6.2.1 Experimental Setup for Single-DAG Systems

Each scenario is defined by the number of subtasks |V | per DAG, possible costs per subtask, a model for

SMT behavior, a model for precedence constraints, and K. Scenario parameters are explained in more detail

below and summarized in Table 6.1.

Subtask count. For each scenario, we selected |V | from {10, 20, 40, 80, 100}.

Baseline costs. To determine the costs of individual subtasks without SMT, each scenario had costs

selected from a narrow (1−2) or wide (1−20) uniform distribution. Our expectation was that SMT would

provide a greater benefit with the narrow range, as our model prohibits pairs where ci and c j differ by an

order of magnitude, and pairing tasks with very different costs provides less overall utilization benefit. This

expectation was confirmed.

SMT behavior. Our model for SMT is identical to that of Section 3.2 and Chapter 5. For all scenarios,

we considered all three possible values—0.35, 0.55, and 0.75—of E[ f (1)]. For scenarios with |V | ≤ 20, we

also considered all three possible slope values, 0.0, 0.15, and 0.3. For |V |> 20, we used a slope of 0.15 in all

scenarios.

Precedence constraints. After assigning costs to all subtasks within our DAG, we use one of two

methods to determine precedence constraints within our DAG.
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In the Erdős-Rényi method, every pair of subtasks have a probability p of being connected by an edge

(Erdős and Rényi, 1960). Lower values of p will produce DAGs with more potential for parallelism. We use

the p values {0.1, 0.3, 0.5}. In preliminary experiments, we found that DAGs with p > 0.5 had very few

subtasks executable in parallel and thus received little to no benefit from SMT. We did not use this method

with 80- or 100-subtask DAGs.

In the layer-by-layer method, each DAG is first divided into ℓ layers. No precedence constraints ever

exist between subtasks within the same layer, but subtasks in different layers have probability p of being

connected by an edge (Tobita and Kasahara, 2002). We use the p values {0.5, 0.75, 1}. While p = 1 specifies

a task with no parallelism in the Erdős-Rényi method, in this case it means that all subtasks in one layer must

complete before the next layer can begin.

For ℓ, we use the values {2, 4, 8, 16}, with the caveat that |V |ℓ ≥ 5 must hold, i.e., the expected number of

subtasks per layer must be at least five. To divide the subtasks into layers, we randomly select ℓ−1 integers

from the range [1, |V |) without replacement. These integers subdivide the set of tasks into layers by index;

each selected integer gives the index of the last task in a layer. |V | is excluded from the selection range; if it

were selected, the DAG would have one less layer than intended.

Example 6.2. Suppose we wish to build a DAG of 20 subtasks in three layers. Two values are chosen

from the range [1,20). If we select 3 and 10, the first layer consists of subtasks v1 through v3, the second of

subtasks v4 through v10, and the third layer of all remaining subtasks. ♢

This method was designed to make the DAG’s total length L easily controllable; no chain in a DAG

created this way will have more than ℓ members (Tobita and Kasahara, 2002). Setting ℓ= |V | is equivalent

to using the Erdős-Rényi method. Further information regarding the properties of both methods, as well as

additional DAG-generation methods, can be found in (Cordeiro et al., 2010).

DAG utilization and deadline. Each DAG’s total utilization is selected uniformly from the range
[
1, C

L

]
.

After doing so, we give each DAG a deadline of D = C
U (we continue to assume implicit deadlines, i.e.,

D = T ). We do not consider DAGs with U < 1 as those can be scheduled sequentially on a single core

without parallelism. DAGs for which U > C
L (equivalently, D < L) holds are not schedulable on any number

of cores, with or without SMT. Note that C
L is itself a function of individual DAG structures. Consequently,

the distribution of utilization across all DAGs in a scenario will not be uniform.
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Tunable parameter K. Our final parameter is the value of K as used in restriction (vi) of the optimization

program. We use K values from the set {1,10,20,40} except in the 80- and 100-subtask scenarios, where

only K ∈ {1,10} was used. For 40-subtask scenarios, we used all K values with the layer-by-layer method,

by only K ∈ {1,10} for the Erdős-Rényi scenarios. We did not allow K to exceed the subtask count; doing so

would be meaningless. The optimization program is only optimal when restriction (vi) is removed by setting

K ≥ |V |, but we observed excellent results for all K ≥ 10.

Solution limit. Unlike our experiments of Section 5.2, we did not impose a time limit to find a solution.

However, we did limit Gurobi to finding 10 solutions per DAG; if none of the first solutions found could be

guaranteed to minimize utilization, then we used the best solution of the first 10.

In total, we had 432 10-subtask DAGs, 972 20-subtask DAGs, 504 40-subtask DAGs, and 288 DAGs

each for the 80- and 100-subtask scenarios.

6.2.2 Single DAG Results

We summarize the optimization program’s effect on each scenario using three metrics: relative core

count, relative utilization, and core reduction frequency.

Definition 6.6. Relative core count (respectively, relative utilization) is defined as a DAG’s required core

count, per Algorithm 1 (respectively, total utilization) with SMT divided by the same values without SMT.

They are abbreviated as RCC and RU. ◀

Values of 1.0 indicate no change due to SMT; values less than 1.0 indicate SMT has reduced the DAG’s

utilization or core count requirement.

Definition 6.7. Core reduction frequency is defined as the number of cases where the required core count

was reduced by at least one divided by the total number of cases evaluated. It is abbreviated CRF. ◀

While smaller values are better for RCC and RU, larger values are better for CRF.

In rare cases, we found that applying SMT would increase the number of cores needed. In these cases,

the best choice is to not use SMT, so we set RU and RCC to one and CRF to zero.

We summarize each scenario with a scatterplot that plots SMT utilization, baseline cores, and SMT cores

on the vertical axis against baseline utilization on the horizontal axis. Each individual DAG is shown by three

vertically aligned symbols: the purple x shows utilization after applying SMT, the green diamond shows

the number of cores required after applying SMT, and the orange circle shows the number of cores required
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without SMT. The position of the three symbols along the horizontal axis indicates the DAG’s total utilization

without using SMT.

In the majority of scenarios, SMT utilization appears to be a linear function of baseline utilization; in

these cases, RU approximates the function’s slope. For reference, we include in each graph a solid black

line with slope 1.0. Reporting our results using schedulability curves and RSA values, as in Chapters 4 and

5, was not practical here due to the large number of experiments per scenario that are required to produce

high-quality schedulability curves.

Example 6.3. Figure 6.6 summarizes the effects of SMT on DAGs with 10 subtasks with ℓ= 2 and p = 1

when using K = 10 (first line of graph title). SMT is modeled by setting f (1) = 0.35, using a slope of 0.15,

and the exponential distribution (second line of title). On average, applying SMT reduces DAG utilization

to 74% of what it had been without SMT and reduces core requirements to 73% of what they would have

been without SMT (RU and RCC values, third line of title). 65% of DAGs tested had some reduction in the

required number of cores (CRF, third line of title).

Again, each DAG considered is represented by three vertically aligned symbols. Consider the three

rightmost symbols in the graph. They indicate a DAG with U ≈ 6.75, indicated by the symbols’ position

on the horizontal axis. Without SMT, scheduling this DAG required ten cores, as indicated by the orange

dot in the graph’s top right corner. With SMT, this graph required seven cores, as indicated by the height of

the rightmost green diamond. Finally, the DAG’s utilization after applying SMT is approximately 4.5 and is

indicated by the position of the rightmost purple x.

Looking at the graph as a whole, RU is approximately equal to the slope of a linear function approximating

utilization with SMT—purple x symbols—as a function of baseline utilization. The black line has a slope of

1.0, making it easier to see this relationship visually.

RCC corresponds to the average vertical distance between orange dots, indicating cores required without

SMT, and green diamonds, indicating cores required with SMT. Finally, CRF is equal to the proportion of

orange dots that are above, rather than superimposed on, a green diamond. ♢

Execution times. We tracked solver runtimes for each scenario. As in Sections 5.2 and 5.4, we executed

the optimization program on a shared cluster, so our recorded runtimes should be considered mainly for

order-of-magnitude comparisons. Recorded times are for serial execution; we used parallelism to analyze

many DAGs at once, but not to reduce the analysis time for individual DAGs. Our per-DAG runtimes ranged
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Table 6.1: Summary of Parameters used in single-DAG schedulability tests

Parameter Description Parameter Symbol Possible Values

expected M(1)
i( j) given Ci ≤C j E[ f (1)] 0.35, 0.55, 0.75

slope of regression function none 0.0, 0.15, 0.30

distribution for M(1)
i( j)

given fi

none fixed, exponential

per-subtask
cost distribution

none U(1,2) (narrow)
U(1,20) (wide)

subtasks per DAG none 10, 20, 40, 80, 100

max index difference
between paired subtasks

K 1, 10, 20, 40

number of layers ℓ 2, 4, 8, 16
Erdős-Rényi

Probability of edge
between subtasks

p 0.5, 0.75, 1.0 (with layers)
0.1, 0.3, 0.6 (with Erdős-Rényi)

from less than a second to over four days. The total CPU time for analyzing all DAGs was roughly four

years. Like our other experiments, these experiments were conducted on a shared research cluster; observed

execution time requirements are useful mainly for order of magnitude comparisons.

Our full set of graphs is included in Appendix D. Here, we show graphs that are representative of our

best and worst results or that demonstrate particularly interesting behaviors. Each graph’s title identifies its

scenario; if the number of layers is unstated, then the graph was created using the Erdős-Rényi method. In

addition, graph titles summarize performance by stating RU, RCC, CRF, and mean runtime in seconds.

6.2.2.1 DAGs With at Most 80 Subtasks

We first focus on scenarios where |V | ≤ 80 holds. Scenarios with 100 subtasks are considered separately.

We classify scenarios as either good, moderate, or poor based on mean RCC. RCC < 0.8 is good;

RCC > 0.9 is poor; and intermediate RCC values are moderate. Among the 2,196 scenarios with at most 80

subtasks per DAG, we had 208 good scenarios (9%), 954 moderate scenarios (48%) and 769 poor scenarios
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Figure 6.3: Best 80 subtask scenario.

0 5 10 15 20 25 30
Baseline Utilization

0

5

10

15

20

25

30

35

40

SM
T 

Ut
iliz

at
io

n;
 R

eq
ui

re
d 

Co
re

s

40 Subtasks, 2 Layers, P=1, Narrow, K=10
f(1)=0.35, slope=0.15, fixed

RU=0.73, RCC=0.71, CRF=0.66, mean time=207 sec.
SMT Util.
SMT Cores
Base Cores

Figure 6.4: Best 40 subtask scenario.
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Figure 6.5: Best 20 subtask scenario.
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Figure 6.6: Best 10 subtask scenario.

(43%). When we excluded scenarios for which K = 1 held, 1368 scenarios remained. Of those, 177 (13%)

were good, 707 (52%) were moderate, and 484 (35%) were poor.

Observation 6.1. In the best scenarios, core count was reduced, on average, to approximately 70% of what

would be required without SMT. Examples include Figures 6.3 through 6.6. In the best cases for individual

DAGs, core count was reduced by as much as a third, seen in the right sides of Figures 6.3 through 6.6 and

Figures 6.17 through 6.20.

Observation 6.2. It is possible for core count to decrease significantly more than total utilization. Examples

can be seen in Figures 6.7 and 6.8. This case occurs when small reductions in utilization enable a DAG to be

scheduled on fewer cores. For example, a DAG with U = 1.01 requires at least two cores under federated
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Figure 6.7: Example of core count reduced
more than utilization
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Figure 6.8: A second example of core count
reduced more than utilization

scheduling, but reducing its utilization to 0.99 would allow it to execute on a single core. The opposite

situation—a high RCC value despite a low RU value—can be seen in Figure 6.9.

Observation 6.3. The greatest benefits to core count come from combining subtasks that, without SMT,

would require dedicated cores to execute. For example, the scenarios of Figures 6.3 through 6.6 and 6.17

through 6.20 all include cases where the baseline core requirement approaches the total number of subtasks.

Conversely, in the scenarios of Figures 6.9 through 6.12, the number of cores required is much less than the

subtask count even without SMT, giving less room for improvement.

Without SMT, two subtasks with combined U > 1 cannot be scheduled on a single core; with SMT,

scheduling the two together becomes possible if the corresponding pair has U ≤ 1. In a DAG that consisted

entirely of subtasks with U = 0.51, SMT could plausibly halve the required core count.

Observation 6.4. Core count was reduced more when DAG utilization was large. This effect can be seen

clearly in Figures 6.13 through 6.16, where all parameters apart from the number or presence of layers

remain constant. Our good scenarios—Figures 6.3 through 6.6 and 6.17 through 6.19—generally have higher

per-DAG utilizations than our poor scenarios (Figures 6.9 through 6.12). Within each graph, even those for

poor scenarios, core counts are reduced most on the right side of the graph, where utilization is largest.

There are two ways to interpret this result. First, when utilization is larger, the change needed to reduce

core count is relatively small. Second, recall that we determine utilization by assigning each DAG a utilization

in the range
[
1, C

L

]
, where C is the DAG’s total cost and L its length. If C is much greater than L, then it is
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Figure 6.9: Poor RCC despite good RU.
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Figure 6.10: Erdős-Rényi with p = 0.5.
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Figure 6.11: Poor performance using the
layer-by-layer method.
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Figure 6.12: Erdős-Rényi with p = 0.3.
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Figure 6.13: Layer-by-layer: 2 layers.
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Figure 6.14: Layer-by-layer: 4 layers.
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Figure 6.15: Layer-by-layer: 8 layers.

1.0 1.2 1.4 1.6 1.8
Baseline Utilization

1.0

1.5

2.0

2.5

3.0

3.5

4.0
SM

T 
Ut

iliz
at

io
n;

 R
eq

ui
re

d 
Co

re
s

40 Subtasks, P=0.5, Narrow, K=10
f(1)=0.55, slope=0.15, fixed

RU=0.92, RCC=0.96, CRF=0.08, mean time=4993 sec.
SMT Util.
SMT Cores
Base Cores

Figure 6.16: Erdős-Rényi method.

possible for the DAG to have greater utilization and the DAG’s structure includes more potential parallelism

that can be exploited by SMT.

Observation 6.5. The scenario parameters yielding the smallest RCC values were those that produced highly

parallel DAGs. This observation is closely related to Observation 6.4. All two-layer DAGs fell into either the

good or moderate RCC range, as did almost all DAGs created using the Erdős-Rényi method with p = 0.1.

Figures 6.13 through 6.16 illustrate this effect by changing the number of layers while keeping all other

parameters constant.

Observation 6.6. RCC values were generally better for larger subtask counts. For 10, 20, 40, and 80 cores

the minimum RCC values, respectively, were 0.725, 0.706, 0.710, and 0.697; scenarios with these values are
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shown in Figures 6.3 through 6.6. This observation is generally due to the layer-by-layer method; when using

the layer-by-layer method, higher subtasks counts allow more tasks per layer, and thus more parallelism.

Observation 6.7. Decreasing K from |V | to as low as 10 allowed SMT to remain beneficial while dramatically

reducing runtime. Setting K = 1 is more detrimental, but is better than not using SMT at all. Figures 6.17

through 6.20 give examples. With K = 40 (Figure 6.17) per-DAG execution time requires an average of

716 seconds. Reducing K to 20, 10, and 1 reduces execution time to 689 seconds, 189 seconds, and 102

seconds, respectively. Reducing K from 40 to 20 leaves RCC unchanged at 0.80. Setting K = 10 causes RCC

to decrease to 0.76, but setting K = 1 causes RCC to increase to 0.84.

We were surprised to see that both RCC and RU are the smallest when K = 10. In theory, our optimization

program is optimal only when K = |V | holds. However, recall that to keep runtimes manageable, we limit the

solutions per DAG to 10. We suspect that optimal solutions involve pairing together subtasks with similar

indices and that having a relatively small K value helps the solver avoid sub-optimal solutions.

Observation 6.8. Using the exponential distribution to determine Mi( j) did not result in significantly better

performance than using the fixed distribution. In fact, we see some weak evidence that DAGs built using

the fixed distribution saw lower RCCs than those using the exponential distribution. This is the opposite of

what we observed in other HRT cases. In Chapter 4, the best scenarios were invariably those that used the

exponential distribution. Here, the fixed distribution leads to lower RCC values in the best case for the cases

of 80, 40, and 20 subtasks (Figures 6.3, 6.4, and 6.5).

Observation 6.9. Scenarios using the wide per-subtask cost distribution generally out-performed those using

the narrow distribution. This result is not surprising, as pairing subtasks will tend to be more effective when

they have similar costs. For example, notice that all four of our best scenarios in Figures 6.3 through 6.6 use

the narrow distribution.

6.2.2.2 DAGs with 100 Subtasks

We tested 288 scenarios with 100-subtask DAGs; 144 each with K = 1 and K = 10. Unfortunately, we

found that when K = 10 held, many DAGs required hours or even days to analyze; per-DAG execution times

ranged from 20 seconds to more than five days. Our K = 10 results were weaker than those for smaller DAGs,

but we still saw some improvement due to SMT; we had 14 good scenarios, 50 moderate scenarios, and 80
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Figure 6.17: K = 40.
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Figure 6.18: K = 20.
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Figure 6.19: K = 10.
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Figure 6.20: K = 1.
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Figure 6.21: |V |= 100, 2 layers,
p = 1.0, K = 10.
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Figure 6.22: |V |= 100, 2 layers,
p = 1.0, K = 1.
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Figure 6.23: |V |= 100, 2 layers,
p = 0.5, K = 10.
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Figure 6.24: |V |= 100, 2 layers,
p = 0.5, K = 1.

poor scenarios. For K = 1, execution times ranged from 5 seconds to 30 hours, but results were much poorer;

we had only 9 good results, combined with 38 moderate and 97 poor results.

Our current algorithm was not designed for large DAGs. A better approach to using SMT for DAGs of

this size or larger would be to first heuristically divide a DAG into sub-graphs of fewer than 100 vertices each

and then apply our algorithm to the resulting sub-graphs. For DAGs that use the layer-by-layer approach, we

suspect analyzing a DAG one layer at a time would be highly effective.

Observation 6.10. When K = 10 held, results were slightly weaker than those for similar parameters for

smaller |V | and larger K values. For example, Figure 6.21 has, apart from |V |, the same parameters as

Figure 6.19. Figure 6.21 has an RCC 0f 0.82 and Figure 6.19 an RCC of 0.76.
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Observation 6.11. When K = 1 held, results were weaker than those for K = 10. For example, compare

Figure 6.22 (RCC 0.87) to Figure 6.21 (RCC 0.82).

6.2.3 Multi-DAG Systems and Federated Scheduling

In this subsection, we consider scheduling systems of multiple DAGs using federated scheduling, which

we described in Section 2.4.1.

Creating systems of DAGs. Within each system, all DAGs are created using a single set of parameters.

We used a subset of the parameters that were already discussed in Section 6.2.1 and summarized in Table 6.1.

We considered DAGs consisting of 10, 20, or 40 subtasks each. For the 10- and 20-subtask DAGs, we used

both the Erdős-Rényi method with p ∈ {0.1,0.3,0.5} and the layer-by-layer method with ℓ ∈ {2,4,8} with

p ∈ {0.5,0.75,1.0}. For the 40-subtask DAGs, we excluded the Erdős-Rényi method due to high execution

time requirements. In all cases, we maintained the requirement that |V |ℓ ≥ 5 holds.

We used both the narrow and wide per-subtask cost ranges. We continued to use all three possible values

for E[ f (1)], but only considered 0.15 for the slope. We used K = 10 in all cases.

Per-DAG utilizations. We augmented our existing parameters by specifying categories for each indi-

vidual DAG’s utilization: light, low-heavy, medium-heavy, and high-heavy. Total utilizations within each

category are randomly chosen from the uniform ranges
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respectively. Each DAG is then assigned a deadline equal to its total cost without SMT divided by the

assigned utilization.

Defining the bounds based on the minimum of C
L and a constant rather than using a constant alone is

necessary to guarantee that every DAG can be scheduled; scheduling a DAG is impossible if D > L holds,

i.e., U > C
L . Including C

L in our utilization did produce some distortions in our results for the medium-heavy

and high-heavy ranges; we discuss those effects as they come up in our observations below. Results for
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low-heavy DAGs do not seem to be affected; the parameters governing the degree of parallelism in our DAGs

will generally produce DAGs where C
L > 2 holds.

Light DAGs can all be scheduled sequentially on a single processor, even without SMT. Within the

context of federated scheduling, SMT may allow more light DAGs to be scheduled per processor.

All other DAGs, since they have U > 1, are considered heavy per Definition 2.12 and would, without

SMT, require at least two dedicated cores each. Our expectation is that SMT will convert many of the

low-heavy DAGs into light DAGs with U ≤ 1. Medium-heavy and high-heavy DAGs will generally remain

heavy even after SMT has been applied, but may require fewer cores.

The number of DAGs per system ranged from 1 to 32
E[U ] , where E[U ] gives the expected value of a single

DAG’s baseline utilization; essentially we created systems with total utilization up to approximately 32. For

each step from 1 to 32
E[U ] , we created 10 systems. A scenario consists of all systems built using a single set of

per-DAG parameters.

6.2.4 Federated Scheduling Evaluation

As with individual DAGs, we evaluate each scenario on the basis of RCC, RU, and CRF. Scenario results

are shown with scatterplots similar to those for single-DAG scenarios. This time, each point represents a

system of DAGs; utilization and cores needed are totals for all DAGs in each system.

For each heavy DAG, the cores required are again determined by Algorithm 1. For light DAGs, we used

partitioned scheduling, i.e., each DAG is assigned to a single core, but each core can contain multiple light

DAGs up to total utilization 1.0. Tasks are assigned to cores using a bin-packing based approach. For each

system, we attempted both decreasing-best-fit and decreasing-worst-fit and used the result that required the

fewest cores.

We tested 288 10-subtask scenarios, 432 20-subtask scenarios, and 432 40 subtask scenarios, for a total

of 1152 scenarios. When we use the same criteria as before—a good RCC value is less than 0.8, a poor

RCC value is greater than 0.9, and a moderate value is in between—we have 351 good scenarios (30%), 447

moderate scenarios (39%) and 354 poor scenarios (31%).

We include the scatterplots for eight federated scheduling scenarios. Figures 6.25 through 6.28 depict

some of our best scenarios. The only parameter to vary across these four scenarios is per-DAG utilization

range. Figures 6.29 through 6.32 depict some of our worst scenarios, again varying only the per-DAG

utilization parameter. Graphs for all federated scenarios are included in Appendix E.
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Table 6.2: RCC values by per-DAG utilization range

Good Moderate Poor
Light 123 (43%) 92 (47%) 13 (10%)
Low-heavy 106 (37%) 127 (44%) 55 (19%)
Medium-heavy 15 (05%) 85 (30%) 188 (65%)
High-heavy 107 (37%) 99 (34%) 82 (28%)
Total 351 (30%) 447 (39%) 354 (31%)

Observation 6.12. The poorest results are generally seen with per-DAG utilizations in the medium-heavy

range. Figures 6.27 and 6.31—scenarios for medium-heavy and high-heavy DAGs, respectively—both show

poorer results than the scenarios with parameters that are identical apart from per-DAG utilization. Table 6.2

shows the number of scenarios with each per-task utilization range with RCC values in the good, moderate,

and poor ranges.

The two lighter utilization ranges are well-situated to take advantage of SMT: SMT allows two light tasks

with combined U > 1 to share a core and low-heavy tasks will likely have U > 1 after SMT is applied, making

them light. High-heavy scenarios also tend to do well; high-heavy tasks are large enough that utilization

decreases will generally translate to core count decreases.

Figures 6.31 and 6.32 both show very high RU values. Recall that a DAG’s utilization cannot exceed C
L ;

when C
L is less than 4.0 (for medium-heavy DAGs) or 8.0 (for high-heavy DAGs), the DAG will often be

assigned a utilization close to C
L and a deadline close to the DAG’s length. Because SMT tends to increase

DAG length and length can be at most the deadline, there is relatively little opportunity for SMT to be used.

Even so, Figure 6.32, depicting high-heavy utilization, does relatively well in terms of RCC, with 0.84, most

due to only a small utilization decrease sufficing to reduce core count.

Observation 6.13. SMT tends to be more helpful to systems of DAGs than to individual DAGs. When

considering the 288 individual DAG scenarios defined using the same criteria as our federated scheduling

scenarios, 11% were considered good, 57% were considered moderate, and 31% considered poor. In our

federated scheduling experiments, as shown in Table 6.2, 30% of scenarios were considered good, 39%

moderate, and 31% poor.
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Figure 6.25: Good federated scheduling,
light per-dag utilization.
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Figure 6.26: Good federated scheduling,
low-heavy per-dag utilization.
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Figure 6.27: Good federated scheduling,
medium-heavy per-dag utilization.
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Figure 6.28: Good federated scheduling,
high-heavy per-dag utilization.
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Figure 6.29: Poor federated scheduling,
light per-dag utilization.
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Figure 6.30: Poor federated scheduling,
low-heavy per-dag utilization.
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Figure 6.31: Poor federated scheduling,
medium-heavy per-dag utilization.
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Figure 6.32: Poor federated scheduling,
high-heavy per-dag utilization.
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6.3 Conclusions and Future Work

In this chapter, we examined the use of SMT to reduce DAG utilization and core count requirements. To

reduce the utilization of DAG tasks, we defined an optimization program to apply SMT to DAGs that can

minimize DAG utilization. By minimizing utilization, we also reduce core count, albeit non-optimally.

To test our algorithm, we simulated over 70 thousand DAGs across thousands of scenarios. We found

that, within our tested scenarios, SMT can reduce DAG utilization and core requirements to 70% or less of

what it would have been without SMT.

In addition to evaluating the effects of SMT on individual DAGs, we also applied our methods to systems

of DAGs using federated scheduling. We found that systems of DAGs generally saw greater improvement

than did individual DAGs with similar per-DAG parameters.

In the future, we hope to expand develop algorithms better-suited for large DAGs and search for core-

reduction heuristics other than minimizing utilization.
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CHAPTER 7: CONCLUSION

In this chapter we summarize our results, briefly describe additional work we have done regarding SMT,

and give directions for future work.

7.1 Summary of Results

In this section we summarize our primary contributions: comparing execution times with and without

SMT, using SMT to support SRT systems, and using SMT to support HRT systems.

SMT and execution times. In Chapter 3, we compared execution times of benchmark tasks—we

used the TACLeBench sequential benchmarks (Falk et al., 2016)—with and without SMT under conditions

appropriate for both SRT and HRT. In both cases, we have found that the increase in execution time from

SMT can be as little as 1% and rarely exceeds 100%. These observations tell us that SMT has the potential to

improve real-time scheduling, at least in the world of our benchmark choices and execution conditions. Also

for both cases, we gave methods for creating systems of synthetic tasks that will exhibit patterns of behavior

similar to what we observed.

For HRT timing analysis, we defined the rules of simultaneous co-scheduling, which we use to minimize

the variations in timing caused by SMT. In addition, we compared our ability to predict execution times with

and without SMT. We found that our approach to timing analysis worked as well with SMT as without. This

result suggests that SMT, with proper precautions in place, should be considered as safe for HRT as multicore

scheduling.

Using SMT to support SRT systems. In Chapter 4, we gave our method for using SMT to support SRT

systems. We decided to schedule as if every SMT-provided scheduling thread were a separate core. Under

this approach, any task using SMT can be co-scheduled with any other task using SMT. However, the effects

of allowing any one task to use SMT cannot be determined without first deciding which other tasks can use

SMT. To solve this circular problem, we created four heuristic algorithms to determine which tasks should

and should not use SMT. Once this decision has been made, we can test whether the task system, now divided

into two subsystems, can be scheduled using a variation of EDF.
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To evaluate our work, we tested over 200 scenarios. We saw some benefit from SMT in almost all cases.

In the best cases, SMT could have benefits similar to increasing a platform’s core count by 50%.

Using SMT to support sequential HRT systems. In Chapter 5, we gave two algorithms for applying

SMT to systems of sequential HRT tasks. Both methods relied on simultaneous co-scheduling to minimize

the variation in execution times caused by SMT, and both used an optimization program to determine a good

way to use SMT.

Our first approach, CERT-MT, was built around using SMT to combine individual jobs in the context

of a CE scheduler. CERT-MT has both the advantages and disadvantages of a CE scheduler. The main

advantage is that performance is highly predictable, and the main disadvantage is that the schedule is very

rigid; any change to the underlying system requires that the entire scheduled be re-computed. Under favorable

circumstances, CERT-MT can effectively increase core counts by 50%, but it suffers from a lack of scalability.

While 60 seconds seemed to be sufficient time to compute schedules for the smallest systems, even 300

seconds per system was not necessarily enough to produce good solutions for moderately sized systems.

However, this disadvantage may be less of a problem in practice than it was in our study: while 300

seconds per system is prohibitive in a schedulability study that needs to test thousands of synthetic systems,

even a multi-hour runtime may be reasonable when only one actual system needs to be scheduled.

Motivated largely by CERT-MT’s scalability problems, we produced a second, priority-driven algorithm

for scheduling HRT systems. This approach largely eliminates CERT-MT’s scalability problems by using

SMT to combine tasks, rather than jobs, and requiring that only tasks sharing a common period can be

paired together. The advantage is a much-improved ability to schedule large systems. The disadvantage

is that scheduling systems with few common periods or with more periods than cores (when requiring

non-preemptive execution) becomes extremely difficult. Again, in the best cases core count was effectively

increased by 50%.

Using SMT to support HRT DAG tasks. In Chapter 6, we showed how to use SMT to support DAG

tasks, where portions of individual tasks can be scheduled in parallel. We use SMT to combine individual

vertices of a DAG and then schedule the resulting DAG using existing DAG-scheduling algorithms. We found

that when using this approach, the number of cores needed to schedule a given DAG could be reduced by as

much as 50% under ideal conditions. In addition to evaluating this approach on individual DAGs, we also

applied it to systems of DAGs scheduled using Federated Scheduling.
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The importance of non-SMT factors. Across Chapters 4, 5, and 6, we saw that whether we used

optimistic or pessimistic behaviors for SMT was not the most important factor in determining SMT’s

effectiveness. In Chapters 4 and 5, the variable that had the most influence on SMT’s effectiveness was

the utilization ranges of individual tasks and, for the priority-driven scheduler of Chapter 5, the number of

periods within a task system. In Chapter 6, the most important variable was usually the degree of parallelism

in a DAG before SMT was applied. These observations suggest that our big-picture result—SMT can reduce

the number of cores needed to schedule a given system—is not overly reliant on the exact timing behaviors

we observed in Chapter 3 or on how we chose to model those behaviors.

7.2 Additional Related Work

In this section we summarize our work on SMT that fell outside the scope of this dissertation.

SMT and mixed-criticality scheduling. Mixed-Criticality Scheduling is a scheduling paradigm that

allows both HRT and SRT systems to be scheduled on a single hardware platform. Using SMT in this

context was the focus of (Bakita et al., 2021). In that paper, we applied earlier versions of our Chapter 3

timing analysis work to two additional benchmark sets; the San Diego Vision Benchmark Suite (SD-VBS)

(Venkata et al., 2009) and the Data Intensive Systems stressmarks (Titan Systems Corporation, 2000). These

experiments were done on an AMD platform rather than the Intel platform we used in Chapter 3. Our timing

analysis conclusions were broadly the same; we found that SMT generally increases execution times by little

enough that it is potentially useful for real-time scheduling. In addition, we conducted multiple case studies

in which we implemented our schedulers—the SRT scheduler described in Chapter 4 for SRT tasks and the

priority-driven scheduler of Section 5.3 for HRT tasks—using real benchmark programs on a real hardware

platform. When we did so, we observed no deadline misses for our HRT tasks and no evidence of unbounded

tardiness for the SRT tasks. This result indicates that our work holds in practice as well as in theory.

Additional DAG results. Our original paper on applying SMT to DAGs (Osborne et al., 2022), which

forms the basis of Chapter 6, included a case study in addition to our schedulability study. We did not include

this case study in Chapter 6 as it made use of cache partitioing techniques from (Bakita et al., 2021) that are

beyond the scope of our work here. In this case study, we created a series of “semi-synthetic” DAGs where

each subtask was defined by a real benchmark program and each DAG was defined by artificially imposing

precedence constraints between subtasks. We used the optimization program of Chapter 6 to apply SMT to
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these benchmarks. When we executed them using LITMUSRT, a real-time extension of the Linux kernel

(Brandenburg, 2011; Calandrino et al., 2006; LITMUS-RT, 2020), we did not observe any deadline misses.

7.3 Future Work

In this section, we give directions for our future work. So far, our work has had more breadth than depth;

we have focused on finding different areas in which SMT may be useful at the expense of exploring any one

use case in greater detail. In the future, we plan to go into greater detail on the topics we have introduced.

Future timing analysis work. For both SRT and HRT tasks, we observed that execution times were

occasionally reduced with SMT. In the future, we want to look more deeply into this behavior with the aim of

understanding it better and finding ways to take advantage of this “positive interference.” In addition, we

would like to take a more code- and hardware-based approach to understanding SMT’s effects; our work so

far has been entirely measurement-based. Finally, we would like to generalize our models for interference to

apply to cross-core interference on multicore platforms rather than SMT alone.

Future SRT scheduling work. Our scheduler of Chapter 4 allows any task using SMT to execute on

any core using SMT and any task not using SMT to execute on any core not using SMT. In the future, we

would like test the benefits of this approach compared to restricting what cores each task can execute on so

as to preserve cache affinity. In addition, we would like to study the ability of SMT to decrease maximum

tardiness rather than simply guaranteeing bounded tardiness.

More effective HRT scheduling algorithms. All of our HRT scheduling algorithms can be improved.

For CERT-MT, we would like to explore heuristic alternatives that can allow it to handle large task systems.

For the priority-driven scheduler of Sections 5.3 and 5.4, we would like to see improvements to its ability to

schedule non-preemptable tasks. In particular, minimizing utilization may not always be the best choice. We

would like to introduce additional criteria for deciding when to use SMT. For example, it might be advisable

to not use SMT when doing so would cause a task’s execution time to exceed a certain threshold. As for our

DAG scheduling algorithm, we would like to develop an approach that is more suited to scheduling DAGs

with 100 subtasks or more.

HRT Sporadic Tasks. In our HRT work, we have been assuming that deciding which jobs should be

paired can be done as a preliminary, offline step. Unfortunately, that is not always possible. In a sporadic

system, each task’s period gives the minimum time between sequential jobs. The actual time between jobs can
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be arbitrarily longer than the period, making it impossible to know in advance whether jobs of two specified

tasks will be available to execute at the same time. This limitation is significant: in a 2020 survey of industrial

practices in real-time systems (Akesson et al., 2020), 47% of respondents reported working on systems that

included sporadic activations.

We want to find, for each task in a sporadic system, the set of job invocation times that will maximize

response times with the effects of SMT accounted for. By upper-bounding a task’s response time when

it releases a job at critical instant—the time that will maximize its response time—we would be able to

upper-bound its response time in all cases. By applying this analysis to all tasks, we would be able to

determine which when an HRT sporadic system using simultaneous co-scheduling could benefit from SMT.

Competition for non-CPU Resources: resource locking and self-suspending tasks. Throughout this

Dissertation, we have assumed that the only item a job needs to execute is a computing core or an SMT-

provided thread. This assumption is common in real-time analysis, but it is not always realistic. Tasks may

need to access additional hardware components, such as graphics units or I/O devices, as well as intangible

items such as specific files or memory regions. Anything apart from computing cores and SMT-provided

threads needed for execution is a resource. We briefly describe two resource related problems that have been

addressed in real-time literature elsewhere but have not been considered in connection with SMT.

When the number of tasks that can access a resource simultaneously is limited, the resource must be

locked before use; for example, writing to a file generally requires locking the file to prohibit other tasks from

accessing it mid-write. When a resource is locked by a lower-priority task, a higher priority task that also

needs to use the resource may be forced to wait, causing priority-inversion blocking. In addition, checking for

resource availability, locking, and unlocking a resource all require time. Additional information on resource

locking may be found in (Nemitz, 2021).

Should a job need to wait on a locked resource, it may suspend itself, i.e., pause its execution and

relinquish its core (or SMT thread) until the resource becomes available. A job may also suspend when it

must wait on an I/O device or a hardware accelerator such as a GPU. In either case, self-suspension breaks

the assumption that an executing job will continue to execute until either it finishes or is preempted. In many

cases, determining schedulability in the presence of self-suspending tasks is NP-complete in the strong sense.

Further information on self-suspending tasks can be found in (Chen et al., 2019).

In the future, we would like to consider how resource locking and self-suspending tasks may complicate

SMT-related scheduling decisions. One possible question: what should be done if one of two simultaneously
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co-scheduled job suspends due to required resource being locked? Should the second job suspend as well?

Should an idea of “resource-locking compatibility” or “suspension comptability” be added as an additional

restriction of which tasks and jobs can be simultaneously co-scheduled? More generally, will our approach to

SRT tasks of treating SMT threads as separate cores and mimicking existing multi-core work as closely as

possible still work given the need to lock resources or self-suspend? Answering these questions would serve

to increase the variety of systems that can benefit from SMT.
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