EXTENDING SOFT REAL-TIME ANALYSIS FOR HETEROGENEOUS
MULTIPROCESSORS

Stephen Tang

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2024

Approved by:

James H. Anderson
F. Donelson Smith
Samarjit Chakraborty
Luca Abeni

Sanjoy Baruah

©2024
Stephen Tang
ALL RIGHTS RESERVED

ii

ABSTRACT

Stephen Tang: Extending Soft Real-Time Analysis for Heterogeneous Multiprocessors
(Under the direction of James H. Anderson)

Though prior work has established the Soft Real-Time (SRT)-optimality of Earliest-Deadline-First (EDF)
variants on multiprocessors with identical and uniform speeds, these multiprocessor models preclude features
such as processor affinities and are insufficient to describe modern multiprocessors, which have grown
increasingly heterogeneous. This has had practical consequences, such as the inability of Linux’s SCHED__
DEADLINE admission-control system to make SRT guarantees in the presence of processor affinities or on
heterogeneous machines. This fact highlights the need to extend theoretical results on EDF to more general
multiprocessor models.

This dissertation fulfills this need by extending existing SRT analysis of window-constrained (WC)
schedulers (of which EDF is a member) to heterogeneous multiprocessors. We derive improved response-time
bounds for WC schedulers under uniform multiprocessors. We prove that a WC extension of an EDF variant
called Strong-APA-EDF is SRT-optimal under arbitrary affinities (so long as processor speeds are identical).
We define a WC scheduler variant targeting unrelated multiprocessors and derive response-time bounds.
Additionally, we present patches for SCHED_DEADLINE with the purpose of restoring SRT guarantees for
certain special cases of heterogeneous multiprocessors. These special cases are selected such that the increase

in overheads due to our patches is manageable.

iii

ACKNOWLEDGEMENTS

This dissertation is the result of the combined support of many people. This dissertation would never
have been completed without the guidance of my adviser, Jim Anderson. Jim has fundamentally shaped my
approaches to research, technical writing, presenting, and teaching. I would have given up on this dissertation
countless times if not for Jim’s continued encouragement that there is something worthwhile written here.
In taking me on as a student, Jim has given me the opportunity to study a problem whose solution I feel
is somehow ‘fundamental.” Though I ultimately failed to close this problem, I am grateful that I got to
experience the feeling of brushing up against a fundamental solution.

I am grateful for my committee members, Don Smith, Samarjit Chakraborty, Luca Abeni, and Sanjoy
Baruah. I am grateful for your patience in serving for much longer than I originally expected. I am grateful
for your diligent feedback on this document, which is much longer than I originally intended.

I thank the current and former students with whom I have been lucky to be a coauthor: Namhoon Kim,
Micaiah Chisholm, Sergey Voronov, Nathan Otterness, Tanya Amert, Joshua Bakita, Shareef Ahmed, Sims
Hill Osbourne, and Jingyuan Chen. Namhoon and Micaiah mentored me when I knew nothing as a fresh
graduate student. I still don’t know anything, but the effort is appreciated. I was fortunate to share both an
office and an apartment with Sergey. Outside of being the student who I have collaborated with the most, 1
am infinitely grateful to you for convincing me to adopt Cola the cat.

I owe much to current and former UNC staft and faculty, especially Jodie Gregoritsch, Denise E. Kenney,
Missy Wood, Jasleen Kaur, Don Porter, and the late Bil Hays.

I am grateful to my board game group of Tommy, Sam, Andy, and Josh. These sessions were welcome
distractions during the times when research was frustrating. Please finally finish your Baldur’s Gate campaign.

Words are insufficient to express the support I have received from my family. To my nephew, Alex,
consulting with you over the phone has been invaluable for my research. I look forward to the discoveries
you will surely make in the future.

Funding for this research was provided by NSF grants CNS 1409175, CNS 1563845, CNS 1717589,
CPS 1446631, CPS 1837337, CPS 2038855, and CPS 2038960, AFOSR grant FA9550-14-1-0161, ARO

v

grants WO11NF-14-1-0499, W911NF-17-1-0294, and W911NF-20-1-0237, ONR grant N00014-20-1-2698,

and funding from General Motors.

TABLE OF CONTENTS

LIST OF FIGURES e e e e e e e xi
LIST OF ABBREVIATIONS . ..ottt et e et ettt e e Xiv
LIST OF SYMBOLSottt e e e e e e e ettt XV
O 016 04 L1151) o Y 1
1.1 Problem: EDF (and its Derivatives) are Poorly Understoodccoivine.... 6
1.2 An Orthogonal Open Problem: Loose Response-Time Bounds.............................. 9
1.3 Thesis StAtBMENLttt ettt e e ettt e 9
1.4 CONLIIDULIONS . ..ottt ettt ettt et e e e e e 10

2

1.4.1 Improving SRT Analysis for UNIFORM and Extending to IDENTICAL/ARBITRARY 10

1.4.2 WC Variant and Response-Time Bounds under UNRELATED 10

1.4.3 Patching SCHED_DEADLINE for IDENTICAL/SEMI-PARTITIONED
and 2-Type UNIFORM/SEMI-CLUSTERED, 10
T O 21 1127 15 10 o 10
Theoretical Background.t e e e e 12
2.1 Task Model 12
2.2 Scheduler ClassifiCationso.iu ittt e e 21
2.3 Optimization ReVIEWt e et e e e 24
2.4 Related WOrK . ..o 29
2.4.1 Work under IDENTICAL e 30
2.4.2 Work under IDENTICAL/ARBITRARYo 32
243 Workunder UNIFORM e 36
244 Workunder UNRELATED e 37

vi

2.5 Chapter SUMMATYottt ettt et e et et e e e a s 38

3 Response-Time Boundsoniiniiiiii i e e e e 39
T8 B B 1< F: o o) 39
311 Schedulingttt e 45

3.1.2 ReSpPOnSe TIMESottt ettt ettt et e et e e e e 47

313 0 BEVOIUHON « .ttt e e e 49

T8 7 o 0T N3 1 7. 57

3.2 Analysis under HP-LAG Systemsuuuintinttti e e e 60
3.3 Analysis under UNIFORM i e e 70
3.4 Analysis under IDENTICAL/ARBITRARY ... 72
3.4.1 CoUntereXamplesttt ettt ettt e e 75

3.5 Analysis under UNRELATED i e 79
3.5.1 Defining the Variant e 81
3.5.1.1 Interpreting Unr-WC o e 82

3.5.1.2 Ufm-WCis a Special Case of Unr-WC, 88

3.5.1.3 Strong-APA-WC is a Special Case of Unr-WC 92

3.5.2 Response-Time Bounds 97

3.5.3 EvalUationonuoneiti i e e 118

3.6 Chapter SUMMATYottt ettt e e e e e e e et e 121
4 SCHED_DEADLINE Backgroundo.iuoiuinii it 122
4.1 User-Space APlo 122
4.1.1 Scheduling POliCIeSviti i e e e e e 123

4.1.2 Suspending and Yielding.ouuiniiniiiiii et 125

413 AINIEES . . oot e 125

4.1.4 Priority Inheritance MULEXESuuentertertn ettt e e i aeneneanans 128

4.1.5 Admission COntrolt e 129

4.6 DV RS 130

vii

4.3 Scheduling Class Internalst e 143
4.3.1 Scheduling and Suspendingo e 144

43,2 WaKing ..ot 147

43,3 THCKS ottt 151

434 YAeldingt e 153

4.3.5 Change Patternt e 153

4.3.6 Policy Changes and Priority Inheritanceciiiiiiiiiiiinnennannn. 155

437 ATINIES . . oot e 162

4.3.8 StOP ClaSS vttt ittt e e 169

4.4 SCHED_DEADLINE. e 176
441 Data SIUCTUIES . .« v ettt ettt ettt e e 176

4.42 Multiprocessor Schedulinguiiiiii i i 181
4.42.1 Enqueuing and Dequeuingo.uitiriiiitiiiiiii s 183

4422 Pushesand Pulls.........oo i 186

4.42.3 Suspending and WaKing.oitiiiiiiniiii i 192

4.42.4 Other Scheduling Class Functionsccciiiiiiiinineenen.. 194

443 OB o 196

4.4.4 Admission Control e 211

445 AFfINIES . .. oo 215

4.4.6 Asymmetric Capaciti®soueutntnttt ettt 216

4.4.77 Priority INheritance e 219

4.4.8 GRUB ... 220
449 DV . 223
4.4.10 Core Scheduling.ooiniuii i e e 230

4.5 Chapter SUMIMATYo vttt ettt et et et et e e e ettt e et ee s 240
5 Modifying SCHED _DEADLINE e 245

viii

5.1 Version Differences 245

5.2 IDENTICAL/SEMI-PARTITIONED e 246

5.2.1 Bypassing Throttleso e 246

5.2.2 Pushingtothe Latest CPU e 249

5.2 3 ACS 251

5.2.4 Dynamic Fine-Grained Affinitiesot 252

5.2.5 Bounded Response Timesc.uuinrintiniitii i e e i in e, 253

5.2.6 Evaluationo.o.oiiui e 255

5.3 UNIFORM/SEMI-CLUSTERED e 260

5.3.1 Hardware platform ...ttt e 260

5.3.2 0 Scheduler 261

5.3.3 Ufm-SC-EDFis a Special Case of Unr-WCt 267
5.3.3.1 Converting Speeds between UNRELATED and UNIFORM/SEMI-

CLUSTERED e 267

5.3.3.2 Priority Points and Deadlines............ ...t 267

5.3.3.3 PrOfit. . 269

5.3.34 Connected COMPONENILSottt ettt et eieanens 272

5.33.5 Relabeling . ..o 275

5.3.3.6 Proving Ufm-SC-EDF is a Special Case of Unr-WC 280

5.34 ACS CoNditiOnSottt e e 292

5.3.5 ImpPlementation.utnten ettt e e 307

5.3.5.1 Data StIUCLUIES vttt ettt et e e e e e 308

5.3.5.2 Scheduling and Migration Changesc..viiiiiiiinrennennannns 310

53053 ACS 317

5.3.6 0 Evaluation ...t 318

5.4 Chapter SUMMAIYttt ettt e ettt e e et et et e et et eneanes 329

6 CONCIUSIONottt e 330

6.1 Summary of Results e 330

iX

6.2 Other WOrTK . ..o 330

6.3 Acknowledgementst e 332
6.4 Future Work 332
A Equivalence Between HRT- and SRT-Feasibility............oooiiiiiiiiii i 334
B Proof Modifications for SCHED DEADLINE Patcho i 339
BIBLIOGRAPHY . ..o e e e 351

1.1

2.1

2.2

23

24

2.5

2.6

2.7

3.1

32

33

34

35

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

3.14

3.15

3.16

LIST OF FIGURES

SRT: EDF versus fiXed-priority.ouuinuen et 4
Deadline miss without waiting for zero-lag time.ccoiiiiiiiiiiin i 15
Affinity graph example. 17
CBS eXamMPIe. . . oot 20
TWO CONFIGUIALIONS. ...\ttt ettt ettt et et e e e et et e e e eens 23
Matching eXample.t e 26
Non-canonical and canonical configurations. (In this and in later affinity graphs,

faster processors have 1arger SIZES.)ouirentoti i 28
Weak-APA-EDF versus Strong-APA-EDF 33
892100 within T3 0 £ — di(E)..eeeeeeii e 41
% outside of 71 from ¢ — dy(£).. oo vnee e 42
Reducing c1,1 increases job 731’S reSpONSE time.ooouiiiiiiiii i, 43
PrOOf St Al gy, .\ttt ettt e e 59
Example of an alternating path in a bipartite graph.o i 74
Counterexample affinity graphs.o 76
Weak-APA-EDF countereXample.ouuententnti e e e iein it 77
Non-preemptivity COUNtereXample.outnre ettt et e i iee it 78
Both configurations violate HP-LAG in Lemma 3.24. i, 80
Scheduling of tasks with O profit.......... ... i e 84
Example 3.7 illUStration.o u ittt e e e 84
(LTLJ +2) Ty and b+ Th. oo 87
Symmetric difference of matchings. i 93
Cases 3.28.2 and 3.28.3. .. .ot 93
TranGle PrOPeItIes. . . o vttt ettt ettt ettt e e et e e e e 108
Interpreting a boXPIOt.ttt 119

X1

3.17

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

5.1

52

53

54

5.5

5.6

Response time against s¢. Captions indicate (7, 7).ooiiiiiii i, 120

rb_root_cached example.ottt e e 133
Per-CPU TUNQUEUES.o ettt ettt et et e et et e et et et e e e eeas 136
Runqueue rq is constructed of SUD-TUNQUEUES.ttt 137
sched_domain and root_domain illustrations for Example 4.2. 142
push_cpu_stop () eXample.oouiiuii 171
CPUAL THUSTIALION. . . oottt ettt ettt et et e e e 182
Class change of throttled task. oo e 185
clock_task example.ot e 197
runtime vs.ideal budget. 200
Out-of-deadline-order execution at time 40.. ...ttt 207
Unbounded response times due to dynamic tasks. ..., 214
Example 4.10 1IuStrations.ottt e e 216
Example 4.10 schedule. e 217
Priority inheritance. i 220
GRUB-PA schedule. e 226
clock_pelt eXample.o e 227
Core_tree eXaAMPIe.ttt e 234
Core scheduling example.ot e 236
Consequence of not incrementing Core_task_ SEQ. vvvvuririterinr e eieaiennaneennnn. 241
Correctly incremented CoOre_LasSK_ SEQ. v vvtnrtnt ittt r e it e e i iaea e 243
Unbounded response times due to bypassing throttling.. ..., 247
Pushes can cause priority iNVEISIONS.o.tutntie ottt 250
Dynamic affinities can starve tasks.o 252
Alternating paths under SEMI-PARTITIONED. 254
Forced Throttle Duration.t e 257
Push DUrations.t e 258

xii

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

Tardiness. . .. oo e 259
Samsung EXynos 5422, 260
Augmented configuration X 263
USE 1 as an extension of Strong-APA-EDF. 266
Ilustration of a connected COMPONENL.o.ttntintit i e e it eiearaneanennn 273
Relabeling example.t e e e e 276
Tasks 7;, and 7;, exist in distinct connected COMPONENtS.cuvuirereenenenenennnn.n. 282

Component with two tasks in 781°b that are incident on two edges. Dots (e) denote

edes i MIOPL(F). Lottt e 283
All possible cases for connected components in MYSE (1) AMPt(t). Edges marked

with e denote edges in MVSE(¢), while unmarked edges denote edges in MP'(¢). 286
Step 1: initially, no tasks are allocated (X <= 0).ouvtiitii e 301
Step 2: each 7; € chitg(t) is allocated u; of capacity in X.........oooiiiiiiiiiiiniiieinan.. 302
Step 3: each 7; € ng? b(t) is allocated u?ig of capacity in X. i 303
Step 4: each 7; € 71T (#) is allocated u; of capacity in X.ooviiiiiiiiiii .. 304
Step 5: each 7; € Tag(}:) b(t) is allocated u; — u?ig of capacity in X. ... 305
enqueue_task_dl () overhead.o e 322
dequeue_task_dl () overhead.ottt e 323
find_later_rqg() overhead.ot e 325
check_wdl_preempt () overhead. i 326
push_wdl_stop () overhead.t 326
check_global_order () overhead..............ooiiiiiiiiiii i, 327
swap_global_stop () overhead (n = 20); 12,961 samples.cccvvvirinen... 327
Relative tardiness. o 328

X1l

ACS
CFS
CVA
DSP
DVFS
EEVDF
EDF
FPGA
GPU
HRT
JLDP
JLFP
PID
RTOS
SIMD
SRT
TGID
TID
WwC

LIST OF ABBREVIATIONS

Admission Control System
Completely Fair Scheduler

Compliant Vector Analysis

Digital Signal Processor

Dynamic Frequency and Voltage Scaling
Earliest Eligible Virtual Deadline First
Earliest-Deadline-First
Field-Programmable Gate Array
Graphics Processing Unit

Hard Real-Time

Job-Level Dynamic-Priority

Job-Level Fixed-Priority

Process ID

Real-Time Operating System

Single Instruction Multiple Data

Soft Real-Time

Thread Group ID

Thread ID

Window-Constrained

X1V

Symbol Range
T N/A
Ti T
n N
m N/A
T ™
m N

i R0
T; R<o

i R>o
U; R0
[i] N
spl9) R>o
sp™d R>o
Tij N/A
Cij (0,C]
ajj R
d; j R
d; j R
fig R
a;(t) R
d;(1) R
d; (t) R
ci(t) (0,C4]
rem;(t) (0, ¢i(t)]
rdy; ; R
Ty (1) P(r)

LIST OF SYMBOLS'

Meaning

Task set

i task

Number of tasks ||

Processor set

4™ processor

Number of processors ||

Worst-case execution time of 7;

Period of 7;

Relative deadline of 7;

Utilization % of 7;

Subscript of i largest value, e.g., u[y) = MaXrer Ui
Speed of 7; under UNIFORM

Speed of ; when executing 7; under UNRELATED
7™ job of 7;

Execution cost of 7; ;

Arrival time of 7; j, a; ; +T; < a; j41

Absolute deadline a; ; + D; of 75 ;

Implicit deadline a; ; + T'; of 7; ;

Completion time of 7; ;

Arrival time of current job of 7; at ¢

Absolute deadline a;(t) + D; of current job of 7; at ¢
Implicit deadline a;(t) + T'; of current job of 7; at ¢
Total execution cost of current job of 7; at ¢
Remaining execution cost of current job of 7; at ¢
Ready time of 7; ;, rdy; ; < a; ;

Subset of ready tasks at ¢

P(S) denotes the power set of set S.

XV

67
ppi;(t)

ppi(t)

cspi(t)

ot (£)
dev;(t)

HP(+ 1)
HP-LAG

/BUnr
big
LIT
big
LIT
big
LIT

7_glob

P(r x 7)

RZO
N/A
N/A

Zero-lag time a; j + C;—: of 7;;

Subset of active tasks at , Trqy (t) C Tact(?)
Maximum number of active tasks, n,et > maxy|Tact(t)]
i activation time instant (Definition 2.14)
Total utilization of ™ C 7

Maximum total utilization of active tasks, U pax > max; U (Tact (%))
Affinity set of 7;

Priority point of 7; ; at ¢

Priority point of current job of 7; at ¢

Priority window (Definition 2.20)

Speed of processor executing 7; at ¢

Matching on affinity graph between 7 and 7
Virtual time of 7; at ¢ (Definition 3.2)
Deviation of 7; at ¢ (Definition 3.3)
High-priority predicate (Definition 3.4)

See Definition 3.5

See Definition 3.6

Profit function of 7; (Definition 3.7)
Symmetric difference operator (Definition 3.8)
Slowdown factor (Definition 3.9)

Maximum speed under UNRELATED

See Definition 3.11

Subset of big CPUs

Subset of LITTLE CPUs

Number of big CPUs

Number of LITTLE CPUs

Subset of 7 with affinity for 7"

Subset of 7 with affinity for 7T

Subset of 7 with affinity for 7 = 7% U 7T

Xvi

P (Tglob)
(0,1.0)
N/A
N/A
N/A
N/A

R(n+m)><m

>0

Subset of 7°i¢ that are active at ¢
Subset of 7MT that are active at ¢
Subset of 78°° that are active at ¢
Speed of each LITTLE CPU

Set of idle tasks (see Definition 5.3)
Augmented task set 7 U 7191

Augmented active task set T, (t) U 79

Augmented ready task set 7qy () U 7i9I°

Augmented configuration (see Definition 5.5)

Deadline of task matched with 7; in X at ¢

Latest deadline of any big CPU (see Definition 5.7)

Latest deadline of any LITTLE CPU (see Definition 5.7)
Weighted deadline of 7; under X at ¢ (see Definition 5.8)
Augmented configuration selected by Ufm-SC-EDF at time ¢
See Definition 5.13

Matching corresponding with XVSE(¢)

Matching corresponding with XPt(t)

See Definition 5.14

Global tasks in 7/ C 7 under SEMI-PARTITIONED

Tasks partitioned on 7 in 7/ C 7 under SEMI-PARTITIONED

Processors with partitioned tasks in 7 C 7 under SEMI-PARTITIONED

See Definition B.2

Xvil

CHAPTER 1: INTRODUCTION

A system is real time if the timeliness of its computational results is as significant as their logical
correctness. For example, consider an autonomous vehicle running computer vision applications. If an
obstacle enters the vehicle’s path, the computer vision application must complete within a bounded amount
of time to avoid a crash. Unlike other computing systems, in which fast average-case response times are

desirable, the correctness of real-time systems is concerned with bounding the worst case.

Real-time tasks. Real-time workloads are recurrent, meaning that programs are expected to respond to
inputs repeatedly over a long duration of time (e.g., an autonomous vehicle is expected to regularly process
camera frames one after another). These programs are called fasks, with the i task in a system traditionally
denoted as 7;. Different invocations of a tasks are called jobs, with the j th job of task 7; being denoted 7; ;.
Each job has an arrival time, which is generally when the job becomes executable. Tasks are generally
assumed to be singled-threaded, meaning that jobs of the same task may not execute in parallel. Timeliness
requirements are expressed by assigning each job a deadline, which typically is some fixed offset (called a
relative deadline) after said job’s arrival time.

The traditional task model considered in the real-time community is the sporadic task model. Under
the sporadic task model, task 7; is constrained by its worst-case execution time C';, the maximum units
of execution required by any of its jobs, and 7;, the minimum interarrival time between any two of its
consecutive jobs. Task 7;’s utilization, a measure of the long-term fractional demand of task 7; for a 1.0-speed
processor, is then C;/T’;. A common assumption under the sporadic task model is implicit deadlines. For an
implicit-deadline task 7;, its relative deadline is equal to T';.

Timeliness requirements are traditionally hard real time (HRT). In such systems, it is required that each
job must provably complete by its deadline. This is in contrast to soft real-time (SRT) systems that relax this
requirement. For example, consider a streaming application that is expected to deliver a consistent number of
video frames per second. Each frame must be processed within a bounded amount of time to achieve this

frame rate, but the occasional late or dropped frame does not significantly impact quality of service.

Note that there exist alternative definitions of SRT in the literature. The interpretation of SRT that we
consider in this dissertation is that each job has bounded response time, i.e., the difference between each job’s
completion and arrival times must be provably bounded by some (ideally small) constant.

The ability for a system to meet timing guarantees depends on the speeds of the hardware’s processors.
The term “processor” is used in a general sense to denote any compute unit (e.g., a CPU) that may execute at
most one job at any time. A system containing one processor is a uniprocessor, while a system containing
more than one processor is a multiprocessor. The scheduler must balance the demand of all jobs for the limited
processor(s) such that sufficient processing capacity is provided to each job to meet its timing requirement.

There are three multiprocessor models generally studied by the real-time community:

» IDENTICAL, in which all processors have the same speed for all tasks (normalized to 1.0);

* UNIFORM, in which processor 7; has speed sp(j), which must be consistent for all tasks;

« and UNRELATED, in which each processor 7; may have a unique speed sp* for each task ;.

Under UNIFORM and UNRELATED, some related works make a simplifying assumption that the multi-
processor contains a limited number of distinct fypes of processors. Processors of the same type have an
identical architecture, and hence, execution speeds. A multiprocessor with £ distinct types is called a k-type
multiprocessor.

Timing guarantees also depend on the choice of scheduler, code that decides when to execute jobs on
processors. Most schedulers assign priorities to jobs and preferentially schedule higher-priority jobs. There

exists a taxonomy of schedulers based on the behavior of priorities consisting of:

* table-driven (also, static) schedulers, which forgo priorities, instead deciding which processor should
execute which job at any given time by looping over a hard-coded table of tasks and execution intervals

(computed offline);
* fixed-priority schedulers, which assign all jobs of a given task the same priority;
* job-level fixed-priority (JLFP) schedulers, which assign each job its own constant priority;

* and job-level dynamic-priority (JLDP) schedulers, which allow the priority of any job to vary with

time.

Some static schedulers use the term “frame” or “template” instead of table. Additionally, instead of a
constant-length table, some schedulers shrink or stretch different iterations of the table depending on tasks’
release times and deadlines. In this dissertation, all of these are also considered as table-driven schedulers.
While fixed-priority schedulers seem to be more traditional in industry (possibly due to their simplicity
and low overhead), certain JLFP and JLDP schedulers have been shown in prior work to have significantly
higher efficacy with respect to SRT (Leontyev and Anderson, 2007). This dissertation exists in part to further

this prior work.

Why care about SRT? We consider SRT due to certain advantages it has over HRT. First, SRT is suprisingly
common in systems. Though HRT has been the more traditional sense of temporal correctness studied
by the real-time community, an industry survey (Akesson et al., 2020) has shown that 67% of surveyed
real-time systems contained some SRT component, while only 54% contained some HRT component. This
highlights the prevalence of SRT in real industrial applications. Second, because SRT guarantees are less
strict than HRT guarantees, SRT guarantees can often be met using less powerful hardware. Strict adherence
to deadlines under HRT can require system designers to use hardware with processing capacity far greater
than the long-run demand of the considered real-time applications. This is necessary to meet deadlines under

worst-case conditions (e.g., a large number of tasks with simultaneous job arrivals).

WC schedulers: great for SRT. This dissertation focuses on a class of JLDP schedulers called window-
constrained (WC) schedulers that prior work (Leontyev and Anderson, 2007) has shown to be particularly
effective for SRT. WC schedulers are derived from earliest-deadline-first (EDF),' a JLFP scheduler. Under

EDF, jobs with earlier deadlines have higher priority.

v Example 1.1. This example demonstrates scheduling under EDF, as well as EDF’s efficacy at
lowering response times by comparing against a fixed-priority scheduler. Consider the task system
of three tasks such that (C1,71) = (C2,T2) = (C3,T3) = (2.0,3.0). Figure 1.1a depicts an EDF
schedule of this system (assuming implicit deadlines) on an IDENTICAL multiprocessor with two
processors. In this example, it is assumed that deadline ties are broken in favor of jobs belonging to

lower-indexed tasks.

"When the considered platform is a multiprocessor, other works make distinctions such as between global EDF (G-EDF)
and partitioned EDF (P-EDF) based upon which processors tasks are permitted to migrate to. These are both denoted
EDF in this dissertation because the processors a task can execute on are specified by parameters of our multiprocessor
model (see the upcoming Affinities paragraph).

Release t Deadline l CompletionT Proc. 1 - Proc. 2 -

20
20
0 2 4 6 8 10 12 14 16 18 20
Time
(a) EDF schedule.
T1
0 2 4 6 8 10 12 14 16 18 20
T2
0 2 4 6 8 10 12 14 16 18 20

TN i |
8 10 12 14 16 18 20
Time
(b) Fixed-priority schedule.
Figure 1.1: SRT: EDF versus fixed-priority. (The legend depicted here is assumed also in later figures
depicting schedules.)

Initially, at time O, all three tasks have an arriving job. Because the system has implicit deadlines,
the deadline of each of these jobs is the arrival time (0) offset by the corresponding tasks’ periods (3.0).
Because the deadlines of all executable jobs are equal, the jobs have equal priority, in which case the tie
is broken in favor of jobs 711 and 72 1. Thus, these two jobs occupy the two processors until completion
(at time 2.0). Once these two jobs complete, job 73 1 becomes the highest-priority job (by virtue of being
the only runnable job), and is executed on a processor starting at time 2.0.

At time 3.0, because the periods of all tasks is 3.0, all tasks have a second job arrival. Job 71 2
occupies the available second processor because it executes no job. Job 72 2, however, is unable to be
scheduled because currently executing job 731 has an earlier deadline (3.0) than 72 2’s deadline (6.0).

When 73 finishes at time 4.0, its second job 732 has the same deadline as job 72 2. The tie is
resolved in favor of 79 2, and it is scheduled on 73 1’s former processor. The execution of job 73 2 is
delayed until job 71 2 completes at time 5.0, thereby making its processor available.

Starting with the time interval [3.0, 6.0), the schedule repeats every 3.0 time units (swapping 71 and
o every 3.0 time units) following similar logic. Observe how the maximum response time of any job is
4.0 time units, which occurs for the jobs of task 3.

Compare these response times against those under the fixed-priority scheduler illustrated in Fig-
ure 1.1b. This example assumes jobs of tasks 7 and 75 have higher fixed priority than jobs of task 3.
Whenever jobs of tasks 7 and 75 arrive every 3.0 time units, they occupy both processors because they
have higher priority than any jobs of task 73. The response times of consecutive jobs of task 73 grow
unboundedly (e.g., job 73 1 has response time 6.0, 73 2 has response time 9.0, 73 3 has response time 12.0,

etc.). A

It was proven in a seminal work (Devi and Anderson, 2008) that under IDENTICAL, EDF satisfies

a property called SRT-optimality, which means that if a system is feasible (i.e., does not over-utilize its

underlying hardware), then EDF guarantees bounded response times for all jobs. SRT-optimality was

later extended to the class of WC schedulers under IDENTICAL (Leontyev and Anderson, 2007) and to

UNIFORM for EDF (Yang and Anderson, 2017). WC schedulers are derived from EDF by allowing the time

instant used to determine a job’s priority (called the job’s priority point) to vary within a bounded interval

(hence, the “window” in window-constrained) around the implicit deadline.

SRT-optimality is a powerful property, as any system that over-utilizes the underyling hardware must
have unbounded response times for some task under any scheduler. This makes EDF and its derived WC

schedulers attractive for SRT applications.

1.1 Problem: EDF (and its Derivatives) are Poorly Understood

Fundamentally, nobody (especially the author) understands the SRT properties of EDF and its derived
WC schedulers. There exist many critical open problems about EDF. This dissertation focuses on one
such problem: to what extent does the SRT-optimality of EDF and WC schedulers extend to heterogeneous
multiprocessors beyond IDENTICAL and UNIFORM? This question is especially relevant in a modern
hardware context with multiprocessors growing increasingly heterogeneous. We briefly discuss sources of

heterogeneity.

Heterogeneous multiprocessors. Heterogeneous multiprocessors contain more than one type of processor,
and hence, do not follow the IDENTICAL model. Processors can differ by any number of factors including
clock frequency, cache size, order of execution (i.e., in instruction order or out of order), usage of pipelin-
ing/branch prediction, dynamic frequency and voltage scaling (DVFS),? data parallelism (SIMD and vector
instructions), accelerators (i.e., general purpose CPUs versus graphics processing units (GPUs), digital signal
processors (DSPs), or field-programmable gate arrays (FPGAS)), efc.

Driving heterogeneity in multiprocessor design is a tradeoff between performance and efficiency. An
exemplar of this heterogeneous multiprocessor design is the ARM big. LITTLE? architecture, which combines
high-performance power-hungry “big” processors with slower energy efficient “LITTLE” processors. Higher
performance by big processors is primarily achieved by higher clock frequency and larger per-processor
cache size.

big. LITTLE multiprocessors are often treated analytically as UNIFORM multiprocessors, with relative
processor speeds being determined experimentally. While the UNIFORM model is a fairly good first-order

approximation, architectural differences should not cause uniform speedups among all tasks. For example,

2DVFS alone does not technically make a multiprocessor heterogeneous, as the processors may be identical architec-
turally. DVFS can cause differences at runtime as processors set different performance points.

3The big.LITTLE archicture was rebranded as and succeeded by the DynamIQ architecture by ARM in 2017. We
continue to refer to this architecture as big. LITTLE to match with most related work and because certain evaluations
in this work were performed on hardware that predated the change.

increasing per-processor cache size will have a disproportionate benefit for tasks with larger working set
sizes, of which cache is a bottleneck on performance. Thus, UNRELATED, under which processor speeds
depend on the executing task, is a more accurate multiprocessor model for heterogeneous architectures. This
highlights the necessity of extending real-time analytical results to more complicated multiprocessor models

such as UNRELATED.

Affinities. Besides differences in architecture, heterogeneity can arise via software with affinities. These are
per-task restrictions on which processors a given task may execute on. In software, these are represented
with affinity masks, bitmasks where each bit position corresponds with a processor. System designers may
set affinities for reasons such as load balancing or increasing cache locality. Because, under affinities, the
processors are not interchangeable from the perspective of the scheduler, the multiprocessor is heterogeneous.

We itemize seven cases for the affinities of a system, the former five of which have been studied

extensively in the literature and the latter two being special cases relevant to this dissertation:
» GLOBAL, in which all tasks have affinity for all processors;
* PARTITIONED, in which each task has affinity for one processor;

* CLUSTERED, in which the processors are partitioned into clusters such that each task has affinity for

the processors in one cluster;

» HIERARCHICAL, in which each affinity mask either has no intersection with, is a superset of, or is

subset of each other affinity mask;
» ARBITRARY, in which any task may have any affinity;
« SEMI-PARTITIONED.,* in which each task has affinity for either one or all processors;
» and SEMI-CLUSTERED, in which each task has affinity for either a cluster or all processors.

In this dissertation, we use “/” to denote that we are assuming a special case of affinities under the con-
sidered multiprocessor model. For example, ARBITRARY affinities under the IDENTICAL multiprocessor
model is denoted as IDENTICAL/ARBITRARY. Assume that affinities are GLOBAL when affinities are

4Note that some other works (e.g., Kato and Yamasaki (2009); Afshar et al. (2012); Anderson et al. (2014); Voronov
and Anderson (2018); Hobbs et al. (2021); Casini et al. (2021); efc.) dealing with mitigating migration overheads have
alternative definitions of semi-partitioned.

not specified. Note that specifying affinities is redundant if the multiprocessor model under consideration is
UNRELATED. Under UNRELATED, a task not having affinity for a processor is analytically equivalent to

said processor executing said task with speed 0.

Difficulty of heterogeneity. The difficulty of SRT analysis is proportional to the level of heterogeneity.
Recall the informal definition of SRT-optimality detailed earlier: a scheduler is SRT-optimal if bounded
response times are guaranteed so long as the system is feasible. The formal definition of feasible depends on
the multiprocessor model considered, and grows in complexity with increasing heterogeneity. For example,
for a uniprocessor, the feasibility condition is that the sum of all utilizations is at most 1.0. In contrast, for
UNRELATED, the feasibility condition is that a particular linear program derived from the task system’s
parameters has a solution (Baruah, 2004). In SRT analysis, it is assumed that the considered system is feasible
to prove response-time bounds. How to accomplish this is less clear with a more complicated feasibility

condition.

SCHED_DEADLINE. SCHED_DEADLINE is an EDF implementation included in the mainline Linux kernel
since version 3.14. Its inclusion has been significant because it has lowered the barrier to entry for real-time
EDF scheduling and it has inspired many publications (Gujarati et al., 2013, 2014; Scordino et al., 2018;
Abeni et al., 2016; Lelli et al., 2016). This is also true of this dissertation, as work contained herein pertaining
to affinities was motivated by a keynote talk given by Peter Zijlstra at ECRTS’ 17 (Zijlstra, 2017) on SCHED__
DEADLINE. For these reasons, the analysis presented in this work was evaluated using SCHED_DEADLINE
as a base.

An important aspect of SCHED_DEADLINE is its admission control system (ACS) The ACS has two
purposes: (1) to limit the total processing capacity consumed by real-time tasks (by default, 5% of capacity
must be reserved for non-real-time workloads at all times) and (2) to enforce SRT guarantees for real-time
tasks. The ACS facilitates dynamic task systems, in which tasks may enter and leave the system over time.
The ACS accomplishes its purposes by rejecting requests by tasks to enter the system if permitting their
entrance would over-utilize the hardware.

The analysis by Devi and Anderson (2008) serves as the foundation for SCHED_DEADLINE’s migration
logic and ACS. As such, SRT guarantees in the existing implementation are only maintained by the ACS

under strictly IDENTICAL multiprocessors.

1.2 An Orthogonal Open Problem: Loose Response-Time Bounds

We take a brief aside to mention another open problem about EDF not addressed in this dissertation. We
provide this aside to (1) provide a less biased view of the problems holding back EDF and its derivatives
and (2) inform any future researcher working on EDF’s SRT properties that the techniques presented in this
dissertation are unlikely to make headway towards this problem.

Ever since the seminal work first demonstrating EDF’s SRT-optimality (Devi and Anderson, 2008), it has
been known that observable response times for synthetically generated tasks under EDF are much smaller
than proven response-time bounds. It is the author’s personal opinion that existing response-time bounds
are too high for practical use, while observable response times (if bounds could be proven) are much more
reasonable. At time of writing, deriving tight response-time bounds has been an open problem? for almost 20
years.

The techniques presented in this work seem orthogonal towards the problem of obtaining tight response-
time bounds. This work is primarily interested in expanding SRT-optimality to a broader class of schedulers
and multiprocessor models. This is done through abstractions that allow us to reason about simpler systems
than a real-time task system and scheduler. Characteristics specific to EDF that result in low response times

are seemingly not captured by these abstractions.

1.3 Thesis Statement

Lack of understanding of the SRT properties of EDF and its derived WC schedulers, particularly with
respect to whether SRT-optimality properties extend to modern multiprocessors, is holding back the use of
such schedulers for real-time applications. This dissertation aims to be a step towards this understanding,

leading to the following thesis statement:

Heterogeneous multiprocessor models are required to describe many modern multiprocessors.
The SRT-optimality of EDF and its derived schedulers can be extended to these models, such as
IDENTICAL/ARBITRARY and UNRELATED, via scheduler variants targeted for such models.
Though such variants may induce higher overheads than standard EDF on IDENTICAL, more

practical implementations can be developed by restricting to special cases of these models.

5Tight bounds can be computed under certain restrictions (Ahmed and Anderson, 2021), which will be discussed in
Section 2.4.1

1.4 Contributions

The thesis is supported by the following contributions.

1.4.1 Improving SRT Analysis for UNIFORM and Extending to IDENTICAL/ARBITRARY

We derive polynomial response-time bounds for WC schedulers under UNIFORM (prior bounds (Yang
and Anderson, 2017) were exponential and exclusive to EDF). We show that these same response-time
bounds are also valid for WC schedulers under IDENTICAL/ARBITRARY, proving for the first time that WC
schedulers are SRT-optimal under IDENTICAL/ARBITRARY. We also present unbounded response-time
counterexamples for when jobs may be non-preemptive or when non-WC schedulers inspired by SCHED__

DEADLINE are used.

1.4.2 WC Variant and Response-Time Bounds under UNRELATED

We derive response-time bounds under UNRELATED such that WC schedulers are asymptotically

SRT-optimal (response-time bounds grow inversely as the task system approaches infeasibility).

1.4.3 Patching SCHED_DEADLINE for IDENTICAL/SEMI-PARTITIONED and 2-Type
UNIFORM/SEMI-CLUSTERED

We demonstrate how the existing SCHED_DEADLINE implementation can have unbounded response
times under heterogeneity. We present patches to restore provably® bounded response-times under IDENTI-
CAL/SEMI-PARTITIONED multiprocessors and 2-type UNIFORM/SEMI-CLUSTERED multiprocessors
such that each processor type is a cluster. We measure overhead increases due to these patches on hardware

running synthetic workloads.

1.5 Organization

The rest of this dissertation is organized as follows. Background material is divided between Chapters 2
and 4. Chapter 2 covers theoretical background including the considered task and multiprocessor models,

related work, and a brief review of related optimization problems. Chapter 3 covers all results involving

% Assuming an idealized SCHED_DEADLINE. We do not attempt to formally verify the SCHED_DEADLINE code base.

10

response-time bounds. Chapter 4 covers the SCHED_DEADLINE implementation. Chapter 5 covers our pro-
posed patches to SCHED_DEADLINE for certain special cases of heterogeneous multiprocessors. Chapter 6

concludes.

11

CHAPTER 2: THEORETICAL BACKGROUND

This chapter covers considered models, related theoretical work, and relevant mathematical review.

2.1 Task Model

Time is assumed to be continuous. This dissertation considers the sporadic task model, described below.

Notation is presented in the following definitions.

V Definition 2.1. The task system consists of n tasks denoted as 7 = {7y, 72,..., 7, }. AN

It is assumed that each task is single-threaded, i.e., never runs in parallel with itself.

V Definition 2.2. The task system runs on m processors m = {71, m2,..., Ty }. A

V Definition 2.3. Task 7; has worst-case execution time C; (relative to an execution speed of 1.0),
period T';, relative deadline D;, and utilization u; £ /T;. For task 7;, C;, T;, D;, and u; are all

positive. A

We denote by a bracketed index [i] that the corresponding parameter is the i™ largest of its kind. For
example, the largest period and utilization are denoted 7'y and uyj, the smallest utilization is denoted u(,),

and the fastest speed under UNIFORM is denoted sp(1]).

V Definition 2.4. Task 7; releases an infinite sequence of jobs with 7; ; denoting the 4™ job of task 7;

for j > 1. Job 7; ; has execution cost ¢; j € (0,C;], arrival time a; ;, and deadline d; ; = a;; + D;. A

V Definition 2.5. Task 7; is an implicit-deadline task if D; = T';. The implicit deadline of job 7; ; is
d;-J =S a; ; + T';. If 7; is an implicit-deadline task, then d; ; = cﬂlviyj for any job 7; ;. Note that Ji,j is

well-defined for job 7; ; regardless of whether 7; is an implicit-deadline task. A

V Definition 2.6. Task 7; is a constrained-deadline task if D; < T;. A

12

Jobs are executed in order of arrival. Arrival times are separated such that for any 5 > 1, we have

aij + T < aij1.

V Definition 2.7. A task system is periodic if, for each job 7; ;, we have a; ; + T'; = a; ;1. A task

system is sporadic if, for each job 7; j, we have a; ; +T'; < a; j41. A
V Definition 2.8. A task system is synchronous if, for each task 7;, we have a; 1 = 0. A

V Definition 2.9. The completion time f; ; of job 7; ; is the time instant that 7; ; completes ¢; ; units of
execution.

The response time of 7; ; is the difference f; ; — a; ;. A

Each task obeys intra-task precedence constraints, i.e., a job 7; ;, may not execute if there exists an
incomplete job 7; j, such that jo < ji.
Additional notation is useful in our analysis for describing the job of a task that would, at a particular

time instant, be executed if the task was scheduled.

V Definition 2.10. At time ¢, the current job of task 7; is the incomplete job of task 7; that has the
earliest arrival time at time ¢.

We let a;(t), di(t), di(t) ¢;(t), and rem;(t) be the arrival time, deadline, implicit deadline, total
execution cost, and remaining execution cost of the current job of 7; at time ¢. Task 7;’s deadline and

implicit deadline at time t are defined as d;(t) and d;(t), respectively. A

Recall from Definition 2.4 that we assume that each task releases an infinite sequence of jobs. Thus,
for any task 7; and time ¢, there are always jobs (that may not have arrived by time ¢) of task 7; that are
incomplete at time ¢. Because the current job of task 7; at time ¢ is the earliest of these jobs, the current job of
task 7; is well-defined at any time instant. Note that under Definition 2.10, the current job of a task 7; at time
t may not have arrived by time ¢.

Because the current job of task 7; is well-defined at any time instant ¢, a;(t), d;(t), ¢;(t), and rem;(t) are
also well-defined for any time instant ¢. This reduces the lengths of several proofs by omitting cases where
the current job of a task at time ¢ does not exist due to said task having already completed all of its jobs by
time ¢. Note that our response-time analysis can still be applied to tasks that release finitely many jobs by
assuming that the ‘next’ jobs of such tasks arrive arbitrarily far into the future.

Jobs must wait for their ready times to execute.

13

V Definition 2.11. A job 7; ;’s ready time rdy; ; is the time instant job 7; ; (ignoring intra-task prece-
dence constraints) first becomes eligible to execute. It is required that rdy; ; < a; ;, i.e., the ready time
of a job is at most its arrival time. Traditionally, for each job 7; ;, rdy; ; = a; ;, i.e., a job becomes ready
once it arrives. Allowing rdy; ; < a; ; is called early releasing.

If, for job 7; j, we have t > rdy; ;, then job 7; ; is ready. A task is ready if its current job is ready.

The set of ready tasks at time ¢ is denoted 7yqy (t). A

Note that, if a task’s current job is not ready, then the task cannot be scheduled, even if other jobs
of the task are ready. This is because the current job of a task is the earliest (by arrival) incomplete job

(Definition 2.10) and jobs of a task must complete in order of arrival.

Dynamic tasks. In systems such as SCHED_DEADLINE, tasks are dynamic in that they are expected to
enter and leave the system over time. Tasks that are active (defined below) at a given time instant are
those whose jobs contribute to load on the system at said time instant. Restrictions on the set of active
tasks at any given time instant are necessary to prevent the system from being overloaded. The meaning of
“overloaded” depends on the considered multiprocessor model, and will be formalized in Section 2.4. If new
tasks becoming active would otherwise overload the system, said new tasks must wait for currently active
tasks to become inactive, thereby allowing their consumed capacity to be used by new tasks.

An active task becomes inactive by no longer releasing or executing jobs. In some instances, the time
instant of the transition from active to inactive must be delayed past the completion time of a task’s latest job.
This is necessary for maintaining HRT guarantees for dynamic task systems, which will be demonstrated in
1

Example 2.1. The exact time instant a task transitions from active to inactive is its last job’s zero-lag time.

An explanation of lag will be given in Section 3.1.

V Definition 2.12. The zero-lag time of job 7; ; is zlt; j = a; j + “=L. A

Us

V Definition 2.13. At time ¢, a task 7; is active if 7; is ready or if task 7;’s most recently completed job
is 7; ; and 7; ;’s zero-lag time has not passed (i.e., t < zlt; j). Task 7; is inactive at t otherwise. The
subset of 7 of active tasks at ¢ is T,c((t). nact denotes an upper bound on the maximum number of active

tasks at any time instant. A

'Though our analysis, which considers SRT and not HRT, guarantees bounded response times even if tasks become
inactive as soon as they complete their latest jobs, we delay the inactive transition time to the zero-lag time to conform
with systems such as SCHED_DEADLINE. Be aware that our analysis at no point assumes that tasks remain active
until their zero-lag times.

14

0 2 4 6 8 10
Time Time

o

(a) Without waiting for zlt; ;. (b) Task 75 waits for 2ty ;.

Figure 2.1: Deadline miss without waiting for zero-lag time.

v Example 2.1. Consider the schedules illustrated in Figure 2.1. This example demonstrates that EDF
meets deadlines for implicit-deadline tasks so long as total utilization is at most 1.0, but only if tasks
wait until their latest jobs’ zero-lag times before becoming inactive.

Consider three implicit-deadline tasks 71, 72, and 73 such that (C'1,T1) = (C2,T2) = (3.0,6.0) and
(Cs,T3) = (1.0,2.0). These tasks have u; = ug = ug = 0.5. The three tasks execute on a uniprocessor.
Initially, at time 0, T,c¢(0) = {71, 72 }. The total utilization at time 0 is then 0.5 + 0.5 = 1.0. The system
is restricted such that the total utilization of active tasks at any time is at most 1.0.

In order for task 73 to become active, because total utilization is capped at 1.0, either task 7 or task
79 must first become inactive. Assume task 7; becomes inactive, upon which task 73 becomes active.
Figure 2.1a illustrates the schedule where task 7| incorrectly becomes inactive as soon as it finishes its
first job 7; ;, while Figure 2.1b illustrates the schedule where task 7 waits until z/t; ; before becoming
inactive.

In Figure 2.1a, task 71 becomes inactive as soon as job 711 completes at time 3.0. Task 73 becomes
active at time 3.0, resulting in its first job 73 1 arriving at time 3.0. Job 73 1 has an earlier deadline (5.0)
then that of job 751 (6.0), so task 73 is scheduled over [3.0,4.0). Job 72 ; completes at time 7.0, missing

its deadline.

15

Compare this schedule to Figure 2.1b. The zero-lag time of job 711 is 2lt1 1 = a1 + c1,1/u1 =
0 + 3.0/0.5 = 6.0. Task 7; waits until time 6.0 before becoming inactive, thus task 73 does not
becomes active until time 6.0. Job 72 1, which missed its deadline in Figure 2.1a, meets its deadline in

Figure 2.1b. A

The time instants when 7,¢¢(¢) changes are of interest because our analysis must show that the activation

of new tasks is safe with respect to maintaining bounded response times.

V Definition 2.14. Let the activation time instants (t;°, 5, ¢3", ..) denote the increasing infinite

sequence of time instants such that
o fort € (—o0, ti), Tact(t) = 0
* and for ¢ € [t} 3%), Tact(t) = Tact (tza) for each k € N. A

In words, the set of active tasks 7,.(t) changes only when ¢ = tz” for some k£ € N.

The worst-case total utilization of active tasks is a term in some of our response-time bounds.

V Definition 2.15. For subset 7/ C 7, welet U(7') £ 37 ;. A
The worst-case total utilization is U ,x, defined below.
V Definition 2.16. Let U ,,x denote an upper bound such that V¢ : Upax > U(Tact(t)). A

Affinities. Though affinity masks are represented as bitmasks in real systems such as Linux, it is convenient

for analysis to represent them as sets or as graphs.

v Definition 2.17. Under a multiprocessor with affinities, the affinity set of task 7; is denoted o; =

{m; € m: 7 has affinity for 7;}. A
V Definition 2.18. An affinity graph is a bipartite graph connecting a set of nodes corresponding to

tasks to a set of nodes corresponding to processors. AN

v Example 2.2. Consider a task system of 7; and 75 on two processors with affinities such that a; =

{m1} and ay = {m1, m2}. The affinity graph for this system is illustrated in Figure 2.2. A

Affinity graphs are useful both for visualization and for allowing us to apply existing theorems and

algorithms pertaining to bipartite graphs in analyzing systems with affinities.

16

T1 T2

Figure 2.2: Affinity graph example.

Constant Bandwidth Server (CBS). Though our analysis assumes the sporadic task model, SCHED_
DEADLINE instead employs CBS (Abeni and Buttazzo, 1998), whose parameters are analogous to those
of sporadic tasks. A Server, as in CBS, is a real-time-systems term for a sequential container that prevents
threads inside the container from over-consuming processor time, thereby starving other time-sensitive
real-time tasks in the system. Most servers, including CBS, accomplish this via budgeting. Runnable threads
inside the server consume the server’s budget to execute until said budget is exhausted, at which point the
server (and the threads within) becomes throttled. The threads within the server must wait until the server’s
budget is replenished at a later time (usually once per server period) to execute again. Throttling limits the
processor time the server can consume, thereby protecting other tasks in the system.

As with tasks, servers are assigned priorities and scheduled by the scheduler. A server is runnable when it
has budget and contains a runnable thread. A server suspends once all of its contained threads have suspended
(i.e., waits or is blocked on a resource held by thread). A suspended server wakes once a contained thread
becomes runnable again.

Pseudocode for CBS is presented in Algorithm 1, which we now detail. Note that CBS as originally
defined by Abeni and Buttazzo (1998) differs from Algorithm 1, which more closely resembles CBS as
implemented by SCHED_DEADLINE. Algorithm 1 refers to CBS parameters using identifiers from SCHED_
DEADLINE. The CBS by Abeni and Buttazzo (1998) does not throttle on exhausting its budget, instead only
increasing its deadline, and assumes implicit deadlines, unlike SCHED_DEADLINE.

A CBS has parameters analogous to those of a sporadic task:
* d1_runtime, its maximum budget;
* runtime, its current budget;

* d1_period, its replenishment period;

17

1

2

3 runtime’ < dl_runtime
4 Replenish (now)

5 while True do
6

7

8

9

while runtime > 0 and not suspended do
‘ Decrease runt ime if executed
end while
if suspended then
10 wait for wakeup
11 if now > deadline or
runtime/(deadline —now) > dl_runtime/dl_deadline then
12 ‘ Replenish (now)
13 else
14 ‘ Start New_ Job (now)
15 end if
16 end if
17 if runtime = 0 then
18 if now < deadline then
19 wait for deadline
20 end if
21 Replenish (deadline)
22 end if
23 end while

24 end
25 Function Replenish (t):
26 Start_New_Job (t)

27 runtime < dl_runtime
28 deadline <~ t+dl_period
29 end

30 Function Start_New_Job (t) :
31 Qg5 < t

32 ¢ij—1 ¢ runtime’ — runtime
33 runtime’ <~ runtime

34 j+—j+1

35 end

Algorithm 1: CBS pseudocode.

18

e d1_deadline, its relative deadline;
e and deadline, its current server deadline.

For simplicity, we assume implicit deadlines (i.e., d1_deadline = d1_period) when discussing CBS
and in Algorithm 1. CBS will be covered in detail in Section 4.4.3 when discussing its implementation in
SCHED_DEADLINE.

It would be natural to define CBS 7;’s replenishment times as a; j, d1_runtime as ¢; ;, and the time
instants where budget is exhausted (i.e., runtime = 0) as completion times. This is insufficient due
to suspensions, which are forbidden? under the sporadic task model considered in prior works on SRT-
optimality (Devi and Anderson, 2008; Yang and Anderson, 2017)). Wakeups must thus also be treated
as arrivals, and the corresponding preceding suspension times as completion times. The pseudocode in

Algorithm 1 is thus supplemented with parameters
* j, the current job number;
* a;; and ¢; j as in Definition 2.4;
e and runt ime’, the value of runt ime at time a; ; that is used to compute ¢; ;,

and function Start_New_ Job, which sets these values.

CBS 7; is initialized in Lines 2-4, which set a; 1 and provide CBS 7;’s initial budget and deadline (assume
Line 32 does nothing when j = 1 because ¢; j_1 is undefined). It then begins budget tracking for the
remainder of its lifetime.

Suspensions (Line 9) are more complicated. If the wakeup time following a suspension is past
deadline, then CBS 7; is replenished at the wakeup time (and not at deadline). This replenishment
after the deadline is analogous to a sporadic task 7; having job releases a; j+1 — a; j > T.

If, on the other hand, the wakeup time occurs before deadline, there are different cases that govern
how the CBS’s parameters are modified. Note that these cases are designed to provide HRT guarantees on a
uniprocessor or PARTITIONED multiprocessor, which is out of scope for this SRT-focused dissertation. As
such, their design is not justified in this background chapter. Readers interested in the SCHED_DEADLINE

CBS design are directed to the literature (Abeni et al., 2015).

2Specifically, suspensions within jobs. Not being runnable due to waiting for the next job arrival is permitted.

19

runtime4 7

O T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Tl _‘_ “ m
T
2 4 6 8 10 12 14 16 1
T2]

0 2 4 6 8 10 12 14 16 18
Time

8

Figure 2.3: CBS example.

On a wakeup prior to deadline, there are two cases depending on the local density

runtime

deadline — wakeup time

In the case that local density < d1_runtime/dl_period, the CBS continues executing with its current

parameters (e.g., runt ime and deadline) are unchanged.

v Example 2.3. Consider CBS 7; with (d1_runtime,dl_period) = (4.0,8.0) and other work-
load 79 (which could be either another CBS or a sporadic task) executing on a uniprocessor. This
system 1is illustrated in Figure 2.3. CBS 7 is initialized at time 2.0. This sets a1 < 2.0 and
deadline < 2.0+ dl_period = 10.0. CBS 77 executes for 2.0 time units over time interval
[2.0,4.0), setting runtime < runtime — 2.0 = 2.0.

At time 4.0, CBS 7 suspends until wakeup time 6.0. Because runtime/(deadline — 6.0) =
2.0/(10.0 — 6.0) =1.0/2.0 < 4.0/8.0 = d1_runtime/dl_deadline, parameters runtime and
deadline are unchanged (i.e., the value of runt ime is continuous at time 4.0 and CBS 7; continues
executing with deadline of 10.0). This wakeup is treated as an arrival, setting a2 < 6.0 and

C1,1 < 2.0. A

20

If the local density is greater than the CBS’s density d1_runtime/d1l_deadline, then the CBS is
replenished at the wakeup time.? Note that because the wakeup occurred before deadline in this case, this
replenishment occurs less than d1_period time units from the previous replenishment. Because we count

replenishments as job arrivals, the CBS does not follow the sporadic task model.

v Example 2.3 (continued). CBS 7; executes for 1.0 time unit over time interval [6.0,7.0), decreasing
budget with runtime < runtime — 1.0 = 1.0, before suspending again at time 7.0 until wakeup
at time 9.0. At the wakeup at time 9.0, runtime/ (deadline — 9.0) = 1.0/ (10.0 — 9.0) = 1.0 >
4.0/8.0 = d1_runtime/dl_deadline. This triggers an early (i.e., before deadline = 10.0)
replenishment at time 9.0, setting runtime < dl_runtime = 4.0 and deadline < 9.0 +

dl_period = 17.0. This replenishment sets a1 3 < 9.0 and ¢ 2 < 1.0. A

If budget is exhausted (Line 17), it waits for the next replenishment time deadline if deadline isin
the future (i.e., the CBS is throttled). Otherwise, if deadline has passed (recall it is possible to execute

past a deadline in a SRT system), the replenishment is applied retroactively at deadline.

v Example 2.3 (continued). CBS 7 then executes over [9.0, 13.0), setting runt ime <— runtime —
4.0 = 0. CBS 7 is throttled due to running out of budget at time 13.0 and waits for replenishment
at deadline = 17.0. At this replenishment at time 17.0, runtime < dl_runtime = 4.0,

deadline <~ 17.0+dl_period = 25.0,a14 < 17.0, and c; 3 < 4.0. A

2.2 Scheduler Classifications

This section presents abstractions of schedulers. The following assumption is made about schedulers

discussed in this dissertation.

> Non-Fluid Assumption. Schedulers are assumed to be non-fluid, i.e., at any time ¢, there exists

t4 > tand {_ <t such that for any job 7; ;

e if job 7; ; is scheduled on processor 7; at time ¢, then job 7; ; is scheduled on processor 7; over

the interval [t, .);

3This assumes deadlines are implicit. If deadlines are not implicit, there is a revised wakeup rule (Abeni et al., 2015) for
the case that wakeup time < deadline and local density > d1_runtime/d1l_deadline. Under this revised
rule, instead of replenishing on wakeup, budget runt ime is decreased such that the local density equals the CBS’s
density.

21

* if job 7; ; is unscheduled at time ¢, then job 7; ; is unscheduled over [¢,?);

* if job 7; ; is scheduled on processor ; at time ¢_, then job 7; ; is scheduled on processor 7; over

the interval [t_,);

* and if job 7; ; is unscheduled at time ¢_, then job 7; ; is unscheduled over [t_,). <

Informally, the Non-Fluid Assumption states that the multiprocessor does not reschedule with infinite
frequency. This is a given for any practical scheduler.

Task priorities are abstracted as priority points.

V Definition 2.19. (Def. 1 of Leontyev and Anderson (2007)) Associated with each job 7; ; is a function
ppi;(t), called its priority point function. If, at time ¢, pp; j(t) < ppnk(t) holds, then the priority of job
7,7 1s higher than that of job 7, 1 at t.

The priority point of task 7; with current job 7; ; is pp;(t) = ppi ;(t). A

For example, EDF can be defined as the scheduler such that for any job 7; ;, pp; ;(t) = d; ;.
WC schedulers are schedulers such that the priority point pp;(t) always lies within a bounded window

around task 7;’s implicit deadline.

V Definition 2.20. A scheduler is window constrained (WC) with priority window ¢ > 0 if, for any

time ¢ and task 7;, we have ‘ppi(t) - d;(t)) < ¢. A

For example, under EDF, we have

[ppi(t) — di(t)| = {Under EDF. ppi(t) = di(1))

= {Definition 2.5}
]ai(t) + Di - ai(t) — Ti’

= |D; — Ty

Thus, EDF with arbitrary (but finite) relative deadlines is WC with ¢ = |D; — T

22

T1 T2

T1 T2

(a) Configuration where tasks 7 and 7o are both sched-

uled (b) Configuration where only task 75 is scheduled.

Figure 2.4: Two configurations.

While at first glance, a scheduler is fully defined by how pp;(t) is defined for each task 7;, such a
definition can be ambiguous on sufficiently heterogeneous systems.
Let the term configuration denote some assignment of tasks to processors that may be selected by a

scheduler at some time instant.

v Example 2.4. Consider the two configurations (highlighted edges indicate assignment of a task to a
processor) of task system 7 = {71, 72} executing on a two processor IDENTICAL/ARBITRARY system
illustrated in Figure 2.4. Suppose at some time ¢, both tasks 7 and 7 are ready and pps(t) < pp1(¢),
i.e., T2’s job is of higher priority than 71’s job.

Priority points are followed by both the configurations in Figure 2.4a and Figure 2.4b because no
unscheduled task can preempt a lower-priority scheduled task under either configuration. Under these
priority points, which of the illustrated configurations should be chosen by the scheduler at time ¢t? While
that of Figure 2.4a is superior because both tasks are scheduled instead of only task 79, a scheduler
implementation may prefer that of Figure 2.4b if, for example, 7, is cache-hot on processor 7.

The question of which configuration to choose can be further complicated by additional heterogeneity.
Suppose that instead of being IDENTICAL processors, the system is UNIFORM such that processor
7o is a slow processor. Is the configuration in Figure 2.4a still superior merely because both tasks are

scheduled, especially if task 7 has utilization ug > sp(z)? A

The ambiguity illustrated in Example 2.4 over which configuration to select results in scheduler variants.
A scheduler variant is defined by which configurations it may choose given the priorities of jobs. For example,
when discussing related work later in this chapter, we will cover Strong-APA-EDF and Weak-APA-EDF,
EDF variants specified for IDENTICAL/ARBITRARY. Strong-APA-EDF requires that the number of

scheduled tasks is always maximized (e.g., in Example 2.4, choosing the configuration in Figure 2.4a), while

23

Weak-APA-EDF permits any configuration such that a lower-priority task is never scheduled on a processor
that an unscheduled higher-priority task has affinity for (e.g., either of the configurations may be chosen). The
choice of variant is critically important for SRT-optimality. We will show in Chapter 3 that Strong-APA-EDF
is SRT-optimal, while Weak-APA-EDF is not.

It will also be useful to have notation for the speed a task is currently executing at under a considered

scheduler.

V Definition 2.21. For task 7; and time ¢, the current speed csp;(t) is the speed of execution of task 7;

at time ¢ under the considered scheduler. AN

The current speed of a task 7; is 0 if task 7; is not assigned a processor in the configuration chosen by the
scheduler at time t. If 7; is assigned a processor 7;, then csp;(t) = 1.0 under IDENTICAL, csp;(t) = sp)
under UNIFORM, and csp;(t) = sp®’ under UNRELATED.

2.3 Optimization Review

In this dissertation and in prior work to be discussed in Section 2.4, scheduler variants are defined as
choosing configurations based on the solution to some optimization problem defined by task priorities and
processor speeds. This subsection covers optimization problems corresponding with these scheduler variants.
Framing scheduler variants as optimization problems simplifies analysis by allowing us to take advantage
of theorems proven about said optimization problems. Whether these optimization problems can be solved
efficiently also impacts how efficiently various scheduler variants can be implemented.

Optimization problems AP and MVM, discussed below, take as input bipartite graphs. Because, when
we reference these optimization problems, the nodes of these bipartite graphs will correspond with tasks and

processors, we also denote these node sets as 7 and 7 with respective sizes n and m.

Assignment Problem (AP). An AP(7, 7, P) instance with profit matrix P € R™*™ solves for

max Z Z Di,j * Ti,; such that 2.1
TiET T;ET
Vrier: Y m; <10 (2.2)
T;ET
Vrjem: Y ;<10 (2.3)
T ET

24

Vrmer:Vrnjem:z; € {0,1}. (2.4)

In general, AP instances are used to match workers (7) to jobs—jobs in the general sense, not real-time
jobs—(mr) such that each worker works on at most one job (2.2) and each job is worked on by at most one
worker (2.3). z; ; = 1 holds if the i worker works on the jth job and z; ; = 0 holds otherwise. Element p; ;
of P represents the profit generated from the i worker completing the 5™ job. Constraint (2.4) forces the
decision variables z; ; to be binary.

Despite being expressed as an integer linear program (ILP), an AP instance can be solved in polynomial
time using an algorithm such as the Hungarian method (Edmonds and Karp, 1972), though such algorithms
exceed quadratic time complexity. An AP instance can be solved more efficiently by leveraging the solution

of a smaller instance. Formally, if a solution for instance AP(7, 7, P) is known, then the incremental AP

instance
P1,m+1
P2,m+1
P
AP| 71U {mps1}, 7 U{mms1},
pn,m—I—l
|:pn+1,1 Pn+1,2 --- Pn+lm Dn41,m+1

can be solved in O (max {n, m}2> time (Toroslu and Ugoluk, 2007). The algorithm presented by Toroslu
and Ugoluk for an incremental AP instance is conceptually similar to a single iteration of the Hungarian
method.

The following theorem about AP instances will be used in the analysis in Chapter 3.

> Theorem 2.1 (Theorem 3.2.1 by Matousek and Gértner (2007)). An optimal solution of an AP
instance remains optimal even if (2.4) is relaxed to z; ; > 0, i.e., the integer constraint is relaxed to a

non-negativity constraint. <

Maximum Vertex-Weighted Matching (MVM). Discussing MVM instances requires the following defini-

tions from graph theory.

25

T1 T2 T3 T4 T1 T2 T3 T4

(a) Matching with augmenting path. (b) Maximal matching.

Figure 2.5: Matching example.

V Definition 2.22. A matching M in a graph is a subset of edges in the graph such that no edges share a

common vertex. yAN

V Definition 2.23. A matching M is maximal if any other matching on the graph matches equal or

fewer vertices. AN

V Definition 2.24. An alternating path is a path in a graph with matching M such that edges in the path

alternate between being not in and in M. A

V Definition 2.25. An augmenting path is an alternating path that begins and ends with unmatched

vertices. AN

v Example 2.5. Consider the affinity graph illustrated in Figure 2.5. Figure 2.5a illustrates matching
M; = {(72,71), (74, 72)}. Path (71,71, 72, T2, T4, m3) is an alternating path because (71,m1) & M,
(12,m1) € My, (13, m2) & My, (14, 72) € My, (74, 73) ¢ M. This alternating path is an augmenting
path because it begins with 71 such that (71, 71) ¢ M and ends with 73 such that (74, 73) & Mj.

The matching My = {(71,m1), (72, 72) , (74, 73)} that arises from inverting edges in the augmenting
path is illustrated in Figure 2.5b.

Matching M is maximal because no other matching can pair more vertices than M. This can
be seen in Figure 2.5b in that all three processors are already matched. Matching M is not maximal

because My, matches more vertices. A

V Remark 1. Consider two matchings M and My such that My arises from inverting an augmenting

path in Ml;. Any task 7; or processor 7; matched in matching M is also matched in M. A

26

Remark 1 can be observed in Figure 2.5.

— —
An MVM (7‘, w, P, E> instance with profit vector 1y € R™ and edge set E C 7 x 7 solves for

max Z P; Z ; j such that (2.5
TET (7,m;)€EE
V1, € T Z 7 <1 (2.6)
T;ET
Vrjem: Y m; <1 2.7)
TiET

VreT: mjem: ;i €{0,1}.

MVM is a special case of AP where p; j = 1; if (7;,7;) € E and p; ; = 0 otherwise. In the language of
workers and jobs, the profit yielded for completing any job depends only on the corresponding worker, but
each worker can only complete certain jobs.

Note that the binary matrix X that solves an AP or MVM instance is an alternative representation of a
matching M such that 2; ; = 1 when edge (7, 7;) € M and z; ; = 0 when edge (7;, 7;) ¢ M. Constraints
(2.2) and (2.6) prevent any task from being matched to more than one processor and constraints (2.3) and

(2.7) prevent any processor from being matched to more than one task.

v Example 2.6. Consider the matchings illustrated in Figure 2.5. Matrices

000 1 0 0

1 0 0 010
X1 = and Xy =

0 0 0 0 0 0

010 0 01

are alternative representations of matching M in Figure 2.5a and My in Figure 2.5b, respectively. A

V Remark 2. A matching that optimally solves an MVM instance contains no augmenting paths

beginning with a task 7; with ¢; > 0. A

27

(a) Configuration X, (b) Configuration X @),

Figure 2.6: Non-canonical and canonical configurations. (In this and in later affinity graphs, faster processors
have larger sizes.)

The remark follows from Remark 1. Otherwise, if an augmenting path beginning with some task 7; exists,
the objective function value of the MVM instance (see (2.5)) can be increased by); using the matching that
arises from inverting along the augmenting path.

The ensuing theorem relates augmenting paths with maximal matchings.

> Theorem 2.2 (Theorem 1 by Berge (1957)). A matching M of a graph is maximal if and only if

there is no augmenting path for M in the graph. N
Remark 2 and Theorem 2.2 imply that the optimal solution of any MVM instance is a maximal matching.
This fact will be used in the analysis in Chapter 3 on systems with affinities.

Configurations. Any configuration can be represented as a binary matrix X satisfying (2.2) and (2.3) (or
equivalently, satisfying (2.6) and (2.7)) or its corresponding matching. For example, X; in Example 2.6
represents a configuration where task 7o is scheduled on processor 7r; and task 74 is scheduled on processor
mo (recall Figure 2.5a). Not every X satisfying (2.2) and (2.3) represents a valid configuration at every time
instant. For example, at some time ¢, we may have z; ; = 1 while 7; ¢ 74y (%), i.e., task 7; is not ready at time

t. We call matrix X canonical at time ¢ if it corresponds to a valid configuration.
V Definition 2.26. Matrix X € R"*™ is canonical at time t if, for any task 7; € 7,
* 7; is matched in X to a processor only if 7; is ready at ¢, i.e., 7; ¢ Trdy(t) =Vrjem: x,;=0.

* and 7; is not matched to a processor it does not have affinity for, i.e., 7; ¢ o; = z; ; = 0. A

28

v Example 2.7. Consider a system of four tasks and five CPUs with affinities as illustrated in Figure 2.6.

Suppose that at some time ¢, we have 7yay(t) = {71, 72, 73}. Consider the configurations

00100 00000
< _ [0 1000 g 01000
00010 00010
00001 00000

Configuration X(!) (Figure 2.6a) is not canonical at time ¢ because task 74 ¢ Ty () is matched

with processor 75 (i.e., acfg = 1) and because task 77 is matched to processor 73 ¢ a1 (i.e., x1(13) =1

and 71 and 73 are not connected by an edge in the affinity graph in Figure 2.6a). Configuration X (?)

(Figure 2.6b) is a duplicate of X (1) that is made canonical at ¢ by setting x4(25) =0and $1(23) = 0. A

Recall from the discussion at the beginning of Section 2.3 that some scheduler variants that will be

discussed in this dissertation are defined as choosing a configuration that corresponds to some optimal

solution of an MVM or AP instance at every time instant. Keep in mind that, for such scheduler variants

to be well-defined, we must demonstrate that there always exists an optimal solution that is canonical, as

otherwise our scheduler variant may be required to either schedule non-ready tasks or violate tasks’ affinities.

Going forward, whenever a matrix X is referred to as a configuration at some time ¢, interpret this to

mean that X is canonical at ¢.

2.4 Related Work

Much of the related work referenced by our analysis pertains to feasibility.

V Definition 2.27. A task system is HRT-feasible on a considered multiprocessor if there exists some

schedule such that each job completes by its deadline. A

V Definition 2.28. A task system is SRT-feasible on a considered multiprocessor if there exists some

schedule such that the response time of each job is bounded by some constant. A

Note that the feasibility conditions presented in the following subsections consider HRT-feasibility under

implicit deadlines. Under all the multiprocessor models considered in this dissertation, HRT-feasibility with

29

implicit deadlines and SRT-feasibility are equivalent. This equivalence is formalized in Appendix A. Note
that, because the two notions of feasibility are equivalent, we do not include the prefixes ‘HRT’ or ‘SRT’
when discussing feasibility.

Feasibility is relevant to proving that a scheduler is SRT-optimal.

V Definition 2.29. A scheduler is SRT-optimal on a considered multiprocessor if it can guarantee

bounded response times for any feasible task system on said multiprocessor. A

When proving that a scheduler is SRT-optimal, we will assume that the task system satisfies the corre-

sponding multiprocessor’s feasibility condition.

2.4.1 Work under IDENTICAL

A majority of SRT analysis of EDF considers IDENTICAL multiprocessors. The feasibility condition
under IDENTICAL is as follows.

> IDENTICAL-Feasibility (Srinivasan and Anderson, 2006). Task system 7 is feasible if and only if
U(t) <m, andVr; € 7: u; < 1.0. N

Devi and Anderson (2008) originally proved that for any sporadic IDENTICAL-Feasible system under

EDF, task 7; has response time at most

m—1
O — O
+Ek_1 %] []+

Ti m—1
m— Y sy U

C;. (2.8)

Expression (2.8) is O (m -C [1]) when tasks are heavy (i.e., many tasks 7; have u; ~ 1.0), despite observed
response times for synthetically generated task systems being O (Tm +C [1]) (Devi and Anderson, 2008).
The response-time bound (2.8) is proven inductively: for a job of interest 7; ;, assuming every job with earlier
(and equal with favored tie breaking) deadline than d; ; has response time at most that in (2.8), then the
response time of 7; ; is also at most that in (2.8).

Additionally, Devi and Anderson proved a slightly higher response-time bound for sporadic IDENTICAL-
Feasible systems where jobs of tasks are non-preemptive (i.e., jobs cannot be preempted or migrated once

they begin executing on a processor). Non-preemptivity is valuable for purposes including critical sections,

30

synchronization, and reducing execution costs (due to reduced context-switch overhead). As such, the proof
by Devi and Anderson raised the question of whether EDF retains SRT-optimality with non-preemptive jobs
on heterogeneous multiprocessors.

Leontyev and Anderson (2007) extended the result by Devi and Anderson by showing that the class of
WG schedulers has bounded response times for any sporadic IDENTICAL-Feasible system.* Leontyev and
Anderson (2007) further observed that, under IDENTICAL and without early releasing, any non-preemptive
WC scheduler can itself be abstracted as a fully-preemptive WC scheduler (with increased ¢;). Setting
ppi j(t) < a;; — max,, e, {¢1} once job 7; ; is scheduled implies that any newly released job has lower
priority than job 7; ;, thus, job 7; ; cannot be preempted.

Orthogonal to the work by Leontyev and Anderson, which expanded the class of SRT-optimal schedulers,
has been work to reduce the response-time bound (2.8) by Devi and Anderson. Erickson et al. (2010)
developed an analytical technique they called compliant-vector analysis (CVA). At a high level, instead
of assuming the bound in (2.8), CVA performs induction assuming a similar bound where the fractional
term in (2.8) is allowed to be task-dependent. CVA was later supplemented with the WC Fair-Lateness
scheduler (Erickson and Anderson, 2012) that uses linear programming to identify optimal relative priority
points (i.e., pp; j(t) = a;; + y; for some task-dependent offset y;) for reducing maximum or average
maximum response times bounds.> CVA with Fair-Lateness reduces analytical response-time bounds from
that in (2.8), but bounds remain in the same order of magnitude (i.e., O (m -C [1])).

The state-of-the-art response-time bounds for EDF under IDENTICAL were proven by Valente (2016).
These bounds are fairly complex, containing several instances of the max function whose arguments are the
subsets of 7, which number exponential in n. There is no known polynomial-time algorithm for computing
these bounds. These bounds are roughly logarithmic with m. A more detailed description of the asymptotic
behavior is difficult to derive due to the complexity of the bounds.

Many works have proven lower response-time bounds by making additional assumptions about the
task model. Ahmed and Anderson (2021) considered synchronous periodic pseudo-harmonic task systems.

Pseudo-harmonic systems are such that the least common multiple of all periods is equivalent to the largest

“Note that the definition of a WC scheduler used by Leontyev and Anderson is differently parameterized than
Definition 2.20. Unlike Definition 2.20, which uses the single parameter ¢, Leontyev and Anderson define unique
per-task ¢); € R>g and ¢; € R>¢ such that pp; ;(t) € [a;; — i, dNi,j + 1;]. Any scheduler that is WC under one
definition is also WC under the other.

Note that Fair-Lateness schedulers actually optimize for lateness bounds, max.,c, max;jen {fi ; — d; j}, instead of
response-time bounds. The two bounds are roughly proportional.

31

period T'(;j. Under this restricted task model, Ahmed and Anderson were able to prove exact O(7T'|;)) response-
time bounds that take pseudo-polynomial time to compute. These bounds concern EDF-like schedulers, a
subclass of WC that requires pp; ;(t) to be constant for each job 7; ;. Recently, Buzzega et al. (2023) further
restricted the task model to synchronous periodic uniform-instance tasks (not to be confused with UNIFORM
multiprocessors). Uniform-instance tasks are such that each task 7; has equivalent C'; and T, i.e., C; = C
and T'; = T for some C and T'. For any such task system, it was proven that any response time is at most
T+C.

An alternative method of reducing response-time bounds has been to introduce intra-task parallelism to the
task model. Under the no-precedence-constraints (NPC)-sporadic task model (named by Yang and Anderson
(2014)), the ready time of any job 7; ; is allowed to precede the completion time of job 7; ;1 (i.e., unlike
Definition 2.11, it is only required that rdy; ; < a; ; under early releasing and rdy; ; = a; ; if not). Erickson
and Anderson (2011) proved that for implicit-deadline NPC-sporadic tasks, for any IDENTICAL-Feasible
system, the response time of any job of any task 7; is O (T i+ Cp+ Ci). Note that IDENTICAL-Feasible

for NPC-sporadic tasks only requires that u; < m. Itis no longer required that for any task 7; we

TiETi
have u; < 1.0. Amert et al. (2019) defined the restricted-parallelism (RP)-sporadic task model such that
NPC-sporadic and standard sporadic task models are special cases. RP-sporadic tasks are parameterized

by a per-task parallelism level that varies from one (standard sporadic task) to m (NPC-sporadic task). The

re-addition of restrictions on parallelism, however, results in response-time bounds again being O (m -C [1]).

2.4.2 Work under IDENTICAL/ARBITRARY

There has not been much focus on SRT analysis under ARBITRARY affinities. A well-studied special
case is semi-PARTITIONED schedulers, which are slightly distinct from the notion of SEMI-PARTITIONED
(see Chapter 1) in this dissertation. Semi-PARTITIONED schedulers set affinities, usually to reduce
migrations. Such schedulers usually begin with an offline partitioning step that assigns most tasks affinity for
a single processor and the few (usually O (m)) remaining tasks affinity for multiple (usually two) processors.
Semi-PARTITIONED schedulers embodying this approach for SRT include EDF-0s (Anderson et al., 2014)
and EDF-sc® (Hobbs et al., 2021), which are both SRT-optimal (with the corresponding feasibility condition
being IDENTICAL-Feasible). Though named after and derived from EDF, we do not consider such schedulers

®Note that offline partitioning is optional for EDF-sc.

32

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

(a) Weak-APA-EDF. (b) Strong-APA-EDF.

Figure 2.7: Weak-APA-EDF versus Strong-APA-EDF.

as EDF variants because they usually employ some level of hierarchical scheduling (e.g., migrating tasks
have statically higher priority than fixed tasks, regardless of deadline). Such semi-PARTITIONED works also
differ from this dissertation because we assume affinities are specified outside of the scheduler. We assume
that at most, the scheduler can require that affinities have certain structure (such as SEMI-PARTITIONED or
SEMI-CLUSTERED), but has no say on the affinities of specific tasks.

The feasibility condition under IDENTICAL/ARBITRARY is as follows.

> IDENTICAL/ARBITRARY-Feasibility (Baruah and Brandenburg, 2013). Task system 7 is feasi-

ble if and only if V7; € 7: u; < 1.0 and

Vrier: Y x,; =10, and (2.9)
7r]'€ai
V€ m: Z %5 - up < 1.0. (2.10)
T, ET
for some X € Rgg". N

Baruah and Brandenburg (2013) and Voronov and Anderson (2018) presented optimal table-driven
schedulers for any IDENTICAL/ARBITRARY-Feasible task systems.

Two EDF variants for IDENTICAL/ARBITRARY targeting HRT that are of relevance to this dissertation
are Strong-APA-EDF and Weak-APA-EDF (Cerqueira et al., 2014). Defining these variants requires the

concept of shifting.

V Definition 2.30. Shifting (Cerqueira et al., 2014) is the series of migrations that results from inverting

each edge in an alternating path originating with an unmatched (i.e., unscheduled) task. A

33

> Weak-APA-EDF (Cerqueira et al., 2014). At any time, the chosen configuration is such that no
unscheduled ready task 7; should have affinity for a processor that schedules either no job or a job 7 ¢

such that d;(t) < dj . q

v Example 2.8. Consider a system of n = 5 tasks and m = 3 processors with affinities as illustrated in
the graphs of Figure 2.7. Suppose that at some time ¢, all tasks have ready jobs such that da(t) < dy(t) <
ds(t) < di(t) < ds(t). Consider the configuration illustrated in Figure 2.7a. Because unscheduled task
75 (resp., 73) cannot preempt 74 (resp., 72) on w3 (resp., 7o) as dyq(t) < ds(t) (resp., da(t) < ds(t)), this
configuration is possible at time ¢ under Weak-APA-EDF. Likewise, because tasks 71 and 73 cannot

preempt higher-priority tasks in Figure 2.7b, this configuration is also possible under Weak-APA-EDF.A

> Strong-APA-EDF (Cerqueira et al., 2014). At any time, the chosen configuration is such that no
unscheduled ready task 7; has an alternating path beginning at 7; and ending with either a processor that

schedules no job or a job 7, ¢ such that d;(t) < dj . N

v Example 2.9. Recall the system detailed in Example 2.8. Observe in Figure 2.7a that an alternating
path {75, 73, 74, T2, T2, T1, 71 } can be traced from the higher-priority (job of) 75 to the lower-priority (job
of) 7. Thus, the configuration in Figure 2.7a is impossible under Strong-APA-EDF. By inverting the
edges in this path (i.e., shifting), one arrives at Figure 2.7b. Because no shifts can result in the scheduling

of a higher-priority task in Figure 2.7b, this configuration is possible under Strong-APA-EDF. A

Weak-APA-EDF is of significance because it describes the behavior of most EDF implementations

under affinities, such as SCHED_DEADLINE.” Strong-APA-EDF is of significance because we will prove

that it is SRT-optimal under IDENTICAL/ARBITRARY in Chapter 3.

Cerqueira et al. (2014) demonstrated that computing configurations under Strong-APA-EDF can be

done via solving MVM instances where edge set E reflects the affinity graph. This results in the alternative

definition of Strong-APA-EDF below.

> Strong-APA-EDF—MVM definition (Cerqueira et al., 2014). At any time ¢, the chosen configu-

_>
ration corresponds with an optimal solution of MVM (T, T, Y, IE) such that

E={(r,7mj): € Tand 7 € 0;}, 2.11)

"With some exceptions, detailed in Chapter 4.

34

i.e., the edges reflect tasks’ affinities,

VT €T T € Tray(t) = 0y > 0and 73 & Tray(t) = ¢ = 0, (2.12)

i.e., ready tasks have positive weight and non-ready tasks have 0 weight, and

VTi,Tj S Trdy(t) : dl‘(t) < dj(t) = > wj, (2.13)

i.e., tasks with earlier deadlines have higher weight. N

Note that for any time ¢, there is always a canonical configuration that optimally solves the corresponding
MVM instance because any optimal solution X can be transformed into a canonical configuration without
changing the objective function value. Suppose we have task 7; and processor 7; such that 7; is non-ready
and z; ; = 1. By (2.12), a task 7; has ¢; = 0. Because z; ; is multiplied by 1; in (2.5), setting z; ; = 0
does not change the objective function value. Likewise, suppose we have task 7; and processor 7; such that
7; ¢ oy and z;; = 1. By (2.11), (73, 7;) ¢ E. Because z; ; is only present in (2.5) if (7;, 7;) € E, setting
7; ; = 0 does not change the objective function value. By Definition 2.26, X is canonical after setting each
such z; ; to 0.

For such MVM instances corresponding with Strong-APA-EDF, outside of (2.13), Cerqueira et al.
(2014) did not specify how 1); should be specified for task 7; (their work primarily considered Weak APA and
Strong APA variants of fixed-priority schedulers, under which 1; was defined as task 7;’s priority level).

They further proved that under Strong-APA-EDF, a single job 7; ; completion belonging to task 7;
(thus increasing d;(t) and potentially making 7; non-ready) requires at most one shift terminating with 7; (or
7;’s former processor if 7; becomes non-ready) to return to a Strong-APA-EDF configuration. Likewise, a
single job 7; ; arrival (potentially making 7; ready) requires at most one shift originating with 7;. Regardless
of whether job 7; ; completes or arrives, the required shift can be computed in O (n - m) time using a
breadth-first-search on the affinity graph (starting with task 7;). This is more efficient than solving a new

MVM instance from scratch.

35

2.4.3 Work under UNIFORM

Prior work has established the SRT-optimality of EDF under UNIFORM. The feasibility condition under
UNIFORM is as follows.

> UNIFORM-Feasbility (Funk et al., 2001). Task system 7 is feasible if and only if

k min{m,k}
vhe (1,2, Yug < Y s, .
i=1 j=1

Yang and Anderson (2015) initially disproved that any sporadic UNIFORM-Feasible task system with
non-preemptive jobs has bounded response times via a counterexample. In fact, this counterexample showed
that any work-conserving scheduler (i.e., one that never leaves a task unscheduled when processors exists that
are not executing other jobs) may have unbounded response times, even if the system is UNIFORM-Feasible.
This suggests that the SRT-optimality of non-preemptive EDF is unique to IDENTICAL.

Yang and Anderson (2017) went on to prove that under an EDF variant that we denote as Ufm-EDF, for
any sporadic UNIFORM-Feasible task system with fully-preemptive jobs, task 7; has response time at most

(/)™ (0 = m+1) Cpy + %Cm
T; + i)

Uy

This response-time bound is exponential in m. Ufm-EDF is defined as follows.

> Ufm-EDF (Yang and Anderson, 2017). At any time ¢, the ready task with earliest deadline is sched-
uled on the fastest processor, the ready task with second earliest deadline on the second fastest processor,

and so on until all ready tasks are scheduled or all processors are scheduled upon. N

Yang and Anderson (2014) proved response-time bounds for NPC-sporadic tasks under Ufm-EDF.

Assuming implicit deadlines, these bounds are O (@) Yang and Anderson (2014) also proved

Zﬂ-j em sp
(@) <ch[;]om> response-time bounds for any UNIFORM-Feasible NPC-sporadic task system under non-
T en

preemptive Ufm-EDF. Note that for NPC-sporadic tasks, due to the allowance of intra-task parallelism, the

condition . u; < Zﬁjer spU) is necessary and sufficient for UNIFORM-Feasible.

36

2.4.4 Work under UNRELATED

Perhaps due to their complexity, UNRELATED multiprocessors are less frequently considered in the

real-time literature. The feasibility condition under UNRELATED is as follows.

> UNRELATED-Feasibility (Baruah, 2004). Task system 7 is feasible if and only if

VreT: Y sptm > (2.14)
T;ET
VreT: Y m; <10, (2.15)
T;ET
Vrjem: Y a4 < 10, (2.16)
T ET
for some X € RYj". N

Though the author is unaware of prior works explicitly considering SRT analysis under UNRELATED
multiprocessors, existing table-driven schedulers targeting HRT can be made SRT by increasing table
iteration lengths. Baruah (2004), as part of proving the above UNRELATED-Feasible condition, presented an
algorithm for generating a table-driven schedule that meets all deadlines for any UNRELATED-Feasible task
system. Chwa et al. (2015) presented a table generation algorithm for 2-type UNRELATED multiprocessors
with lower time complexity.

Instead of allowing tasks to migrate freely, the more common approach for real-time scheduling on
UNRELATED multiprocessors seems to be enforcing either PARTITIONED affinities or, for a k-type
multiprocessor, CLUSTERED affinities with a cluster corresponding to each type. This reduces analytical
complexity because under PARTITIONED affinities, each processor can be analyzed as if it were an
independent uniprocessor (e.g., for sporadic task 7; with affinity for a single processor 7, we can rescale C;
to C; < C;/sp®I to make 7 appear as a unit-speed processor). Likewise, under CLUSTERED affinities
with a cluster per type, each cluster can be analyzed as if it were an independent IDENTICAL multiprocessor.
The problem of interest then becomes how to intelligently partition the set of tasks among the processors
or clusters, which becomes conceptually equivalent to various flavors of bin-packing. As a result, this
partitioning problem is typically solved using heuristics or approximation algorithms. Baruah et al. (2016)
presented several ILPs for partitioning tasks for PARTITIONED affinities, after which tasks are scheduled

as in uniprocessor EDF. Because bins are rarely completely filled in bin-packing, the analogue for the task

37

partitioning problem is that some processors will inevitably be underloaded. This wastes processing capacity.
As such, this lost processing capacity means the partitioning approach cannot yield optimality (i.e., timing

guarantees can be met for any UNRELATED-Feasible system).

2.5 Chapter Summary

In this chapter, we covered the sporadic task model and CBS. We defined the WC class of schedulers.

We reviewed relevant optimization problems and related work.

38

CHAPTER 3: RESPONSE-TIME BOUNDS'

In this chapter, we prove response-time bounds for WC schedulers on various multiprocessor models.

3.1 Deviation

This section proves properties about a function we call deviation, a measure of how behind a task’s
execution is at a specific time instant. We abstract the state of the task system using deviation. This is because
deviation is (mostly) continuous, which makes deviation simpler to reason about than the unabstracted task

system state.

Deviation and lag. Deviation is similar to the well-known concept of lag, but is more closely tied to
deadlines than lag when arrivals are sporadic and jobs do not execute to their worst-case execution times.
We briefly discuss the issues with lag, which was used in prior work for proving the SRT-optimality of
EDF on IDENTICAL (Devi and Anderson, 2008) and UNIFORM (Yang and Anderson, 2017), that make
lag unsuitable for our analysis. Lag compares the cumulative execution provided by an ideal schedule and
platform against the execution provided by the scheduler and platform of interest. The ideal platform is a

UNIFORM platform of n processors where processor 7; has speed u;. The ideal schedule schedules each job

!Contents of this chapter previously appeared in the following papers:

Stephen Tang, Sergey Voronov, and James H. Anderson. GEDF tardiness: Open problems involving uniform
multiprocessors and affinity masks resolved. In 31st Euromicro Conference on Real-Time Systems, volume 133, pages
13:1-13:21, 2019.

Stephen Tang and James H. Anderson. Towards practical multiprocessor EDF with affinities. In 4/st IEEE Real-Time
Systems Symposium, pages 89—101, 2020.

Stephen Tang, Sergey Voronov, and James H. Anderson. Extending EDF for soft real-time scheduling on unrelated
multiprocessors. In 2021 IEEE Real-Time Systems Symposium, pages 253-265, 2021b.

39

T;,; On processor 7; starting from time a; ;. Job 7; ; completes in the ideal schedule at time

CZM]
fig=aij+- >

%

<o+ G 3.1)

Usg

=ai; + T;.

By (3.1) and because a; j11 > a;; + T, each processor 7; schedules at most one job at a time. By (3.1) and

because Czi,j = a;; + T, under implicit deadlines, each job 7; ; finishes by its deadline.

V Definition 3.1. Let .A;(Z,t) denote the cumulative execution provided in schedule S by time ¢ to task

7;. The lag of task 7; at time ¢ under schedule S is lag,;(t) £ A;(Z,t) — Ai(S,). A

Lag is a convenient abstraction for analysis because it is continuous (this follows from the cumulative
execution function .A;(Z, t) being continuous). Additionally, assuming the task system is periodic, lag;(t) is
useful because ‘22 Z(t) is within T; of t — d; (t) for any time ¢.? This is demonstrated in Example 3.1 below.

We refer the reader to Lemma 2 by Yang and Anderson (2017) for a formal proof.

v Example 3.1. Consider the schedule S illustrated in Figure 3.1a of task 71 with (C'1,T1) = (2.0,4.0).
In Figure 3.1a, task 7 is periodic. A plot of lag 1() and t — d1() is illustrated in Figure 3.1b. For example,
at time 10.0, the ideal schedule Z has completed execution of jobs 71 1, 71 2, and half of job 71 3. Thus,
Ai1(Z,10.0) = 2.5C1 = 5.0. The actual schedule S has not executed any jobs of 71, so A; (S, 10.0) = 0.

Then laglﬁo'o) = 5'8_30 = 10.0, as illustrated in Figure 3.1b.

lagl(l[) 0) .

Observe from Figure 3.1b that is always within 7'y = 4.0 units from ¢ — dy (t). A

This relationship between lag,(t) and ¢ — d;(t) is useful for two reasons. First, by comparing lag;(t)
and lag,,(t) for tasks 7; and 7, inferences can be made about which has the earlier implicit deadline. Second,
an upper bound on lag,(t) can be used to upper bound t — d;(t), which, because d;(t) = a;(t) + T}, can be
used to upper bound ¢ — a;(t). An upper bound on ¢ — a;(t) is an upper bound on the response time of any
job of task 7;, which is the goal of SRT analysis.

The relationship between lag,(t) and t — d;(t) only holds assuming that the task system is periodic, as

shown in Example 3.2.

“Note that, for this to be true about lag,(t), it must also be assumed that each job 7; ; has ¢; ; = C;.

40

0 2 4 6 8 10 12 14
Time

(a) Schedule of a periodic system.

" ! i

16

_5 T T T T T T T T T T T T T T

0 2 4 6 8 10 12 14
Time

(b) Plot of % and t — dy(t).

- . lagi(®) s
Figure 3.1: angl within 7'y of t — d; (%).

41

16

" | T

0 2 4 6 8 10 12 14 16
Time
(a) Schedule of a sporadic system.
9 lag, (t)
Uy
t—d(t)
7 -
5 -
3 -
1 -
—1 -
—3 -
_5 T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16

Time
(b) Plot of % and t — dy(t).

. . lag, () :
Figure 3.2: angl outside of T'; from t — d; (¢).

42

T1

6 8 10 0 2 4 6 8 10
T l T T l T
6 8 10 6 8 10
7_3 Lm
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
(a) Cost ¢y 1 s 2.0. (b) Cost ¢y ,1 is 1.0.

Figure 3.3: Reducing ¢y 1 increases job 73 1’s response time.

v Example 3.2. Consider the schedule § illustrated in Figure 3.2a of the same task 7, discussed in

Example 3.1. Unlike in Example 3.1, in Figure 3.2a, task 7 is sporadic. Note how ¢ — dy (t) changes

drastically at time 12.0 due to the large separation time between a1 1 = 0 and a1 2 = 12. Immediately
lag, (t)

prior to time 12.0, the value of ¢ — ch(t) approaches 8.0 and the value of =21~ approaches 0. The

u1

difference between “21® and ¢ — d, (t)is 8.0 > 4.0 =1T1. A

u1

A technique for extending response-time bounds derived assuming periodic arrivals to sporadic systems
without such assumptions was presented in Appendix A by Yang and Anderson (2017). This technique relied
on the fact that EDF is a predictable scheduler, i.e., reducing the execution cost of any job never increases
the response time of any job in the schedule. The broader class of WC schedulers, which are considered by
this dissertation, are not predictable (see Example 3.3 below). Thus, the same technique is not applicable to

this dissertation.

v Example 3.3. Assume three tasks executing on one CPU. Consider a WC scheduler such that
pp1,1(t) = 6.0, pp21(t) = 7.0, and pp31(t) = 8.0 until job 73, executes for 1.0 time units, af-
ter which pps1(t) = 5.0. Consider the schedule of this system illustrated in Figure 3.3a. We have
pp11(t) < pp2.1(t) < ppsi(t). Thus, job 711 executes, then job 79 executes, and then job 731

executes.

43

Figure 3.3b illustrates the same system as Figure 3.3a with the exception that c; ; is 1.0 instead of
2.0. When job 71,1 completes at time 1.0, job 72 1 has not arrived. Thus, job 731 begins executing at
time 1.0. After job 73 ; executes for 1.0 time units at time 2.0, pp3 1(¢) changes to 5.0. Then for ¢ > 2.0,
pp3.1(t) < pp2,1(t). Thus, job 72 1 does not execute until after job 73 ; completes. The response time of

job 791 is 3.0, compared to its response time of 1.0 in Figure 3.3a. A

Deviation is designed to remain proportional to ¢t — d;(¢) without any assumptions. The definition of

deviation relies on that of virtual time.

V Definition 3.2. The virtual time of task 7; is

(t) — rem;(t)

vti(t) £ ag(t) + T~ o) A

Broadly speaking, the virtual time vt;(t) interpolates between the arrival time a;(¢) and implicit deadline
di(t) = a;(t) + T; of the current job of task 7;. This interpolation is closer to a;(t) when the current
job has barely executed (i.e., rem;(t) ~ ¢;(t)) and approaches d; (t) when the job nears completion (i.e.,
rem;(t) ~ 0). We will formally prove in Lemma 3.2 that d;(t) ~ vt;(t).

Instead of considering an ideal schedule, we define deviation by directly subtracting vt;(¢) from the time
¢ and multiplying by a leading constant. Because d;(t) & vt;(t), this definition satisfies the requirement that

deviation is roughly proportional to ¢t — d;(t), which was the property of lag used by Yang and Anderson

(2017) when analyzing the SRT-optimality of Ufm-EDF.

v Definition 3.3. The deviation® of task 7; at time ¢ is

dev;(t) = V(- ohlD) £ 2 okl . A

0 t < vts(t)

The setting of deviation to O when it would otherwise be negative and the leading constant of ,/u;

are included in the definition to maintain certain properties that become relevant in Section 3.5.2. Forcing

3Note that the definitions of virtual time vt;(t) and deviation dev;(t) in this dissertation are slightly different from their
definitions in the author’s prior works (Tang and Anderson, 2020; Tang et al., 2021b). Over time these definitions have
been refined to reduce the number of cases that must be considered in the analysis.

44

dev;(t) > 0 will allow us to multiply certain inequalities without reversing the direction of these inequalities.

The leading ,/u; simplifies later equations and derivations.*

A disadvantage of reasoning about deviation instead of lag is that dev;(t) is not everywhere continuous
with ¢. This is because vt;(t) is not continuous. Recall how vt;(t) interpolates between a;(t) and d;(t). If
the current job of task 7; at time ¢ is job 7; ; and a; j+1 > a;; + T';, when job 7; ; completes, vt;(t) will
discontinuously increase from time cfi, j = a;j +T'; to time a; j11. Dealing with these discontinuities is a
prominent source of complexity in the analysis presented in this chapter.

We now formally prove the properties of virtual time and deviation used in the remainder of this chapter.

3.1.1 Scheduling

Lemmas proven in this subsection relate a task’s deviation to whether said task is ready and to said task’s

priority point.
> Lemma 3.1. For task 7; and time ¢, if we have dev;(t) > 0, then task 7; is ready at ¢. q

Proof. Let 7; ; denote the current job of task 7; at time ¢. We have

t > {dev;(t) > 0 and Definition 3.3}
vt;(t)
= {Definition 3.2}
a;(t) + 7, %) ;(T)mi(t)
> {remi(t) < ci(t)}
a;(t)
= {Definition 2.10}
a; j
> {Definition 2.11}

Tdyi,j-

4Technically, Equation (3.55) requires deviation to remain contained within a hyper-sphere, and eliminating the . /;
term changes this to a hyper-ellipsoid. A hyper-sphere is more symmetrical and this simplifies some of our analysis.

45

By Definition 2.11, task 7; is ready at time ¢. g

> Lemma 3.2. For any task 7;, we have vt;(t) < d;(t) < vt;(t) + T5. <

Proof. By Definition 3.2, we have vt;(t) = a;(t) + TZ%W Because rem;(t) > 0 (recall that,

by Definition 2.10, the current job is incomplete by definition, thus, the remaining execution of the
current job rem;(t) cannot be 0) and rem;(t) < ¢;(t), we have a;(t) < vt;(t) < a;(t) + T';. Because,
by Definition 2.5, d;(t) = a;(t) + T, we have d;(t) — T; < vt;(t) < d;(t). Rearrangement yields the

lemma statement. O

> Lemma 3.3. Consider an arbitrary WC scheduler. If at time ¢, we have de\;%t) > d%t) + Ty + 29,
then ppe(t) < ppe(?). <
Proof. We start by proving the following claim.
» Claim 3.3.1. ¢ > vt.(t). <
Proof. We have
0 < {T'y) > 0 and, by Definition 2.20, ¢ > 0}
T[l] +2¢
< {By Definition 3.3, dev,(t) > 0}
devy(t)
T 2
NG + Ty + 20
< {Lemma statement }
dev,(t)
N
Thus, we have dev.(t) > 0. The claim follows from Definition 3.3. [

46

Claim 3.3.1 is used in the following derivation to show that pp.(t) < pp,(t), which is our proof

obligation.

ppe(t) < {Definition 2.20}
Je(t) + ¢

< {Lemma 3.2}

vte(t) + Ty + ¢
= —(t—vte(t)) +t+ T+ ¢

= {Claim 3.3.1 and Definition 3.3}

dev,(t)
— s +t+Ty+)
< {Lemma statement }
devy(t)
- — Ty — 20+t + Ty +
Ve (1] — 2¢ nt+e
devy(t)
- _ — b+t
vie ©
. devy(t) }
< < By Definition 3.3, ——= >t — vty(¢
< { y N o(t)
— (t—vte(t) — o+t
= vty(t) — ¢
< {Lemma 3.2}
dy(t) = ¢
< {Definition 2.20}
ppe(t) O

3.1.2 Response Times

Lemmas proven in this subsection relate a task’s deviation to its response times.

47

> Lemma 3.4. If, for some ¢ > 0, for all time instants ¢, we have dev;(t) < ¢ - \/u;, then the response

time of any job 7; ; is at most T'; + £. <

Proof. We prove the contrapositive: if the response time of any job 7; ; exceeds T'; + ¢, then for some
time instant ¢ we have dev;(t) > - \/u;. Let job 7; ; be a job with response time exceeding T'; + /, i.e.,
fij—ai; >T; + L.

Let time t* £ czm- + (. By Definition 2.5, we have t* = T'; + a; j + {. Because f; j —a; j > T; + ¥,
we have f; ; > t*, meaning job 7; ; is incomplete at time t*. Thus, either job 7; ; or an earlier job of
task 7; must be the current job of task 7; at ¢* (recall that, by Definition 2.10, the current job of a task is
the incomplete job of said task with the earliest arrival time), so d~,-(t*) < Ji, ;. Because t* = Ji,j + £,
we have t* > d;(t*) + £ = t* — vt;(t*) > d;(t*) — vt;(t*) + £. By Lemma 3.2, di(t*) > vt;(t*).

Because t* — vt;(t*) > d;(t*) — vt;(t*) + £, we have t* — vt;(t*) > £. By Definition 3.3, we have

dev;(t*) > - \/u,. O
> Lemma 3.5. For task 7; and time ¢, if 7; is inactive, then dev;(t) = 0. <

Proof. By Definition 2.13, we have that task 7; is not ready at time ¢. Let job 7; ; be task 7;’s current job.
By Definition 2.11, we have that ¢ < rdy; ;. Because rdy; ; < a; ; (also by Definition 2.11), we have

t < a; ;. Subtracting vt;(t) from both sides, we have

t — vt; (t) <aj— Uti(t)
= {Definition 2.10}
ai(t) - ’Utl'(t)

< {rem;(t) < ci(t)}
ci(t)
= {Definition 3.2}

ai(t) + TZ — Uti(t)

vti(t) — vti(t)
=0.

The lemma follows from Definition 3.3. OJ

48

3.1.3 Evolution

Lemmas proven in this subsection relate to how deviation changes over time.

> Lemma 3.6. For task 7;, time instant ¢, and € > 0, we have vt;(t + €) > vt;(t). <

Proof. Let jobs 7; ; and 7; j~ denote the current job of task 7; at times ¢ and ¢ + ¢, respectively. There

are two cases to consider.

<« Case 3.6.1. The current job of task 7; is the same at times ¢ and ¢ + ¢, i.e., j = j*. >

By Definition 2.10, we have

ai(t) = ai(t + 6) and Ci(t) = Ci(t + 6). (32)

Because 7; ; and 7; ;~ are the same job and the remaining execution required by a job does not

increase over time, we have

rem;(t + €) < rem;(t). (3.3)

Thus,

vti(t + €) = {Definition 3.2}

ci(t+€) — rem;(t + ¢€)

ait+¢) +Ti ci(t+e)
(2

= {Equation (3.2)}

ci(t) — rem;(t + ¢)
(473 (t) + Tz . (t)

> {Equation (3.3)}
' ci(t) — rem;(?)
a;(t) +T; e

= {Definition 3.2}

'Uti (t) ‘

<« Case 3.6.2. The current jobs of task 7; at times ¢ and ¢ + € are distinct, i.e., j # j*. >

49

Because the index of the current job never decreases, we have j* > j. Because the remaining cost

of the current job is at most its total cost, we have

rem;(t + €) < ¢;(t + €) and rem;(t) < ¢;(t) (3.4)

Thus,

vti(t + €) = {Definition 3.2}

ci(t+€) — rem;(t + ¢€)
ci(t+e)

ai(t+¢€) +T;
> {Equation (3.4)}
a;(t +e€)
= {Definition 2.10}
i
> {j* > j and task 7; is a sporadic task}
a;; + T
> {By Definition 2.10, ¢;(t) > 0 and rem;(t) > 0}
a;j + Tl.ii(t) ;gmz‘(t)
= {Definition 3.2}

’Uti (t) ’

For both cases, vt;(t + €) > vt;(t). O
> Lemma 3.7. For any task 7; and time ¢, there exists ¢/ > 0 such that both

7

V' e [t t+) : vt (tY) = vt (t) + (F —t) ey cspi(t) 3.5
and
VE E [t — 1) vti(tF) = byt —) + (¢ — t +) c(ltT—izp)CSpi(t —). (3.6)

50

are true. <

Proof. We consider proving (3.5) first. We select arbitrarily small ¢/ such that propositions (3.7) and
(3.8), defined below, are true.
Let job 7; ; be the current job of task 7; at time ¢. For small enough 1), because of the Non-Fluid

Assumption, job 7; ; is still the current job of task 7; throughout [¢, ¢ 4 1)). By Definition 2.10,

Ve [t 1) ai(tt) = ai(t) and () = ci(2). 3.7)

By the Non-Fluid Assumption, for small enough 1), task 7; is, over the interval [¢,¢ + 1), either
scheduled on the same processor or not scheduled on any processor. By Definition 2.21, we have

Vt* e [t,t+ 1) o espi(t*) = cspi(t). Because the current job of task 7; is 7; j over [t,t 4 1)), we have

Vt* € [t t +), rem;(t7) = rem;(t) — (t* —t) - espi(t), (3.8)

i.e., the remaining execution of the current job is decreased by the duration of execution (t* — t)
multiplied by the execution speed csp;(t).

We have
vt;(t*) = {Definition 3.2}
ci(t*) — rem; (t*)

a; (t*) +T; - (t*)
= {Equation (3.7)}
ci(t) — rem;(t¥)
a;(t) + T)
= {Equation (3.8)} (3.9)
ai(t) + T ci(t) — Temz'(t);r(t()t* —t) - cspi(t)
e —rem(t) . T
= a;(t) + TZCi—(t) +(t"—1t) Ty cspi(t)

= {Definition 3.2}

vti(t) + (" —t) Ci—(;)cspi(t).

(3.9) is (3.5), which is half of our proof obligations.

51

The reasoning for (3.6) is similar. By the Non-Fluid Assumption, for small enough ¢/, we have that
the same job 7; ; is the current job of task 7; over [t — ¢, t). Additionally, task 7; is either scheduled on
the same processor or is unscheduled over [t — 1, t). (3.6) is yielded by substituting all instances of ¢

with t — 4 in (3.7)-(3.9). O
> Lemma 3.8. For task 7; and time ¢, the left-sided limit lim_,,— vt;(¢*) is well-defined. q

Proof. Our proof obligation is to show that v¢;(t*) approaches some finite value ¢ as t* — ¢, i.e.,
HeR: Ve>0: F:0>0: Vt* € (t—0,t): |vt;(t") — | <e. (3.10)
By (3.6) of Lemma 3.7, we have

Jhp>0: Ve[t —,t) : vt (t*) = vti(t —) + (t° — (t — 1)) O(;F_iwcspi(t —). (3.11)

We consider two cases depending on the value of c¢sp;(t —). Note that, as a processor speed, this

value is non-negative.

<« Case 3.8.1. csp;(t —¢) =0. >

Let £ £ vt;(t —). Consider any € > 0. For any t* € [t — 1), t), we have

ut;(t*) — £ = {Equation (3.11)}
Wit —) + (t — (-) Tp(t —y) -t
— {espilt —) = 0}
vti(t —) +0 — ¢
— {Definition of £}
vti(t —) — vti(t —)
=0

< €.

This implies (3.10), the proof obligation. ¢

52

<« Case 3.8.2. csp;(t — 1) > 0.

Let

vti(t —) + @bicspi(t —).

£ Ci(t — w)

For any € > 0, let

(5émin{1p,e- clt—¥) }

T; - cspi(t —)

We have Vt* € (t — 0,1) :

|vt;(t*) — £] = {Equation (3.11)}

vti(t —) + (¢ —(t—l/)))ci(t_wcsm(t_w_g‘
T o P
B R O R R
= {Equation (3.12)}
(# —1) 1 copa(t —)
ci(t — 1) o
= {t" <t}
(t—t)mcsm(t—d})
< {t* >t -0}
5mcspl(t_w)

. 1/ t —
< {By Equation (3.13), 0 < e - Tzccipl(tw—)zb)}

€.
This implies (3.10), the proof obligation.
Both cases yield (3.10), the proof obligation.

The following corollary follows from Lemma 3.8 and Definition 3.3.

> Corollary 3.9. For task 7; and time ¢, the left-sided limit lim;«_,,— dev;(t*) is well-defined.

53

(3.12)

(3.13)

N

Proof.

lim dev;(t*) = {Definition 3.3}

t*—1t—

lim max {0, /u; - (t* — vt;(t"))}

tr—t—

= max
tr—t— st

{

_ maX{O,\/lTi' (lim (" — vt;(t"))
{
{

=t~

o ([an]|

— max
t*—t—

lim 0, lim /u; - (t* — vt;(t%))

lim ot;(t")

= max <0, /u; - (t - [lim wt;(t%)

t*—1—

By Lemma 3.8, this value is well-defined.

Corollary 3.9 is necessary for Lemma 3.10 to be well-defined.

> Lemma 3.10. For task 7; and time ¢, we have

Proof. We have

lim dev;(t*) > dev;(t).

t*—t—

lim dev;(t*) = {Definition 3.3}

t*—t—

lim max {0, /u; - (t* — vt;(t"))}

t*—1t—

- max{o,m- lim (t*—vti(t*))}

tr—t—

= max {0, v+ (¢~ fim o)) |

e —st—
> {Lemma 3.6}

max {0, \/u; - (t — vt;(t))}
= {Definition 3.3}

dev;(t).

54

> Lemma 3.11. For task 7; and time ¢, the right-sided limit lim«_,+ vt;(t*) = vt;(t).

Proof. By (3.5) of Lemma 3.7, there exists ¢ > 0 such that V&* € [, + 1) : vt;(t*) = vt;(t) + (t* —

t) CiTé) csp;(t). Thus,

lim vt;(t*) = lim (vti(t) +(t"—1t)

t*—tt t*—tt+

)
— oti(t) + (0) Ciz) copi(®)

= Uti(t).

The following corollary follows from Lemma 3.11 and Definition 3.3.

> Corollary 3.12. For task 7; and time ¢, the right-sided limit limy«_,,+ dev;(t*) = dev;(t).

Proof.

lim dev;(t*) = {Definition 3.3}

t*—tt

lim max {0, /u; - (t* — vt;(t*))}

t*—tt

e {07 S (LJL% t*] - [ﬁlgh Utz‘(t*):|>}

= {Lemma 3.11}
a0, /@ - (£ — ot(t))}
= {Definition 3.3}

dev;(t)

> Lemma 3.13. For any task 7; and time ¢ such that dev;(t) > 0, there exists ¢) > 0 such that

VE* € [tt+) 0 Vui - devi(tY) < Jug - devi(t) + (85 —t) - (ui — espi(t)) -

55

Proof. By Lemma 3.7, we can select ¢ > 0 small enough such that (3.5) is true. Thus, for t* €

we have

There are two cases depending on the value of /u; —

dev;(t*) =

IN

{Definition 3.3}
max {0, v/u; - (t* — vt; (%))}

{Equation (3.5)}

max {o Vs - (t* — wti(t) — (t* — 1) T cspi(t)>}

ci(t)
max {0 Vg - (= vti(t) + (¢ —t)/u; (1 - C;‘Fé)cspi(t))}

{Definition 3.3 and dev;(t) > 0}

max {0, devs(t) + (¢ — 1)/ (1 _ Cii) cspi(t)> }
{‘ciiv <= ‘1}

max {0, dev(t) + (t* — t)y/u; (1 _ o i@)}
max {0, devi(t) + (" — 1) - (0 — CSpi(t)) } .

cspi(t)

< Case3.13.1. /u; — <20 >0,

dev; (t*) < max {0, devi(t) + (£ — 1) - (T Cé‘pz‘(t)>}

f

< {devi()>0t > ¢, and\ﬁ—csf/’ﬁ>2 }

dev;(t) + (t* —1t) - (u; — CSpZ

The lemma follows from multiplying by /u;.

<« Case3.13.2. /u; — <2 <,

56

[t,t+4),

Let

dev;(t)

v~ Vi

Because ¢’ < 1), we have Vt* € [t,t +) :

it
dev;(t*) < max {0, devi(t) + (t* —t) - <\/u7 - cspu()>}
d i(t it
=" =1 <y < # = dev(t) + (t* — 1) - (-2 (,)) >0
SV Vi
G
dev(t) + (t* —t) - <\/1TZ - CSPIL()>

The lemma follows from multiplying by /u;. ¢
Either case yields the lemma. g

3.1.4 Proof Strategy

Proofs of response-time bounds for EDF variants under the multiprocessor models (UNIFORM,
IDENTICAL/ARBITRARY, and UNRELATED) considered in this dissertation all follow the same gen-
eral strategy, which we give a high-level overview of here. This strategy shows that vector d@(t) =
(devi(t), deva(t), ..., dev,(t)) remains in a bounded region of RZ, (recall that, by Definition 3.3, dev;(t) >
0) for any time ¢. This implies that, for each task 7;, we have that dev;,(t) is upper bounded for any time t.
Thus, by Lemma 3.4, the response time of any task 7; is bounded.

We describe our bounded region as the intersection of one or more inequalities. These inequalities
have form G(devi(t), deva(t), ..., dev,(t)) < B, where G is some R" — R function and [is a scalar.
For example, suppose we have T.(t) = {71, 72} over some time interval (we will discuss how changes
in 7,((t), i.e., tasks entering or leaving the system, are dealt with later). The shaded area in Figure 3.4a
illustrates the intersection of inequalities dev(t) < 6, deva(t) < 4, and devy(t) + 2deva(t) < 12. The
dashed lines in Figure 3.4a illustrate the boundaries of these inequalities. In our proofs, these inequalities are

specifically constructed such that we can draw conclusions about the configuration chosen by the scheduler at

57

any time ¢ where E(t) lies on one of these boundaries. These conclusions arise from the lemmas proven in
Section 3.1.1.

We prove Q(t) remains in our bounded region by contradiction. We assume otherwise that there
exist time instants such that (E;(t) is outside of our bounded region. The proof by contradiction begins
by showing that if there are time instants where (Qf(t) is outside of the bounded region, then there exists
a boundary time instant, denoted t;,,, immediately prior to these time instants such that E(tb) lies on the
boundary of the region.

In Figure 3.4b, the trajectory of (E)f(t) over time is illustrated as the black curve. The dotted segment
illustrates a hypothetical continuation of this trajectory that reaches the white highlighted point at (5.5, 4.75),
which lies outside of our region. Prior to reaching this point, the trajectory intersects the boundary of the
region at (5, 3.5). The time instant corresponding with this point in the trajectory is tp.

In our analysis, the existence of time ¢}, is proven using the limits of dewv;(t) proven to exist in Corol-
laries 3.9 and 3.12 and the continuity properties of whichever function GG corresponds with the portion
of the region’s boundary that d?(tb) would lie on. Note that there may exist multiple such functions
G if E(tb) lies on a corner of our bounded region (e.g., (4,4) or (6,3) in Figure 3.4a), so our later
proofs never assume that this function G is unique. In Figure 3.4b, the function G is unique and is
G(devq(t), deva(t)) = devy(t) + 2deva(t).

We next prove that the trajectory of (E)/(t) remains within the region shortly after time ¢y, which
contradicts the definition of ¢, (that ¢, immediately precedes (iaz(t) leaving the region). Recall from the
earlier paragraphs in this subsection that the region is specifically constructed such that information is known
about the configuration selected at time ¢ when E(t) lies on the boundary of the region. We prove (Q/(t)
remains within the region after ¢, by using this information with the lemmas proven in Section 3.1.3, which
concern how dev;(t) evolves over time. In Figure 3.4c, the trajectory (Q/(t) moves to (3, 3) after time ¢y,
instead of to (5.5,4.75), the point highlighted in Figure 3.4b.

Contradicting the existence of ¢y, proves that (_lgf(t) remains in the bounded region, which is the goal of
this proof strategy. As stated previously, the proof strategy assumes up to this point that the set of active tasks
Tact (t) remains constant. A dynamic 7,.¢(t) is dealt with by maintaining a different set of axes and a bounded
region for each possible value of 7,.((t) considered (e.g., for UNIFORM and IDENTICAL/ARBITRARY

platforms, we will consider each subset 7/ C 7 such that 7/ is feasible on the considered platform).

58

devg(t)

S =N W ke Ot

0 1 2 3 4 5 6 7
devy(t)

(a) Define a bounded region.

5 5 5
4 i 4
devs(t) 3 devs(t) 3
2 2
1 1
0 0
0o 1 2 3 4 5 6 7
dev (t) devy (1)
(b) Prove existence of t,. (c) Prove dev(t) remains in region.
5)
4 4
devs(t) 3 — devs(t) 3
2 2
1 1
0 0
01 2 3 4567 01 2 34567
devy (t) devs(t)

(d) Prove dev (t) stays within region after task activation and deactivation.

Figure 3.4: Proof strategy.

59

For example, suppose that at some activation time instant ¢, task 71 from Figure 3.4 becomes inactive
and another task 73 becomes active. The trajectory (Q/(t) jumps from the left-side axes to the right-
side axes in Figure 3.4d. Point (0, 3) is highlighted white in the left-side vertical axis, and represents
lim, (5)~ d@(t). Point (0, 3) is highlighted black in the right-side vertical axis, and represents dev (tah).
Task set {72, 73} has a distinct bounded region, shaded orange in Figure 3.4d, from the bounded region of
{71, 72}, which is shaded gray in Figure 3.4.5

The obligation of the proof strategy is to show that (E)/(t) always remains within the new bounded
region after a jump. This is proven by induction on the activation time instants ¢;<'. Once this is proven, we

can derive response-time bounds that remain valid so long as 7,¢(¢) only takes whatever values we consider

(e.g., feasible subsets of tasks).

3.2 Analysis under HP-LAG Systems

In this section, we will define a proposition on the considered task system, multiprocessor model, and
scheduler, which we call HP-LAG. For systems where HP-LAG is true, we will prove response-time
bounds under WC schedulers. This will be useful because we will later prove that HP-L.AG is true for any
feasible task system under UNIFORM or IDENTICAL/ARBITRARY. Thus, bounds proven in this section
will apply to these multiprocessor models.

HP-LAG depends on predicate HP.

¥V Definition 3.4. Predicate HP is
HP(T',t) AV, et :Vr e Trdy () \ 7" ppe(t) < ppe(t). AN

In words, HP(7',) states that at time ¢, all tasks in subset 7/ have higher priority than any other ready

task.

SFormally, these distinct axes and bounded regions all coexist within different hyperplanes in R™, but this is tedious
to illustrate and does not seem to improve understanding. The switch from T, (t) = {71, T2} t0 Tuet(t) = {72, 73} is

—
illustrated as a dev(¢) jumping between axes in Figure 3.4d, but in the space R™, the change in dev(t) due to T ()
is continuous.

60

V Definition 3.5. Proposition HP-LAG is
HP-LAG £Vt : V7' C 7ay(t) : HP(7',1) = Z espi(t) > U (7). A
T ET!

In words, HP-LAG states that at any time instant, for any subset of highest-priority ready tasks, the
total speed of processors executing said tasks is at least the total utilization of said tasks. Note that, while
we will prove that systems satisfying HP-LAG guarantee bounded response times, this assumes a WC
scheduler. For example, while the fixed-priority schedule in Example 1.1 and Figure 1.1b satisfies HP-LAG,
the fixed-priority scheduler is not a WC scheduler. Thus, it was possible for task 73 to have unbounded

response times in Figure 1.1b.
V Definition 3.6. For each subset 7/ C 7, let

A T +2¢ / /
o & S (U)W~ V(). A

Static systems. Lemma 3.14, to be proven below, concerns a system where the set of active tasks is constant.

Dynamic tasks will be considered afterwards.

> Lemma 3.14. Let [to,?;) be a time interval such that
IOt C 71 VE € [to, t1) ¢ Taar(t) = 7™
and at time ¢g, we have

V! C reonst . Z Vi - devi(to) < . (3.14)

TeT
Under any HP-L.AG system and WC scheduler, we have
Vrl et N g - devi(t) < By (3.15)
TET!

for any t € [to,t1). <

61

Proof. We prove by contradiction. Suppose otherwise that there exist time instants in [tg, ¢1) such that
(3.15) is false. By (3.14), (3.15) is true at time to. Let ¢, € [to, t1) denote the latest time instant such that

(3.15) is true over [to, t,). We will show that the existence of ¢, leads to a contradiction.

> Claim 3.14.1. V7' C 7 : S /u; - dewy(ty) < By <

Proof. Consider any 7/ C 7°°™!, By the definition of ¢y, we have that

Vt € [to,t) 1 Y VUi - devi(t) < B

T ET!

Thus,

Brr > lim Z\ﬁ dev;(t")

= Z Vui - lim dev;(t%)

TEeT! =ty

v

{Lemma 3.10}

Z VUi - devi(ty). [

TeT!

» Claim 3.14.2. At time tp, there exists 7° C 79"t guch that both

Vo) >0 € (ty ty+)0 D /Ui - devi(t”) > Bov and (3.16)
T, ETP
D Vi - devi(ty) = B (3.17)
;€7D
are true. |

Proof. We first prove (3.16) by contradiction. Suppose otherwise that

VP C 7ty Feh > 00 VE € (ty, b +) Z Vi - devi(t) < Bro.

T,ETD

62

Because t;, is defined such that (3.15) is true over [tg, ty) and [to, tp) U (tb, to +) = [to, tb + ©),

we have

V7P C reonst .y ¢ [to,tb +¢) : Z U - devi(t*) < ﬁTb.
T,ETP
This contradicts the definition of ¢, as the latest time instant such that (3.15) is true over [tg, tp).

It remains to prove (3.17). We have

Z VUi - devi(ty) = {Corollary 3.12}

TETP

Z Vui - lim dev,(t*)
fpmait tr—tt

= lim Z Vi - dev, ()
tr =t it

> {Equation (3.16)}

Bro.

By Claim 3.14.1, we have

Z \/’LTZ . devi(tb) S BTb.

TETP

Because D v \/ui- dev;(tp) is both upper and lower bounded by 3., (3.17) is the only possibility.

This completes the proof of the claim. |

» Claim 3.14.3. V7. € 7°:

deve(ty) _ T+ 2¢
a2 [2]%] (2U max — 2U () + 1) > 0. <

Proof. We have

Ve - deve(ty)
— Z Vi - devi(ty) — Z Vug - devi(ty)

T,ETP T €mP\{7e}

63

= {Claim 3.14.2, Equation (3.17)}
Bo— > i+ devi(ty)
e\ {rc}

> {Claim 3.14.1}

Bro — /BTb\{TE}

= {Definition 3.6}
T +2¢
[2]%] (U(")) (2Umax = U (7))
_ T[l] + 2¢

S WO\ 1) (U = U\ (7))

= {By Definition 2.15, U (7°) = U (7" \ {7e}) + uc}

T2 (00)) (U~ O 1)~)
T2 (4500) (U~ U6 ()

1420 (0N D) Una = U\ (7)) - UG) -
2”[”] +2U max - Ue — U(Tb \ {Te}) T Ue — ug

Ty +2¢ ,
- T[n] <2U(Tb \ {Te}) : Umax - (U(Tb \ {Te})))
- T[;]u—[i_fgb (_U(Tb \ {TE}) " Ue t+ 2Umax cUe — U(Tb \ {Te}) *Ue — Uz)
- :IW (U (T \{7e}) + 2Umax — U (7" \ {7e}) — ue) ue
- W (2Umax = 20U (7°\ {7e}) — ue) ue
U[n]

= {By Definition 2.15, —2U (7" \ {7}) = —2U(7°) + 2u.}

Ty +2¢
1] _ b _
2uy (2Umax — 2U (7°) + 2ue — te) e
Ty +2¢
_mTee _ b
= o (2Umax — 2U (7°) + ue) e

> {By Definition 2.16, U (7°) < Upax }

0.
Dividing by u, yields the claim.

64

» Claim 3.14.4. V7, € 760\ 70

deve(ty) _ Ty +2¢ B by
N < 2u (2Umax — 2U (7°) — uy) .

Proof. We have

Vug - deve(ty)
= Z Vui - devi(ty) — Z Vg - devi(ty)

Ter®U{r,} TETP

= {Claim 3.14.2, Equation (3.17)}

Z VUi - devi(ty) — B

T, ETPU{T}
< {Claim 3.14.1}
BTbU{Tg} - ﬁTb

= {Definition 3.6}

7@;??¢(U@bu{n}»(2Umm_cm7bu{n}»
- T[;];[L]2¢ (U (7)) 2Umax — U (7))

— {By Definition 2.15, U (7" U {r,}) = U (+°) + u,}

T2 (058 4) 2~ U () ~ 1)
Th + 2¢
—[%Mwww@mm—mw»

_ M QU(Tb) : Umax - (U(Tb))2 _ U(Tb) Uy

2“’[”] +2U max * ug — U(Tb) cUp — U%

Ty +2¢)
2u[n] <2U(T) U max (U(T)))
Ty +2
— W (—U(Tb) “up + 2U max - up — U(Tb) g — U?)
Ty +2
- W (_U(Tb) + 2Umax - U(Tb) — UZ) Up
[n]
Ty +2¢
- e 2Umax — 2U) — Up) Up.

65

Dividing by u, yields the claim. |
» Claim 3.14.5. HP(7°,1). <

Proof. Consider any task 7, € 7° and 7y € 7™t \ 7° We have

deve(ty)
Ve
> {Claim 3.14.3}
Ty +2¢ b
_ (2Umax — 2U(7‘) + ue)
2U[n]
Ty +2 T+ 2
W TR0 o o))+ 20
2upy) 2uy)
Ty +2¢ b Ty +2¢
= (2Umax — 2U(7°) — wg) + ——— (e + uy)
2upy) ! 2upy
> {Claim 3.14.4}
d t T+ 2
evy(ty) N [;] o (e + up)
Ve Ufn]
> {ue + up > QU[n}}
devy(ty)
i + T+ 2¢.
By Lemma 3.3, we have
V1o € 701 Wiy € 70N\ 70 1 pp () < ppe(ty). (3.18)

By Definitions 2.11 and 2.13, we have 74y (tp) C Tact(tp). By the lemma statement, and because
ty € [to,t1), we have Ty (tp) = 7°°™". Thus, we have 7y (tp) € 7™, which implies that for any

70 € Teay(ty) \ 70, we have 7, € 7™\ 7°. The claim follows by (3.18) and Definition 3.4. u
> Claim 3.14.6. Y, o cspi(ty) > U ().)

Proof. By Claim 3.14.3, for any task 7. € 7°, we have dev,(t,) > 0. By Lemma 3.1, for any task
7. € T, we have 7, € Trdy (tb)-

The claim follows from Definition 3.5 and Claim 3.14.5. [|

66

By Lemma 3.13 and Claim 3.14.3, for any task 7. € 7, there exists ¥ > Osuchthat Vt € [ty, tpb+) :

Ve - deve(t) < \/ue - deve(ty) + (t — tb) - (ui — espe(ty)) -

Summing over the tasks in 7°, we have Vt € [ty, t, + 1) :

Z Ve - deve(t) < Z Ve - deve(ty) + (t —ty) - (u; — cspe(ty))

TeETP Te€ETP

= | Y Ve deve(ty) | +(t—to) | D (ui — espe(ty))

TeETP TeETP

= {Claim 3.14.2, Equation (3.17)}

Bos (0= 1) | D (s — espetn)

TeETP

= {Definition 2.15}

B+ (t—t) |U(T°) — Z cspe(tp)

TeETP

< {t—tp > 0 and, by Claim 3.14.6, U(Tb) — Z cspe(ty) <0

TeETP

B.s.

This contradicts (3.16) of Claim 3.14.2. This contradiction completes the proof of Lemma 3.14. g

Dynamic tasks. We will consider allowing tasks to enter and leave the system in Lemma 3.16.

Lemma 3.15 is used in the proof of Lemma 3.16 to compare the magnitudes of different 3.

> Lemma 3.15. Consider subsets 75'® and 75 such that 75%° C 7% C 7. If U(7°%) < Upay, then

U(7%%) - (2Umax — U(75%P)) > U(TS“b) . (2Umax — U(Tsub)). <

Proof. Consider the function f(z) £ 2+ (2Umax — @). f has derivative L f = (2Umnax —) +2+(—1) =
2 (Umax — x). The derivative % f is non-negative while x < Uy, i.e., function f is non-decreasing

with 2 over (—00, Umax]. The lemma follows by substituting with U (7°*?) and U (75*°). O

67

> Lemma 3.16. Under any HP-LAG system and WC scheduler, we have
vr! - Tact(t) : Z \/?71 devi(t) < B
T ET!

for any time ¢. <

Proof. We prove by induction on the activation time instants ;' for & € N. The induction hypothesis is

as follows:

Vt € (=00, 85 : V7' C Taee(t) Z Vui - devi(t) < B (3.19)

TEeT
The base case of £ = 1 is considered by the following claim.

» Claim 3.16.1. Vt € (—o0, t§] : V7’ C 7pe(2) : D orier VUi - devi(t) < B <

Proof. By Definition 2.14,

Vt € (—00, 5 1 V' Craalt) : D Vg - devi(t) < B

TEeT!

is vacuously true. It remains to prove that V7’ C 7o (i) : Y orier VUi dev; (t3) < B,+. Consider

any 7" C 7ot (t4). We have

Z Vi - devi (8*) < {Lemma 3.10}

TEeT!

> Vui- lim dev(t”). (3.20)

TET t*%(t?ﬂ)i

By Definition 2.14, for any task 7; and ¢t* < i, task 7; is inactive at t*. By Lemma 3.5, for any

time t* < 3, dev;(t*) = 0. Thus, lim,, - dev;(t*) = 0. Continuing from the derivation

— (t‘i“‘)

paused at (3.20), we have

Z Vg - dev; (81%) < Z Vui - lim o dev;(tY)

TET TET = (8)
- % v
TET

68

=0
< Br.
This concludes the proof of Claim 3.16.1, the base case of the inductive proof of Lemma 3.16. W

Our remaining obligation is to prove that (3.19) implies the (k + 1)th case. This is split among the

following two claims.

» Claim 3.16.2. (3.19) implies that

Vit e [t t0) - VT C Ta(t) - Z Vg - devi(t) < B <

T, ET!

Proof Let 7™t & (tft). By Definition 2.14, Vt € [t ¢) © Tace(t) = 7™ The claim

k+1
follows from (3.19) and Lemma 3.14 with [to, t1) = [t} £). []
> Claim 3.163. V' C ryoe (B0,) 0 3) /i - dewi (£2) < B, <

Proof. Consider any 7/ C Ty (tzﬁl) Let 704 & 7/ N 1 (tz“) and 7"V £ 77\ Ty (ti“). rold

denotes tasks of 7’ that were also active in [t #;! |), while 7"*" denotes tasks of 7’ that became

H M act
active at time tk T

‘We have

Z Vi - de”i(tf}rl)

TET!

= Z Vi - devi (855) | +

| eTold

3 o don)|

T, €TV

IN

{Lemma 3.10}

> Vui- lim dewi(t?)| +

| i€ ()

Z Vui- lim devi(t*)]

T, €TV t*—)(t?j}kl)

IN

{Claim 3.16.2 and TOld g Tact (tza) }

o + Z Vui- limo devi(t*)]

€TV = (6)

69

= {Lemma 3.5 and 7; € 7" = 7; inactive over [t} £}) }
Broa +0
< {By Definitions 2.16 and 3.6, Lemma 3.15, and 7° C 7/ C 7o (£i%,) }

ﬂT"

This completes the proof of the claim. |

Claims 3.16.2 and 3.16.3 form the induction step, thereby proving the induction hypothesis (3.19)

for any k € N. Taking k¥ — oo yields the lemma statement. |

Theorem 3.17 presents our response-time bound for HP-LAG systems.

> Theorem 3.17 (Response-time bound for HP-L.AG systems). Under a WC scheduler, for any
system that satisfies HP-L.AG, the response time of any task 7; is at most

T 2
74 m ¢

)

2U[n} (2Umax — ul) . <

Proof. Consider dev;(t) at any time instant ¢. There are two cases.

« Case 3.17.1. Task 7; is inactive at t. >
By Lemma 3.5, dev;(t) = 0. ¢
<« Case 3.17.2. Task 7; is active at ¢. >

By Definition 2.13, 7; € Taet(t). Thus, {7;} C Taet(t). By Lemma 3.16 and Definition 3.6, we have

Tiy+2
A/ Uj * devi(t) S % (2Umax — Uz) (78 ‘
In either case, we have dev;(t) < T[Qliﬁ(ﬁ (2U max — 44)-+/u;. The theorem follows from Lemma 3.4.

3.3 Analysis under UNIFORM

We define Ufm-WC analogously to Ufm-EDF.

70

> Ufm-WC. Atany time ¢, the ready task with earliest priority point is scheduled on the fastest processor,
the ready task with second earliest priority point on the second fastest processor, and so on until all ready

tasks are scheduled or all processors are scheduled upon. N

We prove response-time bounds under Ufm-WC by proving that Ufm-WGC satisfies HP-L.AG.

> Lemma 3.18. If, for task system 7 executing under UNIFORM with a Ufm-WC scheduler, we have
that for any time ¢, 7(t) is UNIFORM-Feasible, then this is an HP-LAG system. N

Proof. For the duration of this proof, let u;;) denote the i largest utilization of any task in 7,c(t).
Consider any time ¢ and subset 7" C T4y (¢) such that HP (7',). By Definition 3.5, it remains to
prove that 3, espi(t) > U(1").
By Definition 3.4, tasks of 7" have the earliest pp;(t) values at time ¢ than any other task in 74y ().

Under Ufm-WC, we have

min{m,|7’[}

> espilt) > spl

TET! j=1

v

{Tact(t) is UNIFORM-Feasible at t }

il

Z U ()

i=1

> {7'/ - Trdy(t) - Tact(t)}

> w

TET
= {Definition 2.15}

U(T/).

By Definition 3.5, this is an HP-LAG system. O

Corollary 3.19, which follows from Lemma 3.18 and Theorem 3.17, presents our response-time bound.

> Corollary 3.19 (Response-time bound for Ufm-WC). If, for task system 7 executing under UNI-

FORM with a Ufm-WC scheduler, we have that at any time ¢, 7,((t) is UNIFORM-Feasible, then the

71

response time of any task 7; is at most

‘ Tm + 2¢

T; + (2Umax - uz) . <

2u[n]

3.4 Analysis under IDENTICAL/ARBITRARY

We define Strong-APA-WC analogously to Strong-APA-EDF.

> Strong-APA-WC. At any time ¢, the chosen configuration is such that no unscheduled ready task 7;
has an alternating path beginning at 7; and ending with either a processor that schedules no job or a job
T, such that pp;(t) < ppi ().

Equivalently, at any time ¢, the chosen configuration corresponds with an optimal solution of

%
MVM (r, s E) such that (2.11) and (2.12) are true and

VTi, Tj € Tray(t) : ppi(t) < pp;(t) = ¥i > 5, (3.21)

i.e., tasks with earlier priority points have higher weight. N

The following lemmas will help to prove that Strong-APA-WC satisfies HP-LAG.

> Lemma 3.20. If 7, (¢) is IDENTICAL/ARBITRARY-Feasible, then for any 7/ C 7,¢(¢), optimization

problem

max Z Z Yi ; such that

TET Tj€0y

Vet Z vi; < 1.0 (3.22)
T;ET

Vrjems Yy < 1.0 (3.23)
TET

Y € RL" (3.24)

72

has a solution such that

Z Z yij > U(7) (3.25)

TET TjCQ;
is true. N

Proof. By IDENTICAL/ARBITRARY-Feasible, 3X € RY(™ such that (2.9) and (2.10) are true. Let

Tij Ui T € Q4

0 7Tj¢04¢

By (2.9), we have

V7i € Tat(t) : Z Yij = Uj. (3.26)

TjEQ;
Because u; < 1.0 holds for each task 7; € Tue(t) and 7/ C Tt (t), (3.26) implies (3.22). Because
7' C Taet(t), (2.10) (with 7 <— T, (t) because, as stated in the lemma, we are assuming that the subset
Tact(t) is IDENTICAL/ARBITRARY-Feasible) implies (3.23). Because x; ; > 0 holds for each task

ie€{l,2,...,n}andj € {1,2,..., m}, we also have (3.24). Summing (3.26) over the tasks in 7’ yields
Dorer 2amjea; Yig = U(7'), which satisfies (3.25). 0

> Lemma 3.21. For an IDENTICAL/ARBITRARY-Feasible system, for any task subset 7/ C 7c((2),
there is a maximal matching M in the affinity graph between tasks in 7/ and processors such that the size

of the matching |M| > U (7). N

Proof. Consider the optimization problem in Lemma 3.20. This problem is an instance of AP. By
Theorem 2.1, there is an optimal solution Y such that each y; ; € {0,1}, i.e., Y is binary. This binary Y
represents a matching M in the affinity graph of the tasks in 7/ and processors in 7 (recall Example 2.6).
The number of matched tasks in Toc(t) is M| = > ije o, Yi,j» Which is the objective function of

the AP instance. By Lemma 3.20, this objective function has value at least U (7'), thus, [M| > U(7'). O

The following lemma proves that Strong-APA-WC satisfies HP-L.AG if the system is always IDENTI-
CAL/ARBITRARY-Feasible.

73

T1 T2 T3 T4

Figure 3.5: Example of an alternating path in a bipartite graph.

> Lemma 3.22. If, for task system 7 executing under IDENTICAL/ARBITRARY with a Strong-APA-
WOC scheduler, we have that at any time ¢, 7,¢(¢) is IDENTICAL/ARBITRARY-Feasible, then this is an
HP-LAG system. <

Proof. Consider any time ¢ and 7 C 7yqy(t) such that we have #P(7’,t). It remains to show that
Zner/ cspi(t) > U(7'). Because, under IDENTICAL/ARBITRARY, each processor speed is 1.0, this
is equivalent to showing that the number of processors executing tasks of 7/ is at least U (7’) (rounded
up to the nearest whole number). Consider the matching M that corresponds with the configuration
selected by Strong-APA-WC at time ¢. Because a task being matched is representative of said task
being scheduled, the number of processors executing tasks of 7/ is equal to the number of tasks in 7’ that
are matched in M. Let M,» C M denote the subset of edges in M that are incident to tasks in 7. The
cardinality M| is equal to the number of matched tasks in 7’. Thus, our proof obligation is to show
that [M.| > U(7').

Consider the subgraph of the affinity graph made up of tasks of 7/ and 7 (i.e., 7/, 7, and the subset
of edges in the affinity graph connecting 7/ and 7). The subset Ml is a matching on this subgraph. To
prove that [Ml,,| > U(7"), by Lemma 3.21, it is sufficient to show that matching M+ is maximal for this
subgraph.

We will show that ML+ is maximal for the subgraph of 7’ by proving that M., contains no augmenting
paths in the subgraph. Suppose otherwise that there is an augmenting path in M+ on the subgraph of
7’. By Definition 2.25, this path is an alternating path originating from unmatched vertices (note that
these vertices are specifically unmatched in the subgraph and may be matched in M+ on the whole
affinity graph). Because the subgraph is bipartite and this path is alternating, one of these unmatched
vertices is a task in 7/ and the other is a processor (see the example alternating path in Figure 3.5, which

illustrates that every task and processor in the path besides endpoints 7; and 74 must be matched to

74

be in the alternating path). Because the subgraph only contains tasks of 7/, the path begins with a task
7. € 7'. Let processor 7; denote the other endpoint of the path. Because 7; is unmatched in M+ on the
subgraph, in M.+ on the affinity graph, 7; is either also unmatched or matched to a task 7y in 74y () \ 7.
Because we have assumed that 7’ is such that HP(7’,t) is true, we must have pp,(t) > pp.(t). This
contradicts the definition of Strong-APA-WC. Thus, there are no augmenting paths in the subgraph of

7’. By Theorem 2.2, matching M.+ is maximal for the subgraph of 7’. O

Corollary 3.23, which follows from Lemma 3.22 and Theorem 3.17, presents our response-time bound.

> Corollary 3.23 (Response-time bound for Strong-APA-WC). If, for task system 7 executing un-
der IDENTICAL/ARBITRARY with a Strong-APA-WC scheduler, we have that at any time ¢, Tyc¢() is
IDENTICAL/ARBITRARY-Feasible, then the response time of any task 7; is at most

. Tm + 2¢

T; + (2U max — i) - <

QU[n]

3.4.1 Counterexamples

We briefly address the non-SRT-optimality of Weak-APA-EDF and non-preemptive Strong-APA-EDF
under IDENTICAL/ARBITRARY, which we demonstrate by counterexample. Note that there is no need
to address non-preemptivity under UNIFORM and UNRELATED because Ufm-EDF under UNIFORM
(which is a special case of UNRELATED) with non-preemptive sections has already been shown to be
non-SRT-optimal (Yang and Anderson, 2015). The non-SRT-optimality of Weak-APA-EDF is of interest
because it is the author’s belief that Weak-APA-EDF, due to its simpler requirements, is more likely to be

implemented than Strong-APA-EDF in a real-time operating system (RTOS) with affinities.

v Example 3.4. Consider the task system whose affinity graph is illustrated in Figure 3.6a. Let
(C1,T1) = (C5,T5) = (2.0,6.0), (Ca,T2) = (C4,T4) = (2.0,2.0), and (C3,T3) = (1.0,6.0).
This task system may have unbounded response times under a Weak-APA-EDF scheduler, as shown in
Figure 3.7.

Tasks 75 and 74 release jobs periodically. Initially, tasks 75 and 74 execute on processors 71 and 73,

respectively. At time 6.0, tasks 71 and 75 preempt tasks 72 and 74, respectively. The only other processor

75

T1 T2 T3 T4 T5 T1 T2 T3

(a) Example 3.4 affinity graph. (b) Example 3.5 affinity graph.

Figure 3.6: Counterexample affinity graphs.

available to both tasks 79 and 74 is w2, which they cannot both use. Both tasks have equal deadlines at
time 6.0. We assume the tiebreak at time 6.0 favors task 79 and it is scheduled on processor 79, while task
74 does not execute until time 8.0 when it resumes execution on processor 3. Task 79 is also forced to
migrate off of processor 7o by task 73 at time 12.0. At time 18.0, tasks 7 and 75 again preempt tasks 7
and 74, respectively. Again, only 75 is available to both tasks, except, unlike at time 6.0, 74 is scheduled
over task 7o because it is tardy by 2.0 time units due to not being scheduled over [6.0, 8.0). As a result,
task 79 also becomes tardy by 2.0 time units by time 20.0. Thus, the deadlines of tasks 7 and 74 are once
again equal.

The pattern of tasks 79 and 74 being simultaneously preempted by tasks 7 and 75 such that only one
of 7 or 74 can be scheduled on processor 5 can be repeated indefinitely, and with each occurrence, the

maximum response time experienced by either task 7 or task 74 increases by 2.0 time units. A

v Example 3.5. Consider the system whose affinity graph is illustrated in Figure 3.6b. Let (C1,7T1) =
(C3,T3) = (2.0,4.0) and (C2,T2) = (6.0,6.0). A schedule over [0, 120.0) for this system in which
jobs are non-preemptive is illustrated in Figure 3.8.

Task 75 releases jobs periodically starting at time 0. Initially, task 7 executes on processor 7. Task
71 releases its first job at time 1.0. Task 7o does not migrate to processor 72 (which does not schedule a
job at time 1.0) because it is non-preemptively executing its job. Task 73 releases its first job at time 5.0.
Because 79 is not executing any job, 73 is scheduled at time 5.0.

Once task 7, completes its job at time 6.0, its next job has a deadline of 12.0. This is later than the
ready job of 71, which has a deadline of 5.0. Thus, task 7; is scheduled on processor 7. Task 7 does

not preempt task 73 on processor 7y because it is executing non-preemptively. Task 7 only resumes

76

“9[dwexa1uN0d 4q3-YdV-YeoM :L'€ 2In3ig

oy
09 154 0¢ % 0¥ 93 0€ 514 0¢ a1 0T g
L L L L 1 L L L L L n L 1 L L L I 1 L L 1 n L L 1 L L I L 1 L L L L L I 1 L L I 1 L 1 L
09 Gg 0¢ i 0¥ 193 0¢ 514 0¢ a1 0T g
i 2y 20 g 2 2 e 2 2, K 2 g e g e L ATy |

09 sty ‘dsoy

e—— 15— |

0t otur], 1dsoy

09 qG 0S 57 0¥ ge 0€ o 0% q1 01 G
L L N L 1 L L L L 1 L L L L 1 L L 1 L L L 1 L L L L 1 L L 1 L L L L 1 L L 1 L 1 L L L L 1 L
09 e 05 57 0¥ Ge 0€ o 0% q1 01 G
= e
0°9 oy, dsoy 0"t otury, dsoy
09 qq 05 57 0¥ ge 0€ d 0% q1 01 g

L

VL

€L

cL

1L

77

j E E i! E |
LA R R B | L T T T T T LA B R B — T L R L R B L B R B — T
0 5 10 15 20 25 30 35 40 45 50 55 60
Late by 1.0 Late by 2.0 Late by 3.0 Late by 4.0 Late by 5.0 Late by 6.0
e T T P || e —————
T2
0 5 10 15 20 25 30 35 40 45 50 55 60
ﬂw E E E E
T T T T — T T T T 7 LA B B L T T T 1
0 10 15 20 25 30 35 40 45 50 55 60
Time
65 70 75 80 85 90 95 100 105 110 115 120
Late by 8.0 Late by 9.0 Late by 10.0 Late by 11.0

60 65 70 75 80 85 90 95 100 105 110 115 120
ﬁw E E
T T
60 65 75 85 90 95 100 105 110 115
Time

Figure 3.8: Non-preemptivity counterexample.

78

executing at time 7.0 when task 73 completes its job. Because task 75 is not scheduled over [6.0, 7.0), the
response times of its jobs increases by 1.0 time unit.

Task 73 releases a job at time 9.0. Even though processor 71 does not execute a job at time 9.0, task
T9 does not migrate to 1 because it is executing non-preemptively at time 9.0. When task m completes
its job at time 13.0, it cannot execute on processor 71 because task 77 is executing non-preemptively.
Thus, task 71 is not scheduled over [13.0, 14.0), increasing the response times of its jobs by 1.0 time unit.

The schedule follows a pattern in which the response times of the jobs of task 7 increase by 1.0 time
unit with every successive job. This is because whenever task 75 would otherwise migrate, the processor
it would migrate to non-preemptively executes either task 7 or task 73, delaying the execution of 7 by
1.0 time unit.

This pattern changes at time 48.0. Task 75 completes a job at time 48.0 and continues executing
its next job on processor 7r1. This is because at time 48.0, both tasks 71 and 75 have deadlines of 48.0,
and we assume the tie is broken in favor of task 7. Task 7 does not force task 7o to migrate until
time 54.0, at which time the deadline of task 7o becomes 54.0 > 48.0. Task 7 is unable to preempt task
T3 executing on processor 7o, and is thus unscheduled over [54.0, 55.0). The response times of jobs of
task 7 are increased by 1.0 time unit.

In general, over [0,42.0), task 75 is prevented from executing for 1.0 time unit every job. This
changes to every two jobs at time 42.0, and to every three jobs at some future time not shown in Figure 3.8.
This is because task 79 is prevented from executing when it is forced to migrate by a job of task 7 or
task 73 that is waiting for task 75 to vacate the corresponding processor (71 for task 71 and 7o for task
73). For said job to force task 75 to migrate, it must wait until it has an earlier deadline than task 7. Task
T9’s deadline increases when it completes jobs. As task 75 becomes more tardy over time, the necessary
number of completed jobs task 7 or task 73 must wait for increases.

Though the time between durations where task 75 is delayed from executing increases over time,

there are infinitely many such durations. Thus, the response time of task 79 is unbounded. A

3.5 Analysis under UNRELATED

Limitations of HP-LAG. The strategy used to prove response-time bounds for Ufm-WC under UNIFORM
and Strong-APA-WC under IDENTICAL/ARBITRARY for any feasible task system cannot be extended

79

(a) First configuration. (b) Second configuration.

Figure 3.9: Both configurations violate HP-L.AG in Lemma 3.24.

to schedulers under UNRELATED. This is because no scheduler satisfies HP-LAG for any feasible task

system under UNRELATED, as will be demonstrated by the following lemma.

> Lemma 3.24. Under UNRELATED, there exists no scheduler under which UNRELATED-Feasible

implies the system satisfies HP-LAG. <

Proof. We prove the lemma by constructing a feasible task system under UNIFORM/ARBITRARY (a
special case of UNRELATED) for which no scheduler satisfies HP-LAG. Consider tasks 71 and 7o with
(C1,T1) = (3,2) and (C2,T2) = (4,4). Then, u; = 1.5 and up = 1.0. 7 runs on two processors 7
and 7o with speeds sp(!) = 2.0 and sp(®) = 1.0. The tasks have the affinities illustrated in Figure 3.9.

Under the notation of UNRELATED, this multiprocessor has speeds

spht sph? sp(l) sp(Q) 2.0 1.0

sp>l sp?? spM) 0 20 0

We can see that this system is UNRELATED-Feasible because there exists

T T2 0.5 0.5
X — LTz

21 12,2 0.5 0

such that each of the following is true.

sptt g+ sp?mp = 20-054+1.0-05>15 =u
(2.14)

2,1

spPlap g 4 sp?? o= 2.0-05+1.0-0>1.0 = uy

80

1,1+ 212 = 054+05< 1.0
(2.15)

T21 + T2 = 05+0< 1.0

1+ 11 = 054+05< 1.0
(2.16)

21,2+ X2 = 054+40< 1.0

Let time instant ¢ be such that both tasks are ready with priority points ppi(t) < pp2(t). By

Definition 3.5, if a scheduler satisfies HP-L.AG, then both

espi(t) > uy, and 3.27)

espi(t) + espa(t) > uy + ue (3.28)

are true.
However, any scheduler must choose one of the two configurations illustrated in Figure 3.9. This

results in two cases.

« Case 3.24.1. The scheduler selects the configuration in Figure 2.4a. >

We have csp(t) = 2.0 and cspa(t) = 0. Thus, cspy(t)+cspa(t) = 2.040 < 1.5+1.0 = uq+uo,
and (3.28) is violated. ¢

« Case 3.24.2. The scheduler selects the configuration in Figure 2.4b. >

We have cspi(t) = 1.0 and cspa(t) = 2.0. Thus, cspi(t) = 1.0 < 1.5 = wuy, and (3.27) is

violated. ¢

In either case, one of (3.27) or (3.28) is violated. Thus, this task system and multiprocessor, despite

being UNRELATED-Feasible, do not satisfy #P-L.AG under any scheduler. O

3.5.1 Defining the Variant

This subsection defines a WC variant, Unr-WC, for UNRELATED. Our choice of definition for Unr-WC
is justified by showing that both Ufm-WC and Strong-APA-WC are special cases of Unr-WC.

81

V Definition 3.7. The profit function of task 7; € 7 is

t—ppi(t) t> ppi(t)and 7; € Tqy(t)
wi(t) = : A

0 t < ppi(t) or 7; & Tray(t)

> Unr-WC. At any time ¢, the configuration chosen is an optimal solution of AP(7, 7, P) in which

q(t)-sptt Wi(t)-spt? .. Wq(t) - spb™
Wo(t) - sp?t Wo(t) - sp>?

P = q
W, (t) - sp™t U, (t) - sp™™

Note that, for any time ¢, a canonical configuration X that is an optimal solution of the above AP instance
always exists. Any optimal solution X can be transformed into a canonical configuration without modifying
the objective function value. Suppose we have task 7; and processor 7; such that 7; & 7yay(t) and 2; ; = 1.
By Definition 3.7, ¥;(t) = 0. Thus, p; j; = ¥;(¢) - spJ =0 - sp’ = 0. Because ; ; is multiplied by p; ; in
(2.1), the objective function value does not change by setting z; ; = 0. Likewise, suppose we have task 7;
and processor 7; such that 7; ¢ ;. Under UNRELATED, because 7; does not have affinity for 7, we have
sp™ = 0. Thus, p;; = W;(t) - sp™/ = ¥;(t) - 0 = 0. Again, setting 7; ; = 0 does not affect the objective
function value. By Definition 2.26, X is canonical after setting such z; ; to 0.

After discussing Unr-WC in Section 3.5.1.1, we will show in Sections 3.5.1.2 and 3.5.1.3 that Ufm-WC
and Strong-APA-WC are special cases of Unr-WC.

3.5.1.1 Interpreting Unr-WC
There are nuances to Unr-WC’s behavior that are discussed in the following paragraphs.

Tasks with 0 profit. As seen in Definition 3.7, all tasks with priority points in the future have O profit when
scheduled. Thus, a configuration that schedules such tasks is equally as profitable as a configuration that does
not. Because Unr-WC only requires that the configuration chosen corresponds to some optimal solution of
the AP instance for the current time instant, whether or not such tasks are scheduled is up to the specific

implementation. This is illustrated in the following example.

82

v Example 3.6. Consider three tasks executing on a uniprocessor such that (C',7) = (C2,T2) =
(2.0,6.0) and (C3,T'3) = (2.0,7.0). Two schedules are illustrated for this system in Figure 3.10. Both
schedules have the priority point of each task 7; as pp;(t) = d;(¢).

The schedule in Figure 3.10a is a typical EDF schedule. Note that all illustrated jobs complete before
their deadlines. Thus, for any task 7; and time ¢ in the illustrated time interval, we have ¢t — pp;(t) =
t — d;(t) < 0. Thus, scheduling any task at any time yields the same objective function value for
Unr-WC’s AP instance, meaning all configurations are equally optimal. Thus, scheduling the ready
task with the earliest deadline at all times, as in EDF, is also optimal. This makes the EDF schedule a
Unr-WC schedule over the pictured time interval.

The schedule in Figure 3.10b is also a Unr-WC schedule. Initially, as in the EDF schedule, over
interval [0, 6.0), all ready tasks have deadlines in the future, and thus yield O profit when scheduled.
Thus, scheduling nothing over [0, 2.0), task 73 over [2.0, 3.0), task 7 over [3.0,4.0), and task 7o over
[4.0,5.0) are all configurations corresponding to optimal solutions for the AP instances belonging to their
corresponding time intervals. After time 6.0, when task 7 executes past its deadline, it is no longer the
case that all tasks have 0 profit. For example, the profit of task 71 at time 6.5 is ¥1(6.5) = 6.5—d;(6.5) =
6.5 — 6.0 = 0.5. Scheduling task 77 at time 6.5 on the uniprocessor with speed 1.0 yields an objective
function value of 1.0-0.5 = 0.5. Because scheduling this task now yields positive profit, the configuration
that schedules task 7; on the only processor 71 (i.e., X = [561,1 721 $3,1] ! = [1 0 0] T) is the
only optimal solution to the AP instances over time interval (6.0, 7.0). Thus, Unr-WC requires that task
71 is scheduled over [6.0, 7.0) in Figure 3.10b. The same is true over [7.0, 8.0) for task 7 and [8.0,9.0)

for task 73. A

As shown in Example 3.6, configurations that do not schedule tasks may still be optimal under the AP

instances defined by Unr-WC. This allows Unr-WC schedulers to not be work-conserving (i.e., the scheduler

may leave a ready task unscheduled, even if a processor is available). This does not prevent a specific

Unr-WC scheduler from being work-conserving. For example, Ufm-WC and Strong-APA-WC (which we

will show are special cases of Unr-WC) are both work-conserving.

Unpredictable migrations. Ufm-WC and Strong-APA-WGC schedule only according to the relative order

of tasks’ priority points (e.g., Ufm-WC schedules the ready task with earliest priority point on the fastest

processor regardless of the magnitude of said priority point). Thus, Ufm-WC and Strong-APA-WC need

83

H

0123 45

o 4
-3
oo
Ne)

10

jisas i

2 3 45 6 78 910
Time

(a) EDF schedule.

3
7_1 H “‘_
T

»

’ H H
T
o
T

2 3 45 6 78 910
Time

(b) An Unr-WC schedule.

Figure 3.10: Scheduling of tasks with O profit.

1 T2

(a) Example 3.7 affinity graph.

7T 9 11 13 15

7 9 11 13 15
Time

(b) Example 3.7 schedule.

Figure 3.11: Example 3.7 illustration.

only reschedule at time instants ¢ when some task 7;’s priority point pp;(¢) changes. This may not hold for

Unr-WC under UNRELATED, as shown in the following example.

v Example 3.7. This example is illustrated by Figure 3.11. Consider a two-task and two-processor

system with

spli!

sp21

spl? 1.0 2.0

sp>? 0 20

84

An affinity graph for this system is illustrated in Figure 3.11a. Suppose both tasks 7 and 75 are ready
over [7.0,15.0) with pp1(t) = 0 and ppa(t) = 5.0. A schedule is presented in Figure 3.11b.

Attime t = 9.0, we have ¥4 (t) = t—pp1(t) = 9.0—0 = 9.0and ¥y(t) = t—pp2(t) = 9.0-5.0 =
4.0. An optimal solution of the AP instance defined by Unr-WC at time 9.0 is z; 2 = 2»; = 1 with
objective value Wy(t) - spb? + Wy(t) - sp>! = 9.0-2.0 + 4.0 - 0 = 18.0 (compared to T =22 =1
with value W1 (t) - spbt + @y(t) - sp?? = 9.0 - 1.0 + 4.0 - 2.0 = 17.0). Thus, at time 9.0, task 7y is
scheduled on processor 75 and task 79 is “scheduled” on processor 71 (which it does not have affinity
for).

However, at time ¢ = 11.0, ¥1(t) = ¢t — pp1(t) = 11.0 — 0 = 11.0 and ¥s(t) =t — ppa(t) =
11.0 — 5.0 = 6.0. The optimal solution at time 6.0 is then z;; = 232 = 1 with value ¥(¢) -

spbt + Wy(t) - sp?? = 11.0 - 1.0 + 6.0 - 2.0 = 23.0 (compared to 712 = 77 = 1 with value
Wy(t) - spl? + Wa(t) - sp>! =11.0-2.0 4+ 6.0 - 0 = 22.0). Thus, at time 11.0, task 7y is scheduled on
processor 71 and task 75 is scheduled on processor 2.

Thus, a rescheduling occurs in [7.0, 15.0) even though the tasks’ priority points did not change. A

This makes Unr-WGC impractical because rescheduling may occur at any time instant. The cause of this
problem is that ¥;(¢) depends on ¢ (see Definition 3.7), i.e., ¥;(t) varies continuously with time. Thus, the
objective function value of a solution of the AP instance corresponding with Unr-WC varies continuously
with time, which can cause a solution that is optimal at some time ¢; to be suboptimal at time ¢2, even if
ppi(t1) = ppi(te) for each task 7.

W, (t) can be made to vary discretely with time using certain choices of priority point pp;(t). If, for each
task 7;, W;(t) varies discretely with time, then the optimal solution for the AP instance corresponding with
Unr-WC at a given time instant remains optimal until ¥;«(¢) changes for some task 7;+. Thus, rescheduling

only occurs at the time instants ¢ when such a ¥;«(t) changes.

85

As an example of ¥,;(t) varying discretely with time for a certain choice of pp;(t), consider when

ppi(t) =t — (LT%J + 2) T; + d;(t). Task 7;’s profit would then be

¥,(t) = {Definition 3.7}

t—ppi(t) t> ppi(t) and 7; € Tray(t)

0 t < ppi(t) or 7; & Tray(t)
)

B t—t+QT%J—|—2>T¢ di(t>t—QTLJ+2)T+d()andnendy(t) (3.29)

0 (LtJ)T +di(t) or 7 & Ty (1)

.

(|| +2)mi-dw (|]+ 2) T; > di(t) and 7; € Ty (1)

0 (|4 +2) T < ditt) or 7 ¢ 7y (8) |

which, outside of changes in Jl(t) (i.e., job completions and arrivals), changes only every T'; time units (see
the plot of ([TLZJ + 2) T; in Figure 3.12). Because, in the worst case, jobs of task 7; may arrive every 7T';
time units, the number of changes in ¥;(¢) over a time interval is asymptotically the same as the number of
changes in d;(t) over the same interval. A timer that fires every 7'; time units may be used to update ¥;(t)
and trigger rescheduling. Because —27'; <t — QT%J + 2) T; < =T}, by Definition 2.20, this scheduler is
WC with ¢ = 27';.

Note that, on systems without early releasing, this choice of pp;(¢) also mitigates that Unr-WC may
be non-work-conserving. By Definition 2.11, without early releasing, a task 7; being ready at time ¢ (i.e.,
T; € Tray(t)) implies that ¢ > a;(t). By Definition 2.5, we have that 7; € 7rqy(¢) = t + T; > d,(t) Because

<[T%J + 2) T; > t+ T (see Figure 3.12), we have

t
T € Trdy(t) = (\‘J + 2) T, > dz(t) (3.30)
Thus, for any 7; € Tyqy (%), we have

¥;(t) = {Equation (3.29)}

86

t
— (|| +2) T,
(7] +2)
t+1T;
T
T
T
T,
0 1 1
0 T; 2-T; 3-T;
t

Figure 3.12: QT%J + 2) T,andt+T;.

87

([#]+2)ri-dai) (|&]+2) 7> di(t) and 7 € may (1)

0 ([#]+2) i < diw) or i ¢ may (1)

= {Ti € Trdy(t) and Expression (3.30)}

(HJ - 2) T — dy(t)

> {7; € Ty (t) and Expression (3.30) }

0,

i.e., any ready task 7; has profit ¥;(¢) > 0. At any time ¢, if there is an unscheduled ready task 7; and a
processor 7 that 7; has affinity for that schedules no task at time ¢, then because ¥;(t) > 0, it increases the
objective function value of the AP instance of Unr-WC at time ¢ to schedule task 7; on processor 7. Thus,

under this particular choice of pp;(t), Unr-WC is work-conserving.

3.5.1.2 Ufm-WC is a Special Case of Unr-WC

We now prove that Ufm-WC is a special case of Unr-WC. The following theorem will be useful for

proving this.

> Theorem 3.25 (Theorem 368 by Hardy et al. (1952)). Letxy,x2,...,x, and y1,y2, ..., y, be two

sequences. Then

Ziﬁm “Ynt1-i] < sz i < Ziﬁm “Y[al
=1 =1 =1

i.e., the sum of products between elements of the sequences is greatest when the sequences are monotoni-

cally ordered in the same sense and least when monotonically ordered in the opposite sense. N
> Lemma 3.26. Ufm-WC on a UNIFORM multiprocessor is a special case of Unr-WC. Q

Proof. We prove the lemma by showing that for any time ¢, any configuration selected at time ¢ by
Ufm-WC under UNIFORM also corresponds to a solution to the AP instance defined by Unr-WC.
For the duration of this proof, we assume that n = m. This assumption can be made without loss of
generality because under UNIFORM, if n < m, then only the n fastest processors need be considered,

and if n > m, then we can analytically add n — m processors with speed of 0.

88

» Claim 3.26.1. There exists an optimal solution X to the AP instance defined at time ¢ by Unr-WC

such that

VTiET:ZxZ"j:L <

TjET

Proof. Suppose otherwise that there exists task 7;« such that ijeﬂ %+ j = 0. Thus,
)SPILTED 3 SFS
TjET T,ET TiET T;ET
SDIESEED SN SEF
TET 7—2-67—\{7—2.* } TjET

:0+ Z ind'

TieT\{T;* } T;ET
< {Equation (2.2)}
o1
T EeT\{7* }

= |7\ {7}

=n—1.

By (2.3), because n = m, and because anew > rer Tij < m — 1, there exists 7;+« such that
ZTiGT 7; 7+ = 0. Thus, x;« ;= can be set to 1 without violating (2.2)-(2.4). Setting z;+ ;= to 1 changes
the value of the objective function 3 o 7 . ¥i(t) - sptda; ; by Wi« (t) - sp* . Because, by
Definition 3.7, we have ¥;«(t) > 0, the change to the objective function is non-negative.

This reasoning can be repeated for each task 7; with 7; j = 0, yielding the claim. |

TGET

» Claim 3.26.2. The optimal solution X shown to exist in Claim 3.26.1 has objective function

value
n
i=1
for some distinct indices ji, j2,...,Jn € {1,2,...,n}. <

&9

Proof. By Claim 3.26.1 and (2.4), for each i € {1,2,..., n}, there exists unique j € {1,2,...

such that z; ; = 1. Let j; = J when z; ; = 1. The objective function value of X is then

Z Z w,(t) - sph - i j

T, ET T;ET

_ {Under UNIFORM, sp'/ = 8p(j)}

ZZ " i,

TiET T;ET

= - w,(t) - sp) -z
>0) g

i=1 m;ET

={z;=1=7j=7}

Z Wi(t) - sp (4:)

By Claim 3.26.2, any optimal solution to the AP instance defined by Unr-WC at time ¢ has objective

function value equal to the sum of element-wise products of sequences ¥1(t), ¥s(t),..., ¥,(t) and

spl) spl2) . spUn) It remains to prove that the configuration chosen by Ufm-WC at time ¢ yields

an equivalent objective function value.

» Claim 3.26.3. The configuration selected by Ufm-WC at time ¢ corresponds to a solution of AP

with objective function value

n

i=1

Proof. Letindices 47,15, ... ,15,1 1, -, %, be such that

Trdy () = {Tifﬂ'i;a e 77—2‘;;}

and

ppi; (t) < ppis(t) < - < ppi: (1)

90

(3.31)

(3.32)

By Definition 3.7, (3.31), and (3.32), we have

1

Wi (t) > Lﬁi; t)y>--->Wp(t) >0= %zﬂ(t) = %Z+2 t)y=---= %;(t). (3.33)
Thus,
Vre{l,2,...,n}: Wi;(t) = W[T](t). (3.34)

Consider the configuration chosen by Ufm-WC at time ¢. Task 7;+ is scheduled on the processor
with speed sp{1D), task ;5 with speed sp{@) erc. Let X* denote the solution of the AP instance
such that xz*J = 1 if task 7; is scheduled on processor 7; under Ufm-WC. The objective function

value of X* is thus

DD wilt) st al

TiET TjET

_ {Under UNIFORM, spi/ = sp(j)}

Z Z Wy(t) - spl) -)

TiET TjET
r=1lm;em
k ‘ n
S) S AUINCIIES S S AU
r=1m;em r=k+1m;E™
— {Ufm-WC}
k n '
r=1 r=k+1m;eT

= {Equation (3.34)}

k n
DT s Y 0y v () sl
r=1

r=k+1m;ET

= {Equation (3.33)}

k n
Z W (t) - spllD) 4 Z 0
r=1

r=k+1

91

k n
r=1

r=k+1

= {Equation (3.33)}

k n
Sy sptV+ N7 () - sptD
r=1

r=k+1

= {Equation (3.34)}

k n
Z yv/[r} (t) - SP([T]) + Z W[T] (t) - sp(m)
r=1 r=k+1

- Z W (t) - spl, -
r=1

Using the above claims, we now complete the proof of the lemma. By Theorem 3.25, > | i (t) -
sp(i) > S wy(t) - spls). By Claims 3.26.2 and 3.26.3, the AP solution corresponding with the
configuration chosen by Ufm-WC has objective function value at least that of any optimal solution. Thus,
any configuration chosen by Ufm-WC at time ¢ may also be chosen by Unr-WC, proving that Ufm-WC

is a special case of Unr-WC. O

3.5.1.3 Strong-APA-WC is a Special Case of Unr-WC

We prove that Strong-APA-WC is a special case of Unr-WC in Lemma 3.29. The following definitions
and lemmas will be used in that proof.

The symmetric difference and its properties discussed in Lemma 3.27 are well-known in graph theory.

vV Definition 3.8. The symmetric difference between matchings M and M’ is MAM' = (MU M) \

(MLNM'), i.e., the set of edges in either matching that are not in both matchings. A

v Example 3.8. Figure 3.13 illustrates two matchings M (Figure 3.13a) and M’ (Figure 3.13b) on the

same graph, as well as the symmetric difference MAM (Figure 3.13c). A

> Lemma 3.27. Consider matchings M and M’ on a graph. Consider the subgraph that includes the
edges of symmetric difference MAM' (Figure 3.13d). Every connected component of this subgraph is

either
* an unconnected vertex (e.g., 7 and 1),

92

(¢) Symmetric difference MAM'. (d) Subgraph containing only edges in MAM!'.

Figure 3.13: Symmetric difference of matchings.

1 2 T3 T4 T1 T2 73 T4 T1 2 73 T4

(a) Matching M. (b) Matching M. (c) Edges of MAM'.

Figure 3.14: Cases 3.28.2 and 3.28.3.

* apath (e.g., (72,7?2774,7T3)),

» oracycle (e.g., (15,74, Te, T5, T5))- 4

Proof. By Definition 2.22, any vertex is present in at most one edge in either matching. By Definition 3.8,
every edge in the subgraph is present in either Ml or M. Thus, each vertex in the subgraph is incident

with at most two edges. Given this, only the structures listed in the lemma statement are possible. [

— —
> Lemma 3.28. Let matching M be an optimal solution for MVM (T, Y, IE) with ¢ € RE,. Let

%
¥’ € RZ, be such that
Vrer: i =0= =0, (3.35)

93

and
V7, Tp € T 1 i <y = b <A (3.36)

i.e., the relative order of weights is the same in ¢ and ¢’. M is also an optimal solution for

MVM(T,W,E)’,IE). 4

Proof. We prove by contradiction. Suppose otherwise that M is an optimal solution for instance
MVM (7’, , ?, E) and not for instance MVM (7‘, m, ?’ , E) . Let 7* denote the subset of matched tasks
in ML. Let M be an optimal solution of MVM (7‘, , ?’ , E) such that any other optimal solution matches
at most as many tasks of 7* as M.

Consider the subgraph induced by MAM'. Because M’ is optimal for MVM (7’, T, ﬁ’ , E) and M is
suboptimal, there exists some 7; with ¢§ > 0 such that 7; is matched in M’ and not in M. By Lemma 3.27,
7; 1s the starting vertex of a path in the subgraph. There are three cases depending on how this path

terminates.

<« Case 3.28.1. The path in MAM' beginning with 7; (e.g., 72 in Figure 3.13d) terminates at a

processor m; (73 in Figure 3.13d). >

The path in MAM' beginning with 7; is an augmenting path for matching M. For instance
MVM (T, m, E}, IE), inverting the edges of this augmenting path (e.g., in Figure 3.13d, adding
(12, 792) and (74, 3) and removing (74, 72)) changes the weight of M.,» by 1); (12 in Figure 3.13d).
By the contrapositive of (3.35) and because ¢, > 0, this change is positive. This contradicts that M

%
is optimal for MVM (7’, m, Y, E) ¢

Cases 3.28.2 and 3.28.3 are illustrated by matchings M and M illustrated in Figures 3.14a and 3.14b,

respectively, and the path (71, 71, 72, 2, T3, T3, 74) in their symmetric difference MAM' (Figure 3.14c¢).

<« Case 3.28.2. The path in MAM' beginning with 7; (e.g., 71 in Figure 3.14c) terminates at a task

i, (14 in Figure 3.14c) such that ¢} > ;. >

This path is an alternating path for matching M (e.g., in Figure 3.14a, (71, 71) ¢ M, (12, 71) € M,
%
(12, m2) ¢ M, etc.). For MVM (7’, T, P, IE), inverting the edges of this alternating path changes

94

the weight of M,» by ¢; — v, (e.g., inverting the edges in Figure 3.14a yields the matching in
Figure 3.14b, which matches 71 and does not match 74, changing the total weight by 1)1 — 14). By
the contrapositive of (3.36) and because v} > 1, this change is positive. This contradicts that M is

%
optimal for MVM (T, w1, E) . ¢
<« Case 3.28.3. The path in MAM' beginning with 7; terminates at a task 75, such that ¢; < ;. »

This path is an alternating path for matching M (e.g., in Figure 3.14b, (11, 71) € M, (12, 71) ¢ M,
(12,72) € M, etc.). Because this alternating path begins at 7; (e.g., 71 in Figure 3.14c), which is
matched in M’ and not matched in M (77 is matched in Figure 3.14b and not in Figure 3.14a), and
terminates at 7 (74), 7 is matched in Ml and not matched in M (74 is matched in Figure 3.14a and
not in Figure 3.14b). Thus, 7 € 7* (e.g., 74 € {72, T3, T4 }).

If ¢} = 9, then for MVM (T, T, ﬁ’ , E) , inverting the edges along the alternating path does
not change the weight of M’ and increases the number of tasks in 7* that are matched in M’ (e.g.,
inverting the edges in Figure 3.14b yields Figure 3.14a, in which task 74 € {79, 73, 74} is matched).
This contradicts that M is the optimal matching that matches the most tasks in 7*.

Otherwise, if ¢} < 1}, then inverting the edges along the alternating path increases the weight

_>
of matched tasks by ;. — ;. This contradicts that M is optimal for MVM (7-, w1, IEJ) ¢

All cases result in a contradiction. This proves the lemma. O

> Lemma 3.29. Strong-APA-WC on an IDENTICAL/ARBITRARY multiprocessor is a special case

of Unr-WC. 4

Proof. We prove the lemma by showing that at any time ¢, the configuration corresponding to the

matching M that optimally solves the MVM instance defined by Strong-APA-WC also corresponds to

an optimal solution to the AP instance defined by Unr-WC. Under IDENTICAL/ARBITRARY, this AP

instance reduces to an MVM instance with weight ¢); = ¥;(¢) for each task 7;. At first glance, this is

our proof obligation. This proof is incomplete because Strong-APA-WC requires that ; satisfies (2.12)

and (3.21), which both may be violated when); = ¥,(t). (2.12) is violated when ¢); = ¥;(t) because a

task 7; € Tyay(t) with ¢ < pp;(t) has ¥;(t) = 0 (by Definition 3.7). (3.21) is violated when v; = W, (t)

because we may have tasks 7; and 7; in 7yay (t) such that t < pp;(t), t < pp;(t), and pp;(t) < pp;(t),in

which case we have ¥;(t) = 0 = ¥;(t).

95

%
Our proof obligation is to show that an optimal matching under a v satisfying (2.12) and (3.21)
remains optimal under ¥;(t).

_>
Consider any such 1. By (2.12) and Definition 3.7, we have
Vet ;=0= ¥;(t)=0. (3.37)

By the contrapositive of (3.21), we have V7;, 7; € Ty (t) : ¥ < 95 = ppi(t) > pp;(t). By

Definition 3.7, we have
VTi,Tj S Trdy(t) s < ﬂJj = lpl(t) < g/j(t). (3.38)

By Definition 3.7, we have

VT & Tray(t) - Vry e T Wi(t) =0 < Wy(t). (3.39)
By (2.12), we have
VT € Tray(t) V75 & Tray(t) © s > 1. (3.40)
We next prove
V1, €T P by = Wa(t) < () (3.41)

using (3.38)-(3.40). Given tasks 7; and 7;, there are three cases for which of these tasks are in 7,4y (%) at
time t. If 7;, 7; € Tyqy(t), then (3.38) implies (3.41). If 7; ¢ 7ay(t) and 7; € Tyay(t) o1 73, 7 & Tray(t),
then by (3.39), we have ¥;(t) < ¥,(t), which implies (3.41). If 7; € T4y (t) and 7; ¢ Tyqy (%), then by
(3.40), we have v; > 1);, which (as the negation of the premise v; < 1);) implies (3.41). All cases imply
(3.41).

The lemma follows from (3.37), (3.41), and Lemma 3.28.]

96

3.5.2 Response-Time Bounds

In this subsection, we derive response-time bounds under Unr-WC. These bounds asymptotically

approach infinity as a parameter we denote the slowdown factor approaches O.

V Definition 3.9. Task system 7 has slowdown factor st € (0, 1) if, for any time ¢, 7o(t) is UNRE-
LATED-Feasible when all processor speeds are multiplied by (1.0 — s¢), i.e., at any time ¢, there exists

X e]Rgg” such that

VT € Tact() : Z (1.0 — s¢) - spt - Tij > U (3.42)
T;ET
V1 € Taa(t) Y @i < 1.0 (3.43)
T;ET
Vrjem: Y m; <10 (3.44)
TiGTaC;(t)
are true. AN

Observe that T, (t) satisfying the UNRELATED-Feasible condition is equivalent to having a slowdown
factor s¢ = 0. Having s¢ > 0 indicates that the system has excess capacity. Note that Definition 3.9 does
not require that the same X satisfy (3.42)-(3.44) at every time instant. Time instants with distinct 7,¢¢(¢) are
expected to have distinct X'’s.

The maximum speed of any processor in the system will also be a term in our derived bounds.

V Definition 3.10. The maximum speed is

sp™™ £ max {spi’j} i VAN

TiET,M;ET

As in our analysis of HP-LAG systems, our proof strategy for Unr-WC will be to upper bound some

function of tasks’ deviations. This upper bound will be Syy.

V Definition 3.11. For task system 7 with slowdown factor s/, let

2
o [(maa) (04 Ty) (sp™ + up)
Bun = U] .

97

Static systems. As with our analysis of HP-L.AG systems, we first show in Lemma 3.34 that a function of
tasks’ deviations is bounded for an interval where the set of active tasks is constant before considering tasks

that enter and leave dynamically. Lemmas 3.30-3.33 are used in the proof of Lemma 3.34.

> Lemma 3.30. For any time t,Vr; € 7: 30 > 0: Vt* € [t,t+6) :

(devs(t*))?

. CSD; 2

Proof. Restrict § to be small enough such that the current job of 7; and csp;(t) are both constant over

[t,t + 0) (as allowed by the Non-Fluid Assumption). There are three cases.
<« Case 3.30.1. ¢ < vt;(t). >

Further restrict § such that § € (0, vt;(t) — t). By Lemma 3.6, for any t* € [t,¢ + ¢), we have
vti(t*) — t° > wti(t) — t*. Because t* —t < 0 < wt;(t) — t, we have vt;(t*) — t* > 0. Thus,
t* < Uti(t*).

By Definition 3.3 and because ¢ < vt;(t) and t* < vt;(t*), we have dev;(t) = dev;(t*) = 0.

Thus,
(dev;(t*))?
—0
— 022t —1)-0- <\/u7— csp;(f)>
= (e + 200" =0 denst) - (i - 20

< {Squares are non-negative }

(devi(£))? + 2(t* — 1) - dev (1) - <\/u7— CSPi(t)) 2 < o C%)>2

This is the lemma statement for this case. ¢

<« Case 3.30.2. ¢ > vt;(t) and t* < vt;(t¥). >

98

(devi(t))?
= {Definition 3.3}

(max {0, /u; - (t* — Uti(t*))})z
= {t" — ot;(t*) <0}

0

< {Squares are non-negative }

(aenter s - (v 20

\/uﬁ-
, CSD: 2
= (devi(t))? +2(t" — 1) - devy(t) - <¢?7 - c%)> +(t—1)%- <¢@7 - pu(t)>

This is the lemma statement for this case.

< Case 3.30.3. t > vt;(t) and t* > wvt;(t*).

(devy(7))?
= {Definition 3.3}

(max {0, v/ - (£* — vt;(£*))})?
— {F — oti(t*) = 0)

(Vi - (£ = vt;(t)))?

= {Definition 3.2}

() — Temi(t*)>)2

(&) (t*)
= {t* € [t,t + 0) and the current job is constant over [t,t + J)}

(v oo mt))

= {t* € [t,t +) and csp;(t) is constant over [t,t + 0)}

<\/u7~ <t*)T ei(t) — remi(t)cj_(t()t* —t) - espilt))) 2

(\/17 (t* —at) — T8

99

ci(t) — rem;(t)
ci(t)

= <\/u7 <t—a¢(t) =T,

= {Definition 3.2}

(v (1=t + @ =0 - -0 “pi“)»?

— (ﬁ (t — vti(t)) + Vui - <(t* —t) = (" ~1) cij;ft) CSpi(t)>>2
{

t > vt;(t) and Definition 3.3}

devs(t) + /i - <(t*—t) (t* _t)c;[(t) cspz(t)>)2

devi(t) + \/u; - <(t* - CSpZ >>2

= (devs(t))* +2(t* —t) - dev;(t) - <\/’LT— C‘i]/)i)> +(t—t)% <\/u7—

This is the lemma statement for this case.
All cases yield the lemma statement.

> Lemma 3.31. For any time ¢, if we have

Y devi(t) - <C‘i7;ﬁ) - f)

T ET

then 30 > 0: V" € [t,t+6) : 30, o, (dev(8)* > 0. o, (devi(t*)).

Proof. By Lemma 3.30, for each task 7;, there exists §; > 0 such that V¢* € [t,t + §;) :

(dev;(t*))?

< (o) + 206 =) den(0)- (v~) 1 o = (s - 220

N

100

. 2
) — (= 1) Ci;) cspi(t)>)

(3.45)

> 2 (3.46)

Let § £ ming,c, {J;}. By the definition of § and (3.46), we have Vt* € [t,t + §) :

> (devi(t))?
< Z (devi(t))*| +2(t* —t) [Z dev;(t) - < u; — c%)>] (3.47)
.2 —_ cspilt)
+(t"—1) [;(i ﬂ)]

7

2
We consider two cases depending on the value of ZTZ'ET (c%) -/ u1> . Note this value, being a

sum of squares, is non-negative.

(¢ 2
«Case33L1 Y, ., (950 - y5) =0, .

For any t* € [t,t + ¢), we have

(devi(t))?

< {Equation (3.47)}

;(devi(t))Q +2(t" —t) LZGT dev;(t) - (\/uj._ C%))]
« 2 —_ cspi(t)\?
+ (" —1) [;@(f N)]
= | Y (devi()?| +2(t" — 1) [Z dev;(t) - (\/@7 CSp;fQ) + (@t —1%0
< {Equation (3.45)}
> (devi(t))”. ¢
<Case3312. %, (20 - \/ui-)z > 0. >

23 s e devi(t): (L\/%t)_m>
ZTiET (L\/%t)_\/uﬁ)2

Let 6’ £ min {5, } Because § > 0 and (3.45), we have that 6’ > 0.

101

For any t* € [t,t 4 0’), we have

(dev;(t*))?

< {Equation (3.47) and &' € (0, 4]}

> (devi(t))Ql

ot — 1) [Z devi(t) (ﬁ-— c‘i’%)
= (devi(t))zl

+(t* = 1) ([Zdev, (ﬁ— ﬁ

2 ZnET devi(t) ’ (csp
<t —t<d < 5
csp;(t
Srier (S5 - fw)

[(devi(t))*| + (t* —1) -0

TiET

=) (dev(t))?.

T ET

All cases yield the lemma statement.

> Lemma 3.32. For any task 7; and time ¢, we have

102

Proof. We have
vti(t) — ppi(t) = {Definition 3.2}

i(t) — rem;(t)

ai(t) + T; 2 0 — ppi(t)

< {rem;(t) > 0}

a;(t) +T; — ppi(t)

= {Definition 2.5}

di(t) — ppi(t)

< {Definition 2.20}
¢

<Tp + 9,

and
ppi(t) — vt;(t) = {Definition 3.2}
ci(t) — rem;(t)

ppi(t) — ai(t) — T)

< {rem;(t) < (1)}
ppi(t) — ai(t)

< {Definition 2.5}
ppi(t) — di(t) + T

< {Definition 2.20}
o+ T,

< ¢+ Ty

There are four cases to consider.

<« Case 3.32.1. ¢ > vt;(t), 7; € Tray(t), and t > pp;(t).

dev;(t)
\/1714

- ![/l(t)' = {Definition 3.3}

|t — wti(t) — ¥i(t)]

103

(3.48)

(3.49)

= {Definition 3.7}
|t — vti(t) —t + ppi(t)]
= |ppi(t) — vti(t)|
< {Equations (3.48) and (3.49)}

Ty +¢

« Case 3.32.2. t < wt;(t), 7; € Tay(t), and t > pp;(2).

dev;(t)
NG

— Wl(t)‘ = {Definition 3.3}

10— &;(t)|

= {Definition 3.7}
t — ppi(t)

< {Definition 2.20}
t—di(t) + ¢

= {Definition 2.5}
t—ai(t) = Ti+ ¢

< {rem;(t) > 0}
ci(t) — rem;(t)

t— a; (t) — Ti o (t)

+9¢
— {Definition 3.2}

L= ob(t) + 6
< {t < wti(t)}

¢

<Tp+¢

<« Case 3.32.3. ¢ > ut;(t) and either 7; ¢ 7rqy(t) or t < pp;(1).

104

Because ¢ > vt;(t), by Definition 3.3 and Lemma 3.1, we have that 7; € 74y (¢). Within this case,

we must have ¢ < pp;(t). Thus,

‘ dev;(t)

NG - W,(t)' = {Definition 3.3}

|t — oti(t) — Wi(t)|
= {Definition 3.7}
It — vts(t) — O]
=t — vt;(t)
< {t < ppi(t)}
ppi(t) — vti(t)
< {Equation (3.49)}

Ty + 9. ¢

<« Case 3.32.4. ¢ < vt;(t) and either 7; ¢ Trqy(t) ort < pp;(2). >

’ dev;(t)

N - %(t)’ = {Definition 3.3}

0 — ()|

= {Definition 3.7}
00

=0

<Tp+¢ ¢

The lemma follows in all cases. OJ

> Lemma 3.33. Consider 7, (t) for some time ¢. The minimization problem (recall Definition 3.11)

min Z x;l such that

Ti € Tact (t)

105

> = fuw (3.50)

TiETacl(t)

X € RY, (3.51)

has optimal value at least

§ oy () (04 T) (97)
VI s upo '

T’LETacl(t)

Proof. This problem is optimized when some x;+ = \/Bunr such that u;« = max,, ¢) {ux}, and
xj = 0forall j #i*.

We prove this by showing that the objective value of any other solution can be decreased.

» Claim 3.33.1. Let7;+,7; € Tact(t) be two tasks such that for some solution vector ?, we have

x; > 0. The vector X' with k™ element

0 k=j
T =\ frR ta? k= (3.52)
Tk k=i and k # j
is also a solution. «

Proof. 'We need to show that X' satisfies (3.50) and (3.51). (3.51) is true because each case for the
value of 552; 1s non-negative, i.e., 0 > 0, , /x?* =+ x? > 0, and xy > 0 (because (3.51) was true for
the original solution X).

For (3.50), we have

G e R) A D DR

T ETact (1) T ETact () \ {73+, 75 }
= {Equation (3.50)}

(2h)” + (25)” + Buws — . — 2}
= {Equation (3.52)}

(xf* + x?) +0% + Bunr — a:lz — x?

106

= ﬁUnr- [|

» Claim 3.33.2. Let 7=, 7j € Ta((t) be two tasks such that for some solution ?, we have z; > 0
and u;+ > wuj. Solution X' as defined in Claim 3.33.1 has an equal or lower objective value than X .

<

= 0)

f
right triangle (see Flgure 3.15a). By the Pythagorean Theorem, the length of the hypotenuse is

2 2
Ty* IJ
\/ (\/W) + (\/W) . By the Triangle Inequality, the length of any side of a triangle is at most the

sum of the lengths of the other two sides (see Figure 3.15b). Then

N

> {Pythagorean Theorem and Triangle Inequality }

Sy ()

1 Uir o (3.53)

Vit 2

> {u;+ > ujand z; > 0}

1
2 4 z2

A/ Ug* wi*])

Thus, the objective value of X' is

. o xz
waf* 2w

Tk ETact (T T ETact (8)\ {73+ ,75 }

= {Equation (3.52)}

\/x —{—‘T 0 Z T

N

< {Equation (3.53)}

oy VI

TkETau \{

T Z; Tk
+ \/j Z \/Tik

T €Tact () \{7i% 75}

VIR

B
=

ETact (1)

107

VUir
)+ ()

(b) Triangle Inequality.
(a) Pythagorean Theorem.

Figure 3.15: Triangle properties.

Observe that any solution X that is not of form x;- = /By such that u = MaXy, cro () Uk}
and z; = O for any j # ¢* can be modified as described by Claim 3.33.2 without increasing the objective
value, thereby increasing x;+ and setting some z; to 0. Thus, there must be an optimal solution of this
form.

The objective value of such an optimal solution is then

Y =={i#i=>z=0}
Tk € Tact t)
XTgi*

U=

/BUnr

Ug*

Tﬁ

= {Definition 3.11}

(nac) (64T 1)) (sP™ +)

u[l] : Sl-u[y
(7
(e (9 +) (5™ + up)). 0
= s+ Uy

> Lemma 3.34. Let [to,t1) be a time interval such that for any ¢ € [to,¢1), 7 has slowdown factor s¢

and

FreoM C o VE € [to, t1) ¢ Taat(t) = 79

108

and at time ¢g, we have

> (devi(to))* < Bunr- (3.54)
TieTCOHS[
We have
> (devi(t)* < Bunr- (3.55)
TieTconst
forany t € [to,t1). Q

Proof. We prove the lemma by contradiction. Suppose otherwise that there exists at least one time
instant in [tg, ¢1) such that (3.55) is false. By (3.54), (3.55) is true at time ¢(. Let ¢, € [to, 1) denote the
latest time instant such that (3.55) is true over [t, tp). We will show that the existence of ¢, leads to a

contradiction.

» Claim 3.34.1. Eneﬂ-w"“ (devi(tb))2 = Bunr- <

Proof. By the definition of ¢, we have that

Vte [to,ty): D (devi(t))? < Bunr. (3.56)

Ti ETCOHSI

Thus,

Bunr > {Expression (3.56)}

lim > (devi(t*))?

t* _)tb_ 5 €const

2
= Z lim dev;(t%)
TieTconst t*g)tbi

> {By Definition 3.3, dev;(tp) > 0, and, by Lemma 3.10, lim dev;(t*) > devi(tb)}

sty

D (devi(ty))?.

Ti ETCOHSI.

109

Also by the definition of ¢y, we have that

Vo>0: € [tyty+0): Y (devi(t))* > Bunr, (3.57)

T eTcﬂﬂbl

because otherwise ¢y, is not the latest time instant such that (3.55) is true over [¢g, tp). Thus,

Bunr < {Equation (3.57)}

lim " (devi(t"))”
t*_>tlj> Tie.[-c(mst

2
= Z lim dev;(t*)
7; Econst t* *)tlj—

= {Corollary 3.12}

D (devi(ty))?.

i ETconst

Because Sunr < Y. rcons (dev;(ty))? < Bunr, we must have pR— (devi(ty))* = Bune. W

ST 1)) (5p™ +upn))

> Claim 3'34-2. ZTieTconSl d@'Ui(tb) Z (nacl)(

\/uiz' SE“LL["] <«
Proof. Consider, for each task 7, € 7™ letting x; = dev;(tp) in the optimization problem

presented in Lemma 3.33. By Claim 3.34.1, letting xz; = dev;(t) satisfies constraint (3.50). By

Definition 3.3, each dev;(t,) > 0. Thus, letting z; = dev;(t,) also satisfies constraint (3.51). The

claim follows from Lemma 3.33. [|
> Claim 3343 3, . devi(ty) - (<58 — /i) > 0. <

Proof. Let Xst e]Rg'(’]” be a solution to constraints (3.42)-(3.44) in Definition 3.9 at time ty,.
Such an X*¢ is guaranteed to exist by the lemma statement (i.e., 7 has slowdown factor s¢) and
Definition 3.9.

Let X°8 denote an optimal solution to the AP instance defined by Unr-WC at ¢, that corresponds
with the configuration chosen by Unr-WGC at time ¢y, i.e., ready task 7; is scheduled on processor 7;
only if 7% = 1.

Compare constraints (3.43) and (3.44) as mentioned in Definition 3.9 with constraints (2.2) and

(2.3) of the AP instance. Observe that because X*¢ satisfies (3.43) and (3.44), X*¢ also satisfies

110

constraints (2.2) and (2.3) of the AP instance. The only constraint of the AP instance that Xt may

not satisfy is (2.4). By Theorem 2.1, the objective function value for integral optimal solution X2 is

at least the value for non-integral solution X*¢. By the definition of Unr-WC, the objective function

value of the AP instance for arbitrary solution X is » | ijew W;(ty) - sp™ - z; j. Thus,

DD IRANIERED 9) DECISIES

T, ET T;ET TiET T;ET

‘We have

Z WZ' (tb) + CSP; (tb)

Ti € Tact (tb)

Z Wi(ty) - cspity) + Z W;(ty) - cspi(ty)

T €Trdy (tb) Ti €Tact (to) \ Tray (tn)

{By Definition 3.7, 7; & Tray(tp) = ¥i(tp) =0}

> Wilty) - espilty) + > 0

Ti€Tray (tb) Ti €Tact (tv) \ Tray (o)
> Tilty) - espilty) + > >0 sph -l
Ti ETrdy (tv) Ti €Tact (tp) \ Trdy (tp) TG ET

{By Definition 3.7, 7; ¢ Tay(ts) = ¥;(ty) = 0}

Z Wi(tb) . CSpZ'(tb) =+ Z Z v, (t

T €Trdy (tb) Ti €Tact (to) \ Tray (to) TG ET

sl
.CI?,L e

cfg

2
,J
x7]

(3.58)

(3.59)

By Definition 2.21, if, for task 7;, we have csp;(ty) # 0 (i.e., task 7;’s execution speed is

nonzero at time ¢y), then 7; is scheduled on some processor 7+ with speed spi’j " at time ¢, and

cspi(ty) = sphI”

we have z; -

cfg

= 1 and, for any 7; # mj~, xfgg = 0. Thus,

cf;
cspi(ty) # 0 = cspi(ty) = Z sphd - jg

T;ET

111

. If task 7; is scheduled on processor 7+, by the definitions of Unr-WC and X*f¢,

(3.60)

Continuing the derivation in (3.59), we have

Z !pi (tb) + CSP; (tb)

Ti € Tact (tb)

D

T € Trdy (tb)

@i(ty) - cspi(ty) +

Z Z Wi(ty) -

Ti €Tact (to) \ Tray (o) T3 E™T
{Equation (3.60)}

Z Z Wy (ty) - sp™ - x;gg n

Ti €Ty (to) TG ET

Do D Wilt) s af

TiGTacl(tb) miET

T € Tact (tb)\'rrdy (tb) TjET

By Definitions 2.11 and 2.13, 7; ¢ Tuct(tp) = 75 ¢ Tray(tb) and,

by Definition 3.7, 7; §é Trdy(tb) = Wi(tb) =0

Z Z W;i(ty) - sp™

TiET T;ET

cfg
" i

v

{Equation (3.58)}

Z Z Wi(ty) - sph -

TiET T;ET

1’7]

By Definitions 2.11 and 2.13, 7; & Tuci(tp) = 75 ¢ Tray(tb) and,

by Definition 3.7, 7; ¢ Trdy(tb) = Wi(tb) =0

> Y i)

TieTaCI(tb) TiET

st
"L

Z Z Uy(ty) - sp™ -z

sph - x;

cfg
1,5

(3.61)

By the definition of X*¢, X*¢ satisfies (3.42) at time t;,. By multiplying both sides of (3.42) by

Vi (ty)
1.0—sf

i (ty)
> 1.0—sf 2
st

T3 2 D remna(ty) Yills) T 57+ By (3.61), we have

because, by Definitions 3.7 and 3.9

sphd -

D

Ti € Tact (tb)

Wi(tb> . Cspi(tb) > Z Wi(tb)

Ti ETact(tb)

112

and summing over the tasks in 7, (¢p) (note that this preserves the direction of the inequality

0 for each task 7;), wehave 3 erjew W (ty)-

Uj

10 (3.62)

st

Thus,

v

v

v

3 devi(ty) (C“”p"(tb) - ﬁ)

TiET \/17Z
{Lemma 3.5}
cspi(ty) >

Z dev;(t <— U;
TzeTau(tb) \/UZ

dev
) (cspalty) — u:)
TzeTaCI(tb)

By Lemma 3.32,

def/%b) - %(tb)‘ <Tpy+o

= Wi(ty) — L%b) <Tp+¢

= U(ty) — Tpyy — ¢ < 2vill)

\/m
Z (@ilty) — Ty — @) (espi(ty) — us)
TiETaa(tb)

S Wilte) espilt) — D> Wilte)ui— Y (T + @) (espilte) — us)

T3 € Tact (t) T €Tact (tp) T3 € Tact ()

{—wu; < 0 and, by Definitions 2.21 and 3.10, sp™** > csp;(ty) }

Z Wi(tb) . cspi(t) - Z Wi(tb) C U — Z (T[l] + ¢) (spmax)

Ti € Tact (tb) Ti ETact (tb) Ti € Tact (tb)

{By Definition 2.13, nact > |Tact(tv)|}

Do Wilte) - espi(t) = Y Wilty) - wi — (mact) (Tpyy + ¢) (sp™)

Ti € Tact (tb) Ti ETact (tb)
Uj Usg
Ui(ty) - i(t) — vt vt
2. Tilb)-espit) = D Wilb)gg ot L Vil g
Ti € Tact (tb) Ti € Tact (tb) Ti € Tact (tb)
- Z Wi(ty) - ui — (Mact) (T[l] + ¢) (sp™*)
TiETaCI(tb)
{Equation (3.62)}
U; ax
Z v (ty) T0—st Z Wi(ty) - i — (act) (Tpay + @) (sp™)
TieTact(tb) T’LETdcl(tb)
1 oo
{ 10— 57 kzo s¢* because, by Definition 3.9, s/ € (0, 1)}

> wm) (ZS”‘)— S) i () (T +) (™)

TiGTact(tb) k=0 TieTact(th)

113

= Z v, (tb (Z S€k> nact T[l + <f>) (mdx)

Ti € Tact (tb)

Z Wi(ty) - ui - s — (nact) (Ty + @) (sp™)

T: ETact (tp)
{ui > up

Z Wi(tb) *Ulp] - sl — (nact) (T[l} + ¢) (SpmaX)

Ti € Tact (tb)

v

AV

d i(t d i(t
2 {By Lemma 3.32, e\v/éb) —Ui(ty)| < Ty + 0= w

dev;(ty)
> (N =Ty - ¢>'U[n1'85—<”act) (Tpy + ¢) (sp
TieTaCI(tb)
devi(tb)
= > (\/u—)‘U[n}'sﬁ_ Y. (T +0) st
T € Tact (tb) ! T € Tact (tb)

- (nact) (T[l] + QZ)) (SpmaX)

> {85 S (O, 1) = Uy st > —U[n}}

devi
> (\/u(»fb))“[n]'sﬁ— Y. (Ty+¢)u

T3 € Tact (tb) Ti ETact (tb)

— (Mact) (T[l] + ¢) (sp™)

{By Definition 2.13, nyct > |Tact(tn)|}

devi(tb)
X () e o) (0
Ti CTact (b

v

~Tp—¢ < ‘I/i(tb)}

max)

(Tpy + ¢) (sp™™)

= Z devi(tb)) Uy - S — (Mact) (T[l} + ¢) (Spmax + u[n])

N4

> {Claim 3.34.2}

T € Tact (tb)

(mac) (& +) (0™ + upn)) = (nact) (T +) (9™ +)

=0.

This is the claim.

By Claim 3.34.3 and Lemma 3.31, we have 3t* € (ty,t1) : Vt € [to,t") : D . (devi(t))? <

>omer (dev(ty))?. Because Tu((t) = 7™ for t € [to, ;) and by Lemma 3.5, we have Jt* €

(to,t1) @ YVt € [to, 1) + D2 creons (devi()? < 32 coome (dev;(ty))?.

114

By Claim 3.34.1, we have

Jt* € (th,t1) 1 VEE [tn,) 1 Do, creonn (devi(t))* < Bunr. This contradicts that t,, is the latest time

instant such that (3.55) is true over [tg,), proving the lemma.]

Dynamic tasks. We now show that the sum of squares of deviations is upper bounded even when tasks enter

and leave the system.

> Lemma 3.35. If task system 7 has slowdown factor s/, then we have
Z (devi(t))2 < Bunr
TieTact(t)

for any time ¢. <

Proof. 'We prove by induction on the activation time instants ;' for k£ € N. The induction hypothesis is

as follows:
vt e (—oo, 5 D (devi(t))® < Buar. (3.63)
Ti ETact (1)
The base case of £ = 1 is considered by the following claim.

» Claim 3.35.1. Vt € (=00, %] : 3y (devi(t))® < Bunr. <

Proof. By Definition 2.14, Vt € (—o0, t{%),

Y (dewi(t)* =) (devi(t))®

Tie'racl(t) €D

=0

< 5Unr~

It remains to prove that ») (devi(t"{‘:‘))2 < Bunr- We have

T ETact (t?a

Z (dev; (t"l‘“))2 < {Lemma 3.10}

T3 ETact (t‘}a)

2
> (lim devi(t*)>. (3.64)

TieTacl(tala) t**)(tlic‘)i

115

By Definition 2.14, for any task 7; and t* < ti, task 7; is inactive at t*. By Lemma 3.5, for any

time ¢* < ¢{%, dev;(t*) = 0. Thus, lim ,) dev;(t*) = 0. Continuing from the derivation

— (t"ic‘

paused at (3.64), we have

2
Z (dev; (t‘{‘:t))2 < < lim devi(t*)>
)

73 ETacr (1) — #o (19)”
= > 0
Ti€Ta(H)
—0
< Bunr-

This concludes the proof of Claim 3.35.1, the base case of the inductive proof of Lemma 3.35. W

Our remaining obligation is to prove that (3.63) implies the (k + 1)th case. This is split among the

following two claims.

» Claim 3.35.2. (3.63) implies that

vt e [tzctv ticjrl) : Z (devi(t))z < ﬁUnr' |

Ti € Tact (tzcl)

Proof. Let 79t & 7, (tft). By Definition 2.14, Vt € [t} ¢}) © Taat(t) = 7™, The claim

follows from (3.63) and Lemma 3.34 with [to, t1) = [t} £ 4). [

> Claim 3.35.3. 30 (s) (devi(£))* < Buar. <

Proof Let 704 & 7. (tic_f_l) N Tact (tf‘) and ™"V £ 7, (tzcj_l) \ Tact (t%c‘). 74 denotes tasks of
Tact (51) that were also active in [ti, 2), while 7" denotes tasks of 7y (3) that became

3 3 act
active at time tk T

116

‘We have

> (devi(fy)”
7—i€7’acl<t?€c_[,_1)

= Z (devi(tﬁl)f +

€T

> (aenle)']

T, €TV

IA

{Lemma 3.10}

2 2
Z (lim devi(t*)> + Z (lim devi(t*)>
| 7ierold (1) rermew \t* = (65)

< {Claim 3.35.2 and 7°¢ C 7, (1§™) }

Z (lim _devi(t*)>]
riermew \t"—=(61,)

new

ﬁUnr +

act jact

= {Lemma 3.5and 7; € 7"V = 7; inactive over [t}; 7tk+1)}

/BUnr +0.

This completes the proof of the claim. |

Claims 3.35.2 and 3.35.3 form the induction step, thereby proving the induction hypothesis (3.63)

for any £ € N. Taking k — oo yields the lemma statement. U

Theorem 3.36 presents our response-time bound for Unr-WC under UNRELATED.

> Theorem 3.36 (Response-time bound for Unr-WC). For any task system 7 on UNRELATED with

slowdown factor s/, the response time of any task 7; when scheduled under Ufm-WC is at most

up) (nact) (Tpy + @) (sp™ +)

Tit Uj Upp) - SL A
Proof. Consider dev;(t) at any time instant ¢. There are two cases.
<« Case 3.36.1. Task 7; is inactive at ¢. [
By Lemma 3.5, dev;(t) = 0. ¢
« Case 3.36.2. Task 7; is active at t. >

117

By Definition 2.13, 7; € Tyt(t). By Lemma 3.35, we have) (devk())2 < Bunr- Because

Tk 67'act

squares are non-negative, we have (dev;(t))? < Bunr. By Definition 3.11, we have

(Mact) (Tpiy +) (sp™ + upy)

devi(t) < \/u - 7 . ¢

In either case, we have dev;(t) < ,/u (o (T”]Jﬂb)} (Se ax+u["]). The theorem follows from

Lemma 3.4. O

3.5.3 Evaluation

To evaluate the looseness of our response-time bound, we simulated Unr-WC with the priority point of
task 7; set as pp;(t) =t — ([TLZJ + 2) T;+d; (t) (recall from Section 3.5.1.1 that this choice of priority point
mitigates the non-work-conserving behavior and unpredictable migrations of Unr-WC) on randomly generated
periodic task systems and multiprocessors in Python. We generated task systems of sizes n € {20,40, 80},
with m € {4,8}. We also considered values of s/ ranging from {1/2,1/4,1/8,...,1/256}. Processor
speeds for each task were sampled uniformly from [0.0, 1.0). Utilizations were generated to match given s/
values by solving a maximization linear program with constraints taken from those of UNRELATED-Feasible
with decision variables X and U. The objective function was a linear combination of the elements of U, with
coefficients sampled uniformly from [0.0, 1.0). Periods were then sampled uniformly from [10, 100]. 100
task systems and multiprocessors were generated for each triplet of n, m, and s/ value. For each generated
system, response times of tasks were measured for 100,000 simulated time units in Python. A discrete time
simulation was not suitable because processor speeds were fractional. The simulation operated within a
while loop that was broken out of when the simulated time ¢ exceed 100,000. An object was stored for
each task 7; that tracked the remaining execution time rem;(t), the implicit deadline d(t), and [J This
last quantity is used to compute ¥, (t), as shown in (3.29). The actions within an iteration of the while loop

were as follows.

1. Compute a new configuration according to Unr-WC using the profit equation presented in (3.29).

2. Calculate the earliest next job completion time as the remaining execution of scheduled tasks divided

by the speeds of the processors executing them.
3. Find the earliest next job arrival time of any task.

118

—_ maximum

750 percentile

median

25" percentile

—1 minimum
Figure 3.16: Interpreting a boxplot.

4. Compute the next simulated time instant ¢ as the minimum of the time instants computed in the two

prior steps.

5. Increment the simulated time ¢ and reduce the remaining execution of the scheduled jobs by the

increment duration multiplied by the corresponding processor’s speed.

6. Process any jobs that complete at the new time ¢ (i.e., remaining execution is less than 107%) by
recording tardiness. If the next job of the corresponding task 7; is ready by time ¢, increase a?,(t) by
T'; and set the remaining execution to C; (non-ready tasks will have parameters updated when they

become ready).

7. Process any job arrivals at the new time ¢ (i.e., the next arrival time is within 1076 of ¢). Update LTLJ
for any task 7; with a job arriving at ¢ (because we have assumed synchronous periodic arrivals, any

time instant where LTLJ changes must coincide with a job arrival).

For each pair of n and m, we plotted the maximum response time relative to the maximum period 77
of each task system against s¢. Boxplots illustrate the distribution of maximum response times (relative to
each task system’s T'y)) for the 100 task systems generated for each (n, m, sf) triple. Each boxplot shows
the quartiles of the distribution, i.e., the 0" (minimum), 25", 50" (median), 75", and 100" (maximum)
percentiles (see Figure 3.16).

These plots are presented in Figure 3.17 (s¢ halves at each step from left to right). From Figure 3.17, it
can be observed that, while response times increase as s¢ — 0, they do not scale inversely with s¢ (unlike our
analytical bound in Theorem 3.36).

While this suggests that our analysis is fundamentally pessimistic and that Unr-WC may actually be

SRT-optimal, this is not conclusive evidence. It has always been the case, even for standard EDF on

119

= [\
ot o
1 1

Resp. Time Relative to 7'y
=
(e}
1

JPTTTTT

0.5
00 T T T T T T T T
1 2 3 4 5 6 7 8
log,(1/sf)
(a) (20,4).
2.0
=
8 151
(0]
Z
=
2 1.0
(5]
E
=
a, 0.5 1 T
3
T
00 T T T T T T T T
1 2 3 4 5 6 71 8
log,(1/5¢)
(c) (80,4).
2.0
=
S 151
(0]
2
=
2 1.0
(4]
E T
H05
g, 0.5 1
=0T
(a7
00 T T T T T T T T
1 2 3 4 5 6 7 8

log,(1/s¢)

(e) (40, 8).

Resp. Time Relative to 7'y Resp. Time Relative to T’y

Resp. Time Relative to T’y

2.0 1
1.5 4
1.0 ?
0.5 T i:|l'i i:|l—l [‘[i [I‘J [|‘J i?
0-0 T T T T T T T T
1 2 3 4 5 6 7 8
logy(1/50)
(b) (40,4).
2.0 1
1.5 T
1.0 A P I_-I—-_|
0.5 7 ? %
0-0 T T T T T T T T
1 2 3 4 5 6 7 8
log,(1/s¢)
(d) (20,38).
2.0 1
1.5 4
Lo sao %i
0.5 1 T T L-T-J T
0.0 T T T T T T T T
1 2 3 4 5 6 7 8

log,(1/s¢)

(f) (80,8).

Figure 3.17: Response time against s¢. Captions indicate (7, m).

120

IDENTICAL (Devi and Anderson, 2008), that the response times of randomly generated task systems tends
to be lower than the worst-case response times of hand-crafted task systems. Unfortunately, the complexity
of Unr-WC and, more generally, of tracking remaining execution requirements of jobs under UNRELATED
seem to make computing schedules by hand intractable. For now, this has left simulation as our only approach

for counterexample searching.

3.6 Chapter Summary

In this chapter, we proved response-time bounds for WC schedulers. We established that response-time
bounds under HP-L.AG systems and proved that Ufm-WC under UNIFORM and Strong-APA-WC under
IDENTICAL/ARBITRARY satisfy HP-L.AG when feasible. We defined Unr-WC, a WC scheduler variant
under UNRELATED, and proved that Ufm-WC and Strong-APA-WC are special cases of Unr-WC. We
proved asymptotic response-time bounds that approach infinity as the system approaches violating the
UNRELATED-Feasible condition. Though we failed to prove the SRT-optimality of Unr-WGC, simulation

showed that observed response times do not approach infinity.

121

CHAPTER 4: sCHED_DEADLINE BACKGROUND

The practicality of EDF variants proposed in this dissertation were explored by implementing them
on top of SCHED_DEADLINE (via patches). Discussion of these patches requires an understanding of the
original SCHED_DEADLINE implementation, covered in this chapter.

The following description of SCHED_DEADLINE is based on Linux 6.7. Note that the work on SCHED__
DEADLINE detailed in the following chapters predates this version. Though support for some features (e.g.,
disabling migration, core scheduling, efc.) of the Linux scheduler were added since these older versions, the
behavior of SCHED_DEADLINE has been mostly consistent.

This chapter will cover code of the implementation. The names of types and struct members
will match the actual implementation, though only members relevant to SCHED_DEADLINE are included.
Function names will also match, though their presented definitions are simplified. All synchronization code
(e.g., spinlocks, memory barriers, read-copy-update (RCU), etc.) is omitted (functions will be reasoned about
as if they are atomic), as well as all code that does not affect SCHED_DEADLINE’s behavior (e.g., scheduling
statistics). Note that, as a simplification step, the bodies of many helper functions have been transplanted into

their caller’s pseudocode.

4.1 User-Space API

We begin by describing how the Linux scheduler is controlled via system calls and pseudo-file systems.

ID numbers of tasks. The user-space API manages tasks via ID numbers, usually process IDs (PIDs). With
POSIX threads (pthreads), the value returned by the C standard library function getpid () may not
match this kernel PID value. Before discussing the user-space API, we clarify this discrepancy.

From the perspective of the kernel, what we describe as a task corresponds to a st ruct task_struct,
to be detailed later. Each task_struct is represented in the kernel by a unique (within a PID namespace)

PID number (i.e., task_struct contains a member with identifier pid). System calls that modify a task

122

(e.g., change its affinity) indicate the target task by its PID, which is used by the kernel to look up a pointer to
the corresponding task_struct.

getpid () may not return the value of this PID member for a threaded task. The pthread library (as
implemented in the GNU C standard library) assigns each thread its own task_struct (and hence, PID).
Each pthread-corresponding task_struct also has a thread group ID (TGID), the PID of the task__
struct that spawned the pthread. For pthreads, getpid () returns this TGID. Be aware that some
documentation may use the term thread ID (TID) over the potentially ambiguous PID. Function gettid ()

consistently returns the PID field.

4.1.1 Scheduling Policies

The Linux scheduler is a hierarchical scheduler composed of many different schedulers, called scheduling

policies. These policies are
e SCHED_DEADLINE, which uses EDF;
* SCHED_FIFO and SCHED_RR, which use fixed-priority scheduling;

* and SCHED_NORMAL (default policy in Linux), SCHED_BATCH, and SCHED_IDLE, which use
Linux’s implementation of Earliest Eligible Virtual Deadline First (EEVDF) (Stoica and Abdel-Wahab,

1995).

Note that EEVDF was recently implemented as a replacement of Linux’s Completely Fair Scheduler
(CFS) and reuses much of the CFS code. As such, many identifiers in the EEVDF implementation retain
names referring to CFS (e.g., fair_sched_class, discussed in Section 4.2).

Tasks of SCHED_DEADLINE have statically higher priority than tasks of the fixed-priority policies,
which themselves have higher priority than tasks under the EEVDF policies.

A task’s policy is set via the sched_setattr () system call,! whose arguments are a target task and
a pointer to a st ruct sched_attr. This struct contains a member indicating the desired policy, as
well as corresponding scheduling parameters (e.g., for SCHED_DEADLINE, the period, budget, and relative

deadline desired for the target task). Note that because sched_setattr () has no C library system-call

!Scheduling policy and parameters can also be set with the sched_setscheduler () and sched_setparam ()
system calls, though only sched_setattr () can set a task’s policy to SCHED_DEADLINE. All three system calls
ultimately are serviced by the same kernel function ___sched_setscheduler (), discussed in Section 4.3.6.

123

wrapper, it must be invoked in a C program using the syscall () function. Appendix B of the SCHED_
DEADLINE documentation (Deadline Task Scheduling) provides an example.

Alternatively, a task’s policy can be modified from the command line using the chrt command (which
internally calls sched_setattr ()). For example, we can query the properties of a task with PID 2318 as
follows.

[root "1# chrt -p 2318

pid 2318’s current scheduling policy: SCHED_OTHER

pid 2318’s current scheduling priority: O

This command requires two clarifications. First, SCHED_OTHER is a user-space synonym for SCHED__
NORMAL, which is defined in the kernel. Second, the “current scheduling priority” printed by this command
is with respect to the fixed-priority policies SCHED_FIFO and SCHED_RR. This priority value is fixed at 0
for other policies.

The policy can be changed to SCHED_DEADLINE as follows.
[root “1# chrt -d -T 10000 -D 170000 -P 200000 -p 0 2318
[root "1# chrt -p 2318
pid 2318’s current scheduling policy: SCHED_DEADLINE

pid 2318’s current scheduling priority: O

pid 2318’s current runtime/deadline/period parameters: 10000/170000/200000

As units are in nanoseconds, this sets the execution time to 10us, relative deadline to 170us, and period to
200ps. Note that the 0 in -p 0 2318 signifies the desired priority relative to the fixed-priority policies.
Even though this argument is unused when setting a task to SCHED_DEADLINE, it is mandatory. Omitting
this argument will instead cause the command to query the current parameters, while providing any non-0

argument here will return an error.

SCHED_DEADLINE flags. The sched_attr argument of sched_setattr () is also used to set sched-
uler flags for the target task. The set of possible flags depends on the requested policy. At time of writing,

SCHED_DEADLINE takes three flags:

* SCHED_FLAG_RECLAIM that, when set, scales the task’s budget consumption using GRUB (see
Section 4.4.8), and when unset, scales budget consumption according to asymmetric capacities and

DVES;

124

* SCHED_FLAG_DL_OVERRUN that, when set, sends STIGXCPU to the task whenever its budget be-

comes negative;

* and SCHED_FLAG_SUGOV, which is used internally by the kernel to indicate that the task is actually
a privileged schedutil governor (see Sections 4.1.6 and 4.4.9) kernel thread that runs with infinite

budget and higher priority than any other SCHED_DEADLINE task.

SCHED_FLAG_RECLAIM is the only flag to affect the behavior of SCHED_DEADLINE. Thus, we will

omit the latter two flags when discussing the implementation.

4.1.2 Suspending and Yielding

A task can suspend due to sleeping or blocking on some resource. These suspensions are implemented
by invoking Linux system calls. For example, the nanosleep () system call arms a timer for the desired
suspension duration in nanoseconds, marks the calling task as interruptible (i.e., the suspension can be
canceled via a signal), then calls the scheduler to unschedule the now-suspended task. On the timer firing
or being interrupted, the task will be marked as runnable, and the scheduler may be called if the task has
high-enough priority to preempt the running task.

Tasks can also affect the scheduler by calling the sched_yield () system call, which takes no
arguments and always returns O in Linux. Roughly, sched_yield () is used to inform the kernel that
the calling task (which must be scheduled to have called sched_yield ()) is permitting other tasks of
similar priority to run. The exact behavior of sched_yield () is policy-specific. We will clarify this
with respect to SCHED_DEADLINE in Section 4.4.3. While sched_yield () can result in the calling task

being unscheduled, the calling task remains runnable (i.e., is not suspended).

4.1.3 Affinities

Tasks’ CPU? affinities are set via the sched_setaffinity () system call and cpuset controller
in the control group (cgroup) pseudo-file system (usually mounted at /sys/fs/cgroup). sched_

setaffinity () takes a target task PID, a bitmask size (in bytes), and a bitmask representing the desired

ZNote that the term CPU in the Linux kernel code is equivalent to the term “processor” as used elsewhere in this
dissertation.

125

affinity. Alternatively, taskset internally calls sched_setaffinity () to set affinities from the
command line. The affinity of a task with PID 2318 can be queried as follows.

[root "]1# taskset -c -p 2318

pid 2318’s current affinity list: 0-7

Argument —c indicates that output should be returned in CPU list format. Otherwise, taskset’s response
is a hexadecimal bitmask. The affinity can be set to CPUs 3 and 4 as follows.
[root "]1# taskset -c -p 3-4 2318

pid 2318’'s current affinity list: 0-7

pid 2318’s new affinity list: 3,4

Note that the kernel will automatically reduce the affinity requested by sched_setaffinity () (and
hence, the taskset command) to a subset of the CPUs permitted by the task’s cpuset, detailed in the
following paragraphs.

cgroups allocate resources (e.g., CPUs) to groups. Different resources are allocated by specific
controllers (e.g., the cpuset controller manages CPUs? and memory nodes). Groups are hierarchical in that
all groups are descended from a default root group managing all resources. Initially, all tasks belong to this
root group.

The root group is represented by a directory in the cgroup file system. Child groups are created by
making directories in their parents’ directories and may only be allocated resources owned by their parents.
Child groups of the same parent may share resources. The resources and tasks owned by a group are set by
writing to specific files in the corresponding directory. An example of this will be presented for the cpuset
controller.

cpusets have significance beyond setting the affinities of groups of tasks rather than individually. Based
on how cpusets are configured, Linux partitions the CPUs into root domains (i.e., clusters in real-time
terminology). As with the usual motivations for clustered scheduling, Linux uses root domains to reduce
overheads associated with migrations between many CPUs. We will detail in later sections how unexpected

scheduling behavior results when tasks’ affinity masks do not match their root domains.

*Note that the cpuset controller only manages affinities, and is distinct from the cpu controller, which manages
per-group bandwidth enforcement for non-SCHED_DEADLINE tasks, and the cpuacct controller, which primarily
tracks CPU usage statistics. Per-group throttling is not supported in SCHED_DEADLINE.

126

The interface and behavior of the cpuset controller changes depending on whether a version 1 or 2
cgroup file system is mounted. For version 1, the different controllers have distinct hierarchies. The root

group for the cpuset controller is typically at /sys/fs/cgroup/cpuset. The files of interest to us are
* cgroup.procs, a list of TGIDs of tasks in the group;
* cpuset.cpus, a list of CPUs belonging to the group;

* and cpuset.sched_load_balance, a binary value controlling whether or not tasks should be

migrated between the CPUs in the group to more evenly distribute tasks.

Writing 0 to cpuset . sched_load_balance generally indicates that child cpusets should form
their own root domains. For example, consider the following commands.
[root "1# cd /sys/fs/cgroup/cpuset
[root cpuset]# mkdir groupO
[root cpuset]# echo 0-3 > groupO/cpuset.cpus

[root cpuset]# echo 0 > cpuset.sched_load_balance

[root cpuset]# echo 2318 > groupO/cgroup.procs

These commands create a child cpuset group0 containing CPUs 0-3. CPUs 0-3 are allocated to their
own root domain, with any remaining CPUs being allocated to another root domain. Task 2318 is allocated to
group0, which will set task 2318 to have affinity for CPUs 0-3.

For version 2, all controllers have a single hierarchy. The root group for all controllers is located at

/sys/fs/cgroup. The files of interest to us are
* cgroup.procs and cpuset . cpus, which carry over from version 1;
* cgroup.subtree_control, alist of controllers permitted for use in descendent groups;

* cpuset.cpus.effective, the subset of cpuset.cpus actually allocated to the group (the

remaining CPUs in cpuset . cpus may be stolen by child groups, as we will describe shortly),
e and cpuset.cpus.partition, which signifies whether or not the group has its own root domain.

For example, consider the following commands.

127

[root "1# cd /sys/fs/cgroup

[root cgroup]# echo +cpuset > cgroup.subtree_control
[root cgroup]# mkdir groupO

[root cgroupl]# echo 0-3 > groupO/cpuset.cpus

[root cgroup]# echo root > groupO/cpuset.cpus.partition
[root cgroup]# echo 2318 > groupO/cgroup.procs

[root cgroupl# cat groupO/cpuset.cpus.effective

[root cgroupl]# cat cpuset.cpus.effective

These commands are the equivalent of the previously presented version 1 commands. The last two com-
mands, which display cpuset .cpus.effective for both group0 and the root cgroup, demonstrate
that CPUs 0-3 are in a root domain that is seperate from the root domain of the remaining CPUs 4-7.

Tasks
cgroup.procs). Inversion 1, this is done by writing task PIDs to file t ask s in the target group’s directory.

In version 2, this is done by writing ‘threaded’ to cgroup . type and PIDs to cgroup.threads.

4.1.4 Priority Inheritance Mutexes

The RT-mutex is a kernel data structure that provides suspension-based mutual exclusion with priority
inheritance. The meaning of priority inheritance depends on the scheduling policy of the highest-priority
waiter for an RT-mutex. If this policy is a fixed-priority policy (i.e., SCHED_FIFO or SCHED_RR), then the
owner executes as a SCHED_F IFO task with the waiter’s priority. If this policy is SCHED_DEADLINE, the
owner executes as a SCHED_DEADLINE task with the waiter’s period, budget, and relative deadline. Note
that unlike traditional priority inheritance, the owner does not execute with the waiter’s absolute deadline.
This will be clarified when we discuss implementation details later.

The RT-mutex is accessible from userspace via the futex () (fast userspace mutex) system call. In
simple terms, a futex optimizes for the case that a mutex is uncontended when a task locks or unlocks the
mutex. In this case, a task atomically locks or unlocks the futex from within userspace without involving
the kernel (hence, fast userspace). If the futex is contended, locking and unlocking are done by calling

futex (). The desired operation (e.g., lock or unlock) is specified via an operation argument that futex ()

128

takes. Priority inheritance is requested via this argument. For example, locking with priority inheritance
is requested by passing in FUTEX_LOCK_PTI. For such operations, the task calling futex () waits on a
RT-mutex corresponding to the futex.

Note that pt hread mutexes with priority inheritance are built using futexes with priority inheritance,

and thus also follow RT-mutex’s priority inheritance behavior.

4.1.5 Admission Control

The kernel ACS limits the fraction of the CPUs that real-time tasks (in a Linux context, this refers to
tasks of SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE) are permitted to consume. This fraction
is configured as sched_rt_runtime_us (default 950000) divided by sched_rt_period_us, both
of which are files in proc/sys/kernel. The default values of these files is sched_rt_runtime_
us/sched_rt_period_us = 950000/1000000 = 95%.

This upper limit on the fraction of CPUs is enforced differently for SCHED_DEADLINE than SCHED_
FIFO and SCHED_RR. For SCHED_DEADLINE, the ACS enforces that the total bandwidth of SCHED__
DEADLINE tasks is at most the fraction multiplied by the total CPU capacity. Capacity can be thought of as
the kernel term for speed (with a maximum of 1.0) under UNIFORM. Restated using the notation established

in Chapter 2, the ACS enforces

Z i < sched_rt_runtime_us ‘ Z sp(j) @

sched_rt_period_us
Ti € Tact (t) i en

for SCHED_DEADLINE tasks. Note that the total bandwidth (3~ u;) and total capacity (ij e SD (J)>
are computed separately for each root domain.

The ACS will reject the addition of tasks to SCHED_DEADLINE (via sched_setattr ()) if do-
ing so would violate (4.1). The ACS can also reject changes to affinities. Calls to function sched__
setaffinity () will fail if the requested affinity is not a superset of the root domain (i.e., a SCHED_
DEADLINE task must be runnable on every CPU in its root domain). To the author’s knowledge, a SCHED__
DEADLINE task will not execute on CPUs outside of its root domain, even if said task has affinity for
those CPUs. Likewise, modifying root domains by writing to cpuset .cpus in a group with SCHED__

DEADLINE tasks will fail if the change in CPUs would violate (4.1).

129

Besides enforcing (4.1) for SCHED_DEADLINE tasks, the ACS also tracks the total runtime of real-
time tasks (including SCHED_DEADLINE). When this total runtime exceeds sched_rt_runtime_us
multiplied by the number of CPUs, SCHED_FIFO and SCHED_RR tasks are prevented from executing (note
that SCHED_DEADLINE tasks contribute to, but are not limited by, the tracked total runtime). This tracked
total runtime is reset approximately every sched_rt_period_us.*

The ACS can be disabled by writing —1 to sched_rt_runtime_us.
[root "1# cd /proc/sys/kernel

[root kernel]# echo -1 > sched_rt_runtime_us

This disables bandwidth management for SCHED_FIFO and SCHED_RR. SCHED_DEADLINE tasks are still
throttled based on their per-task budget and period, but the limit on total bandwidth is disabled. Restrictions

on affinities for SCHED_DEADLINE tasks are also disabled.

4.1.6 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) is controlled via the CPUFreq subsystem mounted
at /sys/devices/system/cpu/cpufreq. Within this directory is a folder for each CPUFreq policy
(e.g.,policy0, policyl, etc.). A CPUFreq policy is a set of CPUs that share DVFS settings due to the

underlying hardware. The files of interest within such a CPUFreq policy folder are:
* affected_cpus, the list of CPUs belonging to the CPUFreq policy;

* scaling_governor, the current governor, i.e., frequency selection algorithm, managing the CPUs
in this policy;
* and scaling_available_governors, the list of compatible governors for this policy.
A user changes the governor of a policy by writing one of the governors in scaling_available_

governors to scaling_governor. Governors may not be present in scaling_available_

governors depending on the drivers in use in the kernel.

“We have purposely oversimplified this description of enforcement of SCHED_FIFO and SCHED_RR because it
does not affect SCHED_DEADLINE, which is our focus. In the actual implementation, the tracked total runtime is
tracked on a per-CPU basis. A runtime balancing function redistributes this per-CPU runtime when one CPU exceeds
sched_rt_runtime_us before the others. This is further complicated by cgroup RT-group scheduling, which
permits each group to specify its own sched_rt_runtime_us and sched_rt_period_us. Note that group
scheduling is not implemented for SCHED_DEADLINE.

130

Of relevance to SCHED_DEADLINE is the schedutil governor, which makes frequency scaling
decisions based on the real-time parameters of SCHED_DEADLINE tasks. A goal of schedutil isto
safely reduce frequencies without incurring deadline misses. The implementation of schedutil will be

discussed in Section 4.4.9.

4.2 Common Data Structures

We begin detailing the implementation by describing common data structures (i.e., those not specific to

particular Linux policies such as SCHED_DEADLINE).

Affinity mask types. The kernel contains many data types representing affinity masks, which we cover in
this paragraph. Affinity masks are stored in the kernel as bitmasks. The fundamental bitmask data type is
unsigned long[]. An array typing is necessary because the maximum number of CPUs possible in the
system is configurable. The length of the array is set such that the total number of bits is at least the maximum
number of CPUs. Type st ruct cpumask is this array packaged into a st ruct. Type cpumask_t isa
typedef of struct cpumask. The last affinity mask type is cpumask_var_t. cpumask_var_t
behaves like a pointer to a st ruct cpumask. The kernel can be configured such that the memory pointed to
by a cpumask_var_t is allocated either dynamically or on the stack. The exact definition of cpumask__
var_t changes depending on this configuration. Affinity masks are manipulated via several kernel functions
and macros. For example, cpumask_and (), which takes three cpumask_var_ts (or pointers to either

struct cpumask or cpumask_t), writes into the first mask the bitwise-and of the other two masks.

Red-black trees. The Linux kernel’s implementation for balanced binary trees is a red-black tree whose
nodes are of type struct rb_node. Each rb_node contains, as members, pointers to its two children
and parent rb_nodes. A tree as a whole is referenced by a st ruct rb_root, which contains a pointer to
the root rb_node.

Some priority queues in the scheduler are implemented using red-black trees. These priority queues are
the basis of task runqueues, detailed later. In these priority queues, rlb_nodes are ordered in the tree by
priority. A pointer to the leftmost rb_node is kept, as this rb_node corresponds to the highest priority
(e.g., for SCHED_DEADLINE, rb_nodes are ordered by deadline, with the smallest, i.e., earliest, deadline
having highest priority). The tree is referenced by a st ruct rb_root_cached, which contains an rb_

root and the aforementioned pointer to the leftmost rb_node.

131

v Example 4.1. Figure 4.1 illustrates the structure of a red-black tree in Linux. The data structure being
stored on this tree are of type struct sched_dl_entity, which describes a SCHED_DEADLINE
task (to be discussed in Section 4.4.1). The illustrated tree orders the sched_dl1_entitys by their
deadline parameter55 (e.g.,the sched_dl1_entity with deadline of 1, the earliest deadline
value, is leftmost in the tree). Observe that the rb_root_cached contains pointers to both the root

and leftmost nodes. A

High-resolution timers. A high-resolution timer (st ruct hrtimer) is one of the kernel’s mechanism for
executing code at a specified future time. An example of use in SCHED_DEADLINE is budget enforcement,
which we will detail later. An hrtimer contains a member function (), which is a callback function
pointer to be called when the hrtimer expires. function () takes a pointer to its corresponding
hrtimer as its only argument.

A plethora of kernel functions exist for arming and manipulating hrt imers. An hrtimer is initialized
by calling hrtimer_init (). An hrtimer is started by calling hrtimer_start (). A started
hrtimer can be canceled with hrtimer_try_to_cancel () (which fails if function () is mid-
execution) or hrt imer_cancel () (which blocks while function () is mid-execution). An hrtimer
can also restart itself from within function (). function () indicates that its corresponding hrt imer
should be restarted by returning HRTITMER_RESTART; otherwise, function () should return HRTIMER__
NORESTART. These return values are of type enum hrtimer_restart. The firing time of a restarted

hrtimer can be set by calling hrtimer_forward () from within function ().

Tasks and classes. In Linux, tasks are represented by data structures of type struct task_struct (to
be defined in Listing 4.1). These task_structs are partitioned between five scheduling classes. These
classes exist in a hierarchy such that a task_struct in a given class may only be scheduled if no task__
struct in a higher-priority class is schedulable. stop_sched_class, the highest-priority class, and
idle_sched_class, the lowest-priority class, are used exclusively by the kernel. By this, we mean that

no user-level programs ever belong to these classes.

3To reflect that task parameters are stored as 64-bit integers in SCHED_DEADLINE, we omit trailing zeros (e.g., 1’ vs.
‘1.0”) from examples related to SCHED_DEADLINE.

132

struct sched_dl_entity

rb_node

*rb_right
/ *rb_left

| deadline: 7

struct sched_Al_entity

rb_node

*rb_right

*rb_left

| deadline: A

struct sched_dl_entity

rb_node

«*rb_right
/ *rb_left

| deadline: 4

struct rb_qut_cached

| *rb_leftmost

struct sched_Al_entity

\ rb_node

*rb_right

*rb_left

| deadline: ZA

\

struct sched_dl_entity

rb_node
*rb_left

| deadline: 1

Figure 4.1: rb_root_cached example.

133

In order of highest to lowest priority, the remaining classes that govern user-level programs are d1_
sched_class (implements SCHED_DEADLINE), rt_sched_class (SCHED_FIFO and SCHED_
RR), and the default fair sched_class (SCHED_NORMAL, SCHED_BATCH, and SCHED_IDLE).

As mentioned in parentheses, each of these three classes corresponds to at least one policy. The static
differences in priority between policies results from the hierarchy of scheduling classes. For classes with
multiple policies, the specific policy chosen with sched_setattr () generally causes minor changes
in how its corresponding class behaves. For example, rt_sched_class supports the policies SCHED__
FIFO, which tiebreaks equal-priority tasks in FIFO order, and SCHED_RR, which executes equal-priority

tasks in a time-sliced round-robin fashion.

Scheduling entities. Each of the three user-level scheduling classes defines its own scheduling entity data
type that stores per-task parameters used by the corresponding scheduler. Each task_struct contains a
scheduling entity for each of the three user-level scheduling classes.

For example, the scheduling entity type for SCHED_DEADLINE is struct sched_dl_entity. In
SCHED_DEADLINE, each thread runs in its own CBS, whose parameters are stored in the corresponding
sched_dl_entity. These include static CBS parameters such as d1_runtime (maximum budget),
dl_deadline (relative deadline), d1_period, and dynamic CBS parameters runt ime (current budget)
and deadline (current deadline).

Having covered task_structs, scheduling classes, and scheduling entities at a high level, we can
now discuss specific members of these data structures. A subset of the members of task_struct is shown
in Listing 4.1.

___state stores the current runnable state of the corresponding task_struct. Suspending and
waking functions modify ___state to inform the scheduler whether the task_struct can be sched-
uled. A value of TASK_RUNNING (a macro for 0) indicates that the task_struct is runnable, while
nonzero values (e.g., TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, TASK_WAKING, TASK__
DEAD, etc.) indicate otherwise. A suspended task usually has state TASK_INTERRUPTIBLE or TASK_
UNINTERRUPTIBLE. A task in the process of being woken from suspension has state TASK_WAKING. A
task that exits has state TASK_DEAD.

on_rqg stores whether the corresponding task_struct is on a runqueue or not. on_rqg will be

discussed after discussing per-CPU runqueues.

134

struct task_struct {

unsigned int __state;

int on_rqg;

int prio;

int static_prio;
int normal_prio;
unsigned int rt_priority;
struct sched_entity se;

struct sched_rt_entity rt;
struct sched_dl_entity dl;

struct sched_class *sched_class;
unsigned int policy;

int nr_cpus_allowed;
cpumask_t *Cpus_ptr;
cpumask_t cpus_mask;
unsigned short migration_disabled;
unsigned short migration_flags;
struct rb_node pushable_dl_tasks;

}i
Listing 4.1: struct task_struct.

Next are the per-task priority values prio, static_prio, normal_prio, and rt_priority.
static_prio and rt_priority are scheduling class-specific priority values for fair_ sched_
class and rt_sched_class, respectively. static_prio stores the nice value (with the addition
of a constant offset) for EEVDF tasks. rt_priority stores the priorities of fixed-priority tasks. prio and
normal_prio, on the other hand, apply for tasks of all classes. These values lie in the range of [—1, 140).
normal_prioissuchthatdl_sched_class tasks (SCHED_DEADLINE) have value —1, rt_sched_
class tasks range between [0, 100), and fair_ sched_class between [100, 140). Constants MAX_DI,_
PRIO (0) and MAX_RT_PRTIO (100) are defined such that SCHED_DEADLINE tasks have normal_prio
< MAX_DIL_PRIO and SCHED_FIFO and SCHED_RR tasks have MAX_DI_PRIO < normal_prio <
MAX_RT_PRIO. prio usually is equal to normal_prio, but changes to reflect priority inheritance.

se, rt, and d1 are the scheduling entities for fair_sched_class, rt_sched_class,and d1_
sched_class, respectively. sched_class points to the current scheduling class of the task. Note that
sched_class may change due to priority inheritance. policy reflects the scheduling policy chosen with

sched_setscheduler (). Note that policy is not modified by priority inheritance.

135

struct rq

struct rqgq

struct rq

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

Figure 4.2: Per-CPU runqueues.

cpus_mask is the affinity bitmask set by sched_setaffinity () 6 nr_cpus_allowed is the
number of CPUs in cpus_mask. cpus_ptr is a pointer to the current affinity bitmask of the corresponding
task. cpus_ptr usually points to cpus_mask, but may point elsewhere when migration is disabled.

Migration can be disabled in the kernel with function migrate_disable (). Eachcalltomigrate_
disable () is paired with a call tomigrate_enable (). Calls may be nested. Member migration_
disabled is a counter tracking the number of migrate_disable () calls that have yet to be paired
migration_flags is a set of flags that, at time of writing, can

with a call to migrate_enable ().

only contain MDF_PUSH. Usage of migration_flags will be described in Section 4.3.8.

Per-CPU runqueues. In Linux, each CPU corresponds to runqueue defined by st ruct rq (see Figure 4.2).
The task_struct at the head of a CPU’s runqueue rq is scheduled on said CPU. Internally, each of these
rqgs is composed of sub-runqueues corresponding to the user-level scheduling classes (see Figure 4.3). Not
shown in Figure 4.3 is that each sub-runqueue in a rg has unique internal structure. For example, the d1__
sched_class sub-runqueue structure is st ruct d1_rqg. Within a d1_ rq, tasks are ordered by deadline

using a red-black tree. On a reschedule for a CPU, the sub-runqueues in the corresponding rq are checked in

5This is a simplification. The bitmask set by sched_setaffinity () is actually pointed to by user_cpus_ptr,
a different member of task_struct. The use case for keeping cpus_mask and user_cpus_ptr distinct is for
heterogeneous architectures such that certain binaries can only run on a subset of CPUs (see the documentation on
asymmetric 32-bit execution by Deacon (2021)). If a task changes to a different binary via an execve () system
call, the new binary may be unable to run on all the CPUs in the requested affinity bitmask. This makes it necessary
to set cpus_mask to the subset of CPUs allowed by the hardware. The original affinity mask is pointed to by
user_cpus_ptr such that cpus_mask can be restored in the event the task changes back to a binary without CPU
restrictions. We choose to avoid discussing user_cpus_ptr because SCHED_DEADLINE tasks are not expected
to call execve ().

136

struct rqgq

struct dl_rgdl

struct rt_rgrt

struct cfs_rqgcfs

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

Figure 4.3: Runqueue rq is constructed of sub-runqueues.

a consistent order. Thus, the task_struct at the head of the first non-empty sub-runqueue is at the head
of the rq, and is scheduled. The order of the sub-runqueues results in the hierarchy between the scheduling
classes.

cfs, rt, and d1 are the sub-runqueues corresponding to fair_sched_class, rt_sched_class,
and d1_sched_class, respectively. Note their order as members within st ruct rqg reflects their order
of addition to the kernel, and not the order they are checked on reschedule.

curr is a pointer to the currently scheduled task on the rg’s CPU.

idle and stop are pointers to per-CPU kernel-only tasks belonging to idle_sched_class and
stop_sched_class, respectively. Observe in Figure 4.3 and Listing 4.2 that neither of these classes
has a corresponding sub-runqueue. Sub-runqueues are unnecessary because idle and stop are the only
tasks of their respective classes that may execute on their corresponding CPU. st op, belonging to st op__
sched_class, has highest priority on rgq whenever stop is runnable. The purpose of stop and stop__
sched_class will be detailed later in Section 4.3.8. idle, belonging to idle_sched_class, has
lowest priority on rq, and runs only when no other task is available. The function of 1d1le is to transition
the CPU into a low-power state. Note that, barring the CPU being offline, id1le is always runnable.

clock stores the most recently read value from the corresponding CPU’s clock. clock_task and
clock_pelt are derived from c1lock, and will be discussed in Sections 4.4.3 and 4.4.9. These clock values

are accessed by rq_clock (), rq_clock_task (), and rq_clock_pelt (). The clock values are

137

struct rg {

struct cfs_rqg cfs;

struct rt_rg rt;

struct dl_rqg dl;

struct task_struct *CUurr;
struct task_struct *idle;
struct task_struct *stop;

u64d clock;

uocd clock_task;
u6d clock_pelt;
struct root_domain *rd;

struct sched_domain *sd;

struct balance_callback =*balance_callback;

struct hrtimer hrtick_timer;
int cpu;
unsigned int push_busy;
struct cpu_stop_work push_work;

Listing 4.2: struct ra.

138

updated by calling update_rqg_clock () on the corresponding rg. We omit these calls in our presented
pseudocode for simplicity. These clock values are used for tracking budget consumption and in DVFS.

rd is a pointer to the unique root domain (recall from Section 4.1.3 that a root domain is similar to a
cluster in real-time terminology) that contains the corresponding CPU. The scheduler will only migrate tasks
on a runqueue in rd to other runqueues in rd. sd is a pointer to a scheduling domain. Like a root domain, a
scheduling domain represents a set of CPUs. Unlike root domains, scheduling domains exist in a hierarchy.
For two scheduling domains in the same hierarchy, the domain lower in the hierarchy spans a subset of the
CPUs in the higher domain. Root and scheduling domains will be detailed in later paragraphs in this section.

balance_callback allows its owning runqueue to defer migrations involving this runqueue to a later
point in time. balance_callback is a linked-list-based queue of callback functions taking a pointer to
the corresponding runqueue rqg as an argument. The functions queued onto balance_callback perform
the deferred migrations, and are triggered at specific points in the scheduling code (e.g., after any reschedule
on a CPU). Deferring migrations with balance_callback is useful because critical sections that modify
runqueue and task state must be protected by spinlocks and migrations may need to drop these spinlocks. It is
necessary to delay such migrations until after such critical sections have completed.

For example, suppose a SCHED_DEADLINE task is preempted on a CPU when another task replenishes
its budget on that CPU. Processing the preemption requires owning this CPU’s runqueue’s spinlock. Suppose
further that the preempted task has a sufficiently early deadline to preempt the running task on another CPU.
Migrating the task between the two runqueues requires holding both runqueues’ spinlocks. To avoid deadlock,
these per-runqueue spinlocks must be acquired in CPU-index order. If the original CPU has a higher index,
it must drop its own spinlock before acquiring the other runqueue’s spinlock. Because the original CPU’s
runqueue lock cannot be dropped while processing the preemption, a function to perform the migration is
queued onto balance_callback. This function will be triggered by the scheduler after the preemption is
processed.

hrtick_timer isan hrtimer for budget enforcement. Because a task must be executing on a CPU
to consume budget, hrt ick_timer is stored in the CPU’s runqueue rq rather than in the consuming task’s
task_ struct.

cpu is the CPU index corresponding with the runqueue.

139

push_busy is a boolean that indicates whether push_work is in use by the scheduler. push_work
is a data structure of type st ruct cpu_stop_work used by stop_sched_class. Usage of push__

work will be described in Section 4.3.8.

Additional task_struct members. Member on_rqg of task_struct was not previously described.
on_rq has possible values 0, indicating the corresponding task is not on any runqueue (i.e., it is suspended
or dead), TASK_ON_RQ_QUEUED, indicating the task is enqueued on some runqueue, and TASK_ON_RQ__
MIGRATING, indicating the task is in a transient period in which it is being moved between runqueues.

Each task_struct also stores the CPU index of the last runqueue it was on. How exactly this CPU
index is stored depends on the kernel configuration (thus, it was omitted from Listing 4.1). Functions task__
cpu () and __set_task_cpu () are defined to get and set this field regardless of configuration. For a
given task_struct pointer p, the CPU is returned with task_cpu (p) and set with __set_task_
cpu (p, new_cpu). Note that task_cpu () is only guaranteed to be valid if p is queued on a runqueue.
This must be determined by observing p—>on_rq.

task_rqg() is the composition of cpu_rqg () and task_cpu (). As such, for task_struct p,
task_rqg(p) returns a pointer to p’s runqueue. Keep in mind that it is not guaranteed that task p is
enqueued on this runqueue when task_rqg () is called.

pushable_dl_tasks is a red-black tree node. SCHED_DEADLINE, to make migrations more
efficient, maintains a deadline-ordered red-black tree of the subset of migratable (i.e., nr_cpus_allowed
> 1) SCHED_DEADLINE tasks enqueued on each runqueue. pushable_dl_tasks is the node used to
insert the containing task_struct into this tree. Note that this tree is distinct from the tree of all enqueued
SCHED_DEADLINE tasks on a runqueue. For this latter tree, the node used to insert the task is stored within

sched_dl_entity dl.

Root and scheduling domains. As described in Section 4.1.3, root domains are synonymous with clusters
in real-time clustered scheduling. Tasks executing on CPUs in a root domain do not execute on outside
CPUs. Root domains are represented by st ruct root_domain in the kernel. The subset of SCHED__
DEADLINE-related members of root_domain are presented in Listing 4.3. span points to the CPU
bitmask representing the CPUs in the corresponding root__domain.

dlo_mask points to the CPU bitmask of CPUs in span whose runqueues are overloaded with SCHED_

DEADLINE tasks. The term overloaded is inherited form CFS, and generally means that a given CPU’s

140

struct root_domain {

cpumask_var_t span;
cpumask_var_t dlo_mask;
struct dl_bw dl_bw;
struct cpudl cpudl;

}i

struct sched_domain {
struct sched_domain *parent;

unsigned long span[];
bi

Listing 4.3: struct root_domain and struct sched_domain.

runqueue has tasks that should be migrated to other CPUs’ runqueues. In SCHED_DEADLINE specifically,
overloaded means that a given CPU’s runqueue has at least one unscheduled SCHED_DEADLINE task with
affinity for another CPU. Note that whether a CPU is overloaded has no relation to the bandwidth of SCHED__
DEADLINE tasks on said CPU’s runqueue. d1o_mask is used by SCHED_DEADLINE to emulate a global
runqueue when rescheduling on a CPU. A global runqueue is emulated by, before rescheduling, migrating
higher-priority tasks (than those on the scheduling CPU’s runqueue) from other CPUs’ runqueues to the
scheduling CPU’s runqueue. This migration is called a pull, to be detailed later in Section 4.4.2. Pulling is
made more efficient by only checking the runqueues of CPUs whose corresponding bit is set in d1o_mask,
as only these runqueues will have migratable SCHED_DEADLINE tasks.

d1l_bw is a data structure of type st ruct d1_bw whose primary purpose is to track the total bandwidth
of SCHED_DEADLINE tasks executing on the CPUs in the root_domain. This is used for admission
control. The members of st ruct d1_bw will be detailed later in Section 4.4.1.

cpudl is a data structure of type st ruct cpudl. cpudl is primarily a deadline-ordered max-heap
of the CPUs in span. This heap is used by the scheduler to find the CPU executing the task with latest
deadline. A SCHED_DEADLINE task that wakes or replenishes its budget may need to be migrated from its
current CPU to this latest-deadline CPU. This migration is called a push. Pushes and st ruct cpudl will
be discussed later in Section 4.4.2.

The CPUs in a root_domain are further organized into a hierachy of sched_domains. A sched__
domain is a set of CPUs within a root_domain that are related by level of shared memory (e.g., logical

CPUs on the same core under simultaneous multithreading (SMT), CPUs sharing a cache, efc.). sched__

141

)
=
>
<

Default root_domain

(a) Example sched_domains with default root_domain.

DRAM |

=
[\
=
[N}

(b) Example sched_domains with separate root_domains.

Figure 4.4: sched_domain and root_domain illustrations for Example 4.2.

domains indicate to the scheduler sets of CPUs between which migrations are efficient (e.g., migrating

between CPUs that share a cache may avoid cache misses). The hierarchy of sched_domains reflects

the memory hierarchy, with migrations between CPUs of sched_domains lower in the hierarchy being

preferable to sched_domains higher in the hierarchy.

v Example 4.2. Consider a platform with eight CPUs such that CPUs 0-3 and 4-7 share L2 caches.
Suppose the only root_domain is the default root_domain. Figure 4.4a shows that all CPUs fall
under the default root_domain (illustrated below the CPUs). CPUs 0-3 and 4-7 also fall under two
separate sched_domains due to these two sets of CPUs sharing L2 caches. Both of these sched__
domains fall under a parent sched_domain due to all CPUs sharing the same DRAM memory.
Now suppose the system is configured such that three root_domains are created with CPU 0 in
root_domain 0, CPUs 1-4 in root_domain 1, and CPUs 5-7 in root_domain 2. These root__
domains are illustrated in Figure 4.4b. The sched_domains of the system are modified as a result
of creating these root_domains. CPU 0 is not contained in any sched_domain because tasks do

not migrate to or away from CPU 0 due to root_domain 0O containing no other CPUs (the kernel

142

does not create a sched_domain for a single CPU). CPUs 1-3 fall under a sched_domain due to
sharing an L2 cache. CPU 4, also in root_domain 1, does not fall under this sched_domain, but
does share a higher sched_domain with CPUs 1-3. CPUs 5-7 fall under a sched_domain due to
sharing an L2 cache. Because this sched_domain already contains all CPUs in root_domain 2, a

higher sched_domain is not created. A

sched_domains are primarily used by EEVDF for balancing. The only members relevant to SCHED__
DEADLINE are parent, a pointer to the next sched_domain in the hierarchy (or NULL if no such

sched_domain exists), and span, the CPU bitmask spanning the sched_domain.

4.3 Scheduling Class Internals

The Linux scheduler contains a common infrastructure that is shared by all scheduling classes. This
common infrastructure contains functions for scheduler operations (e.g., rescheduling, suspending and waking
tasks, modifying task properties such as policy or CPU affinity) that internally call scheduling-class-specific
functions. For example, suspending a SCHED_DEADLINE task will cause the common infrastructure to
dequeue the corresponding task_struct from its runqueue rg. The common infrastructure then calls the
SCHED_DEADLINE-specific dequeue_task () function to remove task_struct fromthe d1_rqgin
said rq.

Each of stop_sched_class,dl_sched_class, rt_sched_class, efc., is a function pointer
table (of type struct sched_class) of these class-specific functions. Sections 4.3.1-4.3.8 present
pseudocode for the scheduler operations discussed in the previous paragraph. This is done to illustrate where
and when class-specific functions are called by the common infrastructure. Note that a sched_class
need not provide every function in st ruct sched_class. Thus, only the functions implemented in d1__

sched_class will be discussed.”

"This omits yield_to_task (), task_dead (), and task_change_group (), which are unique to fair_
sched_class;get_rr_interval (), whichisused by fair_sched_class and rt_sched_class;and
task_fork (), which does nothing in SCHED_DEADLINE.

143

4.3.1 Scheduling and Suspending

__schedule () (presented in Listing 4.4%) is the kernel scheduling function. __schedule () can
get called for several reasons including a task becoming unrunnable (by exhausting its budget or suspending)
or becoming runnable (by replenishing its budget or waking).

Initially, the CPU calling __schedule () is returned by calling smp_processor_id (). The
runqueue rq of said CPU is returned by calling cpu_rqg (). The previously scheduled task is set by
referencing curr.

At line 9, rg->hrtick_timer is canceled if armed. Why this is necessary will be discussed in
Section 4.3.3.

Atline 11, prev->__ state is checked for a nonzero value. A nonzero value here indicates that ___
schedule () has been called from some suspension system call (e.g., nanosleep ()) that modified ___
state to a value other than TASK_RUNNING (0). If __state indicates that prev was suspended, prev
needs to be removed from runqueue rq so that it cannot be selected for scheduling. ___schedule () unsets
prev—->on_rq and calls the class-specific dequeue_task () in prev->sched_class.

The prototype of dequeue_task () is as follows.

void (*dequeue_task) (struct rg *rqg, struct task_struct =*p, int flags);

Besides the runqueue being dequeued from rqg and task being dequeued p, dequeue_task () also takes a
flags argument that indicates the reason p is being dequeued. The flags relevant to SCHED_DEADLINE
are DEQUEUE_SLEEP and DEQUEUE_SAVE. DEQUEUE_ SLEEP indicates that p is being dequeued due to
a suspension. DEQUEUE_SAVE indicates that p is being dequeued in preparation for modifying p (e.g., its
scheduling class or affinity). Such calls to dequeue_task () are part of the change pattern, detailed in
Section 4.3.5.

Starting from line 16, __schedule () performs load balancing. From the perspective of SCHED__
DEADLINE, this means emulating a global runqueue by pulling earlier-deadline tasks from other runqueues
to rq. The scheduling classes implement their own balancing logic with class-specific function balance ().

The prototype of balance () is as follows.

int (xbalance) (struct rg xrqg, struct task_struct =xprev, struct rqg_flags *rf);

8__schedule () actually takes an argument sched_mode that we have omitted in Listing 4.4 because it is primarily
used for RCU purposes and we have omitted synchronization code.

144

void _ schedule (void)

{
struct sched_class =*class;
struct task_struct x*prev, =*next;

01NN kAW~

int cpu = smp_processor_id();
struct rg xrg = cpu_rg(cpu);
prev = rg->curr;
9 hrtick_clear (rq);
10
11 if (prev->__ state) {
12 prev->on_rq = 0;
13 prev->sched_class->dequeue_task (rq, p, DEQUEUE_SLEEP) ;
14 }
15
16 for_each_class_range(class, prev->sched_class, &idle_sched_class)
17 if (class->balance(rqg, prev))
18 break;
19
20 prev->sched_class—->put_prev_task (rqg, prev);
21
22 for_each_class(class) {
23 next = class—->pick_task (rq);
24 if (next) {
25 class->set_next_task (rqg, next, true);
26 break;
27 }
28 }
29
30 rg->curr = next;
31 /+ Do actual context switch #*/
32 L migrate_disable_switch(rg, prev);
33
34 _ _balance_callbacks (rq);
35 }

Listing 4.4: High-level scheduling function.

Note that rf is only used by the kernel’s locking validator (which we do not discuss), and does not affect
scheduling logic. As such, rf was omitted in Listing 4.4. balance () returns a nonzero value if a task is
pulled from another runqueue.

The for loop at line 16 only considers sched_classes at or lower than prev->sched_class in
the class hierarchy. A runnable unscheduled task belonging to a higher class should not exist on another
runqueue, as such a task should have been pushed to rqg earlier and preempted prev. The for loop is exited
as soon as any call to balance () manages to pull a task, as any task from a lower class that could be pulled

would not be scheduled anyway.

145

Line 20 calls put_prev_task (). The prototype of put_prev_task () is as follows.

void (*put_prev_task) (struct rg *rqg, struct task_struct =p);

put_prev_task () iscalled on any task_struct p running on rqg expected to be unscheduled (though
p may actually continue to be scheduled if it remains the highest-priority task on rq). put_prev_task ()
is used to perform any bookkeeping required by p’s sched_class that reflects that p is unscheduled.
For example, in Linux, scheduled tasks are not migratable. If p has affinity for multiple CPUs, SCHED__
DEADLINE uses put_prev_task () to internally mark that p is now migratable.

Starting from line 22, the next task to schedule is selected. The classes are iterated over in order of the
class hierarchy. The highest-priority task in a class is selected by pick_task (). The prototype of pick_

task () is as follows.

struct task_struct % (xpick_task) (struct rg *rq);

pick_task () returns a pointer to the task_struct of the highest priority task belonging to its sched__
class or NULL if no task in this sched_class on runqueue rqg can run (a task may be on rg but
unrunnable if it has no budget).

Once a task is returned with pick_task (), set_next_task () is called. The prototype of set_

next_task () is as follows.

void (*set_next_task) (struct rg *rqg, struct task_struct xp, bool first);

set_next_task () isthe opposite of put_prev_task () in that it does bookkeeping required when p
is about to become the running task on rg. Following the example discussed with put_prev_task (),
in SCHED_DEADLINE, set_next_task () marks task p as not migratable due to it being scheduled.
Besides being called in ___schedule (), both put_prev_task () and set_next_task () can be
called from the aforementioned change pattern that modifies tasks. Argument £irst is used to indicate
whether set_next_task () was called from __schedule () (first is true) or from the change
pattern (first is false).

Note that the actual code does not directly call pick_task () and set_next_task () in the real
code’s equivalent of the for loop at line 22. Instead, another sched_class function, pick_next_
task (), is called. For all classes except fair_sched_class, all pick_next_task () does is call

pick_task () and conditionally call set_next_task () if pick_task () returns a task.

146

At line 30, schedule () sets rg—>curr and performs the actual context switch from prev to

next. Most details about the context switch code are irrelevant to the scheduler logic, but from within this
code migrate_disable_switch () is called. Discussion of this function is deferred to Section 4.3.7,
which discusses affinities.

The last line of ___schedule () in Listing 4.4 calls __balance_callbacks (). __balance_
callbacks () triggers the callback functions queued on rg->balance_callback. Frequently, a

queued callback function attempts to push prev to another runqueue now that it has been preempted on rq.

4.3.2 Waking

try_to_wake_up () (presented in Listing 4.5) is the kernel function for waking a suspended task.
Note that we have omitted some arguments of try_to_wake_up () in this listing. The actual try_
to_wake_up () function in the kernel can fail to wake a task depending on p—>___state and omitted
try_to_wake_up () argument state. Reasons for such wake failures are outside the scope of this
description. The actual try_to_wake_up () in the kernel returns an int describing whether the wake
up was successful. We have also omitted argument wake_flags from try_to_wake_up (). wake_
flags would be some combination of flags (e.g., WF__SYNC, WF__CURRENT_ CPU) that would be passed to
select_task_rqg() (line 8) and wakeup_preempt () (line 21) along with WF_TTWU. Omitting argu-
ment wake_flags does not affect SCHED_DEADLINE’s logic, as only fair_sched_class considers
these flags.

At line 6, the state of the waking task p is set to TASK_WAKING. This is important for a later call
tomigrate_task_rqg() in try_to_wake_up (). The SCHED_DEADLINE version of migrate_
task_rqg() treats calls from try_to_wake_up () as a special case. SCHED_DEADLINE recognizes
that migrate_task_rqg() was called from try_to_wake_up () by observing that p—>___state is
TASK_WAKING.

At line 8, select_task_rqg() is called on the task to be woken p. The prototype of select__

task_rqg() is as follows.

int (*select_task_rq) (struct task_struct *p, int task_cpu, int flags);

select_task_rqg() allows the corresponding sched_class to select a new runqueue for a task p.

select_task_rqg/() returns a CPU index. For example, in SCHED_DEADLINE, select_task_rqg()

147

attempts to select a CPU such that task p has an earlier deadline than any task on said CPU’s runqueue. Note
that select_task_rqg() does not move p to the returned CPU’s runqueue (this is handled by enqueue__
task (), called later). f1ags describes the context select_task_rqg() was called from. select_
task_xrqg/() is called when a task is woken (f1ags includes WE_TTWU, as in Listing 4.5), newly forked
(WF_FORK), or executes a new binary (WF_EXEC). task_cpu is a suggested CPU for select_task_
rqg () toreturn. select_task_rqg() is usually called with task_cpu equal to task_cpu (p) . This
is because it is likely that p ran on this CPU before suspending, meaning the chance is higher that p is
cache-hot on this CPU.

Returning to line 8, argument task_cpu of select_task_rqg() is p—>wake_cpu. wake_cpu
isalsosetby __set_task_cpu(),sowake_cpuand task_cpu (p) are usually equivalent. There are
some edge cases where the two may be distinct. For example, while suspended, task p may lose its affinity
for CPU task_cpu (p) . In such cases, the function modifying p’s affinity mask will set p—>wake_ cpu
to one of the CPUs p has affinity for.

Consider the block beginning at line 11. This block is entered if task_cpu (p) !'= cpu. In words,
this means the CPU chosen by select_task_rqg() is not the CPU whose runqueue task p was last
enqueued on, i.e., the task is being migrated. migrate_task_rqg/() is called on p.

Note that select_task_rqg/() is called without owning any runqueue locks. This is for the purpose
of reducing overheads. The consequences of this will be elaborated on later when discussing function task_
woken ().

The prototype for migrate_task_rqg () is as follows.

void (*migrate_task_rq) (struct task_struct *p, int new_cpu);

migrate_task_rqg() is always called immediately prior to task_cpu (p) changing its value (i.e.,
before __set_task_cpu (p)). Note that migrate_task_rg() does not do the work of moving p to
new_cpu’s runqueue. The purpose of migrate_task_rqg() is to update class-specific statistics used
by the scheduling classes. For example, for SCHED_DEADLINE bandwidth reclamation (detailed later in
Section 4.4.8), SCHED_DEADLINE tracks the total bandwidth of tasks on each CPU (more specifically,
for CPU cpu, the total bandwidth of tasks p such that task_cpu (p) == cpu). One of the actions of
SCHED_DEADLINE’smigrate_task_rqg () function is to subtract the bandwidth of tasks being woken

on new CPUs from the total bandwidths of their original runqueues. This will be detailed in Section 4.4.8.

148

void try_to_wake_up (struct task_struct =xp)

{
int cpu, en_flags = ENQUEUE_WAKEUP;
struct rg *rqg;

1
2
3
4
5
6 p->_ state = TASK_WAKING;
7

8

cpu = p—->sched_class->select_task_rqg(p, p—->wake_cpu, WE_TTWU) ;

9 rq = cpu_rqg(cpu) ;

10

11 if (task_cpu(p) !'= cpu) {

12 p—>sched_class—->migrate_task_rqg(p, cpu);

13 _ _set_task_cpu(p, cpu);

14 en_flags |= ENQUEUE_MIGRATED;

15 }

16

17 p—->sched_class->enqueue_task (rq, p, en_flags);

18 p—>on_rqgq = TASK_ON_RQ_QUEUED;

19

20 if (p->sched_class == rg->curr->sched_class)

21 p—>sched_class->wakeup_preempt (rq, p, WF_TTWU) ;
22 else if (sched_class_above (p->sched_class, rg->curr->sched_class))
23 resched_curr (rq) ;

24

25 p->_ state = TASK_RUNNING;

26 p—>sched_class—->task_woken (rqg, p);

27 '}

Listing 4.5: High-level waking function.

149

Returning to the block beginning at line 11, in preparation of p being enqueued onto cpu’s runqueue,
p’s CPU is set to cpu and ENQUEUE_MIGRATED is set in enqueue flags en_flags.

Task p is actually enqueued starting at line 17. The prototype for enqueue_task () is as follows.

void (*enqueue_task) (struct rg *rqg, struct task_struct xp, int flags);

enqueue_task () enqueues p onto rg. Flags flags provides additional information on the calling
context. The flags relevant to SCHED_DEADLINE are ENQUEUE_MIGRATED, which indicates that task__
cpu (p) changed while p was dequeued, ENQUEUE_WAKEUP, which indicates enqueue_task () was
called from try_to_wake_up (), and ENQUEUE_RESTORE, which pairs with DEQUEUE_SAVE (see
the change pattern described in Section 4.3.5), and ENQUEUE_REPLENTI SH, which indicates that SCHED__
DEADLINE should replenish p’s CBS budget.

p—>on_rqissetto TASK_ON_RQ_QUEUED after the enqueue completes.

Starting from line 20, try_to_wake_up () determines whether newly woken task p should preempt
the currently scheduled task on cpu. If the currently scheduled task and p belong to the same class, wakeup__
preempt () is called.

The prototype of wakeup_preempt () ? is as follows.

void (*wakeup_preempt) (struct rg *rqg, struct task_struct *p, int flags);

wakeup_preempt () checks if p has a higher priority than whatever is running on rq. If so, it alerts rg
to reschedule by calling resched_curr () on rg. resched_curr () sets a flag indicating to the kernel
that the CPU corresponding with rg should call __schedule (). wakeup_preempt () also takes wake
flags in argument £1ags, but this is only used by fair_sched_class, so we do not detail its usage.

If the woken task p is of a higher class than the currently scheduled task, t ry_to_wake_up () directly
calls resched_curr ().

try_to_wake_up () indicates that the woken task p is runnable by setting its state to TASK_

RUNNING (line 25). task_woken () is also called. The prototype of task_woken () is as follows.

void (xtask_woken) (struct rg xthis_rg, struct task_struct =*task);

task_woken () iscalledin try_to_wake_up () and also when task is a newly created task (though

newly created tasks cannot be in SCHED_DEADLINE because SCHED_DEADLINE tasks cannot fork). As

9Prior to kernel 6.7, this function was named che ck_preempt_curr ().

150

such, any call to task_woken () comes after an accompanying call to select_task_rqg() (with flag
WE_TTWU or WF_FORK). The purpose of task_woken () is to double check that task task should be
queued on runqueue this_rq that was chosen by the accompanying call to select_task_rqg(). The
meaning of “should be queued” is class-dependent; for example, in SCHED_DEADLINE, task_woken ()
will check that t ask preempts the currently scheduled task on this_rqg. If task should not be queued on
this_rqg, task_woken () attempts to migrate t ask to another runqueue.

At first glance, the call to task_woken () may seem redundant because we have not made clear
why the choice by select_task_rqg() should be double checked. This is a consequence of omitting
synchronization code for simplification. The problem with select_task_rqg() is thatitis called and
returns without holding any runqueue spinlocks. The spinlock of runqueue rqg in Listing 4.5 is only acquired
immediately before the call to enqueue_task (). Other tasks may have been enqueued onto rg in between
the calls to select_task_rqg() and enqueue_task () such that p is no longer the highest-priority
task on rg by the time it is enqueued. task_woken () differs from select_task_rqg() because it

acquires runqueue spinlocks when deciding where to push tasks to.

4.3.3 Ticks

Ticks are recurring timer interrupts that give the scheduler the opportunity to respond to the current state
of the system. For example, on a tick, a scheduler may observe that a running task has exhausted its budget,
and thus reschedule on that task’s CPU. Ticks are a combination of periodic and event-driven. Periodic ticks
occur automatically with some architecture-defined period, '© typically with on-order-millisecond granularity.
Event-driven ticks are based on per-runqueue hrt imer hrtick_timer, which must be manually armed
by the scheduler, but may fire with finer granularity than periodic ticks. We assume a kernel configured with
event-driven ticks (note that this is not a build-time configuration and can be set at runtime). Event-driven
ticks are executed with hrtick_timer’s callback function, hrtick () (Listing 4.6).

hrtick () iscalled whenever a runqueue’s hrtick_timer fires. hrtick () is armed and canceled
with hrtick_start () and hrtick_clear (), respectively. These functions are essentially wrap-
pers around hrtimer_start () and hrtimer_cancel (). Calling hrtick_start (rq, delay)

arms rg->hrtick_timer to fire after delay nanoseconds, and calling hrtick_clear (rq) cancels

10These ticks are not strictly periodic for reasons outside the scope of this dissertation.

151

static enum hrtimer restart hrtick(struct hrtimer xtimer)

{

struct rq *xrg = container_of (timer, struct rqg, hrtick_timer);
rg->curr->sched_class->task_tick(rq, rg->curr, 1);
L rg->curr—->sched_class->update_curr (rq);

return HRTIMER_NORESTART;

Listing 4.6: HR tick function.

rg->hrtick_timer. hrtick_start () is typically called within sched_class functions to guar-
antee that task_tick () is called at some event (e.g., in SCHED_DEADLINE, set_next_task () calls
hrtick_start () to fire when the current task’s budget would expire such that task_tick () will
throttle the task). hrtick_clear () is called at the beginning of __schedule () (recall Listing 4.4).
This prevents hrtick () from hitting the wrong task. For example, SCHED_RR relies on periodic ticks
to grant timeslices. Suppose a SCHED_DEADLINE task suspends such that a SCHED_RR task is next to
be scheduled. If an hrtick () armed by SCHED_DEADLINE were able to fire on this SCHED_RR task,
SCHED_RR may incorrectly shorten the task’s timeslice.

Consider Listing 4.6. Within hrtick (), a pointer to the runqueue containing hrtick_timer is
retrieved with the container_of () macro. container_of () returns a pointer to the st ruct contain-
ing a member given a pointer to the member (e.g., t imer in Listing 4.6), the type of the containing st ruct
(e.g., struct rq), and the identifier of the member in the st ruct (e.g., hrtick_timer). hrtick ()
then calls sched_class function task_tick () on the runqueue returned by container_of ().

The prototype of task_tick () is as follows.

void (*task_tick) (struct rgq »rqg, struct task_struct *p, int queued);

task_tick () is called on any scheduler tick (by hrtick () or by periodic tick functions). The main
purpose of task_tick () inrt_sched_class and d1_sched_class istocall update_curr ().
In fair_sched_class, task_tick () doesnotcall update_curr () directly, but does call a helper
function that does much of the work in update_curr (). Argument queuedis 1 if task_tick () was
called from hrtick () and O if it was called from a periodic tick function.

The prototype of update_curr () is as follows.

void (xupdate_curr) (struct rqg xrq);

152

update_curr () is mainly called from within task_tick (). There are additional calls to update_
curr () from the CPU accounting cgroup controller, but these are not relevant to SCHED_DEADLINE.
The purpose of update_curr () is to update scheduling statistics and whatever sched_class-specific
statistics are needed by the sched_class for task rg—>curr. For example, in theory, server budgets are
reasoned about as if they deplete continuously with time. The kernel, being a real system, has to decrement
budgets discretely. In SCHED_DEADLINE, budgets are decremented within update_curr (). When a
SCHED_DEADLINE task is scheduled on a CPU, the kernel arms hrt ick_t imer on said CPU’s runqueue
to fire when the task’s budget would be exhausted. Assuming the task is not preempted, hrtick () is
executed at the exhaustion time, which in turn will call task_tick () and update_curr (). This call to

update_curr () depletes the task’s budget to 0, upon which the CPU should reschedule.

4.3.4 Yielding

Calling sched_yield () from userspace straightforwardly calls class-specific yield_task () in

the kernel. The prototype of yield_task () is as follows.

void (xyield_task) (struct rg xrq);

rq is the runqueue of the CPU executing the calling task of sched_yield (). yield_task () suggests
to the scheduler that something else should run. The exact meaning of this varies depending on the specific

sched_class.

4.3.5 Change Pattern

Sections 4.3.6-4.3.7 discuss sched_class functions used when changing certain scheduling attributes
of tasks. Functions that implement these changes will follow a change pattern (Listing 4.7), which we cover
in this subsection. For this subsection, the term change function denotes a function that uses the change
pattern.

The purpose of the change pattern is to place task p into a state where scheduling attributes can be
changed without introducing inconsistencies into class-common or -specific data. This means temporarily
dequeuing p from any runqueue it might be on and unmarking it as scheduled if necessary. Whether p is on

its runqueue and is the current task on its runqueue is stored in booleans queued and running.

153

int queued, running;
int queue_flag = DEQUEUE_SAVE; /* Matches ENQUEUE_RESTORE +*/
struct rg *rg = task_rqg(p);

/% Prepare change #*/

01NN kAW~

queued = p—->on_rq == TASK_ON_RQ_QUEUED;
running = rg->curr == p;
9
10 if (queued)
11 p—->sched_class->dequeue_task (rq, p, queue_flag);
12 if (running)
13 p—>sched_class—->put_prev_task (rqgq, p);
14
15 /* Change attribute of p =/
16
17 if (queued)
18 p—>sched_class—->enqueue_task (rqgq, p, queue_flag);
19 if (running)
20 p—>sched_class—->set_next_task(rg, p, false);
21
22 /+ Post-change follow-up */

Listing 4.7: Change pattern for task_struct xp.

Prior to the change function modifying p, dequeue_task () and put_prev_task () are called
if necessary. If called, dequeue_task () is called with at least DEQUEUE__SAVE set in queue_flags.
DEQUEUE_SAVE indicates that this call came from the change pattern. The change function may set
additional flags in queue_flags to provide additional context to dequeue_task () and enqueue_
task ().

After p’s attribute is changed, dequeue_task () and put_prev_task () (if they were called) must
be undone with enqueue_task () and set_next_task (). enqueue_task () is also called with
at least ENQUEUE_RESTORE set in queue_flags. This occurs without additional setting or unsetting
in queue_flags because flags DEQUEUE_SAVE and ENQUEUE_RESTORE are defined to be equivalent.
ENQUEUE_RESTORE serves the same purpose as DEQUEUE__SAVE, indicating to enqueue_task () that
the call originated from the change pattern. set_next_task () is called with false for the same
purpose.

After the change pattern, the change function will usually execute some follow-up code. For example,
modifying a task’s affinity may cause said task to lose affinity for the CPU whose runqueue it is currently on.

Follow-up code will then migrate the task to a CPU it has affinity for.

154

To simplify the presentation of change functions, in future listings, comments /* Change pattern start */

and /* Change pattern end */ are shorthand for lines 7-13 and 17-20, respectively.

4.3.6 Policy Changes and Priority Inheritance

Both scheduling policy change requests and priority inheritance can result in changing the scheduler that
manages a task. Changing schedulers is implemented by switching a task’s sched_class, as this swaps
the class-specific functions called by the common scheduling infrastructure. Before discussing the mechanics
of changing a task’s sched_class, we must first discuss three helper functions (Listing 4.8).

Firstis __normal_prio (), which maps class-specific priority values (e.g., fixed priorities for rt__
sched_class and nice values for fair_sched_class; dl_sched_class lacks an analogous static
value because EDF priorities are dynamic) into the class-agnostic priority range used by task_struct
members prio and normal_prio. _ _normal_prio () is used to compute the value of normal_
prio upon achange in policy or class-specific priority.

Second is __setscheduler_prio (), which is the function called to change p—>sched_class
and p—>prio for a policy change or priority inheritance. Which sched_class to set p—>sched_
class tois determined from the new prio value. d1_prio () is true when prio maps into the priority
range occupied by d1_sched_class (i.e.,, —1). rt_prio () is the corresponding function for rt_
sched _class.

Lastis check_class_changed (), which calls up to three sched_class functions: switched_
from(), switched_to(),and prio_changed (). Argument oldprio was the value of p->prio
before the caller (a policy change request or priority inheritance function) of check_class_changed ()
was executed.

The prototype of switched_from () and switched_to () is as follows.

void (*switched_from) (struct rg xthis_rqg, struct task_struct *task);

void (xswitched_to) (struct rg *this_rqg, struct task_struct =xtask);

switched_from() and switched_to () are used to perform bookkeeping involved in t ask changing
task->sched_class. For example, in SCHED_DEADLINE, switched_from() reduces the total
bandwidth of the root_domain corresponding to this_rqg by task’s bandwidth. Depending on the

corresponding sched_class, switched_from() and switched_to () may also migrate tasks and

155

int _ normal_prio(int policy, int rt_prio, int nice)
{

int prio;

if (policy == SCHED_DEADLINE)
prio = MAX_DIL_PRIO - 1;

else if (policy == SCHED_FIFO || policy == SCHED_RR)
prio = MAX_RT_PRIO - 1 - rt_prio;

else

prio = NICE_TO_PRIO(nice);

return prio;

void __ setscheduler_prio(struct task_struct *xp, int prio)
{
if (dl_prio(prio))
p—->sched_class = &dl_sched_class;
else if (rt_prio(prio))
p—>sched_class = &rt_sched_class;
else
p—>sched_class = &fair_sched_class;

p—>prio = prio;
void check_class_changed(struct rg »rq, struct task_struct xp, struct sched_
class *prev_class, int oldprio)
if (prev_class != p->sched_class) {
prev_class—->switched_from(rqg, p);
p—->sched_class->switched_to(rqg, p);

} else if (oldprio != p->prio || dl_prio(p—->prio))
p—>sched_class->prio_changed(rqg, p, oldprio);

Listing 4.8: Class change helper functions.

156

reschedule this_rqg’s CPU. For example, in SCHED_DEADLINE, switched_from () may attempt to
pull other SCHED_DEADLINE tasks to this_rg. To see why this pulling may be necessary here, suppose
task changes its class to fair_sched_class such that task was the scheduled task and the only
SCHED_DEADLINE task on this_rg. When this_rqg’s CPU reschedules, because t ask now belongs
to fair_sched_class, the balance () function for SCHED_DEADLINE will not be called (recall
Line 16 of Listing 4.4). Thus, this_rqg will not pull SCHED_DEADLINE tasks prior to picking a task to
schedule. If there are unscheduled SCHED_DEADLINE tasks on other runqueues, they must be pulled before
this reschedule, i.e., during switched_from().

The prototype of prio_changed () is as follows.

void (*prio_changed) (struct rg *this_rqg, struct task_
struct xtask, int oldprio);

prio_changed () is responsible for accounting for changes in the priorities of tasks. For SCHED_
DEADLINE, “changes in the priorities” refers to changes due to priority inheritance (and not for standard
deadline changes under the CBS). prio_changed () may migrate tasks to or reschedule this_rq for
similar reasons to switched_from () and switched to ().

Note that in check_class_changed (), for SCHED_DEADLINE tasks, prio_changed () is
called regardless of whether o1dprio equals p—>prio. This is because all SCHED_DEADLINE tasks
have prio equal to —1. Thus, whether or not a SCHED_DEADLINE task is inheriting priority from another
SCHED_DEADLINE task cannot be determined by comparing oldprio and prio.

It remains to discuss how these three helper functions are used by policy change requests and priority

inheritance.

Policy changes. As stated in Section 4.1.1, all system calls pertaining to changing scheduling policy are
ultimately serviced by kernel function__sched_setscheduler (), presented in Listing 4.9.'! Argument
attrisastruct whose members describe the policy change request. Note that this request may keep the
previous policy and only modify a policy’s parameters. For example, __sched_setscheduler () may
be called to modify a SCHED_DEADLINE task’s period. __sched_setscheduler () returns O if the

requested change is successful.

11N0mthMtheamnaL__sched_setscheduler()ﬂnmﬁontﬂ«mtwoad&ﬁomﬂbookanm@unmnm,userand
pi. These are omitted in the listing because they are always t rue when ___sched_setscheduler () is called
as a result of a policy change system call.

157

[c BN e NV I O R S

—
W N = O o

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

int __ sched_setscheduler (struct task_struct xp, struct sched_attr

{

int policy = attr->sched_policy;

int oldprio, newprio, queued, running;

int queue_flags = DEQUEUE_SAVE;

struct sched_class xprev_class = p—->sched_class;
struct rg xrg = task_rqg(p);

struct task_struct *pi_task;

/* Do admission control =/
oldprio = p->prio;
newprio = p->normal_prio = __ _normal__
prio(policy, attr->sched_priority, attr->sched_nice);
pi_task = rt_mutex_get_top_task(p);
if (pi_task)
newprio = min (newprio, pi_task->prio);

/#+ Change pattern start */

p—>policy = policy;

__setscheduler_prio(p, newprio);

if (policy == SCHED_DEADLINE)
__setparam_dl (p, attr);

/* Change pattern end */

check_class_changed(rqg, p, prev_class, oldprio);
rt_mutex_adijust_pi (p);

return O;

Listing 4.9: Policy changes.

158

xattr)

__sched_setscheduler () must verify that the change request attr is permitted by the ACS.
For example, the ACS may reject attr if it converts p to a SCHED_DEADLINE task whose bandwidth
would overload p’s runqueue’s root_domain. The exact checks performed on att r will be described in
Section 4.4.4. The ACS rejecting the request will cause ___sched_setscheduler () to fail, returning
some error number depending on the cause of the rejection.

If admission control is passed, p—>normal_prio is set by calling __normal_prio () (line 13)
with the members of at t r as arguments. The resulting priority value is also stored in newpzrio, the tentative
new value of p—>prio.

At line 15, rt_mutex_get_top_task () is called. rt_mutex_get_top_task () returns a
pointer to the highest-priority task_struct waiting for an RT-mutex owned by p, or NULL if no such
task exists. If a task is returned, it is written to pi_task, and newprio is set as the higher priority
value between the current value of newprio (recall that this is the priority value not affected by priority
inheritance, p—>normal_prio) and pi_task->prio.

Once newprio is computed, the request is enacted. p->policy is set to the requested policy.
p—>sched_class and p—>prio are set by calling ___setscheduler_prio ().

Class-specific parameters are also set (only the setting of d1_sched_class parameters is shown
in Listing 4.9). If policy is SCHED_DEADLINE, d1_sched_class parameters are set with function
__setparam_dl (). __ setparam_dl () sets three sets of parameters in p’s sched_dl_entity,
p—>dl. First are static CBS parameters. These are the budget d1_runtime, relative deadline d1_
deadline, and period d1_period, whose values are taken from attr. Second are derived static
parameters bandwidth d1_bw, equal to d1_runtime/dl_period, and density d1_density, equal to
dl_runtime/dl_deadline. Lastis pi_se, a pointer in the p’s sched_d1l_entity, p—>dl. ___
setparam_dl () sets pi_se to point to its containing sched_dl_entity, p—>dl. Thisis pi_se’s
default value for when its task is not inheriting another task’s priority. pi_se will be detailed later when
discussing function rt_mutex_setprio () (Listing 4.10).

After the request is enacted, check_class_changed () is called. check_class_changed/()
will reschedule and migrate tasks in response to changes in p’s priority due to enacting the policy change.

rt_mutex_adjust_pi () is also called to deal with priority inheritance. p’s policy change may
result in a change in its priority (due to a change in p’s sched_class or, in the case of rt_sched_

class, achange in p’s fixed priority). This priority change needs to be propagated up the chain of RT-mutex

159

owners that is such that it begins with p, it ends with a task not waiting on an owned RT-mutex, and each
successive task in the chain owns the RT-mutex that the previous task is waiting on. Note this chain may
end with p if it is not a waiter. Conceptually, rt_mutex_adjust_pi () calls rt_mutex_setprio ()
(discussed in the following paragraph) on each task in this chain to update its inherited priority until a task in

the chain has a higher priority than p.

Priority inheritance. Whenever the highest-priority waiter on an RT-mutex changes, function rt_mutex_
setprio () (Listing 4.10) is called to implement priority inheritance. Argument p is the owner of the
RT-mutex and pi_task is the new highest-priority waiter (or NULL if there are no waiters).

Priority inheritance is conceptually similar to a policy change in that p’s sched_class and priority
prio are changed. Because most of Listing 4.10 is the same as Listing 4.9, we focus discussion on the lines
within the change pattern. We also omit non-SCHED_DEADLINE priority inheritance code. When inheriting
from SCHED_DEADLINE tasks, priority inheritance works by setting a pointer in the inheriting task to the
donor task. More specifically, this priority-inheritance-scheduling-entity pointer, pi_se, is stored in and
points to the sched_d1_entitys of the inheritor and donor tasks.

In rt_mutex_setprio (), atline 15, prio is the tentative new value for p—>prio that p may be
inheriting from task pi_task. If d1_prio(prio)is t rue, then there are two cases: p is either inheriting
the priority of a SCHED_DEADLINE waiter or p is a SCHED_DEADLINE task with higher priority than any
waiter. The inner i f-else statements correspond to these two cases.

Consider the condition in lines 16-21. This condition corresponds to p inheriting the priority of
a SCHED_DEADLINE waiter. If d1_prio (p->normal_prio) is false, then p is not a SCHED_
DEADLINE task. Thus, for d1_prio (prio) to have been t rue, prio must have been inherited from a
pi_task under SCHED_DEADLINE. Alternatively, if d1_prio (p—>normal_prio) is true, then p
inherits from pi_task only if pi_task exists (i.e., is not NULL), pi_task is or inherits from a SCHED__
DEADLINE task (i.e., d1_prio (pi_task—>prio)), and pi_task has an earlier deadline than p (pi_
task->dl.deadline < p->dl.deadline).

If the condition in lines 16-21 is true, then p—>dl.pi_se is set to pi_task—->dl.pi_se to
indicate that p is inheriting from pi_task. Note that pi_task->dl.pi_se is used instead of &pi_
task->d1l because priority inheritance is transitive. ENQUEUE_REPLENISH is also set in queue_

flags. This is because SCHED_DEADLINE tasks that inherit priority enter a boosted state where budget

160

1 wvoid rt_mutex_setprio(struct task_struct =*p, struct task_struct *pi_task)
2

3 int prio, oldprio, queued, running;

4 int queue_flag = DEQUEUE_SAVE;

5 struct sched_class x*prev_class = p->sched_class;

6 struct rq *rqg = task_rqg(p);

7

8

prio = p->normal_prio;
9 if (pi_task)
10 prio = min(pi_task->prio, prio);
11 oldprio = p->prio;
12
13 /+ Change pattern start =/
14
15 if (dl_prio(prio)) {
16 if (!dl_prio(p—->normal_prio) ||
17 (
18 pi_task &&
19 dl_prio(pi_task->prio) &é&
20 pi_task->dl.deadline < p->dl.deadline)
21)
22) |
23 p—>dl.pi_se = pi_task->dl.pi_se;
24 queue_flag |= ENQUEUE_REPLENISH;
25 } else
26 p—>dl.pi_se = &p->dl;
27 }
28
29 __setscheduler_prio(p, prio);
30
31 /* Change pattern end */
32
33 check_class_changed(rqg, p, prev_class, oldprio);
34

Listing 4.10: Priority inheritance.

161

is replenished immediately on exhaustion (instead of the task being throttled). This boosted state will be
described in Section 4.4.7.

If the condition in lines 16-21 is false, then this corresponds with the case that p is a SCHED_
DEADLINE task with higher priority than any waiter it could inherit from. pi_se is reset to point to p’s

sched_dl_entity on line 26 to indicate that p does not inherit another task’s priority.

4.3.7 Affinities

Tasks’ affinities are set by either the sched_setaffinity () system call, migration enabling/dis-
abling, and the cpuset controller. All of these methods for setting affinities rely on a common set of helper
functions shown in Listing 4.11. Each helper function in Listing 4.11 calls the successive helper functions.

The topmost helper function is __set_cpus_allowed_ptr ()."?

__set_cpus_allowed_
ptr () sets p—>cpus_ptr (the true affinity mask, affected by enabling/disabling migration) and pos-
sibly sets p—>cpus_mask (the backup affinity mask that is unchanged by enabling/disabling migration)
depending on flags.

__set_cpus_allowed_ptr () calls__do_set_cpus_allowed (), discussed in the next para-
graph, which does the actual work of setting p—>cpus_ptr and p—>cpus_mask. After the affinity mask
is changed in __do_set_cpus_allowed (), p may need to be migrated if affinity for its current CPU is
lost. cpumask_any_distribute () returns a CPU index in p’s new affinity mask. This CPU is passed
as a suggested CPU to affine_move_task (), which does the actual work of migrating p if it is queued
(if not queued, p will be migrated by try_to_wake_up ()). Code for affine_move_task () is not
presented due to its complexity. This complexity arises for reasons that are not useful for understanding
SCHED_DEADLINE. If affine_move_task () chooses to migrate p, it blocks until p is migrated. Note
that affine_move_task () may choose not to migrate p if it did not lose affinity for its current CPU.

affine_move_task () returns 0 once p is on a runqueue corresponding to a CPU it has affinity for.

affine_move_task () can also return ~-EINVAL, but this should only occur if the implementation is

somehow buggy.

2Note that in recent kernels, the arguments (e.g., cpumask pointers and flags) to these helper functions and the
class-specific set_cpus_allowed () functions are passed in as members of a struct of type affinity_
context instead of individually, as presented in Listing 4.11 and the prototype of set_cpus_allowed (). We
are also omitting the user_mask member of affinity_context and SCA_USER flag in our description as
these are only used for task_struct member user_cpus_ptr (see Footnote 6).

162

14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

29
30
31
32
33
34

int _ set_cpus_allowed_ptr (struct task_
struct *p, struct cpumask xnew_mask, u32 flags)

unsigned int dest_cpu;

struct rqg xrg = task_rqg(p);

struct rg flags rf;

__do_set_cpus_allowed(p, new_mask, flags);

dest_cpu = cpumask_any_distribute (new_mask) ;

return affine_move_task(rg, p, &rf, dest_cpu,
void __do_set_cpus_allowed(struct task_

struct #*p, struct cpumask *new_mask, u32 flags)

bool gqueued, running;
struct rg xrg = task_rqg() (p);

/+ Change pattern start =/

p—>sched_class—>set_cpus_allowed(p, new_mask,

L set_cpus_allowed_common (p, new_mask,

/* Change pattern end */

void set_cpus_allowed_common (struct task_
struct *p, struct cpumask xnew_mask, u32 flags)

if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE))

ptr = new_mask;
return;

cpumask_copy (&p—>cpus_mask, new_mask);
p—>nr_cpus_allowed = cpumask_weight (new_mask) ;

Listing 4.11: Affinity helpers.

163

flags);

flags);

flags);

p—>‘cpus_

__do_set_cpus_allowed () uses the change pattern. The affinity change is done by calling
the class-specific set_cpus_allowed () function. The prototype for set_cpus_allowed () is as

follows.

void (*set_cpus_allowed) (struct task_
struct *p, struct cpumask xnewmask, u32 flags);

The main function of set_cpus_allowed () is to call set_cpus_allowed_common () (in
fact,in fair_sched_classand rt_sched_class, set_cpus_allowed () issetto set_cpus_
allowed_common ()). SCHED_DEADLINE alsouses set_cpus_allowed () to maintain per-root_
domain bandwidth totals, which are used by the ACS. If p’s change in affinity causes it to change root_
domains, then p’s bandwidth must be deducted from its original root__domain’s bandwidth total. Note
that adding p’s bandwidth to its new root_domain occurs elsewhere. This will be detailed more in
Section 4.4.4. Be aware that no admission control can be performed in set_cpus_allowed (). By the
time set_cpus_allowed () is called, the scheduler has already committed to changing p’s affinity mask.

set_cpus_allowed_common () is the function that actually sets cpus_ptr and cpus_mask.
If the call to set_cpus_allowed_common () originated from a function either enabling or disabling
migration, then f1lags has either SCA_MIGRATE_ENABLE or SCA_MIGRATE_DISABLE set. If so, then
the requested change in affinity is transient, i.e., only cpus_ptr should be modified. Otherwise, the call to
set_cpus_allowed_common () requested to permanently change p’s affinity mask. Then the value of
new_mask is written to cpus_mask with cpumask_copy (), and nr_cpus_allowed is updated to

reflect the number of CPUs in new_mask with cpumask_weight ().

sched_setaffinity (). Systemcall sched_setaffinity () calls__sched_setaffinity ()
(Listing 4.12) in the kernel. cpuset_cpus_allowed () writes the mask of CPUs permitted by p’s
cpuset to cpus_allowed. The reduction of the requested affinity mask mask to only the CPUs
permitted by this cpuset is written to new_mask. new_mask is then checked by the ACS (to be detailed
in Section 4.4.4). If new_mask passes admission control, then ___set_cpus_allowed_ptr () iscalled

to change p’s affinity mask to new_mask.

Enabling and disabling migration. Disabling migration is a mechanism used in the kernel to protect critical

sections that operate on per-CPU data structures. Such critical sections would normally be protected by

164

int _ sched_setaffinity(struct task_struct *p, struct cpumask xmask)

{

cpumask_var_t cpus_allowed, new_mask;

cpuset_cpus_allowed (p, cpus_allowed);
cpumask_and (new_mask, mask, cpus_allowed);

/* Do admission control =/

return __set_cpus_allowed_ptr (p, new_mask, 0);

Listing 4.12: Affinity system call.

disabling preemption and/or interrupts on the CPU owning the data structures. This is undesirable for latency
because it can prevent the scheduling of high-priority tasks while preemption or interrupts are disabled.
Instead, per-CPU data can be protected by a combination of disabling migration and suspension-based
locking. This combination has the advantage that a low-priority task can be preempted mid-critical section.
Disabling migration over the critical section guarantees that accesses of per-CPU data reference data belonging
to the same CPU. Locking prevents other tasks on the same CPU from making the per-CPU data inconsistent.
Functions for disabling and enabling migration are presented in Listing 4.13. These functions are imple-
mented by modifying their calling task’s affinity. A task calls migrate_disable () atthe beginning of a
critical section and migrate_enable () atitsend. migrate_disable () andmigrate_enable ()
increment and decrement task_struct member migration_disabled, respectively. A value greater
than 0 indicates that migration is disabled.
migrate_disable () does not immediately modify the caller’s affinity mask. Instead, this modifica-
tion is deferred until the caller is unscheduled in a context switch. As part of the context switch, migrate_
disable_switch () is called, which actually modifies the affinity mask if migration has not since been
enabled. It is safe to defer the modification because the caller cannot be migrated while scheduled.
migrate_disable_switch () retrieves a pointer to a pre-allocated affinity mask with only the
caller’s runqueue’s current CPU set with cpumask_of (). The caller’s affinity is changed by calling _
_do_set_cpus_allowed () with flag SCA_MIGRATE_DISABLE. This sets the caller’s cpus_ptr
to point to said pre-allocated affinity mask. Note that __do_set_cpus_allowed () is called instead
of __set_cpus_allowed_ptr () because we need not migrate the caller (i.e., call af fine_move_

task ()) when disabling migration.

165

void migrate_disable (void)
{

struct task_struct *p = current;

p—>migration_disabled++;

void migrate_disable_switch(struct rg xrqg, struct task_struct =*p)

{
if (!p->migration_disabled)
return;

_ do_set_cpus_allowed(p, cpumask_of (rg->cpu), SCA_MIGRATE_DISABLE) ;

void migrate_enable (void)
{

struct task_struct *p = current;

if (p->migration_disabled > 1) {
p—> migration_disabled-—;
return;

__set_cpus_allowed_ptr(p, &p—->cpus_mask, SCA_MIGRATE_ENABLE) ;

p—>migration_disabled = 0;

Listing 4.13: Migrate enable and disable.

166

void cpuset_attach_task (struct cpuset =xcs, struct task_struct xtask)

{

__set_cpus_allowed_ptr (task, cs->effective_cpus, 0);

int update_tasks_cpumask (struct cpuset xcs, struct cpumask *new_cpus)
{
struct task_struct =*task;
for_each_cs_task (task, cs)
__set_cpus_allowed_ptr () (task, new_cpus, 0);

Listing 4.14: cpuset affinity functions.

migrate_enable () calls __set_cpus_allowed_ptr () with a pointer to the caller’s non-
transient affinity mask cpus_mask and flag SCA_MIGRATE_ENABLE. This sets cpus_ptr back to
pointing to cpus_mask. Note that it is possible that cpus_mask was modified by another call to ___set__
cpus_allowed_ptr () while the migrate_enable () caller was mid-critical section. As such, it is
necessary to call __set_cpus_allowed_ptr () (and thus, affine_move_task ()) in case affinity
was lost for the CPU migration was disabled on.

Unlike __sched_setaffinity (), disabling migration does not interact with the ACS.

cpuset. The last mechanism for modifying affinity masks is the cpuset controller. While an effort has
been made previously for listings to resemble the kernel, Listing 4.14 only shares function names with the
actual code. The size of the cpuset controller code exceeds that of SCHED_DEADLINE. Discussing this
controller’s implementation is outside the scope of this document.

cpuset_attach_task () is called when a task is added to a cpuset (i.e., writing a TGID
to cgroup.procs). This calls _ set_cpus_allowed_ptr () such that effective_cpus (a
mask that matches cpuset.cpus.effective)is written to task—>cpus_mask. update_tasks_
cpumask () is called when cpuset.cpus.effective is changed (e.g., writing to cpuset . cpus,
writing to cpuset . cpus in a parent cpuset, or changing a child cpuset intoa root_domain). new_
cpus is the new value of effective_cpus. update_tasks_cpumask () calls _ set_cpus_
allowed_ptr () on each task in the cpuset. Note that for_each_cs_task is not a real macro in

the kernel. Iterating over the tasks in a cgroup is fairly complex for reasons that will not be discussed.

167

void rqg_attach_root (struct rg xrqg, struct root_domain xrd)

{

struct sched_class =*class;

if (rg->rd) {
cpumask_clear_ cpu(rg->cpu, rg->rd->span);
for_each_class(class)
class—->rqg_offline(rq);

}

rg->rd = rd;

cpumask_set_cpu(rg->cpu, rd->span);

for_each_class(class)
class—->rg_online (rq);

Listing 4.15: Adding CPU to a root_domain.

Both cpuset_attach_task () and update_tasks_cpumask () are only called if permitted by
the ACS. The ACS checks whether these functions can be called in cpuset_can_attach () and d1_

cpuset_cpumask_can_shrink (), as discussed in Section 4.4.4.

Attaching root_domains. Modifying cpusets can cause the kernel to rebuild the root_domains and
sched_domains. This process is complex and not described in this document. On a rebuild, CPUs are
added to a root_domain with rg_attach_root () (Listing 4.15).13

rg_attach_root () clears rg’s CPU from the span of its old root_domain, if it exists (for
example, a prior root_domain does not exist on boot when CPUs are added to the default root__
domain). If there was a prior root_domain, then for each sched_class, rg offline () is called.
The CPU is then added to its new root_domain rd’s span, and rg_online () is called for each
sched_class.

The prototypes of rgq_online () and rg_offline () are as follows.

void (*rg_online) (struct rg *rq);

void (*xrq_offline) (struct rg x*rq);

These functions alert the scheduler of their corresponding class that tasks should (rg_online ()) or should

not (rg_offline ()) be scheduled on the CPU of rg. Besides being called in rg_attach_root (),

3CPU hotplug logic is being omitted. We are assuming that any runqueues rq_attach_root () is called on
correspond with CPUs that are online. With hotplug, the set of online CPUs is dynamic. Depending on whether a
given CPU is online or offline, rg_offline () and rg_online () may not need to be called.

168

these functions are also called when CPUs are activated or deactivated. SCHED_DEADLINE uses these

functions to manage SCHED_DEADLINE-specific data stored in the root_domains.

4.3.8 Stop Class

stop_sched_class maintains a task and a FIFO queue on each CPU. Each queue is a linked-list
containing callback functions. Whenever one of these queues becomes non-empty, the corresponding st op__
sched_class task wakes up and executes the callback functions in the queue. Because these tasks belong
to stop_sched_class, the highest priority sched_class, these callback functions execute with higher
priority than any other task. These tasks then block once their corresponding queues are empty.

Tasks of stop_sched_class are used by the scheduler for migrating tasks of the user-level sched__
classes. The main use case is migrating a task that is already scheduled on a CPU. To keep scheduling
data structures consistent, such a task needs to be unscheduled from its CPU before it can be migrated. The
scheduler unschedules the target task by enqueuing a callback function onto the CPU’s FIFO queue, thereby
waking the CPU’s stop_sched_class task that preempts the target task. The callback function enqueued
by the scheduler then performs the migration.

A callback function is enqueued with stop_one_cpu ().

int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, wvoid xarq)

cpu is the target CPU, £n is a callback function pointer of type cpu_stop_fn_t (i.e., £n must return
an int and take a void pointer), and arg is the argument to be passed to £n when it is called. stop_
one_cpu () returns the return value of £n. As such, stop_one_cpu () blocks until £n completes. More

commonly used by the scheduler is the non-blocking variant st op_one_cpu_nowait ().

bool stop_one_cpu_nowait (unsigned int cpu, cpu_stop_fn_
t fn, void *arg, struct cpu_stop_work *work_buf)

The non-blocking variant requires an additional argument work_Jbuf thatis a pointer to a cpu_stop__
work (nodes in the aforementioned linked-list queues used by stop_sched_class are of type cpu__
stop_work). work_buf is then a pointer to an allocated region of memory that will store the node that
will correspond to calling £n on cpu. Because most members of cpu_stop_work are assigned values
within stop_one_cpu_nowait () (based on the other arguments to stop_one_cpu_nowait ()),

we do not describe these members here.

169

One migration function used as an argument of stop_one_cpu_nowait () ispush_cpu_stop ()
(Listing 4.17), which pushes a target task from the stopped CPU’s runqueue. We highlight push_cpu_
stop () because it calls class-specific function find_lock_rg() and because it is used by SCHED__
DEADLINE. The following is a high-level example of how SCHED_DEADLINE may use push_cpu_

stop ().

v Example 4.3. Consider a system with two CPUs as illustrated in Figure 4.5a. Initially, there are three
SCHED_DEADLINE tasks queued on these CPUs’ runqueues. Task 0 is scheduled on CPU 0 and Task 1
is scheduled on CPU 1.

Task O calls migrate_disable (), fixing itself on CPU 0. migrate_disable_switch ()
sets cpus_ptr to point to a mask with only CPU O set (Figure 4.5b) when Task 0 is next preempted
(Figure 4.5¢). When Task 3 wakes, Task 3 is enqueued on CPU 0 due to Task 0 having a later deadline
than Task 1 on CPU 1.

Suppose Task 1 on CPU 1 suspends (Figure 4.5d). This suspension triggers CPU 1 to reschedule,
during which Task 1 is dequeued. SCHED_DEADLINE wishes to execute Tasks 0 and 3, the highest
priority tasks in the system, on the two CPUs. Tasks 0 and 3 are both on CPU 0’s runqueue. Ordinarily,
Task 0 would be migrated to CPU 1’s runqueue prior to its rescheduling (i.e., during balance ()), but
Task 0 has disabled migration. Task 3, on the other hand, could be migrated to CPU 1, but is currently
scheduled on CPU 0.

balance () observes that the task it wants to pull (Task 0) has disabled migration. It calls st op_
one_cpu_nowait () to wake the stopper task on CPU 0 (Figure 4.5¢). This preempts Task 3, making
it migratable. push_cpu_stop (), queued on the stopper task by stop_one_cpu_nowait (),
migrates Task 3 to CPU 1 (Figure 4.5f). After push_cpu_stop () completes and the stopper task on
CPU 0 suspends (Figure 4.5g), Task 0 is the highest-priority task on CPU 0 and Task 3 is the highest-
priority task on CPU 1. Thus, SCHED_DEADLINE is able to schedule the highest-priority tasks in the

system. A

Queueing push_cpu_stop () for runqueue rg is usually prepared for by calling get_push_
task () (Listing 4.16). get_push_task () returns the task to be pushed by push_cpu_stop ().
Recall from Example 4.3 how this is the currently scheduled task on the target runqueue rqg. Before returning

the current task on rq, p, get_push_task () first confirms that rg—>push_work is not already being

170

pid: 2
task_struct|dl.deadline : 15
cpus_ptr : [0, 1]

pid: O pid: 1
task_struct|dl.deadline : 11 task_struct|dl.deadline : 10
cpus_ptr : [0, 1] cpus_ptr : [0, 1]

(a) Initial system.

pid: 2
task_struct|dl.deadline : 15
cpus_ptr : [0, 1]

pid: O pid: 1
task_struct|dl.deadline : 11 task_struct|dl.deadline : 10
cpus_ptr : [0] cpus_ptr : [0, 1]

(b) Task O calls migrate_disable ().

pid: O pid: 2
task_struct|dl.deadline : 11 task_struct|dl.deadline : 15
cpus_ptr : [0] cpus_ptr : [0, 1]

pid: 3 pid: 1
task_struct|dl.deadline : 8 task_struct|dl.deadline : 10
cpus_ptr : [0, 1] cpus_ptr : [0, 1]

(c) Task 3 wakes and preempts Task 0.

Figure 4.5: push_cpu_stop () example.

171

pid: O
task_struct|dl.deadline : 11
cpus_ptr : [0]
pid: 3 pid: 2
task_struct|dl.deadline : 8 task_struct|dl.deadline : 15
cpus_ptr : [0, 1] cpus_ptr : [0, 1]
(d) Task 1 suspends and CPU 1 must reschedule.
pid: O
task_struct|dl.deadline : 11
cpus_ptr : [0]
pid: 3
task_struct|dl.deadline : 8 pid: 2
cpus_ptr : [0, 1] task_struct|dl.deadline : 15
cpu_rqg(0)—->stop cpus_ptr : [0, 1]
(e) CPU 1 calls stop_one_cpu_nowait () on CPU 0.
pid: O
task_struct|dl.deadline : 11 pid: 2
cpus_ptr : [0] task_struct|dl.deadline : 15
pid: 3 cpus_ptr : [0, 1]
task_struct|dl.deadline : 8 pid: 3
cpus_ptr : [0, 1] task_struct|dl.deadline : 8
cpu_rqg(0)—->stop cpus_ptr : [0, 1]

(f) push_cpu_stop () pushes Task 0 to CPU 1.

Figure 4.5: push_cpu_stop () example (continued).

172

pid: 2

task_struct|dl.deadline : 15

cpus_ptr : [0, 1]

pid: O pid: 3

task_struct|dl.deadline : 11 task_struct|dl.deadline : 8

cpus_ptr : [0] cpus_ptr : [0, 1]

(2) cpu_rqg (0) —>stop suspends.

Figure 4.5: push_cpu_stop () example (continued).

struct task_struct xget_push_task(struct rg rq)
{
struct task_struct xp = rg->curr;
if (rg->push_busy)
return NULL;
if (p->nr_cpus_allowed == 1)
return NULL;
if (p—->migration_disabled)
return NULL;
rg—>push_busy = true;
return p;

Listing 4.16: get_push_task ().

173

used in another push by checking push_busy. push_work is the per-runqueue linked-list node of type
cpu_stop_work that stores push_cpu_stop () on rg’s stopper queue. push_busy is a boolean that
indicates whether push_work is in use. get_push_task () also checks that p is actually migratable
(i.e., p—>nr_cpus_allowed exceeds one and p has not disabled migration). If push_work is available
and p is migratable, then push_busy is set and p is returned. push_cpu_stop () is then queued as

follows.
stop_one_cpu_nowait (rg->cpu, push_cpu_stop, p, &rg->push_work);

Code for push_cpu_stop () is presented in Listing 4.17. rq is set to point to the runqueue of the
stop task by the this_rqg () macro that returns a pointer to the runqueue of the executing CPU (recall that
the stop task on a CPU never migrates). Argument arg, which is a void pointer to match cpu_stop_
fn_t,is casted into task_struct pointer p, the target task to push.

During the delay between push_cpu_stop () getting enqueued on a stopper task’s queue and said
stopper task executing push_cpu_stop (), the state of the scheduler may have changed. As such, push__
cpu_stop () may bail on migrating p (i.e., with goto out_unlock). Atline 8, push_cpu_stop ()
checks that rq is still p’s runqueue, and quits if it is not.

Atline 11, push_cpu_stop () checks that p did not disable migration, and quits if it has. If migration
was disabled, push_cpu_stop () sets MDF_PUSH inmigration_flags. Flag MDF_PUSH indicates
that p should be pushed once migrate_enable () is called. migrate_enable () calls affine_
move_task (), which is responsible for checkingmigration_flags and performing this push if MDF_
PUSH is set. On the other hand, if migration is still enabled, MDF_PUSH is unset in migration_flags.

Atline 17, push_cpu_stop () calls class-specific function find_lock_rq (). The prototype of

find_lock_rqg() is as follows.

struct rg *x (xfind_lock_rqg) (struct task_struct xp, struct rg xrq);

find_lock_rg() finds a runqueue that p should be pushed to or NULL if no such runqueue can be found.
rq is a runqueue that p is currently queued on. The functionality of find_lock_rqg () is similar to that
of select_task_rqg(), with both functions calling the same helper functions in rt_sched_class
and d1_sched_class (find_lock_rg() is not implemented in fair_sched_class). Besides

returning an rq pointer instead of an int, find_lock_rqg() differs from select_task_rqg() by

174

1 int push_cpu_stop (void *argq)

2 |

3 struct rq *lowest_rgq = NULL, *rg = this_rqg();
4 struct task_struct *p = arg;

5 struct sched _class xclass = p—->sched_class;

6 int dest_cpu;

7

8

if (task_rg(p) !'= rq)
9 goto out_unlock;
10
11 if (p->migration_disabled) {
12 p->migration_flags |= MDF_PUSH;
13 goto out_unlock;
14 }
15 p->migration_flags &= ~MDF_PUSH;
16
17 lowest_rqg = class—->find_lock_rqg(p, rqg);
18 if (!lowest_rq)
19 goto out_unlock;
20 dest_cpu = lowest_rg->cpu;
21
22 if (task_rq(p) == rq) {
23 p->on_rg = TASK_ON_RQ_MIGRATING;
24 class—->dequeue_task (rg, p, 0);
25 class->migrate_task_rg(p, dest_cpu);
26 __set_task_cpu(p, dest_cpu);
27 class—>enqueue_task (lowest_rqg, p, ENQUEUE_MIGRATED) ;
28 p—>on_rqg = TASK_ON_RQ_QUEUED;
29 resched_curr (lowest_rq) ;
30 }
31
32 out_unlock:
33 rg->push_busy = false;
34 return 0;
35 1}

Listing 4.17: Pushing with stop_sched_class.

175

locking the spinlock of the returned runqueue. When £ind_lock_rqg () returns, both the locks of the rg
and the returned runqueue are held.

If find_lock_rqg() fails to return a runqueue, push_cpu_stop () again quits on migrating p.

At line 22, push_cpu_stop () again checks that rq is the runqueue of p. This may have changed
since line 8 due to find_lock_rqg () potentially dropping rq’s lock in order to acquire lowest_rqg’s
lock in CPU index order. If rq is still the runqueue of p, the task is migrated using dequeue_task (),
migrate_task_rqg(), etc. (recall the discussion of these functions in Sections 4.3.1-4.3.2).

After push_cpu_stop () either finishes migrating or decides to bail out, at line 32, rg->push__
busy is unset. This indicates that rg—>push_work can now be reused. push_cpu_stop () always

returns 0.

Stopping multiple CPUs. There also exist functions for simultaneously waking the st op tasks of multiple
CPUs. These include functions stop_two_cpus () and stop_machine (), which wake the st op task
on two and all CPUs, respectively. Though neither of these functions is used by SCHED_DEADLINE, we

highlight it here because it is used in the patch that will be discussed in Section 5.3.

int stop_two_cpus (unsigned int cpul, unsigned int cpu2, cpu_stop_fn_
t fn, void x*arqg)

Though the stop task is woken on both CPUs, note that £n is only executed by the st op task on cpul.

The stop task on cpu?2 spins until £n returns.

44 SCHED_DEADLINE

Having covered the common infrastructure, this section covers how SCHED_DEADLINE uses its
sched_class and data structures to implement EDF. Going forward, assume all tasks are SCHED_

DEADLINE tasks unless stated otherwise.

4.4.1 Data Structures
We start by discussing SCHED_DEADLINE-specific data structures.

sched_dl_entity. Recall that the d1_sched_class scheduling entity structure is the sched_d1_
entity (Listing 4.18). A sched_d1_entity represents the CBS that encapsulates the task_struct

containing the sched_dl_entity.

176

struct sched_dl_entity {

struct rb_node rb_node;

uocé dl_runtime;

u64 dl_deadline;
u64 dl_period;

uo4 dl_bw;

uod dl_density;

s64 runtime;

u64 deadline;
unsigned int flags;

unsigned int dl_throttled;
unsigned int dl_yielded;
unsigned int dl_non_contending;
struct hrtimer dl_timer;
struct hrtimer inactive_timer;

struct sched _dl_entity «*pi_se;
}i
Listing 4.18: struct sched_dl_entity.

rb_node is the red-black tree node used to add the corresponding sched_dl_entity toa SCHED_
DEADLINE sub-runqueue d1_rgq.

dl_runtime,dl_deadline, and d1_period represent the maximum budget, deadline, and period
of the CBS. d1_bw and d1_density are derived from these parameters. Both are fractions that are inflated
by left-shifting their numerators by BW_SHIFT (i.e., 20) before division. This allows the kernel to represent
bandwidths and densities as integers, thereby avoiding floating point arithmetic. d1_bwis (d1_runtime <
BW_SHIFT)/d1_period and dl_density is (dl_runtime < BW_SHIFT)/d1l_deadline. Note
that all bandwidth quantities in SCHED_DEADLINE are similarly left-shifted by BW_SHIFT.

runtime and deadline represent the current budget and absolute deadline of the CBS.

flags stores the SCHED_DEADLINE task flags setby ___sched_setscheduler () (e.g., SCHED_
FLAG_RECLAIM, SCHED_FLAG_DL_OVERRUN, and SCHED_FLAG_SUGOV).

dl_throttled and d1_yielded are flags indicating whether the CBS is currently unschedula-
ble due to being throttled or yielded. d1_non_contending is a flag used by GRUB (discussed in
Section 4.4.8).

177

struct dl_rqg {

struct rb_root_cached root;
unsigned int dl_nr_running;
struct ({

u64 curr;

uocd next;

} earliest_dl;

unsigned int dl_nr_migratory;
int overloaded;

struct rb_root_cached pushable_dl_tasks_root;

u64d running bw;
uocd this_bw;
u6d extra_bw;
u64 max_bw;

u64 bw_ratio;

}i
Listing 4.19: struct d1_rq.

dl_timer and inactive_timer are hrtimers. d1_timer is armed when a CBS is throttled,
and fires upon the next period to replenish the CBS’s budget. inactive_timer is armed when a task
suspends while still active (i.e., is before its zero-lag time), and fires when the task becomes inactive (i.e., at the
zero-lag time). For each sub-runqueue d1_rq, the inactive_timer helpstrack d1_rg->running_
bw, the total bandwidth of active tasks corresponding with d1_ rq, which is used for GRUB (discussed in
Section 4.4.8) and DVEFES (discussed in Section 4.4.9).

pi_se points to the sched_dl_entity the corresponding task p is inheriting p—>prio from.

When not inheriting, pi_se points to its containing sched_dl_entity.

dl_rgqg. The sub-runqueue of d1_sched_class is the d1_rqg (Listing 4.19).
root is the root of the deadline-ordered red-black tree of queued sched_dl_entitys on the con-
taining struct rg. A sched_dl_entity is added to root with its rb_node member.
dl_nr_running is the number of sched_dl_entityson root. Note that throttled sched_d1_
entitys are not in this tree and do not count towards d1_nr_running. The sched_dl_entitys of
non-SCHED_DEADLINE tasks that have inherited SCHED_DEADLINE priorities are in this tree and count

towards d1_nr_running.

178

earliest_dl.curr is the earliest deadline of any sched_dl_entity on root. earliest_
dl.next is the earliest deadline of any sched_dl_entity on pushable_dl_tasks_root (to be
discussed shortly). earliest_dl.curr is 0if root is empty (i.e., d1_nr_running == 0). The
deadlines in earliest_dl are used by SCHED_DEADLINE when deciding whether or not to pull a task
from another d1_rqg (i.e., earliest_dl.next of the other d1_rqg should be earlier than earliest_
dl.curr of the pulling d1_rqg). Note that earliest_dl.next may not be 0 if pushable_dl_
tasks_root is empty.

dl_nr_migratory isthe number of sched_dl_entityson root suchthatthe task_structs
that contain these sched_d1_entityshave nr_cpus_allowed > 1.

overloaded is a boolean that is equivalent to d1_nr_migratory!= 0 && dl_nr_running
> 0. overloaded indicates whether or not other runqueues should attempt to pull tasks from this d1_rq.
overloaded matches the bit corresponding with the d1_rg’s CPU in the root_domain’s dlo_mask.

pushable_dl_tasks_root is another deadline-ordered red-black tree root. A task_structisin
pushable_dl_tasks_root ifits contained sched_dl_entityisin root, nr_cpus_allowed
> 1, and it is not currently scheduled. A task_struct is added to pushable_dl_tasks_root with
its pushable_dl_tasks member. Note that because the scheduled task is never on pushable_dl_
tasks_root,dl_nr_migratory may not be the number of tasks in this tree.

running_lbw is the total bandwidth of active tasks p such that task_rqg(p) == rqg, where rqis
the containing st ruct rqgof this d1_rqg. running_bw is used by either GRUB (Section 4.4.8) or DVFS
(Section 4.4.9), both of which, as running_bw decreases, scale down the rate of budget consumption for
tasks executing on the corresponding CPU. Note that throttled tasks and active suspended tasks contribute to
running_lbw despite not being on the d1_rq.

this_bw, extra_bw, max_bw, and bw_ratio are additional parameters used by GRUB. These

parameters will be discussed in Section 4.4.8.

dl_bw. The d1_bw stores the total bandwidth of tasks on the CPUs in its containing root_domain. Its
members are as follows.
struct dl_bw {

uoc4d bw;

u64 total_bw;

i

179

bw is the fraction sched_rt_runtime_us/sched_rt_period_us or —1 if —1 is written to sched__
rt_runtime_us (i.e., the ACS is disabled). bw represents the fraction of the containing root_domain’s
CPU capacity that SCHED_DEADLINE tasks are permitted to consume by the ACS. Because sched_
rt_runtime_us and sched_rt_period_us are set globally, bw has the same value in every d1_Dbw.
total_bw is the sum of the d1_bws of the sched_d1_entitys executing on the CPUs in the root_

domain. Re-stating (4.1), the primary purpose of the ACS is to maintain for each root__domain that

dl_bw.total_bw < dl_bw.bw - total capacity, “4.2)

where total capacity is the sum of the capacities of the root_domain’s CPUs (how capacities are derived
will be discussed when asymmetric capacities are discussed in Section 4.4.6). Note that because both bw and
total_bw are bandwidth quantities, bw and t ot al_bw are actually left-shifted by BW_SHIFT. This does

not affect (4.2) because both sides are scaled by the same factor.

cpudl. A cpudl (Listing 4.20) stores information about the CPUs in the containing root_domain’s
span. A cpudl makes migration decisions between CPUs in its root_domain more efficient. An
example of a cpudl will be presented after its members are described. The primary member of cpudl is
elements, an array-based heap of a subset of the CPUs in span. Only CPUs with queued sched_d1_
entitysontheir d1_rgsarein elements. The remaining CPUs in span are in mask free_cpus.

The key of each CPU in elements is the earliest deadline of any task on said CPU’s d1_rq.
elements is a max-heap, thus the CPU with the latest of these deadline keys is at the root. cpudlsize is
the number of CPUs in elements, and is used for inserting CPUs into elements. Each element of the
array elements is of type struct cpudl_item. d1 and cpu are the deadline key and CPU index of
the CPU represented at that index in elements.

idx is less straightforward. elements is actually two equally-sized arrays interleaved with each other.
One array is the aforementioned heap of CPUs (i.e., d1 and cpu in cpudl_item). The other array is a
mapping from a CPU index to the index (idx in cpudl_item) in the heap array such that cpu matches

said CPU index.

v Example 4.4. Consider a root_domain with six CPUs indexed 0-5. The earliest-deadline task on

CPU 0’s d1_ rqg has deadline 5, CPU 1’s has deadline 1, CPU 2’s has deadline 3, CPU 3’s has deadline 9,

180

struct cpudl_item {
uod dil;
int cpu;
int idx;
}i
struct cpudl {
int cpudlsize;
cpumask_var_t free_cpus;
struct cpudl_item xelements;
}i
Listing 4.20: struct cpudl.

CPU 4’s has deadline 8, and 5’s has deadline 7. The max-heap of these CPUs is illustrated in Figure 4.6a.
Observe how CPU 3 is at the root of the heap due to having the latest of the earliest (on each CPU’s d1__
rq) deadlines.

The heap in Figure 4.6a can be stored as an array as in the left side of Figure 4.6b. The data at index
0 in this array corresponds with the root in the heap. The children of a node at index i are found at
indicesi € 1 + landi <€ 1 + 2 (e.g., the children of the node at index 1, which has cpu: 5
anddl: 7,areatindices] < 1 + 1 == 3andl <€ 1 + 2 == 4).

The array on the right of Figure 4.6b is a mapping. The mapping array maps a given CPU index to
the index of the node in the heap array that corresponds to said CPU. For example, the 0" item in the
mapping array has idx: 5. This means the node with cpu: 0 is found at idx: 5 in the heap array.

Figure 4.6¢ shows the interleaving of the two arrays. The first node in the heap array (d1: 9 and
cpu: 3)is followed by the first index in the mapping array (idx: 5), the second node in the heap
(d1: 7and cpu: 5)is followed by the second index in the mapping (idx: 3), etc. This interleaved

array is how the heap and mapping are stored in elements. A

4.4.2 Multiprocessor Scheduling

This subsection discusses how tasks are migrated between runqueues to schedule those with the earliest
deadlines. For now, we assume that each task’s deadline is some arbitrary constant. Actual deadlines are
determined by the CBS implementation and will be discussed in Section 4.4.3. Migration logic can be
discussed independently of the CBS because migrations caused by the suspending and waking of tasks are

analogous to migrations caused by the throttling and replenishment of tasks.

181

dl :

cpu :

e

dl : 7 dl :
cpu : 5 cpu: 4
dl : 1 dl : 3 dl :
cpu : cpu : 2 cpu: O
(a) cpudl heap illustration.
idx : 0
dl: 9
: 3
idx : 1 <bu
dl : 7 0
. cpu: 5 cpu s idx : 5
idx : 2 cpu: 17
dl: 8 idx : 3
cpu: 2[
. cpu: 4 idx : 4
idx : 3 cpu: 3[
dl : 1 idx : 0
cpu : 47
4 4 cpu : 1 c 5 idx : 2
: u
e dl: 3 P idx : 1
2
idx : 5 e
dl: 5
cpu: 0

(b) Array representation of heap (left) and cpu to i dx mapping (right).

Figure 4.6: cpudl illustration.

182

dl :
cpu :

idx :
dl :
cpu :

idx :
dl :
cpu :

idx :
dl :
cpu :

idx :
dl :
cpu :

idx :
dl :
cpu :

(=l (X (G200 [N [\ (OVRN (el ol ol (NN (TR (ool (VRN (G20 ENEN (G200 (O] (Ne}

idx :

(c) elements.

The basic building blocks of migrations are enqueuing a task onto the d1_ rg being migrated to and
dequeuing a task from its current d1_rqg. The enqueues and dequeues that result in the earliest-deadline
tasks being on different runqueues primarily occur due to pushes and pulls. Ignoring CBS throttling and
replenishment, these pushes and pulls are mostly triggered by tasks suspending and waking, possibly on a

different d1_raq.

4.4.2.1 Enqueuing and Dequeuing

Consider Listing 4.21. Deferring discussion of CBS for Section 4.4.3 and GRUB for Section 4.4.8,
the function of enqueue_task_dl () and dequeue_task_d1l () is to insert and remove task p
from d1_rg rg—>d1’s red-black trees. These trees are the one rooted at rg—>d1. root (all runnable
tasks on the d1_rqg) and at rg—>pushable_dl_tasks_root (the subset of migratable tasks). _
_enqueue_dl_entity () and _ dequeue_dl_entity () insert and remove p onto root (with
rb_node p—>dl.rb_node). enqueue_pushable_dl_task () and dequeue_pushable_dl_
task () are the analogous insertion and deletion functions for pushable_dl_tasks_root (with
rb_node p->pushable_dl_tasks). These four helper functions are also where a majority of the
state of d1_rgs and the SCHED_DEADLINE-relevant state of root_domains are maintained.
enqueue_dl_entity () and __dequeue_dl_entity () update, in the d1_rg rg->dl, mem-
bers d1_nr_running, earliest_dl.curr, dl_nr_migratory, and overloaded, and, in the
root_domain rg—>rd, members cpudl and dlo_mask. enqueue_pushable_dl_task () and
dequeue_pushable_dl_task () update earliest_dl.next.

There is a nuance to be discussed about Listing 4.21. It may be unclear why dequeue_task_
dl (), before calling dequeue_pushable_dl_task (), does not need to perform the same check
that enqueue_task_d1 () does on line 8 to determine if p is migratable before calling enqueue_
pushable_dl_task (). This is because the scheduler maintains that the parent pointer of any unqueued
rb_node points back to itself. This allows dequeue_pushable_dl_task () (and also __dequeue_
dl_entity ())to first check the relevant rb_node (e.g., p—>pushable_dl_tasksorp->dl.rb_
node), and return immediately if p is not actually queued.

Because these dequeue helper functions first check that a task is actually queued, it is generally safe

to call dequeue_task_dl () even if p is not actually on the d1_rqg. This is necessary because there

183

1 wvoid enqueue_task_dl (struct rg *rqg, struct task_struct *p, int flags)
2 {

3 /+ Do GRUB logic #*/

4

5 /% Do CBS logic =/

6

7 __enqueue_dl_entity (&p->dl);

8 if (rg->curr !'= p && p->nr_cpus_allowed > 1)

9 enqueue_pushable_dl_task(rqg, p);

10 }

12 void dequeue_task_dl (struct rg *rq, struct task_struct *p, int flags)
13 {

14 __dequeue_dl_entity (&p->dl);

15 dequeue_pushable_dl_task(rg, p);
16

17 /* Do GRUB logic */

Listing 4.21: enqueue_task_dl () and dequeue_task_dl ().

are instances where a task p may be on a runqueue rq (from the perspective of the common scheduler
infrastructure) while not being on the corresponding d1_rqg. This can occur when p is not suspended (i.e.,
p—>on_rqis TASK_ON_RQ_QUEUED) but is throttled (hence, not on the d1_ rqg). Because CBS throttling
has not yet been discussed, we illustrate the necessity of being able to call dequeue_task_dl1 () on such

tasks with a high-level example.

v Example 4.5. Consider Task 0 illustrated in Figure 4.7a on CPU 0’s runqueue. Suppose at some point
Task 0 exhausts its budget, d1 . runt ime. Due to being unrunnable due to lack of budget, SCHED__
DEADLINE dequeues Task O from CPU 0’s runqueue (Figure 4.7b). Despite being dequeued, Task 0 is
not suspended due to sleeping or being blocked on some resource. Thus, from the perspective of the
common scheduling infrastructure, Task O still appears runnable (i.e., __state is TASK_RUNNING
and on_rqgis TASK_ON_RQ_QUEUED).

Now consider if a request is made to change the policy of Task 0 to SCHED_FIFO while it is
throttled. Then the change pattern (recall Listing 4.7) observes that on_rgis TASK_ON_RQ_QUEUED
and calls dequeue_task_dl1 () on Task 0. Because __dequeue_dl_entity () and dequeue_
pushable_dl_task () can observe that Task O is not enqueued, the call to dequeue_task_dl1 ()

returns without incorrectly attempting to dequeue Task 0 again.

184

pid: O

cpu_rqg(0)—->idle

_ _state :

TASK_RUNNING

on_rqg :

TASK_ON_RQ_QUEUED

task_struct

dl.deadline : 20

dl.runtime : 10

policy :

SCHED_DEADLINE

(a) Initial system.

Cpu_rq(O)—>id14

task_struct

pid: O

_ state : TASK_RUNNING

on_rqg : TASK_ON_RQ_QUEUED

dl.deadline : 20

dl.runtime : O

(b) Task O throttled for exhausting budget.

pid: O

policy : SCHED_DEADLINE

task_struct

__State:

TASK_RUNNING

on_rq :

TASK_ON_RQ_QUEUED

pid: O

_ _state:

TASK_RUNNING

dl.deadline : 20

dl.runtime : O

policy : SCHED_FIFO

on_rq :

TASK_ON_RQ_QUEUED

task_struct

dl.deadline : 20

dl.runtime : 0

policy :

SCHED_FTIFO

(c) Task 0 switches to SCHED_FIFO.

(d) Task enqueued in change pattern.

Figure 4.7: Class change of throttled task.

After Task 0’s policy is changed (Figure 4.7¢), because on_ rg was observed to be TASK_ON_RQ__
QUEUED, the change pattern calls rt_sched_class’s enqueue_task () function. This places
Task 0 back on CPU 0’s runqueue. This enqueue is necessary for correct scheduling; now that Task 0 has

left SCHED_DEADLINE, the scheduler does not care that runt ime is exhausted. A

Note that similarly to how dequeue_task_d1 (), when called from the change pattern, must not
dequeue an already throttled task, enqueue_task_d1 () must not accidentally enqueue a throttled task
when called from the change pattern. enqueue_task_d1 () checks d1.d1_throttled to determine

if the task should actually be enqueued. This falls under CBS logic that will be discussed in Section 4.4.3.

4.4.2.2 Pushes and Pulls

A migration dequeues a task from one runqueue and enqueues it on another runqueue. Most migrations
in SCHED_DEADLINE occur due to pushes and pulls. We start with pulls because they are less complex

than pushes.

Pulls. A pull migrates a high-priority task from a source runqueue onto the pulling runqueue. pull_dl_
task () is presented in Listing 4.22.

A majority of pull_dl_task () is the for loop beginning at line 9. for_each_cpu () iterates
over the CPUs in d1o_mask using cpu as the iteration variable. Recall from the discussion of root__
domains in Section 4.2 that d1o_mask contains the CPUs in the corresponding root_domain with
spare (i.e., at least one unscheduled and migratable) tasks. pull_d1_task () iterates over these CPUs to
pull such spare tasks.

For the CPU cpu of a given iteration of the for loop, pull_d1l_task () first checks if an attempt
should be made to pull from cpu. The remainder of the iteration is skipped if not. This check compares
earliest_dl.curr of this_rg->dl, the earliest deadline of any task on the pulling d1_ rqg, against
earliest_dl.next of src_rg->dl, the earliest deadline of a migratable task on cpu’s d1_rqg. If
the deadline corresponding with the pulling d1_ rqg precedes that of cpu’s d1_rq, a pull is not attempted.
Note that earliest_d1l.next is oblivious as to whether the task with its deadline actually has affinity
for this_cpu.

Function pick_earliest_pushable_dl_task () iterates over the tasks in the tree rooted at

src_rg->dl.pushable_dl_tasks_root to find the earliest-deadline task p such that p has affinity

186

[c IR N Ie NV I O R

(USERUSER USRS EEUS RIS IEUL RN (O I NS I S I (ST ST (ST NS I O R O R O R e e e e
AN PR LR, OOVWOENIAANE WD, OOVWOIANWNPKAWND— OO

37
38
39
40
41
42
43

void pull_dl_task(struct rg xthis_rq)

{

int this_cpu = this_rg->cpu, cpu;

struct task_struct xp, =*push_task = NULL;
bool resched = false;

struct rg src_rqg;

u64 dmin = LONG_MAX;

for_each_cpu(cpu, this_rg->rd->dlo_mask) {
src_rqg = cpu_rqg(cpu);

/+ Check should pull from src_rq */
p = pick_earliest_pushable_dl_task(src_rqg, this_cpu);

if (p && p—>dl.deadline < dmin &&
('this_rg->dl.dl_nr_running ||
p—>dl.deadline < this_rg->dl.earliest_dl.curr))

if (p->migration_disabled)
push_task = get_push_task (src_rq);

else {
p->on_rqg = TASK_ON_RQ_MIGRATING;
dequeue_task_dl (src_rqgq, p, 0);
migrate_task_rqg dl(p, this_cpu);
_ set_task_cpu(p, this_cpu);
enqueue_task_dl (this_rqg, p, ENQUEUE_MIGRATED) ;
p—->on_rg = TASK_ON_RQ_QUEUED;

dmin = p->dl.deadline;
resched = true;

if (push_task) {
stop_one_cpu_nowait (src_rg->cpu, push_cpu_
stop, push_task, &src_rg->push_work);
push_task = NULL;

if (resched)
resched_curr (this_rq);

Listing 4.22: Pull task pseudocode.

187

for this_cpu (specifically, this_cpuis setin p—>cpus_mask). If no such task is on the tree, pick_
earliest_pushable_dl_task () returns NULL.

The condition starting at line 16 determines if a task is migrated from src_rqgto this_rqg. This
condition is not redundant with respect to the aforementioned checks (line 12) for two reasons. First, the
earlier checks referred to earliest_dl.next, which is oblivious to affinities, while the condition at
line 16 refers to p, which is guaranteed to have affinity for this_cpuby pick_earliest_pushable_
dl_task (). Second, the earlier checks are done without holding src_rg’s spinlock, while this lock is
acquired by line 16.

At line 16, pull_dl1_task () checks that pick_earliest_pushable_dl_task () returned
a task (p), that p has an earlier deadline than any task pulled in an earlier iteration (p->d1.deadline
< dmin), and either this_rqg has no tasks (!this_rg->dl.dl_nr_running) or p has an earlier
deadline than any task on this_rqg (p—>dl.deadline < this_rg->dl.earliest_dl.curr).

If the condition at line 16 is t rue, then pull_d1l_task () checks if p, the to-be-pulled task, has
disabled migration. If migration is disabled, then the stop class is used to migrate src_rg—->curr (recall
Example 4.3). push_cpu_stop () is queued on src_rqg on line 36. Otherwise, if migration is enabled,
p is migrated to this_rqg (lines 23-28). resched is set to true to indicate that this_cpu should

reschedule (line 41) due to an earlier-deadline task migrating to this_rq.

Pushes. push_d1_task (), which sends a task from a pushing runqueue to a runqueue with either no
SCHED_DEADLINE tasks or only tasks with deadlines later than that of the pushed task’s deadline, is more
complicated than pull_d1l_task (). The runqueue being pushed to is called a later runqueue. Instead
of iterating over CPUs, as done by pull_dl_task () to select which runqueue to pull from, push_d1_
task () checks the cpudl to determine the later runqueue to push to. This checking of the cpudl is done
by helper function find_lock_later_rqg(), which itself calls function find_later_rqg(). £find_
later_rqg() takes a task_struct pointer p as its sole argument and returns the CPU index of the later
runqueue (or —1 if no later runqueue can be found). When find_later_rqg() returns a CPU index that
is not —1, the CPU is always set in p—>cpus_mask.

The complexity of find_later_rqg () makes presenting pseudocode impractical. The return value
of find_later_rqg() is best understood when broken down into cases. For pushing runqueue rq and

pushed task p, the return value of find_later_rq() is as follows.

188

1. The intersection of p—>cpus_mask and rg—>cpudl. free_cpus has CPUs.

(a) The system contains CPUs with asymmetric capacities.

Discussion of this case is deferred to Section 4.4.6.
(b) All CPU capacities are equal.

i. task_cpu (p) isin the intersection of cpus_mask and free_cpus.
find_later_ rqg() returns task_cpu(p).

ii. task_cpu (p) is not in the intersection of cpus_mask and free_cpus.
find_later_rqg() returns a CPU that is both in the intersection and in the lowest-
possible sched_domain that also contains task_cpu (p) . If there is no such CPU, an

arbitrary CPU in the intersection is returned.

2. The intersection of p—>cpus_mask and rg—>cpudl. free_cpus is empty.

Then find_later_rqg() considers the CPU at the root of cpudl.elements. Let this CPU be

best_cpu with corresponding deadline 1atest_deadline in elements.

(a) p has affinity for (i.e., p—>cpus_mask includes) best_cpu and p->dl.deadline is

earlier than latest_deadline.

find_later_rqg() returns best_cpu.

(b) p does not have affinity for best_cpu or has a later deadline than latest_deadline.

find_later_rq() returns —1.

push_dl_task () does not call find_later_rqg() directly, instead calling function find__
lock_later_rq(), which is also SCHED_DEADLINE’s class-specific find_lock_rqg() function
(recall this sched_class function is used in push_cpu_stop ()). Be aware of the distinction between
find_lock_rqg(), which is a function pointer in sched_class, and find_later_rqg(), whichisa
helper function in SCHED_DEADLINE. find_lock_later_rqg() shares the same prototype as find_
lock_rqg(), taking a task and runqueue pointers as arguments. The purpose of find_lock_later_
rqg() istocall find_later_rqg() on said task, lock the runqueue corresponding to the CPU find__
later_rqg () returns, and return a pointer to the newly locked runqueue (or NULL if find_later_rqg()

returned —1).

189

find_lock_later_rqg() may attempt to call find_later_rqg () multiple times. Let the run-
queue corresponding to the return value of £ind_later_rqg() be the fentative runqueue. It is necessary to
call find_later_rqg () multiple times because in between find_later_rg () returning and acquiring
the tentative runqueue’s spinlock, the state of the tentative runqueue may have changed such that the task
being pushed would no longer be the earliest-deadline task on the tentative runqueue (e.g., a task with
an earlier deadline wakes on the tentative runqueue). After find_later_rqg() returns, find_lock_
later_rqg() checks if such a state is observed, and if so, calls find_later_rqg () again to attempt to
push to a different runqueue. find_later_rqg() canbe called DI,_MAX_TRIES (3) times before find_
lock_later_rg() givesup and returns NULL.

In acquiring the tentative runqueue’s spinlock, it may be necessary to unlock the pushing runqueue in
order to acquire both runqueues’ locks in CPU-index order. If find_lock_later_rqg() observes that
the state of the pushing runqueue or to-be-pushed task has changed while the pushing runqueue’s spinlock
was dropped (e.g., the to-be-pushed task disabled migration, was migrated away by some other function, was
scheduled, efc.), then find_lock_later_rg() immediately gives up and returns NULL.

Having covered find_lock_later_rqg(), push_dl_task () is presented in Listing 4.23. At
line 6, push_dl_task () calls pick_next_pushable_dl_task (), which returns the leftmost
task in red-black tree rg—>dl.pushable_dl_tasks_root to determine which task is to be pushed
(i.e., next_task). pick_next_pushable_dl_task () is similarin purpose to pick_earliest_
pushable_dl_task(),usedinpull_dl_task () to select a task to be pulled, except pick_next_
pushable_dl_task () needs not consider the affinity mask of its returned task. At line 11, push_d1_
task () gives up on pushing next_task if it has disabled migration. Otherwise, push_d1l_task ()
calls find_lock_later_rqg() to identify which runqueue to push next_task to.

In the case that find_lock_later_rqg() returns NULL, then no suitable runqueue was found. In
this case, push_d1l_task () rechecks that next_task is the earliest-deadline pushable task on rqg
(recall that find_lock_later_rqg () may temporarily release rg’s spinlock) by calling pick_next_
pushable_dl_task () again. If pick_next_pushable_dl_task () returns NULL (i.e., there are
no longer pushable tasks on rqg) or returns next_task (which cannot be pushed due to £ind_lock_
later_rqg() returning NULL), then push_dl_task () returns without pushing a task. Otherwise,
push_dl_task () sets next_task to the new task and jumps back to line 11, attempting to push the

new next_ task.

190

{

[c BN e NV I U R S

[SSENUSRNUSRR TSI (O RN NS I NS I (O I NS I NS I NS I N i NS B O e el e e e e
PO = OOV NPAWN—=OOVIANNPAWN = O\
—

int push_dl_task (struct rg xrq)

struct task_struct xnext_task;

struct rg xlater_rg = NULL;

next_task = pick_next_pushable_dl_task (rqg);

if (!'next_task)
return 0;

while (!later_rqg) {

if (next_task->migration_

return 0;

disabled)

later_rqg = find_lock_later_ rqg(next_task, rq);

if (!later_rq) {

struct task_struct *task = pick_next_pushable_dl_task (rqg);

if (!'task || task ==
return 0;
next_task = task;

next_task)

next_task->on_rqg = TASK_ON_RQ_MIGRATING;
dequeue_task_dl (rq, next_task, 0);

migrate_task_rqg dl (next_task,

later_rg->cpu);

__set_task_cpu(next_task, later_rg->cpu);
enqueue_task_dl (later_rg, next_task, ENQUEUE_MIGRATED);
next_task->on_rqg = TASK_ON_RQ_QUEUED;

resched_curr (later_rq);
return 1;

Listing 4.23: Push task pseudocode.

191

int balance_dl (struct rg *rqg, struct task_struct *p, struct rg flags =*rf)

1
2 {

3 if (lon_dl_rqg(&p->dl) && dl_prio(p—>prio))
4 pull_dl_task(rq);

5 return rg->dl.dl_nr_running > 0;

6

Listing 4.24: balance_dl1 ().

On the other hand, if find_lock_later_rqg() returns a runqueue pointer, then next_task is

migrated to the later runqueue (lines 24-29).

4.4.2.3 Suspending and Waking

Pushes and pulls are generally triggered by reschedules, which (ignoring CBS throttling and replenish-
ments) are primarily caused by tasks suspending (a suspending task directly calls scheduling functions) and

waking (a waking task may preempt the running task).

Suspending. A suspending task calls ___schedule () to unschedule itself and remove itself from its
runqueue. Recall Listing 4.4 of the ___schedule () function. For SCHED_DEADLINE, a suspending task
means that a task that previously had an early-enough deadline to be scheduled is no longer runnable. The
CPU of the suspending task must choose a new task with an early deadline to schedule. This new task may
need to be pulled from another runqueue. Pulling is done by balance_d1l (), which will be called by ___
schedule () (recall the loop at line 16 of Listing 4.4).

balance_dl () is presented in Listing 4.24. balance_d1l () checks if tasks need to be pulled
to this rg by verifying that p, the previously scheduled task, is both a SCHED_DEADLINE task (d1_
prio (p—>prio)) and was suspended (not on_dl_rqg(&p->dl)). on_dl_rqg() is a function that
returns t rue if a given sched_d1_entity is queued on any tree. These two conditions indicate that p
was the earliest-deadline task on runqueue rqg and has become unschedulable; thus, the other runqueues
should be searched for a task with a potentially earlier deadline than the remaining tasks on runqueue rq, i.e.,
pull_dl_task () mustbe called. balance_dl () returns whether there are SCHED_DEADLINE tasks
on runqueue rq. Returning t rue indicates that the balance () functions of the lower scheduling classes
need not be called.

This concludes discussion on how suspending results in tasks being pulled from other runqueues.

192

1 wvoid select_task_rqg dl() (struct task_struct xp, int cpu, int flags)
2 {

3 int target;

4 struct dl_rg xdl_rqg;

5
6
7

8

if (! (flags && WF_TTWU)) return cpu;target = ‘find_later_rqg(p);
if (target == -1)
return cpu;

9
10 dl_rg = &cpu_rqg(target)->dl;
11 if (!dl_rg->dl_nr_running || p->dl.deadline < dl_rg->earliest_dl.curr)
12 return target;
13
14 return cpu;
15 1}

Listing 4.25: select_task_rqg dl ().

Waking. The waking function try_to_wake_up () causes two migrations. The first migration is of
the waking task to the runqueue selected by select_task_rqg (). This migration is performed without
acquiring a runqueue lock, and has a primary purpose of enqueueing the waking task on some runqueue.
Once the waking task has been enqueued on some runqueue, its priority is either higher or lower than the
currently running task on said runqueue. The second migration is a push from this runqueue triggered within
task_woken (). The purpose of this push is to migrate the waking task to a runqueue with only tasks with
later deadlines. This push is performed with runqueue locks acquired.

We discuss the logic behind these migrations by stepping through the functions called by try_to_
wake_up (). The first function call of note is to the class-specific select_task_rqg() function, which
returns the target runqueue of the aforementioned first migration. For SCHED_DEADLINE, thisis select_
task_rqg_dl (), which is presented in Listing 4.25.

select_task_rqg dl () immediately returns if flag WF_TTWU is not set in flags (line 6). If
try_to_wake_up () is unset, then select_task_rqg() was called as a result of either a task forking
(WF_FORK), which is not permitted in SCHED_DEADLINE, or replacing its binary (WF_EXEC), which
does not necessitate a migration. For either WF_FORK or WF_EXEC, select_task_rqg_dl () iscalled
with argument cpu having the value of task p’s current CPU, which select_task_rqg_dl () then

immediately returns.

193

void task_woken_dl (struct rg xrqg, struct task_struct =*p)
{
struct task_struct xcurr = rg->curr;
if (curr !'= p &&
dl_prio(curr->prio) &&
curr—->dl.deadline < p->dl.deadline)
while (push_dl_task(rq));

Listing 4.26: task_woken_dl1 ().

If WF_TTWU is set, then, as in push_d1_task (), find_later_rqg() is used to identify the latest
CPU to send waking task p to. Note that, unlike push_dl1_task (), select_task_rqg_dl () directly
calls find_later_rqg() instead of calling find_lock_later_rqg().

After calling select_task_rqg(), try_to_wake_up () also potentially callsmigrate_task_
rg (). For SCHED_DEADLINE, migrate_task_rqg_dl () updates statistics used by GRUB and is
independent of how tasks are migrated. migrate_task_rqg_dl () will be discussed when discussing
GRUB in Section 4.4.8.

Next, try_to_wake_up () enqueues the waking task by calling enqueue_task (). enqueue_
task_d1 () was discussed previously. If the waking task and the current task on the corresponding runqueue
are of the same sched_class, try_to_wake_up () calls wakeup_preempt () to determine if the
current task should be preempted. wakeup_preempt_dl () calls resched_currzr () if the waking task
has an earlier deadline deadline than the currently scheduled task.

The last sched_class function called by try_to_wake_up () is task_woken (). task_
woken_dl () is presented in Listing 4.26. Having now enqueued the waking task p on the runqueue
returned by select_task_rqg _dl (), task_woken_dl () migrates p if this runqueue is no longer
appropriate. This is the aforementioned second migration triggered by t ry_to_wake_up (). If p does not
have an early enough deadline to preempt the current task on its runqueue, then task_woken_d1 () calls

push_dl_task () to migrate the task.

4.4.2.4 Other Scheduling Class Functions

There remain miscellaneous sched_ class functions that are described here.

194

1 wvoid put_prev_task_dl (struct rgq *rqg, struct task_struct =p)
2 {

3 update_curr_dl (rq) ;

4 if (on_dl_rg(&p->dl) && p->nr_cpus_allowed > 1)

5 enqueue_pushable_dl_task(rqg, p);

6 }

Listing 4.27: put_prev_task_dl1 ().

1 wvoid set_next_task_dl (struct rg xrqg, struct task_struct *p, bool first)
2 {

3 p—>se.exec_start = rqg_clock_task(rq);
4

5 dequeue_pushable_dl_task(rqg, p);

6

7 if (!first)

8 return;

9

10 hrtick_start (rg, p->dl.runtime);

11

12 deadline_qgqueue_push_tasks (rq) ;

13 }
Listing 4.28: set_next_task_dl ().

Putting, picking, and setting. We briefly discuss the remaining SCHED_DEADLINE sched_class
functions called by ___schedule (). These are put_prev_task_dl(), pick_task_dl (), and

set_next_task_dl ().

After balancing, __schedule () calls the put_prev_task () function on the task being unsched-
uled. For SCHED_DEADLINE, this is put_prev_task_dl () (Listing 4.27). The primary function of
put_prev_task_dl () is to potentially call enqueue_pushable_dl_task () on p. This is neces-
sary because p, having been unscheduled, must be made available to be pushed to or pulled by other CPUs.
The call to update_curr_dl () will be explained later when CBS throttling is discussed.

Next in ___schedule () are calls to the pick_task () functions. pick_task_d1l () is trivial.
The leftmost (i.e., earliest-deadline) task on root is returned, or NULL if no SCHED_DEADLINE tasks are
enqueued on this runqueue.

If pick_task_dl () returnsataskin___schedule (), set_next_task_dl () (Listing 4.28) is
called on this task to denote it as the scheduled task. The setting of the exec_start field (line 3), which

stores when task p was initially scheduled and the call to hrtick_start () atline 10 will be explained

later when discussing CBS throttling (Section 4.4.3).

195

Inversely from put_prev_task_dl (), set_next_task_dl () calls dequeue_pushable_
dl_task () due to task p being scheduled (and thus, no longer migratable).

set_next_task_dl () ends by calling function deadline_qgueue_push_tasks (), which
causes push_dl_task () tobe called on runqueue rq after p has become the scheduled task. deadline_
queue_push_tasks () does this by queueing push_d1_task () onto the queue of callback functions
rg->balance_callback. The purpose of queueing push_dl_task () here is to migrate the task
preempted by p to a later CPU.

Note that, when called from __schedule (), argument first, which indicates that set_next__
task () was not called from the change pattern, is t rue. Thus, set_next_task_dl () does not return

at line 8.

Entering and leaving. Policy changes call the sched_class functions switched_to (), switched_
from(),and prio_changed (). For SCHED_DEADLINE, these function pointers point to switched_
to_dl (), switched_from_dl(),and prio_changed_dl (). Be aware that these functions do not
contain ACS code. The purpose of these functions is to migrate tasks in response to tasks entering and
leaving SCHED_DEADLINE. For example, switched_from_dl (), called when a task leaves SCHED__
DEADLINE, calls pull_d1l_task (). This should be intuitive because, from the point of view of SCHED__
DEADLINE, a task leaving SCHED_DEADLINE is analogous to said task permanently suspending. Recall

that a suspending task calls pull_d1l_task () viacallingbalance_dl () in__schedule ().

Runqueue onlining and offlining. sched_class functions rq_online () and rq_offline () are
called whenever a CPU is added to a root_domain. For SCHED_DEADLINE, rq_online_dl () and
rq _offline_dl () are responsible for initializing and clearing the SCHED_DEADLINE-relevant state
for the corresponding CPU in the root__domain of interest. This state is the CPU’s corresponding bit in

mask d1lo_mask as well as its presence in either cpudl’s heap elements or mask free_cpus.

443 CBS

Linux tasks do not naturally have deadlines because they are not obligated to follow any real-time task
model. The deadline of a task arises from its encapsulating CBS, which increments the deadline whenever

the task exhausts its budget. The CBS also throttles tasks that exhaust their budget.

196

IRQ
I EENENENE B

Task O _ _ .‘ .‘
T T T T T
4 6 8 10 12

14 16 18 20

| |

clock_task

Figure 4.8: clock_task example.

clock vs. clock_task. There are several points in the CBS logic where it is necessary to know the
current time instant (e.g., when setting the first deadline of a task when it enters SCHED_DEADLINE or
when computing how much budget to decrease for a given interval of execution). Recall that the current
time instant is stored in rgq members clock, or its derived quantities clock_task and clock_pelt.
For a given runqueue rq, if rg—>clock is a measure of the local (rg’s CPU’s) time, then rg—>clock__
task can be interpreted as a measure of time such that time spent executing interrupts does not contribute to

clock_task, i.e., time only advances while executing tasks or idling.

v Example 4.6. Consider the schedule in Figure 4.8. The first row illustrates the execution of IRQs,
the second row illustrates the execution of a task with PID 0, and the third and fourth row illustrate the
execution of a task with PID 1. The first through third row share a horizontal time axis as would be
observed by clock, while the fourth row has a time axis as observed by clock_task. Observe that
clock_task does not does not advance whenever an IRQ is executing.

Suppose we want to decrement Task 1’s budget for execution within the time interval represented by
[5,8) in the clock axis and [3,5) in the clock_task axis. The scheduler, which is only informed

when fasks are scheduled, is only aware that Task 1 was the only task scheduled in this interval, and is

197

oblivious to time spent executing IRQs. As such, if the scheduler were to observe time according to the
clock axis, it would decrement 8 — 5 = 3 units of budget. In comparison, if the scheduler were to
observe time according to clock_task, it would decrement 5 — 3 = 2 units of budget. This reflects

the actual amount of execution provided to Task 1. A

The CBS refers to c1ock when setting deadlines and replenishment times and to clock_task when

doing budget calculations.

Throttling. CBS throttling occurs when tasks exhaust their budgets. Idealized budget-based servers decrease
their budgets continuously with time. This is not possible on a real system. Instead, SCHED_DEADLINE
maintains an invariant: the actual budget of any unscheduled task must match its ideal budget, and the actual
budget of any scheduled task must have a budget update queued on an hrtimer set to fire no later than
(within a small margin of error) the exhaustion time of its ideal budget. Maintaining this invariant allows
SCHED_DEADLINE to correctly throttle tasks at ideal budget exhaustion times.

CBS budget updates occur on calls to update_curr_dl (), whichis the update_curr () function
of SCHED_DEADLINE. We will discuss specifics of update_curr_dl () after discussing how and when
it is called. That budgets of unscheduled tasks match ideal budgets is maintained by calling update_curr_
dl () input_prev_task_dl () (line 3 of Listing 4.27). put_prev_task_dl () is called whenever
a task is unscheduled (line 20 of Listing 4.4).

Maintaining the invariant for scheduled tasks is more complicated. update_curr_d1 () is called
from task_tick_dl (), SCHED_DEADLINE’s task_tick () function. Recall from Section 4.3.3 that
task_tick () iscalled from hrtick (), the timer function of the per-runqueue hrtimers hrtick_
timer. To maintain the invariant for a scheduled task, hrtick_t imer on said task’s runqueue is armed
to fire at the expected time instant that budget would be depleted, i.e., the current time added to the task’s
remaining budget. Firing at this time instant causes hrtick () tocall task_tick_dl (), which calls
update_curr_dl (), which updates the budget.

Maintaining that hrtick_timer is always armed at the budget exhaustion time of the scheduled
task involves the functions set_next_task_dl (),task_tick_dl(),and __schedule (). set_
next_task_dl (), called whenever a task is scheduled (line 25 of Listing 4.4), arms hrtick_timer
based on the remaining budget, i.e., runtime of the corresponding sched_dl_entity (line 10 of

Listing 4.28). While at first glance, this is sufficient to maintain the invariant, the task may consume less

198

void task_tick_dl(struct rg xrqg, struct task_struct *p, int queued)

{
update_curr_dl (rqg);
if (queued && p->dl.runtime > 0 && is_leftmost (p, &rg->dl))
hrtick_start (rgq, p->‘'dl.runtime);

Listing 4.29: task_tick_dl ().

than runt ime units of budget over runt ime time units of execution. Less than runt ime units may be
consumed under GRUB, asymmetric capacities, and DVFS, which will be detailed in Sections 4.4.8-4.4.9.
Note that budget for tasks is relative to execution on a maximum capacity CPU operating at maximum
frequency, thus, more than runt ime units of budget cannot be consumed in runt ime time units.

To maintain the invariant for scheduled tasks, task_tick_dl () rearms hrtick_timer when
it observes that budget has not been exhausted. Consider Listing 4.29. task_tick_d1 () first calls
update_curr_dl () to update the budget of the running task. hrtick_timer is then rearmed if
task_tick_dl () wascalled by hrtick_timer firing (i.e., queued is set), budget is not exhausted
(p—>d1l.runtime > 0), and the current task is still the task with the earliest deadline on the runqueue (i s_
leftmost (p, &rg->dl)). is_leftmost () returns true if p is the leftmost (i.e., has the earliest
deadline) task in tree rg—>d1l.root. update_curr_dl () may update the current task p’s deadline
(this will be discussed later when covering CBS budget replenishment), thereby changing its position in
this tree. If p is no longer the leftmost task, then it will soon be unscheduled, and there is no need to arm
hrtick_timer.

__schedule () cancels hrtick_timer (line 9 of Listing 4.4). There is no need to keep hrtick_
timer armed for a task when __schedule () iscalled, as put_prev_task_dl () will call update_
curr_dl (). Canceling hrtick_timer also prevents task_tick () from hitting a task other than the
task that was scheduled when hrtick_timer was armed.

The following example demonstrates how runt ime is decremented to match an ideal CBS budget.

v Example 4.7. Consider Task O with d1_runtime of 6 and d1_deadline of 10 and Task 1 with
dl_runtime of 2and d1_deadline of 6 running on a single CPU. Task 0 starts at time 2 and Task 1
starts at time 5. Figure 4.9 illustrates the idealized and actual budget (i.e., runt ime) of Task 0.

The schedule of this system over interval [2, 5) is illustrated in Figure 4.9a. Both the ideal budget

and runtime start with 6 units at time 2. While the ideal budget decreases continuously with time

199

Ideal 07
O T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13
hrtick_start ()
runtime 6 -
O T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Task 0 |
6 7 8 9 10 11 12 13
Task 1 |
T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time

(a) Task 0 scheduled over [2,5).

Figure 4.9: runt ime vs. ideal budget.

200

Ideal 07
0 T T T T T T T T T T T
0 2 3 4 5 6 7 8 9 10 11 12 13
update_curr_dl ()
runtime 6 :
O T T T : T T T T T T T
0 2 3 4 5 6 7 8 9 10 11 12 13
put_prev_task_|dl ()
Task 0 { |
0 8 9 10 11 12 13
Task 1 |
T T T T T T T T
0 2 3 4 5 6 7 8 9 10 11 12 13
Time

(b) Task 0 unscheduled over [5, 7).

201

Figure 4.9: runt ime vs. ideal budget (continued).

Ideal 67
0 T T T T T T T T T T T
0 2 3 4 5 6 7 8 9 10 11 12 13
hrtick_start ()
runtime 6 -
O T T T T T T T T T T T
0 2 3 4 5 6 7 8 9 10 11 12 13
set_next_task_dl ()
Task 0 : |
0 11 12 13
Task 1 |
T T T T T T T T
0 2 3 4 5 6 7 8 9 10 11 12 13
Time

(c) Task 0 scheduled over [7,10).

Figure 4.9: runt ime vs. ideal budget (continued).

202

Ideal 07

0 T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13
hrtick_start ()update_curr_dl ()
runtime 6 .

O T T T T T T T T T 1 T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13
hrtilck ()

Task 0 |

0 1 11 12 13
Task 1 |

T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time
(d) Task O throttled at time 10 by hrtick ().

Figure 4.9: runt ime vs. ideal budget (continued).

203

void yield_task_dl () (struct rg xrq)

{

dl

rg->curr->dl.dl_yielded = 1;
update_curr_dl (rq);

Listing 4.30: yield_task_dl1 ().

over [2,5), runtime is constant. Instead, set_next_task_dl (), called on Task O when it was
scheduled at time 2, calls hrtick_start () toarm hrtick_timer on the CPU’s runqueue to fire
runtime (6) time units after the current time (2). Observe that this firing time is time 8, the expected
exhaustion time of Task 0’s ideal budget.

At time 5, Task 0 is preempted by Task 1 (Figure 4.9b). hrtick_timer is canceled in ___
schedule (), removing the firing at time 8 illustrated in Figure 4.9a. When Task 0 is unscheduled,
put_prev_task_dl () callsupdate_curr_dl () toset runtime to the same value as the ideal
budget (3). While Task 0 is unscheduled over [5, 7), neither the ideal budget nor runt ime change from
3 units.

Attime 7, Task 0 is again scheduled (Figure 4.9¢). Upon being scheduled, set_next_task_dl ()
is called on Task 0, which again calls hrtick_start () toarm hrtick_timer to fire runtime
(3) time units after the current time (7). This is time 10, which, because Task O is not preempted in
interval [7, 10), is the actual exhaustion time of the ideal budget.

At time 10, hrtick_timer fires and calls hrtick (), which calls task_tick_dl (), which
calls update_curr_dl () to set runtime to the value of the ideal budget (0). update_curr_
dl () observes that Task O has depleted runt ime, and throttles Task O until its replenishment at its

next period. A

The last location where update_curr_dl () iscalledisin yield_task_dl (). yield_task_

() (Listing 4.30) invokes the current task to immediately throttle itself. This is done by setting the d1__

yielded flag in the current task’s sched_d1l_entity and calling update_curr_dl (). update_

curr_dl () observes this flag and behaves as if runt ime was depleted.

Having discussed how update_curr_dl () is called, we now discuss its implementation. Before

discussing pseudocode, we discuss exec_start, a member of the EEVDF scheduling entity used by

update_curr_dl (). As stated previously, update_curr_dl () sets runt ime to the ideal budget’s

204

1 wvoid update_curr_dl (struct rg *rq)

2

3 struct task_struct *curr = rg->curr;

4 struct sched_dl_entity *xdl_se = &curr—->dl;

5 u64 delta_exec, scaled_delta_exec now;

6 int cpu = rg->cpu;

7

8 now = rqg_clock_task(rqg);

9 delta_exec = now — curr—->se.exec_start;

10 curr->se.exec_start = now;

11

12 /+ delta_exec to scaled _delta_exec by GRUB or Asym. Cap. & DVFS x/
13

14 dl_se->runtime —-= scaled_delta_exec;

15

16 throttle:

17 if (dl_se->runtime <= 0 || dl_se->dl_yielded) {

18 dl_se->dl_throttled = 1;

19

20 dequeue_task_dl (rqg, curr, 0);

21 if (dl_se->pi_se != dl_se || !start_dl_timer (curr))
22 enqueue_task_dl (rg, curr, ENQUEUE_REPLENISH) ;
23

24 if (!is_leftmost (curr, &rg->dl))

25 resched_curr (rq) ;

26 }

27 '}

Listing 4.31: update_curr_dl ().

value. This is done by decreasing runt ime by the units of execution completed since the later of when
runt ime was last updated (i.e., update_curr_dl () was called) or the current task was scheduled (i.e.,
set_next_task_dl () was called). The scheduler happens to store the latest time instant that either
update_curr () or set_next_task () was called for any scheduling class except idle_sched_
class. This time instant is stored in exec_start, i.e., for task p, in p—>se.exec_start.
Pseudocode for update_curr_dl () is presented in Listing 4.31. In lines 8-10, update_curr_
dl () sets delta_exec to the duration of time spent executing the task since the previous update_
curr_dl () call. This duration is the difference between the current time now and exec_start, which is
setin update_curr () (line 101in Listing 4.31) and set_next_task () (line 3 in Listing 4.28). exec_
start is set to now’s value in update_curr (). Note that exec_start and now are always set by
rqg_clock_task (). Thus, delta_exec, the difference of these two values, does not include time spent

executing IRQs.

205

delta_exec isthen scaled to scaled_delta_exec by either GRUB or by the executing CPU’s
capacity and frequency. How scaled_delta_exec is computed will be discussed in Sections 4.4.8
(GRUB) and 4.4.9 (capacities and DVFS). scaled_delta_exec represents the actual amount of execution
that runt ime is decremented by (line 14).

After computing the new runtime value, update_curr_dl () checks if the current task should
be throttled, i.e., runt ime has been exhausted or d1_yielded has been set (line 17), until the next
replenishment time. If the task should be throttled, then it is dequeued.

A task dequeued due to throttling may be immediately re-enqueued if the next replenishment time has
already passed or the task is inheriting another task’s priority (line 21). This enqueue is called with flag
ENQUEUE_REPLENISH, which adds maximum budget d1_runtime to the current budget runt ime
(enqueue_task_dl1 () will be discussed in later paragraphs). We call this immediate enqueueing of the
task a bypassed throttle.

update_curr_dl () determines if the next replenishment time has passed by checking whether or
not start_dl_timer () returns 0. start_dl_timer () will be discussed in later paragraphs.

Whether the task is inheriting priority is determined by checking whether the task’s pi_se pointer
points to itself. Recall that this pointer is set in function rt_mutex_setprio () (line 23 of Listing 4.10)
to point to the sched_d1_entity of the task being inherited from. Why priority-inheriting tasks bypass
throttles will be discussed in Section 4.4.7.

Atline 24, update_curr_dl () determines if rescheduling is necessary due to the current task being
throttled by checking if the current task is not leftmost in the deadline-ordered tree root. If throttling was
bypassed, as part of being enqueued with ENQUEUE_REPLENISH, the deadline of the current task may
have increased, making the current task no longer the leftmost task in root. Then the new leftmost task
has an earlier deadline and should be scheduled. If throttling was not bypassed, then the current task can no
longer be scheduled. Then the current task is not leftmost in root because it is removed from this tree when

dequeued.

Bypassed throttle bug. There appears to be a defect in update_curr_dl () and balance_dl () when
throttling is bypassed that causes SCHED_DEADLINE to act differently from EDF. This is illustrated in the

following example.

206

pid: 2

task_struct

dl.deadline : 64
Task O
0 10 20 30 40 50 60 70
Task 1 [
pid: 1
task_struct
T dl.deadline : 62
0 10 20 30 40 50 60 70
pid: O
task_struct

$ dl.deadline : 60
0 10 20 30 40 50 60 70 @
Time

(a) Task 2 bypasses throttling at time 40.

(b) Runqueues at time 40.

Figure 4.10: Out-of-deadline-order execution at time 40.

v Example 4.8. Consider three implicit-deadline tasks with d1_runtime of 20. Let Task O have
dl_period of 30, Task 1 have d1_period of 31, and Task 2 have d1_period of 32. These three
tasks execute on two CPUs and begin executing at time 0. A schedule of this system is illustrated in
Figure 4.10a.

At time 30, Task 0 is replenished. At this time, Task 2, with deadline of 32, has an earlier deadline
than Task 0, with deadline of 60. Thus, Task O is pushed from its original CPU, CPU 0, to CPU 1 and
begins executing.

At time 31, Task 1 is replenished. With deadline of 62, it cannot preempt either of Task O or
Task 2, and thus remains unscheduled on CPU 1’s runqueue.

At time 40, Task 2 depletes its runt ime. However, because its next replenishment time, 32, is in
the past, Task 2 bypasses throttling in update_curr_dl (). Thus, Task 2 is immediately re-enqueued
on CPU 0’s runqueue. The state of the runqueues at this time is shown in Figure 4.10b. Because
Task 2 remains the earliest-deadline task on CPU 0’s runqueue, update_curr_dl () does not call
resched_curr () (see line 24 of Listing 4.31). Task 2 remains scheduled despite unscheduled task

Task 1 having an earlier deadline. A

207

The problem in update_curr_dl () that causes the above example is that the check on line 24 of
Listing 4.31 does not consider the possibility that tasks with earlier deadlines may be on other runqueues.
The other runqueues are only observed during a pull in balance_d1 (), which is only called as part of a
reschedule.

Note that unconditionally calling resched_curr () in update_curr_dl () is insufficient to fix
this defect. balance_d1l () willnotcall pull_dl_task () if the previously scheduled task is still on

the runqueue, which is the case for a task that has bypassed throttling.

Replenishment from throttling. The topic of replenishment can be broadly divided into how replenishment
is armed via timers and how replenishment is implemented in enqueue_task_dl () ’s CBS logic. We
cover how replenishment is armed first.

If throttling is not bypassed, then the task must be replenished (i.e., enqueued with d1_runt ime added
to runt ime) at a later time. This later time is the next replenishment time, which is computed as the period
dl_period added to the difference between the absolute deadline deadl ine and relative deadline d1_
deadline. Note how, for a sporadic task, this computes the next arrival time, which is analogous to the
replenishment time under CBS.

In update_curr_dl (), function start_dl_timer () arms hrtimer d1_timer in the task’s
sched_dl_entity to fire at the next replenishment time (assuming it has not already passed). d1_
timer’s callback function is d1_task_timer () (Listing 4.32). At the next replenishment time, d1__
task_timer () enqueues and replenishes the runt ime of its throttled task (line 9). After runt ime is
replenished and the task is enqueued, the scheduling and migration logic in d1_task_timer () (lines 11-
16) is similar to that of try_to_wake_up () (lines 20-26 of Listing 4.5). This should be expected because
inboth d1_task_timer () and try_to_wake_up (), atask is becoming runnable.

Having discussed how enqueue_task_d1 () is called in the timer callback function d1_task_
timer (), we now discuss the internals of enqueue_task_dl ()’s CBS logic (Listing 4.33). This
CBS logic examines the f1ags argument to determine the context enqueue_task_dl () was called
from. Being called with ENQUEUE_REPLENTISH signifies the task is being enqueued due to a task being
unthrottled (which may occur in d1_task_timer (), the throttle being bypassed in update_curr_

dl (), or the task inheriting priority in rt_mutex_setprio ()).

208

01NN AW~

O e S T e S s
O 0NN B~ W~ OO

[c<BEN Ie Y I N —

—_—— =
N = O O

—_—
B W

enum HRTIMER_RESTART dl_task_timer (struct hrtimer *timer)

{

struct sched_dl_entity *dl_se = container_of (timer,
struct sched_dl_entity,
dl_timer);

struct task_struct xp = container_of(dl_se, struct task_struct,

struct rg *rgq = task_rqg(p);
enqueue_task_dl (rqg, p, ENQUEUE_REPLENISH);
if (dl_prio(rg->curr->prio))
wakeup_preempt_dl (rqgq, p, 0);
else
resched_curr (rqg) ;

push_dl_task (rqg);

return HRTIMER_NORESTART;

Listing 4.32: d1_task_timer ().

dl);

void enqueue_task_dl (struct rg xrq, struct task_struct xp, int flags)

{

if (flags & ENQUEUE_WAKEUP)
update_dl_entity (p->dl);
else if (flags & ENQUEUE_REPLENISH)
replenish_dl_entity (p—->dl);
else if (flags & ENQUEUE_RESTORE)
if (p->dl.deadline < rqg_clock (task_rqg(p)))
setup_new_dl_entity (p—->dl);

Listing 4.33: enqueue_task_d1 () CBS logic.

209

void replenish_dl_entity(struct sched_dl_entity =dl_se)
{
while (dl_se->runtime <= 0) {
dl_se->deadline += dl_se->pi_se->dl_period;
dl_se->runtime += dl_se->pi_se—->dl_runtime;

dl_se->dl_yielded = 0;
dl_se->dl_throttled = 0;

Listing 4.34: replenish_dl_entity ().

On observing ENQUEUE_REPLENISH, enqueue_task_dl () callsreplenish_dl_entity ().
Function replenish_dl_entity () (Listing 4.34) increments the task’s budget runt ime and absolute

deadline deadline.

Wakeup rules. Linux’s CBS logic defines conditions under which, on wakeup, current budget runt ime
and absolute deadline deadline are preserved, reset, or scaled. By preserved, we mean that on wakeup, a
task’s runt ime and deadline values are unchanged from when the task suspended. By reset, we mean
that on wakeup, runtime is set to d1_runtime and deadline is setto d1_deadline added to the
wakeup time. By scaled, we mean that on wakeup, a task’s runt ime is set to a value proportional to the
duration of time until deadline. deadline is unchanged. These rules are designed such that the CBS
satisfies certain HRT properties (Abeni and Buttazzo, 1998; Abeni et al., 2015), so we do not justify them in
this dissertation. Whether runt ime and deadline are preserved, reset, or scaled on wakeup is determined
in the update_d1_entity () function called by enqueue_task_dl () (line 6 of Listing 4.33).

runtime and deadline are preserved if deadline is at least the wakeup time and

runtime < pi_se->dl_runtime

4.3)

deadline —wakeup time — pi_se—>dl_deadline'

(4.3) being true indicates that the remaining budget runt ime can be conceptually treated as its own separate
job with deadline deadline without exceeding the task’s density.

Otherwise, the wakeup time occurred after deadline or (4.3) is false. For implicit-deadline tasks,
runtime and deadline are always reset. For tasks such that d1_deadline is less than d1_period,

if the wakeup time occurred before deadline, then runt ime is scaled. Specifically, runt ime is set to

210

the product d1_density and the difference between deadline and the wakeup time. Otherwise, if the

wakeup time occurred after deadline, then runt ime and deadline are reset.

Change pattern. The remaining case to be discussed in Listing 4.33 is that ENQUEUE_RESTORE is set in
flags. ENQUEUE_RESTORE indicates that enqueue_task_d1 () was called due to the change pattern.
The most important case of this flag is when the change pattern is used to change a task’s policy to SCHED__
DEADLINE. Function setup_new_dl_entity (), called by enqueue_task_dl (), sets the initial
values of the new SCHED_DEADLINE task. runtime and deadline are set similarly to a reset under a
wakeup, only with the wakeup time replaced with the policy request time.

enqueue_task_dl () may be called with ENQUEUE_RESTORE due to other uses of the change
pattern such as affinity change requests. For such changes, runtime and deadline should not be reset.
enqueue_task_dl () differentiates these other changes from policy change requests by checking if
deadline is prior to the current time (line 10 of Listing 4.33). This is because the default value of
deadline for non-SCHED_DEADLINE tasks is 0. Thus, a non-SCHED_DEADLINE task will always pass
the check on line 10.

Note that under multiprocessor scheduling, it is possible for the current time to exceed deadline, i.e.,
a task is tardy. A tardy task will also pass the check on line 10. Thus, requests on behalf of a tardy task that
invoke the change pattern such as changing affinities or locking mutexes will have the unintended side effect

of resetting the task’s runt ime and deadline.

4.4.4 Admission Control

Recall from the discussion in Sections 4.1.5 and 4.4.1 that the ACS enforces that (4.2), which re-expresses
(4.1) in terms of Linux variables, is true for every root_domain. (4.2) must be re-checked whenever a
task enters SCHED_DEADLINE, a SCHED_DEADLINE task changes its parameters, a task is added to or
removed from a root_domain, a root_domain changes its CPUs, or the system parameters sched__
rt_runtime_us and sched_rt_period_us are modified.

Different functions check (4.2) depending on what change in the system resulted in the re-check. For
policy changes to SCHED_DEADLINE or changing of existing SCHED_DEADLINE parameters, these checks
are done in __sched_setscheduler (). A task changing its root_domain is checked in cpuset__

can_attach (). Modifying the CPUs in a root_domain is checked in d1_cpuset_cpumask_

211

can_shrink (). Changes to sched_rt_runtime_us and sched_rt_period_us are checked in
sched_dl_global_validate (). Outside of sched_dl_global_validate (), these functions

all call the same helper function __d1_overflow().__dl_overflow () has the following prototype.

bool _ dl_overflow(struct dl_
bw xdl_b, unsigned long cap, u64 old_bw, u64 new_bw);

dl_Dbis the d1_bw of the root_domain being checked. cap is the total capacity of CPUs in the
root_domain. old_buw is the total bandwidth of any tasks requesting SCHED_DEADLINE parameter
changes, and new_Dw is the prospective total bandwidth of these tasks if these changes are accepted. ___

dl_overflow () returns t rue if the ACS is enabled and (4.2) would be violated.

Affinities. Besides ensuring that (4.2) is maintained, the ACS also restricts tasks’ affinities such that each
task must have affinity for every CPU in its root_domain. This must be checked when tasks enter
SCHED_DEADLINE via__sched_setscheduler () and when tasks set their affinities via __sched__
setaffinity (). Pseudocode for these checks is presented in Listing 4.35.

We start with ___sched_setscheduler (). At line 4, sched_setscheduler () calls ___

checkparam_dl1 (), which verifies that the requested relative deadline of a task attempting to change
its policy to SCHED_DEADLINE (or a SCHED_DEADLINE task changing its parameters) is at most its
requested period. Technically, this check does not fall under the ACS as the check is performed regardless
of whether the ACS is enabled or not (recall from Section 4.1.5 that the ACS can be disabled by writing to
sched_rt_runtime_us).

The check in lines 6-8 verifies that the task has affinity for each CPU in the root_domain. cpumask__
subset () if the former CPU bitmask is a subset of the latter. The function d1_bandwidth_enabled ()
returns t rue when the ACS is enabled. As such, this check is ignored when the ACS is disabled.

The check at line 11 checks that the requested parameters would not violate (4.2) if enacted. Function
sched_dl_overflow () isawrapperof __dl_overflow (), discussed earlier in Section 4.4.4.

In___sched_setaffinity (), the check at line 19 is the same check performed over lines 6-8 in _

_sched_setscheduler ().

Instantaneous bandwidth changes. SCHED_DEADLINE does not wait for the zero-lag time before allowing
a task to modify its parameters. SCHED_DEADLINE will immediately enact any change in parameters

requested with sched_setattr () so long as the task’s resulting d1_bw does not violate (4.2). While

212

N =

—_
— O 0 0O B~ W

—_
[\

—_ = =
~N NN kW

—_—
Nelo]

20

21
22

int

{

int

__sched_setscheduler () (struct task_struct xp, struct sched_attr =xattr)
if (policy == SCHED_DEADLINE && !_ checkparam_dl (attr))
return -EINVAL;
if (dl_bandwidth_enabled() && policy == SCHED_DEADLINE) {
cpumask_t *span = rg->rd->span;
if (!cpumask_subset (span, p->cpus_ptr))
return -EPERM;
}
if ((policy == SCHED_DEADLINE || dl_prio(p—->prio)) && sched_dl_
overflow(p, policy, attr))
return -EBUSY;
__sched_setaffinity (struct task_struct =*p, struct cpumask xmask)
if (p—->policy == SCHED_DEADLINE && dl_bandwidth_enabled() && !cpumask_

subset (task_rg(p) —>rd->span, new_mask))
return -EBUSY;

Listing 4.35: ACS with affinities.

213

dl_runtime < 1 94 1 94 1

Task 0 _
T T T T T
0 100 200 300 400
dl_runtime + 94 1 94 1 94
Task 1 [[[
0 100 200 300 400
Time

Figure 4.11: Unbounded response times due to dynamic tasks

the task’s static parameters (e.g., d1_runtime, d1_period, d1_bw) are changed immediately, the task’s
current runt ime and deadline are unchanged. This can be exploited as follows to result in unbounded

response times.

v Example 4.9. Consider the schedule in Figure 4.11. We assume the tasks in this example never
suspend. The system contains one CPU and begins with no tasks. At time 0, Task O requests to
enter SCHED_DEADLINE with (d1_runtime,dl_period) = (94,100). This task is accepted
because doing so will not violate (4.2). Task O begins executing at time 0 with runtime = 94
and deadline = 100, before immediately requesting d1_runtime to be changed to 1. Task 0’s
runtime and deadline remain as 94 and 100 after this change. At time 10, Task 1 requests to
enter SCHED_DEADLINE with (d1_runtime,dl_period) = (94, 100). This request is accepted
by the ACS because Task O reduced its bandwidth. Task 1 begins executing with runt ime = 94 and
deadline = 110. After this point, both tasks alternate executing on the CPU.

However, prior to when Task O returns from the throttled state, Task 1 changes its d1_runtime to
1 and Task O changes its d1_runt ime to 94. When Task O becomes ready at time 100, its runt ime
and deadline are determined entirely by Task 0’s d1_runtime and d1_period at the instant it
becomes ready. Thus, the runt ime of Task 0 is set to 94. Likewise, prior to when Task 1 is replenished
at time 188 (recall that a task that exhausts runt ime after its deadline is immediately replenished),
Task O setsits d1__runt ime to 1 such that Task 1 can setits d1__runtime to 94. As the total bandwidth

of the system technically never exceeds 0.95, all requests are accepted by the ACS.

214

If Tasks O and 1 continue taking turns with having d1_runtime = 94, then every runtime
replenishment in this system occurs as if both tasks always have d1_bw of 0.94. Because the CPU only
has a capacity of 1.0, the system is overloaded and results in unbounded response times even though

(4.2) is never violated. A

That the behavior in Example 4.9 is possible is documented in the SCHED_DEADLINE source code.
Bounded response times can be restored by exhausting the runt ime of any task that changes its parameters
via sched_setattr () and delaying the change in total_lbw in the corresponding root_domain’s

d1_bw until the zero-lag time.

sched_dl_global_validate () bug. sched_dl_global_validate () isunique in that it does
notcall __dl_overflow () tocheckif (4.2)is maintained. sched_dl_global_validate () does
not appear to consider that CPUs may have asymmetric capacities. This seems to be a bug that permits
sched_rt_runtime_us to be set to lower values than would otherwise be permitted by the ACS. This
seems like an oversight that can be easily remedied by modifying sched_dl_global_validate() to

call__dl1_overflow().

4.4.5 Affinities

As stated in Section 4.4.4, disabling the ACS allows arbitrary affinities to be set for SCHED_DEADLINE
tasks. SCHED DEADLINE does not follow Weak-APA-EDF when the ACS is disabled. This is because the
cpudl, which is used by SCHED_DEADLINE to optimize computing target CPUs when pushing tasks, is
oblivious to affinities, so tasks may be left unscheduled even when they have affinity for CPUs executing

tasks with later deadlines. This is demonstrated in the following example.

v Example 4.10. Consider three implicit-deadline tasks executing on three CPUs such that tasks’
affinities are as in Figure 4.12a. All three CPUs belong to a single root_domain. Let the d1_
runtime and d1_period of Tasks 0, 2, and 3 be 3 and 6, respectively. For Task 1, its d1_runtime
and d1_period are both 2.

A schedule of this system is illustrated in Figure 4.13. Task 1 never suspends and initially executes
on CPU 0. Even though Task 0, which only has affinity for CPU 0, enters the system at time 1, Task 1

does not migrate until Task 0 has an earlier deadline at time 6. However, prior to Task 1’s attempt to

215

dl : 11

cpu : 2
dl : 7 dl: 8
cpu: O cpu: 1
Task 0 Task 1 Task 2 Task 3
(b) cpud1l heap at time 6.
(a) Affinity graph.

Figure 4.12: Example 4.10 illustrations.

migrate, Tasks 2 and 3 enter the system such that all CPUs execute tasks at time 6. The cpudl heap
of the root_domain at time 6 is illustrated in Figure 4.12b. CPU 2 with deadline 11 is at the root of
the heap. Thus, SCHED_DEADLINE will attempt to push Task 1 onto CPU 2. Because Task 1 does not
have affinity for CPU 2, this push will fail, and Task 1 is not scheduled. This is despite Task 1 having an
earlier deadline than Task 2, which is executing on CPU 1, thereby violating Weak-APA-EDF. Task 1
remains unscheduled until it is pulled by CPU 1 at time 7.

Weak-APA-EDF is similarly violated at time 17, except at this time Task 2, rather than Task 0,
forces Task 1 to attempt to migrate. As illustrated in Figure 4.13, this pattern can be repeated infinitely

often, and with each occurrence, the maximum response time experienced by Task 1 increases by 1.0.A

Note that Example 4.10 is unrealistic in that unbounded response times for the considered task system
would likely not occur in a real system. The example relies on contrived waking times for Tasks 0, 2, and
3 in order to force Task 1 to reference the cpudl heap. Even though the presented example is unlikely to
be observed in practice, its existence is problematic because it proves that response-time bounds cannot be

guaranteed.

4.4.6 Asymmetric Capacities

Function (or macro on some architectures) arch_scale_cpu_capacity () takes a CPU index as

its argument and returns said CPU’s capacity. When decrementing a task’s runt ime value in update_

216

"9[npayos (] 4 o[dwexy g1y 2mSLg

ou,

09 G¢ 0 oy 0F cg 0¢ ot 0z qT 01 G
L L 1 L L L 1 L L L L 1 L L L L 1 L L L L L L L 1 L 1 L L 1 L L L N 1 L L L

09 e 0g oy i cg 0¢ G 0z qT 01 g
L L L L L 1 L L L L 1 1 L L L L 1 L L N L 1 1 L L L L L 1 L L L L 1 L L

09 e 06 o 0¥ Ge 0¢ 6 0¢ o1 01 g

o

0°S £q Pre]

€

0t £q 2re]

<«

0°¢ £&q e

«——>
07 £q 2e]

01 £q e

G¢

0¢

i 0y 13 0€ 54

0¢

G

0T g

€ JIseL

CISEL

[3SEL

0 3IseL

217

curr_dl (), if flag SCHED_FLAG_RECLAIM is unset, execution duration delta_exec is multiplied by

the capacity of the CPU the task executed on.

Origin. The capacities of the CPUs on a given platform are derived from empirical per-CPU values in the
devicetree (i.e., .dtb and . dts files), a standard file for providing hardware information to the OS. In the
devicetree, each CPU is given a capacity—-dmips—mhz value that is proportional to its Linux capacity.
DMIPS/MHz is an instructions-per-second performance measurement of the CPU on the Dhrystone (Weicker,
1984) benchmark when the CPU operates at a fixed 1 MHz frequency. The Linux capacity for a CPU is
computed from the product of maximum frequency (in MHz) and capacity—-dmips-mhz. These products
are then normalized such that the greatest capacity of any CPU is 1024. 1024 should be thought of as the
value 1.0 (i.e., full capacity), only left-shifted by SCHED_CAPACITY_SHIFT (i.e., 10) such that fractional

capacities can be represented as integers.

Migration logic. SCHED_DEADLINE does not implement Ufm-EDF in the presence of asymmetric ca-
pacities. The extent of SCHED_DEADLINE’s migration logic with respect to asymmetric capacities is that
SCHED_DEADLINE will attempt to avoid migrating tasks to CPUs with low capacity (relative to the tasks
being migrated). Specifically, SCHED_DEADLINE considers asymmetric capacities in its migration logic
in function find_later_rqg(), which is used by push_dl1_task () and select_task_rqg() to
find target runqueues. Recall that the behavior of this function was separated into cases in Section 4.4.2.
Asymmetric capacities are considered when the intersection between cpus_mask of the task of interest
(either a pushed task or a waking task) and free_ cpus in the corresponding root_domain is non-empty,
i.e., there are CPUs in the root_domain’s span that the task of interest has affinity for and have no SCHED_
DEADLINE tasks. When this intersection is non-empty, find_later_rqg() attempts to return a CPU
with capacity at least the task’s density d1_density. If no CPUs in the intersection have capacity greater

than d1_density, the CPU with the greatest capacity in this intersection is returned.

Response time bounds. The ACS does not guarantee bounded response times under asymmetric capacities.
Consider a root_domain containing two tasks with d1_Jbw of 0.95 (ignoring the shift by BW_SHIFT)
and one full-capacity CPU with arbitrarily many CPUs with capacity 0.5 (ignoring the shift by SCHED_
CAPACITY_SHIFT). Because tasks cannot execute in parallel with themselves, these two tasks are executed
on at most two CPUs at any time. Even though this root_domain is accepted by the ACS (total_bw

is 1.9 while total capacity is arbitrarily large), these two tasks can only consume 1.5 units of capacity. As

218

total_bw exceeds the capacity provided to the tasks, the tasks would have unbounded response times

(assuming they do not suspend).

4.4.7 Priority Inheritance

This and the remaining subsections in this section pertain to features of SCHED_DEADLINE or Linux
that are incompatible with the analysis in this dissertation. As such, these features are discussed at a higher
level than the previous subsections. We start with priority inheritance.

When a task inherits a SCHED_DEADLINE task’s priority, the inheriting task’s pi_se member is set to
point to the inherited from task’s sched_dl_entity by rt_mutex_setprio () (recall Listing 4.10).
This has two effects on the inheriting task: said task behaves as if its static parameters (e.g., d1_deadline,
dl_runtime, d1_period) are replaced with the inherited-from task’s parameters and said task always
bypasses throttling.

As an example of static parameters being replaced, recall Listing 4.34 of replenish_dl_entity ().
Observe that deadline and runt ime are incremented according to the d1_periodand d1_runtime
of the pi_se task.

Throttling is bypassed for priority-inheriting tasks because they hold mutexes being waited on by higher-
priority tasks. Tasks that would otherwise be throttled may reach the end of their critical sections earlier and
release their mutexes.

As a result of bypassing throttling, a priority-inheriting task is always immediately re-enqueued with
ENQUEUE_REPLENISH in update_curr_dl () whenever it is dequeued due to depleting runt ime.
This has an effect analogous to early releasing (see Definition 2.11 in Section 2.1) in that the task consumes
the budget of what would otherwise be future replenishments. As in early releasing, deadlines are set based
on the original future replenishment times (i.e., original arrival times), and not based on when budget is

consumed (i.e., early release times).

v Example 4.11. Consider two implicit-deadline tasks executing on two CPUs as illustrated in Fig-
ure 4.14. Task 0 has d1_runtime of 3 and d1_period of 5, while Task 1 has d1_runtime of 4
and d1_period of 6.

Tasks 0 and 1 share some RT-mutex. Task O locks this mutex at time 3. Because no other task is

waiting on the mutex, Task 0’s pi_se pointer remains pointed at Task O.

219

rt_mutex_lock () rt_mutex_unlock ()
Task 0 : :

rt_mutex_lock ()
Task 1 j

0 2 4 6 8 10 12 14 16 18 20 22
Time

Figure 4.14: Priority inheritance.

At time 5, Task 1 attempts to acquire the mutex. This sets the pi_ se pointer of Task 0O, the holder
of the mutex, to Task 1. rt_mutex_setprio () enqueues (line 24 of Listing 4.10) the previously
throttled Task 0. Task O receives 4 units of runt ime, which is Task 1°’s d1_runt ime value. Task 0’s
deadline is incremented from 6 to 12, in accordance with Task 1’s d1_period value.

Task O continues early releasing in this fashion until it releases the mutex at time 11. This resets its
pi_se pointer to itself. When Task O exhausts its runt ime at time 13, it is throttled until time 18, its
next replenishment time.

At time 18, Task 0 receives 3 units of runt ime and its deadline is incremented by 5 time units,

as per its original d1_runtime and d1_period. A

448 GRUB

GRUB (short for Greedy Reclaimation of Unused Bandwidth) reduces the budget consumption rate of
tasks. Analytically, this is similar to reducing execution speed. This reduction allows each CBS to run for
longer, which is desirable for tasks that occasionally overrun their budgets. The reduction in consumption
must be limited to prevent SCHED_DEADLINE tasks from consuming more than sched_rt_runtime_

us/sched_rt_period_us of capacity, as guaranteed by the ACS.

Unused bandwidth. The idea behind GRUB is that the farther the total bandwidth of active tasks is from

sched_rt_runtime_us/sched_rt_period_us of capacity, the more the budget consumption rate

220

can be reduced. The difference between the total active bandwidth and this fraction of capacity is the unused
bandwidth.

There exist several GRUB variants that differ by how unused bandwidth is reclaimed. The GRUB
variant used in Linux is a combination of the sequential and parallel reclaiming variants proposed by Abeni
et al. (2016). Unused bandwidth is subdivided between the d1_ rgs, with the amount of unused bandwidth
allocated to a given d1_ rq determining the rate of budget consumption for tasks on that d1_rqg. Unused
bandwidth is accounted for in members this_bw and extra_bw. this_bwis like running_bw except
the bandwidths of inactive tasks that suspended while on this d1_rq are also counted (note that because
these tasks are inactive, they are not on the d1__rqg). The unused bandwidth from inactive tasks is the inactive
bandwidth, and is computed on a d1_rqgas this_bw — running_bw.

The remaining unused bandwidth is due to the difference between the total bandwidth (both active and
inactive) and sched_rt_runtime_us/sched_rt_period_us of capacity in the root_domain
corresponding with the runqueues of interest. This is called the extra bandwidth. Extra bandwidth is computed
from the root_domain’s d1_bw member. Fora d1_rqg dl with root_domain rd that has a span of
cpus CPUs, d1->extra_bw is equivalent to sched_rt_runtime_us/sched_rt_period_us —

rd.dl_bw.total_bw/cpus.

Note that ext ra_bw is computed using the number of CPUs. This assumes that all CPUs have equal

capacity. GRUB should not be enabled on systems with asymmetric capacities.

Decreasing runt ime under GRUB. GRUB relies on two additional d1_ rq members, max_bw and bw__
ratio. max_bw is set to the fraction sched_rt_runtime_us/sched_rt_period_us and bw_
ratio is set to the inverse of this fraction.

GRUB is used when flag SCHED_FLAG_RECLAIM is set. Under GRUB, in update_curr_dl (),
the execution duration delta_exec is multiplied by some factor to yield scaled_delta_exec. This

factor is bw_rat io multiplied by

max {d1_bw,max_bw — (this_bw — running_bw) — extra_bw}.

Maintaining this_bw. For a given d1_rqg, this_bw is set by functions __add_rqg_bw () and ___
sub_rg_bw (), while running_bwissetby __add_running_bw () and __sub_running_bw ().

__add_rg bw() and __add_running_bw () are presented below.

221

void __add_rqg bw(u64 dl_bw, struct dl_rg *dl_rq)

{

dl_rg->this_bw += dl_bw;

void __ add_running_bw(u64 dl_bw, struct dl_rg *dl_rq)
{
dl_rg->running_bw += dl_bw;

cpufreq_update_util (rg_of_dl_rqg(dl_rqg), 0);

__sub_rg bw() and __sub_running_bw () are identical outside of replacing addition with subtrac-
tion. These functions also include checks for overflow and improper locking that are omitted from the above
listing. Function cpufreq_update_util () alerts the frequency scaling governor that the utilization
on a runqueue has changed, and will be discussed in Section 4.4.9. Function rq_of_dl_rqg() uses
container_of () toreturn a pointer to a d1_rqg’s containing rq.

Recall that this_bw is the total bandwidth of all tasks that last migrated to the corresponding runqueue
(such tasks may not be queued on this runqueue). __ add_rqg bw () is primarily called from within
enqueue_task_dl () when the task is enqueued as part of a migration (e.g., a push, pull, or waking
on a different CPU). That enqueue_task_d1 () was called as part of a migration can be determined by
observing if on_rqgis TASK_ON_RQ_MIGRATING or if the flag ENQUEUE_MIGRATED is set.

__sub_rqg_bw () is similarly primarily called by dequeue_task_dl () when on_rqis TASK__
ON_RQ_MIGRATING. Note that in the case of a suspension, dequeue_task_dl1 () willnotcall __sub_
rqg_bw () because on_rg will have value 0. This is valid because this_bw includes suspended tasks
until such tasks are migrated away. If a suspended task is migrated during wakeup, function migrate_
task_rg dl () calls___sub_rg bw () on the previous runqueue. Recall that migrate_task_rqg()
is called whenever a task moves to a different runqueue. migrate_task_rqg() is called before ___set__
task_cpu () and enqueue_task (), thus task_rqg () returns the previous runqueue when called from

migrate_task_rqg_dl ().

222

Maintaining running bw. running_bw corresponds to the subset of tasks accounted for in this_
bw that are active. Thus, while a task is active and migrated, __add_running_bw () and __sub_
running_bw () are also called when __add_rqg_bw () and __sub_rqg_bw () are called, respectively.

_ sub_running_bw () and _ add_running_bw () must also be called when a task becomes
inactive and active, respectively. A task becomes inactive by suspending and passing its zero-lag time. For a

CBS represented by a sched_d1_entity, the zero-lag time is computed as

dl_period
deadline — runtime - _P; 4.4)
dl_runtime

That dequeue_task_d1 () is called due to a suspension is determined by observing if flag DEQUEUE__
SLEEP is set. f DEQUEUE_SLEEP is set, then dequeue_task_d1l () calls__sub_running_bw () if
the zero-lag time has passed. If the zero-lag time is in the future, dequeue_task_dl1 () arms inactive_
timer to fire at the zero-lag time. The callback function of inactive_timer, inactive_task_
timer (), calls __sub_running_bw () when triggered. An inactive task becomes active by waking, in
which case enqueue_task_dl () willcall__add_running_bw ().

Note that the zero-lag time formula in (4.4) is not equivalent to Definition 2.12 for non-implicit-deadline
tasks. deadline should be replaced with the next replenishment time deadline — d1_deadline +
d1l_period to make (4.4) equivalent to Definition 2.12. Because these zero-lag time formulas are distinct,
GRUB may cause additional deadline misses on single-CPU systems.

enqueue_task_dl () must be able to determine whether a waking task was previously inactive or
active and waiting for its zero-lag time. For the latter, enqueue_task_d1l () must not call __add_
running_bw(),as___sub_running_bw () has not been called on this task (due to delaying the calling
of __sub_running_bw () until the zero-lag time). enqueue_task_d1l () makes this distinction by
observing the d1_non_contending flag, which is set by dequeue_task_d1 () when waiting for the

zero-lag time and cleared by enqueue_task_dl () and inactive_task_timer ().

4.4.9 DVFS

DVEFS with SCHED_DEADLINE tasks is based on the GRUB-PA algorithm (Scordino et al., 2018).
While the GRUB variant discussed in Section 4.4.8 reduces budget consumption to improve quality of service

to tasks, GRUB-PA reduces budget consumption to reflect that tasks executed at lower frequencies. The

223

main idea of GRUB-PA is to set the frequency of a CPU to the maximum frequency multiplied by the total
active bandwidth of its runqueue (i.e., running_lbw on the CPU’s corresponding d1_ rq). If the total active
bandwidth exceeds 1.0, the frequency is capped at the maximum frequency.

Function (or macro on some architectures) arch_scale_freq_capacity () takes a CPU index
and returns the ratio of the current frequency divided by the maximum frequency of said CPU. Note this
ratio is also left-shifted by SCHED_CAPACITY_SHIFT to be represented as an integer. When decrementing
runtime for a task in update_curr_dl (), if flag SCHED_FLAG_RECLAIM is not set, the execution

duration delta_exec is multiplied by the frequency ratio prior to multiplying by the CPU’s capacity.

GRUB-PA and unbounded response times. As originally proposed, GRUB-PA Scordino et al. (2018) can
lead to unbounded response times, as will be demonstrated in the following example. Note that we discuss
the original GRUB-PA algorithm and not its more complicated implementation in the schedut il governor.
It is difficult to model schedut il for an example due to its complexities, which will be discussed in later

paragraphs.

v Example 4.12. Consider three implicit-deadline tasks running on two CPUs such that each task has
dl_runtime of 3 and d1_period of 5. Both CPUs have capacity of 1.0 and equivalent maximum
frequency. No task suspends after entering SCHED_DEADLINE. Task O enters the system at time O,
Task 1 at time 1, and Task 2 at time 2.

A schedule of this system is illustrated in Figure 4.15. Initially, when Task O enters the system at
time 0, it is the only task contributing to CPU 0’s running_bw, which is 3/5. Thus, CPU 0’s frequency
is scaled to 3/5 of the maximum frequency. CPU 0 continues executing at 3/5 = 0.6 of its maximum
frequency starting from time 0. Over time interval [0, 2), Task 0 is executed for 2 time units on CPU 0,
which delivers 0.6 units of capacity per time unit. Task O has d1_runtime —0.6-2=3—-1.2=1.8
units of runt ime remaining.

At time 1, Task 1 enters the system. It either enters already on CPU 1 or is pushed from CPU 0
to CPU 1 when it enters the system. As with Task 0 on CPU 0, Task 1 is the only task contributing to
CPU I's running_bw, and so CPU 1’s frequency is also scaled to 3/5 = 0.6 of its maximum. Over
time interval [1,6), Task 1 consumes 0.6 - (6 — 1) = 3 = d1_runtime units of runtime. Task 1
exhausts its runt ime exactly at its deadline, 6. Task 1 continues to exhaust its runt ime exactly at

its deadline every 5 time units until it is preempted at time 36.

224

At time 2, Task 2 enters the system. Assume it enters on CPU 0’s runqueue. Because two tasks
now contribute to CPU 0’s running_bw, which becomes 6/5 > 1.0, CPU 0’s frequency is scaled to
its maximum. Task 0, with 1.8 units of runt ime remaining at time 2, exhausts its runt ime at time
2+ 1.8/1.0 = 3.8 (CPU 0 provides its maximum capacity, 1.0, at its maximum frequency). Task 0 and
Task 1 continue alternating executing on CPU 0 until CPU 1 pulls Task 0 at time 36.

Once Task 0 is pulled to CPU 1 at time 36, the running_bw of both CPUs changes. CPU 1 scales
its frequency to 1.0 of its maximum and CPU 0 scales its frequency to 0.6 of its maximum. Because there
are three tasks and only two CPUs, there is always a CPU executing at 0.6 of its maximum frequency.
The task executing on this CPU can never reduce the response times of successive jobs because the
capacity delivered by this CPU is equal to the task’s bandwidth. This can be observed for Task 1 over
[1,36), during which Task 1 always exhausts runt ime at its deadline.

Whatever CPU is not executing at 0.6 of its maximum frequency executes at its maximum frequency.
This is not sufficient for the two tasks that contribute to said CPU’s running_bw, which equals
2-3/5 = 1.2. Because this CPU delivers at most 1.0 units of capacity per time unit, successive jobs of

these two tasks will increase in response time. This can be observed for Tasks 0 and 2 over [0,36). A

Frequency invariance and clock_pelt. The implementation of GRUB-PA in the schedut il governor
differs due to the presence of non-SCHED_DEADLINE tasks in the system. Failing to account for these
tasks in GRUB-PA could result in these tasks being starved as higher-priority SCHED_DEADLINE tasks
executing at reduced frequencies consume the entire system’s capacity. schedutil requires bandwidth
information to account for these non-SCHED_DEADLINE tasks. Because Linux is not given the bandwidths
of non-SCHED_DEADLINE tasks, it must estimate them by measuring the fraction of time such tasks occupy
the CPUs.

For each CPU, Linux maintains an estimate of the total bandwidth of tasks belonging to fair_sched_
class and rt_sched_class. These bandwidth estimates are added to running_bw when performing
GRUB-PA on each CPU. Estimating bandwidths in the presence of frequency scaling results in a circular
dependency: bandwidth estimates are used to scale CPU frequencies and scaling frequencies affects measured
bandwidths. This circular dependency is resolved by normalizing bandwidth estimates, i.e., scaling bandwidth

using the corresponding CPU’s frequency to compute the expected bandwidth at maximum frequency.

225

-

Llate by 0.80 Late by 1.80 Late by 2.80 Late by 3.80 Late by 4.00 Late by 2
L ——>

- - -

0 5 10 15 20 25 30 35 40
Late by 0.80 Late by 1.80 Late |by 2.80 Late by 3.80 Late by 5.33
Task 2 1.0 ’ N ’ i
0 —
0 5 10 15 20 25 30 35 40

Time

Figure 4.15: GRUB-PA schedule.

226

Freq: 50%

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
clock_task

Combined 1.0 _
0

0 2 4 6 8 10 12 14 16 18 20
clock_task

Re- sync Re- sync Re- yyne.
Combined |
- T
7 10 11 13 14 15 16 19 20
clock_pelt

Figure 4.16: clock_pelt example.

Applying this normalization to the bandwidth requires knowledge of the current CPU frequency. The
current frequency can be read from the hardware (i.e., by reading specific registers) or from the CPU fre-
quency driver (arch_scale_freq_capacity () observes these sources to return a frequency ratio).14
Normalizing bandwidth by reading from the hardware is called frequency-invariant bandwidth estimation.
Frequency-invariant bandwidth estimation makes use of clock_pelt.

Recall the discussion in Section 4.4.3 comparing clock and clock_task. clock_pelt is another
measure of the current time derived from clock_task (recall that clock_task is itself derived from
clock). When frequency is scaled down, the timeline observed by clock_pelt slows the rate that time
advances. The timeline catches up to c1ock_task when the CPU idles. A simplified example of the use of

clock_pelt in frequency-invariant bandwidth estimation is provided below.

“Note that reading the current frequency from the frequency driver is generally considered unreliable compared to
reading from the hardware. Reading from the hardware requires architectural support.

227

v Example 4.13. Consider two rt_sched_class tasks executing on a single CPU. At maximum
frequency, Task 0 executes for 1 time unit every 5 time units and Task 1 executes for 1 time unit every 7
time units. A schedule of these two tasks is illustrated in Figure 4.16. The tasks are illustrated individually
in the first two rows, and then their combined execution is illustrated in the last two rows. The first three
rows share a common time axis as observed by clock_task, while the last row has a time axis as
observed by clock_pelt.

Suppose that at time 4, the CPU scales its frequency to 50% of its maximum. This causes the
timelines observed by clock_task and clock_pelt to diverge. The interval represented by [5,9)
by clock_task is represented by [5,7) by clock_pelt because clock_pelt advances time at
50% of the rate of clock_task while the frequency is scaled to 50%. clock_pelt and clock_
task re-synchronize at the end of this interval when the CPU idles. The two clock values similarly
diverge at times 10 and 14.

Consider how the total bandwidth of these tasks is computed when clock_task and clock_
pelt are used. When observing clock_task, the two tasks executed over [0, 2), [5,9), [10,12),
and [14, 18). The two tasks executed for a total of (2 — 0) + (9 — 5) + (12 — 10) + (18 — 14) =
2+ 4+ 2+ 4 = 12 time units over the 20 time units illustrated in the schedule, i.e., a measured total
bandwidth of % = 1% = 60%. Compare this against the actual total bandwidth of Tasks 0
and 1, % + % ~ 34%.

When observing clock_pelt, the two tasks executed over [0, 2), [5,7), [10,11), and [14, 16).
The two tasks executed for a total of (2—0) 4 (7—5)+ (11 —10)+ (16 —14) =2+2+1+2 = 7 time
units over the 20 illustrated time units, i.e., a measured bandwidth of 2—70 = 35%. This is much closer
to the true total bandwidth of Tasks 0 and 1 (34%) than the total bandwidth measured from clock_

task. A

Under frequency-invariant bandwidth estimation, bandwidth normalization is inherent due to the usage

of clock_pelt during measurement. If the frequency cannot be read from the hardware, the bandwidth is

normalized by multiplying the measured bandwidth by the ratio of the current and max frequencies. This

reduces the bandwidth estimation when frequency is scaled down.

GRUB-PA in schedutil. schedutil computes a total active runqueue bandwidth for each CPU by

adding the bandwidth estimates for fair_sched_class and rt_sched_class tasks to running_

228

bw. How schedutil sets CPU frequency depends on if frequency-invariant bandwidth estimation is

supported. If supported, the frequency of a CPU is set to

active runqueue bandwidth

1.25 - max frequency - CPU'’s capacity

4.5)

This product is capped at the maximum frequency. The frequency computed by (4.5) differs from the original
GRUB-PA algorithm (Scordino et al., 2018) because of the leading 1.25 constant and the division by the
CPU’s capacity. The constant 1.25 seems to be a magic number without a basis in theory. The original
GRUB-PA algorithm does not consider asymmetric capacities. The active runqueue bandwidth is divided by
the CPU’s capacity to increase frequencies set for low-capacity CPUs. For example, a CPU with running__
bw of 0.5 and a capacity of 0.5 should run at maximum frequency.

If frequency-invariant bandwidth estimation is not supported, the frequency is instead set to

non-invariant active runqueue bandwidth

1.25 - current frequency - (4.6)

CPU’s capacity

The rationale behind using the current frequency is that the frequency-invariant active runqueue bandwidth is
approximated by multiplying the measured bandwidth by the ratio of the current and maximum frequencies.
Combining (4.5) with this approximation yields (4.6).

Note that (4.6) breaks GRUB-PA for SCHED_DEADLINE tasks. The contribution of running_bw
to the active runqueue bandwidth is the total bandwidth of SCHED_DEADLINE tasks. Recall that the
bandwidths of SCHED_DEADLINE tasks are derived from parameters d1_runtime and d1_period,
which are provided to Linux during a policy change request. Because d1_runtime and d1_period are
not determined by measurement, they are invariant to CPU frequencies. This contribution by running_bw
should be multiplied by the maximum frequency regardless of whether frequency invariance is supported.
Multiplying by the current frequency in (4.6) incorrectly reduces frequency. In practice, this probably does

not cause additional deadline misses due to the 1.25 scaling factor.

Triggering frequency updates. Frequency updates under schedutil are triggered by calling cpufreq_
update_util (). Recall from Section 4.4.8 that this function is called by __add_running_bw () and
__sub_running_bw (), the helper functions for modifying running_bw on the corresponding CPU.

Thus, schedutil attempts to set the CPU frequency whenever running_bw is modified on a CPU.

229

cpufreq_update_util () calls a callback function set by the selected frequency governor. For
schedutil, the callback function is one of sugov_update_single_perf (), sugov_update_
single_freq(), or sugov_update_shared (). These callback functions communicate with the
frequency driver. sugov_update_single_perf () and sugov_update_single_freq() differ
in how they communicate with the driver. These differences are beyond the scope of this dissertation.

sugov_update_shared () is used when the corresponding CPU is in a cpufreq_policy that
contains other CPUs. A cpufreqg_policy is aset of CPUs that share hardware for controlling frequency.
sugov_update_shared () scales the frequencies of all CPUs in the cpufreq_policy according to

the largest total bandwidth of any CPU in the cpufreq_policy.

4.4.10 Core Scheduling

Core scheduling is optionally enabled under SMT. In Linux terms, a core is a set of neighboring logical
CPUs under SMT. Under core scheduling, tasks are assigned tags called cookies such that the scheduler will
only schedule tasks with the same cookie on the CPUs in a core. A task’s cookie is stored in member core__
cookiein struct task_struct. A new cookie can be generated for a task and a cookie can be shared
between tasks using the prct 1 (process control) system call. Note that a forked task automatically inherits
its parent’s cookie. By default, each task’s cookie has value 0. Kernels configured with core scheduling add
additional members (presented in Listing 4.36) to task_struct and rqg. The usage of these member is
detailed in the following paragraphs.

For each core, one rg corresponding with a CPU in said core is designated the core runqueue that stores
the state of said core. This state is the “shared state” members in Listing 4.36. The most important of these
members if core_cookie, the cookie value of the core. core_cookie in the core runqueue matches
core_cookie in task_struct for any task scheduled on a CPU in the core. For each runqueue of a
CPU in a core, pointer core points to the core runqueue storing the shared state. The remaining shared state
members are core_task_seqgand core_pick_seq. These are sequence numbers that are used with
per-runqueue members core_pick and core_sched_seq to implement coordinated scheduling with
the core, which will be detailed in later paragraphs. The final members we discuss are core_tree in rg
and core_node in task_struct. core_node is used to insert a task into core_tree. The usage of

core_tree will be described in later paragraphs.

230

struct rg {

/* per rq */

struct rqg *core;

struct task_struct «*core_pick;
unsigned int core_sched_seq;
struct rb_root core_tree;

/% shared state =/

unsigned int core_task_seq;

unsigned int core_pick_seq;

unsigned long core_cookie;
}i

struct task_struct {

struct rb_node core_node;
unsigned long core_cookie;

}i
Listing 4.36: Core scheduling members.

Coordinated scheduling. Under core scheduling, the __schedule () function behaves differently than
the pseudocode presented in Listing 4.4. Specifically, the logic represented by lines 16-28 of Listing 4.4 are
replaced with the coordinated scheduling logic to be described in this subsection.

CPUs in a core must coordinate their scheduling to only schedule tasks with the same cookie. To facilitate
this, any CPU that calls __schedule () suggests to the other CPUs in the core which tasks they should
schedule. The CPU calling ___schedule () writes these suggested tasks to the core_pick pointers in
the other CPUs’ runqueues.

Let a CPU calling __schedule () be denoted as a rescheduling CPU. Core scheduling in ___

schedule () occurs in three steps.

Core Sched. 1: Decide whether to schedule a suggested task.

In the first step, the rescheduling CPU observes its corresponding core_pick pointer to see if another
CPU in the core has already suggested a task from within its own previous call to ___schedule (). If
core_pick isvalid (how core_pick may become invalid will be explained later when discussing

sequence numbers), then core_pick is scheduled and the second and third steps are skipped.

Core Sched. 2: Compute cookie for the core.

231

The second step involves selecting core—>core_cookie for the core. The rescheduling CPU
identifies the highest priority task on any of the runqueues corresponding with the core. This is done by
iterating over the CPUs in the core and calling pick_task () (for each sched_class) to return
the highest priority task on said CPUs runqueue. core—>core_cookie is set to the highest-priority

task’s core_cookie.

Core Sched. 3: Pick tasks for CPUs in the core matching the cookie.

The third step computes core_pick for each CPU in the core such that core_pick->core_
cookie matches core->core_cookie. Again, the CPUs in the core are iterated over, though
this time only tasks with core_cookie matching core—>core_cookie are considered. For the

CPU in a given iteration, core_pick is set to the highest-priority task with a matching cookie.

The rescheduling CPU, which is currently calling ___schedule (), straightforwardly schedules its
corresponding core_pick task. The rescheduling CPU alerts the other CPUs to reschedule by calling
resched_curr (). This causes the other CPUs to call __schedule (), during which they will

schedule their corresponding core_pick tasks in Core Sched. 1.

Cookie search tree. Core Sched. 3 requires efficiently searching for high-priority tasks matching a given
cookie. For this purpose, each task_struct that has non-zero core_cookie and is enqueued onto a
runqueue is also added to that runqueue’s core_tree, a binary search tree ordered on core_cookie.
Ties between tasks with equal core_cookie are broken such that higher-priority tasks are to the left of

lower-priority tasks. This simplifies searching for the highest-priority task with a certain cookie.

v Example 4.14. Consider a runqueue containing Tasks 0-6 with values as illustrated in Figure 4.17.
Figure 4.17 illustrates the structure of core_tree for this runqueue. core_tree is ordered first by
core_cookie (e.g., Task 6 with core_cookie of 5 is to the right of Tasks O and 1 with core_
cookie of 3) and second by task priority (e.g., Task O with deadline of 9 is to the right of Task 1
with deadline of 7). To find the highest-priority task with a given core_cookie, the scheduler
explores core_tree as a binary search tree. If a node with the desired core_cookie is found, the
scheduler then iterates through the left-side children to discover the highest-priority task with this core_

cookie.

232

Note that core_tree is an rb_root and not an rb_root_cached. There is no benefit to
caching the leftmost node of core_t ree because there is no reason to believe the corresponding task

would have the desired core_cookie. A

Sequence numbers. In Core Sched. 1, it was mentioned that the value of core_pick may no longer be
valid when a CPU calls __schedule (). core_pick for a runqueue is invalidated whenever a task is
enqueued or dequeued from any runqueue of a CPU in the same core. Validity is determined via observing

three sequence numbers:

* core—>core_task_seq, which is incremented whenever any runqueue in the core enqueues or

dequeues a task and whenever new core_pick tasks are chosen;

* core—->core_pick_seq, whichis set to core—>core_task_seq’s value after a rescheduling

CPU sets core_pick for the runqueues in the core;

* and core_sched_seq, whichis setto core->core_pick_seq whenever a runqueue schedules

its suggested core_pick task.

core_pick is valid if core->core_task_seq and core->core_pick_seq are equal and
core->core_pick_seqgand core->core_sched_seq are unequal. Agreement between core_
task_seqgand core_pick_seqgindicates that the set of tasks available to be scheduled on the CPUs in
the core has not changed since the core_pick tasks were computed. Otherwise, if a new highest-priority
task was enqueued on a runqueue in the core, the core_cookie for the core must be set to this new task’s
core_cookie, necessitating new core_pick selections that match said core_cookie. Disagreement
between core_pick_seq and core_sched_seq indicates that the current core_pick suggestion

has not already been scheduled.

v Example 4.15. Consider a core with two CPUs as illustrated in Figure 4.18a. The rq of CPU 0 is the
core runqueue, thus, both rg’s core pointers point to the rg of CPU 0. Initially, both CPUs schedule
the tasks with earliest deadlines on their respective rgs. This is Task 1 on CPU 0 and Task 3 on CPU 1.
This is reflected in the curr pointers in both rgs. Both of these tasks have a core_cookie of 1. This
matches the core_cookie in rg 0, the core runqueue.

Suppose Task 2 wakes on CPU 1, as illustrated in Figure 4.18b. Because a task was enqueued onto a

rqin the core, core—>core_task_seqis incremented from 10 to 11.

233

struct task_struct

| pid : 1

| core_cookie : 3

|
|
| dl.deadline : 7 |
\

| core_node

struct task_struct

| pid : 6

| core_cookie : 5

struct task_struct

| pid : 4

| dl.deadline : 8

| core_cookie : 5 |

/ core_node

| dl.deadline : 4

4 core_node

'<

struct task_struct

| pid : 2

| core_cookie : 3

| dl.deadline : 6

1 core_node

<

struct task_struct

| pid : 0O

| core_cookie : 3

|
|
dl.deadline : 9 |
|

\ core_node

struct task_struct

| pid : 5

| dl.deadline : 2

| core_cookie : 3 |

) core_node

struct task_struct
| pid : 3 |

| core_cookie : 1

dl.deadline

: 10 |
|

\ core_node

Figure 4.17: core_tree example.

234

CPU 1 reschedules due to the waking of Task 2. In Core Sched. 1 of core scheduling, CPU 1 decides
whether or not to schedule its rg’s suggested task, which is pointed to by core_pick (which happens
to be NULL). CPU 1 does not schedule its core_pick task because it observes that core->core_
task_seqg(ll) and core->core_pick_seq (10) are unequal.

CPU 1 begins Core Sched. 2, which computes the new core_cookie for the core. The highest
priority task on any rqg in the core is identified. This is Task 2 on rg 1. CPU 1 sets core->core_
cookie to Task 2’s core_cookie, whichis 2. CPU 1 also increments core—>core_task_seq
from 11 to 12. (Why core_task_seqis incremented here will be illustrated later in Example 4.16.)
The state of the system is as illustrated in Figure 4.18c.

CPU 1 begins Core Sched. 3, which selects core_p1ick tasks for each rqg in the core. On each of
these rgs, core_pick is set to the highest-priority task on said rq that has core_cookie equal to
core—->core_cookie (2). This is Task 0 on rq 0 and Task 2 on rg 1. CPU 1 sets core—>core_
pick_seqto core->core_task_seq (12). The state of the system is as illustrated in Figure 4.18d.

CPU 1 completes its rescheduling by scheduling its core_pick task (Task 2). This sets curr to
Task 2 and core_pick to NULLon rg 1. core_sched_seqis also setto core—>core_pick_
seq (12). The state of the system is as illustrated in Figure 4.18e.

CPU 1 alerts CPU 0 to reschedule. When CPU 0 executes Core Sched. 1, it observes that
core—>core_task_seqisequal to core->core_pick_seq (12). This indicates that the set of
tasks (Tasks 0-3) on the rgs in the core have not changed since core_pick was set on rg 0. CPU 0
also observes that core->core_pick_seqis unequal to core_sched_seqon rq 0. This indi-
cates that the core_pick value on rg 0 has not already been scheduled on CPU 0. Because of these
two observations, CPU 0 schedules its core_pick task (Task 0), as suggested by CPU 1. This sets
curr to Task 0 and core_pick to NULL on rg 0. The system is as illustrated in Figure 4.18f. Each
CPU schedules the highest-priority task on its rg that has core_cookie matching core->core_

cookie. A

The second increment of core->core_task_seq from 11 to 12 between Figures 4.18b and 4.18c¢
may seem unnecessary at first glance. The following example demonstrates how avoiding this increment can

result in redundant rescheduling.

235

| curr:
|core rq Ol
rqg 0 pid: 0 | core_pick: NULLl
curr: Task 1 | task_struct|dl.deadline : |Core sched_seq: 10|
core: rqg 0 | core_cookie :
core_pick: NULL | pid: 1 pid: 3

core_task_seqg: 10

core_pick_seq: 10

| core_sched_seq:10

task_struct

dl.deadline :

core_cookie :

task_struct

dl.deadline :

core_cookie :

core_cookie: 1
rq O

curr: Task 3

core: rqg 0

(a) Initial system.

| curr:
|Core rq Ol
| core_pick: NULL |

core_sched_seq: 10|

task_struct

pid: O

dl.deadline :

core_cookie :

task_struct

pid: 3

dl.deadline :

core_cookie :

core_pick: NULL

core_task_seqg: 11

core_pick_seq: 10

|
|
|
| core_sched_seq:10
|
|
|

core_cookie: 1

task_struct

pid: 1

dl.deadline :

core_cookie :

task_struct

pid: 2

dl.deadline :

core_cookie :

(b) Task 2 enqueued.

Figure 4.18: Core scheduling example.

236

curr:
rq Ol
core_pick: NULL |

| core:

core_sched_seq: lOl

9 0 pid: 0 pid: 3
curr: Task 3 | task_struct|dl.deadline : task_struct|dl.deadline :
core: rqg 0 | core_cookie : core_cookie :
core_pick: NULL | pid: 1 pid: 2

core_sched_seq:10

core_task_seqg: 12

core_pick_seq: 10

task_struct

dl.deadline :

core_cookie :

task_struct

dl.deadline :

core_cookie :

core_cookie: 2
rq 0

curr: Task 3|

core: rq Ol

(c) New core_cookie selected.

rq 1
| curr: Task 3 |
| core: rq 0 |
| core_pick: Task 2 |
|

core_sched_seq:lol

task_struct

pid: O

dl.deadline :

core_cookie :

task_struct

pid: 3

dl.deadline :

core_cookie :

core_pick: Task 0

core_sched_seq:10

core_task_seq: 12

core_pick_seq: 12

core_cookie:

task_struct

pid: 1

dl.deadline :

core_cookie :

task_struct

pid: 2

dl.deadline :

core_cookie :

(d) New core_picks selected.

237

Figure 4.18: Core scheduling example (continued).

rqg O
curr: Task 3|
core: rq Ol

curr:
rq Ol
core_pick: NULL |

| core:

core_sched_seq:12

task_struct

pid: O

dl.deadline :

core_cookie :

task_struct

pid: 3

dl.deadline :

core_cookie :

core_pick: Task Ol

core_pick_seq: 12

|
|
|
| core_sched_seq:10
|
|
|

|
core_task_seq: 12|
|
|

task_struct

pid: 1

dl.deadline :

core_cookie :

task_struct

pid: 2

dl.deadline :

core_cookie :

core_cookie: 2
rq 0

curr: Task 0O

core: rg 0

(e) CPU 1 finishes rescheduling.

|curr Task 2|
|core rq Ol
| core_pick: NULL |

core_sched_seq:12

task_struct

pid: O

dl.deadline :

core_cookie :

task_struct

pid: 3

dl.deadline :

core_cookie :

core_pick: NULL

core_task_seq: 12

core_pick_seq: 12

| |
| |
| |
| core_sched_seq:12 |
| |
| |
| |

core_cookie: 2

task_struct

pid: 1

dl.deadline :

core_cookie :

task_struct

pid: 2

dl.deadline :

core_cookie :

(f) CPU 0 reschedules.

Figure 4.18: Core scheduling example (continued).

238

v Example 4.16. This example continues from the system in Example 4.15 and Figure 4.18f. Suppose
that after being scheduled on CPU 1 for some duration, Task 2 exhausts its runt ime or yields such
that it bypasses being throttled. Task 2 increases its deadline from 3 to 11. Because throttling was
bypassed, Task 2 is not dequeued from rqg 1. Thus, core->core_task_seq is not incremented due
to a task being enqueued or dequeued. Because Task 2 no longer has the earliest deadline among the
tasks on rq 1, CPU 1 reschedules. The state of the system is as illustrated in Figure 4.19a.

When CPU 1 executes Core Sched. 1, it observes that core—>core_pick_seq and core_
sched_seqgon rqg 1 are equal. This indicates that core_pick on rq 1 is no longer valid.

CPU 1 executes Core Sched. 2, in which a new core—>core_cookie value is selected. The
highest-priority task on any rq in the core is Task 1 with core_cookie of 1. core->core_cookie
is set to 1. The state of the system is illustrated in Figure 4.19b.

In the actual implementation, CPU 1 would increment core—->core_task_seq from 12 to 13, as
in between Figures 4.18b and 4.18c in Example 4.15. Consider the hypothetical where core->core__
task_seqis not incremented and remains at 12.

CPU 1 executes Core Sched. 3, in which new core_pick tasks are selected. core_pick is setto
Task 1 on rq 0 and Task 3 on rg 1. CPU 1 sets core—>core_pick_seqto core->core_task_
seq; however, because core_task_seq was not incremented, both core_pick_seqgand core_
task_seqgremain at 12. The state of the system is illustrated in Figure 4.19c.

CPU 1 schedules Task 3, setting, on rg 1, curr to Task 3, core_pick to NULL, and core_
sched_seqgto 12. CPU 1 completes its rescheduling and alerts CPU 0 to reschedule. The state of the
system is illustrated in Figure 4.19d.

CPU 0 executes Core Sched. 1. Ideally, CPU 0 should schedule the core_pick task set on
rqg 0 by CPU 1. Note that in Figure 4.19d, core->core_pick_seqgequals core_sched_segon
rqg 0. This is because core_pick_seq was unchanged when it was set to core->core_task_
seq (in Figure 4.19¢), which itself was previously not incremented (in Figure 4.19b). Because CPU 0
observes that core->core_pick_seqand core_sched_seqg are equal, CPU 0 does not schedule
its core_pick task, instead continuing on to Core Sched. 2.

After CPU 0 selects new core_pick tasks in Core Sched. 3, CPU 0 will alert CPU 1 to schedule
its core_pick task. When CPU 1 reschedules, it will observe that core->core_pick_seq equals

core_sched_seqgon rqg 1, causing CPU 1 to also continue on to Core Sched. 2. CPU 1 will alert

239

CPU 0 to reschedule in Core Sched. 3. The two CPUs will continuously force each other to reschedule
until some task is enqueued or dequeued from rq O or 1, finally incrementing core->core_task_

seq. A

Example 4.17 demonstrates how incrementing core—>core_task_seq whenever new core_pick

tasks are selected avoids the redundant rescheduling shown in Example 4.16.

v Example 4.17. This example continues from the system illustrated in Figure 4.19a. CPU 1 increments
core->core_task_seq from 12 to 13 in Figure 4.20a. When CPU 1 selects core_pick tasks for
rgs 0 and 1, it sets core—>core_pick_seqto core->core_task_seq, which is 13. This is
reflected in Figure 4.20b. CPU 1 sets core_sched_seqgon rg 1 to 13 when it finishes rescheduling
(Figure 4.20c). When CPU 0 is alerted to reschedule by CPU 1, it observes that core_sched_seq
on rgq 0 (12) is unequal to core->core_pick_seq (13). Thus, CPU 0 schedules the core_pick
task (Task 1) selected previously by CPU 1. CPU 0 then sets core_sched_seq to 13, as illustrated in

Figure 4.20d. A

Balancing under core scheduling. CPUs whose runqueues are without any tasks matching the core’s
core_cookie are forced to schedule the id1le task. CPUs forced to idle in this way attempt to pull tasks
with matching core_cookie from other CPUs. Asinpull_d1l_task (), this pull iterates over the other
CPUs. Note that this pull differs from those done by pull_d1l_task () in that iteration terminates as
soon as a single task is migrated. pull_d1_task (), in comparison, iterates over all CPUs in the root__
domain in case a higher-priority task may be migrated from a CPU covered by a later iteration. Thus, core
scheduling may leave higher-priority tasks unscheduled even when they could preempt lower-priority tasks

with the same core_cookie.

4.5 Chapter Summary

In this chapter, we reviewed the SCHED_DEADLINE implementation as of kernel version 6.7. We
discussed how the shared scheduling infrastructure calls sched_class functions in order to implement
policies such as SCHED_DEADLINE. We have also briefly discussed features of the scheduler such as support

for affinities, asymmetric capacities, priority inheritance, GRUB, DVFS, and core scheduling.

240

curr:
rg 0 |
core_pick: NULL |

| core:

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

rg 0 pid: O pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline : 11
|core: rqg 0 | core_cookie : core_cookie : 2
|core_pick: NULL | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
|core_sched_seq:12
core_cookie : core_cookie : 1
|core_task_seq: 12
|core_pick_seq: 12
| core_cookie: 2 |
(a) Task 2 yields.
rq 1
|curr: Task 2|
|core: rq Ol
| core_pick: NULL |
|core_sched_seq:12
rg 0 pid: 0 pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline: 11
|core: rqg 0 | core_cookie : core_cookie: 2
|core_pick: NULL | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
| core_sched_seq:12
| core_cookie : core_cookie: 1

core_cookie: 1

(b) New core_cookie selected.

Figure 4.19: Consequence of not incrementing core_task_sedq.

241

Task 2 |

curr:
rg 0 |
core_pick: Task 3 |

| core:

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

rg 0 pid: O pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline : 11
|core: rqg 0 | core_cookie : core_cookie : 2
|core_pick: Task 1 | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
|core sched_seq:12
core_cookie : core_cookie : 1
|core_task_seq: 12
|core_pick_seq: 12
|core_cookie: |
(c) New core_picks selected.
rq 1
|curr: Task 3
|core: rq Ol
| core_pick: NULL |
|core_sched_seq:12
rg 0 pid: 0 pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline: 11
|core: rqg 0 | core_cookie : core_cookie: 2
|core_pick: Task 1 | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
| core_sched_seq:12
| core_cookie : core_cookie: 1

core_cookie:

(d) CPU 1 finishes rescheduling.

Figure 4.19: Consequence of not incrementing core_task_seq (continued).

242

curr:
rg 0 |
core_pick: NULL |

| core:

core_sched_seq:12

core_task_seq: 13

core_pick_seq: 13

rg 0 pid: O pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline : 11
|core: rqg 0 | core_cookie : core_cookie : 2
|core_pick: NULL | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
|core_sched_seq:12
core_cookie : core_cookie : 1
|core_task_seq: 13
|core_pick_seq: 12
| core_cookie: 1 |
(a) New core_cookie selected.
rq 1
|curr: Task 2|
|core: rq Ol
|core_pick: Task 3
|core_sched_seq:12
rg 0 pid: 0 pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline: 11
|core: rqg 0 | core_cookie : core_cookie: 2
|core_pick: Task 1 | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
| core_sched_seq:12
| core_cookie : core_cookie: 1

core_cookie:

(b) New core_picks selected.

Figure 4.20: Correctly incremented core_task_seq.

243

curr:
rg 0 |
core_pick: NULL |

| core:

core_sched_seq:13 |

core_task_seq: 13

core_pick_seq: 13

rq 0 pid: 0 pid: 2
| curr Task 0 | task_struct|dl.deadline : task_struct|dl.deadline : 11
| core: rqg 0 | core_cookie : core_cookie : 2
|core_pick: Task 1 | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
|core_sched_seq:12
core_cookie : core_cookie : 1
|core_task_seq: 13
| core_pick_seq: 13 |
| core_cookie: 1 |
(c) CPU 1 finishes rescheduling.
rq 1
|curr: Task 3
|core: rq Ol
| core_pick: NULL |
|core_sched_seq:13
rq 0 pid: 0 pid: 2
| curr Task 1 | task_struct|dl.deadline : task_struct|dl.deadline: 11
|core: rqg 0 | core_cookie : core_cookie: 2
| core_pick: NULL | pid: 1 pid: 3
task_struct|dl.deadline : task_struct|dl.deadline : 6
|core_sched_seq:l3
| | core_cookie : core_cookie: 1

core_cookie: 1

(d) CPU 0 reschedules.

Figure 4.20: Correctly incremented core_task_seq (continued).

244

CHAPTER 5: MODIFYING SCHED_DEADLINE !

This chapter presents two SCHED_DEADLINE patches aimed at restoring response-time bounds under
the ACS for special cases of heterogeneous multiprocessors. Both patches are available online (Tang, a,b).
Recall from Section 2.1 that, while a CBS is permitted to suspend and wake arbitrarily, such suspensions and
wakeups must be analytically treated as job completions and arrivals to comply with our task model. Our

response-time analysis does not apply without this treatment.

5.1 Version Differences

We briefly discuss differences between the kernels targeted by our patches and kernel 6.7, which was
discussed in Chapter 4. Our first patch, which will be discussed in Section 5.2, targets kernel 5.4, which
was the most recent long-term support kernel when this patch was first written. In the 5.4 kernel, the ACS
and SCHED_DEADLINE migration logic do not take asymmetric capacities into account. This kernel also
predates Linux scheduling features such as disabling migration and core scheduling.

Our second patch, which will be discussed in Section 5.3, targets a fork of the Linux kernel (Hardkernel)
made by Hardkernel, the creators of the ODROID series of board computers. We use this fork because it
supports the ODROID-XU4, the ARM big. LITTLE multiprocessor upon which we evaluate our patch. The
branch we target is based on kernel version 6.1. From the perspective of SCHED_DEADLINE, kernels 6.1
and 6.7 are practically the same outside of some minor bug fixes and code refactoring.

Generally, though the organization of the code has since changed, the behavior of SCHED_DEADLINE
(with the exception of the aforementioned unsupported features in the 5.4 kernel) in both earlier kernels is

basically consistent with the discussion in Chapter 4.

!Contents of this chapter previously appeared in the following paper:

Stephen Tang, James H. Anderson, and Luca Abeni. On the defectiveness of SCHED_DEADLINE w.r.t. tardiness and
affinities, and a partial fix. In 2021 29th International Conference on Real-Time Networks and Systems, pages 46-56,
2021a.

245

5.2 IDENTICAL/SEMI-PARTITIONED

Our first patch (Tang, a) targets IDENTICAL/SEMI-PARTITIONED systems, i.e., systems where all
CPUs have the same capacity and each task has affinity for either all CPUs or one CPU. We target IDENTI-
CAL/SEMI-PARTITIONED systems for two reasons. The first reason is that setting SEMI-PARTITIONED
affinities is a straightforward method of decreasing migration overheads. The second reason is that, as we
will show in this section, response-time bounds can be restored for SCHED_DEADLINE under IDENTI-
CAL/SEMI-PARTITIONED with minimal changes to the existing implementation.

Our patch for IDENTICAL/SEMI-PARTITIONED attempts to change SCHED_DEADLINE to be closer
to Strong-APA-EDF without requiring a major overhaul of the existing code. We describe our proposed patch
in four subsections, each addressing a distinct aspect of the implementation: bypassing throttles, pushing to
the latest CPU, the ACS, and dynamic affinities. We begin each subsection by reviewing how each aspect
causes problems under IDENTICAL/SEMI-PARTITIONED. Afterwards, we explain how our patch modifies

the implementation.

5.2.1 Bypassing Throttles

Problem. Recall from the discussion in Section 4.4.3 that in SCHED_DEADLINE, a task that exhausts its
budget or calls sched_yield after its next replenishment time will remain eligible, bypassing the throttled
state. If so, this task continues executing on the same CPU if it is not preempted by a different task on
the same runqueue with an earlier deadline. Recall Example 3.4 in Section 3.4.1. This behavior can cause

unbounded response times when partitioned tasks (i.e., tasks with affinity for only a single CPU) exist.

v Example 5.1. Consider a root_domain with CPUs 0-2 with implicit-deadline Tasks 0-4. Tasks’
affinities are illustrated in Figure 5.1a. Let (d1_runtime,dl_period) of Tasks 0 and 4 be (2, 6), of
Tasks 1 and 3 be (2, 2), and of Task 2 be (1, 6).

A schedule of this system is illustrated in Figure 5.1b. Tasks 1 and 3 are replenished every period.
Initially, Task 1 and Task 3 execute on CPU 0 and CPU 2, respectively. Even though Tasks 0 and 4
become ready at time 1, because Tasks 1 and 3 bypass their throttled states due to exhausting their
runt ime at or past their deadlines (because these are implicit-deadline tasks, the next replenishment
time is also the deadline), they do not migrate to the idle CPU 1. This continues until time 6 when fixed

Tasks 0 and 4 preempt Tasks 1 and 3, respectively. The only other CPU available to both Task 1 and

246

Task O Task 1 Task 2 Task 3 Task 4

(a) Example 5.1 affinity graph.

Task O ‘ [

0 2 4 10 12 14 16
Task 1 ‘

20
Task 2
T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
Resp. Time of 4,0

» s

LR o o o i W i o o

Task 4 I \

0 2 4 6 8 10 12 14 16 18 20
Time

(b) Example 5.1 schedule.

Figure 5.1: Unbounded response times due to bypassing throttling.

247

Task 3 is CPU 1 (Task 1 cannot preempt Task 4 on CPU 2 and Task 3 cannot preempt Task 0 on CPU 0),
which they cannot both use. We assume the tie-break here favors Task 1 and it is scheduled, while Task 3
does not execute until time 8 when it resumes execution on CPU 2. Task 1 is also forced to migrate off of
CPU 1 by fixed Task 2 at time 12. This repeats at time 18, except here Task 3 is scheduled over Task 1
because it is tardy by 2.0 time units due to not being scheduled over [6, 8).

Observe that this schedule is identical to the beginning of the schedule of the system in Example 3.4
and Figure 3.7 in Section 3.4.1 (though the tasks in Example 3.4 have different affinities than in this
example, the migrations that are taken are the same). As in Figure 3.7, the schedule in Figure 5.1b can be

repeated to yield unbounded response times. A

Patch. Example 5.1 would not have unbounded response times if successive jobs of Task 1 and Task 3
would migrate when a free CPU or CPU scheduling a task with a later deadline is available, thereby allowing
partitioned tasks to execute. For example, if Task 1 had migrated to free CPU 1 at time 2 instead of time 6 in
Figure 5.1b, then the first job of Task 0 would have been able to execute on CPU 0 over the interval [2,4).
This would have freed CPU 0 over [6, 8), allowing Task 3 to execute and preventing its increase in response
time.

Recall that successive jobs of tardy tasks do not migrate because they bypass the throttled state, skipping
the push that occurs in function d1_task_timer (), which is called when a task returns from being
throttled. Our patch addresses this by removing the branch in which a task bypasses throttling. This causes
successive jobs of tardy tasks that would have otherwise continued to execute on the same CPU to be pushed
from that CPU. For example, at time 2 in Figure 5.1b, Task 1 completes its job. Under our patch, Task 1
would be throttled and immediately unthrottled because its next replenishment time is also at time 2 (instead
of not being throttled at all, as in the original implementation). Due to calling d1_task_timer (), Task 1
would be pushed from CPU 0 to free CPU 1. This is the schedule described in the previous paragraph that
reduces response times.

Note that d1_task_timer () will not push a scheduled task, as the scheduled task on a runqueue is
removed from said runqueue’s tree of pushable tasks (recall from Section 4.4.2.4 that set_next_task_
dl () calls dequeue_pushable_dl_task ()). This is problematic because throttled tasks may still be
scheduled when d1_task_timer () executes because rescheduling is not instantaneous. To guarantee

that a tardy task is pushed in our patch, d1_task_timer () may need to wait for the tardy task to be

248

unscheduled. Unfortunately, it does not help to wait within d1_task_timer () for the relevant CPU to
reschedule, as both d1_task_timer () and __schedule () are both required to hold the runqueue’s
lock to execute. In our patch, when d1_task_timer () executes and observes that the task to be pushed is
still scheduled, the callback releases the runqueue’s lock and retries in the future, giving the relevant CPU the
chance to reschedule. This is done by calling hrt imer_forward () within d1_task_timer () and

returning HRTIMER_RESTART.

5.2.2 Pushing to the Latest CPU

Problem. The target CPU of a push is the CPU scheduling the task with the latest deadline if no CPUs in the
root_domain are free of SCHED_DEADLINE tasks. In SCHED_ DEADLINE, this latest CPU is identified
via the cpudl heap. This heap orders CPUs by the earliest deadline of any task on the corresponding CPU’s
runqueue. Because a task being pushed is on its runqueue prior to being migrated, the deadline of the pushing

CPU in the cpudl heap may be that of the task being pushed. This can result in priority inversions under

SEMI-PARTITIONED.

v Example 5.2. Consider a root_domain with CPUs 0 and 1 and implicit-deadline Tasks 0-2 with
(dl_runtime,dl_period) of (10, 70) for Task 0, (10, 50) for Task 1, and (5, 10) for Task 2. Tasks’
affinities are illustrated in Figure 5.2a. A schedule for this system is presented in Figure 5.2b. Task 2
releases its first job at time 0 and executes on CPU 0 until time 5, at which point Task 2 is throttled.
At time 7, both Task 0 and Task 1 release their first jobs and begin executing. At time 10, Task 2 is
replenished. This results in Task 2 being placed back onto CPU 0’s d1_rq (as CPU 0 was Task 2’s last
CPU) and CPU 0 attempting to push Task 2 (in d1_task_timer ()).

Because, at the instant Task 2 is pushed, CPU 0 executes Task 0 with deadline 77 and CPU 1
executes Task 1 with deadline 57, Task 2 should remain on CPU 0 and preempt Task O, whose
deadline is later than that of Task 1. The actual behavior exhibited by SCHED_DEADLINE is that
CPU 0 will have Task 2’s deadline of 20 in the cpudl heap. This causes SCHED_DEADLINE to
believe that CPU 1 with Task 1’s deadline in the heap is the later CPU, resulting in Task 2 being

pushed to CPU 1, preempting Task 1. A

Patch. The cpudl would not mistakenly target the wrong CPU in a push if it did not consider the deadline

of the task being pushed. Our patch accomplishes this by dequeuing (from the d1_rg, not the runqueue

249

Task O Task 1 Task 2

(a) Example 5.2 affinity graph.

T T T T T
0 20 40 60 80
Task 1 I .i l
T T T T
0 20 40 60 80
Task 2
T T T T T
0 20 40 60 80
Time
(b) Example 5.2 schedule.

Figure 5.2: Pushes can cause priority inversions.

250

rq) any task in the process of being pushed before the cpudl is accessed to determine the target CPU (in
function find_later_rqg()). Dequeueing updates the cpudl, preventing the pushing CPU from being
represented by the pushed task’s deadline in the cpudl.

We enqueue a pushed task back onto the pushing CPU’s d1_rqgonce find_later_rqg() returns.
Though this enqueue is redundant if a target CPU is successfully identified and the push does not fail due to
the race conditions discussed in Section 4.4.2.2, as the task must then be dequeued once again to be enqueued
onto the target CPU’s d1_ rqg, enqueuing the task on its original d1_ rq is necessary because push_d1_

task () expects the task to be enqueued.

5.2.3 ACS

Problem. The existing ACS does not prevent a user from overloading a given CPU in a root_domain by

partitioning tasks with combined utilization exceeding 1.0 onto that CPU.

Patch. Our patch supports the creation of partitioned tasks by using ___sched_setaffinity () to set
a task’s affinity to a single CPU in its root_domain prior to entering SCHED_DEADLINE (as will be
discussed in the next subsection, SCHED_DEADLINE tasks are not allowed to change their affinities). We
modify __sched_setscheduler () to not fail if a task has affinity for a single CPU.

Besides the condition in (4.1), we modify the ACS to also maintain,

sched_rt_runtime_us
dooow< — e (5.1)

VmjEem: _
sched_rt_period_us

it ai={m;}

As in (4.1), m in (5.1) refers to the CPUs belonging to a single root_domain. Checks for (5.1) are
added wherever __d1_overflow () iscalled and in sched_d1_global_validate () (recall from
the discussion in Section 4.4.4 that these functions check that (4.2) will not be violated by a request). Similar
to how the left-hand side of (4.1) is tracked in total_bw (recall that (4.2) is (4.1)’s equivalent in terms of
SCHED_DEADLINE variables), the left-hand side of (5.1) is tracked in a new member partitioned_bw
stored in each runqueue’s d1_rq.

(5.1) is not checked in d1_cpuset_cpumask_can_shrink (), which is called when the set of

CPUs in a root_domain changes. This is because the expected behavior under Linux when the CPUs

251

CPU 1 CPU 0O CPU 1 CPU O

I

Task 1

0 1 2 3 4 5 6 7 8 9
Time

Figure 5.3: Dynamic affinities can starve tasks.

in a root_domain are changed is that any affinity changes made with ___sched_setaffinity ()
are lost. Thus, all partitioned SCHED_DEADLINE tasks in the root_domain will become global (for
all CPUs in the root_domain), making (5.1) irrelevant. Because all partitioned tasks become global,

partitioned_bw must be set to 0 for any CPUs in the root_domain.

5.2.4 Dynamic Fine-Grained Affinities

Problem. We neglected to mention any checks made for (5.1) when ___sched_setaffinity () is used
to change a partitioned task’s CPU, nor did we mention how we modified __sched_setaffinity () to
accept such requests. As it turns out, allowing SCHED_DEADLINE tasks to dynamically change their affinity

can unpredictably change a tardy task’s deadline.

v Example 5.3. This example corresponds with Figure 5.3. Consider a SEMI-PARTITIONED system
on a root_domain with CPUs 0 and 1 and two implicit-deadline tasks Task O (initially partitioned
on CPU 0) and Task 1 with affinity for both CPUs. The parameters (d1_runtime,dl_period) are
(1,2) for Task 0 and (1, 1) for Task 1. Both tasks enter the system at time 0.

Task 1, whose deadline is earlier than Task 0’s deadline, executes on CPU 0 until preempted
by Task O at time 2. Task 1 migrates to CPU 1 once preempted. However, Task O calls ___sched__
setaffinity () to change its affinity from being partitioned on CPU 0 to CPU 1. ___sched_
setaffinity () invokes the change pattern (see Section 4.3.5). When the change pattern enqueues
Task 0 onto CPU 1’s runqueue, enqueue_task_dl () is called with flag ENQUEUE_RESTORE. Be-

cause enqueue_task_dl () observes that ENQUEUE_RESTORE is set and that Task 0’s deadline

252

of 2 has passed, Task 0’s runtime and deadline parameters are reset as if it entered SCHED_
DEADLINE at time 2. Task 0’s deadline is updated from 2 to 4. Thus, Task 0 does not have an early
enough deadline to preempt Task 1, and so it continues to be unscheduled. Repeating this pattern of

dynamic affinity requests can prevent Task O from executing indefinitely, as in Figure 5.3. A

Patch. We forbid SCHED_DEADLINE tasks from changing their affinities. We do this by modifying ___
sched_setaffinity () to automatically reject any requests for SCHED_DEADLINE tasks. If a user
desires to change the affinity of a SCHED_DEADLINE task, the task must first leave SCHED_DEADLINE,
change its affinity as a non-SCHED_DEADLINE task, and reenter SCHED_DEADLINE. This makes explicit
to users that affinity changes will reset tasks’ SCHED_DEADLINE parameters.

Rejecting all requests to ___sched_setaffinity () may be heavy handed, but it is non-trivial to
determine what restrictions are necessary to both prevent race conditions and account for such requests in
proofs of bounded response times.

Altogether, our patch is fairly minor, modifying roughly 200 lines of code (for context, the main SCHED__

DEADLINE file is roughly 3,000 lines of code).

5.2.5 Bounded Response Times

An objective of this patch is to guarantee that response times are bounded under the patched ACS.? We
discuss at a high level why our changes to SCHED_DEADLINE result in bounded response times in this
subsection. Formal details are presented in Appendix B.

Our patch is designed such that, assuming the relative order of deadlines is unchanged over a sufficiently
long time interval, the configurations chosen by SCHED_DEADLINE in this interval approach a configuration

that would be chosen by Strong-APA-EDF.

v Example 5.4. Consider four tasks and three CPUs such that affinites are as illustrated in Figure 5.4
and the relative order of deadl ine values from earliest to latest at the current time instant is Task 1,
Task 2, Task 0, and Task 3. Suppose the configuration chosen at this time is as illustrated in Figure 5.4a.
There is an alternating path of (Task 0, CPU 0, Task 1, CPU 2, Task 3) from a higher- to a lower-priority

task.

2This assumes an idealized version of SCHED_DEADLINE without features such as disabling migration, CPU hotplug,
priority inheritance, GRUB, DVFS, core scheduling, etc.

253

Task 0 Task 1 Task 2 Task 3 Task 0 Task 1 Task 2 Task 3

(a) Alternating path of (Task 0, CPU 0, Task 1, CPU 2,

Task 3). (b) Migration of Task 1 inverts alternating path.

Figure 5.4: Alternating paths under SEMI-PARTITIONED.

Strong-APA-EDF would select a configuration that inverts the edges along this alternating path.
Observe that inverting these edges involves a single migration of Task 1 from CPU 0 to CPU 2 (Fig-
ure 5.4b). Under our patch, Task 1 takes this migration once it is pushed in d1_task_timer (),
which is never skipped due to bypassing throttling. Thus, the behavior under our patch matches that of
Strong-APA-EDF after Task 1 exhausts its remaining runt ime (due to Task 1 needing to be throttled

for d1_task_timer () to be called). A

Under SEMI-PARTITIONED, for any alternating path from a higher-priority task to a lower-priority
task or free CPU, there is always a shortest alternating path containing one global task such that inverting
the edges of the shortest path results in the same tasks being scheduled as inverting the edges of the original
path (e.g., in Example 5.4, path (Task 0, CPU 0, Task 1, CPU 2, Task 3) is a shorter alternating path than
(Task 0, CPU 0, Task 1, CPU 1, Task 2, CPU 2, Task 3), and inverting either path in Figure 5.4a results in
Tasks 1, 2, and 3 being scheduled). Thus, there is no need to compute paths to achieve Strong-APA-EDF-like
behavior. It is sufficient to migrate the global task in the shortest path to the latest CPU, which always occurs
on replenishment under our patch.

As a consequence of waiting for a task’s runt ime to be exhausted before migrating to remove an
alternating path, the response-time bounds derived under our patch are inflated from those derived for

Strong-APA-EDF in Corollay 3.23. The details of this are presented in Appendix B.

254

5.2.6 Evaluation

In this subsection, we evaluate the performance of our patched SCHED_DEADLINE kernel against the
original implementation. We present histograms showing the distribution of relevant measured overheads.
The cumulative impact of different overheads will be presented later in Table 5.1, which presents the sum of

measurements for each overhead we consider.

Validation. To the author’s knowledge, there does not exist a suitable suite of tests for validating SCHED__
DEADLINE patches. Juri Lelli (the SCHED_DEADLINE maintainer) and Steven Rostedt (who, among many
other functions, is a SCHED_DEADLINE reviewer) both maintain Git repositories (Lelli, 2016; Rostedt,
2018) of tests, but these repositories are rarely updated (e.g., at time of writing, the latest commits were made
between five and ten years ago). These tests also seem to focus on either testing kernel stability or SCHED__
DEADLINE features that our patches do not interact with (e.g., priority inheritance, GRUB, dynamically
modifying cpusets). As such, we did not use these tests to validate our patches.

We validated our patches by observing the behavior of tailored test task systems (such that the expected
migration behavior is known) with few tasks and large parameters (i.e., d1_runtime and d1_periodin
[0.1,1.0] second). Large parameters are necessary to ensure the general migration behavior is not affected
by jitter in initial arrival times (i.e., the time instants when tasks enter SCHED_DEADLINE). The taskset
command was used to pin each task to its initial CPU in the test while running as a SCHED_NORMAL
task. The taskset command was then used to set the task’s affinity to that required by the test, before
immediately changing the task’s policy to SCHED_DEADLINE (this use of taskset must be done prior to
changing the task’s policy because our patch does not permit dynamic affinities, as discussed in Section 5.2.4).
For a global task, this second use of taskset is used to give the task affinity for each CPU in the root_
domain. For a partitioned task, a second use of taskset is not required. Each partitioned task only has
affinity for its initial CPU. t race—cmd and KernelShark were used to visualize schedules of these test
task systems. This process was used to confirm that our patch eliminates bypassing throttles and correctly

pushes to the latest CPU.

Experimental setup. Our experiments were conducted on a 16-CPU Intel Xeon Silver 4110 multiprocessor.
Measured workloads were restricted to a cluster composed of eight CPUs, as these compose a single socket
and NUMA node. Periodic workloads were generated for these experiments using taskgen (Emberson

et al., 2010; Lelli, 2014) and rt-app (rt-app). Tasks with SEMI-PARTITIONED affinities were created by

255

applying worst-fit packing to the task sets generated by taskgen and determining any unpacked tasks to
have affinity for all eight CPUs.

We are interested in how our modifications to SCHED_DEADLINE’s migration code affect overheads.
Changes to overheads are due to forcing tasks executing past their deadlines to be throttled, thereby
requiring that such tasks wait for hrt imer callback d1_task_timer () to complete before becoming
eligible again, and due to the added dequeue and enqueue operations required for every push. For measuring
the additional latency caused by waiting for d1_task_timexr () (versus bypassing throttling), we inserted
ftrace event tracepoints into our patched kernel that are triggered whenever a task executing past its
deadline is forced into being throttled and when d1_task_timer () returns said task onto a runqueue.
To measure the duration of pushes, we also inserted tracepoints around push_d1_task (). To get a more
holistic view of how these changes to migration code affect performance, we also measured the tardiness
tasks experience scaled by their periods. Tardiness was measured instead of response times because SCHED__
DEADLINE stores the deadlines of a task but not its arrival times.

taskgen is configured such that each generated task set has a total utilization of 7.52. This is slightly
below 95% of eight CPUs’ worth of capacity to guarantee that the ACS will not reject tasks due to potential
rounding in taskgen in our patched kernel (the ACS must be disabled for SEMI-PARTITIONED scheduling
in the unpatched kernel). We considered task systems composed of 16 and 40 tasks to consider systems with
both heavy and light per-task utilizations. Ten different task systems were measured for each number of tasks.
Timestamps for each task system were collected over an interval of ten minutes on both the original and our

patched kernel.

Latency of forced throttles. Note that we do not compare against the original SCHED_DEADLINE imple-
mentation when considering the throttling of tardy tasks because this overhead is unique to our patched kernel.
The distribution of sampled durations during which our patched SCHED_DEADLINE forced a task to be
throttled when it would not have in the original implementation is presented in Figure 5.5. The average latency
caused by a forced throttle was 44 us for systems with 16 tasks and 34 s for systems with 40 tasks. The
multimodal distribution of throttle times in Figure 5.5a is likely due to our usage of hrt imer_forward ()
within the d1_task_timer () callback to ensure that tardy tasks forced into throttling are unscheduled
before d1_task_timer () attempts to push a task. The distance between peaks in the distribution roughly

corresponds with the forwarding time of the hrt imer. As each usage of hrt imer_forward () requires

256

10000 +
8000 + 600
oy oy
§ 6000 S 4004
= =
(9] [0
(5 4000 43
200 A
2000 +
0 - 0 T T — T
20 40 60 20 40 60
Time (us) Time (us)
(a) n = 16; 228,152 samples. (b) n = 40; 12,525 samples.

Figure 5.5: Forced Throttle Duration.

the task to wait an additional timer interval, each peak in this histogram likely corresponds with a different
number of calls to this function. In Figure 5.5b, higher competition for CPUs due to a higher number of tasks
than in Figure 5.5a may cause the throttled task to always be unscheduled by the time d1_task_timer ()
is called, thereby removing the multimodal distribution. Higher competition for CPUs also explains why
there is a lower frequency of forced throttles for n = 40. It is less likely that a task that completes after
its deadline will remain the highest-priority task on its runqueue under this competition. When a task is
unscheduled due to a higher-priority task on its runqueue, there is no need to force the unscheduled task into
throttling.

These latencies may not be acceptable for servers whose workloads require sub-ms response times.
However, if the size of these latencies is being caused by waiting for the hrt imer as we suspect, an
alternative method for forcing tasks that exhaust their runt imes to migrate that avoids using the hrtimer

may be more practical.

Duration of pushes. The distributions of sampled push durations for both SCHED_DEADLINE and our
patched kernel are presented in Figure 5.6. These distributions are multimodal because of the retry loop in
find_lock_later_rqg(), whichis called by push_d1_task (). The effect of the added enqueue and
dequeue operations on push overheads is minor, entailing a change of about 1 ys to the average duration of a

push.

Tardiness. The distribution of samples of tasks’ tardiness levels is presented in Figure 5.7. Note that, for

both the original and patched kernels, the large difference between samples collected for n = 16 and n = 40

257

60000

40000 +

Frequency

20000 +

0 2 4 6 8
Time (us)

(a) Original (n = 16); 959,363 samples.

60000

40000 +

Frequency

20000 A

0 2 4 6 8
Time (us)

(c) Original (n = 40); 1,191,766 samples.

60000

40000 +

Frequency

20000 +

0 2 4 6 8 10

Time (us)

(b) Patched (n = 16); 946,796 samples.

60000

40000 +

Frequency

0 2 4 6 8 10

Time (us)

(d) Patched (n = 40); 1,211,837 samples.

Figure 5.6: Push Durations.

258

60000 60000

50000 A 50000 A
. 40000 _ 40000
2 2
2. 30000 2. 30000
] e
20000 1 20000 1
10000 + 10000 A
0 0 .' —
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Tardiness Rel. to Period Tardiness Rel. to Period
(a) Original (n = 16); 701,266 samples. (b) Patched (n = 16); 626,166 samples.
6000 6000
5000 5000

4000 4000

Frequency
w
[en}
(e}

(e}
Frequency
w
o
(e}

(e}

2000 2000
1000 1000
0 0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Tardiness Rel. to Period Tardiness Rel. to Period
(c) Original (n = 40); 99,223 samples. (d) Patched (n = 40); 106,541 samples.

Figure 5.7: Tardiness.

is due to task systems with a higher number of tasks having a lower average task utilization. Average tardiness
is negligibly lower under our patched kernel compared to the original implementation.

Altogether, the changes made by our patch do not seem to increase overheads by a substantial amount.
The most concerning overhead is the latency caused by forwarding the d1_task_timer () callback
function, and even this overhead occurs relatively infrequently. This can be observed by comparing the
number of samples measured in Figures 5.5 and 5.6. The number of pushes performed by the system vastly
outnumbers the number of instances where tardy tasks are forced to throttle. As can be seen in Table 5.1,
though the cumulative time spent forcing throttles is higher for n = 16 (recall from the discussion of
Figure 5.5 that forced throttling is only frequent when a few tasks have large utilizations), it is within the

same order of magnitude as the cumulative time of pushes.

259

n = 20 n = 40
Original Patched | Original Patched
Forced Throttle || N/A 10,134 | N/A 423
Push 4,991 4,279 6,060 5,593

Table 5.1: Aggregated overheads (ms).

[
[
! [
[
[
Cortex-Al5 Cortex-A7
32KB L1-I 32KB L1-I
32KB L1-D 32KB L1-D
B 512KB L2
2MB L2

Figure 5.8: Samsung Exynos 5422.

5.3 UNIFORM/SEMI-CLUSTERED

Our patch for UNIFORM/SEMI-CLUSTERED (Tang, b) implements a special case of Unr-WC on a

2-type multiprocessor, i.e., each processor has one of two speeds.

5.3.1 Hardware platform

This patch was implemented on the ODROID-XU4 (Roy and Bommakanti, 2017), which contains a
Samsung Exynos 5422 multiprocessor, illustrated in Figure 5.8. This multiprocessor contains four big
Cortex-A15 CPUs (2.0 GHz) and four LITTLE Cortex-A7 CPUs (1.4 GHz). Each set of four CPUs shares an
L2 cache.

We impose SEMI-CLUSTERED affinities by requiring that any task has affinity for either all big CPUs,
all LITTLE CPUs, or all CPUs. Having affinity for only big or only LITTLE CPUs is desirable because
migrations between the same type of CPU result in fewer L2 cache misses. Some CPUs must have affinity

for all CPUs in order to avoid bin-packing-related capacity loss.

260

5.3.2 Scheduler

Implementing Unr-WC directly requires solving its defined AP instance to compute an optimal config-
uration whenever a rescheduling is necessary. This is impractical due to the computational complexity of
the AP (recall from Section 2.3 that solving an instance using the incremental method has O (max {n, m})
time complexity) and the unpredictable migrations discussed in Section 3.5.1.1. This can be mitigated by
implementing a simplified special case of Unr-WC, which we denote as Ufm-SC-EDF, for our considered
multiprocessor model. Other examples of simplified special cases are Ufm-WC and Strong-APA-WC, which
have lower computational complexity than Unr-WC and only migrate tasks on scheduling events (i.e., job
arrivals and completions).

Note that our proof that Ufm-SC-EDF is a special case of Unr-WC relies on the following two

assumptions.

> Constrained Deadlines Assumption. All tasks are constrained-deadline tasks, i.e., for any task

meT: D; <T;. N

Recall from the discussion of the ACS in Section 4.4.4 that SCHED_DEADLINE already maintains the

Constrained Deadlines Assumption.

> No-Early-Releasing Assumption. There is no early releasing, i.e., for any job 7; ;, rdy; ; > a; ;. <

Note that priority inheritance (recall Section 4.4.7) is incompatible with the No-Early-Releasing Assump-
tion, and should not be used in conjunction with our patch.

We will later use these assumptions to define priority points under Ufm-SC-EDF that mitigate the issues
inherent to Unr-WC (of which Ufm-SC-EDF is a special case) discussed in Section 3.5.1.1.

Our definition of Ufm-SC-EDF relies on Definitions 5.1-5.8, presented below.

V Definition 5.1. The set of big CPUs is denoted 7" and the set of LITTLE CPUs is denoted 7.
The number of big and LITTLE CPUs are denoted as m"® and m™T, respectively.
The subset of tasks 7; with affinity o;; = 712 is denoted 7€, with affinity o; = 7T is denoted 7HT,
and with affinity a; = 7 = 7% U 717 is denoted 72'°°.
big LIT glob

At time ¢, the subset of active tasks in 70, 71T and 781°0 are denoted 7.0 (¢), TXT(¢), and 750" (1),

respectively. AN

261

It follows from our platform that m = mbig Yy 7UT 5+ = 7big (y ,LIT | rglob and for any time ¢,

bi lob
Taat(t) = Tt () Ut () U el (1)

v Definition 5.2. The speed of a big CPU 7; € 7€ is 1.0. The speed of a LITTLE CPU 7; € 7M1 is

denoted as sp* € (0,1.0). A

Definition 5.2 reflects that the maximum capacity of any CPU in Linux is 1.0 (recall Section 4.4.6).

In order to schedule an optimal configuration, it is sometimes necessary to migrate a running task
7; € T8 from a LITTLE to a big CPU, even if no other task preempts this running task. Such migrations
are analogous to those under Ufm-EDF where running tasks migrate to faster CPUs when the formerly
higher-priority tasks running on these CPUs suspend. For our to-be-presented definition of Ufm-SC-EDF, it

is convenient to represent such migrations as task 7; being preempted by an idle task, defined below.

V Definition 5.3. The set of m idle tasks, which is disjoint from the set of real-time tasks 7, is denoted
e S o Tha2s s Tnim). ‘Scheduling’ an idle task is symbolic of not scheduling any real-time
task in 7. For each idle task 7; € 7'9°, the deadline of 7; is defined as d;(t) = t + T

For each CPU 7 € m, the affinity of idle task 7, is defined as a,,+; = {m;}, i.e., the idle task

Tn+j only has affinity for CPU 7. A

While tasks of 7 denote SCHED_DEADLINE tasks, tasks of 79 are named after the idle tasks on
each rqg. Recall that, in Linux, each CPU always schedules some task because the idle task on a rq is

idle

always ready. Tasks of 7' are similar in that every CPU 7; is guaranteed to schedule some task (either in 7

or 79°) in an augmented configuration, formalized in Definitions 5.4 and 5.5 below.

V Definition 5.4. The augmented set of tasks is 7 = 7 U 719, The augmented set of active tasks at

time ¢ is Tace(t) 2 Tace(t) U 7%, The augmented set of ready tasks at time ¢ is Tray (1) £ Tray () U ridle A

For any time ¢, we have 74¢ C Trdy (t) because any idle task is always ready, i.e., not scheduling a

SCHED_DEADLINE task is always an option on any CPU.

v Definition 5.5. For a configuration X, its augmented configuration X € R(ntm)xm

is X vertically
concatenated with the m x m matrix such that Vr; € 7 : (VTZ' € Tray(t) : x5 = 0) = Tntjj =1, e,

any CPU 7 not matched with a ready task in X is matched to its corresponding idle task 7,4 in X. A

262

Figure 5.9: Augmented configuration X (%),

v Example 5.5. Recall the configuration X(?) from Example 2.7 and illustrated in Figure 2.6b. Matrix

(0 00 0 0
01000
00010
00000
X@=11 00 0 of,
00000
00100
00000
0000 1

illustrated in Figure 5.9, is the augmented configuration corresponding with X @), CPUs 1, 73, and 75,

which are unmatched in X(?), are matched to idle tasks 75, T7, and Ty in X2, respectively. A

It follows from Definition 5.5 that there is a one-to-one mapping between configurations and augmented
configurations. Going forward, the absence or presence of an overline (e.g., X and X) is used to denote a

given configuration and its corresponding augmented configuration.

vV Definition 5.6. The deadline of CPU 7; at time ¢ under configuration X is d?PU (X,t) £ di(t),

where i is such that 7; j = 1, i.e., task 7; € Tyqy() is matched to 7; in X. A

263

In words, dfPU ()_(, t) denotes the deadline at time ¢ of the task matched with CPU 7; in configuration X.
This task must exist because CPU 7; must be matched in X with either a SCHED DEADLINE task in 7 or

CPU 7;’s corresponding idle task 7,,4; € sidle

V Definition 5.7. Let

(X, 1) & max {dPU(X, 1))

; J
m; Emdie

and

A (X,1) £ max {d7T(X0)} A

In words, d'¢ (X, t) and 1T (X, t) are the latest deadlines at time ¢ of the tasks matched with big CPUs
in X and with LITTLE CPUs in X, respectively.

Each task is assigned a weighted deadline (to be defined in Definition 5.8) that depends on d"i¢ (X, t) and
dH1T (X, t). The intuition behind weighted deadlines is to allow tasks in 7°¢, which must execute exclusively
on big CPUs, and tasks in 7T, which must execute exclusively on LITTLE CPUs, to preempt a running task
in 781°0 if doing so would cause said task in 78'°° to migrate to a more preferable CPU. For example, suppose
that at a time ¢, a task 7. € 78°° is running on a LITTLE CPU while a big CPU runs an idle task and there is
an unscheduled task 7, € 77T such that d.(t) < dy(t), i.e., task 7. has an earlier deadline than task 7.
Even though 7, has an earlier deadline, it is preferable for 7, to preempt 7. because doing so schedules 7y,
which was formerly unscheduled, and allows 7. to migrate to a faster CPU. We allow 7y to preempt task 7, by
comparing task 7,’s deadline against task 7.’s weighted deadline in the preemption code instead of task
T7.’s deadline.

On the other hand, suppose that 7, € 78 is scheduled on a big CPU while a LITTLE CPU schedules
an idle task and 7, € 798 is unscheduled. Even if 7, has an earlier deadline than 7y, if the deadlines of
Te and Ty are ‘close,’ it is preferable that 7. migrate to this LITTLE CPU to make room for 7,. Again, we
allow 74 to preempt 7. by comparing task 7,’s deadline against task 7.’s weighted deadline.

Because only tasks in 78°? have access to the CPUs in both 7°¢ and 77T (and thus, can potentially

be migrated to more preferable CPUs), only the tasks in 78'°° have weighted deadlines distinct from their

264

deadlines. How much later the weighted deadline of a task 7. € 78!°° is from its dead11ne is determined

by b2 (X, t) if 7, is scheduled on a LITTLE CPU in X and d“'T (X, t) if 7, is scheduled on a big CPU in X.

V Definition 5.8. Given configuration X, time t, and processor 7, the weighted deadline of task 7; is

_ 7 € T80, 7 ; =1, mj € 7w,

(1.0 — sp") - di(t) + sp~ - d"T (X, t) B
and d;(t) < d“"T(X, 1)

di(X,t) £ rerdh =1 el A

L0 gpie (X, 1) — L= g ()
spb () spt and dl(t) < dbig(X,t)

d;(t) otherwise

Having covered Definitions 5.1-5.8, we now present the definition of Ufm-SC-EDF.
> Ufm-SC-EDF. At time ¢, a configuration X is chosen such that X obeys the following rules.

USE 1: If task 7y € Tyqy(t) is unmatched, then each CPU 7; € o is matched with a task 7, with
de (X, t) < dg(t).
USE 2: If tasks 7., 77 € 72°° are matched to CPUs mj, and 7y, (i.e., Tej, = Ipj, = 1) and

de(t) < d@(t), then Sp(]l) Z Sp(_]z))

USE 1 can be thought of as an extension of the scheduling shifts in Strong-APA-EDF. To see this,
consider the implications of USE 1 as sp® — 1.0. The platform becomes a special case of an IDENTI-

CAL/ARBITRARY multiprocessor, for which Strong-APA-EDF is designed. We have

;

dUT(X,t) e =1, n; € x™, and dit) < dUT(X, ¢)

di(X,t) = { die(R 1) 7T g, =1, m; € 79T, and dit) < d¥ (X, 1) -

d;(t) otherwise

Suppose that at some time ¢, tasks 7, 7¢,, and 7, are such that 7. € 78b i5 scheduled on CPU T € wbig,
T, € 7% is unscheduled, and Te, € 71T is scheduled on CPU Tj, € 7T (see Figure 5.10a). Deadlines
are such that de(t) < dg, (t) < dg,(t) and dy,(t) = d“T(X,t), i.e., task 74, has the latest deadline of

any task scheduled on a CPU in 7T, Under Strong-APA-EDF, a scheduling shift would occur such that

265

©
©

Té 1 Te Tf 2

[1 e Zz

(b) Shift under Strong-APA-EDF because dy, (t) <

a) Initial state.
@ R0}
Tfl 7_6 ng Tgl Te TEQ
(¢) 7¢, preempts 7, because dy, (t) < de (X, t). (d) 7. preempts 74, because d.(t) < dy, (t).

Figure 5.10: USE 1 as an extension of Strong-APA-EDF.

m;, would schedule 7, and 7, would schedule 7. (see Figure 5.10b). Under Ufm-SC-EDF, even though

de(t) < dy, (t), USE 1 allows 7y, to preempt 7. (see Figure 5.10c) because

Once T, is preempted by 74, on 7;,, task 7. can then preempt 74, on 7;, (see Figure 5.10d). Observe by
comparing Figures 5.10b and 5.10d that the behavior under Ufm-SC-EDF is the same as that of Strong-
APA-EDF.

USE 2 can be thought of as an extension of Ufm-EDF. If 7 = 7&/°°_ then the platform becomes a special
case of a UNIFORM/GLOBAL multiprocessor, for which Ufm-EDF is designed. USE 2 becomes equivalent
to Ufm-EDF.

266

5.3.3 Ufm-SC-EDF is a Special Case of Unr-WC

Our proof that Ufm-SC-EDF is a special case of Unr-WC requires substantial setup. We recommend

reviewing the discussion of symmetric differences presented in Section 3.5.1.3.

5.3.3.1 Converting Speeds between UNRELATED and UNIFORM/SEMI-CLUSTERED

To show that Ufm-SC-EDF, which targets a UNIFORM/SEMI-CLUSTERED system, is a special case
of Unr-WC, which targets an UNRELATED system, we will need to convert between the notation used for
the two multiprocessor models (e.g., sp®/ versus sp\)). The relationships between sp®7, sp9), 1.0 (capacity
of a big CPU), and sp" (capacity of a LITTLE CPU) for which of 78!°°, 7%i¢_or 71T task 7; belongs to and
which of 7% or 71T CPU 7; belongs to are enumerated in (5.2)-(5.7) below. These equations follow from
Definitions 5.1 and 5.2. Recall from the discussion in Section 1.1 that a task ‘executing’ on a CPU it does not

have affinity for is analytically treated as executing with O speed.

7€ T8 A i e bt = gpid = pli) = 1.0 (5.2)
7; € T80 A ;€ 7T = spid = gpl) = gph (5.3)
7 € TO A T € 70 = gpid = gpl) = 1.0 (5.4)
7 € g A ;€ T = gphd = (5.5)
i € T A ;€ 708 = sp™ =0 (5.6)
T; € 7HT A T € 1T = spi’j = sp(j) = spL (5.7)

5.3.3.2 Priority Points and Deadlines

To argue that we have implemented a special case of Unr-WGC, we need to show that our patched SCHED_
DEADLINE chooses configurations that optimally solve the AP instances corresponding with Unr-WC. These
AP instances depend on the profit functions ¥;(t) of each task 7; (Definition 3.7), which themselves depend

on how tasks’ priority points pp;(t) are defined.

V Definition 5.9. Under Ufm-SC-EDF, the priority point of task 7; € 7 is pp;(t) = di(t) — Tpy. A

267

Note that because each idle task 7; € 719 has a well-defined deadline d;(t) (Definition 5.3), pp;(t) is
also well-defined for any 7; € 7id°,
As stated previously in this section, the choice of pp;(¢) in Definition 5.9 is made over letting pp;(t) =

d;(t), as in standard EDF, to mitigate the issues discussed in Section 3.5.1.1.

> Lemma 5.1. For any time ¢ and task 7; € 7yqy(t), we have pp;(t) < t. 4

Proof. We have
ppi(t) = {Definition 5.9}
di(t) — Ty
=a;(t) + D; — Ty
(5.8)
S ai(t) + Di — Ti

< {Constrained Deadlines Assumption}

ai(t).
By the No-Early-Releasing Assumption, we have 7; € 7qy(t) = t > a;(t). By (5.8), we have

Ti € Tray(t) = t > ppi(t). O

Corollaries 5.2 and 5.3 show that ¢ + T[] is an upper bound on tasks’” deadlines, as well as dvie (X, t)

and d"'T (X, t). Corollary 5.2 follows from Definition 5.9 and Lemma 5.1.

> Corollary 5.2. For any time ¢ and task 7; € Tay(t), we have d;(t) <t + T7y). N

An implication of Definition 5.3 and Corollary 5.2 is that any ready real-time task in 7 has no later of a

deadline than any idle task in 79'°.

Corollary 5.3 follows from Definitions 5.3, 5.6, and 5.7 and Corollary 5.2.

> Corollary 5.3. For any time ¢ and configuration X, we have both d"¢ (X,t) < t+ T} and

d“T(X,t) <t 4 T <
Lemma 5.4 relates a task’s weighted deadline and deadline.

> Lemma 5.4. For any configuration X, time ¢, and task 7;, we have d; (X,) > d;(t). q

Proof. We consider three cases corresponding with the three cases in Definition 5.8.

268

< Case54.1. 7, € 780 7. — 1, 7; € 7% and d;(t) < d"T(X, 1).

We have

d;(X,t) = {Definition 5.8}
(1.0 — sp™) - ds(t) + sp™ - d"'T (X,)
> {d"T(X,t) > di(t)}
(1.0 — sp™) - d;(t) + sp™ - di(t)

= d;(t).

< Case54.2. 7, €78 7, =1, 7; € 77T and d;(t) < d”¢(X,¢).

We have

d;(X,t) = {Definition 5.8}
1.0 e
Pl d"¢(X,t) —
> {d"¢(X,t) > d;(t)}
1.0 1.0 — spt
ok di(t) — =k

L
Sp
=Lt
i)

= d(t).

1.0 — spt

d;(t
i)

d;(t)

« Case 5.4.3. Neither of the conditions in Cases 5.4.1 and 5.4.2 are true.
By Definition 5.8, we have d; (X, t) = d;(t).

In all cases, we have d; (X, t) > d;(t).

5.3.3.3 Profit

We now present how profit is defined for idle tasks. Using this definition, we will augment the profit

matrix of the AP instance that corresponds with Unr-WC to yield an instance that considers all tasks in 7.

269

We do this because it will be easier to prove that Ufm-SC-EDF yields configurations that optimally solve

this augmented AP instance.

v Definition 5.10. The profit of idle task 7; € 714 is ¥;(t) £ 0. A

> Lemma 5.5. Consider any time t. Let AP(7, 7, P) denote the AP instance corresponding with Unr-

WC at time ¢. Consider the optimization problem AP (7, , P) such that

Uy (t) - spht Uy (t) - spt? ... wy(t) - spb™
& Wy(t) - spt Wo(t) - sp??
_W"+m(t) - sptel Ve (1) - Spn—i_m’m_

AP(7,, P) differs from AP(r,7,P) in that AP(7,w, P) considers idle tasks. Let X and X be a

configuration and its corresponding augmented configuration. X is an optimal solution of AP(7, 7, P) if

and only if X is an optimal solution of AP (7", m, f’). N

Proof. By (2.1), the objective function value of a solution of AP(7, 7, P) is

>N wi(t)- sp™ - ;= {By Definition 5.4, 7 = 7 U 7"}

T, ET TjET
Z Z Wi(t) - sz}j T |+ Z Z Wi(t) - spi,j " T
TiET TjET T Eridle TET
= {Definition 5.10}

PIPIRZCIEEEE Y] B I DD DIIE LY

TiET THET Ti€ridle miET

= Z Z wi(t) - Spivj F T

T, ET TjET
= {By Definition 5.5, forany 7; € Tand 7; € 7, %; ; = x; ; }

Z Z Wi(t) - sp™ - a g

T, ET T;ET

Thus, the objective function values of X for AP(7, 7, P) and X for AP(%, , 15) are equal. The lemma

follows. O

270

> Lemma 5.6. For any task 7; € 7, we have

t+1Th —di(t) Ti € Trd (t)
!pz(t) = - Y . <

0 Ti & Tedy(t)
Proof. If; € ridle we have

¥,(t) = {Definition 5.10}
0
=t+ Ty —t-Tpy
= {Definition 5.3}
t+ Ty — di(t)
= {Ti e 79 and, by Definition 5.4, 79¢ C Trdy (t)}
t+ T —di(t) 75 € Tray(t)
0 Ti & Tray(t)

The remaining possibility is 7; ¢ 79, Here, we have 7; € 7. Because 7; ¢ 719, by Definition 5.4,

we have
T; € ﬂdy(t) =T € Trdy(t)- (5.9
We have

¥;(t) = {Definition 3.7}

t—ppi(t) t> pp;(t)and 7; € Trqy(t)
0 t < ppi(t) or 7; ¢ 7_rdy(t)

= {If t = ppi(t), then t — pp;(t) = 0}

271

t —ppi(t) t > ppi(t) and 7 € Tray(t)
0 t < ppi(t) or 7 & Tray(t)
= {Lemma 5.1}
t—ppi(t) i € Tray(t)
0 t < ppi(t) or 7y & Tray(t)
= {7 ¢ Tray(t) = (t < ppi(t) or 7; ¢ Tray(t)) }

t—ppi(t) T € Tay(t)

0 Ti & Tray(t)

\

= {Definition 5.9}
)

t+ Ty —di(t) 7 € Tay(t)
0 T; & Tray(t)
= {Equation (5.9)}

t+T[1} — dz(t) T € %rdy(t)

0 Ti ¢7Trdy(t)

idle

The lemma is true whether 7; € 7% or 7; € 7. This proves the lemma.]

5.3.3.4 Connected Components

Our proof that Ufm-SC-EDF is a special case of Unr-WC will involve reasoning about the symmetric
difference between the configurations chosen by Ufm-SC-EDF and Unr-WC. Rather than considering the
entire symmetric difference, it will be more convenient to reason about a particular connected component of

the symmetric difference. We introduce new notation for connected components.

v Example 5.6. Consider the matchings M, illustrated in Figure 5.11a, and M, illustrated in Fig-
ure 5.11b. The symmetric difference (recall Definition 3.8 in Section 3.5.1.3) MAM' is illustrated in
Figure 5.11c. This symmetric difference contains two connected components: the paths (72, 72, 74, 73)

and (T3,7T4, 7'5).

272

(d) Structure of connected component (72,2, 74, 73).
Dots (e) denote edges in M.

T1 T2 T3 T4 T5

(e) M with component (72, 79, T4, 73) inverted.

Figure 5.11: Illustration of a connected component.

273

Figure 5.11d shows the structure of connected component (7o, 72, 74, w3) With i} < 2, iy < 4,
J1 + 2, and jo < 3. In Figure 5.11d and later figures that illustrate components, task and CPU indices
are written indirectly (i.e., as ¢1, %2, ... instead of 1, 2, ...) because, in later proofs (Lemmas 5.21
and 5.22) that reason about the structure of connected components, the specific tasks and CPUs in said
components are unknown. A dot (e) is used to differentiate which edges in the component belong to

which matching (e.g., dots denote edges from M’ in Figure 5.11d). A

A connected component in a symmetric difference is assigned a numerical value called its contribution.

V Definition 5.11. Let X and X' be two solutions to an AP instance with profit matrix P. Let M and
M’ be the matchings corresponding with X and X', respectively. Let edge set E C MIAM' be the edges

of a path or cycle. The contribution of E from M to M is

3 pij (mi,mj)eM

(14,m;)€R —Dij (Ti,ﬂ'j) eM

The contribution of a connected component in MIAM' from M to M is the contribution of the edges

in this connected component. A

Note that the contribution of an edge set E from M’ to M is the negative of its contribution from M to
M.

The contribution of E from M to M is equivalent to the change in objective function value of X caused
by inverting each edge in E (i.e., for each edge (74, 7;) € E, setting 7; j <— 1if (7, 7;) € M and 7; ; < 0 if

(13, m;) € M). This is demonstrated in the following example.

v Example 5.6 (continued). As in the system illustrated in Figure 5.11, let 7 = {71, 72,...,75} and
7w = {m1,m2,...,ms}. Consider optimization problem AP(7, 7, P), where
11 0 0]
22 0 0
P=133 6 6
4 4 8 8
0 0 10 10

The contribution of component (72, 72, 74, m3) (Figure 5.11d) in symmetric difference MAM' is (recall
that the edges in M’ are denoted by dots in Figure 5.11d) P22+ Pa3 —pa2=2+8—4=6.

Observe that matching M has objective function value p1 1 + p34 +ps2 =1+ 6 +4 = 11. The
matching yielded by inverting component (73, 72, 74, 73) in matching M, which is shown in Figure 5.11e,
has value p11 + p22 + p34 + pa3 =1+ 2+ 6 + 8 = 17. The increase in objective function value is

17 — 11 = 6, which matches the contribution of (72, 2, 74, 73) computed earlier. A

5.3.3.5 Relabeling

Later on we will reason about the symmetric difference between configurations selected by Ufm-SC-EDF
and Unr-WC. We introduce a procedure we call relabeling (Algorithm 2) that simplifies this symmetric
difference. Given two configurations X and X', the goal of relabeling X’ by X is to swap task-to-CPU
matchings in X’ to more closely resemble those in X.

For simplicity, relabeling is a procedure that takes and returns non-augmented configurations. Relabeling
between augmented configurations is implicitly defined because there is a one-to-one mapping between
configurations and augmented configurations. For example, suppose we have configurations X® and
X (). These have non-augmented configurations X (1) and X(?). Let X3, with corresponding augmented
configuration X3, denote the relabeling of X2 by X(1). X3) is the relabeling of X2 by X1,

As we present the following definitions, lemmas, and corollaries (i.e., those in Section 5.3.3.5) that
consider relabeling between configurations, note that they all concern only the tasks in 7. Recall that, by
Definition 5.5, any task in 7 that is matched to a CPU in a configuration X is also matched to this same
CPU in augmented configuration X. Thus, these definitions, lemmas, and corollaries also apply to relabeling

between augmented configurations.

v Example 5.7. Consider a system with five tasks, three LITTLE CPUs, and three big CPUs. Consider
the configurations X, illustrated in Figure 5.12a, and X', illustrated in Figure 5.12b. Figure 5.12
illustrates the relabeling (Algorithm 2) of X’ via X. Initially, output configuration X* is set to X’.
Consider the first iteration (¢ <— 1) of the for loop at line 3. Task 7; is unmatched in configuration X.
Thus, the condition of the if statement at line 4 is false. Configuration X* is unchanged, as illustrated in

Figures 5.12b and 5.12c.

275

(g) Configuration X* (fifth iteration).

Figure 5.12: Relabeling example.

276

© ® 9 N R W N

e e
S MR @ R B

Function Relabel (X', X):
X* « X/
fori<1...ndo
if I, mj € 35, = 1and m{’:j; = 1 then // T matched in X and X*
if j,,mjx € 7o or ;. Tjx € 7T then
if Ir« €1 sz‘t,ji =1 then
zh ;. <0 // T unmatched from
x;;ﬁ «—1 // T+ matched with Ty
end if
J:Zj; ~0 // 7; unmatched from T js
x5 1 // T; matched with 7y,
end if
end if
end for
return X*
end

Algorithm 2: Configuration relabeling.

Consider the second iteration (¢ <— 2). Task 7o is matched with CPU 71 in configuration X (jg < 1)
and on CPU 79 in configuration X* (j5 < 2). The condition on line 4 is satisfied. The if block at line 5
is entered because CPUs 71 and 7o are both LITTLE CPUs. Because CPU 71 is already scheduling task
71 in configuration X* (¢* < 1), the if block at line 6 is entered. Task 7; is moved to CPU 75 (lines 7
and 8). Task 79 is moved to CPU 7 (lines 10 and 11). Configuration X* is as illustrated in Figure 5.12d.

Consider the third iteration (¢ <— 3). Task 73 is matched with CPU 74 in configuration X (j3 < 4)
and on CPU 73 in configuration X* (j3 < 3). The condition on line 4 is satisfied. The condition on
line 5 is false because CPU 73 is LITTLE and CPU 74 is big. Configuration X* is unchanged in this
iteration.

Consider the fourth iteration (¢ <— 4). Task 74 is matched with CPU 7¢ in configuration X (j4 < 6)
and on CPU 75 in configuration X* (j; < 5). The condition on line 4 is satisfied. The condition on
line 5 is satisfied because both CPUs 75 and 7g are big. CPU 7¢ is free in configuration X*, so task 74 is
moved to CPU 7g. Configuration X* is as illustrated in Figure 5.12f.

In the fifth iteration (¢ <— 5), task 75 is unmatched in configuration X*. Thus, configuration X* is

unchanged in this iteration. The for loop at line 3, as well as function Relabel, terminate. A

277

> Lemma 5.7. Consider configurations X and X’. After any iteration of the for loop at line 3 in
Relabel, any task 7; is matched with CPU 7 in X' (i.e., :vl’ ; = D if and only if 7; is matched with a

CPU 7« in X* (i.e., ;. = 1) such that 7, wj« € 7€ or 7y, 7w € 7T, 4

Proof. We prove by induction. For the base case, consider the state of Relabel immediately after
line 2, i.e., after zero iterations of the for loop at line 3. Because X* is set to X', the lemma statement is
true after zero iterations.

Consider the i" iteration of the for loop for some i > 0. Assume that the lemma statement has not
been violated by the beginning of the i iteration. In this iteration, tasks 7; and 7;« (if it exists) swap
their matched CPUs 7, and 7+ only if the condition on line 5 is true. Thus, the swap only occurs if 7,
and 7 are such that 7;,, w;+ € 7€ or 7, m;» € 7T, Because the lemma statement was not violated
prior to the i" iteration, the lemma statement cannot be violated due to this swap. Because this swap is
the only change in X* made in the i'" iteration, the i iteration does not violate the lemma statement.

This completes the proof by induction. ([l

> Lemma 5.8. Consider configurations X and X’. Let X* = Relabel (X', X). For any time ¢, X’

and X* have equal objective function value for the AP instance corresponding with Unr-WC at time ¢. <

Proof. X* is initialized to X’. Thus, X’ and X* initially have equal objective function value. Consider
the change in value of X* due to a single iteration of the for loop at line 3.
Line 7 decreases the value by spl?) - ¥;.(t) and line 8 increases the value by sp(jf). W (). By
Lemma 5.7 and Definition 5.2, we have spUi) = sp(jf). Thus, the net change by lines 7 and 8 is 0.
Line 10 decreases the value by sp (@) . ¥;(t) and line 11 increases the value by spUi) - W;(t). By
Lemma 5.7 and Definition 5.2, we have sp(ji*) = sp¥i). Thus, the net change by lines 10 and 11 is 0.
The net change in any iteration of the for loop is 0. Thus, the net change by Re1abel is 0. Because
X’ and X* began with equal objective function value, they yield equal value after Relabel completes.

0

V Definition 5.12. The similarity between configurations X and X’ is the number of tasks 7; € T such

that 7; is matched with big CPUs in both X and X’ or with LITTLE CPUs in both X and X'. A

Note that idle tasks in 719° do not count towards similarity between configurations. Thus, the similarity

between X and X’ is equivalent to the similarity between augmented configurations X and X'.

278

Corollary 5.9 follows from Lemma 5.7 and Definition 5.12.

> Corollary 5.9. Consider configurations X and X’. Let X* = Relabel (X', X). The similarity

between X and X’ is equal to the similarity between X and X*. N

> Lemma 5.10. Consider configurations X and X’. Let X* = Relabel (X', X). If task 7; € T is

matched with 7; in configuration X (i.e., z; ; = 1) and on 7/ in configuration X’ (i.e., z; ;=1 such

LIT

that 7;, 75 € 72 or mj,mj € -, then task 7; is matched with 7; in X* (i.e., z;*; = 1). N

J

Proof. Let task 7;, be such that 7;, is matched with 7; in X and with 7 in X', i.e., z;, j = @, =

1,
and either 7;, 7 € 7% or Tj, Tjr € 7T, Our proof obligation is to show that task 7;, is matched with
CPU 7; in X*, i.e., x;"lj =1.

We prove by induction that ;| ; = 1 after the " iteration of the for loop at line 3 for any i such that
11 <1 <n.

For the base case, consider the (il)th iteration (¢ < 71). Because z{h = 1, by Lemma 5.7, at the
beginning of the (il)th iteration, task 7;, is matched with some CPU 7+ in X* (i.e., 2| ;» = 1) such that
either 7/, m;« € e or T, Tjx € 7HT, Because x;‘l]* = 1 and we have assumed that task 7;, is such

that z;, ; = 1, the condition on line 4 is true with j; < j and j; < j*. Because task 7;, is such that

LIT "we have that Tj, Mjx € 7€ or T, Tjx € 7T Thus, the condition on

T, Tjr € 7€ or T, Tj €T
line 5 is also satisfied.

Because the conditions on lines 4 and 5 are satisfied, lines 10-11 are executed in this iteration.
Because ¢ «<— i and j; < j in this iteration, the execution of line 11 sets z;| ; = 1. This is the proof
obligation of the base case.

For the induction step, consider the (iz)th iteration (¢ <— io) such that i1 < 79 < n and xz*l i= 1 at
the beginning of this iteration. It remains to show that task 7;, is never unmatched from 7; in X* in this
iteration. Task 7;, can only be unmatched from CPU 7; during lines 7-8 because lines 10-11 only affect
task 7;,. For lines 7-8 to have been executed in this iteration and affect the matching of task 7;, in X*,
the condition on line 6 must be true with * < 4.

We prove that this condition is not true with ¢* < ¢; by contradiction. Assume otherwise that

*

Ty js

j g = 1, and each task is

= 1. We have assumed, by induction, that z;, ; = 1. Because
matched to at most one CPU in X*, we must have that j; = j. For lines 7-8 to have been executed, the

condition on line 4 must have been true. Thus, 1 = z; ;, = z;, ;. Because we have assumed that task 7;,

279

is such that z;, ; = 1 and each CPU is matched with at most one task in X, we must have i = 1. This
contradicts that i > 7.

Thus, the condition on line 6 is not true with ¢* < 4;. Lines 7-8 cannot affect the matching of task
7;; in X*. No lines in the (ig)th iteration can affect the matching of task 7;, in X*. Thus, z;} ; =1

remains true after the (iQ)th iteration. This completes the proof by induction. U

5.3.3.6 Proving Ufm-SC-EDF is a Special Case of Unr-WC

We prove that Ufm-SC-EDF is a special case of Unr-WC by examining the structure of the symmetric
difference between configurations selected by the two schedulers. We will show that each connected compo-
nent in this symmetric difference has one of four possible structures. By reasoning about the contribution of
these connected components, we will prove that at least one of USE 1 or USE 2 must have been broken if the
configuration selected by Unr-WC has a higher objective function value than the configuration selected by

Ufm-SC-EDF.

V Definition 5.13. Let XYSE(¢) denote the augmented configuration selected by Ufm-SC-EDF at
time ?.

Let X°P(t) denote the augmented configuration such that X°!(t) = Relabel (X, XVSE(}))
where X is an optimal configuration for the AP instance corresponding with Unr-WC at time ¢ that,
among all optimal configurations, has maximum similarity to XVSE ().

Let MYSE(¢) and M°P(¢) denote the matchings that correspond with XYSE(#) and X°P'(¢), respec-

tively. AN

> Corollary 5.11. X°P!(¢) is an optimal solution of AP(7", , f’) , where profit matrix P is as defined in

Lemma 5.6. <
Proof. The corollary follows from Definition 5.13 and Lemmas 5.5 and 5.8. ([l

> Corollary 5.12. X°P!(#) is the optimal solution of AP(%, T, 15), where P is as defined in Lemma 5.6,

that has maximum similarity to XYSE(¢). N

Proof. The corollary follows from Definition 5.13 and Corollaries 5.9 and 5.11. O

280

> Corollary 5.13. If task 7; € 7 is matched on CPU 7, in MYSE(t) and on CPU 7, in M°P'(t) such

c 7T

bi —
that 7;,, 7;, € 7% or mj,, 7, ,then 7, = 7j,. <

Proof. Recall that 7 = 7 U 79, The corollary is true for any task 7; € 7 by Lemma 5.10. For any
7; € 7%, by Definition 5.3, task 7; has affinity for only one CPU ;. If matched in both MVYSE(¢) and

M°P'(¢), task 7; must be matched to ; in both MUSE(¢) and MCP!(¢). O

> Lemma 5.14. Every task 7; in a non-trivial (i.e., contains more than a single node) path in symmetric

difference MYSE(¢) AMP(¢) is such that 7; € Teqy (t). <

Proof. If 7; € 719, then by Definition 5.4, we have 7; € Tedy (1)

If task 7; € T is in a non-trivial path, it is incident on at least one edge in MYSE(¢) AMCP(¢). By
Definition 3.8, task 7; must be matched in at least one of MYE(¢) and M°P!(¢). Because MYSE(¢) and
MOPt(¢) correspond with (canonical) configurations XYSE(¢) and X°P!(¢), by Definition 2.26, we have

T; € Tray(t). By Definition 5.4, we have 7; € Trqy(2). O
> Lemma 5.15. Every CPU 7; is incident on either zero or two edges in MYSE(#) AMOP!(¢). q

Proof. XYSE(t) and X°P!(t) are both augmented configurations. By Definition 5.5, in both matchings
MUYSE(¢) and MP(¢), r; is matched with either a task T4y (¢) or a task in 79, Regardless of whether
such tasks are in 7qy(t) or 79, CPU 7; is matched with some task 7;, in MYSE(¢) and task 7;, in
MP(¢). Stated formally, (7;,,7;) € MYSE(t) and (7;,, ;) € MP(¢).

If 7, = 7, then (7;,,7;) € MYSE(t) N M®'(t). By Definition 3.8, we have (7;,,7;) ¢
MYSE(#) AMCPY(¢). Thus, ; is incident on zero edges in MYSE(#) AMP!(¢).

Otherwise, we have 7;, # 7;,. Then, by Definition 3.8, we have both (7;,, 7;) € MYSE(#) AMP'(¢)

and (7;,,m;) € MYSE(¢) AMCP!(¢). Thus, ; is incident on two edges in MYSE(£) AMP!(¢). O
> Lemma 5.16. Every task 7; € 79 is incident on at most one edge in MSE () AMP!(¢). <

Proof. By Definition 5.3, each task 7; € 7'9° has affinity for one CPU. Let this CPU be ;. Because
XUSE(t) and X°P'(t) are configurations, they are canonical at ¢ (see Definition 2.26), and thus can
only be matched with 7; in both MYSE(¢) and M°P'(¢). Thus, 7; can only be incident on (7;,7;) in
MUYSE(#) U M°P'(¢). By Definition 3.8, MUSE(#) AM°P!(¢) is a subset of MYSE(¢) U M°P!(¢), thus 7; can
only be incident on (7;, ;) in MYSE(#) AMCPY(¢). O

281

Figure 5.13: Tasks 7;, and 7, exist in distinct connected components.
> Lemma 5.17. Every task 7; € 7% U 7MT is incident on at most one edge in MIUSE(£) AMP'(¢). <«

Proof. Task 7; is incident on at most two edges in MYSE(¢) AMP!(¢) because, by Definition 3.8,
MUYSE(#) AMP(¢) C MUYSE(¢) U MP'(¢) and each task is matched at most once in any matching.
We prove that 7; is not incident on two edges by contradiction. Task 7; is incident on two edges in
MYSE () AMP{(¢) if 7; is matched to different CPUs in MIYSE () and M°P'(¢). Suppose task 7; is matched
to mj, in MYSE(¢) and to 7, in M®P'(¢) such that 7j, # 7;,. Because ; € 7% U 7MT, 7; has affinity
for either only CPUs in 7% or only CPUs in 7M!T. Thus, either Tj1s Ty € e or Tjrs Tjy € 7T, That

7j, # T, contradicts Corollary 5.13. O

> Lemma 5.18. If task 7; € 78°° is incident on two edges in MUSE(£) AMP!(¢), then these edges are

LIT

(i, ;) and (73, 7;,) such that j, € € and 75, € 7 <

Proof. Suppose otherwise that 7, , 7, € 7oie or Tj1s Ty € 7T, Assume without loss of generality that
task 7; is matched with 7;, in XY5E(¢) and with 7, in X°P!(¢). By Corollary 5.13, we have 7j, = j,.
Thus, (73, 75,) = (73, 7j,), i.e., the ‘edges’ are actually the same edge. This contradicts that 7; is incident

on two edges in MYSE(#) AMOP'(¢). O

> Lemma 5.19. In each connected component of MYSE(£) AMOP{(¢), at most one task 7; € 78 is

incident on two edges in MYSE () AMP'(¢). q

Proof. We prove by contradiction. Suppose otherwise that there are multiple tasks in 78°° that are

incident on two edges in MYSE(#) AM°P!(¢) in the same connected component.

» Claim 5.19.1. There exist two tasks 7;,, 7, € 78° in the same connected component that are

both incident on two edges and have edges to the same CPU ;. <

282

Tiq Tio Tiq Tio

(@)), € woig, (b) 7, € 7T,

Figure 5.14: Component with two tasks in 781" that are incident on two edges. Dots (e) denote edges in
MPt(¢),

Proof. Suppose otherwise that for any such tasks 7;, and 7;,, 7, and 7, do not have edges to the
same CPU. We will prove that tasks 7;, and 7;, exist in distinct connected components (with structure
as illustrated in Figure 5.13), which contradicts the claim.

By the definition of task 7;, , task 7;, has edges to two distinct CPUs 7, and 7,. By Lemma 5.15,
both 7;, and 7, are incident on two edges. For both 7;, and 7;,, one of these edges is known to be
to task 7;,. Let 7, be the other task connected to 7, and 7;, be the other task connected to 7, .

It must be the case that 7;, is incident on at most one edge. If 7;, € 78°°, then by the supposition
made at the beginning of this claim proof, task 7;, is incident on at most one edge. Otherwise,
Tis ¢ 780 which implies 7;, € ridle | 7big |y LIT By Lemmas 5.16 and 5.17, 7;, is , again, incident
on at most one edge.

It is already known that 7;, has an edge to 7;,, so (7;,, 75,) must be the only edge 7, is incident
on. By the same reasoning for 7;, and 7j,, it must be that (7;,, 7,) is the only edge 7;, is incident
on.

Thus, (7i,, 7, iy, Tjs, Tiy) is the entirety of the connected component containing 7;, (see
Figure 5.13). Task 7;, is unconnected with task 7;,. This contradicts that 7;, and 7;, are in the same

connected component. |

As illustrated in the insets of Figure 5.14, let tasks 7;, and 7;, be as defined in Claim 5.19.1 such that

7 j, 18 their shared CPU. Let 7, be the other CPU sharing an edge with 7;; and 7, be the other CPU

283

sharing an edge with 7;,. These tasks and CPUs form a path (7}, , Ti,, Tj,, Ty, Tj;). By Lemma 5.18,

e 74T and, if Tj, € 7T then Tj, Mjs € 708 The structure of path

if mj, € 7€, then 7j,, 7,
(T j1 s Tiys T, Tig, Tj,) Must match one of the insets of Figure 5.14. Note that we can assume without
loss of generality that {(7,,7;,), (Tiy, Tiy)} € MPY(¢) and {(74,,7},), (Tiy, 7j5) } € MYSE(2). This is
because if this assumption is invalid, then we can swap the indexes of tasks 7, and 7;, to make it valid.

We consider four cases depending on the sign of the contribution of (7, , 7, 7j,, iy, Tj,) and

whether 7;, € 7€ or 7r;, € 7T,

<« Case 5.19.1. For AP(7,w, P), the contribution of path (7, , 7, , 7y, Tiy, 7,) from MYSE() to

MPOPt(t) is negative. >

By Definition 5.11, the contribution of (7}, , 74, , 7}y, Ty, 7j5) from MOP!(£) to MUSE(¢) is positive.
This means that inverting the edges of (7, Tiy, Tjy, Tiy, Tj5) in MCPY(#) results in a matching that
corresponds to a solution of AP (%, m, 15) with a greater objective function value than X°P!(¢). This

contradicts Corollary 5.11. ¢

<« Case 5.19.2. For AP(7, 7, P), the contribution of path (7, Ti, ,)y, Tiy, 7j,) from MUSE(2) to

MPOPt(t) is zero. >

By Definition 5.11, the contribution of (7}, , Ti,, Tjy, Tiy, Tj;) from MOP'(t) to MYSE(#) is zero.
This means that inverting the edges of (7}, , Ti, , Tjy, Tip, Tj;) in MOP!(2) results in a matching that
corresponds to a solution of AP (7, 7, P) with an equal objective function value to that of X°P'(t).
Inverting (7, , Tiy, Tjy» Tins Tjs) in MOPY(#) also matches task 7;, to CPU 7, and task 7;, to CPU
Tjs» as in MYSE(¢) (in Figure 5.14, inverting this path effectively replaces the edges (7;,,7j,)
and (7;,,7;,) in M°P(¢) with the edges (7i,, 7;,) and (7;,,7;,) in MIYSE()). By Definition 5.12,
inverting path (7;,,Ti,, Tjy, Tig, Tj5) in MPY(#) increases the similarity of the configuration with

XUSE(#) by two. This contradicts Corollary 5.12. ¢

<« Case 5.19.3. For AP(7, 7, P), the contribution of path (7, Ti, , 7}y, iy, 7j,) from MUSE(2) to

MCP'(¢) is positive and 7, € mPie. >

3Note that, though we state that (7}, , Ti,, Tj,, Ti,, T},) is a path, we have not excluded the possibility that 7;, = 7,
which would make this path a cycle. The remaining logic of the proof of this lemma remains unchanged even if this
path is actually a cycle.

284

Note that, because 7, € 7%, the structure of (T 41+ Tiy, Tja, Tigs Tjy) 18 as in Figure 5.14a.

By Definition 5.11, we have

0< Div,j1 — Dirjo + Diz,jo — Diz,ja
(5.10)
=, (t) Csptat — vy (t) - sptI2 4 v, (t) - gpi2dz — v, (t) - sp'273,

Because 7;,, Ti, € 78, by (5.2) and (5.3), we have sp’t+7t = splt), spitiz = gp(iz) | gpiziiz =
Sp(j2), and Spi27j3 — sp(.]3)

We have

0 < {Equation (5.10)}
Wiy (1) - sp™ 7 — Wy, () - sp™I2 4 Wy (1) - sp™72 — Wiy (t) - sp™ 3
= Wi, (t) - spU) — w5, (1) - spUR) + W, (1) - spUR) — Wy (1) - 5pU)
= 0, (1) (spol) _ spuz)) W) (Spus) _ Sp(jz))

= {sp(jl) = sp(j3) (see Figure 5.14)}

5.11)

@y (t) - (sp(jl) _ sp(jQ)) — U, (t) - (Sp(jl) _ Sp(jz)) i

Note that the above derivations of (5.10) and (5.11) will also hold in Case 5.19.4.
Because 7j, € 7”2, we have splt) — sp(2) = spl — 1.0 < 0. By (5.11), we have ¥, (t) <
¥,,(t). By Lemmas 5.6 and 5.14, we have d;, (t) > d;, (¢).
Recall from Figure 5.14a that, in MYSE(¢), 7;, is matched with 7;, € 7°¢ and 7;, is matched
with 7, € 7T, Because 7;,, 7, € 78 and d;, (t) > d, (t), this violates USE 2. This contradicts

the definition of XVSE(¢) (Definition 5.13). ¢

<« Case 5.19.4. For AP(7, m, P), the contribution of path (7}, , 7, , 7j,, iy, Tj;) from MYSE(¢) to

Mom(t) is positive and Tj, € aUT X

Note that, because 7, € 71T

, the structure of (7;,, 7, , Tj,, Tin, Tj,) is as in Figure 5.14b.
Because, as in Case 5.19.3, the contribution of (7, , 7, 7y, T4y, ;) i8 positive, we have that
(5.11) is true.
Because 7j, € 7T, we have spUt) — spl2) = 1.0 — sp* > 0. By (5.11), we have ¥;, () >

¥,,(t). By Lemmas 5.6 and 5.14, we have d;, (t) < d;, (t).

285

Tiy Tiy

i1 i1 i2 i3 i1 i2 i3

(@ ®) © @
Figure 5.15: All possible cases for connected components in MYSE (¢) AMP{(¢). Edges marked with e denote

edges in MIVSE(¢), while unmarked edges denote edges in M°P!(¢).

Recall from Figure 5.14b that, in MYSE(¢), 7;, is matched with 7;, € 7T and 7;, is matched

with 7, € 7. Because 7;,,Ti, € T8 and d;, (t) < d;, (t), this violates USE 2. This contradicts

the definition of XVSE(¢) (Definition 5.13). ¢
All cases yield a contradiction, completing the proof of the lemma. (Il
> Lemma 5.20. All non-trivial connected components in MYSE () AMCP!(t) are paths. N

Proof. By Lemma 3.27, every connected component is either a path, unconnected node, or cycle.
It is sufficient to prove that no connected component is a cycle. In an undirected bipartite graph, a
cycle must include at least two task nodes. Each task in the cycle must be incident on two edges. By
Lemmas 5.16, 5.17, and 5.19, at most one task in any connected component is incident on two edges
in MYSE(+) AM°Pt(#). Every node in a cycle must be incident on two edges. A non-trivial cycle in an
undirected bipartite graph must contain, at minimum, two tasks. Thus, no connected component in

MYSE () AMP{(¢) is a cycle. O

> Lemma 5.21. Every non-trivial connected component in MYSE (+) AM°P{(#) has structure as illustrated

in one of the insets of Figure 5.15. N

Proof. Consider an arbitrary non-trivial connected component in MYSE(#) AMP!(¢). By Lemma 5.20,
this connected component is a path. We first prove that this path has structure as illustrated in one of
the insets of Figure 5.15. We will initially ignore which edges in the component belong to MYSE(¢) or

MPOPt(¢) (i.e., which edges are highlighted with dots in the insets of Figure 5.15).

286

By Lemma 5.15, any CPU 7; has two edges in the path (if 7; has zero edges, it cannot be in the

path). Thus, any ending node of the path, which must be incident on only a single edge, must be a task.

Let task 7;, be an ending node of the path. Because 7;, is incident on an edge, it must be connected

to some CPU by this edge. Let this CPU be 7;,. By Lemma 5.15, 7;, has another edge, and is thus

connected to another task besides 7;,. Let this task be 7;,.

depending on whether 7;, € T or 7, € 7

Because 7;, is a node in a path, it is incident on either one or two edges. There are four cases

LIT and whether 7;, has one or two edges. Each case

corresponds with an inset of Figure 5.15.

<« Case 5.21.1. 7;, € 7" and 7;, is incident on one edge. >
The structure of the path is as illustrated in Figure 5.15a. ¢
<« Case 5.21.2. 7;, € 77T and 7;, is incident on one edge. >
The structure of the path is as illustrated in Figure 5.15b. ¢
<« CaseS5.21.3. 7, € 7% and 7;, is incident on two edges. >

Because task 7;, is incident on two edges, by Lemmas 5.16 and 5.17, we have 7;, ¢ rdeurbisyrHT,

The only remaining possibility is that 7;, € 78, Let 7, denote the CPU incident on the edge of
7;, that is not (7;,,7;,). Because 7;, € 7€, by Lemma 5.18, we have 7, € 7T. By Lemma 5.15,
7, 1s connected to another task by an edge. Let this task be 7;,. By Lemmas 5.16, 5.17, and 5.19,
we have that 7;, is incident on at most one edge. Thus, 7;, must be an endpoint of the path. The

structure of the path in this case is as illustrated in Figure 5.15c. ¢
< Case 5.214. 7;, € 77T and 7, is incident on two edges. >

The reasoning of this case closely resembles that of Case 5.21.3. Because task 7;, is incident on
two edges, we have 7, € 78°°. Let 7, denote the other CPU sharing an edge with 7;,. Because
Tj, € 7T, by Lemma 5.18, we have Tjy € 7%¢, By Lemma 5.15, j, 18 connected to another task
by an edge. Let this task be 7;,. By Lemmas 5.16, 5.17, and 5.19, we have that 7;, is incident on at
most one edge. Thus, 7, must be an endpoint of the path. The structure of the path in this case is as

illustrated in Figure 5.15c. ¢

287

It remains to prove that the positions of dots in Figure 5.15 are sufficient to cover all possible cases
of connected components. Recall that each edge in a connected component in MYSE () AM°P!(¢) belongs
to either MVSE(¢) or M°P!(¢). Also recall that any node is matched at most once in a matching. Thus,
each matching contributes at most one edge to every node in the path. This means the path is alternating
for both MYSE(#) and M°P'(¢). Dot placements on edges must either be as in the insets in Figure 5.15
or the opposite (e.g., in Figure 5.15a, removing the dot on (7;,, 7,) and placing a dot on (7;,, 7},),
and in Figure 5.15¢, removing the dots on (7;,, 7,) and (7;,, 7;,) and adding dots on (7;,, 7},) and
(Tiy, Tj,)). Note that the opposite dot placement of Figure 5.15a is a mirror image of Figure 5.15a.
Thus, Figure 5.15a and its opposite dot placement are isomorphic (i.e., the graphs are identical under
re-indexing). Likewise, the opposite dot placement of Figure 5.15b is also isomorphic with Figure 5.15b.
The opposite dot placement of Figure 5.15c¢ is isomorphic with Figure 5.15d, and vice versa. Because
each possible alternative dot placement is isomorphic to an inset, the insets of Figure 5.15 are sufficient

to account for all possible dot placements. g
> Lemma 5.22. Ufm-SC-EDF is a special case of Unr-WC. q

Proof. We prove by contradiction. Suppose otherwise that Ufm-SC-EDF is not a special case of
Unr-WC. Then for some time instant ¢, configuration XVSE(¢) is not an optimal solution of the AP
instance corresponding with Unr-WC at time ¢. By Lemma 5.5, XYSE(¢) is not an optimal solution
of AP(7, 7, P). By Corollary 5.11, X°P(t) has a higher objective function value than XYSE(¢). Thus,
there must exist a connected component in MYSE(#) AMPt(¢) with positive contribution from MYSE ()

to MOPL(¢).
« Case 5.22.1. The positive connected component has structure as in Figures 5.15a or 5.15b. »

Because the connected component is positive, we must have ¥, (t) - spUt) > @, (t) - spU1),
By dividing both sides by sp\!), we have ¥, (t) > W;,(t). By Lemmas 5.6 and 5.14, we have
t+ Ty — diy (t) >t + Ty — diy(t). This implies that d;, () < dj,(t). By Lemma 5.4, we have
d;, (t) < d;, (X, t). This contradicts USE 1. ¢

<« Case 5.22.2. The positive connected component has structure as in Figure 5.15c¢. >

288

Because the connected component is positive, we must have
Wi (1) - 1.0+ @y (t) - sp= > Wiy (2) - 1.0+ Wy (t) - sp™.
Simplification and rearrangement yields
Wi (t) > Wiy (t) - (1.0 — sph) + Wi, (t) - sp™.
By Lemmas 5.6 and 5.14, we have
t+ Ty —diy(t) > (t+ Ty — diy(8)) - (1.0 — spb) + (t+ Ty — diy (1)) - sp™.
Simplification and rearrangement yields
diy () < diy (t) - (1.0 — sp") + dyy () - sp™.

Because task 7;, is matched to CPU 7;, € 7M1 in XUSE(¢), by Definitions 5.6 and 5.7, we have

d“T(XYSE(t),t) > dj, (). Thus,
di, (t) < diy () - (1.0 — sp") + d"T(XVSE(¢), ¢) - sp™. (5.12)

We will show that, by (5.12), regardless of whether d;, (t) < d“T(XVSE(t),t) or d;, (t) >
d"T(XYSE(t), t), we have d;, (t) < dy, (XYSE(t),t). Suppose we have d;, () < d“'T (XYSE(¢),¢).
Recall that we have assumed the connected component of interest is as illustrated in Figure 5.15c.
Because 7;, is incident on two edges in Figure 5.15¢c, by Lemmas 5.16 and 5.17, we have 7;, € 781,
Because T;, is matched to big CPU 7, in MYSE(#) in Figure 5.15¢, we have igSjEl (t) = 1 and

bi
7, € 7 8. Thus,

d;, (t) < {Equation (5.12)}
dip (t) - (1.0 — SpL) + 4T (XUSE(t), t) - spt
= {Definition 5.8, d;, (t) < d"'" (XSE(¢),¢), 73, € relob ZUSE () = 1, and 71, € ﬂ'big}

12,71

289

diy (XPE(1),1).
Suppose we instead have d;, () > d'T(XYSE(¢),t). We have

d;, () < {Equation (5.12)}
diy (t) - (1.0 — sp") + d“"T(XYE(2), 1) - sp*
< diy(t) - (1.0 — sp™) + diy (t) - sp™
= di (1)
< {Lemma 5.4}

di, (XUSE(1), 1).

Regardless of whether d;, (t) < d"T(XUSE(t),t) or d;,(t) > d"T(XYSE(t),), we have

diy (t) < diy (XVSE(t),). This contradicts USE 1. ¢
« Case 5.22.3. The positive connected component has structure as in Figure 5.15d. >

Because the connected component is positive, we must have
Wy (t) - spt 4 Wiy (t) - 1.0 > Wy, (t) - sp™ + @, (¢) - 1.0.
Simplification and rearrangement yields
Wy (t) - sph > Wi (t) — Way(t) - (1.0 - spL) .

Dividing both sides by sp" yields

1.0 1.0 — sp*
Wiy (1) > Wiy (1) - st Wiy (t) - Tk
By Lemmas 5.6 and 5.14, we have
1.0 1.0 — spt
b Ty = din () > (¢ + Ty — diy (8) e (t+ Ty — diy (1)) - e

290

Simplification and rearrangement yields

1.0

1.0 — sp-
oL —d;,(t) —————.

di1 (t) < di3 (t) ’ SpL

Because task 7;, is matched to CPU 7, € ¢ in XUSE(¢), by Definitions 5.6 and 5.7, we have

dve (XUSE(t)at) > dj, (t). Thus,

ig (% L. 1.0 — sp-
i, (1) < P (XUSE (1) 1) -5 — i (1) -

5.13
s . (5.13)

We will show that, by (5.13), regardless of whether d;, (t) < d'¢(XYSE(¢),t) or dy,(t) >
d°'e (XYSE(¢),t), we have d;, (t) < d;, (XYSE(t),t). Suppose we have d;, (t) < d"¢(XYSE(¢),).
Recall that we have assumed the connected component of interest is as illustrated in Figure 5.15d.
Because 7;, is incident on two edges in Figure 5.15d, by Lemmas 5.16 and 5.17, we have 7;, € 78,
Because 7;, is matched to LITTLE CPU 7, in MUSE(t) in Figure 5.15d, we have Z°% (t) = 1 and

A LIT
mj, € ™ . Thus,

d;, (t) < {Equation (5.13)}

1.0
Tt diy (1)

= {Definition 5.8, d;, (t) < d°e (XUSE(t),t), 7, € &b, fgs]El (t)=1,and7j, €7

1.0 — spt

dbig (XUSE(t)’ t) SpL

LIT }

di, (XUSE(2),1).
Suppose we instead have d;, () > d”¢(XUSE(t), ¢). We have

d;, (t) < {Equation (5.12)}

o 1.0 1.0 — spt
A8 (XYSE(4),t) - —— — dy, (t) - ————
(RUE(@0),0) - S —du(t) = ¢
1.0 1.0 — sp*
< diz (t) ’ SpL - diz (t) : SpL

= d;, (1)
< {Lemma 5.4}

di, (XVSE(),).

291

Regardless of whether d;,(t) < d"¢(XYSE(t),¢) or d;,(t) > d"&(XYSE(¢),t), we have

diy (t) < diy (XVSE(t),). This contradicts USE 1. ¢

All cases contradict USE 1. Thus, either XVSE(#) is not a configuration selected by Ufm-SC-EDF
or configuration X°P() with higher objective function value does not exist. Because the configuration

chosen by Ufm-SC-EDF is optimal, Ufm-SC-EDF is a special case of Unr-WC. O

5.3.4 ACS Conditions

This subsection derives conditions maintained by our patched ACS that, on our platform, are equivalent
to (3.42)-(3.44). We modify the ACS to maintain conditions (3.42)-(3.44) in order to guarantee bounded
response times (by Theorem 3.36). Direct implementation of (3.42)-(3.44), which can be solved as a linear
program, is impractical in the Linux kernel. Similarly to how Ufm-SC-EDF is a special case of Unr-WC, a
special case of (3.42)-(3.44) can be implemented on our assumed platform. Note that in our implementation,

the value used for s in (3.42) is

sched_rt_runtime_us
sl =1.0— - =

sched_rt_period_us '

Recall from Section 4.1.5 that sched_rt_runtime_us/sched_rt_period_us, when the ACS is
enabled, represents the fraction of CPU capacity permitted to be consumed by SCHED_DEADLINE tasks.
The value 1.0 — s/, which represents the fraction of each CPU’s speed necessary for the task system to remain
feasible (recall Definition 3.9), is a natural analogue of sched_rt_runtime_us/sched_rt_period_
us.

The special case of (3.42)-(3.44) that we implement depends on the following definition.

v Definition 5.14. For task 7; € 721°0, let

u;—(1.0—sf)-sp" L
. A= u; > (1.0 —sf) - sp
ude & 10— . A

0 u; < (1.0 — sf) - spt

Note that a task 7; with u; > (1.0 — sf) - sp" has higher bandwidth than the capacity provided by any

LITTLE CPU. Task 7; would be starved if scheduled exclusively on LITTLE CPUs. For such a task 7;, u?ig

292

roughly corresponds with the minimum component of task 7;’s bandwidth u; that, in the long-term, must be

serviced by big CPUs.

We will show that (3.42)-(3.44) are equivalent to the following.

VT € chi;g(t) U ngfb(t) sup <1.0—sf

V€ () wy < (1.0 — s¢) - sp-

Z u; | + Z ul;ig < (1.0 — sf) - mPe

TR (1) TiETh(t)
Z u; < (1.0 — sf) - mHT . spt
TiE€TY ()
Z u; < (1.0 — s0) - (mP€ 4 mMT . sph)
TiGTacl(t)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

The above are the conditions that will be maintained in our patched ACS. We will briefly discuss how

the ACS is patched in Section 5.3.5.3.

> Lemma 5.23. For any time ¢, if there exists X € R%m such that (3.42)-(3.44) are true, then (5.14)-

(5.18) are true.

Proof. Consider any X € R%m. We consider each of (5.14)-(5.18).

<

For (5.14), we prove the contrapositive: if (5.14) is false, then at least one of (3.42)-(3.44) is false.

As guaranteed by the negation of (5.14), let task 7; € ngf(t) U Tagclf b(t) be such that u; > 1.0 — s/.

Assume that (3.43) is true of X, as otherwise one of (3.42)-(3.44) is false, which is our proof obligation

when considering (5.14). We have

Z (1.0 — s) - sp™ - ;

TjET

< {By Definition 5.2 and (5.2)-(5.7), sp"’ < 1.0}

Z (1.0 — sl) - ; 5
TjET
= (1.0 — Sf) Z ZBZ'J‘
mT;ET

293

< {Equation (3.43)}
1.0 —s¢

< Uj;.

The above is the negation of (3.42). Thus, if (5.14) is false, at least one of (3.42)-(3.44) is false. This is
the contrapositive.

We also prove the contrapositive for (5.15): if (5.15) is false, then at least one of (3.42)-(3.44) is
false. As guaranteed by the negation of (5.15), let task 7; € 7L (¢) be such that u; > (1.0 — s¢) - sp-
Assume that (3.43) is true, as otherwise one of (3.42)-(3.44) is false, which is our proof obligation when

considering (5.15). We have

Z (1.0 — s0) - sp™ - ;

T;ET

= Z (1.0 — sf) - sp™ -y | + Z (1.0 — s0) - sp™ - z;

m;embis m;entT

= {By 5.6) and 7; € 4T () C 7MT A mj € 7V, spi =0}

2(10—36 -0 10—s€)~spi’j-xz-7j
;Embig T GTrLIT
= > (10-s0)- T j
memlT

= {By(5.7and 7; € 1qy (t) C 7T A wrj € 7T, sp™ = spt}

Z (1.0 — st) - sp™ - @

mjEmLIT

=(1.0—s/)- Z T j
7 EmLIT

< (1.0 —s¢) - Z i j
TjET

< {Equation (3.43)}
(1.0 — s¢) - sp*

< Uj.

294

The above is the negation of (3.42). Thus, if (5.15) is false, at least one of (3.42)-(3.44) is false. This is

the contrapositive.

glob
€ Tact

Z (1.0—s0) - z;

. bi
TjETOE

For (5.16), consider any task 7;

glob
€ Tact

> (1.0-s0)-

. bi
TjETOE

{By (5.2) and 7;

sp™ - i

{Equation (3.42)}

Z (1.0 —s¢) - sp*

i €mlT

U; —

glob
€ Tact

{By (5.3) and 7; (t) C

uj — Z (1.0 — s) - sp™ - z; 4
mjemLT
=u; — (1.0 —sl) - Z T j
7 €mLIT
> {Equation (3.43)}
— (1.0 — s¢) - sp*-

— (1.0 — s¢) - sp™ + (1.0 —

— (1.0 — s0) - sp™ + sp* -

m; Emdi

Subtracting both sides of (5.19) by sp"- > entie(1.0—

yields

Z (1.0 —s0) - z;

. i
T ETOR

Y

295

(t) C 78P A T € 7o gphd = 1.0}

Ry

lob LIT _ij _ . L
TEPNT;ET ,spj—sp}

(t). We have

(5.19)

> i

. bi;
TjETOE

st)

Z Li,j

bi,
T ETOR

Z (10 - Sf) . xi,j

sl)-z; ; and then dividing both sides by 1.0 — sp-

— (1.0 — s¢) - sp-
1.0 — spt

5.20
{Definition 5.14} ©:20)

big
U,L» .

We have

Z u; | + Z u?ig

bi lob
Ti €T () i€ (1)

< {Equation (3.42)}

S S0 s | [X
TiET(8) 9T et (1)
= Z Z (1.0 — sf) - sp™ - @y j + Z (1.0 —st) - sp™ -y i | | + Z u?ig
TETIE () |mjEmdie mjEmtT T e8P (t)

- {By (5.4)and ; € TE(t) C 78 A ;€ e, spid = 1.0}

Z Z (1.0 — s0) -z ; + Z (1.0 —s6) - sp™ -z | | + Z u?ig

TEThE(t) [mjEniE mjemtit TeTE (1)

= {By (5.5 and 7; € T2E(t) C PE A ;€ 7T, gpid = 0}

S| X wo-sast 3 0-s0-0myl 4| Y
T ETaC[(t) Lms embdie myertiT TZGTagCl:)b(t)
=1 Y S o-syay |+ Y e
TiETDE (1) miEmbie T ETE(t)

< {Equation (5.20)}

S X 0-shm || Y 3 (10t
T’LETacl ()™ S Ti GTagCILOb(t) T embig

= X > Wo-shay|+| >, > (LO-sh) -y
TjEME Tt () miEmOiE 1 o 2o ()

= (1.0 — sf) Z Z %

THETE e (H)UTS® (1)

< {chitg(t) U8 (4) C 1e(t), 8¢ < 1.0 (by Definition 3.9), and X € Rnxm}

(1.0—86) Z Z $¢,j

Uy € mbig TzeTau(t)

296

< {Equation (3.44)}

(1.0—s0) > 10

. bi
TjETOE

= (1.0 — s£) - m"¢

This is (5.16).

For (5.17), we have
Z u; < {Equation (3.42)}

€T (1)
Z Z (1.0 — s0) - sp™ - ;

rerkT(s) mEn

(1.0 — s0) Z Zsp’J i j

rerI(t) TiET
= (1.0 — s¢) g g sp™ - x5+ E sph - x ;
mertT(1) \mjerit 7 Embie

= {By (5.6)and 7; € THT @) € T A 7rp € wbig, spid = =0}

(1.0 — s¢) Z Z sp™ - i j

€7 (¢) mjentIT

= {By(S.Nand7; € T (t) € 7T Ay € 7T, sp™l = spt}

Lo—s0) > > sphemy

Ti €Ty (8) i EmLIT
st Y X a
T €T (t) 7 jenlIT

= (1.0 — s¢) - Z Z T j

myertT 7, erLT(¢)

< {Equation (3.44)}

(1.0—s0)-sp- > 1.0

m eIt

= (1.0 — s¢) - sp~ - m"1T.
This is (5.17).

297

For (5.18), we have

2. w

TieTacl(t)
< {Equation (3.42)}

Z Z 1.0 — sf) - - sphd

T4 ercl(t) 5 en

) S S

Ti € Tact (t) i em

=(10-s0)> >

T S TieTact(t)

2. 2

Uy Eﬂ'big Ti ETact (t)

(1.0 — s0)

= (1.0 — s¢)

=(10-s0)| >

bi
S

act

+ Y M |+)

(t) sp - i

7]

mit Y, Y st my

m; €T T € e (2)
?:7.j . . .
> e S T

+ZTZ€TLIT Spj T j

;Embig .. myemUT N
| Lt P 4 T2 eqtv P T
= {Equations (5.2), (5.4), and (5.6)}
et B9 2irertibe) P Tig
(1.0 — s¢) Z + ZTiGTL‘IT £) 0- -2, + Z + ZTiGT;}C{T(t) spid - %
B — N
J + ZTZGTgIOb(t) Zi,j ! + ZTiGTE?b(t) szv.j oy

=(10-s0)| L

. big
T ETO

< {Tact(t) = :cltg(t) U Tz}g:ltT(t)

10—s0) | >

Uy Eﬂ'b”’ Ti ETact (t)

acl

| * Z%Tfi?b@) g

>, el () sp™l - 3,5
+ Z + ZTZGT(I‘("I{T(t) sp W Li,j

m;entiT

LI
+ ZTiGngfb(t) sp Ti, j

act

glob () and X € R%m}

Z’TiETbig(t) Spld " Tij

Z Tij + Z + ety S T

LT

LI L e
+ Znerfj{’b(t) SpTY - Ty

= {Equations (5.3), (5.5), and (5.7)}

298

ZTZE’Th]g(t) 0- Ti, j

act

(1.0 — s0) Z Z Tij + Z + ey SPY - i

7 ; €mYIE Ty ETaer () m;entT L
+ 2 eton) P Ty
bi LIT lob
{Tua(t) = Th(6) U T (8) U 2 (1) and X € RES™)
(1.0 — s¢) Z Z -Tz,]+ Z Z Sp © i j
; ETOE T3 €T (¢ ;€T 73 € Taee (t)
L
=(@0=sO | > > mtst Y) @y
;€ T €T (t) m; €mHT T €Tt (t)

< {Equation (3.44)}

(10—s0) [> 1.0+sp > 10

;Embie m;emT

= (1.0 — st) (m"& + sp - m™T) .

This is (5.18).
All of (5.14)-(5.18) are implied by (3.42)-(3.44). This completes the proof.]

Lemma 5.23 proves one direction of the equivalence between (3.42)-(3.44) and (5.14)-(5.18). We prove
the other direction by providing an algorithm which, if (5.14)-(5.18) are true at time ¢, constructs an X that

satisfies (3.42)-(3.44). The high-level steps of this algorithm are as follows.

Step 1. Initialize the elements of X to 0.
Step 2. Allocate u; of capacity to each 7; € To.2(t) from the CPUs in 7€,
Step 3. Allocate u.'® of capacity to each 7; € 75¢°(t) from the CPUs in 7

Step 4. Allocate u; of capacity to each 7; € 75T () from the CPUs in 717,

act

glob

Step 5. Allocate u; — u & of capacity to each 7; € 75, (t) from any of the CPUs in 7.

Example 5.8 illustrates this algorithm.

v Example 5.8. Consider a system with mbie = 3, mMT = 3, s¢ = 0.05, and spL = 0.6. In Figure 5.16,

we represent the capacity (scaled by 1.0 — s¢) of each CPU with a rectangle. Each rectangle has a height

299

equal to its corresponding CPU’s scaled capacity (i.e., 1.0 — s/ for the CPUs in 72 and (1.0 — s¢) - sp"
for the CPUs in 7MT), and width 1.0, which reflects the fraction of this CPU’s capacity that has been
allocated to tasks. Initially, all rectangles are shaded to reflect that no allocations of capacity have been
given to tasks in Step 1. Subsequent steps of the algorithm will allocate blocks of these rectangles to
tasks. The value of z; ; set by the algorithm is the total width of blocks from CPU 7 ;’s rectangle allocated
to task 7; after all steps have completed.

At time t, suppose the active tasks are such that chi;g(t) = {n, 12}, Tagclto b(t) = {73, 74, 75,76}, and
THT () = {77,78,70}. Let u; = 0.3, ug = 0.2, ug = 0.7, ugy = 0.8, u5 = 0.7, ug = 0.5, uy = 0.4,
ug = 0.3, and ug = 0.5.

Step 2 is illustrated in Figure 5.17. Each 7; € T:Cif(t) is allocated u; of capacity. Blocks of 71, ma,

o . . bi
and 73 in 7 are provided to tasks 71 and 7y in 7.

ot (). For example, to allocate w3 = 0.3 of capacity to

task 71, a block of CPU 7 is allocated to 71 with width - = 23— = 0.316 such that the block

has area 0.316 - (1.0 — s¢) = 0.316 - (1.0 — 0.05) = 0.3 = uy.* 71 1 is set to 0.316, matching the width
of this block.

glob

Step 3 is illustrated in Figure 5.18. Each 7; € 7 (1) is allocated u?ig of capacity. Blocks of 71,

. i . bi —(1.0—s¢)-spt
T, and 73 in 7 are provided to tasks 73, 74, and 75. For example, to allocate il = % =

08-0.9506 — (). 576 of capacity to task 74 € 75" (t), a block of 71 with width 0.132 and a block of 75

with width 0.474 are allocated to task 74. The total capacity is 0.132 - (1.0 — s¢) + 0.474 - (1.0 — sf) =
0.132% 0.95+0.474-0.95 = 0.576 = u)®. a4 is set to 0.132 and z4 5 is set to 0.474. Task 76 € 75" (¢)
has ug = 0.5 < 0.95-0.6 = (1.0 — s¢) - sp". Thus, 74 has ugig = 0, and 7 is not allocated any blocks

in Step 3.

LIT

Step 4 is illustrated in Figure 5.19. Each 7; € 7,5, (¢) is allocated u; of capacity. Blocks of 74, 75, and

LIT are provided to tasks 77, 73, and 79 in 7T

ot (t). For example, to allocate ug = 0.3 of capacity to

Tgin
task 73 € 7LIT(#), a block of 75 with width 0.228 and a block of 7¢ with width 0.298 are allocated to task
7s. The total area is 0.228- (1.0 —s¢) - sp“+0.298- (1.0 —s¢)-sp* = 0.228-0.95-0.6+0.298-0.95-0.6 =
0.3 — ug. 285 is set to 0.228 and a3 ¢ is set to 0.298.

Step 5 is illustrated in Figure 5.20. Each 7; € Tagclf b(t) is allocated its remaining u; — u?ig of capacity.

Blocks from any CPU with remaining capacity are allocated to tasks 73, 74, 75, and 7. For example, task

“Note that all decimals in Example 5.8 have been truncated at three digits.

300

™ 1.0 — s/

1.0 — sf

3 1.0 — s/
v

T2

I (1.0 — sf) - sp*
I (1.0 — sf) - sp"

I (1.0 — s¢) - sp™

Figure 5.16: Step 1: initially, no tasks are allocated (X <« 0).

T6 € Tag(}? b(t) has ug — ugig = ug — 0 = ug = 0.5 of remaining capacity that must be allocated in this
Step 5. Task 74 is allocated blocks of width 0.158 on CPU 73 and 0.614 on CPU m4. This yields total
area 0.158 - (1.0 — sf) + 0.614 - (1.0 — s¢) - sp“ = 0.158 - 0.95 + 0.614 - 0.95 - 0.6 = 0.5.

After Step 5, X is set such that each task 7; € T,¢(¢) is allocated u; of capacity. A

> Lemma 5.24. For any time ¢, if (5.14)-(5.18) are true, then there exists X € Rgém such that (3.42)-

(3.44) are true. <

Proof. We prove that the algorithm discussed in Example 5.8 constructs X € R%m such that (3.42)-
(3.44) are true so long as (5.14)-(5.18) are true.
If the algorithm completes, the algorithm allocates w; of area for each task 7; € T¢((t), which

satisfies (3.42). The algorithm must also satisfy (3.44) if it completes because the total width of any

301

1.0

T 51 To 1.0 — s/

0.316 0.211

1.0 — sf

1.0 — s/

Figure 5.17: Step 2: each 7; € T;)étg(t) is allocated u; of capacity in X.

302

1.0

T 1 o T3 T4 1.0 — s/

0.316 0.211 0.342 0.132

1.0 — sf

T2 T4 T5

0.474 0.342

1.0 — s/

Figure 5.18: Step 3: each 7; € 72°(t) is allocated u® of capacity in X.

303

1

2

s

6

A

v

1

2

T3

T4

0.316

0.211

0.342 0.132

T4

T5

0.474

0.342

T9

0.772

T8

T7

0.298

Figure 5.19: Step 4: each 7;

LIT
€ Tact

0.702

304

1.0 — s/

1.0 — sf

1.0 — s/

I (1.0 — s¢) - sp™
I (1.0 — s¢) - sp"

I (1.0 — sf) - sp*

(t) is allocated wu; of capacity in X.

US|

2

T3

T4

5

6

1.0

T1 T2 73 T4
0.316 0.211 0.342 0.132
T4 T5 T3
0.474 0.342 0.184
T3 T4 T5 Té
0.211 0.237 0.395 0.158
0.614 0.105
T9 78
0.772 0.228
T8 T7
0.298 0.702

Figure 5.20: Step 5: each 7;

€ Tact

305

bi

1.0 — s/

1.0 — s/

1.0 — s/

(1.0 — sf) - sp"

(1.0 — sf) - sp"

(1.0 — s¢) - sp"

b(t) is allocated u; — u;"® of capacity in X.

rectangle belonging to a CPU is 1.0. The algorithm can only fail to complete if there is insufficient

remaining capacity to allocate blocks as required by any step.

Recall that Step 2 allocates u; of area for each task 7; € chitg(t) and Step 3 allocates u?ig of area for

each task 7; € Tagclf b(t) from the CPUs in 7%, The total area of CPUs in 7€ is (1.0 — sf) - m"&. By
(5.16), there is sufficient area for Step 2 and Step 3. Thus, Step 2 and Step 3 must complete.

Step 4 allocates wu; of area for each task 7; € 7XT(¢) from the CPUs in 7MT. The total area of
CPUs in 77T is (1.0 — s¢) - spt - mMT. By (5.17), there is sufficient area for Step 4. Thus, Step 4 must

complete.

glob

Step 5 allocates u; — u?ig of area for each task 7; € 7, (t) from any CPU with remaining capacity.

The total area allocated from CPUs for tasks in TglOb(t) in Step 3 and Step 5 is) _

big
act) u; +

glob
ETger (L

%

(ui - ubig) = 3=, cqtiw ;) ti- The total area allocated for tasks of 722 (4) and 7LT(¢) in Step 2 and
Step 4 is En eb (Ui () Ui The total area allocated to all tasks in Toe(£) = 705 (£) UTHIT(4) U780 (1)
18 3. en(t) Wi- The total area to be allocated from CPUs is (1.0 — s{) - mPe 4 (1.0 — sf) - sp - mMT =
(1.0—s0) - (m"€ + mMT . spl). By (5.18), there is sufficient area for Step 5. Thus, Step 5 must complete.
Because Step 5 is the final step, the algorithm must complete. Because the algorithm completes, as
discussed earlier in this proof, the algorithm satisfies (3.42) and (3.44).

It remains to prove that the algorithm satisfies (3.43) for each task in T, (t). For each task 7; € 708 (¢),
the algorithm only allocates area from CPUs in 72, which have heights of 1.0—s¢. Because the algorithm
allocates u; of area, the total width of blocks allocated to 7; is ﬁ. By (5.14), the total width allocated
to 7; is at most 1.0. Because the widths of blocks correspond with the values of z; ; for each 7; € ,
(3.43) is satisfied for each task 7; € Tgtg (t).

LIT

For each task 7; € 71T (#), the algorithm only allocates area from CPUs in 7T, which have heights

of (1.0 — s¢) - sp*. Because the algorithm allocates u; of area, the total width of blocks allocated to

T; 1S (I.O_UW. By (5.15), the total width allocated to 7; is at most 1.0. Because the widths of blocks

correspond with the values of z; ; for each 7; € m, (3.43) is satisfied for each task 7; € 7L (¢).

glob

For each task 7; € 75, (t), the algorithm allocates u; of area, at least uli’ig of which must be allocated

from CPUs in 7", Because at least u?lg of which must be allocated from CPUs in 7€, we have

Yo (10— s) - ay >

- bi
TjETOE

306

> {Definition 5.14}

u; — (1.0 — sf) - spt
1.0 — spt ’

Multiplying both sides by 1.0 — sp" yields

Z (1.0 — s€) - (1.0 — sp") - @3 j > u; — (1.0 — s£) - sp~. (5.21)

g
T ETO

Because the algorithm allocates a total of u; of area, we have

U; = Z (1.0 — 3[) - %+ Z (1.0 _ SE) . SpL ey

m;Embie m;emtT
= Z (1.0 — s€) - (1.0 — sp") - @i ; + Z (1.0 — st) - sp™ -z
m;Embie ;Embig
+ Z (1.0 — s) - sp™ - 2
m;emtT

IN

{Equation (5.21)}

u; — (1.0 — sf) - sp- + Z (1.0 — sf) - sp™ - @

cbi
TjETOE

+ Z (1.0 — st) - sp" - z; ;.

m; €T

Subtracting u; — (1.0 — s¢) - sp" from both sides and then dividing both sides by (1.0 — s¢) - sp" yields

1.0 > Z Tij + Z Tij-

5 crbig 5 eqlT

Because m = 7°2 U 77T, we have (3.43).
We have (3.43) for any 7; € To.2(¢) U 7LT(£) U 78 (£) = 7,¢((£). This completes the proof of the

lemma. O

5.3.5 Implementation

This subsection concerns implementing Ufm-SC-EDF by modifying SCHED_DEADLINE to follow

USE 1 and USE 2.

307

5.3.5.1 Data structures

Modifications are made to data structures such that SCHED_DEADLINE can more easily recognize when

USE 1 or USE 2 are broken.

dl_rgq. Recall from Section 4.4.1 that each d1_ rqg contains the st ruct earliest_d1l. The original
members of earliest_dl are curr, which stores the deadline of the SCHED DEADLINE task
scheduled on the corresponding CPU (or zero if the scheduled task is not a SCHED_DEADLINE task), and
next, which stores the deadline of the pushable (i.e., is unscheduled and has affinity for more than one
CPU) task that has the earliest deadl ine on the corresponding d1_rq.

Our patch adds two members. The first member is curr_is_global, a boolean flag that is set when
the task with deadline equal to curr is in 78°° (j.e., in SCHED_DEADLINE terms, when this task has
affinity for every CPU in the span of the corresponding d1_rg’s root_domain). Note that the value
of curr_is_global only has meaning when curr is nonzero. The second member is next_global,
which serves the same function as next, but only considers the subset of pushable tasks that are also in 72°°.

curr_is_global isrelevant to USE 1 because whether or not a task is in 78lob Jetermines its weighted
deadline (see Definition 5.8). curr_is_global is relevant to USE 2 because USE 2 only considers tasks

in 78°° next and next_global are used to identify the next deadline of a CPU.

V Definition 5.15. Consider a given CPU and the set of unscheduled SCHED_DEADLINE tasks with
affinity for said CPU. The next deadline of this CPU is the value of the earliest deadl ine belonging to

any of said tasks. A

For example, if this given CPU is in 7", then the next deadline is the minimum of the values of next for
the other CPUs in 7" (because any SCHED_DEADLINE task on these d1_rgs should also have affinity for
the given CPU) and the values of next_global for the CPUs in 77T (because only tasks of 7€°° on these
d1_rgs should have affinity for the given CPU).’ Identifying the next deadline of a given CPU is relevant to

maintaining USE 1 (the next deadline corresponds with dy(¢) in USE 1).

SIf mP¢ = 1 or mMT = 1, then it may not be possible to compute the next deadline of a CPU using only next and
next_global. The problem is that next and next_global only consider pushable tasks, i.e., tasks with affinity
for more than one CPU. For example, suppose m"¢ = 1 and we are interested in the next deadline of a CPU in 7%¢,
Suppose the earliest deadline of any unscheduled task with affinity for this CPU is already on its d1_rqg. Because
mPe = 1, this unscheduled task is not pushable, meaning its deadline will not be reflected in this d1_rq’s next
or next_global members. We permit this minor bug in our patch because, to our knowledge, architectures with
only a single big or LITTLE CPU are rare.

308

To efficiently update next_global, a new tree named global_dl_tasks_root is added to
each d1_rqg. The subset of tasks inserted into pushable_dl_tasks_root that are in 780 are in-
serted into global_dl_tasks_root. Similarly to how next is the deadline of the leftmost task
in pushable_dl_tasks_root, next_global is the deadline of the leftmost task in global__
dl_tasks_root. A new rb_nodeglobal_dl_tasks (analogous to pushable_dl_tasks) for
insertion onto global_dl_tasks_root is added to each task_struct.

As with the original members of earliest_dl and pushable_dl_tasks_root, the added mem-
bers curr_is_global and next_global and tree global_dl_tasks_root are updated within
enqueue_task_dl () and dequeue_task_dl (). Note that our patch modifies dequeue_task_
dl () such that next is set to zero when the last task on pushable_dl_tasks_root is removed.
next_global is also set to zero when the last task on global_dl_tasks_root is removed. When
computing the next deadline for a CPU, only nonzero next and next_global are considered. In the case
that all such values are zero, then, according to our analysis, the next deadline is t + T° 1] the deadline of the
considered CPU’s idle task (see Definition 5.3). In this case, ¢ is the return value of rq_clock () and Ty
is stored in max_dl_period.

We also add an hrt imer named wd1l_timer with callback function wdl_check_timer (). The

usage of this timer will be detailed in Section 5.3.5.2.

root_domain. The cpudl heap in the root_domain is not suited for a Ufm-SC-EDF implementation
because it is oblivious to the asymmetric capacities and affinities present in our platform. As such, we remove
it in our patch.

Several new members take the place of the cpudl. We add two cpumask_var_ts,big_online
and 1ittle_online, which indicate the span of 7°% and 7T, respectively. Our implementation assumes

that 7°¢ consists of the CPUs with a capacity of 1.0 and 7T

consists of the CPUs with a capacity of less
than 1.0. min_cpu_capacity stores the minimum capacity of any CPU in 1ittle_online. Because
our analysis is limited to two distinct speeds, our ACS pessimistically assumes that all CPUs in 1ittle_
online have capacity equal to min_cpu_capacity. This will be detailed further in Section 5.3.5.3.
max_dl_period stores the value of T[l] for tasks in this root_domain. Note that the analysis in

Chapter 3 and in this chapter assumes that the value of 7 is known a priori. Because T';j is not known

a priori to SCHED_DEADLINE, max_dl_period is initialized to zero and updated as new tasks are

309

accepted by the ACS. For our analysis to be applicable, the task that has period equal to 7y; should enter
SCHED_DEADLINE prior to any other task. Note that, because Ty refers to the largest period in the entire
task set 7, and not the largest period among the active tasks T,ct(t), max_dl_period is not decreased if its
corresponding task leaves SCHED_DEADLINE.

The values of d¢ (X, t) and d'T (X, ¢) (where X is the current configuration under our patched SCHED_
DEADLINE) are stored in big_deadline and little_deadline, respectively. Storing d"¢(X,¢)
and dM1T (X, t) speeds up the computation of weighted deadlines (see Definition 5.8), which are of relevance
to maintaining USE 1. big_deadline is set to the latest earliest_dl.curr value corresponding
with any CPU in big_online. A special case is when some CPU in big_online has an curr of zero,
i.e., said CPU does not schedule a SCHED_DEADLINE task. In this case, big_deadline is also set to
zero. According to the analysis presented in this chapter, the value of d”¢ (X, t) should be ¢ + T’y (i.e., the
deadline of an idle task) in this case, where ¢ is the current time. It is not practical to set big_deadline to
t + T'[1) because this value changes continuously with time. Instead, when a big_deadline value of zero
is observed in the code, the value ¢ + T'[y) (where ¢ is set to the return value of rq_clock () and Ty is
max_dl_period)isusedin place of big_deadline. little_deadline is analogously set based

onthe CPUsin 1little_online.

5.3.5.2 Scheduling and Migration Changes

The implementation is mostly unchanged by our patch outside of modifications to find_later_rqg()

and the addition of two new functions that correspond to USE 1 and USE 2.

find later_ rq(). Recall that when push_dl_task () or select_task_rqg_dl () iscalled on
a task being migrated, both functions internally call find_later_rq (). In the original implementation,
find_later_rqg/() references the cpudl heap to identify which CPU has the latest deadline. Because
we do not maintain the cpudl heap, when our modified £ind_later_rqg() is called on a task, it must
identify the latest CPU by iterating over the CPUs in said task’s affinity mask. The latest CPU is the CPU
whose d1_rq has the latest earliest_dl.curr value.

Modifying £ind_later_rqg() to iterate over the CPUs in a task’s affinity mask prevents push__
dl_task () and select_task_rqg_dl () from failing to migrate a task due to find_later_rqg()

returning a CPU that said task does not have affinity for. Recall that pull_d1l_task () does not fail

310

to migrate tasks in this manner because pull_dl_task () does not reference an affinity-oblivious data
structure such as the cpudl heap. Because CPUs pull the earliest unscheduled tasks from other d1_ rgs and
tasks are now correctly pushed to the latest CPUs they have affinity for, SCHED_DEADLINE, under these
modifications implements Weak-APA-EDF.% The addition of two new functions extends Weak-APA-EDF
to Ufm-SC-EDF. Both functions are callback functions that are invoked by waking the st op tasks of CPUs

that schedule tasks in 78°° (i.e., a task with affinity for every CPU in the root_domain’s span).

USE 1 and set_next_task_dl (). Because SCHED_DEADLINE already implements Weak-APA-
EDF, any unscheduled task 7, must have a later deadline dy(t) than any task 7. with deadline d.(t) that
is scheduled on a CPU ; that 7, has affinity for. Recall from Definition 5.8 that only a scheduled task in
7. € T8 can potentially have d, (X, t) # d.(t). Thus, we only need to check for violations of USE 1
whenever a task 7. € 7¢° is newly scheduled on a CPU 7; or when the weighted deadline d.. (X, t) of task
Te scheduled on a CPU 7; changes.

We first address scenarios when a task 7, € 721°° is newly scheduled on a CPU mj. We modify set__
next_task_dl () tocall anew function check_wdl_preempt () that checks for violations of USE 1.
d. (X, t) is computed by referencing task 7.’s deadline (i.e., de(t)) and the added fields min_cpu_
capacity (ie., sp"), big_deadline (ie., dbig(}_(, t)), and little_deadline (ie., dLIT(X,t)).
These values are plugged into the formula presented in Definition 5.8. The earliest deadline d,(t) of any
unscheduled task 7, with affinity for CPU 7; is 7;’s next deadline (see Definition 5.15), which, as discussed
in Section 5.3.5.1, is computed using fields next and next_global.

If USE 1 is found to be violated in check_wdl_preempt () for a task 7. € 72°° scheduled on a
CPU 7, set_next_task_dl () calls stop_one_cpu_nowait () on CPU 7; with callback function
push_wdl_stop (), which is added by our patch. When push_wdl_stop () is executed by the stop
task, the target CPU is the latest LITTLE CPU if 7; € 7€ and the target CPU is the latest big CPU if
m; € 7T, push_wdl_stop () acquires the rq locks of CPU r; and the target CPU, after which it
rechecks that 7, € 78 is still the highest-priority SCHED_DEADLINE task on m; and that the highest-

priority SCHED_DEADLINE task on the target CPU still has a later deadline than d.(t). If this recheck

passes, task 7. is pushed from CPU 7, to the target CPU. push_wdl_stop () then returns, allowing CPU

®We claim that SCHED_DEADLINE with these changes implements Weak-APA-EDF without formal proof. It is
impractical to formally reason about SCHED_DEADLINE given the size of the Linux scheduler. Our justification that
SCHED_DEADLINE implements Weak-APA-EDF is that the changes made in this patch mitigate the affinity-related
issues discussed in Section 4.4.5. These issues are the cause of the counterexample in Example 4.10.

311

m;’s stop task to suspend. When 7; reschedules due to the st op task suspending, it pulls and schedules

the task 7, that was involved in the violation of USE 1.

Changes in weighted deadlines. It remains to discuss when USE 1 is violated due to the weighted deadline
d, (X, t) of task 7, which is scheduled on CPU 7, changing. By Definition 5.8, this can only occur if either
de(t) (i.e., the deadline of task 7.), d”¢(X,t) (i.e., big_deadline), or d"'T(X,¢) (i.e., little_
deadline) changes.

Instances of d.(t) changing are dealt with implicitly by eliminating throttle bypassing. In SCHED_
DEADLINE, the deadline of a task can only change upon wakeup or replenishment (be aware that this
assumes no priority inheritance). If the task was woken, then it was necessarily unscheduled while suspended.
If the task was replenished, then without throttle bypassing, it was necessarily unscheduled while throttled.
Thus, any task that changed its deadline will first need to be rescheduled, upon which the task will
encounter the aforementioned checks in set_next_task_dl ().

Instances of d'2 ()_Q t) or d4T (X, t) changing are dealt with by calling resched_curr () on certain
CPUs. If db'e (X, t) is set to a new value in enqueue_task_dl () or dequeue_task_dl (), then the

LT may have changed. enqueue_

weighted deadlines of tasks in 72°° that are scheduled on CPUs in 7
task_dl () or dequeue_task_dl () then calls resched_curr () on these CPUs in 7UT These
CPUs are those for which earliest_dl.curr is nonzero and earliest_dl.curr_is_global
is set. Likewise, if d“T (X, t) is set to a new value, enqueue_task_dl () or dequeue_task_dl ()
calls resched_curr () on such CPUs in 7P, CPUs that have resched_curr () called on them in this

manner will check for USE 1 violations using the updated d”¢ (X, ¢) and d“'T (X, ¢) values in set_next_

task _dl ().

Non-SCHED_DEADLINE tasks. There is an edge case when a CPU is not executing a SCHED_DEADLINE
task. If a CPU in 7" does not schedule a SCHED_DEADLINE task, then d™¢(X,t) = t + Ty (by
Definition 5.3, 5.6, and 5.7 and Corollary 5.3). Likewise, if a CPU in 71T does not schedule a SCHED
DEADLINE task, then d™'T (X, t) =t + T'y). Because dbie (X, t) or dHT (X, t) changes continuously with
time while a CPU executes a non-SCHED_DEADLINE task, it no longer becomes practical to call resched__
curr () on the relevant CPUs upon every change in dvig (X, t) or dHT (X, t). Instead, resched_curr ()
is called on these CPUs only when big_deadlineor little_deadline is setto zero (recall that this

signifies that d*€ (X, ¢) or d“T (X, t) is equal to ¢ + T'y)).

312

When resched_curr () iscalled ona CPU duetobig_deadlineor little_deadline being
set to zero, set_next_task_dl () will perform the aforementioned checks if USE 1 is violated. If it
is found that USE 1 is violated (while using the sum of rg_clock () and max_dl_period in place
of big_deadline or little_deadline), then the relevant tasks are migrated as described above.
Otherwise, USE 1 is not violated, and the issue becomes that USE 1 may become violated at some future
time ¢’ due to ¢ 4+ T'y) (and hence, d*€(X, t) or d'T (X, t)) increasing with time. To see this, observe from
Definition 5.8 that the weighted deadline of a task is non-decreasing with @' (X, t) and d“'T (X, t) , thus, a
continuous increase in d”¢ (X, ¢) or d“'T (X, ¢) can lead to a violation of USE 1 by increasing a scheduled
task’s weighted deadline.

The time instant ¢’ is computed in set_next_task_dl (), which arms hrtimer wdl_timer to
fire at time ¢'. wd1l_check_timer (), wdl_timer’s callback function, triggers a reschedule on this CPU,
which will result in a call to set_next_task_d1l () that will observe the violation of USE 1 at time #'.

The computation of time ¢’ in set_next_task_dl () makes three assumptions. Note that these
assumptions need not be true; the violation of any of these assumptions only means that the time ¢’ must be
recomputed and wd1_t imer must be armed to fire at the new time. The computation assumes that from the

time set_next_task_dl () is called to the time t':

e the task 7. € 78lob being scheduled in set_next_task_d1l () remains scheduled on the same CPU,
* this task 7. has constant deadline dc(t),

¢ and the next deadline of task 7..’s CPU is constant.

We now justify these three assumptions.

It is assumed that 7, remains scheduled until time ¢’ because USE 1 only considers d. (X, ¢) while task
Te 1s scheduled. If 7. is later rescheduled, then we can defer checking for violations of USE 1 to the call of
set_next_task_dl () that corresponds with that rescheduling. If necessary, that call to set_next_
task_d1l () will recompute t'.

It is assumed that d.(t) is constant until time ¢’ because, due to eliminating throttle bypassing, 7. must
have been unscheduled for d.(t) to have changed. As with the prior assumption, set_next_task_dl ()
will recompute ¢ if 7, is rescheduled.

It is not safe to assume that the next deadline of task 7.’s CPU is constant until time ¢'. If a task replaces

task 7, as the unscheduled task with the earliest deadline with affinity for this CPU, the implementation

313

needs to explicitly call resched_curr () to trigger a call to set_next_task_dl () such that ¢’ will
be recomputed. We will address how the patch does this after discussing how ¢’ is computed given the above
assumptions.

Suppose we have a CPU in 77T that schedules a non-SCHED_DEADLINE task and a CPU in 7"
that schedules a task 7. € 78°°. Task 74 € frdy(t) is the unscheduled task whose deadline corresponds
with the next deadline of task 7,°s CPU. USE 1 is violated immediately after the time instant ¢’ such that

de (X, ') = dy(t'). This time instant is

t = =L T, (5.22)

This is because

de(X,t') = {Definition 5.8 and 7. € 78" is scheduled on a big CPU}
(1.0 —sp") - de(t') + sp~ - " (X, ¥)

= {Assumed constant d(t) from current time to ¢’}
(1.0 = sp") - de(t) + sp" - "7 (X, t')

= {d""(X,t) =t + T};; while a CPU in 7™'" schedules a non-SCHED_DEADLINE task }
(1.0 = sp") - de(t) + sp" - (' + T))

= {Equation (5.22)}

— (10— spt) - d,
(10 _ SpL) 'de(t) +SpL- <d£(t) (LZPL D) d (t> _T[l] _’_T[1]>
= (10— sp") - de(t) + sp" - %) - (LZPLSPL) dell)
= (1.0- spL) ~de(t) + do(t) — (1.0 — spL) de(t)

= dy(t)

= {Assumed next deadline dy(t) is constant until ¢’ }

dy (t/) .

Likewise, if we have a CPU in 7€ that schedules a non-SCHED_DEADLINE task, a CPU in 7T that

schedules a task 7. € 78°°, and task 7.’s CPU’s next deadline is dy(t) for some task 7y € Teay(t), then we

314

have
t' = sp" - dy(t) + (1.0 — sp") - de(t) — Ty (5.23)
This is because

de(X,t') = {Definition 5.8 and 7. € 78" is scheduled on a LITTLE CPU}

1.0 - 1.0 — sp®
0 hig(X) — D g
SpL (’) spL 6()

= {Assumed constant d.(t) from current time to ¢’}
1.0 - 1.0 — sp®
=0 pig(X) — 2P g
L) - O

= {d"¢(X,t) =t + T}y while a CPU in "¢ schedules a non-SCHED_DEADLINE task }

Lo ., 1.0 — spt
spL (t'+Tpy) spb de(t)
= {Equation (5.23)}
L0 1.0 — spt
o (5 de0) (L0 = sp) <de(t) = Ty Tpy) = == - de(t)
Sp sp
1.0 L L 1.0 — spL
= - () (L0 = sp) - deft)) — =2 - deft)
(1'0 - SPL) 1.0 — spL
oy L) g M0
= dy(t)

= {Assumed next deadline dy(t) is constant until ¢’ }

de(t).

Changes in the next deadline. The computation of time ¢’ and the arming of wd1l_t imer assume that
the next deadline is constant until time #'. The code must detect when this assumption is broken in order
to know when to recompute ¢’ and rearm wdl_timer. Recall from the discussion in Section 5.3.5.1
that the next deadline is computed as the minimum of certain earliest_dl.next and earliest_
dl.next_global values, which are updated within functions enqueue_task_dl () and dequeue_
task_dl (). We modify enqueue_task_dl () and dequeue_task_dl () such that, if any next

or next_global is set to a lesser value while big_deadlineor little_deadline is zero (recall

315

that this signifies that d° (X, t) =1+ T or d T (X, t) = ¢ + T'y}, which is the cause for needing to
compute time ¢’ and arm wd1_timer), then resched_curr () is called on the CPUs that schedule tasks
in 7&lob (i.e., CPUs with curr_is_global set to t rue). After rescheduling, set_next_task_dl ()

will recompute time ¢ and arm wd1_t imer if necessary.

USE 2. USE 2 can only be violated when a task in 78 is newly scheduled on a CPU. As with USE 1,
we check curr_is_global within set_next_task_dl () to determine if checking for a violation is
necessary, and, if a violation of USE 2 is discovered, execute a callback function to perform a migration. The
function for checking USE 2 is check_global_order (). The callback function for USE 2 is swap__
global_stop (), the purpose of which is to swap the CPUs of a high-priority task 7;, € 78 that is
scheduled on a CPU 7, € 7T and a lower-priority task 7;, € 78°° that is scheduled on a CPU 7, € w?.

How check_global_order () checks for violations of USE 2 depends on whether the calling CPU
belongs to 7€ or 7T If the calling CPU belongs to 7€, then it corresponds with CPU 7, and its scheduled
task corresponds with task 7;,. A violation of USE 2 has occurred if there is a CPU 7, € 7T that schedules
a task 7;; € 78°° such that task 7;, has an earlier deadline than task 7;,, i.e., d;, (t) < d;,(t). The code
determines if this has occurred by comparing the deadline of 7;, against earliest_dl.curr for each
CPUT;, € 7€ where earliest_dl.curr_ i s_global is set. Likewise, if the calling CPU belongs to
7T then it corresponds with CPU 7 4, and its scheduled task corresponds with task 7;, . A violation of USE 2
has occurred if there is a CPU 7, € 72 that schedules a task 7;, € 78°° such that d;, (t) < d;,(t). The
code determines if this has occurred by comparing the deadline of 7;, againstearliest_dl.curr for
each CPU 7, € 7HT where earliest_dl.curr_i s_global is set.

If a violation is discovered, swap_global_stop () is called on CPUs 7, and 7;, using stop_

two_cpus () J

swap_global_stop () first acquires the locks of the calling and target CPUs. swap_
global_stop () then rechecks that the highest-priority SCHED_DEADLINE tasks on both CPUs are
still tasks in 72°° and that the task belonging to the LITTLE CPU still has an earlier deadline than the
deadline of the task belonging to the big CPU. If the recheck passes, swap_global_stop () migrates

the tasks such that they swap CPUs.

"More specifically, swap_global_stop () is called from a non-blocking version of stop_two_cpus (), which
is added in our patch. A non-blocking version is necessary to avoid nested calls of __schedule (). Note that stop__
two_cpus () is being called from set_next_task_dl (), whichiscalledby ___schedule (). If stop_two_
cpus () were to block, it would call ___schedule () to select a new task to run.

316

Note that it is redundant to check for violations of both USE 1 and USE 2 within the same instance of
set_next_task_dl () because a violation in either will result in the scheduled task being migrated away.
Thus, set_next_task_dl () will only call check_wdl_preempt () to check USE 1 if check_
global_order () finds that USE 2 is upheld. This ordering of check_wdl_preempt () and check_

global_order () in our patch is arbitrary.

5.3.5.3 ACS

Our patch must modify the ACS to enforce (5.14)-(5.18), which were derived in Section 5.3.4. We now
discuss how the terms in conditions (5.14)-(5.18) are stored. Some terms are already maintained by the

original code, which we briefly review. Consider a given root_domain. Recall from Section 4.4.1 that

sched_rt_runtime_us

d1_bw.bw stores the fraction .
sched_rt_period_us

. As discussed in Section 5.3.4, we choose to interpret
this fraction as 1.0 — s¢. Member d1_bw.total bw stores the total of the d1_bws of the SCHED__
DEADLINE tasks executing on the CPUs belonging to this root_domain, i.e., total_bw corresponds
with > - oo) Ui

Some terms in (5.14)-(5.18) added by our patch have already been discussed. The number of CPUs

in big_online corresponds with mP®®¢ and the number of CPUs in 1ittle_online corresponds with

mMT, min_cpu_capacity corresponds with sp".

We add members d1_bw.total_ big_bw, which corresponds with > u;; d1l_bw.total_

big
Ti eTacli> (t)

little_bw, which corresponds with LT () Ui and d1_bw.total_global_b_bw, which corre-

T3 ETog

sponds with ZT_ erfob(p) ul;ig. Note that the additional ‘b’ in total_global_b_bw indicates that the sum

act
big,

of u; =’s, not u;’s, is being stored. As with total_bw, these three members are updated whenever a task
enters or leaves SCHED_DEADLINE.

Thus, every term in (5.14)-(5.18) corresponds to some variable in SCHED_DEADLINE. We modify _
_dl_overflow () to verify that (5.14)-(5.18) would not be violated upon enacting a change in a task’s
bandwidth. Note that it is necessary to add an additional argumentto ___d1_overflow () that indicates
the affinity of the task being considered. For example, only tasks with affinity for the LITTLE CPUs must
satisfy (5.15).

For the same reasons as our patch targeting IDENTICAL/SEMI-PARTITIONED systems (recall Sec-

tion 5.2.4), this patch forbids SCHED_DEADLINE tasks from changing their affinities. Tasks are categorized

317

into T:gtg(t), Tagclf b(t), or 7X1T(¢) based on their affinities upon entering SCHED_DEADLINE. To change a

task’s affinity, said task must first exit SCHED_DEADLINE.

Furthermore, we forbid the addition or removal of CPUs to any cpuset that contains SCHED__
DEADLINE tasks. There are two reasons for forbidding this. The first reason is that modifying a cpuset
can potentially change the span of a root_domain, which resets the affinity of every task corresponding
with that root_domain to said root_domain’s span. The second reason is that a new CPU added
toa root_domain’s span may have capacity less than min_cpu_capacity, which would set min__
cpu_capacity to this new lesser capacity. Recall that, because our model only permits two distinct
capacities, we pessimistically assume that all LITTLE CPUs have capacity min_cpu_capacity. Tasks
that were already accepted by the ACS under the old min_cpu_capacity (i.e., sp*) value may no longer
satisfy (5.14)-(5.18) with the new value. Modifying min_cpu_capacity would also require that u?ig be

recomputed for every task in chlf b(t) (see Definition 5.14).

sched_rt_runtime_us
sched_rt_period_us

Modifying the fraction is also forbidden because this fraction corresponds with

sched_rt_runtime_us
sched_rt_period_us

1.0 — sf. Thus, decreasing can cause tasks that were previously accepted by the ACS

to no longer satisfy (5.14)-(5.18). Similarly to min_cpu_capacity, changing this fraction would also

require that u?ig be recomputed for every task in Tagclf b(t) (see Definition 5.14).

5.3.6 Evaluation

We compared the overheads and tardiness under our patched kernel against those of the original imple-
mentation on the ODROID-XU4. As with the evaluation discussed in Section 5.2.6, rt —app (rt-app) was
used for workload generation and £t race was used for recording timestamps. We modified taskgen to
generate bandwidths and affinities satisfying (5.14)-(5.18), the conditions checked by our modified ACS.
Task parameter generation under our modified taskgen is detailed in later paragraphs in this subsection.
Ten task systems were generated for each of n € {20,40}. Timestamps were collected for each task system
for a minimum of 10 minutes for both the original and our patched kernel.

Note that timestamps were collected under the original kernel for longer than under our patched kernel.
This is because the ODROID-XU4 was prone to overheating when running this experiment, which stresses all
CPUs at near maximum capacity for several hours. This would frequently cause thermal protection to force a

shutdown, which caused some task systems to be rerun when the experiment was restarted. Overheating also

318

seems to cause rt—app, which measures elapsed time in CPU cycles, to run for longer than the requested
10 minutes. This may be due to thermal protection stopping CPUs. These issues predominately affected runs
of task systems on the original kernel, which were done prior to runs on the patched kernel. The patched
kernel was measured with greater spacing between runs, which reduced overheating.

Table 5.2 will present the cumulative time spent on relevant overheads. Note that, because the kernels
were not evaluated for the same duration of time, the number of samples of events (e.g., enqueues, dequeues,
etc.) are incomparable between the original and patched kernels. Thus, the cumulative time spent is also
incomparable. Only the distribution (i.e., the average and worst-case durations) of samples should be
compared between the kernels. Comparisons of the impact of different overheads measured within the same

kernel are also valid.

Task parameter generation. Recall from Section 5.3.1 that, on our considered platform, we have mb¢ =
mUT = 4. The capacity of each LITTLE CPU is sp* = 37 ~ 0.368. The value of 1.0 — s¢ =

sched_rt_runtime us yaq kept at its default of 95%. We generated task systems satisfying (5.14)-(5.18) with

sched_rt_period_us

n € {20,40} using the following procedure. Note that, for each task system, all tasks both simultaneously
enter and simultaneously leave SCHED_DEADLINE, i.e., for all time instants ¢ while a task system 7 is being
evaluated, we have 7,.(t) = 7. Our generation procedure initially generates a system of only global tasks

(Step 1 through Step 3), after which certain tasks are partitioned out into 79T (Step 4) and 7€ (Step 5).

Step 1: Use Randfixedsum (Stafford, 2024), the algorithm used internally by taskgen (Emberson et al.,

2010; Lelli, 2014), to uniformly generate a set of n utilizations u; € [0, 1.0] that sum to) _ U; =

T ET

mbig 4 spl . T,

Step 2: Scale each utilization such that u; < (1.0 — sf) - u;.

Each utilization u; is now in [(1.0 — s/) - 0, (1.0 — s¢) - 1.0] = [0, 1.0 — s¢], which satisfies (5.14).

The sum of all utilizations is now . u; = (1.0 — s€) - (mP€ + sp - mMT), which satisfies (5.18).

Step 3: Compute u?ig for each utilization u;. If) ue > (1.0 — s¢) - mP¢, then restart from Step 1.

TET L

Note that it is unlikely that the procedure returns to Step 1 at the end of Step 3, which we argue infor-
ZT,L' €T Usq
n

< Zrerti _ (1.0—s6)-(mPe4-sptm™T) 0.95.(440.368.4) _

mally. The average utilization is < =% 0 0

0.260. Thus, the average utilization is less than (1.0 — s¢) - sp“ ~ 0.95 - 0.368 ~ 0.350. Because

319

the average utilization is less than (1.0 — sf) - sp", by Definition 5.14, an average utilization u; has a
corresponding u'® = 0. Thus, it is unlikely that Yorer u?® > (1.0 — s0) - mPe = 0.95 - 4 = 3.8,

Passing Step 3 satisfies (5.16) for our initial task system, which consists of only global tasks. Note that

Step 5, which will move tasks from 78 into 7%, must do so without violating (5.16).

Step 4: Sort the tasks of 7 = 781°° in order of non-decreasing utilization. Move tasks of 78°° into 7T until

LIT _

either of constraints (5.15) or (5.17) would be violated or until 7 T.

The tasks are sorted in non-decreasing order because this maximizes the number of tasks that can be

L

placed in 7MT without violating (5.15) or (5.17). We assume that a system designer would, to save

power, prefer that as many tasks as possible execute exclusively on the LITTLE CPUs.

Step 5: Move the remaining tasks of 7810 into 712 until (5.16) would be violated or until 7°¢ = 7 \ 7T,

Note that these remaining tasks of 781°° are still sorted in order of non-decreasing utilization. As when
moving tasks from 72°° to 71T in Step 4, this order maximizes the number of tasks moved from 78°°
to 7%, While there is less benefit in maximizing the number of tasks that execute exclusively on big
CPUs than on LITTLE CPUs (exclusively scheduling tasks on big CPUs does not save power), the rate
of L2 cache misses should decrease as more tasks are moved into 7°¢ (recall from Figure 5.8 that the

big CPUs share an L2 cache).

Step 6: Sample a period T'; for each utilization u; from the log-uniform distribution (as proposed by Ember-

son et al. (2010)) ranging from 10 ms to 1 s. Compute C; as T'; - u;.

As discussed by Emberson et al. (2010), periods are sampled from a log-uniform distribution because
sampling from a purely uniform distribution rarely generates periods at the lesser extreme. For example,
uniformly sampling the range from 10 ms to 1 s has a less than 10% chance of generating a period of
less than 100 ms. The log-uniform distribution biases samples such that periods that are on the order of

10 ms have a higher chance of being generated.

Note that the above task generation procedure results in a low number of tasks in 781, especially for
systems where n = 40. Similarly to how bin-packing efficiency increases as the average weight of items
decreases, at higher task counts, the average task’s bandwidth becomes low enough that almost all tasks can
be placed into 7% or 7MT. Systems generated with n = 20 tend to have around three tasks in 7&°°. All

evaluated systems with n = 40 had at most one task in 781°°,

320

The low number of tasks in 7Y influences the overhead measurements. As discussed in Section 5.3.5.2,
our newly added functions push_wdl_stop () and swap_global_stop () can only be called when
tasks of 72°° are scheduled. We argue that a low number of tasks in 72!°P is realistic. A system designer has
incentive to pack as many tasks into 7% and 77T as possible in order to reduce migration and cache miss

overheads.

Validation. As with the patch described in Section 5.2, we validated this patch by observing traces (made
with trace-cmd and KernelShark) of constructed task systems. Initial task CPU placements were again
set by use of the taskset command. These task systems were constructed such that push_wdl_stop ()
or swap_global_stop () are called soon after the task system begins executing. We confirmed from
the schedule traces that global tasks were correctly migrated by these functions. To test our modified ACS
logic, for each root_domain, we made the members of d1_lw readable from userspace via debugfs.
For constructed task systems, we hand-computed the expected values for these members (e.g., total__

global_b_bw) and confirmed that the values from debugfs matched.

Enqueueing and dequeueing. A modification made by our patch is the removal of the cpudl and the
addition of members curr_is_global and next_global toearliest_dl and of members big_
deadlineand little_deadline to root_domain. These data structures are all maintained on calls
to enqueue_task_dl () and dequeue_task_dl (). We measured the duration of these function calls
in the original kernel and in our patched kernel.’

Histograms illustrating the distribution of these call durations are presented in Figures 5.21 and 5.22. For
both n = 20 and n = 40, in both the original kernel and our patched kernel, a majority of call durations fall
under 20 us for enqueue_task_dl () and 30 us for dequeue_task_dl (). For enqueue_task_
dl (), worst-case measurements were roughly 50 ps for the original kernel and 60 ps for our patched kernel
(this was consistent for both n = 20 and n = 40). For dequeue_task_d1 (), worst-case measurements
were roughly 60 ps for both kernels and n values. This shows that the overhead involved in maintaining the
cpudl in the original kernel is roughly equivalent to the overhead involved in maintaining big_deadline

and 1ittle_deadline in our patched kernel.

8Note that not all of enqueue_task_dl () and dequeue_task_d1l () are included in these measurements. For
example, code pertaining to GRUB and CBS logic (see Listing 4.21) is excluded because it is unaffected by our patch.

321

15000
12500
10000 -

7500

Frequency

5000

2500

0_

T T
0 20 40 60

Time (us)

(a) Original (n = 20); 633,006 samples.

15000
12500

10000 -

Frequency
~
o
el
o
1

5000

2500

0

0 20 40 60

Time (us)

(c) Original (n = 40); 570,110 samples.

15000

12500

10000 -

7500 A

Frequency

5000

2500

0 n T T
0 20 40

Time (us)

(b) Patched (n = 20); 285,373 samples.

60

15000

12500 A

10000 -

7500 1

Frequency

5000

2500

O n T T
0 20 40

Time (us)

(d) Patched (n = 40); 389,010 samples.

Figure 5.21: enqueue_task_d1l () overhead.

322

60

Frequency

Frequency

12500

10000

7500 1

5000 1

2500 1

0 20 40
Time (us)

(a) Original (n = 20); 633,161 samples.

60

12500

10000

(S ~
o ot
o o
o o
1 1

0 20 40
Time (us)

(c) Original (n = 40); 570,454 samples.

60

12500

10000 A

7500 1

Frequency

5000 1

2500 1

0 - T
0 20 40

Time (us)

(b) Patched (n = 20); 285,535 samples.

60

12500 A

10000

7500 1

5000 1

Frequency

2500 1

0 - T
0 20 40

Time (us)

(d) Patched (n = 40); 389,357 samples.

Figure 5.22: dequeue_task_d1 () overhead.

323

60

Note that this equivalence in overheads is unlikely to scale to higher CPU counts (within the same root__
domain), as the cpudl is organized as a heap, while big_deadline and little_deadline are
updated by iterating over the CPUs. In our patched kernel, this could be mitigated by using two heaps, one for
the CPUs in 7" and another for those in 7T, to maintain big_deadlineand little_deadline. We
chose not to implement this because there are only four CPUs in both %€ and in 7T on the ODROID-XU4,
so maintaining two heaps of only four elements each would be wasteful. We also argue that there is little
incentive to run SCHED_DEADLINE with a single root_domain containing a large number of CPUs. The
fraction of CPU capacity lost by partitioning the CPUs into several root_domains quickly decreases with

the size of the root_domains.

find_later_rq(). Because our patched kernel removes the cpudl, find_later_rqg() isrequired
to iterate over the CPUs in the task being migrated’s affinity mask to discover which of these CPUs schedules
the task with the latest deadline (or schedules a non-SCHED_DEADLINE task). Histograms of function
call durations are presented in Figure 5.23. A majority of £ind_later_rqg() calls take around 10 ps
for both kernels and n values. Both kernels had worst-case find_later_rqg() durations of roughly 40
us. Our patch does not significantly impact the overhead of calling find_later_rqg(), though, as with

enqueue_task_dl () and dequeue_task_d1 (), this is unlikely to scale with larger CPU counts.

check_wdl_preempt () and push_wdl_stop (). Our patched kernel introduces overheads for check-
ing for violations of USE 1 and USE 2 and migrations that occur in response to such violations. Because
these overheads are unique to our patched kernel, we do not compare against the original kernel. Violations
of USE 1 are checked in check_wd1_preempt (). Durations of calls to check_wdl_preempt () are
presented in Figure 5.24. A majority of calls complete within 10 ps, and the worst-case call observed during
measurement took roughly 40 ps. This overhead is within the same order of magnitude as that of calling
enqueue_task_dl (), dequeue_task_dl (), and find_later_rqg(). As such, the addition of
these checks for USE 1 are not a significant source of overhead.

This is not the case for push_wd1l_stop (), which is called when check_wdl_preempt () discov-
ers a violation of USE 1. Overheads for push_wd1_stop () are presented in Figure 5.25, in which most
calls take on order 100 us to complete. Not illustrated in Figure 5.25 are the long tails of these call duration

distributions. The worst-case duration observed for check_wdl_preempt () was over a millisecond.

324

Frequency

Frequency

12000 12000
10000 A 10000 A
8000 > 8000
=
[
6000 - 2 6000
4000 4000 -
2000 A 2000 A
0 - ey T 0 - S T
0 5 10 15 20 0 5 10 15
Time (us) Time (us)
(a) Original (n = 20); 542,260 samples. (b) Patched (n = 20); 416,242 samples.
12000 12000
10000 A 10000 A
8000 > 8000
=
o
6000 - 2 6000+
4000 4000 -
2000 A 2000 A
0 I T T O I T T
0 5 10 15 20 0 5 10 15
Time (us) Time (us)
(c) Original (n = 40); 664,588 samples. (d) Patched (n = 40); 598,514 samples.

Figure 5.23: find_later_rqg() overhead.

325

12500 A 12500 A
10000 + 10000 +
oy oy
2 7500 1 2 7500 1
= =
jon) jon
0] [0
& 5000 & 5000
2500 + 2500 +
0 - - T T 0 = - T T
0 5 10 15 20 0 5 10 15 20
Time (us) Time (us)
(a) n = 20; 334,339 samples. (b) n = 40; 163,692 samples.

Figure 5.24: check_wdl_preempt () overhead.

8000 8000

6000 A 6000 A
oy oy
8 5
% 4000 + % 4000 H
2 I

2000 A 2000 A

O I T 0 T T
0 100 200 300 0 100 200 300
Time (us) Time (us)
(a) n = 20; 305,408 samples. (b) n = 40; 160,265 samples.

Figure 5.25: push_wdl_stop () overhead.

Note that these measurements start from when check_wdl_preempt () first discovers a violation
and end when push_wdl_stop () returns after performing the relevant migration. As such, these mea-
surements include the time needed to wake and schedule the st op task. This demonstrates that invoking
the stop task to call push_wdl_stop () is expensive relative to operations such as enqueueing and

dequeueing tasks. For workloads that do not require sub-millisecond granularity, these overheads may still be
acceptable.

check_global_order () and swap_global_stop (). Overheads for function check_global_
order () are presented in Figure 5.26 and overheads for function swap_global_stop () are presented

in Figure 5.27. check_global_order () and swap_global_stop () are analogous to check__

326

12000 12000
10000 - 10000 -
> 8000 1 -, 8000
% 6000 + §_ 6000 +
* 4000 A 4000 -
2000 A 2000 A
0 - - T T 0 . - T T
0 5 10 15 20 0 5 10 15 20
Time (us) Time (us)
(a) n = 20; 347,280 samples. (b) n = 40; 163,687 samples.

Figure 5.26: check_global_order () overhead.

1000

800 1

600

400

Frequency

200

0 - T
0 200 400 600

Time (us)

Figure 5.27: swap_global_stop () overhead (n = 20); 12,961 samples.

wdl_preempt () and push_wdl_stop () when it comes to overheads. check_global_order ()
is fast, while swap_global_stop () induces higher latency. The average duration of swap_global_
stop () exceeds that of push_wdl_stop (), which is to be expected because swap_global_stop ()
must wake the st op tasks on two CPUs.

Note that Figure 5.27 does not contain a distribution for n = 40. As stated previously, when n = 40,
our evaluated task systems each had at most one task in 78°°, Because at least two tasks in 7&'°° must
be scheduled in order for USE 2 to be violated, swap_global_stop () was never called for such task
systems. The low number of tasks in 78°° when n = 40 is also why there is a lower number of samples
in Figure 5.26b than in Figure 5.26a. check_global_order () is only called when a task in 78'°° is

scheduled. With fewer tasks in 78°P, there are fewer calls to che ck_global_order ().

327

15000 -+ 15000 A+
& &
5 10000 - S 10000 -
= =
o oy
]]
43 =
5000 5000 A
0 wly : : 0 h - : :
0 5 10 15 20 0 5 10 15 20
Tardiness Rel. to Period Tardiness Rel. to Period
(a) Original (n = 20); 288,172 samples. (b) Patched (n = 20); 82,794 samples.
15000 15000
> >
Q Q
$ 10000 $ 10000
= =
jop} g
=1 =]
43 43
5000 5000
0 _— . . 0 - o
0 5 10 15 20 0 5 10 15 20

Tardiness Rel. to Period

(c) Original (n = 40); 317,687 samples.

(d) Patched (n = 40); 239,180 samples.

Figure 5.28: Relative tardiness.

328

Tardiness Rel. to Period

n = 20 n =40
Original Patched | Original Patched

enqueue_task_dl () 5,066 3,016 4,432 3,586
dequeue_task_dl () 8,904 3,700 7,640 5,402
find_later_rqg() 2,956 2,309 3,901 3,760
check_wdl_preempt () N/A 1,530 N/A 789
push_wdl_stop () N/A 17,695 | N/A 9,147
check_global_order () N/A 1,622 N/A 805
swap_global_stop () N/A 2,362 N/A 0

Table 5.2: Aggregated overheads (ms).

Tardiness. Tardiness relative to tasks’ periods is presented in Figure 5.28. The addition of our patch does
not impact observed tardiness. This is expected because only a small minority of tasks are in 72'°°. Only
these tasks are treated differently by our patched kernel.

Note that the tardiness presented in Figure 5.28 is much higher than that observed when evaluating our
patch for IDENTICAL/SEMI-PARTITIONED (see Figure 5.7 in Section 5.2.6). This seems to be due to the
ODROID-XU4’s lack of computing capacity relative to the desktop machine used to evaluate the other patch.
When the real-time workload consumes 95% of capacity, as is the case in this evaluation, the ODROID-XU4
begins to lag behind. This can delay the throttling and replenishment of SCHED_DEADLINE tasks, which
causes increased tardiness.

Table 5.2 presents aggregated overhead measurements. Time spent executing push_wd1l_stop ()
dominates the other overheads by an order of magnitude. Despite being expensive relative to other overheads,

the cumulative time spent executing this function is still a small portion of the total runtime.

5.4 Chapter Summary

In this chapter, we presented two patches to SCHED_DEADLINE aimed at restoring bounded response-
time guarantees under special cases of heterogeneous multiprocessors. One patch targets IDENTICAL/SEMI-
PARTITIONED systems, while the other targets a UNIFORM/SEMI-CLUSTERED system with two distinct
speeds such that each task has affinity for either only the fast CPUs, only the slow CPUs, or all CPUs. We
evaluated the increases in overheads due to our patches. While both patches increased overheads, such

increases are acceptable for workloads not requiring sub-millisecond response times.

329

CHAPTER 6: CONCLUSION

The behavior of EDF with respect to SRT remains poorly understood. This dissertation extends existing
SRT-optimality results by considering heterogeneity and the broader class of WC schedulers. We have also
experimented with implementing EDF variants targeting special cases of heterogeneous multiprocessors.

In this chapter, we summarize the results of this dissertation in Section 6.1, discuss other works to
which the author contributed that were outside the scope of the dissertation in Section 6.2, acknowledge the

contributions of coauthors in Section 6.3, and discuss future work in Section 6.4.

6.1 Summary of Results

Response-time bounds. In Chapter 3, we derived improved response-time bounds for Unr-WC on UNI-
FORM multiprocessors. We proved that Strong-APA-WC is SRT-optimal under IDENTICAL/ARBITRARY
multiprocessors. We defined Unr-WC for UNRELATED multiprocessors, demonstrated that Unr-WC and
Strong-APA-WC are special cases of Unr-WGC, and proved response-time bounds under Unr-WC that

asymptotically approach infinity as the task system and multiprocessor approach infeasibility.

Implementations. In Chapter 5, we presented two patches to SCHED_DEADLINE, Linux’s EDF implemen-
tation. The goal of these patches is to guarantee bounded response times (assuming an idealized SCHED__
DEADLINE) for special cases of heterogeneous multiprocessors. The first patch targets IDENTICAL/SEMI-
PARTITIONED systems and the second patch targets UNIFORM/SEMI-CLUSTERED systems with two
distinct speeds and affinities such that each task has affinity for either all fast CPUs, all slow CPUs, or all
CPUs. Overheads increase as a result of these patches, but the increase seems acceptable so long as tasks do

not require sub-millisecond granularity.

6.2 Other Work

Other works that were done by the author concurrently with this dissertation but exist outside of its scope

are discussed here. The author considered response-time bounds under Strong-APA-EDF with progression-

330

guaranteed sections and non-preemptive sections (Tang and Anderson, 2020). A progression-guaranteed
section is similar to a non-preemptive section in that the section must continue executing once it starts. Unlike
a non-preemptive section, a task may migrate between processors within a progression-guaranteed section.
It is shown that progression-guaranteed sections can be supported under Strong-APA-EDF without loss
of SRT-optimality, while non-preemptive sections (recall from Section 3.4.1 that Strong-APA-EDF under
non-preemptive sections is not SRT-optimal) are incorporated into the analysis by inflating tasks’ worst-case
execution times.

The remaining other works done by the author are concerned with providing isolation between tasks
or between components comprised of tasks. Isolation mitigates interference, which is the inflation of tasks’
WCETs due to competition for shared resources such as caches, memory, accelerators, efc. Inflated WCETs
may make it impossible to guarantee that real-time requirements are met. Isolation mitigates interference by
partitioning shared resources across space (e.g., concurrently running tasks are guaranteed exclusive access to
distinct cache sets during their execution) and time (e.g., two tasks that access the same cache sets are never
scheduled concurrently).

Most of these works fall under the Mixed-Criticality on Multi-Core (MC?) project (Anderson et al., 2009;
Bakita et al., 2021; Chisholm et al., 2015, 2016, 2017; Kim et al., 2017, 2020; Ward et al., 2013). A goal
of MC? is to provide varying degrees of isolation to tasks belonging to different criticalities (e.g., failure of
a high-criticality task may lead to loss of life, while failure of a low-criticality task may only lead to mild
discomfort or inconvenience). Permitting a lower degree of isolation between low-criticality tasks allows
systems to reap the throughput benefits of shared resources for low-criticality tasks without compromising
the schedulability of high-criticality tasks. The author contributed to MC? by considering support for mode
changes (Chisholm et al., 2017), OS features such as I/O and inter-process communication mechanisms (Kim
et al., 2020), and simultaneous multithreading (Bakita et al., 2021). The author contributed to these works by
the coding of schedulability studies, which evaluate the benefits of MC? by comparing the ratio of randomly
generated synthetic task systems that can meet real-time guarantees under MC? against the ratio of systems
when all tasks are isolated according to the highest criticality level.

Outside of the MC? project was a work by Voronov et al. (2021) concerning the sharing of accelerators
between components (which are composed of tasks) while tasks may have interdependencies. These
interdependencies are often represented as directed graphs such that nodes represent tasks and edges represent

data dependencies. In such systems, the end-to-end response-time bound of a graph is of interest. This work

331

considered merging nodes, i.e., forcing jobs belonging to tasks of merged nodes to execute sequentially, for
the purpose of reducing end-to-end response-time bounds. Merging reduces end-to-end bounds by removing
analytical pessimism that scales with the length of the longest path in a graph; however, merging also reduces
task-level parallelism, which can make the system unschedulable if merging is done too aggressively. This
work presented heuristics for deciding what nodes to merge. The author contributed to coding the evaluation

of these heuristics.

6.3 Acknowledgements

This dissertation would not have been possible without the collaboration of my co-authors. The analysis
of HP-LAG systems in Section 3.2 arose from discussion with Sergey Voronov. Sergey also assisted in the
coding of the evaluation of Unr-WC in Section 3.5.3. Luca Abeni aided us in developing our understanding

of the SCHED_DEADLINE implementation, which we used to design the patches discussed in Chapter 5.

6.4 Future Work

Unanswered questions about Unr-WC. As stated previously, simulations of periodic tasks under Unr-WC
suggest that it may be SRT-optimal. Observed response times did not go to infinity as the slowdown factor
of generated task systems went to O, which is the behavior of the analytical bound in Theorem 3.36. Some
modification to the analysis presented in Section 3.5.2, such as a more cleverly constructed invariant, may be

necessary to demonstrate Unr-WC’s SRT-optimality.

Tighter response-time bounds. As stated in Chapter 1, a well-known shortcoming of existing SRT analysis
for EDF is that analytical response-time bounds are much larger than observed response times (outside of
some constrained systems such as those with only a few processors Devi and Anderson (2008) or harmonic
task systems Ahmed and Anderson (2021)). This remains true of the bounds proven in this dissertation
for WC variants, of which EDF is a special case. A major limitation of our analysis is that deviation is
constrained to be non-negative (recall Definition 3.3). Though this is necessary for the proofs, a consequence
is that our analysis does not account for execution during which the virtual time exceeds the actual time.
At a high level, this means our analysis permits jobs to not begin executing until they are already lagging

behind. This does not match the behavior of EDF, under which (assuming a feasible system) a majority of

332

jobs’ execution generally occurs before their deadlines. Inability to account for such execution in our analysis
is a major source of pessimism that may prevent the derivation of tighter bounds. The author conjectures that

different abstractions are necessary to derive tighter bounds.

Implementing variants in an RTOS. Linux is attractive to develop on top of due to its popularity and
richness of features. These points become drawbacks for formalization, as the frequent introduction of new
features contribute to the kernel’s size and complexity. The distributed runqueue structure in the scheduler is
also difficult to reason about because of the lack of a consistent state agreed upon by all CPUs. This lack
of a consistent state can result in failed migrations, which is generally incompatible with real-time analysis.
These drawback may not apply to an RTOS, as these are typically small and need not scale to as many CPUs
as Linux. For example, in the Zephyr RTOS (Zephyr), all CPUs share a single runqueue (unless Zephyr is
configured for PARTITIONED scheduling). Resources pertaining to symmetric multiprocessing are protected
by a single lock. EDF scheduling is also supported. It may be possible to formally guarantee bounds under

our considered EDF variants if implemented on an RTOS like Zephyr.

333

APPENDIX A: EQUIVALENCE BETWEEN HRT- AND SRT-FEASIBILITY

This appendix concerns the equivalence between HRT-feasibility under implicit deadlines and SRT-
feasibility for all multiprocessor models considered in this dissertation. Because all multiprocessor models
considered in this dissertation are either UNRELATED or special cases of UNRELATED, it is sufficient to
prove this equivalency for UNRELATED multiprocessors.

That an HRT-feasible system is SRT-feasible follows directly from Definitions 2.27 and 2.28. Proving
that an SRT-feasible system is HRT-feasible with implicit deadlines relies on the following definition and
theorems from Adhikari and Adhikari (2022). Note that they reference metric spaces and compactness. A
complete understanding of these concepts is unnecessary for the proofs in this appendix. It is sufficient to

accept that R™ and R™™ are metric spaces.

V Definition A.1 (Definition 2.8.8). Let X be a metric space. A subset A C X is said to be closed if it

contains each of its limit points. A

> Theorem A.1 (Theorem 2.17.7). Subset X C R" is compact if and only if it is closed and bounded.

<

> Theorem A.2 (Corollary 2.17.9). Let X and Y be two metric spaces and f : X — Y be a continuous

map. If X is compact, then f(X) is also so. <

The intuition behind the proof that an SRT-feasible system is also HRT-feasible with implicit deadlines
is as follows. We observe a schedule of an arbitrary task system of interest such that response times are
bounded over a time interval. In Lemma A.3, we record the fraction of time z; ; that processor m; schedules
task 7; within this interval, and show that the matrix X become arbitrarily close to a solution of constraints
(2.14)-(2.16) of UNRELATED-Feasible as the observation time interval increases. In Lemma A.4, we show
that having X approach a solution of (2.14)-(2.16) in the limit guarantees the existence of a solution X*. The
above definition and theorems concerning limit points and continuity are referenced in this step. Because X*
is a solution of (2.14)-(2.16), the task system satisfies UNRELATED-Feasible, and thus is HRT-feasible with

implicit deadlines.

> Lemma A.3. Let task system 7 be SRT-feasible. Consider a schedule of a synchronous periodic

instance of 7 such that each job 7; ; requires C'; units of execution and has response time at most 2 and

334

the system is without early releasing. For k € N, let X(*) ¢ RZ{™ be such that a:() denotes the duration

of time task 7; executes on processor 7; within time interval [0, k - R] divided by & - R. Then

o (k—1)-R
V1 €T Zespf x”_kR[T J (A.1)
Tl'] ™
e ij o Ci kR
V1, €T ze:SpJ'l‘i’jSkrR'[Ti , (A.2)
7Tj ™
vher: Y 4t <10, (A.3)
TjET
Vrjem: Y aly) <10 (A4)
TiET
are true for each & € N. N

Proof. Because no task is scheduled on more than one processor at a time and no processor schedules
more than one task at a time, we have (A.3) and (A.4).
(%)

By the definition of z (*) each processor 7; executes task 7; for a duration of z; :

;5 - k - R time units.

Thus, the total execution provided to 7; by time k - R is
Z spi’j . xl(];) -k-R. (A.5)
T;ET

Because the response time of any job is at most R, any job of task 7; that arrives before time
(k — 1) - R must be complete by time & - R. Because this instance of 7 is synchronous and periodic, there

are {MJ such jobs. Because each job 7; ; requires C; units of execution, at least

0. |=p-n

units of execution must be provided to task 7; by time k - R. Because (A.5) is the execution provided by

time k - R, we have

Zspi’j'xi(,’;)'k'RZ C; - {(k_Tl)RJ

TjET

Dividing both sides by & - R yields (A.1).

335

Because the system is without early releasing, only jobs of task 7; that arrive by time &k - R may
execute by time k - R. Because this instance of 7 is synchronous and periodic, there are P“T—R—‘ such jobs.
Each job executes for at most C; units of execution. Thus, task 7; receives at most

kE-R
Ci- { T —‘ (A.6)

of execution by time k - R. Because (A.5) is the execution provided by time % - R, we have

o ns 5]

TiET

Dividing both sides by & - R yields (A.2). (Il

> Lemma A.4. If a task system 7 is SRT-feasible on an UNRELATED multiprocessor, then 7 is

HRT-feasible with implicit deadlines. N

Proof. 'We prove by showing that a solution to constraints (2.14)-(2.16) from UNRELATED-Feasible
exists.

Let X C RE" be the set of solutions satisfying (2.15) and (2.16). Because X C RY (", each z; ; > 0.
By (2.15), each 2; ; < 1.0. Because each z; ; € [0, 1.0], X is bounded. Because (2.15) and (2.16) are
non-strict inequalities, X is closed. Because X is closed and bounded, by Theorem A.1, X is compact.

Let function f : X — R"” be

T
f(X) - Zﬂ’jET(sp - T1,5 Zﬂ'jEW sp=7 - 2,5 .- ZT(]'ETF sp™ - Tn,j

Because each sp®/ is a constant, f is continuous. Because f is continuous and X is compact, by
Theorem A.2, f(X) is compact. By Theorem A.1, f(X) is closed. By Definition A.1, f(X) contains
each of its limit points.

We next show that [ul Uy ... un]T is limit point of f(X). For each k& € N, let X (k) pe
as defined in Lemma A.3. By (A.3) and (A.4), for each k£ € N, we have X(*) e X. We show that

T T
[m uy .. u} is limit point of f(X) by showing that limy, ., f(X*)) = [m uy ... u] :

336

We have

Ci |(k—1)-R _C; ((k—1)-R
. > _
TR { T; J R (T; !
— 1 O’L (k/‘_l)Ri Cz
TSk R T, k-R
. 0 (k=1)-R
= 1 .
Koo k- R T,
. k—1
= lim

S

i

:
SRS =27

Ea

and
lim -V'RW< lim -(k'RH)
~ im C; 'k‘-R_{_ C;
~ lim C; .k~R
koo k-R T (A.8)
= limg
k—oo T';
_Cl
ST
= Uj.

7

By (A.1), (A2), (A7), and (A.8), we have limy 00 3 5p™ - #™ = u;. By the definition of f,

1/7j
T
we have limy_, o, f(X(k)) = [ul ug ... un] .
T
Because each X(*) € X and f(X) contains its limit points, we have [Ul uy ... Un] € f(X).
Because f(X) is the image of f on X, there exists X* € X such that f(X*) = {ul Uy ... un}
T
By the definition of X, X* satisfies (2.15) and (2.16). Because f(X*) = [u1 uy ... Un:l , by

the definition of f, we have Vr; € 7 : ijew sphd zZ*J = wu,. Thus, X* satisfies (2.14). Because

X* satisfies (2.14)-(2.16), X* satisfies UNRELATED-Feasible. UNRELATED-Feasible is the HRT-

337

feasibility (with implicit deadlines) condition for UNRELATED. Thus, 7 is HRT-feasible with implicit
deadlines. U

338

APPENDIX B: PROOF MODIFICATIONS FOR SCHED_DEADLINE PATCH

This appendix proves response-time bounds for the patched SCHED_DEADLINE detailed in Section 5.2
for IDENTICAL/SEMI-PARTITIONED. We reason about an idealized version of SCHED DEADLINE
where migrations are instantaneous. This ignores issues caused by synchronization such as failing to push a
task from a runqueue due to a change in another runqueue’s state.

The analysis in this appendix is fairly similar to that of HP-L.AG systems. Lemma B.3, to be proven in

this appendix, is analogous to Lemma 3.14, which concerns HP-L.AG systems.

V Definition B.1. Consider 7’ C 7. Let

TG(T/) = {TZ’ et a; = 71'},
TP(T/,T('j) £ e o ={m}},

WP(T’) £ {7rj eEm: ‘TP(T/,’]T]‘)‘ > 0},

i.e., 78(7) denotes the subset of Global tasks in 7/, 78(7/, ;) denotes the subset of tasks in 7’ that are

Partitioned on processor 7, and 77 (7') denotes the processors in 7 that have Partitioned tasks in 7/. A

> Lemma B.1. If a set of tasks 7’ is such that HP(7',¢*) and 7/ C 7qy(t*) for t* € [t — C[yy, 1], then

TG(TI)‘—F ‘WP(T/)‘}. <

at time ¢, we have Y, ¢espi(t) > min {m,

Proof. Let an occupied processor be any processor whose runqueue contains a task in 77.

» Claim B.1.1. The number of occupied processors is non-decreasing over [t — C 1] t]. <

Proof. The only way for an occupied processor to become unoccupied is for its last remaining task
7; of 7/ on its runqueue to be migrated to another runqueue. Because tasks of 7’ are ready and have
highest priority over [t — C (1] t], task 7; is scheduled on this (previously) occupied processor. While
scheduled, task 7; cannot be pulled. The only way for task 7; to be migrated is to be pushed when
returning from being throttled (recall our patch removes bypassing throttling). Under our patch,
task 7; can only be pushed to a processor whose runqueue only contains later-deadline tasks than
the remaining tasks on the original runqueue. Because task 7; is the last task of 7/ on its original

runqueue, any target runqueue being pushed to also has no tasks of 7. Thus, the target runqueue

339

corresponds to an unoccupied processor that becomes occupied once task 7; is pushed to it. Because,
over [t — C 1) t], whenever an occupied processor becomes unoccupied, an unoccupied processor

must become occupied, the number of occupied processors is non-decreasing. |

» Claim B.1.2. We can assume there is at least one unoccupied processor throughout [t — C' 1) t].

<

Proof. Suppose the assumption is false such that there are time instants in [t — C 1) t] such that
there are no unoccupied processors. By Claim B.1.1, there are no unoccupied processors at time .
Then each processor has a task of 7/ on its runqueue. Because tasks of 7/ are ready and have
highest priority at time ¢, each processor schedules a task of 7/ at time ¢. Thus, we would have
> rer €8pi(t) = m, which satisfies the lemma statement. Because the assumption being false

yields the lemma, we can assume for the remainder of the proof that the assumption is true. |
» Claim B.1.3. All tasks of 79(7’) are scheduled throughout [t — C'y), t]. <

Proof. Suppose otherwise that there is simultaneously an unoccupied processor (by the assumption
in Claim B.1.2) and an unscheduled task in 79(7’) with affinity for said processor (tasks in 79(7")
have affinity for all processors in the root__domain). This contradicts that SCHED_DEADLINE

would have scheduled such a task. u
» Claim B.1.4. At time ¢, every processor 7; € ¥ (7') schedules a task 7; € 77 (77, ;). <

Proof. Over [t — Cpy,], a processor 7; € (') will never pull a task in 79(7’) because, by
Claim B.1.3, tasks in 79(7) are already scheduled. Also over [t — Cy),t], a task in 79(7/) will
never be pushed to processor 7; because, by Claim B.1.2, there is always an unoccupied processor
that will be pushed to instead of processor 7;. Thus, the only way 7; € 7 (7") may not schedule a
task ; € 77 (7', ;) at time ¢ is if there is a higher-priority task 7, € 79(7') scheduled on 7 over
[t — C[y), t]. By Claim B.1.3, there is at most one 7, € 79(7') on ;’s runqueue over [t — Cyy, ¢].
Because O}, < Cfy), task 7, must finish at least one job in [t — C/y,t]. Thus, 7y is throttled and
replenished in [t — Cyy,t]. When 7y, is replenished, it will be pushed to an unoccupied processor,

after which some task 7; € 77(7/, ;) will be scheduled until at least time ¢. |

340

By Claims B.1.3 and B.1.4, there are at least |79(7’)| + |n?(7')| scheduled tasks of 7/ at time ¢.

Thus, >,/ cspi(t) > |7G(7")| + |=P(7')|. This satisfies the lemma statement.

> Lemma B.2. For any time ¢ and task set 7/ C T,

Vit <t: Z Vi - devi (t7) > Z Vg - devi(t) | =U(7") - (t—¢").

T ET! T ET!

Proof. Consider a single task 7; € 7/. We have

Vi - devi(t) — u; - (t — t*) = {Definition 3.3}
Vi - max {0, v/u; - (t — vti(t)} — u; - (¢ — %)
= max {0, u; - (t — vt;(¢))} — w; - (¢ — %)
= max {—u; - (t — %), u; - (" — vt;(t))}
< {t—t" >0}
max {0, u; - (t* — vt;(t))}
< {Lemma 3.6}
max {0, u; - (£* — vt;(£*))}
= Ju; - max {0, /u; - (t* — vt;(t*))}
= {Definition 3.3}

Vui - devi(tF).
Summing (B.1) over the tasks in 7/ yields the lemma.

V Definition B.2. For each subset 7/ C T, let

(2W s — U (7).

2m - C !
Bk & <T[1]+ ” [1}>)

U/ 2]
> Lemma B.3. Let [to, ¢1) be a time interval such that

Freomt C 71 VE € [to, t1) 1 Taar(t) = 7™

341

O

(B.1)

and at time ¢g, we have

We have

for any t € [to,t1).

Vit <to: V7' C Tautlt) Z Vg - dev;(t) < BEF.

T ET!

vr! C oot Z Vi - devi(t) < B

€T

(B.2)

(B.3)

Proof. We prove by contradiction. Suppose otherwise that there exist time instants in [to, ¢1) such that

(B.3) is false. By (B.2), (B.3) is true at time ¢(. Let ¢, € [to, 1) denote the latest time instant such that

(B.3) is true over [to, tp). We will show that the existence of ¢y, leads to a contradiction.

» Claim B.3.1. Vt <t,: V7' C 7pe(2) : Zneﬂ VUi - dev;(t) < o7

Proof. By the definition of ¢, we have that

Vt € [to,tp) : V' C 7O Z Vi - dev;(t) < BoF.

TET!

Thus, at time ty, for any 7/ C 7°°™!, we have

v

27 > {Equation (B.4)}

- Z Vui - lim dev;(t")

T ET! =ty

v

{Lemma 3.10}

D Vi - devi(t).

T €T’)

The claim follows from (B.2), (B.4), and (B.5).

342

(B.4)

B.5)

» Claim B.3.2. At time ¢, there exists 70 C 7™t such that both

Vi > 0: 3t* € (tp, tr +) : Z Vi - devi (t*) > B2 and (B.6)

T,ETD

Z \/'ITz devi(tb) = E.{“ (B-7)

TETP

are true. <

Proof. First prove (B.6) by contradiction. Suppose otherwise that

VP C oMty Feh > 00 VE € (ty, by 4+ 1) : Z Vi - devi(t) < B2
T;ETP
Because ty, is defined such that (B.3) is true over [tg, tp) and [to, ty) U (v, tn +) = [to, tp + ©),

we have

V7P C oot Y e [tg by + 1) Z Vi - devi(t%) < B2y
TETP
This contradicts the definition of ¢y as the latest time instant such that (B.3) is true over [to,).

It remains to prove (B.7). We have

Z VUi - dev;(ty) = {Corollary 3.12}

TETP

Z Vi - lim dev;(t%)
TETP trty

> {Equation (B.6)}

DL
Th

343

By Claim B.3.1, we have

D Vi devi(ty) < 5.
T, ETO
Because) v \/u; - dev;(tp) is both upper and lower bounded by 52y, (B.7) is the only possibility.

This completes the proof of the claim. |

» Claim B.3.3. Vt ¢ [tb - C[l],tb] : VT € 7o

deve(t) T+ . U(r®)
= > = 2 max — 2 b e)] — — - .
Ve = 20y (u U(T) +u) e (to — 1) <
Proof. We have

Ve - deve(t)
= > Vui-devi(t) — > i - devy(t)

T,ETP riemP\{re}
> {Lemma B.2}

S Vi devi(te) U () - (b —t) — > /ui - dewy(t)

TiET mieT\{re}

= {Claim B.3.2, Equation (B.7)}

U () (=)= > V- devy(t)

T €T\ {7}

= {Lemma 3.5}

U (b — 1) — Z Vg - dev;(t)

TiE(Tb\{’Te})mTact(t)

> {Claim B.3.1}
Py = U () - (b —) = B ()t

> {Deﬁnition B.2, Lemma 3.15, and (Tb \ {7’3}) cr?cC Tact(tb)}
Eg: — U(Tb) . (tb — t) - BE"L\{TP}

= {Definition B.2}

344

T
[1];_% (U(Tb)) (2Umax _ U(Tb)) _ U(Tb) (ty — 1)
U[n]
Ty +
o an["] (U(Tb \ {Te})) (2Umax - U(Tb \ {Te}))

= {By Definition 2.15, U (7°) = U (7" \ {7e}) + uc}

2m-C

T+ =2

(1] up,
T]” (U \ {7e}) + ue) (2Umax = U (7 \ {7e}) = we) = U () - (o — 1)
T+ 2y
- W () (U~ U ()
T+ 2m)
= g (W = 2U(7) +) e = U(7) - (1 — 1).

[n]

Dividing by u. yields the claim.
» Claim B.34. V7. € 1°: Vt € [ty — Chjyto] : deve(t) > 0and 7 € Tray(?).

Proof. For any 7, € 7°, we have

Ve - deve(t) > {Claim B.3.3}

T[l] +

T”W (2U max — 2U (7°) + we) we — U (7°) - (ty — 1)
[n]

> {U(7°) < Unax}

Ty + 2m Oy
U 2 by . _
Jupy u; —U(7°) - (tp — 1)
> {T[l] > 0}
-C
m 5 mug—U(Tb) (ty — 1)
Ul
> {ue > u[n]}

m'C[l] —U(Tb) (ty — 1)
> {t >t — Cpi}
(m — U(Tb)) (ty — 1)

> {t, >tand m > U(7°)}

345

The claim follows from Lemma 3.1.

» Claim B.3.5. Vt € [t, — Cpyp, ty) : V7o € Ta(t) \ 70

devg(t) T[I] + U[p) b U(Tb)
< U max — 2 - ty —t).
Vie =T fuyy - CUme 2000 S £)
Proof. We have
Vg - devp(t)
= Z Vg - devi(t) — Z Vi - dev;(t)
TeT®U{T,} T ETP
< {Lemma B.2}
Z Vi - devi(t) — Z Vi - devi(ty) + U (°) - (ty — 1)
TeT®U{Te} T, €TP
= {Claim B.3.2, Equation (B.7)}
ST Vi devi(t) = R+ U(T0) - (ty — 1)
T er®U{re}
= {Lemma 3.5}
> Vi - devy(t) — B2 + U () - (ty — 1)
T €(TPU{m })NTace (2)
< {Claim B.3.1}
(PU{r) ma(®) ~ B T U(r*) - (ts 1)
= {7y € Tau(t) and, by Claim B.3.4, 7° C 7, (£) }
EbLU{Te} a BEE’J + U(Tb) (to — 1)
= {Definition B.2}
oy UETUAT) U - U U)
T[l] + 2m-Cy
~ g U0) QU —U() + U () - (=1

346

= {By Definition 2.15, U (° U {7}) = U (") + u¢}

Ty + 2
—— (U(°) +) (2Umax = U(7) = ur)
[n]
T+ ‘272‘[6;[1]
gy (U() (U = U () + U () (10—
Ty + 25 .
= T{n] (2UmaX — 2U(T) - uz) Up + U(Tb) (ty —).

Dividing by u, yields the claim.
» Claim B.3.6. Vt € [t, — Cyp, to] : HP(7°,1).

Proof. Forany t € [ty — C|y), tp), consider any task 7. € 7 and 7y € Tt (t) \ 7°. We have

dev,(t)
N
> {Claim B.3.3}
2m-C
T 1] + T (1] U b
I (90— 20 ()) —) (4o — 1)
[n] e
2m-C 2m-C
T+ = Th+= % U(®)
_ M (2U ax — 2U (7°)) + Ly, (ty — 1)
2upy) 2upy) Ue
2m-C
Ty + == b
)+ = b U(r)
=——F—— (2Umax — 2 - - -
g (20— 2067 —) + 2
2m-C
T[I] + u[n][ll (u o) B U(b) i + i (t B t)
2uy) c ¢ 4 Ue Uy b

> {Claim B.3.5}

devy(t) Ty Zoe 1 1
4 . —U(r -4 = —
\/'LTE QU[n} (u Ug) () (ue Ug) (tb t)

> {ue +ug > 2u[n}}

devy(t) 2m - C[l] b (1 1 >
+ T+ —H U — =) (ot
Ve g Ufp) () (f 1)

Ue Uyp
2 11 b
>3—2>—+—m>U(r"),and Cpyy > tp — t
U[n} Ue Uyp
devy(t)
— + Ty
Ja T

347

By Lemma 3.3 (recall that with pp;(t) = d;(t), by Definition 2.20, ¢ = 0), we have pp.(tp) <

pp¢(ty). The claim follows by Definition 3.4.
» Claim B.3.7. > . cspi(ty) > U(r®). <

Proof. By Claim B.3.4, any task in 7° is ready at any t € [t, — Cpyp, o), Le., 0 C Trgy(t).
Additionally, by Claim B.3.6, tasks in 7° have the highest priorities at any ¢ € [t, — C [1]> t), i-e.,
HP(7°,t). By Lemma B.1, we have > rem ¢Spi(ty) > min {m, ’TG (Tb)} + |7F (Tb)’}. At least

one of the following cases must apply of > csp;(ts)-

<« CaseB.3.1. > . cspi(ty) > m. >

We have

Z cspi(ty) > m

TETP
=) 10

TjET

= {Under IDENTICAL, capacity sp¥/) is 1.0}

3 s

TjET

v

{Under ACS. sched_rt_runtime_us < 1‘0}

sched_rt_period_us

sched_rt_runtime_us .
— = = . Z sp(J)

sched_rt_period_us
m;ET

v

{Equation (4.1) of ACS}

> w

T; ETact (tb)

{Tb - 7—act(tb) }

> w

TETP

Y

= {Definition 2.15}

U(Tb). ¢

348

<« CaseB3.2. . cspi(ty) > ‘TG(Tb)} + |7 (7°) ’ >

We have

Z cspi(ty)

T ETP

)+ 17 ()]

IR L(]

T, €76 (7h)

AV

v

{Under SCHED_DEADLINE, each u; < 1.0}

Z U; + ‘WP(TbH

;€76 (7P)

=Y w0

T,€70(7P) el (7P)

> { Under ACS, sched_rt_runt.ime_us <10

sched_rt_period_us
sched_rt_runtime_us
> we 3 Shelsrrtine

sched_rt_period_us

7,€7G(7P) mienP(7P)

> {Equation (5.1) of patched ACS}

Sour Y [X w

T, €76 (D) m;enP(rP) \7i: as={m;}

= {Under SEMI-PARTITIONED, 7; € 76 (Tb) or oy; = {m;} for some 7; € WP(Tb)}

> w

T, ETP

= {Definition 2.15}

U(Tb). ¢

In either case, we have) s cspi(ty) > U(r®). [

By Lemma 3.13 and Claim B.3.4, for any task 7. € 7°, there exists 1) > 0 such that V¢ € [ty, t, +)) :

Ve - deve(t) < \/ue - deve(ty) + (t — ty) - (ui — cspe(ty)) -

349

Summing over the tasks in 7°, we have V¢ € [ty, tp + 1) :

" Ve deve(t) < Y Ve - deve(ty) + (£ — t) - (u; — cspe(t))

TeETP TeETP

= Z Ve - deve(ty) | + (t —tp) Z (ui — cspe(ty))

Te€TP Te€ETP

= {Claim B.3.2, Equation (B.7)}

B2 (=) | D2 (i = cspe(ty))

| TeE€T®

= {Definition 2.15}

521{4 + (t —tp) U(Tb> — Z cspe(tp)

TeETP

< {t—tp > 0and, by Claim B.3.7, U(Tb) — Z cspe(ty) <0

TeETP
DL
Th
This contradicts (B.6) of Claim B.3.2. This contradiction completes the proof of Lemma B.3. (|

The proof of Lemma B.4 below is the same as that of the proof of Lemma 3.16 except with 3, replaced

by 427 and Lemma 3.14 replaced by Lemma B.3.
> Lemma B.4. Under the patched ACS, we have
Vr' Cmaalt) : YVt - devi(t) < B2F
TET!
for any time ¢. <

The proof of Theorem B.5 is the same as that of the proof of Theorem 3.17 except with 3.+ replaced by

BPF and Lemma 3.16 replaced by Lemma B.4.

> Theorem B.5. Under the ACS, the response time of any task 7; is at most

2m-Cy
Uln]

QU[n]

T[l] +
Ti+

(2Umax — uz) . <

350

BIBLIOGRAPHY

Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systems. In 2013
IEEE 34th Real-Time Systems Symposium, page 4, 1998.

Luca Abeni, Giuseppe Lipari, and Juri Lelli. Constant bandwidth server revisited. ACM SIGBED Review, 11
(4):19-24, 2015.

Luca Abeni, Giuseppe Lipari, Andrea Parri, and Youcheng Sun. Multicore CPU reclaiming: Parallel or
sequential? In Proceedings of the 31st Annual ACM Symposium on Applied Computing, page 1877-1884,
2016.

Avishek Adhikari and Mahima Ranjan Adhikari. Basic Topology 1: Metric Spaces and General Topology.
Springer Singapore, 2022.

Sara Afshar, Farhang Nemati, and Thomas Nolte. Resource sharing under multiprocessor semi-partitioned
scheduling. In 2012 IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 290-299, 2012.

Shareef Ahmed and James H. Anderson. Tight tardiness bounds for pseudo-harmonic tasks under global-
EDF-like schedulers. In 33rd Euromicro Conference on Real-Time Systems, volume 196, pages 11:1-11:24,
2021.

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. An empirical
survey-based study into industry practice in real-time systems. In 2020 IEEE Real-Time Systems Symposium,
pages 3—11, 2020.

Tanya Amert, Sergey Voronov, and James H. Anderson. OpenVX and real-time certification: The troublesome
history. In 2019 IEEE Real-Time Systems Symposium, pages 312-325, 2019.

James H. Anderson, Sanjoy Baruah, and Bjorn B. Brandenburg. Multicore operating-system support for
mixed criticality. In Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification, 2009.

James H. Anderson, Jeremy P. Erickson, UmaMaheswari C. Devi, and Benjamin N. Casses. Optimal
semi-partitioned scheduling in soft real-time systems. In 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 1-10, 2014.

Joshua Bakita, Shareef Ahmed, Sims Hill Osborne, Stephen Tang, Jingyuan Chen, F. Donelson Smith, and
James H. Anderson. Simultaneous multithreading in mixed-criticality real-time systems. In 202/ IEEE
27th Real-Time and Embedded Technology and Applications Symposium, pages 278-291, 2021.

Sanjoy Baruah. Feasibility analysis of preemptive real-time systems upon heterogeneous multiprocessor
platforms. In 25th IEEE International Real-Time Systems Symposium, pages 37-46, 2004.

Sanjoy Baruah and Bjorn B. Brandenburg. Multiprocessor feasibility analysis of recurrent task systems with
specified processor affinities. In 2013 IEEE 34th Real-Time Systems Symposium, pages 160-169, 2013.

Sanjoy Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-Spaccamela. ILP-based approaches
to partitioning recurrent workloads upon heterogeneous multiprocessors. In 2016 28th Euromicro Confer-
ence on Real-Time Systems, pages 215-225, 2016.

351

Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):
842-844, 1957.

Giovanni Buzzega, Gianluca Nocetti, and Manuela Montangero. Characterizing G-EDF scheduling tardiness
with uniform instances on multiprocessors. In Proceedings of the 31st International Conference on
Real-Time Networks and Systems, page 45-55, 2023.

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. Task splitting and load balancing of dynamic
real-time workloads for semi-partitioned EDF. IEEE Transactions on Computers, 70(12):2168-2181,
2021.

Felipe Cerqueira, Arpan Gujarati, and Bjorn B. Brandenburg. Linux’s processor affinity API, refined: Shifting
real-time tasks towards higher schedulability. In 2014 IEEE Real-Time Systems Symposium, pages 249-259,
2014.

Micaiah Chisholm, Bryan C. Ward, Namhoon Kim, and James H. Anderson. Cache sharing and isolation
tradeoffs in multicore mixed-criticality systems. In 2015 IEEE Real-Time Systems Symposium, pages
305-316, 2015.

Micaiah Chisholm, Namhoon Kim, Bryan C. Ward, Nathan Otterness, James H. Anderson, and F. Donelson
Smith. Reconciling the tension between hardware isolation and data sharing in mixed-criticality, multicore
systems. In 2016 IEEE Real-Time Systems Symposium, pages 57-68, 2016.

Micaiah Chisholm, Namhoon Kim, Stephen Tang, Nathan Otterness, James H. Anderson, F. Donelson Smith,
and Donald E. Porter. Supporting mode changes while providing hardware isolation in mixed-criticality
multicore systems. In Proceedings of the 25th International Conference on Real-Time Networks and
Systems, page 58-67, 2017.

Hoon Sung Chwa, Jaebaek Seo, Jinkyu Lee, and Insik Shin. Optimal real-time scheduling on two-type
heterogeneous multicore platforms. In 2015 IEEE Real-Time Systems Symposium, pages 119-129, 2015.

Will Deacon. Asymmetric 32-bit SoCs. https://github.com/torvalds/linux/blob/
master/Documentation/arch/arm64/asymmetric—-32bit.rst, 2021. Online; accessed
20 September 2023.

Deadline Task Scheduling. Deadline task scheduling. https://github.com/torvalds/linux/
blob/master/Documentation/scheduler/sched-deadline.rst. Online; accessed 03
June 2020.

UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under global EDF scheduling on a
multiprocessor. Real-Time Systems, 38(2):133—-189, 2008.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow
problems. Journal of the ACM, 19(2):248-264, 1972.

Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of multiprocessor tasksets.
In Ist International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems,
pages 6-11, 2010.

Jeremy P. Erickson and James H. Anderson. Response time bounds for G-EDF without intra-task precedence
constraints. In Proceedings of the 15th International Conference on Principles of Distributed Systems,
page 128-142, 2011.

352

https://github.com/torvalds/linux/blob/master/Documentation/arch/arm64/asymmetric-32bit.rst
https://github.com/torvalds/linux/blob/master/Documentation/arch/arm64/asymmetric-32bit.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst

Jeremy P. Erickson and James H. Anderson. Fair lateness scheduling: Reducing maximum lateness in
G-EDF-like scheduling. In 2012 24th Euromicro Conference on Real-Time Systems, pages 3—12, 2012.

Jeremy P. Erickson, UmaMaheswari C. Devi, and Sanjoy Baruah. Improved tardiness bounds for global EDF.
In 2010 22nd Euromicro Conference on Real-Time Systems, pages 14-23, 2010.

Shelby Funk, Joél Goossens, and Sanjoy Baruah. On-line scheduling on uniform multiprocessors. In
Proceedings 22nd IEEE Real-Time Systems Symposium, pages 183—-192, 2001.

Arpan Gujarati, Felipe Cerqueira, and Bjorn B. Brandenburg. Schedulability analysis of the linux push
and pull scheduler with arbitrary processor affinities. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 69-79, 2013.

Arpan Gujarati, Felipe Cerqueira, and Bjorn B. Brandenburg. Multiprocessor real-time scheduling with
arbitrary processor affinities: from practice to theory. Real-Time Systems, 51:440-483, 2014.

Hardkernel. Hardkernel linux. https://github.com/hardkernel/linux. Online; accessed 2
May 2024.

Godfrey H. Hardy, John E. Littlewood, and George Pdlya. Inequalities. Cambridge University Press, 1952.

Clara Hobbs, Zelin Tong, Joshua Bakita, and James H. Anderson. Statically optimal dynamic soft real-time
semi-partitioned scheduling. Real-Time Systems, 57(1-2):97-140, 2021.

Shinpei Kato and Nobuyuki Yamasaki. Semi-partitioned fixed-priority scheduling on multiprocessors. In
2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 23-32, 2009.

Namhoon Kim, Micaiah Chisholm, Nathan Otterness, James H. Anderson, and F. Donelson Smith. Allowing
shared libraries while supporting hardware isolation in multicore real-time systems. In 2017 IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 223-234, 2017.

Namhoon Kim, Stephen Tang, Nathan Otterness, James H. Anderson, F. Donelson Smith, and Donald E.
Porter. Supporting I/0O and IPC via fine-grained OS isolation for mixed-criticality real-time tasks. Real-Time
Systems, 56(4):349-390, 2020.

Juri Lelli. taskgen. https://github.com/jlelli/taskgen, 2014. Online; accessed 23 Oct 2020.

Juri Lelli. sched-deadline-tests. https://github.com/jlelli/sched-deadline-tests, 2016.
Online; accessed 27 June 2024.

Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline scheduling in the linux kernel.
Software: Practice and Experience, 46(6):821-839, 2016.

Hennadiy Leontyev and James H. Anderson. Generalized tardiness bounds for global multiprocessor
scheduling. In 28th IEEFE International Real-Time Systems Symposium, pages 413-422, 2007.

Jifi MatouSek and Bernd Gértner. Understanding and Using Linear Programming. Springer, 2007.

Steven Rostedt. sched_deadline. https://github.com/rostedt/sched_deadline, 2018. On-
line; accessed 27 June 2024.

Rob Roy and Venkat Bommakanti. ODROID-XU4 User Manual. Hardkernel, 2017.

rt-app. rt-app. https://github.com/scheduler-tools/rt—-app, 2009. Online; accessed 23
Oct 2020.

353

https://github.com/hardkernel/linux
https://github.com/jlelli/taskgen
https://github.com/jlelli/sched-deadline-tests
https://github.com/rostedt/sched_deadline
https://github.com/scheduler-tools/rt-app

Claudio Scordino, Luca Abeni, and Juri Lelli. Energy-aware real-time scheduling in the Linux kernel. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, page 601-608, 2018.

Anand Srinivasan and James H. Anderson. Optimal rate-based scheduling on multiprocessors. Journal of
Computer and System Sciences, 72(6):1094-1117, 2006.

Roger Stafford. Random vectors with fixed sum. https://www.mathworks.com/matlabcentral/
fileexchange/9700-random-vectors—-with-fixed-sum, 2024. Online; accessed 17 May
2024.

Ion Stoica and Hussein Abdel-Wahab. Earliest eligible virtual deadline first: A flexible and accurate
mechanism for proportional share resource allocation. Technical report, 1995.

Stephen Tang. Identical/semi-partitioned patch. https://www.cs.unc.edu/~sytang/
semipartitioned_v5.4.69.patch,a.

Stephen Tang. Uniform/semi-clustered patch. https://www.cs.unc.edu/~sytang/uscedf.
patch, b.

Stephen Tang and James H. Anderson. Towards practical multiprocessor EDF with affinities. In 4/st IEEE
Real-Time Systems Symposium, pages 89-101, 2020.

Stephen Tang, Sergey Voronov, and James H. Anderson. GEDF tardiness: Open problems involving uniform
multiprocessors and affinity masks resolved. In 37st Euromicro Conference on Real-Time Systems, volume
133, pages 13:1-13:21, 2019.

Stephen Tang, James H. Anderson, and Luca Abeni. On the defectiveness of SCHED_DEADLINE w.r.t.
tardiness and affinities, and a partial fix. In 2021 29th International Conference on Real-Time Networks
and Systems, pages 46-56, 2021a.

Stephen Tang, Sergey Voronov, and James H. Anderson. Extending EDF for soft real-time scheduling on
unrelated multiprocessors. In 2021 IEEE Real-Time Systems Symposium, pages 253-265, 2021b.

Ismail H. Toroslu and Goktiirk Ugoluk. Incremental assignment problem. Information Sciences, 177:
1523-1529, 2007.

Paolo Valente. Using a lag-balance property to tighten tardiness bounds for global EDF. Real-Time Systems,
52:486-561, 2016.

Sergey Voronov and James H. Anderson. An optimal semi-partitioned scheduler assuming arbitrary affinity
masks. In 2018 IEEE Real-Time Systems Symposium, pages 408—420, 2018.

Sergey Voronov, Stephen Tang, Tanya Amert, and James H. Anderson. Al meets real-time: Addressing
real-world complexities in graph response-time analysis. In 2021 IEEE Real-Time Systems Symposium,
pages 82-96, 2021.

Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson. Making shared caches
more predictable on multicore platforms. In 2013 25th Euromicro Conference on Real-Time Systems, pages
157-167, 2013.

Reinhold P. Weicker. Dhrystone: A synthetic systems programming benchmark. Communications of the
ACM, 27(10):1013-1030, 1984.

354

https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.cs.unc.edu/~sytang/semipartitioned_v5.4.69.patch
https://www.cs.unc.edu/~sytang/semipartitioned_v5.4.69.patch
https://www.cs.unc.edu/~sytang/uscedf.patch
https://www.cs.unc.edu/~sytang/uscedf.patch

Kecheng Yang and James H. Anderson. Optimal GEDF-based schedulers that allow intra-task parallelism
on heterogeneous multiprocessors. In 2014 IEEE 12th Symposium on Embedded Systems for Real-time
Multimedia, pages 30-39, 2014.

Kecheng Yang and James H. Anderson. On the soft real-time optimality of global EDF on multiprocessors:
From identical to uniform heterogeneous. In 2015 IEEE 21st International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 1-10, 2015.

Kecheng Yang and James H. Anderson. On the soft real-time optimality of global EDF on uniform multipro-
cessors. In 2017 IEEE Real-Time Systems Symposium, pages 319-330, 2017.

Zephyr. Zephyr. https://github.com/zephyrproject-rtos/zephyr. Online; accessed 21
May 2024.

Peter Zijlstra. An update on real-time scheduling on Linux. http://archives.ecrts.org/
fileadmin/files_ecrtsl7/ecrtsl7-peterz.pdf, 2017. Online; accessed 27 June 2023.

355

https://github.com/zephyrproject-rtos/zephyr
http://archives.ecrts.org/fileadmin/files_ecrts17/ecrts17-peterz.pdf
http://archives.ecrts.org/fileadmin/files_ecrts17/ecrts17-peterz.pdf

	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Problem: EDF (and its Derivatives) are Poorly Understood
	An Orthogonal Open Problem: Loose Response-Time Bounds
	Thesis Statement
	Contributions
	Improving SRT Analysis for UNIFORM and Extending to IDENTICAL/ARBITRARY
	WC Variant and Response-Time Bounds under UNRELATED
	Patching SCHED_DEADLINE for IDENTICAL/SEMI-PARTITIONED and 2-Type UNIFORM/SEMI-CLUSTERED

	Organization

	Theoretical Background
	Task Model
	Scheduler Classifications
	Optimization Review
	Related Work
	Work under IDENTICAL
	Work under IDENTICAL/ARBITRARY
	Work under UNIFORM
	Work under UNRELATED

	Chapter Summary

	Response-Time Bounds
	Deviation
	Scheduling
	Response Times
	Evolution
	Proof Strategy

	Analysis under HP-LAG Systems
	Analysis under UNIFORM
	Analysis under IDENTICAL/ARBITRARY
	Counterexamples

	Analysis under UNRELATED
	Defining the Variant
	Interpreting Unr-WC
	Ufm-WC is a Special Case of Unr-WC
	Strong-APA-WC is a Special Case of Unr-WC

	Response-Time Bounds
	Evaluation

	Chapter Summary

	SCHED_DEADLINE Background
	User-Space API
	Scheduling Policies
	Suspending and Yielding
	Affinities
	Priority Inheritance Mutexes
	Admission Control
	DVFS

	Common Data Structures
	Scheduling Class Internals
	Scheduling and Suspending
	Waking
	Ticks
	Yielding
	Change Pattern
	Policy Changes and Priority Inheritance
	Affinities
	Stop Class

	SCHED_DEADLINE
	Data Structures
	Multiprocessor Scheduling
	Enqueuing and Dequeuing
	Pushes and Pulls
	Suspending and Waking
	Other Scheduling Class Functions

	CBS
	Admission Control
	Affinities
	Asymmetric Capacities
	Priority Inheritance
	GRUB
	DVFS
	Core Scheduling

	Chapter Summary

	Modifying SCHED_DEADLINE
	Version Differences
	IDENTICAL/SEMI-PARTITIONED
	Bypassing Throttles
	Pushing to the Latest CPU
	ACS
	Dynamic Fine-Grained Affinities
	Bounded Response Times
	Evaluation

	UNIFORM/SEMI-CLUSTERED
	Hardware platform
	Scheduler
	Ufm-SC-EDF is a Special Case of Unr-WC
	Converting Speeds between UNRELATED and UNIFORM/SEMI-CLUSTERED
	Priority Points and Deadlines
	Profit
	Connected Components
	Relabeling
	Proving Ufm-SC-EDF is a Special Case of Unr-WC

	ACS Conditions
	Implementation
	Data structures
	Scheduling and Migration Changes
	ACS

	Evaluation

	Chapter Summary

	Conclusion
	Summary of Results
	Other Work
	Acknowledgements
	Future Work

	Equivalence Between HRT- and SRT-Feasibility
	Proof Modifications for SCHED_DEADLINE Patch
	BIBLIOGRAPHY

