
EXTENDING SOFT REAL-TIME ANALYSIS FOR HETEROGENEOUS
MULTIPROCESSORS

Stephen Tang

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2024

Approved by:

James H. Anderson

F. Donelson Smith

Samarjit Chakraborty

Luca Abeni

Sanjoy Baruah

©2024
Stephen Tang

ALL RIGHTS RESERVED

ii

ABSTRACT

Stephen Tang: Extending Soft Real-Time Analysis for Heterogeneous Multiprocessors
(Under the direction of James H. Anderson)

Though prior work has established the Soft Real-Time (SRT)-optimality of Earliest-Deadline-First (EDF)

variants on multiprocessors with identical and uniform speeds, these multiprocessor models preclude features

such as processor affinities and are insufficient to describe modern multiprocessors, which have grown

increasingly heterogeneous. This has had practical consequences, such as the inability of Linux’s SCHED_

DEADLINE admission-control system to make SRT guarantees in the presence of processor affinities or on

heterogeneous machines. This fact highlights the need to extend theoretical results on EDF to more general

multiprocessor models.

This dissertation fulfills this need by extending existing SRT analysis of window-constrained (WC)

schedulers (of which EDF is a member) to heterogeneous multiprocessors. We derive improved response-time

bounds for WC schedulers under uniform multiprocessors. We prove that a WC extension of an EDF variant

called Strong-APA-EDF is SRT-optimal under arbitrary affinities (so long as processor speeds are identical).

We define a WC scheduler variant targeting unrelated multiprocessors and derive response-time bounds.

Additionally, we present patches for SCHED_DEADLINE with the purpose of restoring SRT guarantees for

certain special cases of heterogeneous multiprocessors. These special cases are selected such that the increase

in overheads due to our patches is manageable.

iii

ACKNOWLEDGEMENTS

This dissertation is the result of the combined support of many people. This dissertation would never

have been completed without the guidance of my adviser, Jim Anderson. Jim has fundamentally shaped my

approaches to research, technical writing, presenting, and teaching. I would have given up on this dissertation

countless times if not for Jim’s continued encouragement that there is something worthwhile written here.

In taking me on as a student, Jim has given me the opportunity to study a problem whose solution I feel

is somehow ‘fundamental.’ Though I ultimately failed to close this problem, I am grateful that I got to

experience the feeling of brushing up against a fundamental solution.

I am grateful for my committee members, Don Smith, Samarjit Chakraborty, Luca Abeni, and Sanjoy

Baruah. I am grateful for your patience in serving for much longer than I originally expected. I am grateful

for your diligent feedback on this document, which is much longer than I originally intended.

I thank the current and former students with whom I have been lucky to be a coauthor: Namhoon Kim,

Micaiah Chisholm, Sergey Voronov, Nathan Otterness, Tanya Amert, Joshua Bakita, Shareef Ahmed, Sims

Hill Osbourne, and Jingyuan Chen. Namhoon and Micaiah mentored me when I knew nothing as a fresh

graduate student. I still don’t know anything, but the effort is appreciated. I was fortunate to share both an

office and an apartment with Sergey. Outside of being the student who I have collaborated with the most, I

am infinitely grateful to you for convincing me to adopt Cola the cat.

I owe much to current and former UNC staff and faculty, especially Jodie Gregoritsch, Denise E. Kenney,

Missy Wood, Jasleen Kaur, Don Porter, and the late Bil Hays.

I am grateful to my board game group of Tommy, Sam, Andy, and Josh. These sessions were welcome

distractions during the times when research was frustrating. Please finally finish your Baldur’s Gate campaign.

Words are insufficient to express the support I have received from my family. To my nephew, Alex,

consulting with you over the phone has been invaluable for my research. I look forward to the discoveries

you will surely make in the future.

Funding for this research was provided by NSF grants CNS 1409175, CNS 1563845, CNS 1717589,

CPS 1446631, CPS 1837337, CPS 2038855, and CPS 2038960, AFOSR grant FA9550-14-1-0161, ARO

iv

grants W911NF-14-1-0499, W911NF-17-1-0294, and W911NF-20-1-0237, ONR grant N00014-20-1-2698,

and funding from General Motors.

v

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiv

LIST OF SYMBOLS . xv

1 Introduction . 1

1.1 Problem: EDF (and its Derivatives) are Poorly Understood . 6

1.2 An Orthogonal Open Problem: Loose Response-Time Bounds . 9

1.3 Thesis Statement . 9

1.4 Contributions . 10

1.4.1 Improving SRT Analysis for UNIFORM and Extending to IDENTICAL/ARBITRARY 10

1.4.2 WC Variant and Response-Time Bounds under UNRELATED . 10

1.4.3 Patching SCHED DEADLINE for IDENTICAL/SEMI-PARTITIONED
and 2-Type UNIFORM/SEMI-CLUSTERED . 10

1.5 Organization . 10

2 Theoretical Background . 12

2.1 Task Model . 12

2.2 Scheduler Classifications . 21

2.3 Optimization Review . 24

2.4 Related Work . 29

2.4.1 Work under IDENTICAL . 30

2.4.2 Work under IDENTICAL/ARBITRARY. 32

2.4.3 Work under UNIFORM . 36

2.4.4 Work under UNRELATED . 37

vi

2.5 Chapter Summary . 38

3 Response-Time Bounds . 39

3.1 Deviation . 39

3.1.1 Scheduling . 45

3.1.2 Response Times . 47

3.1.3 Evolution . 49

3.1.4 Proof Strategy . 57

3.2 Analysis under HP-LAG Systems . 60

3.3 Analysis under UNIFORM . 70

3.4 Analysis under IDENTICAL/ARBITRARY . 72

3.4.1 Counterexamples . 75

3.5 Analysis under UNRELATED . 79

3.5.1 Defining the Variant . 81

3.5.1.1 Interpreting Unr-WC. 82

3.5.1.2 Ufm-WC is a Special Case of Unr-WC . 88

3.5.1.3 Strong-APA-WC is a Special Case of Unr-WC . 92

3.5.2 Response-Time Bounds . 97

3.5.3 Evaluation . 118

3.6 Chapter Summary . 121

4 SCHED DEADLINE Background . 122

4.1 User-Space API . 122

4.1.1 Scheduling Policies . 123

4.1.2 Suspending and Yielding . 125

4.1.3 Affinities . 125

4.1.4 Priority Inheritance Mutexes . 128

4.1.5 Admission Control . 129

4.1.6 DVFS . 130

vii

4.2 Common Data Structures . 131

4.3 Scheduling Class Internals . 143

4.3.1 Scheduling and Suspending . 144

4.3.2 Waking . 147

4.3.3 Ticks . 151

4.3.4 Yielding . 153

4.3.5 Change Pattern . 153

4.3.6 Policy Changes and Priority Inheritance . 155

4.3.7 Affinities . 162

4.3.8 Stop Class . 169

4.4 SCHED DEADLINE. 176

4.4.1 Data Structures . 176

4.4.2 Multiprocessor Scheduling . 181

4.4.2.1 Enqueuing and Dequeuing . 183

4.4.2.2 Pushes and Pulls . 186

4.4.2.3 Suspending and Waking . 192

4.4.2.4 Other Scheduling Class Functions . 194

4.4.3 CBS . 196

4.4.4 Admission Control . 211

4.4.5 Affinities . 215

4.4.6 Asymmetric Capacities . 216

4.4.7 Priority Inheritance . 219

4.4.8 GRUB . 220

4.4.9 DVFS . 223

4.4.10 Core Scheduling . 230

4.5 Chapter Summary . 240

5 Modifying SCHED DEADLINE . 245

viii

5.1 Version Differences . 245

5.2 IDENTICAL/SEMI-PARTITIONED . 246

5.2.1 Bypassing Throttles . 246

5.2.2 Pushing to the Latest CPU . 249

5.2.3 ACS . 251

5.2.4 Dynamic Fine-Grained Affinities . 252

5.2.5 Bounded Response Times . 253

5.2.6 Evaluation . 255

5.3 UNIFORM/SEMI-CLUSTERED . 260

5.3.1 Hardware platform . 260

5.3.2 Scheduler . 261

5.3.3 Ufm-SC-EDF is a Special Case of Unr-WC . 267

5.3.3.1 Converting Speeds between UNRELATED and UNIFORM/SEMI-
CLUSTERED . 267

5.3.3.2 Priority Points and Deadlines . 267

5.3.3.3 Profit. 269

5.3.3.4 Connected Components . 272

5.3.3.5 Relabeling . 275

5.3.3.6 Proving Ufm-SC-EDF is a Special Case of Unr-WC . 280

5.3.4 ACS Conditions . 292

5.3.5 Implementation. 307

5.3.5.1 Data structures . 308

5.3.5.2 Scheduling and Migration Changes . 310

5.3.5.3 ACS . 317

5.3.6 Evaluation . 318

5.4 Chapter Summary . 329

6 Conclusion . 330

6.1 Summary of Results . 330

ix

6.2 Other Work . 330

6.3 Acknowledgements . 332

6.4 Future Work . 332

A Equivalence Between HRT- and SRT-Feasibility . 334

B Proof Modifications for SCHED DEADLINE Patch . 339

BIBLIOGRAPHY . 351

x

LIST OF FIGURES

1.1 SRT: EDF versus fixed-priority. 4

2.1 Deadline miss without waiting for zero-lag time. 15

2.2 Affinity graph example. 17

2.3 CBS example. 20

2.4 Two configurations. 23

2.5 Matching example. 26

2.6 Non-canonical and canonical configurations. (In this and in later affinity graphs,
faster processors have larger sizes.) . 28

2.7 Weak-APA-EDF versus Strong-APA-EDF . 33

3.1 lag1(t)
u1

within T 1 of t− d1(t). 41

3.2 lag1(t)
u1

outside of T 1 from t− d1(t). 42

3.3 Reducing c1,1 increases job τ3,1’s response time.. 43

3.4 Proof strategy. 59

3.5 Example of an alternating path in a bipartite graph. 74

3.6 Counterexample affinity graphs. 76

3.7 Weak-APA-EDF counterexample. 77

3.8 Non-preemptivity counterexample. 78

3.9 Both configurations violate HP-LAG in Lemma 3.24. 80

3.10 Scheduling of tasks with 0 profit. 84

3.11 Example 3.7 illustration. 84

3.12
(⌊

t
T i

⌋
+ 2
)
T i and t+ T i. 87

3.13 Symmetric difference of matchings. 93

3.14 Cases 3.28.2 and 3.28.3. 93

3.15 Triangle properties. 108

3.16 Interpreting a boxplot. 119

xi

3.17 Response time against s`. Captions indicate (n,m). 120

4.1 rb_root_cached example. 133

4.2 Per-CPU runqueues. 136

4.3 Runqueue rq is constructed of sub-runqueues.. 137

4.4 sched_domain and root_domain illustrations for Example 4.2. 142

4.5 push_cpu_stop() example. 171

4.6 cpudl illustration. 182

4.7 Class change of throttled task. 185

4.8 clock_task example. 197

4.9 runtime vs. ideal budget. 200

4.10 Out-of-deadline-order execution at time 40. 207

4.11 Unbounded response times due to dynamic tasks . 214

4.12 Example 4.10 illustrations. 216

4.13 Example 4.10 schedule. 217

4.14 Priority inheritance. 220

4.15 GRUB-PA schedule. 226

4.16 clock_pelt example. 227

4.17 core_tree example. 234

4.18 Core scheduling example. 236

4.19 Consequence of not incrementing core_task_seq. 241

4.20 Correctly incremented core_task_seq. 243

5.1 Unbounded response times due to bypassing throttling.. 247

5.2 Pushes can cause priority inversions. 250

5.3 Dynamic affinities can starve tasks. 252

5.4 Alternating paths under SEMI-PARTITIONED. 254

5.5 Forced Throttle Duration. 257

5.6 Push Durations. 258

xii

5.7 Tardiness. 259

5.8 Samsung Exynos 5422. 260

5.9 Augmented configuration X̄(2). 263

5.10 USE 1 as an extension of Strong-APA-EDF. 266

5.11 Illustration of a connected component. 273

5.12 Relabeling example. 276

5.13 Tasks τi1 and τi2 exist in distinct connected components. 282

5.14 Component with two tasks in τ glob that are incident on two edges. Dots (•) denote
edges in M̄opt(t). 283

5.15 All possible cases for connected components in M̄USE(t)∆M̄opt(t). Edges marked
with • denote edges in M̄USE(t), while unmarked edges denote edges in M̄opt(t). 286

5.16 Step 1: initially, no tasks are allocated (X← 0). 301

5.17 Step 2: each τi ∈ τ big
act (t) is allocated ui of capacity in X. 302

5.18 Step 3: each τi ∈ τ glob
act (t) is allocated ubig

i of capacity in X. 303

5.19 Step 4: each τi ∈ τLIT
act (t) is allocated ui of capacity in X. 304

5.20 Step 5: each τi ∈ τ glob
act (t) is allocated ui − ubig

i of capacity in X. 305

5.21 enqueue_task_dl() overhead. 322

5.22 dequeue_task_dl() overhead. 323

5.23 find_later_rq() overhead. 325

5.24 check_wdl_preempt() overhead. 326

5.25 push_wdl_stop() overhead. 326

5.26 check_global_order() overhead. 327

5.27 swap_global_stop() overhead (n = 20); 12,961 samples. 327

5.28 Relative tardiness. 328

xiii

LIST OF ABBREVIATIONS

ACS Admission Control System

CFS Completely Fair Scheduler

CVA Compliant Vector Analysis

DSP Digital Signal Processor

DVFS Dynamic Frequency and Voltage Scaling

EEVDF Earliest Eligible Virtual Deadline First

EDF Earliest-Deadline-First

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HRT Hard Real-Time

JLDP Job-Level Dynamic-Priority

JLFP Job-Level Fixed-Priority

PID Process ID

RTOS Real-Time Operating System

SIMD Single Instruction Multiple Data

SRT Soft Real-Time

TGID Thread Group ID

TID Thread ID

WC Window-Constrained

xiv

LIST OF SYMBOLS1

Symbol Range Meaning

τ N/A Task set

τi τ ith task

n N Number of tasks |τ |

π N/A Processor set

πj π jth processor

m N Number of processors |π|

Ci R>0 Worst-case execution time of τi

T i R>0 Period of τi

Di R>0 Relative deadline of τi

ui R>0 Utilization Ci
T i

of τi

[i] N Subscript of ith largest value, e.g., u [1] = maxτi∈τ ui

sp(j) R≥0 Speed of πj under UNIFORM

spi,j R≥0 Speed of πj when executing τi under UNRELATED

τ i,j N/A jth job of τi

ci,j (0, Ci] Execution cost of τ i,j

ai,j R Arrival time of τ i,j , ai,j + T i ≤ ai,j+1

di,j R Absolute deadline ai,j +Di of τ i,j

d̃i,j R Implicit deadline ai,j + T i of τ i,j

f i,j R Completion time of τ i,j

ai(t) R Arrival time of current job of τi at t

di(t) R Absolute deadline ai(t) +Di of current job of τi at t

d̃i(t) R Implicit deadline ai(t) + T i of current job of τi at t

ci(t) (0, Ci] Total execution cost of current job of τi at t

remi(t) (0, ci(t)] Remaining execution cost of current job of τi at t

rdy i,j R Ready time of τ i,j , rdy i,j ≤ ai,j

τrdy(t) P(τ) Subset of ready tasks at t

1P(S) denotes the power set of set S.

xv

zlt i,j R Zero-lag time ai,j +
ci,j
ui

of τ i,j

τact(t) P(τ) Subset of active tasks at t, τrdy(t) ⊆ τact(t)

nact N Maximum number of active tasks, nact ≥ maxt|τact(t)|

tact
i R ith activation time instant (Definition 2.14)

U(τ ′) R≥0 Total utilization of τ ′ ⊆ τ

Umax R>0 Maximum total utilization of active tasks, Umax ≥ maxt U(τact(t))

αi P(π) Affinity set of τi

ppi,j(t) R Priority point of τ i,j at t

ppi(t) R Priority point of current job of τi at t

φ R≥0 Priority window (Definition 2.20)

cspi(t) R≥0 Speed of processor executing τi at t

M P(τ × π) Matching on affinity graph between τ and π

vt i(t) R Virtual time of τi at t (Definition 3.2)

dev i(t) R≥0 Deviation of τi at t (Definition 3.3)

HP(τ ′, t) N/A High-priority predicate (Definition 3.4)

HP-LAG N/A See Definition 3.5

βτ ′ R See Definition 3.6

Ψ i(t) R≥0 Profit function of τi (Definition 3.7)

∆ N/A Symmetric difference operator (Definition 3.8)

s` (0, 1) Slowdown factor (Definition 3.9)

spmax R>0 Maximum speed under UNRELATED

βUnr R See Definition 3.11

πbig P(π) Subset of big CPUs

πLIT P(π) Subset of LITTLE CPUs

mbig N Number of big CPUs

mLIT N Number of LITTLE CPUs

τ big P(τ) Subset of τ with affinity for πbig

τLIT P(τ) Subset of τ with affinity for πLIT

τ glob P(τ) Subset of τ with affinity for π = πbig ∪ πLIT

xvi

τ
big
act (t) P

(
τ big
)

Subset of τ big that are active at t

τLIT
act (t) P

(
τLIT

)
Subset of τLIT that are active at t

τ
glob
act (t) P

(
τ glob

)
Subset of τ glob that are active at t

spL (0, 1.0) Speed of each LITTLE CPU

τ idle N/A Set of idle tasks (see Definition 5.3)

τ̄ N/A Augmented task set τ ∪ τ idle

τ̄act(t) N/A Augmented active task set τact(t) ∪ τ idle

τ̄rdy(t) N/A Augmented ready task set τrdy(t) ∪ τ idle

X̄ R(n+m)×m
≥0 Augmented configuration (see Definition 5.5)

dCPU
j

(
X̄, t

)
R Deadline of task matched with πj in X̄ at t

dbig
(
X̄, t

)
R Latest deadline of any big CPU (see Definition 5.7)

dLIT
(
X̄, t

)
R Latest deadline of any LITTLE CPU (see Definition 5.7)

d̄i
(
X̄, t

)
R Weighted deadline of τi under X̄ at t (see Definition 5.8)

X̄USE(t) R(n+m)×m
≥0 Augmented configuration selected by Ufm-SC-EDF at time t

X̄opt(t) R(n+m)×m
≥0 See Definition 5.13

M̄USE(t) P(τ̄ × π) Matching corresponding with X̄USE(t)

M̄opt(t) P(τ̄ × π) Matching corresponding with X̄opt(t)

u
big
i R≥0 See Definition 5.14

τG(τ ′) P(τ ′) Global tasks in τ ′ ⊆ τ under SEMI-PARTITIONED

τP(τ ′, πj) P(τ ′) Tasks partitioned on πj in τ ′ ⊆ τ under SEMI-PARTITIONED

πP(τ ′) P(π) Processors with partitioned tasks in τ ′ ⊆ τ under SEMI-PARTITIONED

βDLτ ′ R See Definition B.2

xvii

CHAPTER 1: INTRODUCTION

A system is real time if the timeliness of its computational results is as significant as their logical

correctness. For example, consider an autonomous vehicle running computer vision applications. If an

obstacle enters the vehicle’s path, the computer vision application must complete within a bounded amount

of time to avoid a crash. Unlike other computing systems, in which fast average-case response times are

desirable, the correctness of real-time systems is concerned with bounding the worst case.

Real-time tasks. Real-time workloads are recurrent, meaning that programs are expected to respond to

inputs repeatedly over a long duration of time (e.g., an autonomous vehicle is expected to regularly process

camera frames one after another). These programs are called tasks, with the ith task in a system traditionally

denoted as τi. Different invocations of a tasks are called jobs, with the jth job of task τi being denoted τ i,j .

Each job has an arrival time, which is generally when the job becomes executable. Tasks are generally

assumed to be singled-threaded, meaning that jobs of the same task may not execute in parallel. Timeliness

requirements are expressed by assigning each job a deadline, which typically is some fixed offset (called a

relative deadline) after said job’s arrival time.

The traditional task model considered in the real-time community is the sporadic task model. Under

the sporadic task model, task τi is constrained by its worst-case execution time Ci, the maximum units

of execution required by any of its jobs, and T i, the minimum interarrival time between any two of its

consecutive jobs. Task τi’s utilization, a measure of the long-term fractional demand of task τi for a 1.0-speed

processor, is then Ci/T i. A common assumption under the sporadic task model is implicit deadlines. For an

implicit-deadline task τi, its relative deadline is equal to T i.

Timeliness requirements are traditionally hard real time (HRT). In such systems, it is required that each

job must provably complete by its deadline. This is in contrast to soft real-time (SRT) systems that relax this

requirement. For example, consider a streaming application that is expected to deliver a consistent number of

video frames per second. Each frame must be processed within a bounded amount of time to achieve this

frame rate, but the occasional late or dropped frame does not significantly impact quality of service.

1

Note that there exist alternative definitions of SRT in the literature. The interpretation of SRT that we

consider in this dissertation is that each job has bounded response time, i.e., the difference between each job’s

completion and arrival times must be provably bounded by some (ideally small) constant.

The ability for a system to meet timing guarantees depends on the speeds of the hardware’s processors.

The term “processor” is used in a general sense to denote any compute unit (e.g., a CPU) that may execute at

most one job at any time. A system containing one processor is a uniprocessor, while a system containing

more than one processor is a multiprocessor. The scheduler must balance the demand of all jobs for the limited

processor(s) such that sufficient processing capacity is provided to each job to meet its timing requirement.

There are three multiprocessor models generally studied by the real-time community:

• IDENTICAL, in which all processors have the same speed for all tasks (normalized to 1.0);

• UNIFORM, in which processor πj has speed sp(j), which must be consistent for all tasks;

• and UNRELATED, in which each processor πj may have a unique speed spi,j for each task τi.

Under UNIFORM and UNRELATED, some related works make a simplifying assumption that the multi-

processor contains a limited number of distinct types of processors. Processors of the same type have an

identical architecture, and hence, execution speeds. A multiprocessor with k distinct types is called a k-type

multiprocessor.

Timing guarantees also depend on the choice of scheduler, code that decides when to execute jobs on

processors. Most schedulers assign priorities to jobs and preferentially schedule higher-priority jobs. There

exists a taxonomy of schedulers based on the behavior of priorities consisting of:

• table-driven (also, static) schedulers, which forgo priorities, instead deciding which processor should

execute which job at any given time by looping over a hard-coded table of tasks and execution intervals

(computed offline);

• fixed-priority schedulers, which assign all jobs of a given task the same priority;

• job-level fixed-priority (JLFP) schedulers, which assign each job its own constant priority;

• and job-level dynamic-priority (JLDP) schedulers, which allow the priority of any job to vary with

time.

2

Some static schedulers use the term “frame” or “template” instead of table. Additionally, instead of a

constant-length table, some schedulers shrink or stretch different iterations of the table depending on tasks’

release times and deadlines. In this dissertation, all of these are also considered as table-driven schedulers.

While fixed-priority schedulers seem to be more traditional in industry (possibly due to their simplicity

and low overhead), certain JLFP and JLDP schedulers have been shown in prior work to have significantly

higher efficacy with respect to SRT (Leontyev and Anderson, 2007). This dissertation exists in part to further

this prior work.

Why care about SRT? We consider SRT due to certain advantages it has over HRT. First, SRT is suprisingly

common in systems. Though HRT has been the more traditional sense of temporal correctness studied

by the real-time community, an industry survey (Akesson et al., 2020) has shown that 67% of surveyed

real-time systems contained some SRT component, while only 54% contained some HRT component. This

highlights the prevalence of SRT in real industrial applications. Second, because SRT guarantees are less

strict than HRT guarantees, SRT guarantees can often be met using less powerful hardware. Strict adherence

to deadlines under HRT can require system designers to use hardware with processing capacity far greater

than the long-run demand of the considered real-time applications. This is necessary to meet deadlines under

worst-case conditions (e.g., a large number of tasks with simultaneous job arrivals).

WC schedulers: great for SRT. This dissertation focuses on a class of JLDP schedulers called window-

constrained (WC) schedulers that prior work (Leontyev and Anderson, 2007) has shown to be particularly

effective for SRT. WC schedulers are derived from earliest-deadline-first (EDF),1 a JLFP scheduler. Under

EDF, jobs with earlier deadlines have higher priority.

H Example 1.1. This example demonstrates scheduling under EDF, as well as EDF’s efficacy at

lowering response times by comparing against a fixed-priority scheduler. Consider the task system

of three tasks such that (C1, T 1) = (C2, T 2) = (C3, T 3) = (2.0, 3.0). Figure 1.1a depicts an EDF

schedule of this system (assuming implicit deadlines) on an IDENTICAL multiprocessor with two

processors. In this example, it is assumed that deadline ties are broken in favor of jobs belonging to

lower-indexed tasks.

1When the considered platform is a multiprocessor, other works make distinctions such as between global EDF (G-EDF)
and partitioned EDF (P-EDF) based upon which processors tasks are permitted to migrate to. These are both denoted
EDF in this dissertation because the processors a task can execute on are specified by parameters of our multiprocessor
model (see the upcoming Affinities paragraph).

3

Release Deadline Completion Proc. 1 Proc. 2

0 2 4 6 8 10 12 14 16 18 20

τ1

0 2 4 6 8 10 12 14 16 18 20

τ2

0 2 4 6 8 10 12 14 16 18 20

Time

τ3

(a) EDF schedule.

0 2 4 6 8 10 12 14 16 18 20

τ1

0 2 4 6 8 10 12 14 16 18 20

τ2

0 2 4 6 8 10 12 14 16 18 20

Time

τ3

(b) Fixed-priority schedule.

Figure 1.1: SRT: EDF versus fixed-priority. (The legend depicted here is assumed also in later figures
depicting schedules.)

4

Initially, at time 0, all three tasks have an arriving job. Because the system has implicit deadlines,

the deadline of each of these jobs is the arrival time (0) offset by the corresponding tasks’ periods (3.0).

Because the deadlines of all executable jobs are equal, the jobs have equal priority, in which case the tie

is broken in favor of jobs τ1,1 and τ2,1. Thus, these two jobs occupy the two processors until completion

(at time 2.0). Once these two jobs complete, job τ3,1 becomes the highest-priority job (by virtue of being

the only runnable job), and is executed on a processor starting at time 2.0.

At time 3.0, because the periods of all tasks is 3.0, all tasks have a second job arrival. Job τ1,2

occupies the available second processor because it executes no job. Job τ2,2, however, is unable to be

scheduled because currently executing job τ3,1 has an earlier deadline (3.0) than τ2,2’s deadline (6.0).

When τ3,1 finishes at time 4.0, its second job τ3,2 has the same deadline as job τ2,2. The tie is

resolved in favor of τ2,2, and it is scheduled on τ3,1’s former processor. The execution of job τ3,2 is

delayed until job τ1,2 completes at time 5.0, thereby making its processor available.

Starting with the time interval [3.0, 6.0), the schedule repeats every 3.0 time units (swapping π1 and

π2 every 3.0 time units) following similar logic. Observe how the maximum response time of any job is

4.0 time units, which occurs for the jobs of task τ3.

Compare these response times against those under the fixed-priority scheduler illustrated in Fig-

ure 1.1b. This example assumes jobs of tasks τ1 and τ2 have higher fixed priority than jobs of task τ3.

Whenever jobs of tasks τ1 and τ2 arrive every 3.0 time units, they occupy both processors because they

have higher priority than any jobs of task τ3. The response times of consecutive jobs of task τ3 grow

unboundedly (e.g., job τ3,1 has response time 6.0, τ3,2 has response time 9.0, τ3,3 has response time 12.0,

etc.). N

It was proven in a seminal work (Devi and Anderson, 2008) that under IDENTICAL, EDF satisfies

a property called SRT-optimality, which means that if a system is feasible (i.e., does not over-utilize its

underlying hardware), then EDF guarantees bounded response times for all jobs. SRT-optimality was

later extended to the class of WC schedulers under IDENTICAL (Leontyev and Anderson, 2007) and to

UNIFORM for EDF (Yang and Anderson, 2017). WC schedulers are derived from EDF by allowing the time

instant used to determine a job’s priority (called the job’s priority point) to vary within a bounded interval

(hence, the “window” in window-constrained) around the implicit deadline.

5

SRT-optimality is a powerful property, as any system that over-utilizes the underyling hardware must

have unbounded response times for some task under any scheduler. This makes EDF and its derived WC

schedulers attractive for SRT applications.

1.1 Problem: EDF (and its Derivatives) are Poorly Understood

Fundamentally, nobody (especially the author) understands the SRT properties of EDF and its derived

WC schedulers. There exist many critical open problems about EDF. This dissertation focuses on one

such problem: to what extent does the SRT-optimality of EDF and WC schedulers extend to heterogeneous

multiprocessors beyond IDENTICAL and UNIFORM? This question is especially relevant in a modern

hardware context with multiprocessors growing increasingly heterogeneous. We briefly discuss sources of

heterogeneity.

Heterogeneous multiprocessors. Heterogeneous multiprocessors contain more than one type of processor,

and hence, do not follow the IDENTICAL model. Processors can differ by any number of factors including

clock frequency, cache size, order of execution (i.e., in instruction order or out of order), usage of pipelin-

ing/branch prediction, dynamic frequency and voltage scaling (DVFS),2 data parallelism (SIMD and vector

instructions), accelerators (i.e., general purpose CPUs versus graphics processing units (GPUs), digital signal

processors (DSPs), or field-programmable gate arrays (FPGAs)), etc.

Driving heterogeneity in multiprocessor design is a tradeoff between performance and efficiency. An

exemplar of this heterogeneous multiprocessor design is the ARM big.LITTLE3 architecture, which combines

high-performance power-hungry “big” processors with slower energy efficient “LITTLE” processors. Higher

performance by big processors is primarily achieved by higher clock frequency and larger per-processor

cache size.

big.LITTLE multiprocessors are often treated analytically as UNIFORM multiprocessors, with relative

processor speeds being determined experimentally. While the UNIFORM model is a fairly good first-order

approximation, architectural differences should not cause uniform speedups among all tasks. For example,

2DVFS alone does not technically make a multiprocessor heterogeneous, as the processors may be identical architec-
turally. DVFS can cause differences at runtime as processors set different performance points.

3The big.LITTLE archicture was rebranded as and succeeded by the DynamIQ architecture by ARM in 2017. We
continue to refer to this architecture as big.LITTLE to match with most related work and because certain evaluations
in this work were performed on hardware that predated the change.

6

increasing per-processor cache size will have a disproportionate benefit for tasks with larger working set

sizes, of which cache is a bottleneck on performance. Thus, UNRELATED, under which processor speeds

depend on the executing task, is a more accurate multiprocessor model for heterogeneous architectures. This

highlights the necessity of extending real-time analytical results to more complicated multiprocessor models

such as UNRELATED.

Affinities. Besides differences in architecture, heterogeneity can arise via software with affinities. These are

per-task restrictions on which processors a given task may execute on. In software, these are represented

with affinity masks, bitmasks where each bit position corresponds with a processor. System designers may

set affinities for reasons such as load balancing or increasing cache locality. Because, under affinities, the

processors are not interchangeable from the perspective of the scheduler, the multiprocessor is heterogeneous.

We itemize seven cases for the affinities of a system, the former five of which have been studied

extensively in the literature and the latter two being special cases relevant to this dissertation:

• GLOBAL, in which all tasks have affinity for all processors;

• PARTITIONED, in which each task has affinity for one processor;

• CLUSTERED, in which the processors are partitioned into clusters such that each task has affinity for

the processors in one cluster;

• HIERARCHICAL, in which each affinity mask either has no intersection with, is a superset of, or is

subset of each other affinity mask;

• ARBITRARY, in which any task may have any affinity;

• SEMI-PARTITIONED,4 in which each task has affinity for either one or all processors;

• and SEMI-CLUSTERED, in which each task has affinity for either a cluster or all processors.

In this dissertation, we use “/” to denote that we are assuming a special case of affinities under the con-

sidered multiprocessor model. For example, ARBITRARY affinities under the IDENTICAL multiprocessor

model is denoted as IDENTICAL/ARBITRARY. Assume that affinities are GLOBAL when affinities are

4Note that some other works (e.g., Kato and Yamasaki (2009); Afshar et al. (2012); Anderson et al. (2014); Voronov
and Anderson (2018); Hobbs et al. (2021); Casini et al. (2021); etc.) dealing with mitigating migration overheads have
alternative definitions of semi-partitioned.

7

not specified. Note that specifying affinities is redundant if the multiprocessor model under consideration is

UNRELATED. Under UNRELATED, a task not having affinity for a processor is analytically equivalent to

said processor executing said task with speed 0.

Difficulty of heterogeneity. The difficulty of SRT analysis is proportional to the level of heterogeneity.

Recall the informal definition of SRT-optimality detailed earlier: a scheduler is SRT-optimal if bounded

response times are guaranteed so long as the system is feasible. The formal definition of feasible depends on

the multiprocessor model considered, and grows in complexity with increasing heterogeneity. For example,

for a uniprocessor, the feasibility condition is that the sum of all utilizations is at most 1.0. In contrast, for

UNRELATED, the feasibility condition is that a particular linear program derived from the task system’s

parameters has a solution (Baruah, 2004). In SRT analysis, it is assumed that the considered system is feasible

to prove response-time bounds. How to accomplish this is less clear with a more complicated feasibility

condition.

SCHED_DEADLINE. SCHED_DEADLINE is an EDF implementation included in the mainline Linux kernel

since version 3.14. Its inclusion has been significant because it has lowered the barrier to entry for real-time

EDF scheduling and it has inspired many publications (Gujarati et al., 2013, 2014; Scordino et al., 2018;

Abeni et al., 2016; Lelli et al., 2016). This is also true of this dissertation, as work contained herein pertaining

to affinities was motivated by a keynote talk given by Peter Zijlstra at ECRTS’17 (Zijlstra, 2017) on SCHED_

DEADLINE. For these reasons, the analysis presented in this work was evaluated using SCHED_DEADLINE

as a base.

An important aspect of SCHED_DEADLINE is its admission control system (ACS) The ACS has two

purposes: (1) to limit the total processing capacity consumed by real-time tasks (by default, 5% of capacity

must be reserved for non-real-time workloads at all times) and (2) to enforce SRT guarantees for real-time

tasks. The ACS facilitates dynamic task systems, in which tasks may enter and leave the system over time.

The ACS accomplishes its purposes by rejecting requests by tasks to enter the system if permitting their

entrance would over-utilize the hardware.

The analysis by Devi and Anderson (2008) serves as the foundation for SCHED_DEADLINE’s migration

logic and ACS. As such, SRT guarantees in the existing implementation are only maintained by the ACS

under strictly IDENTICAL multiprocessors.

8

1.2 An Orthogonal Open Problem: Loose Response-Time Bounds

We take a brief aside to mention another open problem about EDF not addressed in this dissertation. We

provide this aside to (1) provide a less biased view of the problems holding back EDF and its derivatives

and (2) inform any future researcher working on EDF’s SRT properties that the techniques presented in this

dissertation are unlikely to make headway towards this problem.

Ever since the seminal work first demonstrating EDF’s SRT-optimality (Devi and Anderson, 2008), it has

been known that observable response times for synthetically generated tasks under EDF are much smaller

than proven response-time bounds. It is the author’s personal opinion that existing response-time bounds

are too high for practical use, while observable response times (if bounds could be proven) are much more

reasonable. At time of writing, deriving tight response-time bounds has been an open problem5 for almost 20

years.

The techniques presented in this work seem orthogonal towards the problem of obtaining tight response-

time bounds. This work is primarily interested in expanding SRT-optimality to a broader class of schedulers

and multiprocessor models. This is done through abstractions that allow us to reason about simpler systems

than a real-time task system and scheduler. Characteristics specific to EDF that result in low response times

are seemingly not captured by these abstractions.

1.3 Thesis Statement

Lack of understanding of the SRT properties of EDF and its derived WC schedulers, particularly with

respect to whether SRT-optimality properties extend to modern multiprocessors, is holding back the use of

such schedulers for real-time applications. This dissertation aims to be a step towards this understanding,

leading to the following thesis statement:

Heterogeneous multiprocessor models are required to describe many modern multiprocessors.

The SRT-optimality of EDF and its derived schedulers can be extended to these models, such as

IDENTICAL/ARBITRARY and UNRELATED, via scheduler variants targeted for such models.

Though such variants may induce higher overheads than standard EDF on IDENTICAL, more

practical implementations can be developed by restricting to special cases of these models.

5Tight bounds can be computed under certain restrictions (Ahmed and Anderson, 2021), which will be discussed in
Section 2.4.1

9

1.4 Contributions

The thesis is supported by the following contributions.

1.4.1 Improving SRT Analysis for UNIFORM and Extending to IDENTICAL/ARBITRARY

We derive polynomial response-time bounds for WC schedulers under UNIFORM (prior bounds (Yang

and Anderson, 2017) were exponential and exclusive to EDF). We show that these same response-time

bounds are also valid for WC schedulers under IDENTICAL/ARBITRARY, proving for the first time that WC

schedulers are SRT-optimal under IDENTICAL/ARBITRARY. We also present unbounded response-time

counterexamples for when jobs may be non-preemptive or when non-WC schedulers inspired by SCHED_

DEADLINE are used.

1.4.2 WC Variant and Response-Time Bounds under UNRELATED

We derive response-time bounds under UNRELATED such that WC schedulers are asymptotically

SRT-optimal (response-time bounds grow inversely as the task system approaches infeasibility).

1.4.3 Patching SCHED_DEADLINE for IDENTICAL/SEMI-PARTITIONED and 2-Type
UNIFORM/SEMI-CLUSTERED

We demonstrate how the existing SCHED_DEADLINE implementation can have unbounded response

times under heterogeneity. We present patches to restore provably6 bounded response-times under IDENTI-

CAL/SEMI-PARTITIONED multiprocessors and 2-type UNIFORM/SEMI-CLUSTERED multiprocessors

such that each processor type is a cluster. We measure overhead increases due to these patches on hardware

running synthetic workloads.

1.5 Organization

The rest of this dissertation is organized as follows. Background material is divided between Chapters 2

and 4. Chapter 2 covers theoretical background including the considered task and multiprocessor models,

related work, and a brief review of related optimization problems. Chapter 3 covers all results involving

6Assuming an idealized SCHED_DEADLINE. We do not attempt to formally verify the SCHED_DEADLINE code base.

10

response-time bounds. Chapter 4 covers the SCHED_DEADLINE implementation. Chapter 5 covers our pro-

posed patches to SCHED_DEADLINE for certain special cases of heterogeneous multiprocessors. Chapter 6

concludes.

11

CHAPTER 2: THEORETICAL BACKGROUND

This chapter covers considered models, related theoretical work, and relevant mathematical review.

2.1 Task Model

Time is assumed to be continuous. This dissertation considers the sporadic task model, described below.

Notation is presented in the following definitions.

O Definition 2.1. The task system consists of n tasks denoted as τ = {τ1, τ2, . . . , τn}. 4

It is assumed that each task is single-threaded, i.e., never runs in parallel with itself.

O Definition 2.2. The task system runs on m processors π = {π1, π2, . . . , πm}. 4

O Definition 2.3. Task τi has worst-case execution time Ci (relative to an execution speed of 1.0),

period T i, relative deadline Di, and utilization ui , Ci/T i. For task τi, Ci, T i, Di, and ui are all

positive. 4

We denote by a bracketed index [i] that the corresponding parameter is the ith largest of its kind. For

example, the largest period and utilization are denoted T [1] and u [1], the smallest utilization is denoted u [n],

and the fastest speed under UNIFORM is denoted sp([1]).

O Definition 2.4. Task τi releases an infinite sequence of jobs with τ i,j denoting the jth job of task τi

for j ≥ 1. Job τ i,j has execution cost ci,j ∈ (0, Ci], arrival time ai,j , and deadline di,j , ai,j +Di. 4

O Definition 2.5. Task τi is an implicit-deadline task if Di = T i. The implicit deadline of job τ i,j is

d̃i,j , ai,j + T i. If τi is an implicit-deadline task, then di,j = d̃i,j for any job τ i,j . Note that d̃i,j is

well-defined for job τ i,j regardless of whether τi is an implicit-deadline task. 4

O Definition 2.6. Task τi is a constrained-deadline task if Di ≤ T i. 4

12

Jobs are executed in order of arrival. Arrival times are separated such that for any j ≥ 1, we have

ai,j + T i ≤ ai,j+1.

O Definition 2.7. A task system is periodic if, for each job τ i,j , we have ai,j + T i = ai,j+1. A task

system is sporadic if, for each job τ i,j , we have ai,j + T i ≤ ai,j+1. 4

O Definition 2.8. A task system is synchronous if, for each task τi, we have ai,1 = 0. 4

O Definition 2.9. The completion time f i,j of job τ i,j is the time instant that τ i,j completes ci,j units of

execution.

The response time of τ i,j is the difference f i,j − ai,j . 4

Each task obeys intra-task precedence constraints, i.e., a job τ i,j1 may not execute if there exists an

incomplete job τ i,j2 such that j2 < j1.

Additional notation is useful in our analysis for describing the job of a task that would, at a particular

time instant, be executed if the task was scheduled.

O Definition 2.10. At time t, the current job of task τi is the incomplete job of task τi that has the

earliest arrival time at time t.

We let ai(t), di(t), d̃i(t) ci(t), and remi(t) be the arrival time, deadline, implicit deadline, total

execution cost, and remaining execution cost of the current job of τi at time t. Task τi’s deadline and

implicit deadline at time t are defined as di(t) and d̃i(t), respectively. 4

Recall from Definition 2.4 that we assume that each task releases an infinite sequence of jobs. Thus,

for any task τi and time t, there are always jobs (that may not have arrived by time t) of task τi that are

incomplete at time t. Because the current job of task τi at time t is the earliest of these jobs, the current job of

task τi is well-defined at any time instant. Note that under Definition 2.10, the current job of a task τi at time

t may not have arrived by time t.

Because the current job of task τi is well-defined at any time instant t, ai(t), di(t), ci(t), and remi(t) are

also well-defined for any time instant t. This reduces the lengths of several proofs by omitting cases where

the current job of a task at time t does not exist due to said task having already completed all of its jobs by

time t. Note that our response-time analysis can still be applied to tasks that release finitely many jobs by

assuming that the ‘next’ jobs of such tasks arrive arbitrarily far into the future.

Jobs must wait for their ready times to execute.

13

O Definition 2.11. A job τ i,j’s ready time rdy i,j is the time instant job τ i,j (ignoring intra-task prece-

dence constraints) first becomes eligible to execute. It is required that rdy i,j ≤ ai,j , i.e., the ready time

of a job is at most its arrival time. Traditionally, for each job τ i,j , rdy i,j = ai,j , i.e., a job becomes ready

once it arrives. Allowing rdy i,j < ai,j is called early releasing.

If, for job τ i,j , we have t ≥ rdy i,j , then job τ i,j is ready. A task is ready if its current job is ready.

The set of ready tasks at time t is denoted τrdy(t). 4

Note that, if a task’s current job is not ready, then the task cannot be scheduled, even if other jobs

of the task are ready. This is because the current job of a task is the earliest (by arrival) incomplete job

(Definition 2.10) and jobs of a task must complete in order of arrival.

Dynamic tasks. In systems such as SCHED_DEADLINE, tasks are dynamic in that they are expected to

enter and leave the system over time. Tasks that are active (defined below) at a given time instant are

those whose jobs contribute to load on the system at said time instant. Restrictions on the set of active

tasks at any given time instant are necessary to prevent the system from being overloaded. The meaning of

“overloaded” depends on the considered multiprocessor model, and will be formalized in Section 2.4. If new

tasks becoming active would otherwise overload the system, said new tasks must wait for currently active

tasks to become inactive, thereby allowing their consumed capacity to be used by new tasks.

An active task becomes inactive by no longer releasing or executing jobs. In some instances, the time

instant of the transition from active to inactive must be delayed past the completion time of a task’s latest job.

This is necessary for maintaining HRT guarantees for dynamic task systems, which will be demonstrated in

Example 2.1. The exact time instant a task transitions from active to inactive is its last job’s zero-lag time.1

An explanation of lag will be given in Section 3.1.

O Definition 2.12. The zero-lag time of job τ i,j is zlt i,j , ai,j +
ci,j
ui

. 4

O Definition 2.13. At time t, a task τi is active if τi is ready or if task τi’s most recently completed job

is τ i,j and τ i,j’s zero-lag time has not passed (i.e., t < zlt i,j). Task τi is inactive at t otherwise. The

subset of τ of active tasks at t is τact(t). nact denotes an upper bound on the maximum number of active

tasks at any time instant. 4

1Though our analysis, which considers SRT and not HRT, guarantees bounded response times even if tasks become
inactive as soon as they complete their latest jobs, we delay the inactive transition time to the zero-lag time to conform
with systems such as SCHED_DEADLINE. Be aware that our analysis at no point assumes that tasks remain active
until their zero-lag times.

14

0 2 4 6 8 10

τ1

0 2 4 6 8 10

τ2

0 2 4 6 8 10

Time

τ3

(a) Without waiting for zlt1,1.

0 2 4 6 8 10

τ1

0 2 4 6 8 10

τ2

0 2 4 6 8 10

Time

τ3

(b) Task τ3 waits for zlt1,1.

Figure 2.1: Deadline miss without waiting for zero-lag time.

H Example 2.1. Consider the schedules illustrated in Figure 2.1. This example demonstrates that EDF

meets deadlines for implicit-deadline tasks so long as total utilization is at most 1.0, but only if tasks

wait until their latest jobs’ zero-lag times before becoming inactive.

Consider three implicit-deadline tasks τ1, τ2, and τ3 such that (C1, T 1) = (C2, T 2) = (3.0, 6.0) and

(C3, T 3) = (1.0, 2.0). These tasks have u1 = u2 = u3 = 0.5. The three tasks execute on a uniprocessor.

Initially, at time 0, τact(0) = {τ1, τ2}. The total utilization at time 0 is then 0.5 + 0.5 = 1.0. The system

is restricted such that the total utilization of active tasks at any time is at most 1.0.

In order for task τ3 to become active, because total utilization is capped at 1.0, either task τ1 or task

τ2 must first become inactive. Assume task τ1 becomes inactive, upon which task τ3 becomes active.

Figure 2.1a illustrates the schedule where task τ1 incorrectly becomes inactive as soon as it finishes its

first job τ i,j , while Figure 2.1b illustrates the schedule where task τ1 waits until zlt1,1 before becoming

inactive.

In Figure 2.1a, task τ1 becomes inactive as soon as job τ1,1 completes at time 3.0. Task τ3 becomes

active at time 3.0, resulting in its first job τ3,1 arriving at time 3.0. Job τ3,1 has an earlier deadline (5.0)

then that of job τ2,1 (6.0), so task τ3 is scheduled over [3.0, 4.0). Job τ2,1 completes at time 7.0, missing

its deadline.

15

Compare this schedule to Figure 2.1b. The zero-lag time of job τ1,1 is zlt1,1 = a1,1 + c1,1/u1 =

0 + 3.0/0.5 = 6.0. Task τ1 waits until time 6.0 before becoming inactive, thus task τ3 does not

becomes active until time 6.0. Job τ2,1, which missed its deadline in Figure 2.1a, meets its deadline in

Figure 2.1b. N

The time instants when τact(t) changes are of interest because our analysis must show that the activation

of new tasks is safe with respect to maintaining bounded response times.

O Definition 2.14. Let the activation time instants (tact
1 , tact

2 , tact
3 , . . .) denote the increasing infinite

sequence of time instants such that

• for t ∈ (−∞, tact
1), τact(t) = ∅

• and for t ∈ [tact
k , t

act
k+1), τact(t) = τact

(
tact
k

)
for each k ∈ N. 4

In words, the set of active tasks τact(t) changes only when t = tact
k for some k ∈ N.

The worst-case total utilization of active tasks is a term in some of our response-time bounds.

O Definition 2.15. For subset τ ′ ⊆ τ , we let U(τ ′) ,
∑

τi∈τ ′ ui. 4

The worst-case total utilization is Umax, defined below.

O Definition 2.16. Let Umax denote an upper bound such that ∀t : Umax ≥ U(τact(t)). 4

Affinities. Though affinity masks are represented as bitmasks in real systems such as Linux, it is convenient

for analysis to represent them as sets or as graphs.

O Definition 2.17. Under a multiprocessor with affinities, the affinity set of task τi is denoted αi ,

{πj ∈ π : τi has affinity for πj}. 4

O Definition 2.18. An affinity graph is a bipartite graph connecting a set of nodes corresponding to

tasks to a set of nodes corresponding to processors. 4

H Example 2.2. Consider a task system of τ1 and τ2 on two processors with affinities such that α1 =

{π1} and α2 = {π1, π2}. The affinity graph for this system is illustrated in Figure 2.2. N

Affinity graphs are useful both for visualization and for allowing us to apply existing theorems and

algorithms pertaining to bipartite graphs in analyzing systems with affinities.

16

π1 π2

τ1 τ2

Figure 2.2: Affinity graph example.

Constant Bandwidth Server (CBS). Though our analysis assumes the sporadic task model, SCHED_

DEADLINE instead employs CBS (Abeni and Buttazzo, 1998), whose parameters are analogous to those

of sporadic tasks. A Server, as in CBS, is a real-time-systems term for a sequential container that prevents

threads inside the container from over-consuming processor time, thereby starving other time-sensitive

real-time tasks in the system. Most servers, including CBS, accomplish this via budgeting. Runnable threads

inside the server consume the server’s budget to execute until said budget is exhausted, at which point the

server (and the threads within) becomes throttled. The threads within the server must wait until the server’s

budget is replenished at a later time (usually once per server period) to execute again. Throttling limits the

processor time the server can consume, thereby protecting other tasks in the system.

As with tasks, servers are assigned priorities and scheduled by the scheduler. A server is runnable when it

has budget and contains a runnable thread. A server suspends once all of its contained threads have suspended

(i.e., waits or is blocked on a resource held by thread). A suspended server wakes once a contained thread

becomes runnable again.

Pseudocode for CBS is presented in Algorithm 1, which we now detail. Note that CBS as originally

defined by Abeni and Buttazzo (1998) differs from Algorithm 1, which more closely resembles CBS as

implemented by SCHED_DEADLINE. Algorithm 1 refers to CBS parameters using identifiers from SCHED_

DEADLINE. The CBS by Abeni and Buttazzo (1998) does not throttle on exhausting its budget, instead only

increasing its deadline, and assumes implicit deadlines, unlike SCHED_DEADLINE.

A CBS has parameters analogous to those of a sporadic task:

• dl_runtime, its maximum budget;

• runtime, its current budget;

• dl_period, its replenishment period;

17

1 begin
2 j ← 1
3 runtime′ ← dl_runtime
4 Replenish(now)
5 while True do
6 while runtime > 0 and not suspended do
7 Decrease runtime if executed
8 end while
9 if suspended then

10 wait for wakeup
11 if now ≥ deadline or

runtime/ (deadline− now) > dl_runtime/dl_deadline then
12 Replenish(now)
13 else
14 Start_New_Job(now)
15 end if
16 end if
17 if runtime = 0 then
18 if now < deadline then
19 wait for deadline
20 end if
21 Replenish(deadline)

22 end if
23 end while
24 end
25 Function Replenish(t):
26 Start_New_Job(t)
27 runtime← dl_runtime
28 deadline← t+ dl_period

29 end
30 Function Start_New_Job(t):
31 ai,j ← t
32 ci,j−1 ← runtime′ − runtime
33 runtime′ ← runtime
34 j ← j + 1

35 end
Algorithm 1: CBS pseudocode.

18

• dl_deadline, its relative deadline;

• and deadline, its current server deadline.

For simplicity, we assume implicit deadlines (i.e., dl_deadline = dl_period) when discussing CBS

and in Algorithm 1. CBS will be covered in detail in Section 4.4.3 when discussing its implementation in

SCHED_DEADLINE.

It would be natural to define CBS τi’s replenishment times as ai,j , dl_runtime as ci,j , and the time

instants where budget is exhausted (i.e., runtime = 0) as completion times. This is insufficient due

to suspensions, which are forbidden2 under the sporadic task model considered in prior works on SRT-

optimality (Devi and Anderson, 2008; Yang and Anderson, 2017)). Wakeups must thus also be treated

as arrivals, and the corresponding preceding suspension times as completion times. The pseudocode in

Algorithm 1 is thus supplemented with parameters

• j, the current job number;

• ai,j and ci,j as in Definition 2.4;

• and runtime′, the value of runtime at time ai,j that is used to compute ci,j ,

and function Start_New_Job, which sets these values.

CBS τi is initialized in Lines 2-4, which set ai,1 and provide CBS τi’s initial budget and deadline (assume

Line 32 does nothing when j = 1 because ci,j−1 is undefined). It then begins budget tracking for the

remainder of its lifetime.

Suspensions (Line 9) are more complicated. If the wakeup time following a suspension is past

deadline, then CBS τi is replenished at the wakeup time (and not at deadline). This replenishment

after the deadline is analogous to a sporadic task τi having job releases ai,j+1 − ai,j > T i.

If, on the other hand, the wakeup time occurs before deadline, there are different cases that govern

how the CBS’s parameters are modified. Note that these cases are designed to provide HRT guarantees on a

uniprocessor or PARTITIONED multiprocessor, which is out of scope for this SRT-focused dissertation. As

such, their design is not justified in this background chapter. Readers interested in the SCHED_DEADLINE

CBS design are directed to the literature (Abeni et al., 2015).

2Specifically, suspensions within jobs. Not being runnable due to waiting for the next job arrival is permitted.

19

0 2 4 6 8 10 12 14 16 18
0

4runtime

0 2 4 6 8 10 12 14 16 18

τ1

0 2 4 6 8 10 12 14 16 18

Time

τ2

Figure 2.3: CBS example.

On a wakeup prior to deadline, there are two cases depending on the local density

runtime

deadline− wakeup time
.

In the case that local density ≤ dl_runtime/dl_period, the CBS continues executing with its current

parameters (e.g., runtime and deadline) are unchanged.

H Example 2.3. Consider CBS τ1 with (dl_runtime,dl_period) = (4.0, 8.0) and other work-

load τ2 (which could be either another CBS or a sporadic task) executing on a uniprocessor. This

system is illustrated in Figure 2.3. CBS τ1 is initialized at time 2.0. This sets a1,1 ← 2.0 and

deadline ← 2.0 + dl_period = 10.0. CBS τ1 executes for 2.0 time units over time interval

[2.0, 4.0), setting runtime← runtime− 2.0 = 2.0.

At time 4.0, CBS τ1 suspends until wakeup time 6.0. Because runtime/ (deadline− 6.0) =

2.0/ (10.0− 6.0) = 1.0/2.0 ≤ 4.0/8.0 = dl_runtime/dl_deadline, parameters runtime and

deadline are unchanged (i.e., the value of runtime is continuous at time 4.0 and CBS τ1 continues

executing with deadline of 10.0). This wakeup is treated as an arrival, setting a1,2 ← 6.0 and

c1,1 ← 2.0. N

20

If the local density is greater than the CBS’s density dl_runtime/dl_deadline, then the CBS is

replenished at the wakeup time.3 Note that because the wakeup occurred before deadline in this case, this

replenishment occurs less than dl_period time units from the previous replenishment. Because we count

replenishments as job arrivals, the CBS does not follow the sporadic task model.

H Example 2.3 (continued). CBS τ1 executes for 1.0 time unit over time interval [6.0, 7.0), decreasing

budget with runtime ← runtime − 1.0 = 1.0, before suspending again at time 7.0 until wakeup

at time 9.0. At the wakeup at time 9.0, runtime/ (deadline− 9.0) = 1.0/ (10.0− 9.0) = 1.0 >

4.0/8.0 = dl_runtime/dl_deadline. This triggers an early (i.e., before deadline = 10.0)

replenishment at time 9.0, setting runtime ← dl_runtime = 4.0 and deadline ← 9.0 +

dl_period = 17.0. This replenishment sets a1,3 ← 9.0 and c1,2 ← 1.0. N

If budget is exhausted (Line 17), it waits for the next replenishment time deadline if deadline is in

the future (i.e., the CBS is throttled). Otherwise, if deadline has passed (recall it is possible to execute

past a deadline in a SRT system), the replenishment is applied retroactively at deadline.

H Example 2.3 (continued). CBS τ1 then executes over [9.0, 13.0), setting runtime← runtime−

4.0 = 0. CBS τ1 is throttled due to running out of budget at time 13.0 and waits for replenishment

at deadline = 17.0. At this replenishment at time 17.0, runtime ← dl_runtime = 4.0,

deadline← 17.0 + dl_period = 25.0, a1,4 ← 17.0, and c1,3 ← 4.0. N

2.2 Scheduler Classifications

This section presents abstractions of schedulers. The following assumption is made about schedulers

discussed in this dissertation.

. Non-Fluid Assumption. Schedulers are assumed to be non-fluid, i.e., at any time t, there exists

t+ > t and t− < t such that for any job τ i,j

• if job τ i,j is scheduled on processor πj at time t, then job τ i,j is scheduled on processor πj over

the interval [t, t+);

3This assumes deadlines are implicit. If deadlines are not implicit, there is a revised wakeup rule (Abeni et al., 2015) for
the case that wakeup time < deadline and local density > dl_runtime/dl_deadline. Under this revised
rule, instead of replenishing on wakeup, budget runtime is decreased such that the local density equals the CBS’s
density.

21

• if job τ i,j is unscheduled at time t, then job τ i,j is unscheduled over [t, t+);

• if job τ i,j is scheduled on processor πj at time t−, then job τ i,j is scheduled on processor πj over

the interval [t−, t);

• and if job τ i,j is unscheduled at time t−, then job τ i,j is unscheduled over [t−, t). /

Informally, the Non-Fluid Assumption states that the multiprocessor does not reschedule with infinite

frequency. This is a given for any practical scheduler.

Task priorities are abstracted as priority points.

O Definition 2.19. (Def. 1 of Leontyev and Anderson (2007)) Associated with each job τ i,j is a function

ppi,j(t), called its priority point function. If, at time t, ppi,j(t) < pph,k(t) holds, then the priority of job

τ i,j is higher than that of job τh,k at t.

The priority point of task τi with current job τ i,j is ppi(t) , ppi,j(t). 4

For example, EDF can be defined as the scheduler such that for any job τ i,j , ppi,j(t) = di,j .

WC schedulers are schedulers such that the priority point ppi(t) always lies within a bounded window

around task τi’s implicit deadline.

O Definition 2.20. A scheduler is window constrained (WC) with priority window φ ≥ 0 if, for any

time t and task τi, we have
∣∣∣ppi(t)− d̃i(t)

∣∣∣ ≤ φ. 4

For example, under EDF, we have

∣∣∣ppi(t)− d̃i(t)
∣∣∣ = {Under EDF, ppi(t) = di(t)}∣∣∣di(t)− d̃i(t)∣∣∣

=
∣∣∣ai(t) +Di − d̃i(t)

∣∣∣
= {Definition 2.5}

|ai(t) +Di − ai(t)− T i|

= |Di − T i|.

Thus, EDF with arbitrary (but finite) relative deadlines is WC with φ = |Di − T i|.

22

π1 π2

τ1 τ2

(a) Configuration where tasks τ1 and τ2 are both sched-
uled.

π1 π2

τ1 τ2

(b) Configuration where only task τ2 is scheduled.

Figure 2.4: Two configurations.

While at first glance, a scheduler is fully defined by how ppi(t) is defined for each task τi, such a

definition can be ambiguous on sufficiently heterogeneous systems.

Let the term configuration denote some assignment of tasks to processors that may be selected by a

scheduler at some time instant.

H Example 2.4. Consider the two configurations (highlighted edges indicate assignment of a task to a

processor) of task system τ = {τ1, τ2} executing on a two processor IDENTICAL/ARBITRARY system

illustrated in Figure 2.4. Suppose at some time t, both tasks τ1 and τ2 are ready and pp2(t) < pp1(t),

i.e., τ2’s job is of higher priority than τ1’s job.

Priority points are followed by both the configurations in Figure 2.4a and Figure 2.4b because no

unscheduled task can preempt a lower-priority scheduled task under either configuration. Under these

priority points, which of the illustrated configurations should be chosen by the scheduler at time t? While

that of Figure 2.4a is superior because both tasks are scheduled instead of only task τ2, a scheduler

implementation may prefer that of Figure 2.4b if, for example, τ2 is cache-hot on processor π1.

The question of which configuration to choose can be further complicated by additional heterogeneity.

Suppose that instead of being IDENTICAL processors, the system is UNIFORM such that processor

π2 is a slow processor. Is the configuration in Figure 2.4a still superior merely because both tasks are

scheduled, especially if task τ2 has utilization u2 > sp(2)? N

The ambiguity illustrated in Example 2.4 over which configuration to select results in scheduler variants.

A scheduler variant is defined by which configurations it may choose given the priorities of jobs. For example,

when discussing related work later in this chapter, we will cover Strong-APA-EDF and Weak-APA-EDF,

EDF variants specified for IDENTICAL/ARBITRARY. Strong-APA-EDF requires that the number of

scheduled tasks is always maximized (e.g., in Example 2.4, choosing the configuration in Figure 2.4a), while

23

Weak-APA-EDF permits any configuration such that a lower-priority task is never scheduled on a processor

that an unscheduled higher-priority task has affinity for (e.g., either of the configurations may be chosen). The

choice of variant is critically important for SRT-optimality. We will show in Chapter 3 that Strong-APA-EDF

is SRT-optimal, while Weak-APA-EDF is not.

It will also be useful to have notation for the speed a task is currently executing at under a considered

scheduler.

O Definition 2.21. For task τi and time t, the current speed cspi(t) is the speed of execution of task τi

at time t under the considered scheduler. 4

The current speed of a task τi is 0 if task τi is not assigned a processor in the configuration chosen by the

scheduler at time t. If τi is assigned a processor πj , then cspi(t) = 1.0 under IDENTICAL, cspi(t) = sp(j)

under UNIFORM, and cspi(t) = spi,j under UNRELATED.

2.3 Optimization Review

In this dissertation and in prior work to be discussed in Section 2.4, scheduler variants are defined as

choosing configurations based on the solution to some optimization problem defined by task priorities and

processor speeds. This subsection covers optimization problems corresponding with these scheduler variants.

Framing scheduler variants as optimization problems simplifies analysis by allowing us to take advantage

of theorems proven about said optimization problems. Whether these optimization problems can be solved

efficiently also impacts how efficiently various scheduler variants can be implemented.

Optimization problems AP and MVM, discussed below, take as input bipartite graphs. Because, when

we reference these optimization problems, the nodes of these bipartite graphs will correspond with tasks and

processors, we also denote these node sets as τ and π with respective sizes n and m .

Assignment Problem (AP). An AP(τ , π,P) instance with profit matrix P ∈ Rn×m solves for

max
∑
τi∈τ

∑
πj∈π

pi,j · xi,j such that (2.1)

∀τi ∈ τ :
∑
πj∈π

xi,j ≤ 1.0 (2.2)

∀πj ∈ π :
∑
τi∈τ

xi,j ≤ 1.0 (2.3)

24

∀τi ∈ τ : ∀πj ∈ π : xi,j ∈ {0, 1}. (2.4)

In general, AP instances are used to match workers (τ) to jobs—jobs in the general sense, not real-time

jobs—(π) such that each worker works on at most one job (2.2) and each job is worked on by at most one

worker (2.3). xi,j = 1 holds if the ith worker works on the jth job and xi,j = 0 holds otherwise. Element pi,j

of P represents the profit generated from the ith worker completing the jth job. Constraint (2.4) forces the

decision variables xi,j to be binary.

Despite being expressed as an integer linear program (ILP), an AP instance can be solved in polynomial

time using an algorithm such as the Hungarian method (Edmonds and Karp, 1972), though such algorithms

exceed quadratic time complexity. An AP instance can be solved more efficiently by leveraging the solution

of a smaller instance. Formally, if a solution for instance AP(τ , π,P) is known, then the incremental AP

instance

AP

τ ∪ {τn+1} , π ∪ {πm+1} ,

P

p1,m+1

p2,m+1

...

pn,m+1

[

pn+1,1 pn+1,2 . . . pn+1,m

]
pn+1,m+1

can be solved in O
(

max {n,m}2
)

time (Toroslu and Üçoluk, 2007). The algorithm presented by Toroslu

and Üçoluk for an incremental AP instance is conceptually similar to a single iteration of the Hungarian

method.

The following theorem about AP instances will be used in the analysis in Chapter 3.

. Theorem 2.1 (Theorem 3.2.1 by Matoušek and Gärtner (2007)). An optimal solution of an AP

instance remains optimal even if (2.4) is relaxed to xi,j ≥ 0, i.e., the integer constraint is relaxed to a

non-negativity constraint. /

Maximum Vertex-Weighted Matching (MVM). Discussing MVM instances requires the following defini-

tions from graph theory.

25

π1 π2 π3

τ1 τ2 τ3 τ4

(a) Matching with augmenting path.

π1 π2 π3

τ1 τ2 τ3 τ4

(b) Maximal matching.

Figure 2.5: Matching example.

O Definition 2.22. A matching M in a graph is a subset of edges in the graph such that no edges share a

common vertex. 4

O Definition 2.23. A matching M is maximal if any other matching on the graph matches equal or

fewer vertices. 4

O Definition 2.24. An alternating path is a path in a graph with matching M such that edges in the path

alternate between being not in and in M. 4

O Definition 2.25. An augmenting path is an alternating path that begins and ends with unmatched

vertices. 4

H Example 2.5. Consider the affinity graph illustrated in Figure 2.5. Figure 2.5a illustrates matching

M1 = {(τ2, π1) , (τ4, π2)}. Path (τ1, π1, τ2, π2, τ4, π3) is an alternating path because (τ1, π1) 6∈ M1,

(τ2, π1) ∈ M1, (τ3, π2) 6∈ M1, (τ4, π2) ∈ M1, (τ4, π3) 6∈ M1. This alternating path is an augmenting

path because it begins with τ1 such that (τ1, π1) 6∈M1 and ends with π3 such that (τ4, π3) 6∈M1.

The matching M2 = {(τ1, π1) , (τ2, π2) , (τ4, π3)} that arises from inverting edges in the augmenting

path is illustrated in Figure 2.5b.

Matching M2 is maximal because no other matching can pair more vertices than M2. This can

be seen in Figure 2.5b in that all three processors are already matched. Matching M1 is not maximal

because M2 matches more vertices. N

O Remark 1. Consider two matchings M1 and M2 such that M2 arises from inverting an augmenting

path in M1. Any task τi or processor πj matched in matching M1 is also matched in M2. 4

26

Remark 1 can be observed in Figure 2.5.

An MVM
(
τ , π,

−→
ψ ,E

)
instance with profit vector

−→
ψ ∈ Rn and edge set E ⊆ τ × π solves for

max
∑
τi∈τ

ψi
∑

(τi,πj)∈E

xi,j such that (2.5)

∀τi ∈ τ :
∑
πj∈π

xi,j ≤ 1 (2.6)

∀πj ∈ π :
∑
τi∈τ

xi,j ≤ 1 (2.7)

∀τi ∈ τ : πj ∈ π : xi,j ∈ {0, 1}.

MVM is a special case of AP where pi,j = ψi if (τi, πj) ∈ E and pi,j = 0 otherwise. In the language of

workers and jobs, the profit yielded for completing any job depends only on the corresponding worker, but

each worker can only complete certain jobs.

Note that the binary matrix X that solves an AP or MVM instance is an alternative representation of a

matching M such that xi,j = 1 when edge (τi, πj) ∈ M and xi,j = 0 when edge (τi, πj) 6∈ M. Constraints

(2.2) and (2.6) prevent any task from being matched to more than one processor and constraints (2.3) and

(2.7) prevent any processor from being matched to more than one task.

H Example 2.6. Consider the matchings illustrated in Figure 2.5. Matrices

X1 =

0 0 0

1 0 0

0 0 0

0 1 0

and X2 =

1 0 0

0 1 0

0 0 0

0 0 1

are alternative representations of matching M1 in Figure 2.5a and M2 in Figure 2.5b, respectively. N

O Remark 2. A matching that optimally solves an MVM instance contains no augmenting paths

beginning with a task τi with ψi > 0. 4

27

π1 π2
π3 π4 π5

τ1 τ2 τ3 τ4

(a) Configuration X(1).

π1 π2
π3 π4 π5

τ1 τ2 τ3 τ4

(b) Configuration X(2).

Figure 2.6: Non-canonical and canonical configurations. (In this and in later affinity graphs, faster processors
have larger sizes.)

The remark follows from Remark 1. Otherwise, if an augmenting path beginning with some task τi exists,

the objective function value of the MVM instance (see (2.5)) can be increased by ψi using the matching that

arises from inverting along the augmenting path.

The ensuing theorem relates augmenting paths with maximal matchings.

. Theorem 2.2 (Theorem 1 by Berge (1957)). A matching M of a graph is maximal if and only if

there is no augmenting path for M in the graph. /

Remark 2 and Theorem 2.2 imply that the optimal solution of any MVM instance is a maximal matching.

This fact will be used in the analysis in Chapter 3 on systems with affinities.

Configurations. Any configuration can be represented as a binary matrix X satisfying (2.2) and (2.3) (or

equivalently, satisfying (2.6) and (2.7)) or its corresponding matching. For example, X1 in Example 2.6

represents a configuration where task τ2 is scheduled on processor π1 and task τ4 is scheduled on processor

π2 (recall Figure 2.5a). Not every X satisfying (2.2) and (2.3) represents a valid configuration at every time

instant. For example, at some time t, we may have xi,j = 1 while τi /∈ τrdy(t), i.e., task τi is not ready at time

t. We call matrix X canonical at time t if it corresponds to a valid configuration.

O Definition 2.26. Matrix X ∈ Rn×m is canonical at time t if, for any task τi ∈ τ ,

• τi is matched in X to a processor only if τi is ready at t, i.e., τi /∈ τrdy(t)⇒ ∀πj ∈ π : xi,j = 0.

• and τi is not matched to a processor it does not have affinity for, i.e., πj /∈ αi ⇒ xi,j = 0. 4

28

H Example 2.7. Consider a system of four tasks and five CPUs with affinities as illustrated in Figure 2.6.

Suppose that at some time t, we have τrdy(t) = {τ1, τ2, τ3}. Consider the configurations

X(1) =

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

and X(2) =

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

.

Configuration X(1) (Figure 2.6a) is not canonical at time t because task τ4 /∈ τrdy(t) is matched

with processor π5 (i.e., x
(1)
4,5 = 1) and because task τ1 is matched to processor π3 /∈ α1 (i.e., x

(1)
1,3 = 1

and τ1 and π3 are not connected by an edge in the affinity graph in Figure 2.6a). Configuration X(2)

(Figure 2.6b) is a duplicate of X(1) that is made canonical at t by setting x
(2)
4,5 = 0 and x

(2)
1,3 = 0. N

Recall from the discussion at the beginning of Section 2.3 that some scheduler variants that will be

discussed in this dissertation are defined as choosing a configuration that corresponds to some optimal

solution of an MVM or AP instance at every time instant. Keep in mind that, for such scheduler variants

to be well-defined, we must demonstrate that there always exists an optimal solution that is canonical, as

otherwise our scheduler variant may be required to either schedule non-ready tasks or violate tasks’ affinities.

Going forward, whenever a matrix X is referred to as a configuration at some time t, interpret this to

mean that X is canonical at t.

2.4 Related Work

Much of the related work referenced by our analysis pertains to feasibility.

O Definition 2.27. A task system is HRT-feasible on a considered multiprocessor if there exists some

schedule such that each job completes by its deadline. 4

O Definition 2.28. A task system is SRT-feasible on a considered multiprocessor if there exists some

schedule such that the response time of each job is bounded by some constant. 4

Note that the feasibility conditions presented in the following subsections consider HRT-feasibility under

implicit deadlines. Under all the multiprocessor models considered in this dissertation, HRT-feasibility with

29

implicit deadlines and SRT-feasibility are equivalent. This equivalence is formalized in Appendix A. Note

that, because the two notions of feasibility are equivalent, we do not include the prefixes ‘HRT’ or ‘SRT’

when discussing feasibility.

Feasibility is relevant to proving that a scheduler is SRT-optimal.

O Definition 2.29. A scheduler is SRT-optimal on a considered multiprocessor if it can guarantee

bounded response times for any feasible task system on said multiprocessor. 4

When proving that a scheduler is SRT-optimal, we will assume that the task system satisfies the corre-

sponding multiprocessor’s feasibility condition.

2.4.1 Work under IDENTICAL

A majority of SRT analysis of EDF considers IDENTICAL multiprocessors. The feasibility condition

under IDENTICAL is as follows.

. IDENTICAL-Feasibility (Srinivasan and Anderson, 2006). Task system τ is feasible if and only if

U(τ) ≤ m, and ∀τi ∈ τ : ui ≤ 1.0. /

Devi and Anderson (2008) originally proved that for any sporadic IDENTICAL-Feasible system under

EDF, task τi has response time at most

T i +

∑m−1
k=1 C [k] − C [n]

m −
∑m−1

k=1 u [k]

+ Ci. (2.8)

Expression (2.8) is O
(
m · C [1]

)
when tasks are heavy (i.e., many tasks τi have ui ≈ 1.0), despite observed

response times for synthetically generated task systems being O
(
T [1] + C [1]

)
(Devi and Anderson, 2008).

The response-time bound (2.8) is proven inductively: for a job of interest τ i,j , assuming every job with earlier

(and equal with favored tie breaking) deadline than di,j has response time at most that in (2.8), then the

response time of τ i,j is also at most that in (2.8).

Additionally, Devi and Anderson proved a slightly higher response-time bound for sporadic IDENTICAL-

Feasible systems where jobs of tasks are non-preemptive (i.e., jobs cannot be preempted or migrated once

they begin executing on a processor). Non-preemptivity is valuable for purposes including critical sections,

30

synchronization, and reducing execution costs (due to reduced context-switch overhead). As such, the proof

by Devi and Anderson raised the question of whether EDF retains SRT-optimality with non-preemptive jobs

on heterogeneous multiprocessors.

Leontyev and Anderson (2007) extended the result by Devi and Anderson by showing that the class of

WC schedulers has bounded response times for any sporadic IDENTICAL-Feasible system.4 Leontyev and

Anderson (2007) further observed that, under IDENTICAL and without early releasing, any non-preemptive

WC scheduler can itself be abstracted as a fully-preemptive WC scheduler (with increased φi). Setting

ppi,j(t) ← ai,j −maxτk∈τ {φk} once job τ i,j is scheduled implies that any newly released job has lower

priority than job τ i,j , thus, job τ i,j cannot be preempted.

Orthogonal to the work by Leontyev and Anderson, which expanded the class of SRT-optimal schedulers,

has been work to reduce the response-time bound (2.8) by Devi and Anderson. Erickson et al. (2010)

developed an analytical technique they called compliant-vector analysis (CVA). At a high level, instead

of assuming the bound in (2.8), CVA performs induction assuming a similar bound where the fractional

term in (2.8) is allowed to be task-dependent. CVA was later supplemented with the WC Fair-Lateness

scheduler (Erickson and Anderson, 2012) that uses linear programming to identify optimal relative priority

points (i.e., ppi,j(t) = ai,j + yi for some task-dependent offset yi) for reducing maximum or average

maximum response times bounds.5 CVA with Fair-Lateness reduces analytical response-time bounds from

that in (2.8), but bounds remain in the same order of magnitude (i.e., O
(
m · C [1]

)
).

The state-of-the-art response-time bounds for EDF under IDENTICAL were proven by Valente (2016).

These bounds are fairly complex, containing several instances of the max function whose arguments are the

subsets of τ , which number exponential in n . There is no known polynomial-time algorithm for computing

these bounds. These bounds are roughly logarithmic with m . A more detailed description of the asymptotic

behavior is difficult to derive due to the complexity of the bounds.

Many works have proven lower response-time bounds by making additional assumptions about the

task model. Ahmed and Anderson (2021) considered synchronous periodic pseudo-harmonic task systems.

Pseudo-harmonic systems are such that the least common multiple of all periods is equivalent to the largest

4Note that the definition of a WC scheduler used by Leontyev and Anderson is differently parameterized than
Definition 2.20. Unlike Definition 2.20, which uses the single parameter φ, Leontyev and Anderson define unique
per-task ψi ∈ R≥0 and φi ∈ R≥0 such that ppi,j(t) ∈ [ai,j − φi, d̃i,j + ψi]. Any scheduler that is WC under one
definition is also WC under the other.

5Note that Fair-Lateness schedulers actually optimize for lateness bounds, maxτi∈τ maxj∈N {f i,j − di,j}, instead of
response-time bounds. The two bounds are roughly proportional.

31

period T [1]. Under this restricted task model, Ahmed and Anderson were able to prove exactO(T [1]) response-

time bounds that take pseudo-polynomial time to compute. These bounds concern EDF-like schedulers, a

subclass of WC that requires ppi,j(t) to be constant for each job τ i,j . Recently, Buzzega et al. (2023) further

restricted the task model to synchronous periodic uniform-instance tasks (not to be confused with UNIFORM

multiprocessors). Uniform-instance tasks are such that each task τi has equivalent Ci and T i, i.e., Ci = C

and T i = T for some C and T . For any such task system, it was proven that any response time is at most

T + C.

An alternative method of reducing response-time bounds has been to introduce intra-task parallelism to the

task model. Under the no-precedence-constraints (NPC)-sporadic task model (named by Yang and Anderson

(2014)), the ready time of any job τ i,j is allowed to precede the completion time of job τ i,j−1 (i.e., unlike

Definition 2.11, it is only required that rdy i,j ≤ ai,j under early releasing and rdy i,j = ai,j if not). Erickson

and Anderson (2011) proved that for implicit-deadline NPC-sporadic tasks, for any IDENTICAL-Feasible

system, the response time of any job of any task τi is O
(
T i + C [1] + Ci

)
. Note that IDENTICAL-Feasible

for NPC-sporadic tasks only requires that
∑

τi∈τi ui ≤ m . It is no longer required that for any task τi we

have ui ≤ 1.0. Amert et al. (2019) defined the restricted-parallelism (RP)-sporadic task model such that

NPC-sporadic and standard sporadic task models are special cases. RP-sporadic tasks are parameterized

by a per-task parallelism level that varies from one (standard sporadic task) to m (NPC-sporadic task). The

re-addition of restrictions on parallelism, however, results in response-time bounds again being O
(
m · C [1]

)
.

2.4.2 Work under IDENTICAL/ARBITRARY

There has not been much focus on SRT analysis under ARBITRARY affinities. A well-studied special

case is semi-PARTITIONED schedulers, which are slightly distinct from the notion of SEMI-PARTITIONED

(see Chapter 1) in this dissertation. Semi-PARTITIONED schedulers set affinities, usually to reduce

migrations. Such schedulers usually begin with an offline partitioning step that assigns most tasks affinity for

a single processor and the few (usually O (m)) remaining tasks affinity for multiple (usually two) processors.

Semi-PARTITIONED schedulers embodying this approach for SRT include EDF-os (Anderson et al., 2014)

and EDF-sc6 (Hobbs et al., 2021), which are both SRT-optimal (with the corresponding feasibility condition

being IDENTICAL-Feasible). Though named after and derived from EDF, we do not consider such schedulers

6Note that offline partitioning is optional for EDF-sc.

32

π1 π2 π3

τ1 τ2 τ3 τ4 τ5

(a) Weak-APA-EDF.

π1 π2 π3

τ1 τ2 τ3 τ4 τ5

(b) Strong-APA-EDF.

Figure 2.7: Weak-APA-EDF versus Strong-APA-EDF.

as EDF variants because they usually employ some level of hierarchical scheduling (e.g., migrating tasks

have statically higher priority than fixed tasks, regardless of deadline). Such semi-PARTITIONED works also

differ from this dissertation because we assume affinities are specified outside of the scheduler. We assume

that at most, the scheduler can require that affinities have certain structure (such as SEMI-PARTITIONED or

SEMI-CLUSTERED), but has no say on the affinities of specific tasks.

The feasibility condition under IDENTICAL/ARBITRARY is as follows.

. IDENTICAL/ARBITRARY-Feasibility (Baruah and Brandenburg, 2013). Task system τ is feasi-

ble if and only if ∀τi ∈ τ : ui ≤ 1.0 and

∀τi ∈ τ :
∑
πj∈αi

xi,j = 1.0, and (2.9)

∀πj ∈ π :
∑
τi∈τ

xi,j · ui ≤ 1.0. (2.10)

for some X ∈ Rn·m
≥0 . /

Baruah and Brandenburg (2013) and Voronov and Anderson (2018) presented optimal table-driven

schedulers for any IDENTICAL/ARBITRARY-Feasible task systems.

Two EDF variants for IDENTICAL/ARBITRARY targeting HRT that are of relevance to this dissertation

are Strong-APA-EDF and Weak-APA-EDF (Cerqueira et al., 2014). Defining these variants requires the

concept of shifting.

O Definition 2.30. Shifting (Cerqueira et al., 2014) is the series of migrations that results from inverting

each edge in an alternating path originating with an unmatched (i.e., unscheduled) task. 4

33

. Weak-APA-EDF (Cerqueira et al., 2014). At any time, the chosen configuration is such that no

unscheduled ready task τi should have affinity for a processor that schedules either no job or a job τk,`

such that di(t) < dk,`. /

H Example 2.8. Consider a system of n = 5 tasks and m = 3 processors with affinities as illustrated in

the graphs of Figure 2.7. Suppose that at some time t, all tasks have ready jobs such that d2(t) < d4(t) <

d5(t) < d1(t) < d3(t). Consider the configuration illustrated in Figure 2.7a. Because unscheduled task

τ5 (resp., τ3) cannot preempt τ4 (resp., τ2) on π3 (resp., π2) as d4(t) < d5(t) (resp., d2(t) < d3(t)), this

configuration is possible at time t under Weak-APA-EDF. Likewise, because tasks τ1 and τ3 cannot

preempt higher-priority tasks in Figure 2.7b, this configuration is also possible under Weak-APA-EDF.N

. Strong-APA-EDF (Cerqueira et al., 2014). At any time, the chosen configuration is such that no

unscheduled ready task τi has an alternating path beginning at τi and ending with either a processor that

schedules no job or a job τk,` such that di(t) < dk,`. /

H Example 2.9. Recall the system detailed in Example 2.8. Observe in Figure 2.7a that an alternating

path {τ5, π3, τ4, π2, τ2, π1, τ1} can be traced from the higher-priority (job of) τ5 to the lower-priority (job

of) τ1. Thus, the configuration in Figure 2.7a is impossible under Strong-APA-EDF. By inverting the

edges in this path (i.e., shifting), one arrives at Figure 2.7b. Because no shifts can result in the scheduling

of a higher-priority task in Figure 2.7b, this configuration is possible under Strong-APA-EDF. N

Weak-APA-EDF is of significance because it describes the behavior of most EDF implementations

under affinities, such as SCHED_DEADLINE.7 Strong-APA-EDF is of significance because we will prove

that it is SRT-optimal under IDENTICAL/ARBITRARY in Chapter 3.

Cerqueira et al. (2014) demonstrated that computing configurations under Strong-APA-EDF can be

done via solving MVM instances where edge set E reflects the affinity graph. This results in the alternative

definition of Strong-APA-EDF below.

. Strong-APA-EDF—MVM definition (Cerqueira et al., 2014). At any time t, the chosen configu-

ration corresponds with an optimal solution of MVM
(
τ , π,

−→
ψ ,E

)
such that

E = {(τi, πj) : τi ∈ τ and πj ∈ αi} , (2.11)

7With some exceptions, detailed in Chapter 4.

34

i.e., the edges reflect tasks’ affinities,

∀τi ∈ τ : τi ∈ τrdy(t)⇒ ψi > 0 and τi /∈ τrdy(t)⇒ ψi = 0, (2.12)

i.e., ready tasks have positive weight and non-ready tasks have 0 weight, and

∀τi, τj ∈ τrdy(t) : di(t) < dj(t)⇒ ψi > ψj , (2.13)

i.e., tasks with earlier deadlines have higher weight. /

Note that for any time t, there is always a canonical configuration that optimally solves the corresponding

MVM instance because any optimal solution X can be transformed into a canonical configuration without

changing the objective function value. Suppose we have task τi and processor πj such that τi is non-ready

and xi,j = 1. By (2.12), a task τi has ψi = 0. Because xi,j is multiplied by ψi in (2.5), setting xi,j = 0

does not change the objective function value. Likewise, suppose we have task τi and processor πj such that

πj /∈ αi and xi,j = 1. By (2.11), (τi, πj) 6∈ E. Because xi,j is only present in (2.5) if (τi, πj) ∈ E, setting

xi,j = 0 does not change the objective function value. By Definition 2.26, X is canonical after setting each

such xi,j to 0.

For such MVM instances corresponding with Strong-APA-EDF, outside of (2.13), Cerqueira et al.

(2014) did not specify how ψi should be specified for task τi (their work primarily considered Weak APA and

Strong APA variants of fixed-priority schedulers, under which ψi was defined as task τi’s priority level).

They further proved that under Strong-APA-EDF, a single job τ i,j completion belonging to task τi

(thus increasing di(t) and potentially making τi non-ready) requires at most one shift terminating with τi (or

τ i,j’s former processor if τi becomes non-ready) to return to a Strong-APA-EDF configuration. Likewise, a

single job τ i,j arrival (potentially making τi ready) requires at most one shift originating with τi. Regardless

of whether job τ i,j completes or arrives, the required shift can be computed in O (n ·m) time using a

breadth-first-search on the affinity graph (starting with task τi). This is more efficient than solving a new

MVM instance from scratch.

35

2.4.3 Work under UNIFORM

Prior work has established the SRT-optimality of EDF under UNIFORM. The feasibility condition under

UNIFORM is as follows.

. UNIFORM-Feasbility (Funk et al., 2001). Task system τ is feasible if and only if

∀k ∈ {1, 2, . . . , |τ |} :
k∑
i=1

u [i] ≤
min{m,k}∑

j=1

sp([j]). /

Yang and Anderson (2015) initially disproved that any sporadic UNIFORM-Feasible task system with

non-preemptive jobs has bounded response times via a counterexample. In fact, this counterexample showed

that any work-conserving scheduler (i.e., one that never leaves a task unscheduled when processors exists that

are not executing other jobs) may have unbounded response times, even if the system is UNIFORM-Feasible.

This suggests that the SRT-optimality of non-preemptive EDF is unique to IDENTICAL.

Yang and Anderson (2017) went on to prove that under an EDF variant that we denote as Ufm-EDF, for

any sporadic UNIFORM-Feasible task system with fully-preemptive jobs, task τi has response time at most

T i +

(
u [1]/u [n]

)m−1
(n −m + 1)C [1] +

(u [1]/u [n])
m−1−1

(u [1]/u [n])−1
C [1]

ui
.

This response-time bound is exponential in m . Ufm-EDF is defined as follows.

. Ufm-EDF (Yang and Anderson, 2017). At any time t, the ready task with earliest deadline is sched-

uled on the fastest processor, the ready task with second earliest deadline on the second fastest processor,

and so on until all ready tasks are scheduled or all processors are scheduled upon. /

Yang and Anderson (2014) proved response-time bounds for NPC-sporadic tasks under Ufm-EDF.

Assuming implicit deadlines, these bounds are O
(

m·C[1]∑
πj∈π

sp(j)

)
. Yang and Anderson (2014) also proved

O

(
m·C[1]∑
πj∈π

sp(j)

)
response-time bounds for any UNIFORM-Feasible NPC-sporadic task system under non-

preemptive Ufm-EDF. Note that for NPC-sporadic tasks, due to the allowance of intra-task parallelism, the

condition
∑

τi∈τ ui ≤
∑

πj∈π sp(j) is necessary and sufficient for UNIFORM-Feasible.

36

2.4.4 Work under UNRELATED

Perhaps due to their complexity, UNRELATED multiprocessors are less frequently considered in the

real-time literature. The feasibility condition under UNRELATED is as follows.

. UNRELATED-Feasibility (Baruah, 2004). Task system τ is feasible if and only if

∀τi ∈ τ :
∑
πj∈π

spi,j · xi,j ≥ ui, (2.14)

∀τi ∈ τ :
∑
πj∈π

xi,j ≤ 1.0, (2.15)

∀πj ∈ π :
∑
τi∈τ

xi,j ≤ 1.0, (2.16)

for some X ∈ Rn·m
≥0 . /

Though the author is unaware of prior works explicitly considering SRT analysis under UNRELATED

multiprocessors, existing table-driven schedulers targeting HRT can be made SRT by increasing table

iteration lengths. Baruah (2004), as part of proving the above UNRELATED-Feasible condition, presented an

algorithm for generating a table-driven schedule that meets all deadlines for any UNRELATED-Feasible task

system. Chwa et al. (2015) presented a table generation algorithm for 2-type UNRELATED multiprocessors

with lower time complexity.

Instead of allowing tasks to migrate freely, the more common approach for real-time scheduling on

UNRELATED multiprocessors seems to be enforcing either PARTITIONED affinities or, for a k-type

multiprocessor, CLUSTERED affinities with a cluster corresponding to each type. This reduces analytical

complexity because under PARTITIONED affinities, each processor can be analyzed as if it were an

independent uniprocessor (e.g., for sporadic task τi with affinity for a single processor πj , we can rescale Ci

to Ci ← Ci/spi,j to make πj appear as a unit-speed processor). Likewise, under CLUSTERED affinities

with a cluster per type, each cluster can be analyzed as if it were an independent IDENTICAL multiprocessor.

The problem of interest then becomes how to intelligently partition the set of tasks among the processors

or clusters, which becomes conceptually equivalent to various flavors of bin-packing. As a result, this

partitioning problem is typically solved using heuristics or approximation algorithms. Baruah et al. (2016)

presented several ILPs for partitioning tasks for PARTITIONED affinities, after which tasks are scheduled

as in uniprocessor EDF. Because bins are rarely completely filled in bin-packing, the analogue for the task

37

partitioning problem is that some processors will inevitably be underloaded. This wastes processing capacity.

As such, this lost processing capacity means the partitioning approach cannot yield optimality (i.e., timing

guarantees can be met for any UNRELATED-Feasible system).

2.5 Chapter Summary

In this chapter, we covered the sporadic task model and CBS. We defined the WC class of schedulers.

We reviewed relevant optimization problems and related work.

38

CHAPTER 3: RESPONSE-TIME BOUNDS1

In this chapter, we prove response-time bounds for WC schedulers on various multiprocessor models.

3.1 Deviation

This section proves properties about a function we call deviation, a measure of how behind a task’s

execution is at a specific time instant. We abstract the state of the task system using deviation. This is because

deviation is (mostly) continuous, which makes deviation simpler to reason about than the unabstracted task

system state.

Deviation and lag. Deviation is similar to the well-known concept of lag, but is more closely tied to

deadlines than lag when arrivals are sporadic and jobs do not execute to their worst-case execution times.

We briefly discuss the issues with lag, which was used in prior work for proving the SRT-optimality of

EDF on IDENTICAL (Devi and Anderson, 2008) and UNIFORM (Yang and Anderson, 2017), that make

lag unsuitable for our analysis. Lag compares the cumulative execution provided by an ideal schedule and

platform against the execution provided by the scheduler and platform of interest. The ideal platform is a

UNIFORM platform of n processors where processor π̂i has speed ui. The ideal schedule schedules each job

1Contents of this chapter previously appeared in the following papers:

Stephen Tang, Sergey Voronov, and James H. Anderson. GEDF tardiness: Open problems involving uniform
multiprocessors and affinity masks resolved. In 31st Euromicro Conference on Real-Time Systems, volume 133, pages
13:1–13:21, 2019.

Stephen Tang and James H. Anderson. Towards practical multiprocessor EDF with affinities. In 41st IEEE Real-Time
Systems Symposium, pages 89–101, 2020.

Stephen Tang, Sergey Voronov, and James H. Anderson. Extending EDF for soft real-time scheduling on unrelated
multiprocessors. In 2021 IEEE Real-Time Systems Symposium, pages 253–265, 2021b.

39

τ i,j on processor πi starting from time ai,j . Job τ i,j completes in the ideal schedule at time

f i,j = ai,j +
ci,j
ui

≤ ai,j +
Ci
ui

= ai,j + T i.

(3.1)

By (3.1) and because ai,j+1 ≥ ai,j + T i, each processor π̂i schedules at most one job at a time. By (3.1) and

because d̃i,j = ai,j + T i, under implicit deadlines, each job τ i,j finishes by its deadline.

O Definition 3.1. LetAi(I, t) denote the cumulative execution provided in schedule S by time t to task

τi. The lag of task τi at time t under schedule S is lag i(t) , Ai(I, t)−Ai(S, t). 4

Lag is a convenient abstraction for analysis because it is continuous (this follows from the cumulative

execution function Ai(I, t) being continuous). Additionally, assuming the task system is periodic, lag i(t) is

useful because lagi(t)
ui

is within T i of t− d̃i(t) for any time t.2 This is demonstrated in Example 3.1 below.

We refer the reader to Lemma 2 by Yang and Anderson (2017) for a formal proof.

H Example 3.1. Consider the schedule S illustrated in Figure 3.1a of task τ1 with (C1, T 1) = (2.0, 4.0).

In Figure 3.1a, task τ1 is periodic. A plot of lag1(t)
u1

and t− d̃1(t) is illustrated in Figure 3.1b. For example,

at time 10.0, the ideal schedule I has completed execution of jobs τ1,1, τ1,2, and half of job τ1,3. Thus,

A1(I, 10.0) = 2.5C1 = 5.0. The actual schedule S has not executed any jobs of τ1, soA1(S, 10.0) = 0.

Then lag1(10.0)
u1

= 5.0−0
0.5 = 10.0, as illustrated in Figure 3.1b.

Observe from Figure 3.1b that lag1(10.0)
u1

is always within T 1 = 4.0 units from t− d̃1(t). N

This relationship between lag i(t) and t − d̃i(t) is useful for two reasons. First, by comparing lag i(t)

and lagk(t) for tasks τi and τk, inferences can be made about which has the earlier implicit deadline. Second,

an upper bound on lag i(t) can be used to upper bound t− d̃i(t), which, because d̃i(t) = ai(t) + T i, can be

used to upper bound t− ai(t). An upper bound on t− ai(t) is an upper bound on the response time of any

job of task τi, which is the goal of SRT analysis.

The relationship between lag i(t) and t− d̃i(t) only holds assuming that the task system is periodic, as

shown in Example 3.2.

2Note that, for this to be true about lag i(t), it must also be assumed that each job τ i,j has ci,j = Ci.

40

0 2 4 6 8 10 12 14 16

Time

τ1

(a) Schedule of a periodic system.

0 2 4 6 8 10 12 14 16

Time

−5

−3

−1

1

3

5

7

9 lag1(t)

u1

t− d̃1(t)

(b) Plot of lag1(t)
u1

and t− d1(t).

Figure 3.1: lag1(t)
u1

within T 1 of t− d1(t).

41

0 2 4 6 8 10 12 14 16

Time

τ1

(a) Schedule of a sporadic system.

0 2 4 6 8 10 12 14 16

Time

−5

−3

−1

1

3

5

7

9 lag1(t)

u1

t− d̃1(t)

(b) Plot of lag1(t)
u1

and t− d1(t).

Figure 3.2: lag1(t)
u1

outside of T 1 from t− d1(t).

42

0 2 4 6 8 10

τ1

0 2 4 6 8 10

τ2

0 2 4 6 8 10

Time

τ3

(a) Cost c1,1 is 2.0.

0 2 4 6 8 10

τ1

0 2 4 6 8 10

τ2

0 2 4 6 8 10

Time

τ3

(b) Cost c1,1 is 1.0.

Figure 3.3: Reducing c1,1 increases job τ3,1’s response time.

H Example 3.2. Consider the schedule S illustrated in Figure 3.2a of the same task τ1 discussed in

Example 3.1. Unlike in Example 3.1, in Figure 3.2a, task τ1 is sporadic. Note how t− d̃1(t) changes

drastically at time 12.0 due to the large separation time between a1,1 = 0 and a1,2 = 12. Immediately

prior to time 12.0, the value of t − d̃1(t) approaches 8.0 and the value of lag1(t)
u1

approaches 0. The

difference between lag1(t)
u1

and t− d̃1(t) is 8.0 > 4.0 = T 1. N

A technique for extending response-time bounds derived assuming periodic arrivals to sporadic systems

without such assumptions was presented in Appendix A by Yang and Anderson (2017). This technique relied

on the fact that EDF is a predictable scheduler, i.e., reducing the execution cost of any job never increases

the response time of any job in the schedule. The broader class of WC schedulers, which are considered by

this dissertation, are not predictable (see Example 3.3 below). Thus, the same technique is not applicable to

this dissertation.

H Example 3.3. Assume three tasks executing on one CPU. Consider a WC scheduler such that

pp1,1(t) = 6.0, pp2,1(t) = 7.0, and pp3,1(t) = 8.0 until job τ3,1 executes for 1.0 time units, af-

ter which pp3,1(t) = 5.0. Consider the schedule of this system illustrated in Figure 3.3a. We have

pp1,1(t) < pp2,1(t) < pp3,1(t). Thus, job τ1,1 executes, then job τ2,1 executes, and then job τ3,1

executes.

43

Figure 3.3b illustrates the same system as Figure 3.3a with the exception that c1,1 is 1.0 instead of

2.0. When job τ1,1 completes at time 1.0, job τ2,1 has not arrived. Thus, job τ3,1 begins executing at

time 1.0. After job τ3,1 executes for 1.0 time units at time 2.0, pp3,1(t) changes to 5.0. Then for t ≥ 2.0,

pp3,1(t) < pp2,1(t). Thus, job τ2,1 does not execute until after job τ3,1 completes. The response time of

job τ2,1 is 3.0, compared to its response time of 1.0 in Figure 3.3a. N

Deviation is designed to remain proportional to t − d̃i(t) without any assumptions. The definition of

deviation relies on that of virtual time.

O Definition 3.2. The virtual time of task τi is

vt i(t) , ai(t) + T i
ci(t)− remi(t)

ci(t)
. 4

Broadly speaking, the virtual time vt i(t) interpolates between the arrival time ai(t) and implicit deadline

d̃i(t) = ai(t) + T i of the current job of task τi. This interpolation is closer to ai(t) when the current

job has barely executed (i.e., remi(t) ≈ ci(t)) and approaches d̃i(t) when the job nears completion (i.e.,

remi(t) ≈ 0). We will formally prove in Lemma 3.2 that d̃i(t) ≈ vt i(t).

Instead of considering an ideal schedule, we define deviation by directly subtracting vt i(t) from the time

t and multiplying by a leading constant. Because d̃i(t) ≈ vt i(t), this definition satisfies the requirement that

deviation is roughly proportional to t − d̃i(t), which was the property of lag used by Yang and Anderson

(2017) when analyzing the SRT-optimality of Ufm-EDF.

O Definition 3.3. The deviation3 of task τi at time t is

dev i(t) ,

√

ui · (t− vt i(t)) t ≥ vt i(t)

0 t < vt i(t)

. 4

The setting of deviation to 0 when it would otherwise be negative and the leading constant of
√

ui

are included in the definition to maintain certain properties that become relevant in Section 3.5.2. Forcing

3Note that the definitions of virtual time vt i(t) and deviation dev i(t) in this dissertation are slightly different from their
definitions in the author’s prior works (Tang and Anderson, 2020; Tang et al., 2021b). Over time these definitions have
been refined to reduce the number of cases that must be considered in the analysis.

44

dev i(t) ≥ 0 will allow us to multiply certain inequalities without reversing the direction of these inequalities.

The leading
√

ui simplifies later equations and derivations.4

A disadvantage of reasoning about deviation instead of lag is that dev i(t) is not everywhere continuous

with t. This is because vt i(t) is not continuous. Recall how vt i(t) interpolates between ai(t) and d̃i(t). If

the current job of task τi at time t is job τ i,j and ai,j+1 > ai,j + T i, when job τ i,j completes, vt i(t) will

discontinuously increase from time d̃i,j = ai,j + T i to time ai,j+1. Dealing with these discontinuities is a

prominent source of complexity in the analysis presented in this chapter.

We now formally prove the properties of virtual time and deviation used in the remainder of this chapter.

3.1.1 Scheduling

Lemmas proven in this subsection relate a task’s deviation to whether said task is ready and to said task’s

priority point.

. Lemma 3.1. For task τi and time t, if we have dev i(t) > 0, then task τi is ready at t. /

Proof. Let τ i,j denote the current job of task τi at time t. We have

t > {dev i(t) > 0 and Definition 3.3}

vt i(t)

= {Definition 3.2}

ai(t) + T i
ci(t)− remi(t)

ci(t)

≥ {remi(t) ≤ ci(t)}

ai(t)

= {Definition 2.10}

ai,j

≥ {Definition 2.11}

rdy i,j .

4Technically, Equation (3.55) requires deviation to remain contained within a hyper-sphere, and eliminating the
√

ui
term changes this to a hyper-ellipsoid. A hyper-sphere is more symmetrical and this simplifies some of our analysis.

45

By Definition 2.11, task τi is ready at time t. �

. Lemma 3.2. For any task τi, we have vt i(t) < d̃i(t) ≤ vt i(t) + T i. /

Proof. By Definition 3.2, we have vt i(t) = ai(t) + T i
ci(t)−remi(t)

ci(t)
. Because remi(t) > 0 (recall that,

by Definition 2.10, the current job is incomplete by definition, thus, the remaining execution of the

current job remi(t) cannot be 0) and remi(t) ≤ ci(t), we have ai(t) ≤ vt i(t) < ai(t) + T i. Because,

by Definition 2.5, d̃i(t) = ai(t) + T i, we have d̃i(t)− T i ≤ vt i(t) < d̃i(t). Rearrangement yields the

lemma statement. �

. Lemma 3.3. Consider an arbitrary WC scheduler. If at time t, we have deve(t)√
ue
≥ dev`(t)√

u`
+ T [1] + 2φ,

then ppe(t) < pp`(t). /

Proof. We start by proving the following claim.

I Claim 3.3.1. t > vte(t). J

Proof. We have

0 <
{
T [1] > 0 and, by Definition 2.20, φ ≥ 0

}
T [1] + 2φ

≤ {By Definition 3.3, dev `(t) ≥ 0}

dev `(t)√
u`

+ T [1] + 2φ

≤ {Lemma statement}

deve(t)√
ue

.

Thus, we have deve(t) > 0. The claim follows from Definition 3.3. �

46

Claim 3.3.1 is used in the following derivation to show that ppe(t) < pp`(t), which is our proof

obligation.

ppe(t) ≤ {Definition 2.20}

d̃e(t) + φ

≤ {Lemma 3.2}

vte(t) + T e + φ

≤
{
T e ≤ T [1]

}
vte(t) + T [1] + φ

= − (t− vte(t)) + t+ T [1] + φ

= {Claim 3.3.1 and Definition 3.3}

− deve(t)√
ue

+ t+ T [1] + φ

≤ {Lemma statement}

− dev `(t)√
u`
− T [1] − 2φ+ t+ T [1] + φ

= − dev `(t)√
u`
− φ+ t

≤
{

By Definition 3.3,
dev `(t)√

u`
≥ t− vt`(t)

}
− (t− vt`(t))− φ+ t

= vt`(t)− φ

< {Lemma 3.2}

d̃`(t)− φ

≤ {Definition 2.20}

pp`(t) �

3.1.2 Response Times

Lemmas proven in this subsection relate a task’s deviation to its response times.

47

. Lemma 3.4. If, for some ` > 0, for all time instants t, we have dev i(t) ≤ ` ·
√

ui, then the response

time of any job τ i,j is at most T i + `. /

Proof. We prove the contrapositive: if the response time of any job τ i,j exceeds T i + `, then for some

time instant t we have dev i(t) > ` · √ui. Let job τ i,j be a job with response time exceeding T i + `, i.e.,

f i,j − ai,j > T i + `.

Let time t∗ , d̃i,j + `. By Definition 2.5, we have t∗ = T i + ai,j + `. Because f i,j − ai,j > T i + `,

we have f i,j > t∗, meaning job τ i,j is incomplete at time t∗. Thus, either job τ i,j or an earlier job of

task τi must be the current job of task τi at t∗ (recall that, by Definition 2.10, the current job of a task is

the incomplete job of said task with the earliest arrival time), so d̃i(t∗) ≤ d̃i,j . Because t∗ = d̃i,j + `,

we have t∗ ≥ d̃i(t
∗) + ` ⇒ t∗ − vt i(t

∗) ≥ d̃i(t
∗) − vt i(t

∗) + `. By Lemma 3.2, d̃i(t∗) > vt i(t
∗).

Because t∗ − vt i(t
∗) ≥ d̃i(t

∗) − vt i(t
∗) + `, we have t∗ − vt i(t

∗) > `. By Definition 3.3, we have

dev i(t
∗) > ` · √ui. �

. Lemma 3.5. For task τi and time t, if τi is inactive, then dev i(t) = 0. /

Proof. By Definition 2.13, we have that task τi is not ready at time t. Let job τ i,j be task τi’s current job.

By Definition 2.11, we have that t < rdy i,j . Because rdy i,j ≤ ai,j (also by Definition 2.11), we have

t < ai,j . Subtracting vt i(t) from both sides, we have

t− vt i(t) < ai,j − vt i(t)

= {Definition 2.10}

ai(t)− vt i(t)

≤ {remi(t) ≤ ci(t)}

ai(t) + T i
ci(t)− remi(t)

ci(t)
− vt i(t)

= {Definition 3.2}

vt i(t)− vt i(t)

= 0.

The lemma follows from Definition 3.3. �

48

3.1.3 Evolution

Lemmas proven in this subsection relate to how deviation changes over time.

. Lemma 3.6. For task τi, time instant t, and ε > 0, we have vt i(t+ ε) ≥ vt i(t). /

Proof. Let jobs τ i,j and τ i,j∗ denote the current job of task τi at times t and t+ ε, respectively. There

are two cases to consider.

J Case 3.6.1. The current job of task τi is the same at times t and t+ ε, i.e., j = j∗. I

By Definition 2.10, we have

ai(t) = ai(t+ ε) and ci(t) = ci(t+ ε). (3.2)

Because τ i,j and τ i,j∗ are the same job and the remaining execution required by a job does not

increase over time, we have

remi(t+ ε) ≤ remi(t). (3.3)

Thus,

vt i(t+ ε) = {Definition 3.2}

ai(t+ ε) + T i
ci(t+ ε)− remi(t+ ε)

ci(t+ ε)

= {Equation (3.2)}

ai(t) + T i
ci(t)− remi(t+ ε)

ci(t)

≥ {Equation (3.3)}

ai(t) + T i
ci(t)− remi(t)

ci(t)

= {Definition 3.2}

vt i(t). �

J Case 3.6.2. The current jobs of task τi at times t and t+ ε are distinct, i.e., j 6= j∗. I

49

Because the index of the current job never decreases, we have j∗ > j. Because the remaining cost

of the current job is at most its total cost, we have

remi(t+ ε) ≤ ci(t+ ε) and remi(t) ≤ ci(t) (3.4)

Thus,

vt i(t+ ε) = {Definition 3.2}

ai(t+ ε) + T i
ci(t+ ε)− remi(t+ ε)

ci(t+ ε)

≥ {Equation (3.4)}

ai(t+ ε)

= {Definition 2.10}

ai,j∗

≥ {j∗ > j and task τi is a sporadic task}

ai,j + T i

> {By Definition 2.10, ci(t) > 0 and remi(t) > 0}

ai,j + T i
ci(t)− remi(t)

ci(t)

= {Definition 3.2}

vt i(t). �

For both cases, vt i(t+ ε) ≥ vt i(t). �

. Lemma 3.7. For any task τi and time t, there exists ψ > 0 such that both

∀t∗ ∈ [t, t+ ψ) : vt i(t
∗) = vt i(t) + (t∗ − t) T i

ci(t)
cspi(t) (3.5)

and

∀t∗ ∈ [t− ψ, t) : vt i(t
∗) = vt i(t− ψ) + (t∗ − t+ ψ)

T i
ci(t− ψ)

cspi(t− ψ). (3.6)

50

are true. /

Proof. We consider proving (3.5) first. We select arbitrarily small ψ such that propositions (3.7) and

(3.8), defined below, are true.

Let job τ i,j be the current job of task τi at time t. For small enough ψ, because of the Non-Fluid

Assumption, job τ i,j is still the current job of task τi throughout [t, t+ ψ). By Definition 2.10,

∀t∗ ∈ [t, t+ ψ) : ai(t
∗) = ai(t) and ci(t∗) = ci(t). (3.7)

By the Non-Fluid Assumption, for small enough ψ, task τi is, over the interval [t, t + ψ), either

scheduled on the same processor or not scheduled on any processor. By Definition 2.21, we have

∀t∗ ∈ [t, t+ ψ) : cspi(t
∗) = cspi(t). Because the current job of task τi is τ i,j over [t, t+ ψ), we have

∀t∗ ∈ [t, t+ ψ), remi(t
∗) = remi(t)− (t∗ − t) · cspi(t), (3.8)

i.e., the remaining execution of the current job is decreased by the duration of execution (t∗ − t)

multiplied by the execution speed cspi(t).

We have

vt i(t
∗) = {Definition 3.2}

ai(t
∗) + T i

ci(t
∗)− remi(t

∗)

ci(t∗)

= {Equation (3.7)}

ai(t) + T i
ci(t)− remi(t

∗)

ci(t)

= {Equation (3.8)}

ai(t) + T i
ci(t)− remi(t) + (t∗ − t) · cspi(t)

ci(t)

= ai(t) + T i
ci(t)− remi(t)

ci(t)
+ (t∗ − t) T i

ci(t)
cspi(t)

= {Definition 3.2}

vt i(t) + (t∗ − t) T i
ci(t)

cspi(t).

(3.9)

(3.9) is (3.5), which is half of our proof obligations.

51

The reasoning for (3.6) is similar. By the Non-Fluid Assumption, for small enough ψ, we have that

the same job τ i,j is the current job of task τi over [t− ψ, t). Additionally, task τi is either scheduled on

the same processor or is unscheduled over [t− ψ, t). (3.6) is yielded by substituting all instances of t

with t− ψ in (3.7)-(3.9). �

. Lemma 3.8. For task τi and time t, the left-sided limit limt∗→t− vt i(t
∗) is well-defined. /

Proof. Our proof obligation is to show that vt i(t
∗) approaches some finite value ` as t∗ → t−, i.e.,

∃` ∈ R : ∀ε > 0 : ∃ : δ > 0 : ∀t∗ ∈ (t− δ, t) : |vt i(t
∗)− `| ≤ ε. (3.10)

By (3.6) of Lemma 3.7, we have

∃ψ > 0 : ∀t∗ ∈ [t− ψ, t) : vt i(t
∗) = vt i(t− ψ) + (t∗ − (t− ψ))

T i
ci(t− ψ)

cspi(t− ψ). (3.11)

We consider two cases depending on the value of cspi(t− ψ). Note that, as a processor speed, this

value is non-negative.

J Case 3.8.1. cspi(t− ψ) = 0. I

Let ` , vt i(t− ψ). Consider any ε > 0. For any t∗ ∈ [t− ψ, t), we have

vt i(t
∗)− ` = {Equation (3.11)}

vt i(t− ψ) + (t∗ − (t− ψ))
T i
ci,j

cspi(t− ψ)− `

= {cspi(t− ψ) = 0}

vt i(t− ψ) + 0− `

= {Definition of `}

vt i(t− ψ)− vt i(t− ψ)

= 0

< ε.

This implies (3.10), the proof obligation. �

52

J Case 3.8.2. cspi(t− ψ) > 0. I

Let

` , vt i(t− ψ) + ψ
T i

ci(t− ψ)
cspi(t− ψ). (3.12)

For any ε > 0, let

δ , min

{
ψ, ε · ci(t− ψ)

T i · cspi(t− ψ)

}
. (3.13)

We have ∀t∗ ∈ (t− δ, t) :

|vt i(t
∗)− `| = {Equation (3.11)}∣∣∣∣vt i(t− ψ) + (t∗ − (t− ψ))

T i
ci(t− ψ)

cspi(t− ψ)− `
∣∣∣∣

=

∣∣∣∣vt i(t− ψ) + ψ
T i

ci(t− ψ)
cspi(t− ψ) + (t∗ − t) T i

ci(t− ψ)
cspi(t− ψ)− `

∣∣∣∣
= {Equation (3.12)}∣∣∣∣(t∗ − t) T i

ci(t− ψ)
cspi(t− ψ)

∣∣∣∣
= {t∗ < t}

(t− t∗) T i
ci(t− ψ)

cspi(t− ψ)

< {t∗ > t− δ}

δ
T i

ci(t− ψ)
cspi(t− ψ)

≤
{

By Equation (3.13), δ ≤ ε · ci(t− ψ)

T i · cspi(t− ψ)

}
ε.

This implies (3.10), the proof obligation. �

Both cases yield (3.10), the proof obligation. �

The following corollary follows from Lemma 3.8 and Definition 3.3.

. Corollary 3.9. For task τi and time t, the left-sided limit limt∗→t− dev i(t
∗) is well-defined. /

53

Proof.

lim
t∗→t−

dev i(t
∗) = {Definition 3.3}

lim
t∗→t−

max {0,
√

ui · (t∗ − vt i(t
∗))}

= max

{
lim
t∗→t−

0, lim
t∗→t−

√
ui · (t∗ − vt i(t

∗))

}
= max

{
0,
√

ui ·
(

lim
t∗→t−

(t∗ − vt i(t
∗))

)}
= max

{
0,
√

ui ·
([

lim
t∗→t−

t∗
]
−
[

lim
t∗→t−

vt i(t
∗)

])}
= max

{
0,
√

ui ·
(
t−

[
lim
t∗→t−

vt i(t
∗)

])}

By Lemma 3.8, this value is well-defined. �

Corollary 3.9 is necessary for Lemma 3.10 to be well-defined.

. Lemma 3.10. For task τi and time t, we have

lim
t∗→t−

dev i(t
∗) ≥ dev i(t). /

Proof. We have

lim
t∗→t−

dev i(t
∗) = {Definition 3.3}

lim
t∗→t−

max {0,
√

ui · (t∗ − vt i(t
∗))}

= max

{
0,
√

ui · lim
t∗→t−

(t∗ − vt i(t
∗))

}
= max

{
0,
√

ui ·
(
t− lim

t∗→t−
vt i(t

∗)

)}
≥ {Lemma 3.6}

max {0,
√

ui · (t− vt i(t))}

= {Definition 3.3}

dev i(t). �

54

. Lemma 3.11. For task τi and time t, the right-sided limit limt∗→t+ vt i(t
∗) = vt i(t). /

Proof. By (3.5) of Lemma 3.7, there exists ψ > 0 such that ∀t∗ ∈ [t, t+ ψ) : vt i(t
∗) = vt i(t) + (t∗ −

t) T i
ci(t)

cspi(t). Thus,

lim
t∗→t+

vt i(t
∗) = lim

t∗→t+

(
vt i(t) + (t∗ − t) T i

ci(t)
cspi(t)

)
= vt i(t) + (0)

T i
ci(t)

cspi(t)

= vt i(t). �

The following corollary follows from Lemma 3.11 and Definition 3.3.

. Corollary 3.12. For task τi and time t, the right-sided limit limt∗→t+ dev i(t
∗) = dev i(t). /

Proof.

lim
t∗→t+

dev i(t
∗) = {Definition 3.3}

lim
t∗→t+

max {0,
√

ui · (t∗ − vt i(t
∗))}

= max

{
0,
√

ui ·
([

lim
t∗→t+

t∗
]
−
[

lim
t∗→t+

vt i(t
∗)

])}
= {Lemma 3.11}

max {0,
√

ui · (t− vt i(t))}

= {Definition 3.3}

dev i(t) �

. Lemma 3.13. For any task τi and time t such that dev i(t) > 0, there exists ψ > 0 such that

∀t∗ ∈ [t, t+ ψ) :
√

ui · dev i(t
∗) ≤

√
ui · dev i(t) + (t∗ − t) · (ui − cspi(t)) . /

55

Proof. By Lemma 3.7, we can select ψ > 0 small enough such that (3.5) is true. Thus, for t∗ ∈ [t, t+ψ),

we have

dev i(t
∗) = {Definition 3.3}

max {0,
√

ui · (t∗ − vt i(t
∗))}

= {Equation (3.5)}

max

{
0,
√

ui ·
(
t∗ − vt i(t)− (t∗ − t) T i

ci(t)
cspi(t)

)}
= max

{
0,
√

ui · (t− vt i(t)) + (t∗ − t)
√

ui

(
1− T i

ci(t)
cspi(t)

)}
= {Definition 3.3 and dev i(t) > 0}

max

{
0, dev i(t) + (t∗ − t)

√
ui

(
1− T i

ci(t)
cspi(t)

)}
≤
{
− T i
ci(t)

≤ −T i
Ci

= − 1

ui

}
max

{
0, dev i(t) + (t∗ − t)

√
ui

(
1− cspi(t)

ui

)}
= max

{
0, dev i(t) + (t∗ − t) ·

(
√

ui −
cspi(t)√

ui

)}
.

There are two cases depending on the value of
√

ui − cspi(t)√
ui

.

J Case 3.13.1. √ui − cspi(t)√
ui
≥ 0. I

dev i(t
∗) ≤ max

{
0, dev i(t) + (t∗ − t) ·

(
√

ui −
cspi(t)√

ui

)}
≤
{

dev i(t) > 0, t∗ ≥ t, and
√

ui −
cspi(t)√

ui
≥ 0

}
dev i(t) + (t∗ − t) ·

(
√

ui −
cspi(t)√

ui

)

The lemma follows from multiplying by
√

ui. �

J Case 3.13.2. √ui − cspi(t)√
ui

< 0. I

56

Let

ψ′ , min

ψ, dev i(t)
cspi(t)√

ui
−√ui

 .

Because ψ′ ≤ ψ, we have ∀t∗ ∈ [t, t+ ψ′) :

dev i(t
∗) ≤ max

{
0, dev i(t) + (t∗ − t) ·

(
√

ui −
cspi(t)√

ui

)}

=

(t∗ − t) < ψ′ ≤ dev i(t)
cspi(t)√

ui
−√ui

⇒ dev i(t) + (t∗ − t) ·
(
√

ui −
cspi(t)√

ui

)
≥ 0

dev i(t) + (t∗ − t) ·

(
√

ui −
cspi(t)√

ui

)

The lemma follows from multiplying by
√

ui. �

Either case yields the lemma. �

3.1.4 Proof Strategy

Proofs of response-time bounds for EDF variants under the multiprocessor models (UNIFORM,

IDENTICAL/ARBITRARY, and UNRELATED) considered in this dissertation all follow the same gen-

eral strategy, which we give a high-level overview of here. This strategy shows that vector
−−→
dev(t) =

〈dev1(t), dev2(t), . . . , devn(t)〉 remains in a bounded region of Rn
≥0 (recall that, by Definition 3.3, dev i(t) ≥

0) for any time t. This implies that, for each task τi, we have that dev i(t) is upper bounded for any time t.

Thus, by Lemma 3.4, the response time of any task τi is bounded.

We describe our bounded region as the intersection of one or more inequalities. These inequalities

have form G(dev1(t), dev2(t), . . . , devn(t)) ≤ β, where G is some Rn 7→ R function and β is a scalar.

For example, suppose we have τact(t) = {τ1, τ2} over some time interval (we will discuss how changes

in τact(t), i.e., tasks entering or leaving the system, are dealt with later). The shaded area in Figure 3.4a

illustrates the intersection of inequalities dev1(t) ≤ 6, dev2(t) ≤ 4, and dev1(t) + 2dev2(t) ≤ 12. The

dashed lines in Figure 3.4a illustrate the boundaries of these inequalities. In our proofs, these inequalities are

specifically constructed such that we can draw conclusions about the configuration chosen by the scheduler at

57

any time t where
−−→
dev(t) lies on one of these boundaries. These conclusions arise from the lemmas proven in

Section 3.1.1.

We prove
−−→
dev(t) remains in our bounded region by contradiction. We assume otherwise that there

exist time instants such that
−−→
dev(t) is outside of our bounded region. The proof by contradiction begins

by showing that if there are time instants where
−−→
dev(t) is outside of the bounded region, then there exists

a boundary time instant, denoted tb, immediately prior to these time instants such that
−−→
dev(tb) lies on the

boundary of the region.

In Figure 3.4b, the trajectory of
−−→
dev(t) over time is illustrated as the black curve. The dotted segment

illustrates a hypothetical continuation of this trajectory that reaches the white highlighted point at (5.5, 4.75),

which lies outside of our region. Prior to reaching this point, the trajectory intersects the boundary of the

region at (5, 3.5). The time instant corresponding with this point in the trajectory is tb.

In our analysis, the existence of time tb is proven using the limits of dev i(t) proven to exist in Corol-

laries 3.9 and 3.12 and the continuity properties of whichever function G corresponds with the portion

of the region’s boundary that
−−→
dev(tb) would lie on. Note that there may exist multiple such functions

G if
−−→
dev(tb) lies on a corner of our bounded region (e.g., (4, 4) or (6, 3) in Figure 3.4a), so our later

proofs never assume that this function G is unique. In Figure 3.4b, the function G is unique and is

G(dev1(t), dev2(t)) = dev1(t) + 2dev2(t).

We next prove that the trajectory of
−−→
dev(t) remains within the region shortly after time tb, which

contradicts the definition of tb (that tb immediately precedes
−−→
dev(t) leaving the region). Recall from the

earlier paragraphs in this subsection that the region is specifically constructed such that information is known

about the configuration selected at time t when
−−→
dev(t) lies on the boundary of the region. We prove

−−→
dev(t)

remains within the region after tb by using this information with the lemmas proven in Section 3.1.3, which

concern how dev i(t) evolves over time. In Figure 3.4c, the trajectory
−−→
dev(t) moves to (3, 3) after time tb

instead of to (5.5, 4.75), the point highlighted in Figure 3.4b.

Contradicting the existence of tb proves that
−−→
dev(t) remains in the bounded region, which is the goal of

this proof strategy. As stated previously, the proof strategy assumes up to this point that the set of active tasks

τact(t) remains constant. A dynamic τact(t) is dealt with by maintaining a different set of axes and a bounded

region for each possible value of τact(t) considered (e.g., for UNIFORM and IDENTICAL/ARBITRARY

platforms, we will consider each subset τ ′ ⊆ τ such that τ ′ is feasible on the considered platform).

58

0 1 2 3 4 5 6 7

dev1(t)

0

1

2

3

4

5

dev2(t)

(a) Define a bounded region.

0 1 2 3 4 5 6 7

dev1(t)

0

1

2

3

4

5

dev2(t)

−−→
dev(tb)

(b) Prove existence of tb.

0 1 2 3 4 5 6 7

dev1(t)

0

1

2

3

4

5

dev2(t)

(c) Prove
−−→
dev(t) remains in region.

0 1 2 3 4 5 6 7

dev1(t)

0

1

2

3

4

5

dev2(t)

0 1 2 3 4 5 6 7

dev3(t)

0

1

2

3

4

5

dev2(t)
−−→
dev

(
tact
k

)

(d) Prove
−−→
dev(t) stays within region after task activation and deactivation.

Figure 3.4: Proof strategy.

59

For example, suppose that at some activation time instant tact
k , task τ1 from Figure 3.4 becomes inactive

and another task τ3 becomes active. The trajectory
−−→
dev(t) jumps from the left-side axes to the right-

side axes in Figure 3.4d. Point (0, 3) is highlighted white in the left-side vertical axis, and represents

lim
t→(tact

k)
−
−−→
dev(t). Point (0, 3) is highlighted black in the right-side vertical axis, and represents

−−→
dev

(
tact
k

)
.

Task set {τ2, τ3} has a distinct bounded region, shaded orange in Figure 3.4d, from the bounded region of

{τ1, τ2}, which is shaded gray in Figure 3.4.5

The obligation of the proof strategy is to show that
−−→
dev(t) always remains within the new bounded

region after a jump. This is proven by induction on the activation time instants tact
k . Once this is proven, we

can derive response-time bounds that remain valid so long as τact(t) only takes whatever values we consider

(e.g., feasible subsets of tasks).

3.2 Analysis underHP-LAG Systems

In this section, we will define a proposition on the considered task system, multiprocessor model, and

scheduler, which we call HP-LAG. For systems where HP-LAG is true, we will prove response-time

bounds under WC schedulers. This will be useful because we will later prove thatHP-LAG is true for any

feasible task system under UNIFORM or IDENTICAL/ARBITRARY. Thus, bounds proven in this section

will apply to these multiprocessor models.

HP-LAG depends on predicateHP .

O Definition 3.4. PredicateHP is

HP
(
τ ′, t

)
, ∀τe ∈ τ ′ : ∀τ` ∈ τrdy(t) \ τ ′ : ppe(t) < pp`(t). 4

In words,HP(τ ′, t) states that at time t, all tasks in subset τ ′ have higher priority than any other ready

task.

5Formally, these distinct axes and bounded regions all coexist within different hyperplanes in Rn , but this is tedious
to illustrate and does not seem to improve understanding. The switch from τact(t) = {τ1, τ2} to τact(t) = {τ2, τ3} is
illustrated as a

−−→
dev(t) jumping between axes in Figure 3.4d, but in the space Rn , the change in

−−→
dev(t) due to τact(t)

is continuous.

60

O Definition 3.5. PropositionHP-LAG is

HP-LAG , ∀t : ∀τ ′ ⊆ τrdy(t) : HP
(
τ ′, t

)
⇒
∑
τi∈τ ′

cspi(t) ≥ U
(
τ ′
)
. 4

In words, HP-LAG states that at any time instant, for any subset of highest-priority ready tasks, the

total speed of processors executing said tasks is at least the total utilization of said tasks. Note that, while

we will prove that systems satisfying HP-LAG guarantee bounded response times, this assumes a WC

scheduler. For example, while the fixed-priority schedule in Example 1.1 and Figure 1.1b satisfiesHP-LAG,

the fixed-priority scheduler is not a WC scheduler. Thus, it was possible for task τ3 to have unbounded

response times in Figure 1.1b.

O Definition 3.6. For each subset τ ′ ⊆ τ , let

βτ ′ ,
T [1] + 2φ

2u [n]

(
U
(
τ ′
)) (

2Umax − U
(
τ ′
))
. 4

Static systems. Lemma 3.14, to be proven below, concerns a system where the set of active tasks is constant.

Dynamic tasks will be considered afterwards.

. Lemma 3.14. Let [t0, t1) be a time interval such that

∃τ const ⊆ τ : ∀t ∈ [t0, t1) : τact(t) = τ const

and at time t0, we have

∀τ ′ ⊆ τ const :
∑
τi∈τ ′

√
ui · dev i(t0) ≤ βτ ′ . (3.14)

Under anyHP-LAG system and WC scheduler, we have

∀τ ′ ⊆ τ const :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′ . (3.15)

for any t ∈ [t0, t1). /

61

Proof. We prove by contradiction. Suppose otherwise that there exist time instants in [t0, t1) such that

(3.15) is false. By (3.14), (3.15) is true at time t0. Let tb ∈ [t0, t1) denote the latest time instant such that

(3.15) is true over [t0, tb). We will show that the existence of tb leads to a contradiction.

I Claim 3.14.1. ∀τ ′ ⊆ τ const :
∑

τi∈τ ′
√

ui · dev i(tb) ≤ βτ ′ . J

Proof. Consider any τ ′ ⊆ τ const. By the definition of tb, we have that

∀t ∈ [t0, tb) :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′ .

Thus,

βτ ′ ≥ lim
t∗→t−b

∑
τi∈τ ′

√
ui · dev i(t

∗)

=
∑
τi∈τ ′

√
ui · lim

t∗→t−b
dev i(t

∗)

≥ {Lemma 3.10}∑
τi∈τ ′

√
ui · dev i(tb). �

I Claim 3.14.2. At time tb, there exists τ b ⊆ τ const such that both

∀ψ > 0 : ∃t∗ ∈ (tb, tb + ψ) :
∑
τi∈τ b

√
ui · dev i(t

∗) > βτ b and (3.16)

∑
τi∈τ b

√
ui · dev i(tb) = βτ b (3.17)

are true. J

Proof. We first prove (3.16) by contradiction. Suppose otherwise that

∀τ b ⊆ τ const : ∃ψ > 0 : ∀t ∈ (tb, tb + ψ) :
∑
τi∈τ b

√
ui · dev i(t) ≤ βτ b .

62

Because tb is defined such that (3.15) is true over [t0, tb) and [t0, tb) ∪ (tb, tb + ψ) = [t0, tb + ψ),

we have

∀τ b ⊆ τ const : ∀ ∈ [t0, tb + ψ) :
∑
τi∈τ b

√
ui · dev i(t

∗) ≤ βτ b .

This contradicts the definition of tb as the latest time instant such that (3.15) is true over [t0, tb).

It remains to prove (3.17). We have

∑
τi∈τ b

√
ui · dev i(tb) = {Corollary 3.12}

∑
τi∈τ b

√
ui · lim

t∗→t+b
dev i(t

∗)

= lim
t∗→t+b

∑
τi∈τ b

√
ui · dev i(t

∗)

≥ {Equation (3.16)}

βτ b .

By Claim 3.14.1, we have

∑
τi∈τ b

√
ui · dev i(tb) ≤ βτ b .

Because
∑

τi∈τ b
√

ui ·dev i(tb) is both upper and lower bounded by βτ b , (3.17) is the only possibility.

This completes the proof of the claim. �

I Claim 3.14.3. ∀τe ∈ τ b :

deve(tb)
√

ue
≥
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
> 0. J

Proof. We have

√
ue · deve(tb)

=
∑
τi∈τ b

√
ui · dev i(tb)−

∑
τi∈τ b\{τe}

√
ui · dev i(tb)

63

= {Claim 3.14.2, Equation (3.17)}

βτ b −
∑

τi∈τ b\{τe}

√
ui · dev i(tb)

≥ {Claim 3.14.1}

βτ b − βτ b\{τe}

= {Definition 3.6}
T [1] + 2φ

2u [n]

(
U
(
τ b)) (2Umax − U

(
τ b))

−
T [1] + 2φ

2u [n]

(
U
(
τ b \ {τe}

)) (
2Umax − U

(
τ b \ {τe}

))
=
{

By Definition 2.15, U
(
τ b) = U

(
τ b \ {τe}

)
+ ue

}
T [1] + 2φ

2u [n]

(
U
(
τ b \ {τe}

)
+ ue

) (
2Umax − U

(
τ b \ {τe}

)
− ue

)
−
T [1] + 2φ

2u [n]

(
U
(
τ b \ {τe}

)) (
2Umax − U

(
τ b \ {τe}

))
=
T [1] + 2φ

2u [n]

+2Umax · ue − U

(
τ b \ {τe}

)
· ue − u2

e

2U
(
τ b \ {τe}

)
· Umax −

(
U
(
τ b \ {τe}

))2 − U(τ b \ {τe}
)
· ue

−
T [1] + 2φ

2u [n]

(
2U
(
τ b \ {τe}

)
· Umax −

(
U
(
τ b \ {τe}

))2)
=
T [1] + 2φ

2u [n]

(
−U
(
τ b \ {τe}

)
· ue + 2Umax · ue − U

(
τ b \ {τe}

)
· ue − u2

e

)
=
T [1] + 2φ

2u [n]

(
−U
(
τ b \ {τe}

)
+ 2Umax − U

(
τ b \ {τe}

)
− ue

)
ue

=
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b \ {τe}

)
− ue

)
ue

=
{

By Definition 2.15, −2U
(
τ b \ {τe}

)
= −2U

(
τ b)+ 2ue

}
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)+ 2ue − ue

)
ue

=
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
ue

>
{

By Definition 2.16, U
(
τ b) ≤ Umax

}
0.

Dividing by ue yields the claim. �

64

I Claim 3.14.4. ∀τ` ∈ τ const \ τ b :

dev `(tb)
√

u`
≤
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)− u`

)
. J

Proof. We have

√
u` · dev `(tb)

=
∑

τi∈τ b∪{τ`}

√
ui · dev i(tb)−

∑
τi∈τ b

√
ui · dev i(tb)

= {Claim 3.14.2, Equation (3.17)}∑
τi∈τ b∪{τ`}

√
ui · dev i(tb)− βτ b

≤ {Claim 3.14.1}

βτ b∪{τ`} − βτ b

= {Definition 3.6}
T [1] + 2φ

2u [n]

(
U
(
τ b ∪ {τ`}

)) (
2Umax − U

(
τ b ∪ {τ`}

))
−
T [1] + 2φ

2u [n]

(
U
(
τ b)) (2Umax − U

(
τ b))

=
{

By Definition 2.15, U
(
τ b ∪ {τ`}

)
= U

(
τ b)+ u`

}
T [1] + 2φ

2u [n]

(
U
(
τ b)+ u`

) (
2Umax − U

(
τ b)− u`

)
−
T [1] + 2φ

2u [n]

(
U
(
τ b)) (2Umax − U

(
τ b))

=
T [1] + 2φ

2u [n]

+2Umax · u` − U

(
τ b
)
· u` − u2

`

2U
(
τ b
)
· Umax −

(
U
(
τ b
))2 − U(τ b

)
· u`

−
T [1] + 2φ

2u [n]

(
2U
(
τ b) · Umax −

(
U
(
τ b))2)

=
T [1] + 2φ

2u [n]

(
−U
(
τ b) · u` + 2Umax · u` − U

(
τ b) · u` − u2

`

)
=
T [1] + 2φ

2u [n]

(
−U
(
τ b)+ 2Umax − U

(
τ b)− u`

)
u`

=
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)− u`

)
u`.

65

Dividing by u` yields the claim. �

I Claim 3.14.5. HP
(
τ b, tb

)
. J

Proof. Consider any task τe ∈ τ b and τ` ∈ τ const \ τ b. We have

deve(tb)
√

ue

≥ {Claim 3.14.3}
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
=
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b))+

T [1] + 2φ

2u [n]
ue

=
T [1] + 2φ

2u [n]

(
2Umax − 2U

(
τ b)− u`

)
+
T [1] + 2φ

2u [n]
(ue + u`)

≥ {Claim 3.14.4}

dev `(tb)
√

u`
+
T [1] + 2φ

2u [n]
(ue + u`)

≥
{

ue + u` ≥ 2u [n]

}
dev `(tb)
√

u`
+ T [1] + 2φ.

By Lemma 3.3, we have

∀τe ∈ τ b : ∀τ` ∈ τ const \ τ b : ppe(tb) < pp`(tb). (3.18)

By Definitions 2.11 and 2.13, we have τrdy(tb) ⊆ τact(tb). By the lemma statement, and because

tb ∈ [t0, t1), we have τact(tb) = τ const. Thus, we have τrdy(tb) ⊆ τ const, which implies that for any

τ` ∈ τrdy(tb) \ τ b, we have τ` ∈ τ const \ τ b. The claim follows by (3.18) and Definition 3.4. �

I Claim 3.14.6.
∑

τi∈τ b cspi(tb) ≥ U
(
τ b
)
. J

Proof. By Claim 3.14.3, for any task τe ∈ τ b, we have deve(tb) > 0. By Lemma 3.1, for any task

τe ∈ τ b, we have τe ∈ τrdy(tb).

The claim follows from Definition 3.5 and Claim 3.14.5. �

66

By Lemma 3.13 and Claim 3.14.3, for any task τe ∈ τ b, there exists ψ > 0 such that ∀t ∈ [tb, tb+ψ) :

√
ue · deve(t) ≤

√
ue · deve(tb) + (t− tb) · (ui − cspe(tb)) .

Summing over the tasks in τ b, we have ∀t ∈ [tb, tb + ψ) :

∑
τe∈τ b

√
ue · deve(t) ≤

∑
τe∈τ b

√
ue · deve(tb) + (t− tb) · (ui − cspe(tb))

=

∑
τe∈τ b

√
ue · deve(tb)

+ (t− tb)

∑
τe∈τ b

(ui − cspe(tb))

= {Claim 3.14.2, Equation (3.17)}

βτ b + (t− tb)

∑
τe∈τ b

(ui − cspe(tb))

= {Definition 2.15}

βτ b + (t− tb)

U(τ b)− ∑
τe∈τ b

cspe(tb)

≤

t− tb ≥ 0 and, by Claim 3.14.6, U
(
τ b)− ∑

τe∈τ b

cspe(tb) ≤ 0

βτ b .

This contradicts (3.16) of Claim 3.14.2. This contradiction completes the proof of Lemma 3.14. �

Dynamic tasks. We will consider allowing tasks to enter and leave the system in Lemma 3.16.

Lemma 3.15 is used in the proof of Lemma 3.16 to compare the magnitudes of different βτ ′ .

. Lemma 3.15. Consider subsets τ sub and τ sup such that τ sub ⊆ τ sup ⊆ τ . If U(τ sup) ≤ Umax, then

U(τ sup) · (2Umax − U(τ sup)) ≥ U
(
τ sub

)
·
(
2Umax − U

(
τ sub

))
. /

Proof. Consider the function f(x) , x·(2Umax − x). f has derivative d
dxf = (2Umax − x)+x·(−1) =

2 (Umax − x). The derivative d
dxf is non-negative while x ≤ Umax, i.e., function f is non-decreasing

with x over (−∞, Umax]. The lemma follows by substituting x with U(τ sup) and U
(
τ sub

)
. �

67

. Lemma 3.16. Under anyHP-LAG system and WC scheduler, we have

∀τ ′ ⊆ τact(t) :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′

for any time t. /

Proof. We prove by induction on the activation time instants tact
k for k ∈ N. The induction hypothesis is

as follows:

∀t ∈ (−∞, tact
k] : ∀τ ′ ⊆ τact(t) :

∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′ (3.19)

The base case of k = 1 is considered by the following claim.

I Claim 3.16.1. ∀t ∈ (−∞, tact
1] : ∀τ ′ ⊆ τact(t) :

∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′ . J

Proof. By Definition 2.14,

∀t ∈ (−∞, tact
1) : ∀τ ′ ⊆ τact(t) :

∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′

is vacuously true. It remains to prove that ∀τ ′ ⊆ τact(t
act
1) :

∑
τi∈τ ′

√
ui · dev i(t

act
1) ≤ βτ ′ . Consider

any τ ′ ⊆ τact(t
act
1). We have

∑
τi∈τ ′

√
ui · dev i

(
tact
1

)
≤ {Lemma 3.10}

∑
τi∈τ ′

√
ui · lim

t∗→(tact
1)
−

dev i(t
∗). (3.20)

By Definition 2.14, for any task τi and t∗ < tact
1 , task τi is inactive at t∗. By Lemma 3.5, for any

time t∗ < tact
1 , dev i(t

∗) = 0. Thus, lim
t∗→(tact

1)
− dev i(t

∗) = 0. Continuing from the derivation

paused at (3.20), we have

∑
τi∈τ ′

√
ui · dev i

(
tact
1

)
≤
∑
τi∈τ ′

√
ui · lim

t∗→(tact
1)
−

dev i(t
∗)

=
∑
τi∈τ ′

√
ui · 0

68

= 0

≤ βτ ′ .

This concludes the proof of Claim 3.16.1, the base case of the inductive proof of Lemma 3.16. �

Our remaining obligation is to prove that (3.19) implies the (k + 1)th case. This is split among the

following two claims.

I Claim 3.16.2. (3.19) implies that

∀t ∈ [tact
k , t

act
k+1) : ∀τ ′ ⊆ τact(t) :

∑
τi∈τ ′

√
ui · dev i(t) ≤ βτ ′ . J

Proof. Let τ const , τact
(
tact
k

)
. By Definition 2.14, ∀t ∈ [tact

k , t
act
k+1) : τact(t) = τ const. The claim

follows from (3.19) and Lemma 3.14 with [t0, t1) = [tact
k , t

act
k+1). �

I Claim 3.16.3. ∀τ ′ ⊆ τact
(
tact
k+1

)
:
∑

τi∈τ ′
√

ui · dev i
(
tact
k+1

)
≤ βτ ′ . J

Proof. Consider any τ ′ ⊆ τact
(
tact
k+1

)
. Let τ old , τ ′ ∩ τact

(
tact
k

)
and τ new , τ ′ \ τact

(
tact
k

)
. τ old

denotes tasks of τ ′ that were also active in [tact
k , t

act
k+1), while τ new denotes tasks of τ ′ that became

active at time tact
k+1.

We have

∑
τi∈τ ′

√
ui · dev i

(
tact
k+1

)

=

 ∑
τi∈τ old

√
ui · dev i

(
tact
k+1

)+

[∑
τi∈τ new

√
ui · dev i

(
tact
k+1

)]

≤ {Lemma 3.10} ∑
τi∈τ old

√
ui · lim

t∗→(tact
k+1)

−
dev i(t

∗)

+

[∑
τi∈τ new

√
ui · lim

t∗→(tact
k+1)

−
dev i(t

∗)

]

≤
{

Claim 3.16.2 and τ old ⊆ τact
(
tact
k

)}
βτ old +

[∑
τi∈τ new

√
ui · lim

t∗→(tact
k+1)

−
dev i(t

∗)

]

69

=
{

Lemma 3.5 and τi ∈ τ new ⇒ τi inactive over [tact
k , t

act
k+1)

}
βτ old + 0

≤
{

By Definitions 2.16 and 3.6, Lemma 3.15, and τ old ⊆ τ ′ ⊆ τact
(
tact
k+1

)}
βτ ′ .

This completes the proof of the claim. �

Claims 3.16.2 and 3.16.3 form the induction step, thereby proving the induction hypothesis (3.19)

for any k ∈ N. Taking k →∞ yields the lemma statement. �

Theorem 3.17 presents our response-time bound forHP-LAG systems.

. Theorem 3.17 (Response-time bound for HP-LAG systems). Under a WC scheduler, for any

system that satisfiesHP-LAG, the response time of any task τi is at most

T i +
T [1] + 2φ

2u [n]
(2Umax − ui) . /

Proof. Consider dev i(t) at any time instant t. There are two cases.

J Case 3.17.1. Task τi is inactive at t. I

By Lemma 3.5, dev i(t) = 0. �

J Case 3.17.2. Task τi is active at t. I

By Definition 2.13, τi ∈ τact(t). Thus, {τi} ⊆ τact(t). By Lemma 3.16 and Definition 3.6, we have
√

ui · dev i(t) ≤
T [1]+2φ

2u [n]
(2Umax − ui) ui. �

In either case, we have dev i(t) ≤
T [1]+2φ

2u [n]
(2Umax − ui)·

√
ui. The theorem follows from Lemma 3.4.

�

3.3 Analysis under UNIFORM

We define Ufm-WC analogously to Ufm-EDF.

70

. Ufm-WC. At any time t, the ready task with earliest priority point is scheduled on the fastest processor,

the ready task with second earliest priority point on the second fastest processor, and so on until all ready

tasks are scheduled or all processors are scheduled upon. /

We prove response-time bounds under Ufm-WC by proving that Ufm-WC satisfiesHP-LAG.

. Lemma 3.18. If, for task system τ executing under UNIFORM with a Ufm-WC scheduler, we have

that for any time t, τact(t) is UNIFORM-Feasible, then this is anHP-LAG system. /

Proof. For the duration of this proof, let u [i](t) denote the ith largest utilization of any task in τact(t).

Consider any time t and subset τ ′ ⊆ τrdy(t) such that HP(τ ′, t). By Definition 3.5, it remains to

prove that
∑

τi∈τ ′ cspi(t) ≥ U(τ ′).

By Definition 3.4, tasks of τ ′ have the earliest ppi(t) values at time t than any other task in τrdy(t).

Under Ufm-WC, we have

∑
τi∈τ ′

cspi(t) =

min{m,|τ ′|}∑
j=1

sp([j])

≥ {τact(t) is UNIFORM-Feasible at t}
|τ ′|∑
i=1

u [i](t)

≥
{
τ ′ ⊆ τrdy(t) ⊆ τact(t)

}
∑
τi∈τ ′

ui

= {Definition 2.15}

U
(
τ ′
)
.

By Definition 3.5, this is anHP-LAG system. �

Corollary 3.19, which follows from Lemma 3.18 and Theorem 3.17, presents our response-time bound.

. Corollary 3.19 (Response-time bound for Ufm-WC). If, for task system τ executing under UNI-

FORM with a Ufm-WC scheduler, we have that at any time t, τact(t) is UNIFORM-Feasible, then the

71

response time of any task τi is at most

T i +
T [1] + 2φ

2u [n]
(2Umax − ui) . /

3.4 Analysis under IDENTICAL/ARBITRARY

We define Strong-APA-WC analogously to Strong-APA-EDF.

. Strong-APA-WC. At any time t, the chosen configuration is such that no unscheduled ready task τi

has an alternating path beginning at τi and ending with either a processor that schedules no job or a job

τk,` such that ppi(t) < ppk,j(t).

Equivalently, at any time t, the chosen configuration corresponds with an optimal solution of

MVM
(
τ , π,

−→
ψ ,E

)
such that (2.11) and (2.12) are true and

∀τi, τj ∈ τrdy(t) : ppi(t) < ppj(t)⇒ ψi > ψj , (3.21)

i.e., tasks with earlier priority points have higher weight. /

The following lemmas will help to prove that Strong-APA-WC satisfiesHP-LAG.

. Lemma 3.20. If τact(t) is IDENTICAL/ARBITRARY-Feasible, then for any τ ′ ⊆ τact(t), optimization

problem

max
∑
τi∈τ ′

∑
πj∈αi

yi,j such that

∀τi ∈ τ ′ :
∑
πj∈π

yi,j ≤ 1.0 (3.22)

∀πj ∈ π :
∑
τi∈τ ′

yi,j ≤ 1.0 (3.23)

Y ∈ Rn·m
≥0 (3.24)

72

has a solution such that

∑
τi∈τ ′

∑
πj∈αi

yi,j ≥ U
(
τ ′
)

(3.25)

is true. /

Proof. By IDENTICAL/ARBITRARY-Feasible, ∃X ∈ Rn·m
≥0 such that (2.9) and (2.10) are true. Let

yi,j ,

xi,j · ui πj ∈ αi

0 πj 6∈ αi
.

By (2.9), we have

∀τi ∈ τact(t) :
∑
πj∈αi

yi,j = ui. (3.26)

Because ui ≤ 1.0 holds for each task τi ∈ τact(t) and τ ′ ⊆ τact(t), (3.26) implies (3.22). Because

τ ′ ⊆ τact(t), (2.10) (with τ ← τact(t) because, as stated in the lemma, we are assuming that the subset

τact(t) is IDENTICAL/ARBITRARY-Feasible) implies (3.23). Because xi,j ≥ 0 holds for each task

i ∈ {1, 2, . . . ,n} and j ∈ {1, 2, . . . ,m}, we also have (3.24). Summing (3.26) over the tasks in τ ′ yields∑
τi∈τ ′

∑
πj∈αi yi,j = U(τ ′), which satisfies (3.25). �

. Lemma 3.21. For an IDENTICAL/ARBITRARY-Feasible system, for any task subset τ ′ ⊆ τact(t),

there is a maximal matching M in the affinity graph between tasks in τ ′ and processors such that the size

of the matching |M| ≥ U(τ ′). /

Proof. Consider the optimization problem in Lemma 3.20. This problem is an instance of AP. By

Theorem 2.1, there is an optimal solution Y such that each yi,j ∈ {0, 1}, i.e., Y is binary. This binary Y

represents a matching M in the affinity graph of the tasks in τ ′ and processors in π (recall Example 2.6).

The number of matched tasks in τact(t) is |M| =
∑

τi∈τ ′
∑

πj∈αi yi,j , which is the objective function of

the AP instance. By Lemma 3.20, this objective function has value at least U(τ ′), thus, |M| ≥ U(τ ′). �

The following lemma proves that Strong-APA-WC satisfiesHP-LAG if the system is always IDENTI-

CAL/ARBITRARY-Feasible.

73

π1 π2 π3 π4

τ1 τ2 τ3 τ4

Figure 3.5: Example of an alternating path in a bipartite graph.

. Lemma 3.22. If, for task system τ executing under IDENTICAL/ARBITRARY with a Strong-APA-

WC scheduler, we have that at any time t, τact(t) is IDENTICAL/ARBITRARY-Feasible, then this is an

HP-LAG system. /

Proof. Consider any time t and τ ′ ⊆ τrdy(t) such that we have HP(τ ′, t). It remains to show that∑
τi∈τ ′ cspi(t) ≥ U(τ ′). Because, under IDENTICAL/ARBITRARY, each processor speed is 1.0, this

is equivalent to showing that the number of processors executing tasks of τ ′ is at least U(τ ′) (rounded

up to the nearest whole number). Consider the matching M that corresponds with the configuration

selected by Strong-APA-WC at time t. Because a task being matched is representative of said task

being scheduled, the number of processors executing tasks of τ ′ is equal to the number of tasks in τ ′ that

are matched in M. Let Mτ ′ ⊆ M denote the subset of edges in M that are incident to tasks in τ . The

cardinality |Mτ ′ | is equal to the number of matched tasks in τ ′. Thus, our proof obligation is to show

that |Mτ ′ | ≥ U(τ ′).

Consider the subgraph of the affinity graph made up of tasks of τ ′ and π (i.e., τ ′, π, and the subset

of edges in the affinity graph connecting τ ′ and π). The subset Mτ ′ is a matching on this subgraph. To

prove that |Mτ ′ | ≥ U(τ ′), by Lemma 3.21, it is sufficient to show that matching Mτ ′ is maximal for this

subgraph.

We will show that Mτ ′ is maximal for the subgraph of τ ′ by proving that Mτ ′ contains no augmenting

paths in the subgraph. Suppose otherwise that there is an augmenting path in Mτ ′ on the subgraph of

τ ′. By Definition 2.25, this path is an alternating path originating from unmatched vertices (note that

these vertices are specifically unmatched in the subgraph and may be matched in Mτ ′ on the whole

affinity graph). Because the subgraph is bipartite and this path is alternating, one of these unmatched

vertices is a task in τ ′ and the other is a processor (see the example alternating path in Figure 3.5, which

illustrates that every task and processor in the path besides endpoints τ1 and π4 must be matched to

74

be in the alternating path). Because the subgraph only contains tasks of τ ′, the path begins with a task

τe ∈ τ ′. Let processor πj denote the other endpoint of the path. Because πj is unmatched in Mτ ′ on the

subgraph, in Mτ ′ on the affinity graph, πj is either also unmatched or matched to a task τ` in τrdy(t) \ τ ′.

Because we have assumed that τ ′ is such that HP(τ ′, t) is true, we must have pp`(t) > ppe(t). This

contradicts the definition of Strong-APA-WC. Thus, there are no augmenting paths in the subgraph of

τ ′. By Theorem 2.2, matching Mτ ′ is maximal for the subgraph of τ ′. �

Corollary 3.23, which follows from Lemma 3.22 and Theorem 3.17, presents our response-time bound.

. Corollary 3.23 (Response-time bound for Strong-APA-WC). If, for task system τ executing un-

der IDENTICAL/ARBITRARY with a Strong-APA-WC scheduler, we have that at any time t, τact(t) is

IDENTICAL/ARBITRARY-Feasible, then the response time of any task τi is at most

T i +
T [1] + 2φ

2u [n]
(2Umax − ui) . /

3.4.1 Counterexamples

We briefly address the non-SRT-optimality of Weak-APA-EDF and non-preemptive Strong-APA-EDF

under IDENTICAL/ARBITRARY, which we demonstrate by counterexample. Note that there is no need

to address non-preemptivity under UNIFORM and UNRELATED because Ufm-EDF under UNIFORM

(which is a special case of UNRELATED) with non-preemptive sections has already been shown to be

non-SRT-optimal (Yang and Anderson, 2015). The non-SRT-optimality of Weak-APA-EDF is of interest

because it is the author’s belief that Weak-APA-EDF, due to its simpler requirements, is more likely to be

implemented than Strong-APA-EDF in a real-time operating system (RTOS) with affinities.

H Example 3.4. Consider the task system whose affinity graph is illustrated in Figure 3.6a. Let

(C1, T 1) = (C5, T 5) = (2.0, 6.0), (C2, T 2) = (C4, T 4) = (2.0, 2.0), and (C3, T 3) = (1.0, 6.0).

This task system may have unbounded response times under a Weak-APA-EDF scheduler, as shown in

Figure 3.7.

Tasks τ2 and τ4 release jobs periodically. Initially, tasks τ2 and τ4 execute on processors π1 and π3,

respectively. At time 6.0, tasks τ1 and τ5 preempt tasks τ2 and τ4, respectively. The only other processor

75

π1 π2 π3

τ1 τ2 τ3 τ4 τ5

(a) Example 3.4 affinity graph.

π1 π2

τ1 τ2 τ3

(b) Example 3.5 affinity graph.

Figure 3.6: Counterexample affinity graphs.

available to both tasks τ2 and τ4 is π2, which they cannot both use. Both tasks have equal deadlines at

time 6.0. We assume the tiebreak at time 6.0 favors task τ2 and it is scheduled on processor π2, while task

τ4 does not execute until time 8.0 when it resumes execution on processor π3. Task τ2 is also forced to

migrate off of processor π2 by task τ3 at time 12.0. At time 18.0, tasks τ1 and τ5 again preempt tasks τ2

and τ4, respectively. Again, only π2 is available to both tasks, except, unlike at time 6.0, τ4 is scheduled

over task τ2 because it is tardy by 2.0 time units due to not being scheduled over [6.0, 8.0). As a result,

task τ2 also becomes tardy by 2.0 time units by time 20.0. Thus, the deadlines of tasks τ2 and τ4 are once

again equal.

The pattern of tasks τ2 and τ4 being simultaneously preempted by tasks τ1 and τ5 such that only one

of τ2 or τ4 can be scheduled on processor π2 can be repeated indefinitely, and with each occurrence, the

maximum response time experienced by either task τ2 or task τ4 increases by 2.0 time units. N

H Example 3.5. Consider the system whose affinity graph is illustrated in Figure 3.6b. Let (C1, T 1) =

(C3, T 3) = (2.0, 4.0) and (C2, T 2) = (6.0, 6.0). A schedule over [0, 120.0) for this system in which

jobs are non-preemptive is illustrated in Figure 3.8.

Task τ2 releases jobs periodically starting at time 0. Initially, task τ2 executes on processor π1. Task

τ1 releases its first job at time 1.0. Task τ2 does not migrate to processor π2 (which does not schedule a

job at time 1.0) because it is non-preemptively executing its job. Task τ3 releases its first job at time 5.0.

Because π2 is not executing any job, τ3 is scheduled at time 5.0.

Once task τ2 completes its job at time 6.0, its next job has a deadline of 12.0. This is later than the

ready job of τ1, which has a deadline of 5.0. Thus, task τ1 is scheduled on processor π1. Task τ2 does

not preempt task τ3 on processor π2 because it is executing non-preemptively. Task τ2 only resumes

76

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

τ 1

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

τ 2

R
es

p.
Ti

m
e

4.
0

R
es

p.
Ti

m
e

6.
0

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

τ 3

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

τ 4

R
es

p.
Ti

m
e

4.
0

R
es

p.
Ti

m
e

6.
0

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Ti
m

e

τ 5

Fi
gu

re
3.

7:
W

ea
k-

A
PA

-E
D

F
co

un
te

re
xa

m
pl

e.

77

0
5

10
1
5

2
0

2
5

3
0

3
5

4
0

45
50

55
60

τ
1

0
5

10
1
5

2
0

2
5

3
0

3
5

4
0

45
50

55
60

τ
2

L
ate

by
1.0

L
ate

by
2.0

L
ate

by
3.0

L
ate

by
4.0

L
ate

by
5.0

L
ate

by
6.0

0
5

10
1
5

2
0

2
5

3
0

3
5

4
0

45
50

55
60

Tim
e

τ
360

6
5

7
0

75
8
0

8
5

9
0

9
5

1
0
0

105
110

115
120

τ
1

60
6
5

7
0

75
8
0

8
5

9
0

9
5

1
0
0

105
110

115
120

τ
2

L
ate

by
8.0

L
ate

by
9.0

L
ate

by
10.0

L
ate

by
11.0

60
6
5

7
0

75
8
0

8
5

9
0

9
5

1
0
0

105
110

115
120

Tim
e

τ
3

Figure
3.8:N

on-preem
ptivity

counterexam
ple.

78

executing at time 7.0 when task τ3 completes its job. Because task τ2 is not scheduled over [6.0, 7.0), the

response times of its jobs increases by 1.0 time unit.

Task τ3 releases a job at time 9.0. Even though processor π1 does not execute a job at time 9.0, task

τ2 does not migrate to π1 because it is executing non-preemptively at time 9.0. When task τ2 completes

its job at time 13.0, it cannot execute on processor π1 because task τ1 is executing non-preemptively.

Thus, task τ1 is not scheduled over [13.0, 14.0), increasing the response times of its jobs by 1.0 time unit.

The schedule follows a pattern in which the response times of the jobs of task τ2 increase by 1.0 time

unit with every successive job. This is because whenever task τ2 would otherwise migrate, the processor

it would migrate to non-preemptively executes either task τ1 or task τ3, delaying the execution of τ2 by

1.0 time unit.

This pattern changes at time 48.0. Task τ2 completes a job at time 48.0 and continues executing

its next job on processor π1. This is because at time 48.0, both tasks τ1 and τ2 have deadlines of 48.0,

and we assume the tie is broken in favor of task τ2. Task τ1 does not force task τ2 to migrate until

time 54.0, at which time the deadline of task τ2 becomes 54.0 > 48.0. Task τ2 is unable to preempt task

τ3 executing on processor π2, and is thus unscheduled over [54.0, 55.0). The response times of jobs of

task τ2 are increased by 1.0 time unit.

In general, over [0, 42.0), task τ2 is prevented from executing for 1.0 time unit every job. This

changes to every two jobs at time 42.0, and to every three jobs at some future time not shown in Figure 3.8.

This is because task τ2 is prevented from executing when it is forced to migrate by a job of task τ1 or

task τ3 that is waiting for task τ2 to vacate the corresponding processor (π1 for task τ1 and π2 for task

τ3). For said job to force task τ2 to migrate, it must wait until it has an earlier deadline than task τ2. Task

τ2’s deadline increases when it completes jobs. As task τ2 becomes more tardy over time, the necessary

number of completed jobs task τ1 or task τ3 must wait for increases.

Though the time between durations where task τ2 is delayed from executing increases over time,

there are infinitely many such durations. Thus, the response time of task τ2 is unbounded. N

3.5 Analysis under UNRELATED

Limitations ofHP-LAG. The strategy used to prove response-time bounds for Ufm-WC under UNIFORM

and Strong-APA-WC under IDENTICAL/ARBITRARY for any feasible task system cannot be extended

79

π1 π2

τ1 τ2

(a) First configuration.

π1 π2

τ1 τ2

(b) Second configuration.

Figure 3.9: Both configurations violateHP-LAG in Lemma 3.24.

to schedulers under UNRELATED. This is because no scheduler satisfies HP-LAG for any feasible task

system under UNRELATED, as will be demonstrated by the following lemma.

. Lemma 3.24. Under UNRELATED, there exists no scheduler under which UNRELATED-Feasible

implies the system satisfiesHP-LAG. /

Proof. We prove the lemma by constructing a feasible task system under UNIFORM/ARBITRARY (a

special case of UNRELATED) for which no scheduler satisfiesHP-LAG. Consider tasks τ1 and τ2 with

(C1, T 1) = (3, 2) and (C2, T 2) = (4, 4). Then, u1 = 1.5 and u2 = 1.0. τ runs on two processors π1

and π2 with speeds sp(1) = 2.0 and sp(2) = 1.0. The tasks have the affinities illustrated in Figure 3.9.

Under the notation of UNRELATED, this multiprocessor has speeds

sp1,1 sp1,2

sp2,1 sp2,2

 =

sp(1) sp(2)

sp(1) 0

 =

2.0 1.0

2.0 0

 .
We can see that this system is UNRELATED-Feasible because there exists

X =

x1,1 x1,2

x2,1 x2,2

 =

0.5 0.5

0.5 0

such that each of the following is true.

(2.14)

sp1,1 · x1,1 + sp1,2 · x1,2 = 2.0 · 0.5 + 1.0 · 0.5 ≥ 1.5 = u1

sp2,1 · x2,1 + sp2,2 · x2,2 = 2.0 · 0.5 + 1.0 · 0 ≥ 1.0 = u2

80

(2.15)

x1,1 + x1,2 = 0.5 + 0.5 ≤ 1.0

x2,1 + x2,2 = 0.5 + 0 ≤ 1.0

(2.16)

x1,1 + x2,1 = 0.5 + 0.5 ≤ 1.0

x1,2 + x2,2 = 0.5 + 0 ≤ 1.0

Let time instant t be such that both tasks are ready with priority points pp1(t) < pp2(t). By

Definition 3.5, if a scheduler satisfiesHP-LAG, then both

csp1(t) ≥ u1, and (3.27)

csp1(t) + csp2(t) ≥ u1 + u2 (3.28)

are true.

However, any scheduler must choose one of the two configurations illustrated in Figure 3.9. This

results in two cases.

J Case 3.24.1. The scheduler selects the configuration in Figure 2.4a. I

We have csp1(t) = 2.0 and csp2(t) = 0. Thus, csp1(t)+csp2(t) = 2.0+0 < 1.5+1.0 = u1+u2,

and (3.28) is violated. �

J Case 3.24.2. The scheduler selects the configuration in Figure 2.4b. I

We have csp1(t) = 1.0 and csp2(t) = 2.0. Thus, csp1(t) = 1.0 < 1.5 = u1, and (3.27) is

violated. �

In either case, one of (3.27) or (3.28) is violated. Thus, this task system and multiprocessor, despite

being UNRELATED-Feasible, do not satisfyHP-LAG under any scheduler. �

3.5.1 Defining the Variant

This subsection defines a WC variant, Unr-WC, for UNRELATED. Our choice of definition for Unr-WC

is justified by showing that both Ufm-WC and Strong-APA-WC are special cases of Unr-WC.

81

O Definition 3.7. The profit function of task τi ∈ τ is

Ψ i(t) ,

t− ppi(t) t > ppi(t) and τi ∈ τrdy(t)

0 t ≤ ppi(t) or τi /∈ τrdy(t)

. 4

. Unr-WC. At any time t, the configuration chosen is an optimal solution of AP(τ , π,P) in which

P =

Ψ1(t) · sp1,1 Ψ1(t) · sp1,2 . . . Ψ1(t) · sp1,m

Ψ2(t) · sp2,1 Ψ2(t) · sp2,2

...
. . .

Ψn(t) · spn,1 Ψn(t) · spn,m

. /

Note that, for any time t, a canonical configuration X that is an optimal solution of the above AP instance

always exists. Any optimal solution X can be transformed into a canonical configuration without modifying

the objective function value. Suppose we have task τi and processor πj such that τi 6∈ τrdy(t) and xi,j = 1.

By Definition 3.7, Ψ i(t) = 0. Thus, pi,j = Ψ i(t) · spi,j = 0 · spi,j = 0. Because xi,j is multiplied by pi,j in

(2.1), the objective function value does not change by setting xi,j = 0. Likewise, suppose we have task τi

and processor πj such that πj /∈ αi. Under UNRELATED, because τi does not have affinity for πj , we have

spi,j = 0. Thus, pi,j = Ψ i(t) · spi,j = Ψ i(t) · 0 = 0. Again, setting xi,j = 0 does not affect the objective

function value. By Definition 2.26, X is canonical after setting such xi,j to 0.

After discussing Unr-WC in Section 3.5.1.1, we will show in Sections 3.5.1.2 and 3.5.1.3 that Ufm-WC

and Strong-APA-WC are special cases of Unr-WC.

3.5.1.1 Interpreting Unr-WC

There are nuances to Unr-WC’s behavior that are discussed in the following paragraphs.

Tasks with 0 profit. As seen in Definition 3.7, all tasks with priority points in the future have 0 profit when

scheduled. Thus, a configuration that schedules such tasks is equally as profitable as a configuration that does

not. Because Unr-WC only requires that the configuration chosen corresponds to some optimal solution of

the AP instance for the current time instant, whether or not such tasks are scheduled is up to the specific

implementation. This is illustrated in the following example.

82

H Example 3.6. Consider three tasks executing on a uniprocessor such that (C1, T 1) = (C2, T 2) =

(2.0, 6.0) and (C3, T 3) = (2.0, 7.0). Two schedules are illustrated for this system in Figure 3.10. Both

schedules have the priority point of each task τi as ppi(t) = di(t).

The schedule in Figure 3.10a is a typical EDF schedule. Note that all illustrated jobs complete before

their deadlines. Thus, for any task τi and time t in the illustrated time interval, we have t − ppi(t) =

t − di(t) < 0. Thus, scheduling any task at any time yields the same objective function value for

Unr-WC’s AP instance, meaning all configurations are equally optimal. Thus, scheduling the ready

task with the earliest deadline at all times, as in EDF, is also optimal. This makes the EDF schedule a

Unr-WC schedule over the pictured time interval.

The schedule in Figure 3.10b is also a Unr-WC schedule. Initially, as in the EDF schedule, over

interval [0, 6.0), all ready tasks have deadlines in the future, and thus yield 0 profit when scheduled.

Thus, scheduling nothing over [0, 2.0), task τ3 over [2.0, 3.0), task τ1 over [3.0, 4.0), and task τ2 over

[4.0, 5.0) are all configurations corresponding to optimal solutions for the AP instances belonging to their

corresponding time intervals. After time 6.0, when task τ1 executes past its deadline, it is no longer the

case that all tasks have 0 profit. For example, the profit of task τ1 at time 6.5 is Ψ1(6.5) = 6.5−di(6.5) =

6.5− 6.0 = 0.5. Scheduling task τ1 at time 6.5 on the uniprocessor with speed 1.0 yields an objective

function value of 1.0·0.5 = 0.5. Because scheduling this task now yields positive profit, the configuration

that schedules task τ1 on the only processor π1 (i.e., X =

[
x1,1 x2,1 x3,1

]T
=

[
1 0 0

]T
) is the

only optimal solution to the AP instances over time interval (6.0, 7.0). Thus, Unr-WC requires that task

τ1 is scheduled over [6.0, 7.0) in Figure 3.10b. The same is true over [7.0, 8.0) for task τ2 and [8.0, 9.0)

for task τ3. N

As shown in Example 3.6, configurations that do not schedule tasks may still be optimal under the AP

instances defined by Unr-WC. This allows Unr-WC schedulers to not be work-conserving (i.e., the scheduler

may leave a ready task unscheduled, even if a processor is available). This does not prevent a specific

Unr-WC scheduler from being work-conserving. For example, Ufm-WC and Strong-APA-WC (which we

will show are special cases of Unr-WC) are both work-conserving.

Unpredictable migrations. Ufm-WC and Strong-APA-WC schedule only according to the relative order

of tasks’ priority points (e.g., Ufm-WC schedules the ready task with earliest priority point on the fastest

processor regardless of the magnitude of said priority point). Thus, Ufm-WC and Strong-APA-WC need

83

0 1 2 3 4 5 6 7 8 9 10

τ1

0 1 2 3 4 5 6 7 8 9 10

τ2

0 1 2 3 4 5 6 7 8 9 10

Time

τ3

(a) EDF schedule.

0 1 2 3 4 5 6 7 8 9 10

τ1

0 1 2 3 4 5 6 7 8 9 10

τ2

0 1 2 3 4 5 6 7 8 9 10

Time

τ3

(b) An Unr-WC schedule.

Figure 3.10: Scheduling of tasks with 0 profit.

π1
π2

τ1 τ2

(a) Example 3.7 affinity graph.

7 9 11 13 15
0

2.0τ1

7 9 11 13 15

Time

0

2.0τ2

(b) Example 3.7 schedule.

Figure 3.11: Example 3.7 illustration.

only reschedule at time instants t when some task τi’s priority point ppi(t) changes. This may not hold for

Unr-WC under UNRELATED, as shown in the following example.

H Example 3.7. This example is illustrated by Figure 3.11. Consider a two-task and two-processor

system with

sp1,1 sp1,2

sp2,1 sp2,2

 =

1.0 2.0

0 2.0

 .

84

An affinity graph for this system is illustrated in Figure 3.11a. Suppose both tasks τ1 and τ2 are ready

over [7.0, 15.0) with pp1(t) = 0 and pp2(t) = 5.0. A schedule is presented in Figure 3.11b.

At time t = 9.0, we have Ψ1(t) = t−pp1(t) = 9.0−0 = 9.0 and Ψ2(t) = t−pp2(t) = 9.0−5.0 =

4.0. An optimal solution of the AP instance defined by Unr-WC at time 9.0 is x1,2 = x2,1 = 1 with

objective value Ψ1(t) · sp1,2 + Ψ2(t) · sp2,1 = 9.0 · 2.0 + 4.0 · 0 = 18.0 (compared to x1,1 = x2,2 = 1

with value Ψ1(t) · sp1,1 + Ψ2(t) · sp2,2 = 9.0 · 1.0 + 4.0 · 2.0 = 17.0). Thus, at time 9.0, task τ1 is

scheduled on processor π2 and task τ2 is “scheduled” on processor π1 (which it does not have affinity

for).

However, at time t = 11.0, Ψ1(t) = t − pp1(t) = 11.0 − 0 = 11.0 and Ψ2(t) = t − pp2(t) =

11.0 − 5.0 = 6.0. The optimal solution at time 6.0 is then x1,1 = x2,2 = 1 with value Ψ1(t) ·

sp1,1 + Ψ2(t) · sp2,2 = 11.0 · 1.0 + 6.0 · 2.0 = 23.0 (compared to x1,2 = x2,1 = 1 with value

Ψ1(t) · sp1,2 + Ψ2(t) · sp2,1 = 11.0 · 2.0 + 6.0 · 0 = 22.0). Thus, at time 11.0, task τ1 is scheduled on

processor π1 and task τ2 is scheduled on processor π2.

Thus, a rescheduling occurs in [7.0, 15.0) even though the tasks’ priority points did not change. N

This makes Unr-WC impractical because rescheduling may occur at any time instant. The cause of this

problem is that Ψ i(t) depends on t (see Definition 3.7), i.e., Ψ i(t) varies continuously with time. Thus, the

objective function value of a solution of the AP instance corresponding with Unr-WC varies continuously

with time, which can cause a solution that is optimal at some time t1 to be suboptimal at time t2, even if

ppi(t1) = ppi(t2) for each task τi.

Ψ i(t) can be made to vary discretely with time using certain choices of priority point ppi(t). If, for each

task τi, Ψ i(t) varies discretely with time, then the optimal solution for the AP instance corresponding with

Unr-WC at a given time instant remains optimal until Ψ i∗(t) changes for some task τi∗ . Thus, rescheduling

only occurs at the time instants t when such a Ψ i∗(t) changes.

85

As an example of Ψ i(t) varying discretely with time for a certain choice of ppi(t), consider when

ppi(t) = t−
(⌊

t
T i

⌋
+ 2
)
T i + d̃i(t). Task τi’s profit would then be

Ψ i(t) = {Definition 3.7}
t− ppi(t) t > ppi(t) and τi ∈ τrdy(t)

0 t ≤ ppi(t) or τi /∈ τrdy(t)

=

t− t+

(⌊
t
T i

⌋
+ 2
)
T i − d̃i(t) t > t−

(⌊
t
T i

⌋
+ 2
)
T i + d̃i(t) and τi ∈ τrdy(t)

0 t ≤ t−
(⌊

t
T i

⌋
+ 2
)
T i + d̃i(t) or τi /∈ τrdy(t)

=

(⌊

t
T i

⌋
+ 2
)
T i − d̃i(t)

(⌊
t
T i

⌋
+ 2
)
T i > d̃i(t) and τi ∈ τrdy(t)

0
(⌊

t
T i

⌋
+ 2
)
T i ≤ d̃i(t) or τi /∈ τrdy(t)

,

(3.29)

which, outside of changes in d̃i(t) (i.e., job completions and arrivals), changes only every T i time units (see

the plot of
(⌊

t
T i

⌋
+ 2
)
T i in Figure 3.12). Because, in the worst case, jobs of task τi may arrive every T i

time units, the number of changes in Ψ i(t) over a time interval is asymptotically the same as the number of

changes in d̃i(t) over the same interval. A timer that fires every T i time units may be used to update Ψ i(t)

and trigger rescheduling. Because −2T i ≤ t−
(⌊

t
T i

⌋
+ 2
)
T i < −T i, by Definition 2.20, this scheduler is

WC with φ = 2T [1].

Note that, on systems without early releasing, this choice of ppi(t) also mitigates that Unr-WC may

be non-work-conserving. By Definition 2.11, without early releasing, a task τi being ready at time t (i.e.,

τi ∈ τrdy(t)) implies that t ≥ ai(t). By Definition 2.5, we have that τi ∈ τrdy(t)⇒ t+ T i ≥ d̃i(t). Because(⌊
t
T i

⌋
+ 2
)
T i > t+ T i (see Figure 3.12), we have

τi ∈ τrdy(t)⇒
(⌊

t

T i

⌋
+ 2

)
T i > d̃i(t). (3.30)

Thus, for any τi ∈ τrdy(t), we have

Ψ i(t) = {Equation (3.29)}

86

0 T i 2 · T i 3 · T i
t

0

T i

2 · T i

3 · T i

4 · T i

5 · T i (⌊
t

T i

⌋
+ 2

)
· T i

t+ T i

Figure 3.12:
(⌊

t
T i

⌋
+ 2
)
T i and t+ T i.

87

(⌊

t
T i

⌋
+ 2
)
T i − d̃i(t)

(⌊
t
T i

⌋
+ 2
)
T i > d̃i(t) and τi ∈ τrdy(t)

0
(⌊

t
T i

⌋
+ 2
)
T i ≤ d̃i(t) or τi /∈ τrdy(t)

=
{
τi ∈ τrdy(t) and Expression (3.30)

}(⌊
t

T i

⌋
+ 2

)
T i − d̃i(t)

>
{
τi ∈ τrdy(t) and Expression (3.30)

}
0,

i.e., any ready task τi has profit Ψ i(t) > 0. At any time t, if there is an unscheduled ready task τi and a

processor πj that τi has affinity for that schedules no task at time t, then because Ψ i(t) > 0, it increases the

objective function value of the AP instance of Unr-WC at time t to schedule task τi on processor πj . Thus,

under this particular choice of ppi(t), Unr-WC is work-conserving.

3.5.1.2 Ufm-WC is a Special Case of Unr-WC

We now prove that Ufm-WC is a special case of Unr-WC. The following theorem will be useful for

proving this.

. Theorem 3.25 (Theorem 368 by Hardy et al. (1952)). Let x1, x2, . . . , xn and y1, y2, . . . , yn be two

sequences. Then

n∑
i=1

x[i] · y[n+1−i] ≤
n∑
i=1

xi · yi ≤
n∑
i=1

x[i] · y[i],

i.e., the sum of products between elements of the sequences is greatest when the sequences are monotoni-

cally ordered in the same sense and least when monotonically ordered in the opposite sense. /

. Lemma 3.26. Ufm-WC on a UNIFORM multiprocessor is a special case of Unr-WC. /

Proof. We prove the lemma by showing that for any time t, any configuration selected at time t by

Ufm-WC under UNIFORM also corresponds to a solution to the AP instance defined by Unr-WC.

For the duration of this proof, we assume that n = m . This assumption can be made without loss of

generality because under UNIFORM, if n < m , then only the n fastest processors need be considered,

and if n > m , then we can analytically add n −m processors with speed of 0.

88

I Claim 3.26.1. There exists an optimal solution X to the AP instance defined at time t by Unr-WC

such that

∀τi ∈ τ :
∑
πj∈π

xi,j = 1. J

Proof. Suppose otherwise that there exists task τi∗ such that
∑

πj∈π xi∗,j = 0. Thus,

∑
πj∈π

∑
τi∈τ

xi,j =
∑
τi∈τ

∑
πj∈π

xi,j

=
∑
πj∈π

xi∗,j +
∑

τi∈τ\{τi∗}

∑
πj∈π

xi,j

= 0 +
∑

τi∈τ\{τi∗}

∑
πj∈π

xi,j

≤ {Equation (2.2)}∑
τi∈τ\{τi∗}

1

= |τ \ {τi∗}|

= n − 1.

By (2.3), because n = m , and because
∑

πj∈π
∑

τi∈τ xi,j ≤ n − 1, there exists πj∗ such that∑
τi∈τ xi,j∗ = 0. Thus, xi∗,j∗ can be set to 1 without violating (2.2)-(2.4). Setting xi∗,j∗ to 1 changes

the value of the objective function
∑

τi∈τ
∑

πj∈π Ψ i(t) · spi,jxi,j by Ψ i∗(t) · spi
∗,j∗ . Because, by

Definition 3.7, we have Ψ i∗(t) ≥ 0, the change to the objective function is non-negative.

This reasoning can be repeated for each task τi with
∑

πj∈π xi,j = 0, yielding the claim. �

I Claim 3.26.2. The optimal solution X shown to exist in Claim 3.26.1 has objective function

value

n∑
i=1

Ψ i(t) · sp(ji)

for some distinct indices j1, j2, . . . , jn ∈ {1, 2, . . . ,n}. J

89

Proof. By Claim 3.26.1 and (2.4), for each i ∈ {1, 2, . . . ,n}, there exists unique j ∈ {1, 2, . . . ,n}

such that xi,j = 1. Let ji , j when xi,j = 1. The objective function value of X is then

∑
τi∈τ

∑
πj∈π

Ψ i(t) · spi,j · xi,j

=
{

Under UNIFORM, spi,j = sp(j)
}

∑
τi∈τ

∑
πj∈π

Ψ i(t) · sp(j) · xi,j

=

n∑
i=1

∑
πj∈π

Ψ i(t) · sp(j) · xi,j

= {xi,j = 1⇒ j = ji}
n∑
i=1

Ψ i(t) · sp(ji). �

By Claim 3.26.2, any optimal solution to the AP instance defined by Unr-WC at time t has objective

function value equal to the sum of element-wise products of sequences Ψ1(t),Ψ2(t), . . . ,Ψn(t) and

sp(j1), sp(j2), . . . , sp(jn). It remains to prove that the configuration chosen by Ufm-WC at time t yields

an equivalent objective function value.

I Claim 3.26.3. The configuration selected by Ufm-WC at time t corresponds to a solution of AP

with objective function value

n∑
i=1

Ψ [i](t) · sp([i]). J

Proof. Let indices i∗1, i
∗
2, . . . , i

∗
k, i
∗
k+1, . . . , i

∗
n be such that

τrdy(t) =
{
τi∗1 , τi∗2 , . . . , τi∗k

}
(3.31)

and

ppi∗1(t) ≤ ppi∗2(t) ≤ · · · ≤ ppi∗k(t). (3.32)

90

By Definition 3.7, (3.31), and (3.32), we have

Ψ i∗1
(t) ≥ Ψ i∗2

(t) ≥ · · · ≥ Ψ i∗k
(t) ≥ 0 = Ψ i∗k+1

(t) = Ψ i∗k+2
(t) = · · · = Ψ i∗n (t). (3.33)

Thus,

∀r ∈ {1, 2, . . . ,n} : Ψ i∗r (t) = Ψ [r](t). (3.34)

Consider the configuration chosen by Ufm-WC at time t. Task τi∗1 is scheduled on the processor

with speed sp([1]), task τi∗2 with speed sp([2]), etc. Let X∗ denote the solution of the AP instance

such that x ∗i,j = 1 if task τi is scheduled on processor πj under Ufm-WC. The objective function

value of X∗ is thus

∑
τi∈τ

∑
πj∈π

Ψ i(t) · spi,j · x ∗i,j

=
{

Under UNIFORM, spi,j = sp(j)
}

∑
τi∈τ

∑
πj∈π

Ψ i(t) · sp(j) · x ∗i,j

=

n∑
r=1

∑
πj∈π

Ψ i∗r (t) · sp(j) · x ∗i∗r ,j

=

k∑
r=1

∑
πj∈π

Ψ i∗r (t) · sp(j) · x ∗i∗r ,j +

n∑
r=k+1

∑
πj∈π

Ψ i∗r (t) · sp(j) · x ∗i∗r ,j

= {Ufm-WC}
k∑
r=1

Ψ i∗r (t) · sp([r]) +
n∑

r=k+1

∑
πj∈π

Ψ i∗r (t) · sp(j) · x ∗i∗r ,j

= {Equation (3.34)}
k∑
r=1

Ψ [r](t) · sp([r]) +

n∑
r=k+1

∑
πj∈π

Ψ i∗r (t) · sp(j) · x ∗i∗r ,j

= {Equation (3.33)}
k∑
r=1

Ψ [r](t) · sp([r]) +
n∑

r=k+1

0

91

=
k∑
r=1

Ψ [r](t) · sp([r]) +
n∑

r=k+1

0 · sp([r])

= {Equation (3.33)}
k∑
r=1

Ψ [r](t) · sp([r]) +
n∑

r=k+1

Ψ i∗r (t) · sp([r])

= {Equation (3.34)}
k∑
r=1

Ψ [r](t) · sp([r]) +
n∑

r=k+1

Ψ [r](t) · sp([r])

=
n∑
r=1

Ψ [r](t) · sp([r]). �

Using the above claims, we now complete the proof of the lemma. By Theorem 3.25,
∑n

i=1 Ψ [i](t) ·

sp([i]) ≥
∑n

i=1 Ψ i(t) · sp(ji). By Claims 3.26.2 and 3.26.3, the AP solution corresponding with the

configuration chosen by Ufm-WC has objective function value at least that of any optimal solution. Thus,

any configuration chosen by Ufm-WC at time t may also be chosen by Unr-WC, proving that Ufm-WC

is a special case of Unr-WC. �

3.5.1.3 Strong-APA-WC is a Special Case of Unr-WC

We prove that Strong-APA-WC is a special case of Unr-WC in Lemma 3.29. The following definitions

and lemmas will be used in that proof.

The symmetric difference and its properties discussed in Lemma 3.27 are well-known in graph theory.

O Definition 3.8. The symmetric difference between matchings M and M′ is M∆M′ , (M ∪M′) \

(M ∩M′), i.e., the set of edges in either matching that are not in both matchings. 4

H Example 3.8. Figure 3.13 illustrates two matchings M (Figure 3.13a) and M′ (Figure 3.13b) on the

same graph, as well as the symmetric difference M∆M′ (Figure 3.13c). N

. Lemma 3.27. Consider matchings M and M′ on a graph. Consider the subgraph that includes the

edges of symmetric difference M∆M′ (Figure 3.13d). Every connected component of this subgraph is

either

• an unconnected vertex (e.g., τ1 and π1),

92

π1 π2 π3 π4 π5

τ1 τ2 τ3 τ4 τ5 τ6

(a) Matching M.

π1 π2 π3 π4 π5

τ1 τ2 τ3 τ4 τ5 τ6

(b) Matching M′.

π1 π2 π3 π4 π5

τ1 τ2 τ3 τ4 τ5 τ6

(c) Symmetric difference M∆M′.

π1 π2 π3 π4 π5

τ1 τ2 τ3 τ4 τ5 τ6

(d) Subgraph containing only edges in M∆M′.

Figure 3.13: Symmetric difference of matchings.

π1 π2 π3

τ1 τ2 τ3 τ4

(a) Matching M.

π1 π2 π3

τ1 τ2 τ3 τ4

(b) Matching M′.

π1 π2 π3

τ1 τ2 τ3 τ4

(c) Edges of M∆M′.

Figure 3.14: Cases 3.28.2 and 3.28.3.

• a path (e.g., (τ2, π2, τ4, π3)),

• or a cycle (e.g., (τ5, π4, τ6, π5, τ5)). /

Proof. By Definition 2.22, any vertex is present in at most one edge in either matching. By Definition 3.8,

every edge in the subgraph is present in either M or M′. Thus, each vertex in the subgraph is incident

with at most two edges. Given this, only the structures listed in the lemma statement are possible. �

. Lemma 3.28. Let matching M be an optimal solution for MVM
(
τ , π,

−→
ψ ,E

)
with

−→
ψ ∈ Rn

≥0. Let
−→
ψ ′ ∈ Rn

≥0 be such that

∀τi ∈ τ : ψi = 0⇒ ψ′i = 0, (3.35)

93

and

∀τi, τj ∈ τ : ψi ≤ ψj ⇒ ψ′i ≤ ψ′j , (3.36)

i.e., the relative order of weights is the same in
−→
ψ and

−→
ψ ′. M is also an optimal solution for

MVM
(
τ , π,

−→
ψ ′,E

)
. /

Proof. We prove by contradiction. Suppose otherwise that M is an optimal solution for instance

MVM
(
τ , π,

−→
ψ ,E

)
and not for instance MVM

(
τ , π,

−→
ψ ′,E

)
. Let τ∗ denote the subset of matched tasks

in M. Let M′ be an optimal solution of MVM
(
τ , π,

−→
ψ ′,E

)
such that any other optimal solution matches

at most as many tasks of τ∗ as M′.

Consider the subgraph induced by M∆M′. Because M′ is optimal for MVM
(
τ , π,

−→
ψ ′,E

)
and M is

suboptimal, there exists some τi with ψ′i > 0 such that τi is matched in M′ and not in M. By Lemma 3.27,

τi is the starting vertex of a path in the subgraph. There are three cases depending on how this path

terminates.

J Case 3.28.1. The path in M∆M′ beginning with τi (e.g., τ2 in Figure 3.13d) terminates at a

processor πj (π3 in Figure 3.13d). I

The path in M∆M′ beginning with τi is an augmenting path for matching M. For instance

MVM
(
τ , π,

−→
ψ ,E

)
, inverting the edges of this augmenting path (e.g., in Figure 3.13d, adding

(τ2, π2) and (τ4, π3) and removing (τ4, π2)) changes the weight of Mτ ′ by ψi (ψ2 in Figure 3.13d).

By the contrapositive of (3.35) and because ψ′i > 0, this change is positive. This contradicts that M

is optimal for MVM
(
τ , π,

−→
ψ ,E

)
. �

Cases 3.28.2 and 3.28.3 are illustrated by matchings M and M′ illustrated in Figures 3.14a and 3.14b,

respectively, and the path (τ1, π1, τ2, π2, τ3, π3, τ4) in their symmetric difference M∆M′ (Figure 3.14c).

J Case 3.28.2. The path in M∆M′ beginning with τi (e.g., τ1 in Figure 3.14c) terminates at a task

τk (τ4 in Figure 3.14c) such that ψ′i > ψ′k. I

This path is an alternating path for matching M (e.g., in Figure 3.14a, (τ1, π1) /∈M, (τ2, π1) ∈M,

(τ2, π2) /∈ M, etc.). For MVM
(
τ , π,

−→
ψ ,E

)
, inverting the edges of this alternating path changes

94

the weight of Mτ ′ by ψi − ψk (e.g., inverting the edges in Figure 3.14a yields the matching in

Figure 3.14b, which matches τ1 and does not match τ4, changing the total weight by ψ1 − ψ4). By

the contrapositive of (3.36) and because ψ′i > ψ′k, this change is positive. This contradicts that M is

optimal for MVM
(
τ , π,

−→
ψ ,E

)
. �

J Case 3.28.3. The path in M∆M′ beginning with τi terminates at a task τk such that ψ′i ≤ ψ′k. I

This path is an alternating path for matching M′ (e.g., in Figure 3.14b, (τ1, π1) ∈M, (τ2, π1) /∈M,

(τ2, π2) ∈ M, etc.). Because this alternating path begins at τi (e.g., τ1 in Figure 3.14c), which is

matched in M′ and not matched in M (τ1 is matched in Figure 3.14b and not in Figure 3.14a), and

terminates at τk (τ4), τk is matched in M and not matched in M′ (τ4 is matched in Figure 3.14a and

not in Figure 3.14b). Thus, τk ∈ τ∗ (e.g., τ4 ∈ {τ2, τ3, τ4}).

If ψ′i = ψ′k, then for MVM
(
τ , π,

−→
ψ ′,E

)
, inverting the edges along the alternating path does

not change the weight of M′ and increases the number of tasks in τ∗ that are matched in M′ (e.g.,

inverting the edges in Figure 3.14b yields Figure 3.14a, in which task τ4 ∈ {τ2, τ3, τ4} is matched).

This contradicts that M′ is the optimal matching that matches the most tasks in τ∗.

Otherwise, if ψ′i < ψ′k, then inverting the edges along the alternating path increases the weight

of matched tasks by ψ′k − ψi. This contradicts that M′ is optimal for MVM
(
τ , π,

−→
ψ ′,E

)
. �

All cases result in a contradiction. This proves the lemma. �

. Lemma 3.29. Strong-APA-WC on an IDENTICAL/ARBITRARY multiprocessor is a special case

of Unr-WC. /

Proof. We prove the lemma by showing that at any time t, the configuration corresponding to the

matching M that optimally solves the MVM instance defined by Strong-APA-WC also corresponds to

an optimal solution to the AP instance defined by Unr-WC. Under IDENTICAL/ARBITRARY, this AP

instance reduces to an MVM instance with weight ψi = Ψ i(t) for each task τi. At first glance, this is

our proof obligation. This proof is incomplete because Strong-APA-WC requires that ψi satisfies (2.12)

and (3.21), which both may be violated when ψi = Ψ i(t). (2.12) is violated when ψi = Ψ i(t) because a

task τi ∈ τrdy(t) with t ≤ ppi(t) has Ψ i(t) = 0 (by Definition 3.7). (3.21) is violated when ψi = Ψ i(t)

because we may have tasks τi and τj in τrdy(t) such that t ≤ ppi(t), t ≤ ppj(t), and ppi(t) < ppj(t), in

which case we have Ψ i(t) = 0 = Ψ j(t).

95

Our proof obligation is to show that an optimal matching under a
−→
ψ satisfying (2.12) and (3.21)

remains optimal under Ψ i(t).

Consider any such
−→
ψ . By (2.12) and Definition 3.7, we have

∀τi ∈ τ : ψi = 0⇒ Ψ i(t) = 0. (3.37)

By the contrapositive of (3.21), we have ∀τi, τj ∈ τrdy(t) : ψi ≤ ψj ⇒ ppi(t) ≥ ppj(t). By

Definition 3.7, we have

∀τi, τj ∈ τrdy(t) : ψi ≤ ψj ⇒ Ψ i(t) ≤ Ψ j(t). (3.38)

By Definition 3.7, we have

∀τi /∈ τrdy(t) : ∀τj ∈ τ : Ψ i(t) = 0 ≤ Ψ j(t). (3.39)

By (2.12), we have

∀τi ∈ τrdy(t) : ∀τj /∈ τrdy(t) : ψi > ψj . (3.40)

We next prove

∀τi, τj ∈ τ : ψi ≤ ψj ⇒ Ψ i(t) ≤ Ψ j(t) (3.41)

using (3.38)-(3.40). Given tasks τi and τj , there are three cases for which of these tasks are in τrdy(t) at

time t. If τi, τj ∈ τrdy(t), then (3.38) implies (3.41). If τi /∈ τrdy(t) and τj ∈ τrdy(t) or τi, τj /∈ τrdy(t),

then by (3.39), we have Ψ i(t) ≤ Ψ j(t), which implies (3.41). If τi ∈ τrdy(t) and τj /∈ τrdy(t), then by

(3.40), we have ψi > ψj , which (as the negation of the premise ψi ≤ ψj) implies (3.41). All cases imply

(3.41).

The lemma follows from (3.37), (3.41), and Lemma 3.28. �

96

3.5.2 Response-Time Bounds

In this subsection, we derive response-time bounds under Unr-WC. These bounds asymptotically

approach infinity as a parameter we denote the slowdown factor approaches 0.

O Definition 3.9. Task system τ has slowdown factor s` ∈ (0, 1) if, for any time t, τact(t) is UNRE-

LATED-Feasible when all processor speeds are multiplied by (1.0− s`), i.e., at any time t, there exists

X ∈ Rn·m
≥0 such that

∀τi ∈ τact(t) :
∑
πj∈π

(1.0− s`) · spi,j · xi,j ≥ ui (3.42)

∀τi ∈ τact(t) :
∑
πj∈π

xi,j ≤ 1.0 (3.43)

∀πj ∈ π :
∑

τi∈τact(t)

xi,j ≤ 1.0 (3.44)

are true. 4

Observe that τact(t) satisfying the UNRELATED-Feasible condition is equivalent to having a slowdown

factor s` = 0. Having s` > 0 indicates that the system has excess capacity. Note that Definition 3.9 does

not require that the same X satisfy (3.42)-(3.44) at every time instant. Time instants with distinct τact(t) are

expected to have distinct X’s.

The maximum speed of any processor in the system will also be a term in our derived bounds.

O Definition 3.10. The maximum speed is

spmax , max
τi∈τ ,πj∈π

{
spi,j

}
. 4

As in our analysis ofHP-LAG systems, our proof strategy for Unr-WC will be to upper bound some

function of tasks’ deviations. This upper bound will be βUnr.

O Definition 3.11. For task system τ with slowdown factor s`, let

βUnr , u [1] ·

(
(nact)

(
φ+ T [1]

) (
spmax + u [n]

)
s` · u [n]

)2

. 4

97

Static systems. As with our analysis ofHP-LAG systems, we first show in Lemma 3.34 that a function of

tasks’ deviations is bounded for an interval where the set of active tasks is constant before considering tasks

that enter and leave dynamically. Lemmas 3.30-3.33 are used in the proof of Lemma 3.34.

. Lemma 3.30. For any time t, ∀τi ∈ τ : ∃δ > 0 : ∀t∗ ∈ [t, t+ δ) :

(dev i(t
∗))2

≤ (dev i(t))
2 + 2(t∗ − t) · dev i(t) ·

(
√

ui −
cspi(t)√

ui

)
+ (t∗ − t)2 ·

(
√

ui −
cspi(t)√

ui

)2

. /

Proof. Restrict δ to be small enough such that the current job of τi and cspi(t) are both constant over

[t, t+ δ) (as allowed by the Non-Fluid Assumption). There are three cases.

J Case 3.30.1. t < vt i(t). I

Further restrict δ such that δ ∈ (0, vt i(t) − t). By Lemma 3.6, for any t∗ ∈ [t, t + δ), we have

vt i(t
∗) − t∗ ≥ vt i(t) − t∗. Because t∗ − t < δ < vt i(t) − t, we have vt i(t

∗) − t∗ > 0. Thus,

t∗ < vt i(t
∗).

By Definition 3.3 and because t < vt i(t) and t∗ < vt i(t
∗), we have dev i(t) = dev i(t

∗) = 0.

Thus,

(dev i(t
∗))2

= 0

= 02 + 2(t∗ − t) · 0 ·
(
√

ui −
cspi(t)√

ui

)
= (dev i(t))

2 + 2(t∗ − t) · dev i(t) ·
(
√

ui −
cspi(t)√

ui

)
≤ {Squares are non-negative}

(dev i(t))
2 + 2(t∗ − t) · dev i(t) ·

(
√

ui −
cspi(t)√

ui

)
+ (t∗ − t)2 ·

(
√

ui −
cspi(t)√

ui

)2

.

This is the lemma statement for this case. �

J Case 3.30.2. t ≥ vt i(t) and t∗ ≤ vt i(t
∗). I

98

(dev i(t
∗))2

= {Definition 3.3}

(max {0,
√

ui · (t∗ − vt i(t
∗))})2

= {t∗ − vt i(t
∗) ≤ 0}

0

≤ {Squares are non-negative}(
dev i(t) + (t∗ − t) ·

(
√

ui −
cspi(t)√

ui

))2

= (dev i(t))
2 + 2(t∗ − t) · dev i(t) ·

(
√

ui −
cspi(t)√

ui

)
+ (t∗ − t)2 ·

(
√

ui −
cspi(t)√

ui

)2

This is the lemma statement for this case. �

J Case 3.30.3. t ≥ vt i(t) and t∗ > vt i(t
∗). I

(dev i(t
∗))2

= {Definition 3.3}

(max {0,
√

ui · (t∗ − vt i(t
∗))})2

= {t∗ − vt i(t
∗) ≥ 0}

(
√

ui · (t∗ − vt i(t
∗)))2

= {Definition 3.2}(
√

ui ·
(
t∗ − ai(t∗)− T i

ci(t
∗)− remi(t

∗)

ci(t∗)

))2

= {t∗ ∈ [t, t+ δ) and the current job is constant over [t, t+ δ)}(
√

ui ·
(
t∗ − ai(t)− T i

ci(t)− remi(t
∗)

ci(t)

))2

= {t∗ ∈ [t, t+ δ) and cspi(t) is constant over [t, t+ δ)}(
√

ui ·
(
t∗ − ai(t)− T i

ci(t)− remi(t) + (t∗ − t) · cspi(t)

ci(t)

))2

99

=

(
√

ui ·
(
t− ai(t)− T i

ci(t)− remi(t)

ci(t)
+ (t∗ − t)− (t∗ − t) T i

ci(t)
cspi(t)

))2

= {Definition 3.2}(
√

ui ·
(
t− vt i(t) + (t∗ − t)− (t∗ − t) T i

ci(t)
cspi(t)

))2

=

(
√

ui · (t− vt i(t)) +
√

ui ·
(

(t∗ − t)− (t∗ − t) T i
ci(t)

cspi(t)

))2

= {t ≥ vt i(t) and Definition 3.3}(
dev i(t) +

√
ui ·

(
(t∗ − t)− (t∗ − t) T i

ci(t)
cspi(t)

))2

≤
{
− T i
ci(t)

≤ −T i
Ci

= − 1

ui

}
(

dev i(t) +
√

ui ·
(

(t∗ − t)− (t∗ − t)cspi(t)

ui

))2

= (dev i(t))
2 + 2(t∗ − t) · dev i(t) ·

(
√

ui −
cspi(t)√

ui

)
+ (t∗ − t)2 ·

(
√

ui −
cspi(t)√

ui

)2

This is the lemma statement for this case. �

All cases yield the lemma statement. �

. Lemma 3.31. For any time t, if we have

∑
τi∈τ

dev i(t) ·
(

cspi(t)√
ui
−
√

ui

)
> 0, (3.45)

then ∃δ > 0 : ∀t∗ ∈ [t, t+ δ) :
∑

τi∈τ (dev i(t))
2 ≥

∑
τi∈τ (dev i(t

∗))2. /

Proof. By Lemma 3.30, for each task τi, there exists δi > 0 such that ∀t∗ ∈ [t, t+ δi) :

(dev i(t
∗))2

≤ (dev i(t))
2 + 2(t∗ − t) · dev i(t) ·

(
√

ui −
cspi(t)√

ui

)
+ (t∗ − t)2 ·

(
√

ui −
cspi(t)√

ui

)2

.

(3.46)

100

Let δ , minτi∈τ {δi}. By the definition of δ and (3.46), we have ∀t∗ ∈ [t, t+ δ) :

∑
τi∈τ

(dev i(t
∗))2

≤

[∑
τi∈τ

(dev i(t))
2

]
+ 2(t∗ − t)

[∑
τi∈τ

dev i(t) ·
(
√

ui −
cspi(t)√

ui

)]

+ (t∗ − t)2

[∑
τi∈τ

(
√

ui −
cspi(t)√

ui

)2
]
.

(3.47)

We consider two cases depending on the value of
∑

τi∈τ

(
cspi(t)√

ui
−√ui

)2
. Note this value, being a

sum of squares, is non-negative.

J Case 3.31.1.
∑

τi∈τ

(
cspi(t)√

ui
−√ui

)2
= 0. I

For any t∗ ∈ [t, t+ δ), we have

(dev i(t
∗))2

≤ {Equation (3.47)}[∑
τi∈τ

(dev i(t))
2

]
+ 2(t∗ − t)

[∑
τi∈τ

dev i(t) ·
(
√

ui −
cspi(t)√

ui

)]

+ (t∗ − t)2

[∑
τi∈τ

(
√

ui −
cspi(t)√

ui

)2
]

=

[∑
τi∈τ

(dev i(t))
2

]
+ 2(t∗ − t)

[∑
τi∈τ

dev i(t) ·
(
√

ui −
cspi(t)√

ui

)]
+ (t∗ − t)2 · 0

< {Equation (3.45)}∑
τi∈τ

(dev i(t))
2 . �

J Case 3.31.2.
∑

τi∈τ

(
cspi(t)√

ui
−√ui

)2
> 0. I

Let δ′ , min

{
δ,

2
∑
τi∈τ

dev i(t)·
(

cspi(t)√
ui
−√ui

)
∑
τi∈τ

(
cspi(t)√

ui
−√ui

)2
}

. Because δ > 0 and (3.45), we have that δ′ > 0.

101

For any t∗ ∈ [t, t+ δ′), we have

(dev i(t
∗))2

≤
{

Equation (3.47) and δ′ ∈ (0, δ]
}[∑

τi∈τ
(dev i(t))

2

]

+ 2(t∗ − t)

[∑
τi∈τ

dev i(t) ·
(
√

ui −
cspi(t)√

ui

)]
+ (t∗ − t)2

[∑
τi∈τ

(
√

ui −
cspi(t)√

ui

)2
]

=

[∑
τi∈τ

(dev i(t))
2

]

+ (t∗ − t) ·

(
2

[∑
τi∈τ

dev i(t) ·
(
√

ui −
cspi(t)√

ui

)]
+ (t∗ − t)

[∑
τi∈τ

(
√

ui −
cspi(t)√

ui

)2
])

≤

t∗ − t < δ′ ≤
2
∑

τi∈τ dev i(t) ·
(

cspi(t)√
ui
−√ui

)
∑

τi∈τ

(
cspi(t)√

ui
−√ui

)2

[∑
τi∈τ

(dev i(t))
2

]
+ (t∗ − t) · 0

=
∑
τi∈τ

(dev i(t))
2 . �

All cases yield the lemma statement. �

. Lemma 3.32. For any task τi and time t, we have
∣∣∣dev i(t)√

ui
−Ψ i(t)

∣∣∣ ≤ T [1] + φ. /

102

Proof. We have

vt i(t)− ppi(t) = {Definition 3.2}

ai(t) + T i
ci(t)− remi(t)

ci(t)
− ppi(t)

≤ {remi(t) ≥ 0}

ai(t) + T i − ppi(t)

= {Definition 2.5}

d̃i(t)− ppi(t)

≤ {Definition 2.20}

φ

≤ T [1] + φ,

(3.48)

and

ppi(t)− vt i(t) = {Definition 3.2}

ppi(t)− ai(t)− T i
ci(t)− remi(t)

ci(t)

≤ {remi(t) ≤ ci(t)}

ppi(t)− ai(t)

≤ {Definition 2.5}

ppi(t)− d̃i(t) + T i

≤ {Definition 2.20}

φ+ T i

≤ φ+ T [1].

(3.49)

There are four cases to consider.

J Case 3.32.1. t > vt i(t), τi ∈ τrdy(t), and t > ppi(t). I

∣∣∣∣dev i(t)√
ui
−Ψ i(t)

∣∣∣∣ = {Definition 3.3}

|t− vt i(t)−Ψ i(t)|

103

= {Definition 3.7}

|t− vt i(t)− t+ ppi(t)|

= |ppi(t)− vt i(t)|

≤ {Equations (3.48) and (3.49)}

T [1] + φ �

J Case 3.32.2. t ≤ vt i(t), τi ∈ τrdy(t), and t > ppi(t). I

∣∣∣∣dev i(t)√
ui
−Ψ i(t)

∣∣∣∣ = {Definition 3.3}

|0−Ψ i(t)|

= {Definition 3.7}

t− ppi(t)

≤ {Definition 2.20}

t− d̃i(t) + φ

= {Definition 2.5}

t− ai(t)− T i + φ

< {remi(t) > 0}

t− ai(t)− T i
ci(t)− remi(t)

ci(t)
+ φ

= {Definition 3.2}

t− vt i(t) + φ

≤ {t ≤ vt i(t)}

φ

≤ T [1] + φ �

J Case 3.32.3. t > vt i(t) and either τi /∈ τrdy(t) or t ≤ ppi(t). I

104

Because t > vt i(t), by Definition 3.3 and Lemma 3.1, we have that τi ∈ τrdy(t). Within this case,

we must have t ≤ ppi(t). Thus,

∣∣∣∣dev i(t)√
ui
−Ψ i(t)

∣∣∣∣ = {Definition 3.3}

|t− vt i(t)−Ψ i(t)|

= {Definition 3.7}

|t− vt i(t)− 0|

= t− vt i(t)

≤ {t ≤ ppi(t)}

ppi(t)− vt i(t)

≤ {Equation (3.49)}

T [1] + φ. �

J Case 3.32.4. t ≤ vt i(t) and either τi /∈ τrdy(t) or t ≤ ppi(t). I

∣∣∣∣dev i(t)√
ui
−Ψ i(t)

∣∣∣∣ = {Definition 3.3}

|0−Ψ i(t)|

= {Definition 3.7}

|0− 0|

= 0

≤ T [1] + φ �

The lemma follows in all cases. �

. Lemma 3.33. Consider τact(t) for some time t. The minimization problem (recall Definition 3.11)

min
∑

τi∈τact(t)

xi√
ui

such that

105

∑
τi∈τact(t)

x2
i = βUnr (3.50)

−→x ∈ Rn
≥0 (3.51)

has optimal value at least

∑
τi∈τact(t)

xi√
ui
≥

(nact)
(
φ+ T [1]

) (
spmax + u [n]

)
s` · u [n]

. /

Proof. This problem is optimized when some xi∗ =
√
βUnr such that ui∗ = maxτk∈τact(t) {uk}, and

xj = 0 for all j 6= i∗.

We prove this by showing that the objective value of any other solution can be decreased.

I Claim 3.33.1. Let τi∗ , τj ∈ τact(t) be two tasks such that for some solution vector −→x , we have

xj > 0. The vector −→x ′ with kth element

x′k ,

0 k = j√
x2
i∗ + x2

j k = i∗

xk k 6= i∗ and k 6= j

(3.52)

is also a solution. J

Proof. We need to show that −→x ′ satisfies (3.50) and (3.51). (3.51) is true because each case for the

value of x′k is non-negative, i.e., 0 ≥ 0,
√
x2
i∗ + x2

j ≥ 0, and xk ≥ 0 (because (3.51) was true for

the original solution −→x).

For (3.50), we have

∑
τk∈τact(t)

(
x′k
)2

=
(
x′i∗
)2

+
(
x′j
)2

+
∑

τk∈τact(t)\{τi∗ ,τj}

x2
k

= {Equation (3.50)}(
x′i∗
)2

+
(
x′j
)2

+ βUnr − x2
i∗ − x2

j

= {Equation (3.52)}(
x2
i∗ + x2

j

)
+ 02 + βUnr − x2

i∗ − x2
j

106

= βUnr. �

I Claim 3.33.2. Let τi∗ , τj ∈ τact(t) be two tasks such that for some solution −→x , we have xj > 0

and ui∗ ≥ uj . Solution −→x ′ as defined in Claim 3.33.1 has an equal or lower objective value than −→x .

J

Proof. Consider xi∗√
ui∗

and xj√
uj

to be the length of the legs of a (possibly degenerate if xi∗ = 0)

right triangle (see Figure 3.15a). By the Pythagorean Theorem, the length of the hypotenuse is√(
xi∗√
ui∗

)2
+
(

xj√
uj

)2
. By the Triangle Inequality, the length of any side of a triangle is at most the

sum of the lengths of the other two sides (see Figure 3.15b). Then

xi∗√
ui∗

+
xj√
uj
≥ {Pythagorean Theorem and Triangle Inequality}√(

xi∗√
ui∗

)2

+

(
xj√
uj

)2

=
1
√

ui∗

√
x2
i∗ +

ui∗

uj
x2
j

≥ {ui∗ ≥ uj and xj > 0}
1
√

ui∗

√
x2
i∗ + x2

j .

(3.53)

Thus, the objective value of −→x ′ is

∑
τk∈τact(t)

x′k√
uk

=
x′i∗√
ui∗

+
x′j√
uj

+
∑

τk∈τact(t)\{τi∗ ,τj}

x′k√
uk

= {Equation (3.52)}√
x2
i∗ + x2

j
√

ui∗
+

0
√

uj
+

∑
τk∈τact(t)\{τi∗ ,τj}

xk√
uk

≤ {Equation (3.53)}
xi∗√
ui∗

+
xj√
uj

+
∑

τk∈τact(t)\{τi∗ ,τj}

xk√
uk

=
∑

τk∈τact(t)

xk√
uk
. �

107

xi∗√
ui∗

xj√
uj

√(
xi∗√
ui∗

)2

+

(
xj√
uj

)2

(a) Pythagorean Theorem.

√(
xi∗√
ui∗

)2

+

(
xj√
uj

)2

xi∗√
ui∗

xj√
uj

(b) Triangle Inequality.

Figure 3.15: Triangle properties.

Observe that any solution −→x that is not of form xi∗ =
√
βUnr such that ui∗ = maxτk∈τact(t) {uk}

and xj = 0 for any j 6= i∗ can be modified as described by Claim 3.33.2 without increasing the objective

value, thereby increasing xi∗ and setting some xj to 0. Thus, there must be an optimal solution of this

form.

The objective value of such an optimal solution is then

∑
τk∈τact(t)

xk√
uk

= {j 6= i⇒ xj = 0}

xi∗√
ui∗

=

√
βUnr√
ui∗

= {Definition 3.11}

√
u [1] ·

(nact)(φ+T [1])(spmax+u [n])
s`·u [n]√

ui∗

≥
(nact)

(
φ+ T [1]

) (
spmax + u [n]

)
s` · u [n]

. �

. Lemma 3.34. Let [t0, t1) be a time interval such that for any t ∈ [t0, t1), τ has slowdown factor s`

and

∃τ const ⊆ τ : ∀t ∈ [t0, t1) : τact(t) = τ const

108

and at time t0, we have

∑
τi∈τ const

(dev i(t0))2 ≤ βUnr. (3.54)

We have

∑
τi∈τ const

(dev i(t))
2 ≤ βUnr. (3.55)

for any t ∈ [t0, t1). /

Proof. We prove the lemma by contradiction. Suppose otherwise that there exists at least one time

instant in [t0, t1) such that (3.55) is false. By (3.54), (3.55) is true at time t0. Let tb ∈ [t0, t1) denote the

latest time instant such that (3.55) is true over [t0, tb). We will show that the existence of tb leads to a

contradiction.

I Claim 3.34.1.
∑

τi∈τ const (dev i(tb))2 = βUnr. J

Proof. By the definition of tb, we have that

∀t ∈ [t0, tb) :
∑

τi∈τ const

(dev i(t))
2 ≤ βUnr. (3.56)

Thus,

βUnr ≥ {Expression (3.56)}

lim
t∗→t−b

∑
τi∈τ const

(dev i(t
∗))2

=
∑

τi∈τ const

(
lim
t∗→t−b

dev i(t
∗)

)2

≥

{
By Definition 3.3, dev i(tb) ≥ 0, and, by Lemma 3.10, lim

t∗→t−b
dev i(t

∗) ≥ dev i(tb)

}
∑

τi∈τ const

(dev i(tb))2.

109

Also by the definition of tb, we have that

∀δ > 0 : ∃t ∈ [tb, tb + δ) :
∑

τi∈τ const

(dev i(t))
2 > βUnr, (3.57)

because otherwise tb is not the latest time instant such that (3.55) is true over [t0, tb). Thus,

βUnr ≤ {Equation (3.57)}

lim
t∗→t+b

∑
τi∈τ const

(dev i(t
∗))2

=
∑

τi∈τ const

(
lim
t∗→t+b

dev i(t
∗)

)2

= {Corollary 3.12}∑
τi∈τ const

(dev i(tb))2 .

Because βUnr ≤
∑

τi∈τ const (dev i(tb))2 ≤ βUnr, we must have
∑

τi∈τ const (dev i(tb))2 = βUnr. �

I Claim 3.34.2.
∑

τi∈τ const
dev i(tb)√

ui
≥ (nact)(φ+T [1])(spmax+u [n])

s`·u [n]
. J

Proof. Consider, for each task τi ∈ τ const, letting xi = dev i(tb) in the optimization problem

presented in Lemma 3.33. By Claim 3.34.1, letting xi = dev i(tb) satisfies constraint (3.50). By

Definition 3.3, each dev i(tb) ≥ 0. Thus, letting xi = dev i(tb) also satisfies constraint (3.51). The

claim follows from Lemma 3.33. �

I Claim 3.34.3.
∑

τi∈τ dev i(tb) ·
(

cspi(tb)√
ui
−√ui

)
> 0. J

Proof. Let Xs` ∈ Rn·m
≥0 be a solution to constraints (3.42)-(3.44) in Definition 3.9 at time tb.

Such an Xs` is guaranteed to exist by the lemma statement (i.e., τ has slowdown factor s`) and

Definition 3.9.

Let Xcfg denote an optimal solution to the AP instance defined by Unr-WC at tb that corresponds

with the configuration chosen by Unr-WC at time tb, i.e., ready task τi is scheduled on processor πj

only if x
cfg
i,j = 1.

Compare constraints (3.43) and (3.44) as mentioned in Definition 3.9 with constraints (2.2) and

(2.3) of the AP instance. Observe that because Xs` satisfies (3.43) and (3.44), Xs` also satisfies

110

constraints (2.2) and (2.3) of the AP instance. The only constraint of the AP instance that Xs` may

not satisfy is (2.4). By Theorem 2.1, the objective function value for integral optimal solution Xcfg is

at least the value for non-integral solution Xs`. By the definition of Unr-WC, the objective function

value of the AP instance for arbitrary solution X is
∑

τi∈τ
∑

πj∈π Ψ i(tb) · spi,j · xi,j . Thus,

∑
τi∈τ

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j ≥

∑
τi∈τ

∑
πj∈π

Ψ i(tb) · spi,j · x s`i,j . (3.58)

We have

∑
τi∈τact(tb)

Ψ i(tb) · cspi(tb)

=
∑

τi∈τrdy(tb)

Ψ i(tb) · cspi(tb) +
∑

τi∈τact(tb)\τrdy(tb)

Ψ i(tb) · cspi(tb)

=
{

By Definition 3.7, τi /∈ τrdy(tb)⇒ Ψ i(tb) = 0
}

∑
τi∈τrdy(tb)

Ψ i(tb) · cspi(tb) +
∑

τi∈τact(tb)\τrdy(tb)

0

=
∑

τi∈τrdy(tb)

Ψ i(tb) · cspi(tb) +
∑

τi∈τact(tb)\τrdy(tb)

∑
πj∈π

0 · spi,j · x cfg
i,j

=
{

By Definition 3.7, τi /∈ τrdy(tb)⇒ Ψ i(tb) = 0
}

∑
τi∈τrdy(tb)

Ψ i(tb) · cspi(tb) +
∑

τi∈τact(tb)\τrdy(tb)

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j .

(3.59)

By Definition 2.21, if, for task τi, we have cspi(tb) 6= 0 (i.e., task τi’s execution speed is

nonzero at time tb), then τi is scheduled on some processor πj∗ with speed spi,j
∗

at time tb and

cspi(tb) = spi,j
∗
. If task τi is scheduled on processor πj∗ , by the definitions of Unr-WC and Xcfg,

we have x
cfg
i,j∗ = 1 and, for any πj 6= πj∗ , x

cfg
i,j = 0. Thus,

cspi(tb) 6= 0⇒ cspi(tb) =
∑
πj∈π

spi,j · x cfg
i,j . (3.60)

111

Continuing the derivation in (3.59), we have

∑
τi∈τact(tb)

Ψ i(tb) · cspi(tb)

=
∑

τi∈τrdy(tb)

Ψ i(tb) · cspi(tb) +
∑

τi∈τact(tb)\τrdy(tb)

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j

= {Equation (3.60)}∑
τi∈τrdy(tb)

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j +

∑
τi∈τact(tb)\τrdy(tb)

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j

=
∑

τi∈τact(tb)

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j

=

by Definition 3.7, τi /∈ τrdy(tb)⇒ Ψ i(tb) = 0

By Definitions 2.11 and 2.13, τi /∈ τact(tb)⇒ τi /∈ τrdy(tb) and,
∑

τi∈τ

∑
πj∈π

Ψ i(tb) · spi,j · x cfg
i,j

≥ {Equation (3.58)}∑
τi∈τ

∑
πj∈π

Ψ i(tb) · spi,j · x s`i,j

=

by Definition 3.7, τi /∈ τrdy(tb)⇒ Ψ i(tb) = 0

By Definitions 2.11 and 2.13, τi /∈ τact(tb)⇒ τi /∈ τrdy(tb) and,
∑

τi∈τact(tb)

∑
πj∈π

Ψ i(tb) · spi,j · x s`i,j .

(3.61)

By the definition of Xs`, Xs` satisfies (3.42) at time tb. By multiplying both sides of (3.42) by

Ψ i(tb)
1.0−s` and summing over the tasks in τact(tb) (note that this preserves the direction of the inequality

because, by Definitions 3.7 and 3.9, Ψ i(tb)
1.0−s` ≥ 0 for each task τi), we have

∑
τi∈τact(tb)

∑
πj∈π Ψ i(tb)·

spi,j · x s`i,j ≥
∑

τi∈τact(tb) Ψ i(tb) ui
1.0−s` . By (3.61), we have

∑
τi∈τact(tb)

Ψ i(tb) · cspi(tb) ≥
∑

τi∈τact(tb)

Ψ i(tb)
ui

1.0− s`
. (3.62)

112

Thus,

∑
τi∈τ

dev i(tb) ·
(

cspi(tb)
√

ui
−
√

ui

)
= {Lemma 3.5}∑

τi∈τact(tb)

dev i(tb) ·
(

cspi(tb)
√

ui
−
√

ui

)

=
∑

τi∈τact(tb)

dev i(tb)
√

ui
· (cspi(tb)− ui)

≥

⇒ Ψ i(tb)− T [1] − φ ≤
dev i(tb)√

ui

⇒ Ψ i(tb)− dev i(tb)√
ui
≤ T [1] + φ

By Lemma 3.32,
∣∣∣dev i(tb)√

ui
−Ψ i(tb)

∣∣∣ ≤ T [1] + φ
∑

τi∈τact(tb)

(
Ψ i(tb)− T [1] − φ

)
(cspi(tb)− ui)

=
∑

τi∈τact(tb)

Ψ i(tb) · cspi(t)−
∑

τi∈τact(tb)

Ψ i(tb) · ui −
∑

τi∈τact(tb)

(
T [1] + φ

)
(cspi(tb)− ui)

> {−ui < 0 and, by Definitions 2.21 and 3.10, spmax ≥ cspi(tb)}∑
τi∈τact(tb)

Ψ i(tb) · cspi(t)−
∑

τi∈τact(tb)

Ψ i(tb) · ui −
∑

τi∈τact(tb)

(
T [1] + φ

)
(spmax)

≥ {By Definition 2.13, nact ≥ |τact(tb)|}∑
τi∈τact(tb)

Ψ i(tb) · cspi(t)−
∑

τi∈τact(tb)

Ψ i(tb) · ui − (nact)
(
T [1] + φ

)
(spmax)

=
∑

τi∈τact(tb)

Ψ i(tb) · cspi(t)−
∑

τi∈τact(tb)

Ψ i(tb)
ui

1.0− s`
+

∑
τi∈τact(tb)

Ψ i(tb)
ui

1.0− s`

−
∑

τi∈τact(tb)

Ψ i(tb) · ui − (nact)
(
T [1] + φ

)
(spmax)

≥ {Equation (3.62)}∑
τi∈τact(tb)

Ψ i(tb)
ui

1.0− s`
−

∑
τi∈τact(tb)

Ψ i(tb) · ui − (nact)
(
T [1] + φ

)
(spmax)

=

{
1

1.0− s`
=

∞∑
k=0

s`k because, by Definition 3.9, s` ∈ (0, 1)

}
∑

τi∈τact(tb)

Ψ i(tb) · ui

(∞∑
k=0

s`k

)
−

∑
τi∈τact(tb)

Ψ i(tb) · ui − (nact)
(
T [1] + φ

)
(spmax)

113

=
∑

τi∈τact(tb)

Ψ i(tb) · ui

(∞∑
k=1

s`k

)
− (nact)

(
T [1] + φ

)
(spmax)

≥
∑

τi∈τact(tb)

Ψ i(tb) · ui · s`− (nact)
(
T [1] + φ

)
(spmax)

≥
{

ui ≥ u [n]

}
∑

τi∈τact(tb)

Ψ i(tb) · u [n] · s`− (nact)
(
T [1] + φ

)
(spmax)

≥
{

By Lemma 3.32,
∣∣∣∣dev i(tb)
√

ui
−Ψ i(tb)

∣∣∣∣ ≤ T [1] + φ⇒ dev i(tb)
√

ui
− T [1] − φ ≤ Ψ i(tb)

}
∑

τi∈τact(tb)

(
dev i(tb)
√

ui
− T [1] − φ

)
· u [n] · s`− (nact)

(
T [1] + φ

)
(spmax)

=
∑

τi∈τact(tb)

(
dev i(tb)
√

ui

)
· u [n] · s`−

∑
τi∈τact(tb)

(
T [1] + φ

)
· u [n] · s`

− (nact)
(
T [1] + φ

)
(spmax)

>
{
s` ∈ (0, 1)⇒ −u [n] · s` > −u [n]

}
∑

τi∈τact(tb)

(
dev i(tb)
√

ui

)
· u [n] · s`−

∑
τi∈τact(tb)

(
T [1] + φ

)
u [n]

− (nact)
(
T [1] + φ

)
(spmax)

≥ {By Definition 2.13, nact ≥ |τact(tb)|}∑
τi∈τact(tb)

(
dev i(tb)
√

ui

)
· u [n] · s`− (nact)

(
T [1] + φ

)
u [n] − (nact)

(
T [1] + φ

)
(spmax)

=
∑

τi∈τact(tb)

(
dev i(tb)
√

ui

)
· u [n] · s`− (nact)

(
T [1] + φ

) (
spmax + u [n]

)
≥ {Claim 3.34.2}

(nact)
(
φ+ T [1]

) (
spmax + u [n]

)
− (nact)

(
T [1] + φ

) (
spmax + u [n]

)
= 0.

This is the claim. �

By Claim 3.34.3 and Lemma 3.31, we have ∃t∗ ∈ (tb, t1) : ∀t ∈ [tb, t
∗) :

∑
τi∈τ (dev i(t))

2 ≤∑
τi∈τ (dev i(tb))2. Because τact(t) = τ const for t ∈ [t0, t1) and by Lemma 3.5, we have ∃t∗ ∈

(tb, t1) : ∀t ∈ [tb, t
∗) :

∑
τi∈τ const (dev i(t))

2 ≤
∑

τi∈τ const (dev i(tb))2. By Claim 3.34.1, we have

114

∃t∗ ∈ (tb, t1) : ∀t ∈ [tb, t
∗) :

∑
τi∈τ const (dev i(t))

2 ≤ βUnr. This contradicts that tb is the latest time

instant such that (3.55) is true over [t0, tb), proving the lemma. �

Dynamic tasks. We now show that the sum of squares of deviations is upper bounded even when tasks enter

and leave the system.

. Lemma 3.35. If task system τ has slowdown factor s`, then we have

∑
τi∈τact(t)

(dev i(t))
2 ≤ βUnr

for any time t. /

Proof. We prove by induction on the activation time instants tact
k for k ∈ N. The induction hypothesis is

as follows:

∀t ∈ (−∞, tact
k] :

∑
τi∈τact(t)

(dev i(t))
2 ≤ βUnr. (3.63)

The base case of k = 1 is considered by the following claim.

I Claim 3.35.1. ∀t ∈ (−∞, tact
1] :

∑
τi∈τact(t)

(dev i(t))
2 ≤ βUnr. J

Proof. By Definition 2.14, ∀t ∈ (−∞, tact
1),

∑
τi∈τact(t)

(dev i(t))
2 =

∑
τi∈∅

(dev i(t))
2

= 0

≤ βUnr.

It remains to prove that
∑

τi∈τact(tact
1) (dev i(t

act
1))2 ≤ βUnr. We have

∑
τi∈τact(tact

1)

(
dev i

(
tact
1

))2 ≤ {Lemma 3.10}

∑
τi∈τact(tact

1)

(
lim

t∗→(tact
1)
−

dev i(t
∗)

)2

. (3.64)

115

By Definition 2.14, for any task τi and t∗ < tact
1 , task τi is inactive at t∗. By Lemma 3.5, for any

time t∗ < tact
1 , dev i(t

∗) = 0. Thus, lim
t∗→(tact

1)
− dev i(t

∗) = 0. Continuing from the derivation

paused at (3.64), we have

∑
τi∈τact(tact

1)

(
dev i

(
tact
1

))2 ≤ ∑
τi∈τact(tact

1)

(
lim

t∗→(tact
1)
−

dev i(t
∗)

)2

=
∑

τi∈τact(tact
1)

(0)2

= 0

≤ βUnr.

This concludes the proof of Claim 3.35.1, the base case of the inductive proof of Lemma 3.35. �

Our remaining obligation is to prove that (3.63) implies the (k + 1)th case. This is split among the

following two claims.

I Claim 3.35.2. (3.63) implies that

∀t ∈ [tact
k , t

act
k+1) :

∑
τi∈τact(tact

k)

(dev i(t))
2 ≤ βUnr. J

Proof. Let τ const , τact
(
tact
k

)
. By Definition 2.14, ∀t ∈ [tact

k , t
act
k+1) : τact(t) = τ const. The claim

follows from (3.63) and Lemma 3.34 with [t0, t1) = [tact
k , t

act
k+1). �

I Claim 3.35.3.
∑

τi∈τact(tact
k+1)

(
dev i

(
tact
k+1

))2 ≤ βUnr. J

Proof. Let τ old , τact
(
tact
k+1

)
∩ τact

(
tact
k

)
and τ new , τact

(
tact
k+1

)
\ τact

(
tact
k

)
. τ old denotes tasks of

τact
(
tact
k+1

)
that were also active in [tact

k , t
act
k+1), while τ new denotes tasks of τact

(
tact
k+1

)
that became

active at time tact
k+1.

116

We have

∑
τi∈τact(tact

k+1)

(
dev i

(
tact
k+1

))2

=

 ∑
τi∈τ old

(
dev i

(
tact
k+1

))2+

[∑
τi∈τ new

(
dev i

(
tact
k+1

))2]

≤ {Lemma 3.10} ∑
τi∈τ old

(
lim

t∗→(tact
k+1)

−
dev i(t

∗)

)2
+

 ∑
τi∈τ new

(
lim

t∗→(tact
k+1)

−
dev i(t

∗)

)2

≤
{

Claim 3.35.2 and τ old ⊆ τact
(
tact
k

)}
βUnr +

[∑
τi∈τ new

(
lim

t∗→(tact
k+1)

−
dev i(t

∗)

)]

=
{

Lemma 3.5 and τi ∈ τ new ⇒ τi inactive over [tact
k , t

act
k+1)

}
βUnr + 0.

This completes the proof of the claim. �

Claims 3.35.2 and 3.35.3 form the induction step, thereby proving the induction hypothesis (3.63)

for any k ∈ N. Taking k →∞ yields the lemma statement. �

Theorem 3.36 presents our response-time bound for Unr-WC under UNRELATED.

. Theorem 3.36 (Response-time bound for Unr-WC). For any task system τ on UNRELATED with

slowdown factor s`, the response time of any task τi when scheduled under Ufm-WC is at most

T i +

√
u [1]

ui

(nact)
(
T [1] + φ

) (
spmax + u [n]

)
u [n] · s`

. /

Proof. Consider dev i(t) at any time instant t. There are two cases.

J Case 3.36.1. Task τi is inactive at t. I

By Lemma 3.5, dev i(t) = 0. �

J Case 3.36.2. Task τi is active at t. I

117

By Definition 2.13, τi ∈ τact(t). By Lemma 3.35, we have
∑

τk∈τact(t)
(devk(t))

2 ≤ βUnr. Because

squares are non-negative, we have (dev i(t))
2 ≤ βUnr. By Definition 3.11, we have

dev i(t) ≤
√

u [n]

(nact)
(
T [1] + φ

) (
spmax + u [n]

)
u [n] · s`

. �

In either case, we have dev i(t) ≤ √u [n]
(nact)(T [1]+φ)(spmax+u [n])

u [n]·s`
. The theorem follows from

Lemma 3.4. �

3.5.3 Evaluation

To evaluate the looseness of our response-time bound, we simulated Unr-WC with the priority point of

task τi set as ppi(t) = t−
(⌊

t
T i

⌋
+ 2
)
T i+ d̃i(t) (recall from Section 3.5.1.1 that this choice of priority point

mitigates the non-work-conserving behavior and unpredictable migrations of Unr-WC) on randomly generated

periodic task systems and multiprocessors in Python. We generated task systems of sizes n ∈ {20, 40, 80},

with m ∈ {4, 8}. We also considered values of s` ranging from {1/2, 1/4, 1/8, . . . , 1/256}. Processor

speeds for each task were sampled uniformly from [0.0, 1.0). Utilizations were generated to match given s`

values by solving a maximization linear program with constraints taken from those of UNRELATED-Feasible

with decision variables X and−→u . The objective function was a linear combination of the elements of−→u , with

coefficients sampled uniformly from [0.0, 1.0). Periods were then sampled uniformly from [10, 100]. 100

task systems and multiprocessors were generated for each triplet of n , m , and s` value. For each generated

system, response times of tasks were measured for 100,000 simulated time units in Python. A discrete time

simulation was not suitable because processor speeds were fractional. The simulation operated within a

while loop that was broken out of when the simulated time t exceed 100,000. An object was stored for

each task τi that tracked the remaining execution time remi(t), the implicit deadline d̃i(t), and
⌊
t
T i

⌋
. This

last quantity is used to compute Ψ i(t), as shown in (3.29). The actions within an iteration of the while loop

were as follows.

1. Compute a new configuration according to Unr-WC using the profit equation presented in (3.29).

2. Calculate the earliest next job completion time as the remaining execution of scheduled tasks divided

by the speeds of the processors executing them.

3. Find the earliest next job arrival time of any task.

118

minimum

25th percentile

median

75th percentile

maximum

Figure 3.16: Interpreting a boxplot.

4. Compute the next simulated time instant t as the minimum of the time instants computed in the two

prior steps.

5. Increment the simulated time t and reduce the remaining execution of the scheduled jobs by the

increment duration multiplied by the corresponding processor’s speed.

6. Process any jobs that complete at the new time t (i.e., remaining execution is less than 10−6) by

recording tardiness. If the next job of the corresponding task τi is ready by time t, increase d̃i(t) by

T i and set the remaining execution to Ci (non-ready tasks will have parameters updated when they

become ready).

7. Process any job arrivals at the new time t (i.e., the next arrival time is within 10−6 of t). Update
⌊
t
T i

⌋
for any task τi with a job arriving at t (because we have assumed synchronous periodic arrivals, any

time instant where
⌊
t
T i

⌋
changes must coincide with a job arrival).

For each pair of n and m , we plotted the maximum response time relative to the maximum period T [1]

of each task system against s`. Boxplots illustrate the distribution of maximum response times (relative to

each task system’s T [1]) for the 100 task systems generated for each (n,m, s`) triple. Each boxplot shows

the quartiles of the distribution, i.e., the 0th (minimum), 25th, 50th (median), 75th, and 100th (maximum)

percentiles (see Figure 3.16).

These plots are presented in Figure 3.17 (s` halves at each step from left to right). From Figure 3.17, it

can be observed that, while response times increase as s`→ 0, they do not scale inversely with s` (unlike our

analytical bound in Theorem 3.36).

While this suggests that our analysis is fundamentally pessimistic and that Unr-WC may actually be

SRT-optimal, this is not conclusive evidence. It has always been the case, even for standard EDF on

119

1 2 3 4 5 6 7 8
log2(1/s`)

0.0

0.5

1.0

1.5

2.0

R
es

p.
Ti

m
e

R
el

at
iv

e
to
T

[1
]

(a) (20, 4).

1 2 3 4 5 6 7 8
log2(1/s`)

0.0

0.5

1.0

1.5

2.0

R
es

p.
Ti

m
e

R
el

at
iv

e
to
T

[1
]

(b) (40, 4).

1 2 3 4 5 6 7 8
log2(1/s`)

0.0

0.5

1.0

1.5

2.0

R
es

p.
Ti

m
e

R
el

at
iv

e
to
T

[1
]

(c) (80, 4).

1 2 3 4 5 6 7 8
log2(1/s`)

0.0

0.5

1.0

1.5

2.0

R
es

p.
Ti

m
e

R
el

at
iv

e
to
T

[1
]

(d) (20, 8).

1 2 3 4 5 6 7 8
log2(1/s`)

0.0

0.5

1.0

1.5

2.0

R
es

p.
Ti

m
e

R
el

at
iv

e
to
T

[1
]

(e) (40, 8).

1 2 3 4 5 6 7 8
log2(1/s`)

0.0

0.5

1.0

1.5

2.0

R
es

p.
Ti

m
e

R
el

at
iv

e
to
T

[1
]

(f) (80, 8).

Figure 3.17: Response time against s`. Captions indicate (n,m).

120

IDENTICAL (Devi and Anderson, 2008), that the response times of randomly generated task systems tends

to be lower than the worst-case response times of hand-crafted task systems. Unfortunately, the complexity

of Unr-WC and, more generally, of tracking remaining execution requirements of jobs under UNRELATED

seem to make computing schedules by hand intractable. For now, this has left simulation as our only approach

for counterexample searching.

3.6 Chapter Summary

In this chapter, we proved response-time bounds for WC schedulers. We established that response-time

bounds underHP-LAG systems and proved that Ufm-WC under UNIFORM and Strong-APA-WC under

IDENTICAL/ARBITRARY satisfyHP-LAG when feasible. We defined Unr-WC, a WC scheduler variant

under UNRELATED, and proved that Ufm-WC and Strong-APA-WC are special cases of Unr-WC. We

proved asymptotic response-time bounds that approach infinity as the system approaches violating the

UNRELATED-Feasible condition. Though we failed to prove the SRT-optimality of Unr-WC, simulation

showed that observed response times do not approach infinity.

121

CHAPTER 4: SCHED_DEADLINE BACKGROUND

The practicality of EDF variants proposed in this dissertation were explored by implementing them

on top of SCHED_DEADLINE (via patches). Discussion of these patches requires an understanding of the

original SCHED_DEADLINE implementation, covered in this chapter.

The following description of SCHED_DEADLINE is based on Linux 6.7. Note that the work on SCHED_

DEADLINE detailed in the following chapters predates this version. Though support for some features (e.g.,

disabling migration, core scheduling, etc.) of the Linux scheduler were added since these older versions, the

behavior of SCHED_DEADLINE has been mostly consistent.

This chapter will cover code of the implementation. The names of types and struct members

will match the actual implementation, though only members relevant to SCHED_DEADLINE are included.

Function names will also match, though their presented definitions are simplified. All synchronization code

(e.g., spinlocks, memory barriers, read-copy-update (RCU), etc.) is omitted (functions will be reasoned about

as if they are atomic), as well as all code that does not affect SCHED_DEADLINE’s behavior (e.g., scheduling

statistics). Note that, as a simplification step, the bodies of many helper functions have been transplanted into

their caller’s pseudocode.

4.1 User-Space API

We begin by describing how the Linux scheduler is controlled via system calls and pseudo-file systems.

ID numbers of tasks. The user-space API manages tasks via ID numbers, usually process IDs (PIDs). With

POSIX threads (pthreads), the value returned by the C standard library function getpid() may not

match this kernel PID value. Before discussing the user-space API, we clarify this discrepancy.

From the perspective of the kernel, what we describe as a task corresponds to a struct task_struct,

to be detailed later. Each task_struct is represented in the kernel by a unique (within a PID namespace)

PID number (i.e., task_struct contains a member with identifier pid). System calls that modify a task

122

(e.g., change its affinity) indicate the target task by its PID, which is used by the kernel to look up a pointer to

the corresponding task_struct.

getpid() may not return the value of this PID member for a threaded task. The pthread library (as

implemented in the GNU C standard library) assigns each thread its own task_struct (and hence, PID).

Each pthread-corresponding task_struct also has a thread group ID (TGID), the PID of the task_

struct that spawned the pthread. For pthreads, getpid() returns this TGID. Be aware that some

documentation may use the term thread ID (TID) over the potentially ambiguous PID. Function gettid()

consistently returns the PID field.

4.1.1 Scheduling Policies

The Linux scheduler is a hierarchical scheduler composed of many different schedulers, called scheduling

policies. These policies are

• SCHED_DEADLINE, which uses EDF;

• SCHED_FIFO and SCHED_RR, which use fixed-priority scheduling;

• and SCHED_NORMAL (default policy in Linux), SCHED_BATCH, and SCHED_IDLE, which use

Linux’s implementation of Earliest Eligible Virtual Deadline First (EEVDF) (Stoica and Abdel-Wahab,

1995).

Note that EEVDF was recently implemented as a replacement of Linux’s Completely Fair Scheduler

(CFS) and reuses much of the CFS code. As such, many identifiers in the EEVDF implementation retain

names referring to CFS (e.g., fair_sched_class, discussed in Section 4.2).

Tasks of SCHED_DEADLINE have statically higher priority than tasks of the fixed-priority policies,

which themselves have higher priority than tasks under the EEVDF policies.

A task’s policy is set via the sched_setattr() system call,1 whose arguments are a target task and

a pointer to a struct sched_attr. This struct contains a member indicating the desired policy, as

well as corresponding scheduling parameters (e.g., for SCHED_DEADLINE, the period, budget, and relative

deadline desired for the target task). Note that because sched_setattr() has no C library system-call

1Scheduling policy and parameters can also be set with the sched_setscheduler() and sched_setparam()
system calls, though only sched_setattr() can set a task’s policy to SCHED_DEADLINE. All three system calls
ultimately are serviced by the same kernel function __sched_setscheduler(), discussed in Section 4.3.6.

123

wrapper, it must be invoked in a C program using the syscall() function. Appendix B of the SCHED_

DEADLINE documentation (Deadline Task Scheduling) provides an example.

Alternatively, a task’s policy can be modified from the command line using the chrt command (which

internally calls sched_setattr()). For example, we can query the properties of a task with PID 2318 as

follows.

[root ˜]# chrt -p 2318

pid 2318’s current scheduling policy: SCHED_OTHER

pid 2318’s current scheduling priority: 0

This command requires two clarifications. First, SCHED_OTHER is a user-space synonym for SCHED_

NORMAL, which is defined in the kernel. Second, the “current scheduling priority” printed by this command

is with respect to the fixed-priority policies SCHED_FIFO and SCHED_RR. This priority value is fixed at 0

for other policies.

The policy can be changed to SCHED_DEADLINE as follows.

[root ˜]# chrt -d -T 10000 -D 170000 -P 200000 -p 0 2318

[root ˜]# chrt -p 2318

pid 2318’s current scheduling policy: SCHED_DEADLINE

pid 2318’s current scheduling priority: 0

pid 2318’s current runtime/deadline/period parameters: 10000/170000/200000

As units are in nanoseconds, this sets the execution time to 10µs, relative deadline to 170µs, and period to

200µs. Note that the 0 in -p 0 2318 signifies the desired priority relative to the fixed-priority policies.

Even though this argument is unused when setting a task to SCHED_DEADLINE, it is mandatory. Omitting

this argument will instead cause the command to query the current parameters, while providing any non-0

argument here will return an error.

SCHED_DEADLINE flags. The sched_attr argument of sched_setattr() is also used to set sched-

uler flags for the target task. The set of possible flags depends on the requested policy. At time of writing,

SCHED_DEADLINE takes three flags:

• SCHED_FLAG_RECLAIM that, when set, scales the task’s budget consumption using GRUB (see

Section 4.4.8), and when unset, scales budget consumption according to asymmetric capacities and

DVFS;

124

• SCHED_FLAG_DL_OVERRUN that, when set, sends SIGXCPU to the task whenever its budget be-

comes negative;

• and SCHED_FLAG_SUGOV, which is used internally by the kernel to indicate that the task is actually

a privileged schedutil governor (see Sections 4.1.6 and 4.4.9) kernel thread that runs with infinite

budget and higher priority than any other SCHED_DEADLINE task.

SCHED_FLAG_RECLAIM is the only flag to affect the behavior of SCHED_DEADLINE. Thus, we will

omit the latter two flags when discussing the implementation.

4.1.2 Suspending and Yielding

A task can suspend due to sleeping or blocking on some resource. These suspensions are implemented

by invoking Linux system calls. For example, the nanosleep() system call arms a timer for the desired

suspension duration in nanoseconds, marks the calling task as interruptible (i.e., the suspension can be

canceled via a signal), then calls the scheduler to unschedule the now-suspended task. On the timer firing

or being interrupted, the task will be marked as runnable, and the scheduler may be called if the task has

high-enough priority to preempt the running task.

Tasks can also affect the scheduler by calling the sched_yield() system call, which takes no

arguments and always returns 0 in Linux. Roughly, sched_yield() is used to inform the kernel that

the calling task (which must be scheduled to have called sched_yield()) is permitting other tasks of

similar priority to run. The exact behavior of sched_yield() is policy-specific. We will clarify this

with respect to SCHED_DEADLINE in Section 4.4.3. While sched_yield() can result in the calling task

being unscheduled, the calling task remains runnable (i.e., is not suspended).

4.1.3 Affinities

Tasks’ CPU2 affinities are set via the sched_setaffinity() system call and cpuset controller

in the control group (cgroup) pseudo-file system (usually mounted at /sys/fs/cgroup). sched_

setaffinity() takes a target task PID, a bitmask size (in bytes), and a bitmask representing the desired

2Note that the term CPU in the Linux kernel code is equivalent to the term “processor” as used elsewhere in this
dissertation.

125

affinity. Alternatively, taskset internally calls sched_setaffinity() to set affinities from the

command line. The affinity of a task with PID 2318 can be queried as follows.

[root ˜]# taskset -c -p 2318

pid 2318’s current affinity list: 0-7

Argument -c indicates that output should be returned in CPU list format. Otherwise, taskset’s response

is a hexadecimal bitmask. The affinity can be set to CPUs 3 and 4 as follows.

[root ˜]# taskset -c -p 3-4 2318

pid 2318’s current affinity list: 0-7

pid 2318’s new affinity list: 3,4

Note that the kernel will automatically reduce the affinity requested by sched_setaffinity() (and

hence, the taskset command) to a subset of the CPUs permitted by the task’s cpuset, detailed in the

following paragraphs.

cgroups allocate resources (e.g., CPUs) to groups. Different resources are allocated by specific

controllers (e.g., the cpuset controller manages CPUs3 and memory nodes). Groups are hierarchical in that

all groups are descended from a default root group managing all resources. Initially, all tasks belong to this

root group.

The root group is represented by a directory in the cgroup file system. Child groups are created by

making directories in their parents’ directories and may only be allocated resources owned by their parents.

Child groups of the same parent may share resources. The resources and tasks owned by a group are set by

writing to specific files in the corresponding directory. An example of this will be presented for the cpuset

controller.

cpusets have significance beyond setting the affinities of groups of tasks rather than individually. Based

on how cpusets are configured, Linux partitions the CPUs into root domains (i.e., clusters in real-time

terminology). As with the usual motivations for clustered scheduling, Linux uses root domains to reduce

overheads associated with migrations between many CPUs. We will detail in later sections how unexpected

scheduling behavior results when tasks’ affinity masks do not match their root domains.

3Note that the cpuset controller only manages affinities, and is distinct from the cpu controller, which manages
per-group bandwidth enforcement for non-SCHED_DEADLINE tasks, and the cpuacct controller, which primarily
tracks CPU usage statistics. Per-group throttling is not supported in SCHED_DEADLINE.

126

The interface and behavior of the cpuset controller changes depending on whether a version 1 or 2

cgroup file system is mounted. For version 1, the different controllers have distinct hierarchies. The root

group for the cpuset controller is typically at /sys/fs/cgroup/cpuset. The files of interest to us are

• cgroup.procs, a list of TGIDs of tasks in the group;

• cpuset.cpus, a list of CPUs belonging to the group;

• and cpuset.sched_load_balance, a binary value controlling whether or not tasks should be

migrated between the CPUs in the group to more evenly distribute tasks.

Writing 0 to cpuset.sched_load_balance generally indicates that child cpusets should form

their own root domains. For example, consider the following commands.

[root ˜]# cd /sys/fs/cgroup/cpuset

[root cpuset]# mkdir group0

[root cpuset]# echo 0-3 > group0/cpuset.cpus

[root cpuset]# echo 0 > cpuset.sched_load_balance

[root cpuset]# echo 2318 > group0/cgroup.procs

These commands create a child cpuset group0 containing CPUs 0-3. CPUs 0-3 are allocated to their

own root domain, with any remaining CPUs being allocated to another root domain. Task 2318 is allocated to

group0, which will set task 2318 to have affinity for CPUs 0-3.

For version 2, all controllers have a single hierarchy. The root group for all controllers is located at

/sys/fs/cgroup. The files of interest to us are

• cgroup.procs and cpuset.cpus, which carry over from version 1;

• cgroup.subtree_control, a list of controllers permitted for use in descendent groups;

• cpuset.cpus.effective, the subset of cpuset.cpus actually allocated to the group (the

remaining CPUs in cpuset.cpus may be stolen by child groups, as we will describe shortly),

• and cpuset.cpus.partition, which signifies whether or not the group has its own root domain.

For example, consider the following commands.

127

[root ˜]# cd /sys/fs/cgroup

[root cgroup]# echo +cpuset > cgroup.subtree_control

[root cgroup]# mkdir group0

[root cgroup]# echo 0-3 > group0/cpuset.cpus

[root cgroup]# echo root > group0/cpuset.cpus.partition

[root cgroup]# echo 2318 > group0/cgroup.procs

[root cgroup]# cat group0/cpuset.cpus.effective

0-3

[root cgroup]# cat cpuset.cpus.effective

4-7

These commands are the equivalent of the previously presented version 1 commands. The last two com-

mands, which display cpuset.cpus.effective for both group0 and the root cgroup, demonstrate

that CPUs 0-3 are in a root domain that is seperate from the root domain of the remaining CPUs 4-7.

Tasks can also be placed into cgroups at thread granularity (rather than thread-group granularity with

cgroup.procs). In version 1, this is done by writing task PIDs to file tasks in the target group’s directory.

In version 2, this is done by writing ‘threaded’ to cgroup.type and PIDs to cgroup.threads.

4.1.4 Priority Inheritance Mutexes

The RT-mutex is a kernel data structure that provides suspension-based mutual exclusion with priority

inheritance. The meaning of priority inheritance depends on the scheduling policy of the highest-priority

waiter for an RT-mutex. If this policy is a fixed-priority policy (i.e., SCHED_FIFO or SCHED_RR), then the

owner executes as a SCHED_FIFO task with the waiter’s priority. If this policy is SCHED_DEADLINE, the

owner executes as a SCHED_DEADLINE task with the waiter’s period, budget, and relative deadline. Note

that unlike traditional priority inheritance, the owner does not execute with the waiter’s absolute deadline.

This will be clarified when we discuss implementation details later.

The RT-mutex is accessible from userspace via the futex() (fast userspace mutex) system call. In

simple terms, a futex optimizes for the case that a mutex is uncontended when a task locks or unlocks the

mutex. In this case, a task atomically locks or unlocks the futex from within userspace without involving

the kernel (hence, fast userspace). If the futex is contended, locking and unlocking are done by calling

futex(). The desired operation (e.g., lock or unlock) is specified via an operation argument that futex()

128

takes. Priority inheritance is requested via this argument. For example, locking with priority inheritance

is requested by passing in FUTEX_LOCK_PI. For such operations, the task calling futex() waits on a

RT-mutex corresponding to the futex.

Note that pthread mutexes with priority inheritance are built using futexes with priority inheritance,

and thus also follow RT-mutex’s priority inheritance behavior.

4.1.5 Admission Control

The kernel ACS limits the fraction of the CPUs that real-time tasks (in a Linux context, this refers to

tasks of SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE) are permitted to consume. This fraction

is configured as sched_rt_runtime_us (default 950000) divided by sched_rt_period_us, both

of which are files in proc/sys/kernel. The default values of these files is sched_rt_runtime_

us/sched_rt_period_us = 950000/1000000 = 95%.

This upper limit on the fraction of CPUs is enforced differently for SCHED_DEADLINE than SCHED_

FIFO and SCHED_RR. For SCHED_DEADLINE, the ACS enforces that the total bandwidth of SCHED_

DEADLINE tasks is at most the fraction multiplied by the total CPU capacity. Capacity can be thought of as

the kernel term for speed (with a maximum of 1.0) under UNIFORM. Restated using the notation established

in Chapter 2, the ACS enforces

∑
τi∈τact(t)

ui ≤
sched_rt_runtime_us

sched_rt_period_us
·
∑
πj∈π

sp(j) (4.1)

for SCHED_DEADLINE tasks. Note that the total bandwidth
(∑

τi∈τ ui
)

and total capacity
(∑

πj∈π sp(j)
)

are computed separately for each root domain.

The ACS will reject the addition of tasks to SCHED_DEADLINE (via sched_setattr()) if do-

ing so would violate (4.1). The ACS can also reject changes to affinities. Calls to function sched_

setaffinity() will fail if the requested affinity is not a superset of the root domain (i.e., a SCHED_

DEADLINE task must be runnable on every CPU in its root domain). To the author’s knowledge, a SCHED_

DEADLINE task will not execute on CPUs outside of its root domain, even if said task has affinity for

those CPUs. Likewise, modifying root domains by writing to cpuset.cpus in a group with SCHED_

DEADLINE tasks will fail if the change in CPUs would violate (4.1).

129

Besides enforcing (4.1) for SCHED_DEADLINE tasks, the ACS also tracks the total runtime of real-

time tasks (including SCHED_DEADLINE). When this total runtime exceeds sched_rt_runtime_us

multiplied by the number of CPUs, SCHED_FIFO and SCHED_RR tasks are prevented from executing (note

that SCHED_DEADLINE tasks contribute to, but are not limited by, the tracked total runtime). This tracked

total runtime is reset approximately every sched_rt_period_us.4

The ACS can be disabled by writing −1 to sched_rt_runtime_us.

[root ˜]# cd /proc/sys/kernel

[root kernel]# echo -1 > sched_rt_runtime_us

This disables bandwidth management for SCHED_FIFO and SCHED_RR. SCHED_DEADLINE tasks are still

throttled based on their per-task budget and period, but the limit on total bandwidth is disabled. Restrictions

on affinities for SCHED_DEADLINE tasks are also disabled.

4.1.6 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) is controlled via the CPUFreq subsystem mounted

at /sys/devices/system/cpu/cpufreq. Within this directory is a folder for each CPUFreq policy

(e.g., policy0, policy1, etc.). A CPUFreq policy is a set of CPUs that share DVFS settings due to the

underlying hardware. The files of interest within such a CPUFreq policy folder are:

• affected_cpus, the list of CPUs belonging to the CPUFreq policy;

• scaling_governor, the current governor, i.e., frequency selection algorithm, managing the CPUs

in this policy;

• and scaling_available_governors, the list of compatible governors for this policy.

A user changes the governor of a policy by writing one of the governors in scaling_available_

governors to scaling_governor. Governors may not be present in scaling_available_

governors depending on the drivers in use in the kernel.

4We have purposely oversimplified this description of enforcement of SCHED_FIFO and SCHED_RR because it
does not affect SCHED_DEADLINE, which is our focus. In the actual implementation, the tracked total runtime is
tracked on a per-CPU basis. A runtime balancing function redistributes this per-CPU runtime when one CPU exceeds
sched_rt_runtime_us before the others. This is further complicated by cgroup RT-group scheduling, which
permits each group to specify its own sched_rt_runtime_us and sched_rt_period_us. Note that group
scheduling is not implemented for SCHED_DEADLINE.

130

Of relevance to SCHED_DEADLINE is the schedutil governor, which makes frequency scaling

decisions based on the real-time parameters of SCHED_DEADLINE tasks. A goal of schedutil is to

safely reduce frequencies without incurring deadline misses. The implementation of schedutil will be

discussed in Section 4.4.9.

4.2 Common Data Structures

We begin detailing the implementation by describing common data structures (i.e., those not specific to

particular Linux policies such as SCHED_DEADLINE).

Affinity mask types. The kernel contains many data types representing affinity masks, which we cover in

this paragraph. Affinity masks are stored in the kernel as bitmasks. The fundamental bitmask data type is

unsigned long[]. An array typing is necessary because the maximum number of CPUs possible in the

system is configurable. The length of the array is set such that the total number of bits is at least the maximum

number of CPUs. Type struct cpumask is this array packaged into a struct. Type cpumask_t is a

typedef of struct cpumask. The last affinity mask type is cpumask_var_t. cpumask_var_t

behaves like a pointer to a struct cpumask. The kernel can be configured such that the memory pointed to

by a cpumask_var_t is allocated either dynamically or on the stack. The exact definition of cpumask_

var_t changes depending on this configuration. Affinity masks are manipulated via several kernel functions

and macros. For example, cpumask_and(), which takes three cpumask_var_ts (or pointers to either

struct cpumask or cpumask_t), writes into the first mask the bitwise-and of the other two masks.

Red-black trees. The Linux kernel’s implementation for balanced binary trees is a red-black tree whose

nodes are of type struct rb_node. Each rb_node contains, as members, pointers to its two children

and parent rb_nodes. A tree as a whole is referenced by a struct rb_root, which contains a pointer to

the root rb_node.

Some priority queues in the scheduler are implemented using red-black trees. These priority queues are

the basis of task runqueues, detailed later. In these priority queues, rb_nodes are ordered in the tree by

priority. A pointer to the leftmost rb_node is kept, as this rb_node corresponds to the highest priority

(e.g., for SCHED_DEADLINE, rb_nodes are ordered by deadline, with the smallest, i.e., earliest, deadline

having highest priority). The tree is referenced by a struct rb_root_cached, which contains an rb_

root and the aforementioned pointer to the leftmost rb_node.

131

H Example 4.1. Figure 4.1 illustrates the structure of a red-black tree in Linux. The data structure being

stored on this tree are of type struct sched_dl_entity, which describes a SCHED_DEADLINE

task (to be discussed in Section 4.4.1). The illustrated tree orders the sched_dl_entitys by their

deadline parameters5 (e.g., the sched_dl_entity with deadline of 1, the earliest deadline

value, is leftmost in the tree). Observe that the rb_root_cached contains pointers to both the root

and leftmost nodes. N

High-resolution timers. A high-resolution timer (struct hrtimer) is one of the kernel’s mechanism for

executing code at a specified future time. An example of use in SCHED_DEADLINE is budget enforcement,

which we will detail later. An hrtimer contains a member function(), which is a callback function

pointer to be called when the hrtimer expires. function() takes a pointer to its corresponding

hrtimer as its only argument.

A plethora of kernel functions exist for arming and manipulating hrtimers. An hrtimer is initialized

by calling hrtimer_init(). An hrtimer is started by calling hrtimer_start(). A started

hrtimer can be canceled with hrtimer_try_to_cancel() (which fails if function() is mid-

execution) or hrtimer_cancel() (which blocks while function() is mid-execution). An hrtimer

can also restart itself from within function(). function() indicates that its corresponding hrtimer

should be restarted by returning HRTIMER_RESTART; otherwise, function() should return HRTIMER_

NORESTART. These return values are of type enum hrtimer_restart. The firing time of a restarted

hrtimer can be set by calling hrtimer_forward() from within function().

Tasks and classes. In Linux, tasks are represented by data structures of type struct task_struct (to

be defined in Listing 4.1). These task_structs are partitioned between five scheduling classes. These

classes exist in a hierarchy such that a task_struct in a given class may only be scheduled if no task_

struct in a higher-priority class is schedulable. stop_sched_class, the highest-priority class, and

idle_sched_class, the lowest-priority class, are used exclusively by the kernel. By this, we mean that

no user-level programs ever belong to these classes.

5To reflect that task parameters are stored as 64-bit integers in SCHED_DEADLINE, we omit trailing zeros (e.g., ‘1’ vs.
‘1.0’) from examples related to SCHED_DEADLINE.

132

struct rb_root_cached

rb_root

*rb_node

*rb_leftmost

struct sched_dl_entity

rb_node

*rb_right

*rb_left

deadline: 5

...

struct sched_dl_entity

rb_node

*rb_right

*rb_left

deadline: 3

...

struct sched_dl_entity

rb_node

*rb_right

*rb_left

deadline: 7

...

struct sched_dl_entity

rb_node

*rb_right

*rb_left

deadline: 1

...

struct sched_dl_entity

rb_node

*rb_right

*rb_left

deadline: 4

...

Figure 4.1: rb_root_cached example.

133

In order of highest to lowest priority, the remaining classes that govern user-level programs are dl_

sched_class (implements SCHED_DEADLINE), rt_sched_class (SCHED_FIFO and SCHED_

RR), and the default fair_sched_class (SCHED_NORMAL, SCHED_BATCH, and SCHED_IDLE).

As mentioned in parentheses, each of these three classes corresponds to at least one policy. The static

differences in priority between policies results from the hierarchy of scheduling classes. For classes with

multiple policies, the specific policy chosen with sched_setattr() generally causes minor changes

in how its corresponding class behaves. For example, rt_sched_class supports the policies SCHED_

FIFO, which tiebreaks equal-priority tasks in FIFO order, and SCHED_RR, which executes equal-priority

tasks in a time-sliced round-robin fashion.

Scheduling entities. Each of the three user-level scheduling classes defines its own scheduling entity data

type that stores per-task parameters used by the corresponding scheduler. Each task_struct contains a

scheduling entity for each of the three user-level scheduling classes.

For example, the scheduling entity type for SCHED_DEADLINE is struct sched_dl_entity. In

SCHED_DEADLINE, each thread runs in its own CBS, whose parameters are stored in the corresponding

sched_dl_entity. These include static CBS parameters such as dl_runtime (maximum budget),

dl_deadline (relative deadline), dl_period, and dynamic CBS parameters runtime (current budget)

and deadline (current deadline).

Having covered task_structs, scheduling classes, and scheduling entities at a high level, we can

now discuss specific members of these data structures. A subset of the members of task_struct is shown

in Listing 4.1.

__state stores the current runnable state of the corresponding task_struct. Suspending and

waking functions modify __state to inform the scheduler whether the task_struct can be sched-

uled. A value of TASK_RUNNING (a macro for 0) indicates that the task_struct is runnable, while

nonzero values (e.g., TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, TASK_WAKING, TASK_

DEAD, etc.) indicate otherwise. A suspended task usually has state TASK_INTERRUPTIBLE or TASK_

UNINTERRUPTIBLE. A task in the process of being woken from suspension has state TASK_WAKING. A

task that exits has state TASK_DEAD.

on_rq stores whether the corresponding task_struct is on a runqueue or not. on_rq will be

discussed after discussing per-CPU runqueues.

134

struct task_struct {
unsigned int __state;

int on_rq;

int prio;
int static_prio;
int normal_prio;
unsigned int rt_priority;

struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;

struct sched_class *sched_class;
unsigned int policy;
int nr_cpus_allowed;
cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
unsigned short migration_disabled;
unsigned short migration_flags;

struct rb_node pushable_dl_tasks;
};

Listing 4.1: struct task_struct.

Next are the per-task priority values prio, static_prio, normal_prio, and rt_priority.

static_prio and rt_priority are scheduling class-specific priority values for fair_sched_

class and rt_sched_class, respectively. static_prio stores the nice value (with the addition

of a constant offset) for EEVDF tasks. rt_priority stores the priorities of fixed-priority tasks. prio and

normal_prio, on the other hand, apply for tasks of all classes. These values lie in the range of [−1, 140).

normal_prio is such that dl_sched_class tasks (SCHED_DEADLINE) have value−1, rt_sched_

class tasks range between [0, 100), and fair_sched_class between [100, 140). Constants MAX_DL_

PRIO (0) and MAX_RT_PRIO (100) are defined such that SCHED_DEADLINE tasks have normal_prio

< MAX_DL_PRIO and SCHED_FIFO and SCHED_RR tasks have MAX_DL_PRIO ≤ normal_prio <

MAX_RT_PRIO. prio usually is equal to normal_prio, but changes to reflect priority inheritance.

se, rt, and dl are the scheduling entities for fair_sched_class, rt_sched_class, and dl_

sched_class, respectively. sched_class points to the current scheduling class of the task. Note that

sched_class may change due to priority inheritance. policy reflects the scheduling policy chosen with

sched_setscheduler(). Note that policy is not modified by priority inheritance.

135

CPU 0

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct rq

CPU 1

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct rq

CPU 2

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct rq

Figure 4.2: Per-CPU runqueues.

cpus_mask is the affinity bitmask set by sched_setaffinity().6 nr_cpus_allowed is the

number of CPUs in cpus_mask. cpus_ptr is a pointer to the current affinity bitmask of the corresponding

task. cpus_ptr usually points to cpus_mask, but may point elsewhere when migration is disabled.

Migration can be disabled in the kernel with function migrate_disable(). Each call to migrate_

disable() is paired with a call to migrate_enable(). Calls may be nested. Member migration_

disabled is a counter tracking the number of migrate_disable() calls that have yet to be paired

with a call to migrate_enable(). migration_flags is a set of flags that, at time of writing, can

only contain MDF_PUSH. Usage of migration_flags will be described in Section 4.3.8.

Per-CPU runqueues. In Linux, each CPU corresponds to runqueue defined by struct rq (see Figure 4.2).

The task_struct at the head of a CPU’s runqueue rq is scheduled on said CPU. Internally, each of these

rqs is composed of sub-runqueues corresponding to the user-level scheduling classes (see Figure 4.3). Not

shown in Figure 4.3 is that each sub-runqueue in a rq has unique internal structure. For example, the dl_

sched_class sub-runqueue structure is struct dl_rq. Within a dl_rq, tasks are ordered by deadline

using a red-black tree. On a reschedule for a CPU, the sub-runqueues in the corresponding rq are checked in

6This is a simplification. The bitmask set by sched_setaffinity() is actually pointed to by user_cpus_ptr,
a different member of task_struct. The use case for keeping cpus_mask and user_cpus_ptr distinct is for
heterogeneous architectures such that certain binaries can only run on a subset of CPUs (see the documentation on
asymmetric 32-bit execution by Deacon (2021)). If a task changes to a different binary via an execve() system
call, the new binary may be unable to run on all the CPUs in the requested affinity bitmask. This makes it necessary
to set cpus_mask to the subset of CPUs allowed by the hardware. The original affinity mask is pointed to by
user_cpus_ptr such that cpus_mask can be restored in the event the task changes back to a binary without CPU
restrictions. We choose to avoid discussing user_cpus_ptr because SCHED_DEADLINE tasks are not expected
to call execve().

136

CPU 0

struct rq

struct dl_rq dl

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct rt_rq rt

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct cfs_rq cfs

struct task_struct

struct task_struct

struct task_struct

struct task_struct

struct task_struct

Figure 4.3: Runqueue rq is constructed of sub-runqueues.

a consistent order. Thus, the task_struct at the head of the first non-empty sub-runqueue is at the head

of the rq, and is scheduled. The order of the sub-runqueues results in the hierarchy between the scheduling

classes.

cfs, rt, and dl are the sub-runqueues corresponding to fair_sched_class, rt_sched_class,

and dl_sched_class, respectively. Note their order as members within struct rq reflects their order

of addition to the kernel, and not the order they are checked on reschedule.

curr is a pointer to the currently scheduled task on the rq’s CPU.

idle and stop are pointers to per-CPU kernel-only tasks belonging to idle_sched_class and

stop_sched_class, respectively. Observe in Figure 4.3 and Listing 4.2 that neither of these classes

has a corresponding sub-runqueue. Sub-runqueues are unnecessary because idle and stop are the only

tasks of their respective classes that may execute on their corresponding CPU. stop, belonging to stop_

sched_class, has highest priority on rq whenever stop is runnable. The purpose of stop and stop_

sched_class will be detailed later in Section 4.3.8. idle, belonging to idle_sched_class, has

lowest priority on rq, and runs only when no other task is available. The function of idle is to transition

the CPU into a low-power state. Note that, barring the CPU being offline, idle is always runnable.

clock stores the most recently read value from the corresponding CPU’s clock. clock_task and

clock_pelt are derived from clock, and will be discussed in Sections 4.4.3 and 4.4.9. These clock values

are accessed by rq_clock(), rq_clock_task(), and rq_clock_pelt(). The clock values are

137

struct rq {
struct cfs_rq cfs;
struct rt_rq rt;
struct dl_rq dl;

struct task_struct *curr;

struct task_struct *idle;
struct task_struct *stop;

u64 clock;
u64 clock_task;
u64 clock_pelt;

struct root_domain *rd;
struct sched_domain *sd;

struct balance_callback *balance_callback;

struct hrtimer hrtick_timer;

int cpu;

unsigned int push_busy;
struct cpu_stop_work push_work;

}

Listing 4.2: struct rq.

138

updated by calling update_rq_clock() on the corresponding rq. We omit these calls in our presented

pseudocode for simplicity. These clock values are used for tracking budget consumption and in DVFS.

rd is a pointer to the unique root domain (recall from Section 4.1.3 that a root domain is similar to a

cluster in real-time terminology) that contains the corresponding CPU. The scheduler will only migrate tasks

on a runqueue in rd to other runqueues in rd. sd is a pointer to a scheduling domain. Like a root domain, a

scheduling domain represents a set of CPUs. Unlike root domains, scheduling domains exist in a hierarchy.

For two scheduling domains in the same hierarchy, the domain lower in the hierarchy spans a subset of the

CPUs in the higher domain. Root and scheduling domains will be detailed in later paragraphs in this section.

balance_callback allows its owning runqueue to defer migrations involving this runqueue to a later

point in time. balance_callback is a linked-list-based queue of callback functions taking a pointer to

the corresponding runqueue rq as an argument. The functions queued onto balance_callback perform

the deferred migrations, and are triggered at specific points in the scheduling code (e.g., after any reschedule

on a CPU). Deferring migrations with balance_callback is useful because critical sections that modify

runqueue and task state must be protected by spinlocks and migrations may need to drop these spinlocks. It is

necessary to delay such migrations until after such critical sections have completed.

For example, suppose a SCHED_DEADLINE task is preempted on a CPU when another task replenishes

its budget on that CPU. Processing the preemption requires owning this CPU’s runqueue’s spinlock. Suppose

further that the preempted task has a sufficiently early deadline to preempt the running task on another CPU.

Migrating the task between the two runqueues requires holding both runqueues’ spinlocks. To avoid deadlock,

these per-runqueue spinlocks must be acquired in CPU-index order. If the original CPU has a higher index,

it must drop its own spinlock before acquiring the other runqueue’s spinlock. Because the original CPU’s

runqueue lock cannot be dropped while processing the preemption, a function to perform the migration is

queued onto balance_callback. This function will be triggered by the scheduler after the preemption is

processed.

hrtick_timer is an hrtimer for budget enforcement. Because a task must be executing on a CPU

to consume budget, hrtick_timer is stored in the CPU’s runqueue rq rather than in the consuming task’s

task_struct.

cpu is the CPU index corresponding with the runqueue.

139

push_busy is a boolean that indicates whether push_work is in use by the scheduler. push_work

is a data structure of type struct cpu_stop_work used by stop_sched_class. Usage of push_

work will be described in Section 4.3.8.

Additional task_struct members. Member on_rq of task_struct was not previously described.

on_rq has possible values 0, indicating the corresponding task is not on any runqueue (i.e., it is suspended

or dead), TASK_ON_RQ_QUEUED, indicating the task is enqueued on some runqueue, and TASK_ON_RQ_

MIGRATING, indicating the task is in a transient period in which it is being moved between runqueues.

Each task_struct also stores the CPU index of the last runqueue it was on. How exactly this CPU

index is stored depends on the kernel configuration (thus, it was omitted from Listing 4.1). Functions task_

cpu() and __set_task_cpu() are defined to get and set this field regardless of configuration. For a

given task_struct pointer p, the CPU is returned with task_cpu(p) and set with __set_task_

cpu(p, new_cpu). Note that task_cpu() is only guaranteed to be valid if p is queued on a runqueue.

This must be determined by observing p->on_rq.

task_rq() is the composition of cpu_rq() and task_cpu(). As such, for task_struct p,

task_rq(p) returns a pointer to p’s runqueue. Keep in mind that it is not guaranteed that task p is

enqueued on this runqueue when task_rq() is called.

pushable_dl_tasks is a red-black tree node. SCHED_DEADLINE, to make migrations more

efficient, maintains a deadline-ordered red-black tree of the subset of migratable (i.e., nr_cpus_allowed

> 1) SCHED_DEADLINE tasks enqueued on each runqueue. pushable_dl_tasks is the node used to

insert the containing task_struct into this tree. Note that this tree is distinct from the tree of all enqueued

SCHED_DEADLINE tasks on a runqueue. For this latter tree, the node used to insert the task is stored within

sched_dl_entity dl.

Root and scheduling domains. As described in Section 4.1.3, root domains are synonymous with clusters

in real-time clustered scheduling. Tasks executing on CPUs in a root domain do not execute on outside

CPUs. Root domains are represented by struct root_domain in the kernel. The subset of SCHED_

DEADLINE-related members of root_domain are presented in Listing 4.3. span points to the CPU

bitmask representing the CPUs in the corresponding root_domain.

dlo_mask points to the CPU bitmask of CPUs in span whose runqueues are overloaded with SCHED_

DEADLINE tasks. The term overloaded is inherited form CFS, and generally means that a given CPU’s

140

struct root_domain {
cpumask_var_t span;

cpumask_var_t dlo_mask;
struct dl_bw dl_bw;
struct cpudl cpudl;

};

struct sched_domain {
struct sched_domain *parent;

unsigned long span[];
};

Listing 4.3: struct root_domain and struct sched_domain.

runqueue has tasks that should be migrated to other CPUs’ runqueues. In SCHED_DEADLINE specifically,

overloaded means that a given CPU’s runqueue has at least one unscheduled SCHED_DEADLINE task with

affinity for another CPU. Note that whether a CPU is overloaded has no relation to the bandwidth of SCHED_

DEADLINE tasks on said CPU’s runqueue. dlo_mask is used by SCHED_DEADLINE to emulate a global

runqueue when rescheduling on a CPU. A global runqueue is emulated by, before rescheduling, migrating

higher-priority tasks (than those on the scheduling CPU’s runqueue) from other CPUs’ runqueues to the

scheduling CPU’s runqueue. This migration is called a pull, to be detailed later in Section 4.4.2. Pulling is

made more efficient by only checking the runqueues of CPUs whose corresponding bit is set in dlo_mask,

as only these runqueues will have migratable SCHED_DEADLINE tasks.

dl_bw is a data structure of type struct dl_bw whose primary purpose is to track the total bandwidth

of SCHED_DEADLINE tasks executing on the CPUs in the root_domain. This is used for admission

control. The members of struct dl_bw will be detailed later in Section 4.4.1.

cpudl is a data structure of type struct cpudl. cpudl is primarily a deadline-ordered max-heap

of the CPUs in span. This heap is used by the scheduler to find the CPU executing the task with latest

deadline. A SCHED_DEADLINE task that wakes or replenishes its budget may need to be migrated from its

current CPU to this latest-deadline CPU. This migration is called a push. Pushes and struct cpudl will

be discussed later in Section 4.4.2.

The CPUs in a root_domain are further organized into a hierachy of sched_domains. A sched_

domain is a set of CPUs within a root_domain that are related by level of shared memory (e.g., logical

CPUs on the same core under simultaneous multithreading (SMT), CPUs sharing a cache, etc.). sched_

141

Default root_domain

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7

L2 L2

DRAM

(a) Example sched_domains with default root_domain.

0 1 2

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7

L2 L2

DRAM

(b) Example sched_domains with separate root_domains.

Figure 4.4: sched_domain and root_domain illustrations for Example 4.2.

domains indicate to the scheduler sets of CPUs between which migrations are efficient (e.g., migrating

between CPUs that share a cache may avoid cache misses). The hierarchy of sched_domains reflects

the memory hierarchy, with migrations between CPUs of sched_domains lower in the hierarchy being

preferable to sched_domains higher in the hierarchy.

H Example 4.2. Consider a platform with eight CPUs such that CPUs 0-3 and 4-7 share L2 caches.

Suppose the only root_domain is the default root_domain. Figure 4.4a shows that all CPUs fall

under the default root_domain (illustrated below the CPUs). CPUs 0-3 and 4-7 also fall under two

separate sched_domains due to these two sets of CPUs sharing L2 caches. Both of these sched_

domains fall under a parent sched_domain due to all CPUs sharing the same DRAM memory.

Now suppose the system is configured such that three root_domains are created with CPU 0 in

root_domain 0, CPUs 1-4 in root_domain 1, and CPUs 5-7 in root_domain 2. These root_

domains are illustrated in Figure 4.4b. The sched_domains of the system are modified as a result

of creating these root_domains. CPU 0 is not contained in any sched_domain because tasks do

not migrate to or away from CPU 0 due to root_domain 0 containing no other CPUs (the kernel

142

does not create a sched_domain for a single CPU). CPUs 1-3 fall under a sched_domain due to

sharing an L2 cache. CPU 4, also in root_domain 1, does not fall under this sched_domain, but

does share a higher sched_domain with CPUs 1-3. CPUs 5-7 fall under a sched_domain due to

sharing an L2 cache. Because this sched_domain already contains all CPUs in root_domain 2, a

higher sched_domain is not created. N

sched_domains are primarily used by EEVDF for balancing. The only members relevant to SCHED_

DEADLINE are parent, a pointer to the next sched_domain in the hierarchy (or NULL if no such

sched_domain exists), and span, the CPU bitmask spanning the sched_domain.

4.3 Scheduling Class Internals

The Linux scheduler contains a common infrastructure that is shared by all scheduling classes. This

common infrastructure contains functions for scheduler operations (e.g., rescheduling, suspending and waking

tasks, modifying task properties such as policy or CPU affinity) that internally call scheduling-class-specific

functions. For example, suspending a SCHED_DEADLINE task will cause the common infrastructure to

dequeue the corresponding task_struct from its runqueue rq. The common infrastructure then calls the

SCHED_DEADLINE-specific dequeue_task() function to remove task_struct from the dl_rq in

said rq.

Each of stop_sched_class, dl_sched_class, rt_sched_class, etc., is a function pointer

table (of type struct sched_class) of these class-specific functions. Sections 4.3.1-4.3.8 present

pseudocode for the scheduler operations discussed in the previous paragraph. This is done to illustrate where

and when class-specific functions are called by the common infrastructure. Note that a sched_class

need not provide every function in struct sched_class. Thus, only the functions implemented in dl_

sched_class will be discussed.7

7This omits yield_to_task(), task_dead(), and task_change_group(), which are unique to fair_
sched_class; get_rr_interval(), which is used by fair_sched_class and rt_sched_class; and
task_fork(), which does nothing in SCHED_DEADLINE.

143

4.3.1 Scheduling and Suspending

__schedule() (presented in Listing 4.48) is the kernel scheduling function. __schedule() can

get called for several reasons including a task becoming unrunnable (by exhausting its budget or suspending)

or becoming runnable (by replenishing its budget or waking).

Initially, the CPU calling __schedule() is returned by calling smp_processor_id(). The

runqueue rq of said CPU is returned by calling cpu_rq(). The previously scheduled task is set by

referencing curr.

At line 9, rq->hrtick_timer is canceled if armed. Why this is necessary will be discussed in

Section 4.3.3.

At line 11, prev->__state is checked for a nonzero value. A nonzero value here indicates that __

schedule() has been called from some suspension system call (e.g., nanosleep()) that modified __

state to a value other than TASK_RUNNING (0). If __state indicates that prev was suspended, prev

needs to be removed from runqueue rq so that it cannot be selected for scheduling. __schedule() unsets

prev->on_rq and calls the class-specific dequeue_task() in prev->sched_class.

The prototype of dequeue_task() is as follows.

void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);

Besides the runqueue being dequeued from rq and task being dequeued p, dequeue_task() also takes a

flags argument that indicates the reason p is being dequeued. The flags relevant to SCHED_DEADLINE

are DEQUEUE_SLEEP and DEQUEUE_SAVE. DEQUEUE_SLEEP indicates that p is being dequeued due to

a suspension. DEQUEUE_SAVE indicates that p is being dequeued in preparation for modifying p (e.g., its

scheduling class or affinity). Such calls to dequeue_task() are part of the change pattern, detailed in

Section 4.3.5.

Starting from line 16, __schedule() performs load balancing. From the perspective of SCHED_

DEADLINE, this means emulating a global runqueue by pulling earlier-deadline tasks from other runqueues

to rq. The scheduling classes implement their own balancing logic with class-specific function balance().

The prototype of balance() is as follows.

int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);

8__schedule() actually takes an argument sched_mode that we have omitted in Listing 4.4 because it is primarily
used for RCU purposes and we have omitted synchronization code.

144

1 void __schedule(void)
2 {
3 struct sched_class *class;
4 struct task_struct *prev, *next;
5 int cpu = smp_processor_id();
6 struct rq *rq = cpu_rq(cpu);
7 prev = rq->curr;
8
9 hrtick_clear(rq);

10
11 if (prev->__state) {
12 prev->on_rq = 0;
13 prev->sched_class->dequeue_task(rq, p, DEQUEUE_SLEEP);
14 }
15
16 for_each_class_range(class, prev->sched_class, &idle_sched_class)
17 if (class->balance(rq, prev))
18 break;
19
20 prev->sched_class->put_prev_task(rq, prev);
21
22 for_each_class(class) {
23 next = class->pick_task(rq);
24 if (next) {
25 class->set_next_task(rq, next, true);
26 break;
27 }
28 }
29
30 rq->curr = next;
31 /* Do actual context switch */
32

�

migrate_disable_switch(rq, prev);
33
34 __balance_callbacks(rq);
35 }

Listing 4.4: High-level scheduling function.

Note that rf is only used by the kernel’s locking validator (which we do not discuss), and does not affect

scheduling logic. As such, rf was omitted in Listing 4.4. balance() returns a nonzero value if a task is

pulled from another runqueue.

The for loop at line 16 only considers sched_classes at or lower than prev->sched_class in

the class hierarchy. A runnable unscheduled task belonging to a higher class should not exist on another

runqueue, as such a task should have been pushed to rq earlier and preempted prev. The for loop is exited

as soon as any call to balance() manages to pull a task, as any task from a lower class that could be pulled

would not be scheduled anyway.

145

Line 20 calls put_prev_task(). The prototype of put_prev_task() is as follows.

void (*put_prev_task)(struct rq *rq, struct task_struct *p);

put_prev_task() is called on any task_struct p running on rq expected to be unscheduled (though

p may actually continue to be scheduled if it remains the highest-priority task on rq). put_prev_task()

is used to perform any bookkeeping required by p’s sched_class that reflects that p is unscheduled.

For example, in Linux, scheduled tasks are not migratable. If p has affinity for multiple CPUs, SCHED_

DEADLINE uses put_prev_task() to internally mark that p is now migratable.

Starting from line 22, the next task to schedule is selected. The classes are iterated over in order of the

class hierarchy. The highest-priority task in a class is selected by pick_task(). The prototype of pick_

task() is as follows.

struct task_struct * (*pick_task)(struct rq *rq);

pick_task() returns a pointer to the task_struct of the highest priority task belonging to its sched_

class or NULL if no task in this sched_class on runqueue rq can run (a task may be on rq but

unrunnable if it has no budget).

Once a task is returned with pick_task(), set_next_task() is called. The prototype of set_

next_task() is as follows.

void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);

set_next_task() is the opposite of put_prev_task() in that it does bookkeeping required when p

is about to become the running task on rq. Following the example discussed with put_prev_task(),

in SCHED_DEADLINE, set_next_task() marks task p as not migratable due to it being scheduled.

Besides being called in __schedule(), both put_prev_task() and set_next_task() can be

called from the aforementioned change pattern that modifies tasks. Argument first is used to indicate

whether set_next_task() was called from __schedule() (first is true) or from the change

pattern (first is false).

Note that the actual code does not directly call pick_task() and set_next_task() in the real

code’s equivalent of the for loop at line 22. Instead, another sched_class function, pick_next_

task(), is called. For all classes except fair_sched_class, all pick_next_task() does is call

pick_task() and conditionally call set_next_task() if pick_task() returns a task.

146

At line 30, __schedule() sets rq->curr and performs the actual context switch from prev to

next. Most details about the context switch code are irrelevant to the scheduler logic, but from within this

code migrate_disable_switch() is called. Discussion of this function is deferred to Section 4.3.7,

which discusses affinities.

The last line of __schedule() in Listing 4.4 calls __balance_callbacks(). __balance_

callbacks() triggers the callback functions queued on rq->balance_callback. Frequently, a

queued callback function attempts to push prev to another runqueue now that it has been preempted on rq.

4.3.2 Waking

try_to_wake_up() (presented in Listing 4.5) is the kernel function for waking a suspended task.

Note that we have omitted some arguments of try_to_wake_up() in this listing. The actual try_

to_wake_up() function in the kernel can fail to wake a task depending on p->__state and omitted

try_to_wake_up() argument state. Reasons for such wake failures are outside the scope of this

description. The actual try_to_wake_up() in the kernel returns an int describing whether the wake

up was successful. We have also omitted argument wake_flags from try_to_wake_up(). wake_

flags would be some combination of flags (e.g., WF_SYNC, WF_CURRENT_CPU) that would be passed to

select_task_rq() (line 8) and wakeup_preempt() (line 21) along with WF_TTWU. Omitting argu-

ment wake_flags does not affect SCHED_DEADLINE’s logic, as only fair_sched_class considers

these flags.

At line 6, the state of the waking task p is set to TASK_WAKING. This is important for a later call

to migrate_task_rq() in try_to_wake_up(). The SCHED_DEADLINE version of migrate_

task_rq() treats calls from try_to_wake_up() as a special case. SCHED_DEADLINE recognizes

that migrate_task_rq() was called from try_to_wake_up() by observing that p->__state is

TASK_WAKING.

At line 8, select_task_rq() is called on the task to be woken p. The prototype of select_

task_rq() is as follows.

int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);

select_task_rq() allows the corresponding sched_class to select a new runqueue for a task p.

select_task_rq() returns a CPU index. For example, in SCHED_DEADLINE, select_task_rq()

147

attempts to select a CPU such that task p has an earlier deadline than any task on said CPU’s runqueue. Note

that select_task_rq() does not move p to the returned CPU’s runqueue (this is handled by enqueue_

task(), called later). flags describes the context select_task_rq() was called from. select_

task_rq() is called when a task is woken (flags includes WF_TTWU, as in Listing 4.5), newly forked

(WF_FORK), or executes a new binary (WF_EXEC). task_cpu is a suggested CPU for select_task_

rq() to return. select_task_rq() is usually called with task_cpu equal to task_cpu(p). This

is because it is likely that p ran on this CPU before suspending, meaning the chance is higher that p is

cache-hot on this CPU.

Returning to line 8, argument task_cpu of select_task_rq() is p->wake_cpu. wake_cpu

is also set by __set_task_cpu(), so wake_cpu and task_cpu(p) are usually equivalent. There are

some edge cases where the two may be distinct. For example, while suspended, task p may lose its affinity

for CPU task_cpu(p). In such cases, the function modifying p’s affinity mask will set p->wake_cpu

to one of the CPUs p has affinity for.

Consider the block beginning at line 11. This block is entered if task_cpu(p) != cpu. In words,

this means the CPU chosen by select_task_rq() is not the CPU whose runqueue task p was last

enqueued on, i.e., the task is being migrated. migrate_task_rq() is called on p.

Note that select_task_rq() is called without owning any runqueue locks. This is for the purpose

of reducing overheads. The consequences of this will be elaborated on later when discussing function task_

woken().

The prototype for migrate_task_rq() is as follows.

void (*migrate_task_rq)(struct task_struct *p, int new_cpu);

migrate_task_rq() is always called immediately prior to task_cpu(p) changing its value (i.e.,

before __set_task_cpu(p)). Note that migrate_task_rq() does not do the work of moving p to

new_cpu’s runqueue. The purpose of migrate_task_rq() is to update class-specific statistics used

by the scheduling classes. For example, for SCHED_DEADLINE bandwidth reclamation (detailed later in

Section 4.4.8), SCHED_DEADLINE tracks the total bandwidth of tasks on each CPU (more specifically,

for CPU cpu, the total bandwidth of tasks p such that task_cpu(p) == cpu). One of the actions of

SCHED_DEADLINE’s migrate_task_rq() function is to subtract the bandwidth of tasks being woken

on new CPUs from the total bandwidths of their original runqueues. This will be detailed in Section 4.4.8.

148

1 void try_to_wake_up(struct task_struct *p)
2 {
3 int cpu, en_flags = ENQUEUE_WAKEUP;
4 struct rq *rq;
5
6 p->__state = TASK_WAKING;
7
8 cpu = p->sched_class->select_task_rq(p, p->wake_cpu, WF_TTWU);
9 rq = cpu_rq(cpu);

10
11 if (task_cpu(p) != cpu) {
12 p->sched_class->migrate_task_rq(p, cpu);
13 __set_task_cpu(p, cpu);
14 en_flags |= ENQUEUE_MIGRATED;
15 }
16
17 p->sched_class->enqueue_task(rq, p, en_flags);
18 p->on_rq = TASK_ON_RQ_QUEUED;
19
20 if (p->sched_class == rq->curr->sched_class)
21 p->sched_class->wakeup_preempt(rq, p, WF_TTWU);
22 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
23 resched_curr(rq);
24
25 p->__state = TASK_RUNNING;
26 p->sched_class->task_woken(rq, p);
27 }

Listing 4.5: High-level waking function.

149

Returning to the block beginning at line 11, in preparation of p being enqueued onto cpu’s runqueue,

p’s CPU is set to cpu and ENQUEUE_MIGRATED is set in enqueue flags en_flags.

Task p is actually enqueued starting at line 17. The prototype for enqueue_task() is as follows.

void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);

enqueue_task() enqueues p onto rq. Flags flags provides additional information on the calling

context. The flags relevant to SCHED_DEADLINE are ENQUEUE_MIGRATED, which indicates that task_

cpu(p) changed while p was dequeued, ENQUEUE_WAKEUP, which indicates enqueue_task() was

called from try_to_wake_up(), and ENQUEUE_RESTORE, which pairs with DEQUEUE_SAVE (see

the change pattern described in Section 4.3.5), and ENQUEUE_REPLENISH, which indicates that SCHED_

DEADLINE should replenish p’s CBS budget.

p->on_rq is set to TASK_ON_RQ_QUEUED after the enqueue completes.

Starting from line 20, try_to_wake_up() determines whether newly woken task p should preempt

the currently scheduled task on cpu. If the currently scheduled task and p belong to the same class, wakeup_

preempt() is called.

The prototype of wakeup_preempt()9 is as follows.

void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);

wakeup_preempt() checks if p has a higher priority than whatever is running on rq. If so, it alerts rq

to reschedule by calling resched_curr() on rq. resched_curr() sets a flag indicating to the kernel

that the CPU corresponding with rq should call __schedule(). wakeup_preempt() also takes wake

flags in argument flags, but this is only used by fair_sched_class, so we do not detail its usage.

If the woken task p is of a higher class than the currently scheduled task, try_to_wake_up() directly

calls resched_curr().

try_to_wake_up() indicates that the woken task p is runnable by setting its state to TASK_

RUNNING (line 25). task_woken() is also called. The prototype of task_woken() is as follows.

void (*task_woken)(struct rq *this_rq, struct task_struct *task);

task_woken() is called in try_to_wake_up() and also when task is a newly created task (though

newly created tasks cannot be in SCHED_DEADLINE because SCHED_DEADLINE tasks cannot fork). As

9Prior to kernel 6.7, this function was named check_preempt_curr().

150

such, any call to task_woken() comes after an accompanying call to select_task_rq() (with flag

WF_TTWU or WF_FORK). The purpose of task_woken() is to double check that task task should be

queued on runqueue this_rq that was chosen by the accompanying call to select_task_rq(). The

meaning of “should be queued” is class-dependent; for example, in SCHED_DEADLINE, task_woken()

will check that task preempts the currently scheduled task on this_rq. If task should not be queued on

this_rq, task_woken() attempts to migrate task to another runqueue.

At first glance, the call to task_woken() may seem redundant because we have not made clear

why the choice by select_task_rq() should be double checked. This is a consequence of omitting

synchronization code for simplification. The problem with select_task_rq() is that it is called and

returns without holding any runqueue spinlocks. The spinlock of runqueue rq in Listing 4.5 is only acquired

immediately before the call to enqueue_task(). Other tasks may have been enqueued onto rq in between

the calls to select_task_rq() and enqueue_task() such that p is no longer the highest-priority

task on rq by the time it is enqueued. task_woken() differs from select_task_rq() because it

acquires runqueue spinlocks when deciding where to push tasks to.

4.3.3 Ticks

Ticks are recurring timer interrupts that give the scheduler the opportunity to respond to the current state

of the system. For example, on a tick, a scheduler may observe that a running task has exhausted its budget,

and thus reschedule on that task’s CPU. Ticks are a combination of periodic and event-driven. Periodic ticks

occur automatically with some architecture-defined period,10 typically with on-order-millisecond granularity.

Event-driven ticks are based on per-runqueue hrtimer hrtick_timer, which must be manually armed

by the scheduler, but may fire with finer granularity than periodic ticks. We assume a kernel configured with

event-driven ticks (note that this is not a build-time configuration and can be set at runtime). Event-driven

ticks are executed with hrtick_timer’s callback function, hrtick() (Listing 4.6).

hrtick() is called whenever a runqueue’s hrtick_timer fires. hrtick() is armed and canceled

with hrtick_start() and hrtick_clear(), respectively. These functions are essentially wrap-

pers around hrtimer_start() and hrtimer_cancel(). Calling hrtick_start(rq, delay)

arms rq->hrtick_timer to fire after delay nanoseconds, and calling hrtick_clear(rq) cancels

10These ticks are not strictly periodic for reasons outside the scope of this dissertation.

151

static enum hrtimer_restart hrtick(struct hrtimer *timer)
{

struct rq *rq = container_of(timer, struct rq, hrtick_timer);
rq->curr->sched_class->task_tick(rq, rq->curr, 1);�

rq->curr->sched_class->update_curr(rq);

return HRTIMER_NORESTART;
}

Listing 4.6: HR tick function.

rq->hrtick_timer. hrtick_start() is typically called within sched_class functions to guar-

antee that task_tick() is called at some event (e.g., in SCHED_DEADLINE, set_next_task() calls

hrtick_start() to fire when the current task’s budget would expire such that task_tick() will

throttle the task). hrtick_clear() is called at the beginning of __schedule() (recall Listing 4.4).

This prevents hrtick() from hitting the wrong task. For example, SCHED_RR relies on periodic ticks

to grant timeslices. Suppose a SCHED_DEADLINE task suspends such that a SCHED_RR task is next to

be scheduled. If an hrtick() armed by SCHED_DEADLINE were able to fire on this SCHED_RR task,

SCHED_RR may incorrectly shorten the task’s timeslice.

Consider Listing 4.6. Within hrtick(), a pointer to the runqueue containing hrtick_timer is

retrieved with the container_of()macro. container_of() returns a pointer to the struct contain-

ing a member given a pointer to the member (e.g., timer in Listing 4.6), the type of the containing struct

(e.g., struct rq), and the identifier of the member in the struct (e.g., hrtick_timer). hrtick()

then calls sched_class function task_tick() on the runqueue returned by container_of().

The prototype of task_tick() is as follows.

void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);

task_tick() is called on any scheduler tick (by hrtick() or by periodic tick functions). The main

purpose of task_tick() in rt_sched_class and dl_sched_class is to call update_curr().

In fair_sched_class, task_tick() does not call update_curr() directly, but does call a helper

function that does much of the work in update_curr(). Argument queued is 1 if task_tick() was

called from hrtick() and 0 if it was called from a periodic tick function.

The prototype of update_curr() is as follows.

void (*update_curr)(struct rq *rq);

152

update_curr() is mainly called from within task_tick(). There are additional calls to update_

curr() from the CPU accounting cgroup controller, but these are not relevant to SCHED_DEADLINE.

The purpose of update_curr() is to update scheduling statistics and whatever sched_class-specific

statistics are needed by the sched_class for task rq->curr. For example, in theory, server budgets are

reasoned about as if they deplete continuously with time. The kernel, being a real system, has to decrement

budgets discretely. In SCHED_DEADLINE, budgets are decremented within update_curr(). When a

SCHED_DEADLINE task is scheduled on a CPU, the kernel arms hrtick_timer on said CPU’s runqueue

to fire when the task’s budget would be exhausted. Assuming the task is not preempted, hrtick() is

executed at the exhaustion time, which in turn will call task_tick() and update_curr(). This call to

update_curr() depletes the task’s budget to 0, upon which the CPU should reschedule.

4.3.4 Yielding

Calling sched_yield() from userspace straightforwardly calls class-specific yield_task() in

the kernel. The prototype of yield_task() is as follows.

void (*yield_task) (struct rq *rq);

rq is the runqueue of the CPU executing the calling task of sched_yield(). yield_task() suggests

to the scheduler that something else should run. The exact meaning of this varies depending on the specific

sched_class.

4.3.5 Change Pattern

Sections 4.3.6-4.3.7 discuss sched_class functions used when changing certain scheduling attributes

of tasks. Functions that implement these changes will follow a change pattern (Listing 4.7), which we cover

in this subsection. For this subsection, the term change function denotes a function that uses the change

pattern.

The purpose of the change pattern is to place task p into a state where scheduling attributes can be

changed without introducing inconsistencies into class-common or -specific data. This means temporarily

dequeuing p from any runqueue it might be on and unmarking it as scheduled if necessary. Whether p is on

its runqueue and is the current task on its runqueue is stored in booleans queued and running.

153

1 int queued, running;
2 int queue_flag = DEQUEUE_SAVE; /* Matches ENQUEUE_RESTORE */
3 struct rq *rq = task_rq(p);
4
5 /* Prepare change */
6
7 queued = p->on_rq == TASK_ON_RQ_QUEUED;
8 running = rq->curr == p;
9

10 if (queued)
11 p->sched_class->dequeue_task(rq, p, queue_flag);
12 if (running)
13 p->sched_class->put_prev_task(rq, p);
14
15 /* Change attribute of p */
16
17 if (queued)
18 p->sched_class->enqueue_task(rq, p, queue_flag);
19 if (running)
20 p->sched_class->set_next_task(rq, p, false);
21
22 /* Post-change follow-up */

Listing 4.7: Change pattern for task_struct *p.

Prior to the change function modifying p, dequeue_task() and put_prev_task() are called

if necessary. If called, dequeue_task() is called with at least DEQUEUE_SAVE set in queue_flags.

DEQUEUE_SAVE indicates that this call came from the change pattern. The change function may set

additional flags in queue_flags to provide additional context to dequeue_task() and enqueue_

task().

After p’s attribute is changed, dequeue_task() and put_prev_task() (if they were called) must

be undone with enqueue_task() and set_next_task(). enqueue_task() is also called with

at least ENQUEUE_RESTORE set in queue_flags. This occurs without additional setting or unsetting

in queue_flags because flags DEQUEUE_SAVE and ENQUEUE_RESTORE are defined to be equivalent.

ENQUEUE_RESTORE serves the same purpose as DEQUEUE_SAVE, indicating to enqueue_task() that

the call originated from the change pattern. set_next_task() is called with false for the same

purpose.

After the change pattern, the change function will usually execute some follow-up code. For example,

modifying a task’s affinity may cause said task to lose affinity for the CPU whose runqueue it is currently on.

Follow-up code will then migrate the task to a CPU it has affinity for.

154

To simplify the presentation of change functions, in future listings, comments /* Change pattern start */

and /* Change pattern end */ are shorthand for lines 7-13 and 17-20, respectively.

4.3.6 Policy Changes and Priority Inheritance

Both scheduling policy change requests and priority inheritance can result in changing the scheduler that

manages a task. Changing schedulers is implemented by switching a task’s sched_class, as this swaps

the class-specific functions called by the common scheduling infrastructure. Before discussing the mechanics

of changing a task’s sched_class, we must first discuss three helper functions (Listing 4.8).

First is __normal_prio(), which maps class-specific priority values (e.g., fixed priorities for rt_

sched_class and nice values for fair_sched_class; dl_sched_class lacks an analogous static

value because EDF priorities are dynamic) into the class-agnostic priority range used by task_struct

members prio and normal_prio. __normal_prio() is used to compute the value of normal_

prio upon a change in policy or class-specific priority.

Second is __setscheduler_prio(), which is the function called to change p->sched_class

and p->prio for a policy change or priority inheritance. Which sched_class to set p->sched_

class to is determined from the new prio value. dl_prio() is true when prio maps into the priority

range occupied by dl_sched_class (i.e., -1). rt_prio() is the corresponding function for rt_

sched_class.

Last is check_class_changed(), which calls up to three sched_class functions: switched_

from(), switched_to(), and prio_changed(). Argument oldprio was the value of p->prio

before the caller (a policy change request or priority inheritance function) of check_class_changed()

was executed.

The prototype of switched_from() and switched_to() is as follows.

void (*switched_from)(struct rq *this_rq, struct task_struct *task);

void (*switched_to) (struct rq *this_rq, struct task_struct *task);

switched_from() and switched_to() are used to perform bookkeeping involved in task changing

task->sched_class. For example, in SCHED_DEADLINE, switched_from() reduces the total

bandwidth of the root_domain corresponding to this_rq by task’s bandwidth. Depending on the

corresponding sched_class, switched_from() and switched_to() may also migrate tasks and

155

int __normal_prio(int policy, int rt_prio, int nice)
{

int prio;

if (policy == SCHED_DEADLINE)
prio = MAX_DL_PRIO - 1;

else if (policy == SCHED_FIFO || policy == SCHED_RR)
prio = MAX_RT_PRIO - 1 - rt_prio;

else
prio = NICE_TO_PRIO(nice);

return prio;
}

void __setscheduler_prio(struct task_struct *p, int prio)
{

if (dl_prio(prio))
p->sched_class = &dl_sched_class;

else if (rt_prio(prio))
p->sched_class = &rt_sched_class;

else
p->sched_class = &fair_sched_class;

p->prio = prio;
}

void check_class_changed(struct rq *rq, struct task_struct *p, struct sched_
class *prev_class, int oldprio)

{
if (prev_class != p->sched_class) {

prev_class->switched_from(rq, p);
p->sched_class->switched_to(rq, p);

} else if (oldprio != p->prio || dl_prio(p->prio))
p->sched_class->prio_changed(rq, p, oldprio);

}

Listing 4.8: Class change helper functions.

156

reschedule this_rq’s CPU. For example, in SCHED_DEADLINE, switched_from() may attempt to

pull other SCHED_DEADLINE tasks to this_rq. To see why this pulling may be necessary here, suppose

task changes its class to fair_sched_class such that task was the scheduled task and the only

SCHED_DEADLINE task on this_rq. When this_rq’s CPU reschedules, because task now belongs

to fair_sched_class, the balance() function for SCHED_DEADLINE will not be called (recall

Line 16 of Listing 4.4). Thus, this_rq will not pull SCHED_DEADLINE tasks prior to picking a task to

schedule. If there are unscheduled SCHED_DEADLINE tasks on other runqueues, they must be pulled before

this reschedule, i.e., during switched_from().

The prototype of prio_changed() is as follows.

void (*prio_changed) (struct rq *this_rq, struct task_
struct *task, int oldprio);

prio_changed() is responsible for accounting for changes in the priorities of tasks. For SCHED_

DEADLINE, “changes in the priorities” refers to changes due to priority inheritance (and not for standard

deadline changes under the CBS). prio_changed() may migrate tasks to or reschedule this_rq for

similar reasons to switched_from() and switched_to().

Note that in check_class_changed(), for SCHED_DEADLINE tasks, prio_changed() is

called regardless of whether oldprio equals p->prio. This is because all SCHED_DEADLINE tasks

have prio equal to -1. Thus, whether or not a SCHED_DEADLINE task is inheriting priority from another

SCHED_DEADLINE task cannot be determined by comparing oldprio and prio.

It remains to discuss how these three helper functions are used by policy change requests and priority

inheritance.

Policy changes. As stated in Section 4.1.1, all system calls pertaining to changing scheduling policy are

ultimately serviced by kernel function __sched_setscheduler(), presented in Listing 4.9.11 Argument

attr is a struct whose members describe the policy change request. Note that this request may keep the

previous policy and only modify a policy’s parameters. For example, __sched_setscheduler() may

be called to modify a SCHED_DEADLINE task’s period. __sched_setscheduler() returns 0 if the

requested change is successful.

11Note that the actual __sched_setscheduler() function takes two additional boolean arguments, user and
pi. These are omitted in the listing because they are always true when __sched_setscheduler() is called
as a result of a policy change system call.

157

1 int __sched_setscheduler(struct task_struct *p, struct sched_attr *attr)
2 {
3 int policy = attr->sched_policy;
4 int oldprio, newprio, queued, running;
5 int queue_flags = DEQUEUE_SAVE;
6 struct sched_class *prev_class = p->sched_class;
7 struct rq *rq = task_rq(p);
8 struct task_struct *pi_task;
9

10 /* Do admission control */
11
12 oldprio = p->prio;
13 newprio = p->normal_prio = __normal_

prio(policy, attr->sched_priority, attr->sched_nice);
14
15 pi_task = rt_mutex_get_top_task(p);
16 if (pi_task)
17 newprio = min(newprio, pi_task->prio);
18
19 /* Change pattern start */
20
21 p->policy = policy;
22 __setscheduler_prio(p, newprio);
23 if (policy == SCHED_DEADLINE)
24 __setparam_dl(p, attr);
25
26 /* Change pattern end */
27
28 check_class_changed(rq, p, prev_class, oldprio);
29 rt_mutex_adjust_pi(p);
30
31 return 0;
32 }

Listing 4.9: Policy changes.

158

__sched_setscheduler() must verify that the change request attr is permitted by the ACS.

For example, the ACS may reject attr if it converts p to a SCHED_DEADLINE task whose bandwidth

would overload p’s runqueue’s root_domain. The exact checks performed on attr will be described in

Section 4.4.4. The ACS rejecting the request will cause __sched_setscheduler() to fail, returning

some error number depending on the cause of the rejection.

If admission control is passed, p->normal_prio is set by calling __normal_prio() (line 13)

with the members of attr as arguments. The resulting priority value is also stored in newprio, the tentative

new value of p->prio.

At line 15, rt_mutex_get_top_task() is called. rt_mutex_get_top_task() returns a

pointer to the highest-priority task_struct waiting for an RT-mutex owned by p, or NULL if no such

task exists. If a task is returned, it is written to pi_task, and newprio is set as the higher priority

value between the current value of newprio (recall that this is the priority value not affected by priority

inheritance, p->normal_prio) and pi_task->prio.

Once newprio is computed, the request is enacted. p->policy is set to the requested policy.

p->sched_class and p->prio are set by calling __setscheduler_prio().

Class-specific parameters are also set (only the setting of dl_sched_class parameters is shown

in Listing 4.9). If policy is SCHED_DEADLINE, dl_sched_class parameters are set with function

__setparam_dl(). __setparam_dl() sets three sets of parameters in p’s sched_dl_entity,

p->dl. First are static CBS parameters. These are the budget dl_runtime, relative deadline dl_

deadline, and period dl_period, whose values are taken from attr. Second are derived static

parameters bandwidth dl_bw, equal to dl_runtime/dl_period, and density dl_density, equal to

dl_runtime/dl_deadline. Last is pi_se, a pointer in the p’s sched_dl_entity, p->dl. __

setparam_dl() sets pi_se to point to its containing sched_dl_entity, p->dl. This is pi_se’s

default value for when its task is not inheriting another task’s priority. pi_se will be detailed later when

discussing function rt_mutex_setprio() (Listing 4.10).

After the request is enacted, check_class_changed() is called. check_class_changed()

will reschedule and migrate tasks in response to changes in p’s priority due to enacting the policy change.

rt_mutex_adjust_pi() is also called to deal with priority inheritance. p’s policy change may

result in a change in its priority (due to a change in p’s sched_class or, in the case of rt_sched_

class, a change in p’s fixed priority). This priority change needs to be propagated up the chain of RT-mutex

159

owners that is such that it begins with p, it ends with a task not waiting on an owned RT-mutex, and each

successive task in the chain owns the RT-mutex that the previous task is waiting on. Note this chain may

end with p if it is not a waiter. Conceptually, rt_mutex_adjust_pi() calls rt_mutex_setprio()

(discussed in the following paragraph) on each task in this chain to update its inherited priority until a task in

the chain has a higher priority than p.

Priority inheritance. Whenever the highest-priority waiter on an RT-mutex changes, function rt_mutex_

setprio() (Listing 4.10) is called to implement priority inheritance. Argument p is the owner of the

RT-mutex and pi_task is the new highest-priority waiter (or NULL if there are no waiters).

Priority inheritance is conceptually similar to a policy change in that p’s sched_class and priority

prio are changed. Because most of Listing 4.10 is the same as Listing 4.9, we focus discussion on the lines

within the change pattern. We also omit non-SCHED_DEADLINE priority inheritance code. When inheriting

from SCHED_DEADLINE tasks, priority inheritance works by setting a pointer in the inheriting task to the

donor task. More specifically, this priority-inheritance-scheduling-entity pointer, pi_se, is stored in and

points to the sched_dl_entitys of the inheritor and donor tasks.

In rt_mutex_setprio(), at line 15, prio is the tentative new value for p->prio that p may be

inheriting from task pi_task. If dl_prio(prio) is true, then there are two cases: p is either inheriting

the priority of a SCHED_DEADLINE waiter or p is a SCHED_DEADLINE task with higher priority than any

waiter. The inner if-else statements correspond to these two cases.

Consider the condition in lines 16-21. This condition corresponds to p inheriting the priority of

a SCHED_DEADLINE waiter. If dl_prio(p->normal_prio) is false, then p is not a SCHED_

DEADLINE task. Thus, for dl_prio(prio) to have been true, prio must have been inherited from a

pi_task under SCHED_DEADLINE. Alternatively, if dl_prio(p->normal_prio) is true, then p

inherits from pi_task only if pi_task exists (i.e., is not NULL), pi_task is or inherits from a SCHED_

DEADLINE task (i.e., dl_prio(pi_task->prio)), and pi_task has an earlier deadline than p (pi_

task->dl.deadline < p->dl.deadline).

If the condition in lines 16-21 is true, then p->dl.pi_se is set to pi_task->dl.pi_se to

indicate that p is inheriting from pi_task. Note that pi_task->dl.pi_se is used instead of &pi_

task->dl because priority inheritance is transitive. ENQUEUE_REPLENISH is also set in queue_

flags. This is because SCHED_DEADLINE tasks that inherit priority enter a boosted state where budget

160

1 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
2 {
3 int prio, oldprio, queued, running;
4 int queue_flag = DEQUEUE_SAVE;
5 struct sched_class *prev_class = p->sched_class;
6 struct rq *rq = task_rq(p);
7
8 prio = p->normal_prio;
9 if (pi_task)

10 prio = min(pi_task->prio, prio);
11 oldprio = p->prio;
12
13 /* Change pattern start */
14
15 if (dl_prio(prio)) {
16 if (!dl_prio(p->normal_prio) ||
17 (
18 pi_task &&
19 dl_prio(pi_task->prio) &&
20 pi_task->dl.deadline < p->dl.deadline)
21)
22) {
23 p->dl.pi_se = pi_task->dl.pi_se;
24 queue_flag |= ENQUEUE_REPLENISH;
25 } else
26 p->dl.pi_se = &p->dl;
27 }
28
29 __setscheduler_prio(p, prio);
30
31 /* Change pattern end */
32
33 check_class_changed(rq, p, prev_class, oldprio);
34 }

Listing 4.10: Priority inheritance.

161

is replenished immediately on exhaustion (instead of the task being throttled). This boosted state will be

described in Section 4.4.7.

If the condition in lines 16-21 is false, then this corresponds with the case that p is a SCHED_

DEADLINE task with higher priority than any waiter it could inherit from. pi_se is reset to point to p’s

sched_dl_entity on line 26 to indicate that p does not inherit another task’s priority.

4.3.7 Affinities

Tasks’ affinities are set by either the sched_setaffinity() system call, migration enabling/dis-

abling, and the cpuset controller. All of these methods for setting affinities rely on a common set of helper

functions shown in Listing 4.11. Each helper function in Listing 4.11 calls the successive helper functions.

The topmost helper function is __set_cpus_allowed_ptr().12 __set_cpus_allowed_

ptr() sets p->cpus_ptr (the true affinity mask, affected by enabling/disabling migration) and pos-

sibly sets p->cpus_mask (the backup affinity mask that is unchanged by enabling/disabling migration)

depending on flags.

__set_cpus_allowed_ptr() calls __do_set_cpus_allowed(), discussed in the next para-

graph, which does the actual work of setting p->cpus_ptr and p->cpus_mask. After the affinity mask

is changed in __do_set_cpus_allowed(), p may need to be migrated if affinity for its current CPU is

lost. cpumask_any_distribute() returns a CPU index in p’s new affinity mask. This CPU is passed

as a suggested CPU to affine_move_task(), which does the actual work of migrating p if it is queued

(if not queued, p will be migrated by try_to_wake_up()). Code for affine_move_task() is not

presented due to its complexity. This complexity arises for reasons that are not useful for understanding

SCHED_DEADLINE. If affine_move_task() chooses to migrate p, it blocks until p is migrated. Note

that affine_move_task() may choose not to migrate p if it did not lose affinity for its current CPU.

affine_move_task() returns 0 once p is on a runqueue corresponding to a CPU it has affinity for.

affine_move_task() can also return -EINVAL, but this should only occur if the implementation is

somehow buggy.

12Note that in recent kernels, the arguments (e.g., cpumask pointers and flags) to these helper functions and the
class-specific set_cpus_allowed() functions are passed in as members of a struct of type affinity_
context instead of individually, as presented in Listing 4.11 and the prototype of set_cpus_allowed(). We
are also omitting the user_mask member of affinity_context and SCA_USER flag in our description as
these are only used for task_struct member user_cpus_ptr (see Footnote 6).

162

1 int __set_cpus_allowed_ptr(struct task_
struct *p, struct cpumask *new_mask, u32 flags)

2 {
3 unsigned int dest_cpu;
4 struct rq *rq = task_rq(p);
5 struct rq_flags rf;
6
7 __do_set_cpus_allowed(p, new_mask, flags);
8
9 dest_cpu = cpumask_any_distribute(new_mask);

10 return affine_move_task(rq, p, &rf, dest_cpu, flags);
11 }
12
13 void __do_set_cpus_allowed(struct task_

struct *p, struct cpumask *new_mask, u32 flags)
14 {
15 bool queued, running;
16 struct rq *rq = task_rq()(p);
17
18 /* Change pattern start */
19
20 p->sched_class->set_cpus_allowed(p, new_mask, flags);
21

�

set_cpus_allowed_common(p, new_mask, flags);
22
23 /* Change pattern end */
24 }
25
26 void set_cpus_allowed_common(struct task_

struct *p, struct cpumask *new_mask, u32 flags)
27 {
28 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) p->‘cpus_

ptr = new_mask;
29 return;
30 }
31
32 cpumask_copy(&p->cpus_mask, new_mask);
33 p->nr_cpus_allowed = cpumask_weight(new_mask);
34 }

Listing 4.11: Affinity helpers.

163

__do_set_cpus_allowed() uses the change pattern. The affinity change is done by calling

the class-specific set_cpus_allowed() function. The prototype for set_cpus_allowed() is as

follows.

void (*set_cpus_allowed)(struct task_
struct *p, struct cpumask *newmask, u32 flags);

The main function of set_cpus_allowed() is to call set_cpus_allowed_common() (in

fact, in fair_sched_class and rt_sched_class, set_cpus_allowed() is set to set_cpus_

allowed_common()). SCHED_DEADLINE also uses set_cpus_allowed() to maintain per-root_

domain bandwidth totals, which are used by the ACS. If p’s change in affinity causes it to change root_

domains, then p’s bandwidth must be deducted from its original root_domain’s bandwidth total. Note

that adding p’s bandwidth to its new root_domain occurs elsewhere. This will be detailed more in

Section 4.4.4. Be aware that no admission control can be performed in set_cpus_allowed(). By the

time set_cpus_allowed() is called, the scheduler has already committed to changing p’s affinity mask.

set_cpus_allowed_common() is the function that actually sets cpus_ptr and cpus_mask.

If the call to set_cpus_allowed_common() originated from a function either enabling or disabling

migration, then flags has either SCA_MIGRATE_ENABLE or SCA_MIGRATE_DISABLE set. If so, then

the requested change in affinity is transient, i.e., only cpus_ptr should be modified. Otherwise, the call to

set_cpus_allowed_common() requested to permanently change p’s affinity mask. Then the value of

new_mask is written to cpus_mask with cpumask_copy(), and nr_cpus_allowed is updated to

reflect the number of CPUs in new_mask with cpumask_weight().

sched_setaffinity(). System call sched_setaffinity() calls __sched_setaffinity()

(Listing 4.12) in the kernel. cpuset_cpus_allowed() writes the mask of CPUs permitted by p’s

cpuset to cpus_allowed. The reduction of the requested affinity mask mask to only the CPUs

permitted by this cpuset is written to new_mask. new_mask is then checked by the ACS (to be detailed

in Section 4.4.4). If new_mask passes admission control, then __set_cpus_allowed_ptr() is called

to change p’s affinity mask to new_mask.

Enabling and disabling migration. Disabling migration is a mechanism used in the kernel to protect critical

sections that operate on per-CPU data structures. Such critical sections would normally be protected by

164

int __sched_setaffinity(struct task_struct *p, struct cpumask *mask)
{

cpumask_var_t cpus_allowed, new_mask;

cpuset_cpus_allowed(p, cpus_allowed);
cpumask_and(new_mask, mask, cpus_allowed);

/* Do admission control */

return __set_cpus_allowed_ptr(p, new_mask, 0);
}

Listing 4.12: Affinity system call.

disabling preemption and/or interrupts on the CPU owning the data structures. This is undesirable for latency

because it can prevent the scheduling of high-priority tasks while preemption or interrupts are disabled.

Instead, per-CPU data can be protected by a combination of disabling migration and suspension-based

locking. This combination has the advantage that a low-priority task can be preempted mid-critical section.

Disabling migration over the critical section guarantees that accesses of per-CPU data reference data belonging

to the same CPU. Locking prevents other tasks on the same CPU from making the per-CPU data inconsistent.

Functions for disabling and enabling migration are presented in Listing 4.13. These functions are imple-

mented by modifying their calling task’s affinity. A task calls migrate_disable() at the beginning of a

critical section and migrate_enable() at its end. migrate_disable() and migrate_enable()

increment and decrement task_struct member migration_disabled, respectively. A value greater

than 0 indicates that migration is disabled.

migrate_disable() does not immediately modify the caller’s affinity mask. Instead, this modifica-

tion is deferred until the caller is unscheduled in a context switch. As part of the context switch, migrate_

disable_switch() is called, which actually modifies the affinity mask if migration has not since been

enabled. It is safe to defer the modification because the caller cannot be migrated while scheduled.

migrate_disable_switch() retrieves a pointer to a pre-allocated affinity mask with only the

caller’s runqueue’s current CPU set with cpumask_of(). The caller’s affinity is changed by calling _

_do_set_cpus_allowed() with flag SCA_MIGRATE_DISABLE. This sets the caller’s cpus_ptr

to point to said pre-allocated affinity mask. Note that __do_set_cpus_allowed() is called instead

of __set_cpus_allowed_ptr() because we need not migrate the caller (i.e., call affine_move_

task()) when disabling migration.

165

void migrate_disable(void)
{

struct task_struct *p = current;

p->migration_disabled++;
}

void migrate_disable_switch(struct rq *rq, struct task_struct *p)
{

if (!p->migration_disabled)
return;

__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
}

void migrate_enable(void)
{

struct task_struct *p = current;

if (p->migration_disabled > 1) {
p-> migration_disabled--;
return;

}

__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
p->migration_disabled = 0;

}

Listing 4.13: Migrate enable and disable.

166

void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
{

__set_cpus_allowed_ptr(task, cs->effective_cpus, 0);
}

int update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
{

struct task_struct *task;
for_each_cs_task(task, cs)

__set_cpus_allowed_ptr()(task, new_cpus, 0);
}

Listing 4.14: cpuset affinity functions.

migrate_enable() calls __set_cpus_allowed_ptr() with a pointer to the caller’s non-

transient affinity mask cpus_mask and flag SCA_MIGRATE_ENABLE. This sets cpus_ptr back to

pointing to cpus_mask. Note that it is possible that cpus_mask was modified by another call to __set_

cpus_allowed_ptr() while the migrate_enable() caller was mid-critical section. As such, it is

necessary to call __set_cpus_allowed_ptr() (and thus, affine_move_task()) in case affinity

was lost for the CPU migration was disabled on.

Unlike __sched_setaffinity(), disabling migration does not interact with the ACS.

cpuset. The last mechanism for modifying affinity masks is the cpuset controller. While an effort has

been made previously for listings to resemble the kernel, Listing 4.14 only shares function names with the

actual code. The size of the cpuset controller code exceeds that of SCHED_DEADLINE. Discussing this

controller’s implementation is outside the scope of this document.

cpuset_attach_task() is called when a task is added to a cpuset (i.e., writing a TGID

to cgroup.procs). This calls __set_cpus_allowed_ptr() such that effective_cpus (a

mask that matches cpuset.cpus.effective) is written to task->cpus_mask. update_tasks_

cpumask() is called when cpuset.cpus.effective is changed (e.g., writing to cpuset.cpus,

writing to cpuset.cpus in a parent cpuset, or changing a child cpuset into a root_domain). new_

cpus is the new value of effective_cpus. update_tasks_cpumask() calls __set_cpus_

allowed_ptr() on each task in the cpuset. Note that for_each_cs_task is not a real macro in

the kernel. Iterating over the tasks in a cgroup is fairly complex for reasons that will not be discussed.

167

void rq_attach_root(struct rq *rq, struct root_domain *rd)
{

struct sched_class *class;

if (rq->rd) {
cpumask_clear_cpu(rq->cpu, rq->rd->span);
for_each_class(class)

class->rq_offline(rq);
}

rq->rd = rd;
cpumask_set_cpu(rq->cpu, rd->span);
for_each_class(class)

class->rq_online(rq);
}

Listing 4.15: Adding CPU to a root_domain.

Both cpuset_attach_task() and update_tasks_cpumask() are only called if permitted by

the ACS. The ACS checks whether these functions can be called in cpuset_can_attach() and dl_

cpuset_cpumask_can_shrink(), as discussed in Section 4.4.4.

Attaching root_domains. Modifying cpusets can cause the kernel to rebuild the root_domains and

sched_domains. This process is complex and not described in this document. On a rebuild, CPUs are

added to a root_domain with rq_attach_root() (Listing 4.15).13

rq_attach_root() clears rq’s CPU from the span of its old root_domain, if it exists (for

example, a prior root_domain does not exist on boot when CPUs are added to the default root_

domain). If there was a prior root_domain, then for each sched_class, rq_offline() is called.

The CPU is then added to its new root_domain rd’s span, and rq_online() is called for each

sched_class.

The prototypes of rq_online() and rq_offline() are as follows.

void (*rq_online)(struct rq *rq);

void (*rq_offline)(struct rq *rq);

These functions alert the scheduler of their corresponding class that tasks should (rq_online()) or should

not (rq_offline()) be scheduled on the CPU of rq. Besides being called in rq_attach_root(),

13CPU hotplug logic is being omitted. We are assuming that any runqueues rq_attach_root() is called on
correspond with CPUs that are online. With hotplug, the set of online CPUs is dynamic. Depending on whether a
given CPU is online or offline, rq_offline() and rq_online() may not need to be called.

168

these functions are also called when CPUs are activated or deactivated. SCHED_DEADLINE uses these

functions to manage SCHED_DEADLINE-specific data stored in the root_domains.

4.3.8 Stop Class

stop_sched_class maintains a task and a FIFO queue on each CPU. Each queue is a linked-list

containing callback functions. Whenever one of these queues becomes non-empty, the corresponding stop_

sched_class task wakes up and executes the callback functions in the queue. Because these tasks belong

to stop_sched_class, the highest priority sched_class, these callback functions execute with higher

priority than any other task. These tasks then block once their corresponding queues are empty.

Tasks of stop_sched_class are used by the scheduler for migrating tasks of the user-level sched_

classes. The main use case is migrating a task that is already scheduled on a CPU. To keep scheduling

data structures consistent, such a task needs to be unscheduled from its CPU before it can be migrated. The

scheduler unschedules the target task by enqueuing a callback function onto the CPU’s FIFO queue, thereby

waking the CPU’s stop_sched_class task that preempts the target task. The callback function enqueued

by the scheduler then performs the migration.

A callback function is enqueued with stop_one_cpu().

int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)

cpu is the target CPU, fn is a callback function pointer of type cpu_stop_fn_t (i.e., fn must return

an int and take a void pointer), and arg is the argument to be passed to fn when it is called. stop_

one_cpu() returns the return value of fn. As such, stop_one_cpu() blocks until fn completes. More

commonly used by the scheduler is the non-blocking variant stop_one_cpu_nowait().

bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_
t fn, void *arg, struct cpu_stop_work *work_buf)

The non-blocking variant requires an additional argument work_buf that is a pointer to a cpu_stop_

work (nodes in the aforementioned linked-list queues used by stop_sched_class are of type cpu_

stop_work). work_buf is then a pointer to an allocated region of memory that will store the node that

will correspond to calling fn on cpu. Because most members of cpu_stop_work are assigned values

within stop_one_cpu_nowait() (based on the other arguments to stop_one_cpu_nowait()),

we do not describe these members here.

169

One migration function used as an argument of stop_one_cpu_nowait() is push_cpu_stop()

(Listing 4.17), which pushes a target task from the stopped CPU’s runqueue. We highlight push_cpu_

stop() because it calls class-specific function find_lock_rq() and because it is used by SCHED_

DEADLINE. The following is a high-level example of how SCHED_DEADLINE may use push_cpu_

stop().

H Example 4.3. Consider a system with two CPUs as illustrated in Figure 4.5a. Initially, there are three

SCHED_DEADLINE tasks queued on these CPUs’ runqueues. Task 0 is scheduled on CPU 0 and Task 1

is scheduled on CPU 1.

Task 0 calls migrate_disable(), fixing itself on CPU 0. migrate_disable_switch()

sets cpus_ptr to point to a mask with only CPU 0 set (Figure 4.5b) when Task 0 is next preempted

(Figure 4.5c). When Task 3 wakes, Task 3 is enqueued on CPU 0 due to Task 0 having a later deadline

than Task 1 on CPU 1.

Suppose Task 1 on CPU 1 suspends (Figure 4.5d). This suspension triggers CPU 1 to reschedule,

during which Task 1 is dequeued. SCHED_DEADLINE wishes to execute Tasks 0 and 3, the highest

priority tasks in the system, on the two CPUs. Tasks 0 and 3 are both on CPU 0’s runqueue. Ordinarily,

Task 0 would be migrated to CPU 1’s runqueue prior to its rescheduling (i.e., during balance()), but

Task 0 has disabled migration. Task 3, on the other hand, could be migrated to CPU 1, but is currently

scheduled on CPU 0.

balance() observes that the task it wants to pull (Task 0) has disabled migration. It calls stop_

one_cpu_nowait() to wake the stopper task on CPU 0 (Figure 4.5e). This preempts Task 3, making

it migratable. push_cpu_stop(), queued on the stopper task by stop_one_cpu_nowait(),

migrates Task 3 to CPU 1 (Figure 4.5f). After push_cpu_stop() completes and the stopper task on

CPU 0 suspends (Figure 4.5g), Task 0 is the highest-priority task on CPU 0 and Task 3 is the highest-

priority task on CPU 1. Thus, SCHED_DEADLINE is able to schedule the highest-priority tasks in the

system. N

Queueing push_cpu_stop() for runqueue rq is usually prepared for by calling get_push_

task() (Listing 4.16). get_push_task() returns the task to be pushed by push_cpu_stop().

Recall from Example 4.3 how this is the currently scheduled task on the target runqueue rq. Before returning

the current task on rq, p, get_push_task() first confirms that rq->push_work is not already being

170

CPU 0

task_struct

cpus_ptr : [0, 1]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 10

pid : 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(a) Initial system.

CPU 0

task_struct

cpus_ptr : [0]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 10

pid : 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(b) Task 0 calls migrate_disable().

CPU 0

task_struct

cpus_ptr : [0, 1]

dl.deadline : 8

pid : 3

task_struct

cpus_ptr : [0]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 10

pid : 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(c) Task 3 wakes and preempts Task 0.

Figure 4.5: push_cpu_stop() example.

171

CPU 0

task_struct

cpus_ptr : [0, 1]

dl.deadline : 8

pid : 3

task_struct

cpus_ptr : [0]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(d) Task 1 suspends and CPU 1 must reschedule.

CPU 0

cpu_rq(0)->stop

task_struct

cpus_ptr : [0, 1]

dl.deadline : 8

pid : 3

task_struct

cpus_ptr : [0]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(e) CPU 1 calls stop_one_cpu_nowait() on CPU 0.

CPU 0

cpu_rq(0)->stop

task_struct

cpus_ptr : [0, 1]

dl.deadline : 8

pid : 3

task_struct

cpus_ptr : [0]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 8

pid : 3

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(f) push_cpu_stop() pushes Task 0 to CPU 1.

Figure 4.5: push_cpu_stop() example (continued).

172

CPU 0

task_struct

cpus_ptr : [0]

dl.deadline : 11

pid : 0

CPU 1

task_struct

cpus_ptr : [0, 1]

dl.deadline : 8

pid : 3

task_struct

cpus_ptr : [0, 1]

dl.deadline : 15

pid : 2

(g) cpu_rq(0)->stop suspends.

Figure 4.5: push_cpu_stop() example (continued).

struct task_struct *get_push_task(struct rq rq)
{

struct task_struct *p = rq->curr;
if (rq->push_busy)

return NULL;
if (p->nr_cpus_allowed == 1)

return NULL;
if (p->migration_disabled)

return NULL;
rq->push_busy = true;
return p;

}

Listing 4.16: get_push_task().

173

used in another push by checking push_busy. push_work is the per-runqueue linked-list node of type

cpu_stop_work that stores push_cpu_stop() on rq’s stopper queue. push_busy is a boolean that

indicates whether push_work is in use. get_push_task() also checks that p is actually migratable

(i.e., p->nr_cpus_allowed exceeds one and p has not disabled migration). If push_work is available

and p is migratable, then push_busy is set and p is returned. push_cpu_stop() is then queued as

follows.

stop_one_cpu_nowait(rq->cpu, push_cpu_stop, p, &rq->push_work);

Code for push_cpu_stop() is presented in Listing 4.17. rq is set to point to the runqueue of the

stop task by the this_rq() macro that returns a pointer to the runqueue of the executing CPU (recall that

the stop task on a CPU never migrates). Argument arg, which is a void pointer to match cpu_stop_

fn_t, is casted into task_struct pointer p, the target task to push.

During the delay between push_cpu_stop() getting enqueued on a stopper task’s queue and said

stopper task executing push_cpu_stop(), the state of the scheduler may have changed. As such, push_

cpu_stop() may bail on migrating p (i.e., with goto out_unlock). At line 8, push_cpu_stop()

checks that rq is still p’s runqueue, and quits if it is not.

At line 11, push_cpu_stop() checks that p did not disable migration, and quits if it has. If migration

was disabled, push_cpu_stop() sets MDF_PUSH in migration_flags. Flag MDF_PUSH indicates

that p should be pushed once migrate_enable() is called. migrate_enable() calls affine_

move_task(), which is responsible for checking migration_flags and performing this push if MDF_

PUSH is set. On the other hand, if migration is still enabled, MDF_PUSH is unset in migration_flags.

At line 17, push_cpu_stop() calls class-specific function find_lock_rq(). The prototype of

find_lock_rq() is as follows.

struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);

find_lock_rq() finds a runqueue that p should be pushed to or NULL if no such runqueue can be found.

rq is a runqueue that p is currently queued on. The functionality of find_lock_rq() is similar to that

of select_task_rq(), with both functions calling the same helper functions in rt_sched_class

and dl_sched_class (find_lock_rq() is not implemented in fair_sched_class). Besides

returning an rq pointer instead of an int, find_lock_rq() differs from select_task_rq() by

174

1 int push_cpu_stop(void *arg)
2 {
3 struct rq *lowest_rq = NULL, *rq = this_rq();
4 struct task_struct *p = arg;
5 struct sched_class *class = p->sched_class;
6 int dest_cpu;
7
8 if (task_rq(p) != rq)
9 goto out_unlock;

10
11 if (p->migration_disabled) {
12 p->migration_flags |= MDF_PUSH;
13 goto out_unlock;
14 }
15 p->migration_flags &= ∼MDF_PUSH;
16
17 lowest_rq = class->find_lock_rq(p, rq);
18 if (!lowest_rq)
19 goto out_unlock;
20 dest_cpu = lowest_rq->cpu;
21
22 if (task_rq(p) == rq) {
23 p->on_rq = TASK_ON_RQ_MIGRATING;
24 class->dequeue_task(rq, p, 0);
25 class->migrate_task_rq(p, dest_cpu);
26 __set_task_cpu(p, dest_cpu);
27 class->enqueue_task(lowest_rq, p, ENQUEUE_MIGRATED);
28 p->on_rq = TASK_ON_RQ_QUEUED;
29 resched_curr(lowest_rq);
30 }
31
32 out_unlock:
33 rq->push_busy = false;
34 return 0;
35 }

Listing 4.17: Pushing with stop_sched_class.

175

locking the spinlock of the returned runqueue. When find_lock_rq() returns, both the locks of the rq

and the returned runqueue are held.

If find_lock_rq() fails to return a runqueue, push_cpu_stop() again quits on migrating p.

At line 22, push_cpu_stop() again checks that rq is the runqueue of p. This may have changed

since line 8 due to find_lock_rq() potentially dropping rq’s lock in order to acquire lowest_rq’s

lock in CPU index order. If rq is still the runqueue of p, the task is migrated using dequeue_task(),

migrate_task_rq(), etc. (recall the discussion of these functions in Sections 4.3.1-4.3.2).

After push_cpu_stop() either finishes migrating or decides to bail out, at line 32, rq->push_

busy is unset. This indicates that rq->push_work can now be reused. push_cpu_stop() always

returns 0.

Stopping multiple CPUs. There also exist functions for simultaneously waking the stop tasks of multiple

CPUs. These include functions stop_two_cpus() and stop_machine(), which wake the stop task

on two and all CPUs, respectively. Though neither of these functions is used by SCHED_DEADLINE, we

highlight it here because it is used in the patch that will be discussed in Section 5.3.

int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_
t fn, void *arg)

Though the stop task is woken on both CPUs, note that fn is only executed by the stop task on cpu1.

The stop task on cpu2 spins until fn returns.

4.4 SCHED_DEADLINE

Having covered the common infrastructure, this section covers how SCHED_DEADLINE uses its

sched_class and data structures to implement EDF. Going forward, assume all tasks are SCHED_

DEADLINE tasks unless stated otherwise.

4.4.1 Data Structures

We start by discussing SCHED_DEADLINE-specific data structures.

sched_dl_entity. Recall that the dl_sched_class scheduling entity structure is the sched_dl_

entity (Listing 4.18). A sched_dl_entity represents the CBS that encapsulates the task_struct

containing the sched_dl_entity.

176

struct sched_dl_entity {
struct rb_node rb_node;

u64 dl_runtime;
u64 dl_deadline;
u64 dl_period;
u64 dl_bw;
u64 dl_density;

s64 runtime;
u64 deadline;
unsigned int flags;

unsigned int dl_throttled;
unsigned int dl_yielded;
unsigned int dl_non_contending;

struct hrtimer dl_timer;

struct hrtimer inactive_timer;

struct sched_dl_entity *pi_se;
};

Listing 4.18: struct sched_dl_entity.

rb_node is the red-black tree node used to add the corresponding sched_dl_entity to a SCHED_

DEADLINE sub-runqueue dl_rq.

dl_runtime, dl_deadline, and dl_period represent the maximum budget, deadline, and period

of the CBS. dl_bw and dl_density are derived from these parameters. Both are fractions that are inflated

by left-shifting their numerators by BW_SHIFT (i.e., 20) before division. This allows the kernel to represent

bandwidths and densities as integers, thereby avoiding floating point arithmetic. dl_bw is (dl_runtime�

BW_SHIFT)/dl_period and dl_density is (dl_runtime � BW_SHIFT)/dl_deadline. Note

that all bandwidth quantities in SCHED_DEADLINE are similarly left-shifted by BW_SHIFT.

runtime and deadline represent the current budget and absolute deadline of the CBS.

flags stores the SCHED_DEADLINE task flags set by __sched_setscheduler() (e.g., SCHED_

FLAG_RECLAIM, SCHED_FLAG_DL_OVERRUN, and SCHED_FLAG_SUGOV).

dl_throttled and dl_yielded are flags indicating whether the CBS is currently unschedula-

ble due to being throttled or yielded. dl_non_contending is a flag used by GRUB (discussed in

Section 4.4.8).

177

struct dl_rq {
struct rb_root_cached root;

unsigned int dl_nr_running;

struct {
u64 curr;
u64 next;

} earliest_dl;

unsigned int dl_nr_migratory;
int overloaded;

struct rb_root_cached pushable_dl_tasks_root;

u64 running_bw;

u64 this_bw;
u64 extra_bw;
u64 max_bw;
u64 bw_ratio;

};

Listing 4.19: struct dl_rq.

dl_timer and inactive_timer are hrtimers. dl_timer is armed when a CBS is throttled,

and fires upon the next period to replenish the CBS’s budget. inactive_timer is armed when a task

suspends while still active (i.e., is before its zero-lag time), and fires when the task becomes inactive (i.e., at the

zero-lag time). For each sub-runqueue dl_rq, the inactive_timer helps track dl_rq->running_

bw, the total bandwidth of active tasks corresponding with dl_rq, which is used for GRUB (discussed in

Section 4.4.8) and DVFS (discussed in Section 4.4.9).

pi_se points to the sched_dl_entity the corresponding task p is inheriting p->prio from.

When not inheriting, pi_se points to its containing sched_dl_entity.

dl_rq. The sub-runqueue of dl_sched_class is the dl_rq (Listing 4.19).

root is the root of the deadline-ordered red-black tree of queued sched_dl_entitys on the con-

taining struct rq. A sched_dl_entity is added to root with its rb_node member.

dl_nr_running is the number of sched_dl_entitys on root. Note that throttled sched_dl_

entitys are not in this tree and do not count towards dl_nr_running. The sched_dl_entitys of

non-SCHED_DEADLINE tasks that have inherited SCHED_DEADLINE priorities are in this tree and count

towards dl_nr_running.

178

earliest_dl.curr is the earliest deadline of any sched_dl_entity on root. earliest_

dl.next is the earliest deadline of any sched_dl_entity on pushable_dl_tasks_root (to be

discussed shortly). earliest_dl.curr is 0 if root is empty (i.e., dl_nr_running == 0). The

deadlines in earliest_dl are used by SCHED_DEADLINE when deciding whether or not to pull a task

from another dl_rq (i.e., earliest_dl.next of the other dl_rq should be earlier than earliest_

dl.curr of the pulling dl_rq). Note that earliest_dl.next may not be 0 if pushable_dl_

tasks_root is empty.

dl_nr_migratory is the number of sched_dl_entitys on root such that the task_structs

that contain these sched_dl_entitys have nr_cpus_allowed > 1.

overloaded is a boolean that is equivalent to dl_nr_migratory!= 0 && dl_nr_running

> 0. overloaded indicates whether or not other runqueues should attempt to pull tasks from this dl_rq.

overloaded matches the bit corresponding with the dl_rq’s CPU in the root_domain’s dlo_mask.

pushable_dl_tasks_root is another deadline-ordered red-black tree root. A task_struct is in

pushable_dl_tasks_root if its contained sched_dl_entity is in root, nr_cpus_allowed

> 1, and it is not currently scheduled. A task_struct is added to pushable_dl_tasks_root with

its pushable_dl_tasks member. Note that because the scheduled task is never on pushable_dl_

tasks_root, dl_nr_migratory may not be the number of tasks in this tree.

running_bw is the total bandwidth of active tasks p such that task_rq(p) == rq, where rq is

the containing struct rq of this dl_rq. running_bw is used by either GRUB (Section 4.4.8) or DVFS

(Section 4.4.9), both of which, as running_bw decreases, scale down the rate of budget consumption for

tasks executing on the corresponding CPU. Note that throttled tasks and active suspended tasks contribute to

running_bw despite not being on the dl_rq.

this_bw, extra_bw, max_bw, and bw_ratio are additional parameters used by GRUB. These

parameters will be discussed in Section 4.4.8.

dl_bw. The dl_bw stores the total bandwidth of tasks on the CPUs in its containing root_domain. Its

members are as follows.

struct dl_bw {

u64 bw;

u64 total_bw;

};

179

bw is the fraction sched_rt_runtime_us/sched_rt_period_us or -1 if -1 is written to sched_

rt_runtime_us (i.e., the ACS is disabled). bw represents the fraction of the containing root_domain’s

CPU capacity that SCHED_DEADLINE tasks are permitted to consume by the ACS. Because sched_

rt_runtime_us and sched_rt_period_us are set globally, bw has the same value in every dl_bw.

total_bw is the sum of the dl_bws of the sched_dl_entitys executing on the CPUs in the root_

domain. Re-stating (4.1), the primary purpose of the ACS is to maintain for each root_domain that

dl_bw.total_bw ≤ dl_bw.bw · total capacity, (4.2)

where total capacity is the sum of the capacities of the root_domain’s CPUs (how capacities are derived

will be discussed when asymmetric capacities are discussed in Section 4.4.6). Note that because both bw and

total_bw are bandwidth quantities, bw and total_bw are actually left-shifted by BW_SHIFT. This does

not affect (4.2) because both sides are scaled by the same factor.

cpudl. A cpudl (Listing 4.20) stores information about the CPUs in the containing root_domain’s

span. A cpudl makes migration decisions between CPUs in its root_domain more efficient. An

example of a cpudl will be presented after its members are described. The primary member of cpudl is

elements, an array-based heap of a subset of the CPUs in span. Only CPUs with queued sched_dl_

entitys on their dl_rqs are in elements. The remaining CPUs in span are in mask free_cpus.

The key of each CPU in elements is the earliest deadline of any task on said CPU’s dl_rq.

elements is a max-heap, thus the CPU with the latest of these deadline keys is at the root. cpudlsize is

the number of CPUs in elements, and is used for inserting CPUs into elements. Each element of the

array elements is of type struct cpudl_item. dl and cpu are the deadline key and CPU index of

the CPU represented at that index in elements.

idx is less straightforward. elements is actually two equally-sized arrays interleaved with each other.

One array is the aforementioned heap of CPUs (i.e., dl and cpu in cpudl_item). The other array is a

mapping from a CPU index to the index (idx in cpudl_item) in the heap array such that cpu matches

said CPU index.

H Example 4.4. Consider a root_domain with six CPUs indexed 0-5. The earliest-deadline task on

CPU 0’s dl_rq has deadline 5, CPU 1’s has deadline 1, CPU 2’s has deadline 3, CPU 3’s has deadline 9,

180

struct cpudl_item {
u64 dl;
int cpu;
int idx;

};

struct cpudl {
int cpudlsize;
cpumask_var_t free_cpus;
struct cpudl_item *elements;

};

Listing 4.20: struct cpudl.

CPU 4’s has deadline 8, and 5’s has deadline 7. The max-heap of these CPUs is illustrated in Figure 4.6a.

Observe how CPU 3 is at the root of the heap due to having the latest of the earliest (on each CPU’s dl_

rq) deadlines.

The heap in Figure 4.6a can be stored as an array as in the left side of Figure 4.6b. The data at index

0 in this array corresponds with the root in the heap. The children of a node at index i are found at

indices i � 1 + 1 and i � 1 + 2 (e.g., the children of the node at index 1, which has cpu: 5

and dl: 7, are at indices 1 � 1 + 1 == 3 and 1 � 1 + 2 == 4).

The array on the right of Figure 4.6b is a mapping. The mapping array maps a given CPU index to

the index of the node in the heap array that corresponds to said CPU. For example, the 0th item in the

mapping array has idx: 5. This means the node with cpu: 0 is found at idx: 5 in the heap array.

Figure 4.6c shows the interleaving of the two arrays. The first node in the heap array (dl: 9 and

cpu: 3) is followed by the first index in the mapping array (idx: 5), the second node in the heap

(dl: 7 and cpu: 5) is followed by the second index in the mapping (idx: 3), etc. This interleaved

array is how the heap and mapping are stored in elements. N

4.4.2 Multiprocessor Scheduling

This subsection discusses how tasks are migrated between runqueues to schedule those with the earliest

deadlines. For now, we assume that each task’s deadline is some arbitrary constant. Actual deadlines are

determined by the CBS implementation and will be discussed in Section 4.4.3. Migration logic can be

discussed independently of the CBS because migrations caused by the suspending and waking of tasks are

analogous to migrations caused by the throttling and replenishment of tasks.

181

dl : 1
cpu : 1

dl : 3
cpu : 2

dl : 7
cpu : 5

dl : 5
cpu : 0

dl : 8
cpu : 4

dl : 9
cpu : 3

(a) cpudl heap illustration.

idx : 0
dl : 9

cpu : 3
idx : 1

dl : 7

cpu : 5
idx : 2

dl : 8

cpu : 4
idx : 3

dl : 1

cpu : 1
idx : 4

dl : 3

cpu : 2
idx : 5

dl : 5

cpu : 0

cpu : 0
idx : 5

cpu : 1
idx : 3

cpu : 2
idx : 4

cpu : 3
idx : 0

cpu : 4
idx : 2

cpu : 5
idx : 1

(b) Array representation of heap (left) and cpu to idx mapping (right).

dl : 9

cpu : 3

idx : 5

dl : 7

cpu : 5

idx : 3

dl : 8

cpu : 4

idx : 4

dl : 1

cpu : 1

idx : 0

dl : 3

cpu : 2

idx : 2

dl : 5

cpu : 0

idx : 1

(c) elements.

Figure 4.6: cpudl illustration.

182

The basic building blocks of migrations are enqueuing a task onto the dl_rq being migrated to and

dequeuing a task from its current dl_rq. The enqueues and dequeues that result in the earliest-deadline

tasks being on different runqueues primarily occur due to pushes and pulls. Ignoring CBS throttling and

replenishment, these pushes and pulls are mostly triggered by tasks suspending and waking, possibly on a

different dl_rq.

4.4.2.1 Enqueuing and Dequeuing

Consider Listing 4.21. Deferring discussion of CBS for Section 4.4.3 and GRUB for Section 4.4.8,

the function of enqueue_task_dl() and dequeue_task_dl() is to insert and remove task p

from dl_rq rq->dl’s red-black trees. These trees are the one rooted at rq->dl.root (all runnable

tasks on the dl_rq) and at rq->pushable_dl_tasks_root (the subset of migratable tasks). _

_enqueue_dl_entity() and __dequeue_dl_entity() insert and remove p onto root (with

rb_node p->dl.rb_node). enqueue_pushable_dl_task() and dequeue_pushable_dl_

task() are the analogous insertion and deletion functions for pushable_dl_tasks_root (with

rb_node p->pushable_dl_tasks). These four helper functions are also where a majority of the

state of dl_rqs and the SCHED_DEADLINE-relevant state of root_domains are maintained. __

enqueue_dl_entity() and __dequeue_dl_entity() update, in the dl_rq rq->dl, mem-

bers dl_nr_running, earliest_dl.curr, dl_nr_migratory, and overloaded, and, in the

root_domain rq->rd, members cpudl and dlo_mask. enqueue_pushable_dl_task() and

dequeue_pushable_dl_task() update earliest_dl.next.

There is a nuance to be discussed about Listing 4.21. It may be unclear why dequeue_task_

dl(), before calling dequeue_pushable_dl_task(), does not need to perform the same check

that enqueue_task_dl() does on line 8 to determine if p is migratable before calling enqueue_

pushable_dl_task(). This is because the scheduler maintains that the parent pointer of any unqueued

rb_node points back to itself. This allows dequeue_pushable_dl_task() (and also __dequeue_

dl_entity()) to first check the relevant rb_node (e.g., p->pushable_dl_tasks or p->dl.rb_

node), and return immediately if p is not actually queued.

Because these dequeue helper functions first check that a task is actually queued, it is generally safe

to call dequeue_task_dl() even if p is not actually on the dl_rq. This is necessary because there

183

1 void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2 {
3 /* Do GRUB logic */
4
5 /* Do CBS logic */
6
7 __enqueue_dl_entity(&p->dl);
8 if (rq->curr != p && p->nr_cpus_allowed > 1)
9 enqueue_pushable_dl_task(rq, p);

10 }
11
12 void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
13 {
14 __dequeue_dl_entity(&p->dl);
15 dequeue_pushable_dl_task(rq, p);
16
17 /* Do GRUB logic */
18 }

Listing 4.21: enqueue_task_dl() and dequeue_task_dl().

are instances where a task p may be on a runqueue rq (from the perspective of the common scheduler

infrastructure) while not being on the corresponding dl_rq. This can occur when p is not suspended (i.e.,

p->on_rq is TASK_ON_RQ_QUEUED) but is throttled (hence, not on the dl_rq). Because CBS throttling

has not yet been discussed, we illustrate the necessity of being able to call dequeue_task_dl() on such

tasks with a high-level example.

H Example 4.5. Consider Task 0 illustrated in Figure 4.7a on CPU 0’s runqueue. Suppose at some point

Task 0 exhausts its budget, dl.runtime. Due to being unrunnable due to lack of budget, SCHED_

DEADLINE dequeues Task 0 from CPU 0’s runqueue (Figure 4.7b). Despite being dequeued, Task 0 is

not suspended due to sleeping or being blocked on some resource. Thus, from the perspective of the

common scheduling infrastructure, Task 0 still appears runnable (i.e., __state is TASK_RUNNING

and on_rq is TASK_ON_RQ_QUEUED).

Now consider if a request is made to change the policy of Task 0 to SCHED_FIFO while it is

throttled. Then the change pattern (recall Listing 4.7) observes that on_rq is TASK_ON_RQ_QUEUED

and calls dequeue_task_dl() on Task 0. Because __dequeue_dl_entity() and dequeue_

pushable_dl_task() can observe that Task 0 is not enqueued, the call to dequeue_task_dl()

returns without incorrectly attempting to dequeue Task 0 again.

184

CPU 0

task_struct

policy : SCHED_DEADLINE

dl.runtime : 10

dl.deadline : 20

on_rq : TASK_ON_RQ_QUEUED

__state : TASK_RUNNING

pid : 0

(a) Initial system.

task_struct

policy : SCHED_DEADLINE

dl.runtime : 0

dl.deadline : 20

on_rq : TASK_ON_RQ_QUEUED

__state : TASK_RUNNING

pid : 0

CPU 0

cpu_rq(0)->idle

(b) Task 0 throttled for exhausting budget.

task_struct

policy : SCHED_FIFO

dl.runtime : 0

dl.deadline : 20

on_rq : TASK_ON_RQ_QUEUED

__state : TASK_RUNNING

pid : 0

CPU 0

cpu_rq(0)->idle

(c) Task 0 switches to SCHED_FIFO.

CPU 0

task_struct

policy : SCHED_FIFO

dl.runtime : 0

dl.deadline : 20

on_rq : TASK_ON_RQ_QUEUED

__state : TASK_RUNNING

pid : 0

(d) Task enqueued in change pattern.

Figure 4.7: Class change of throttled task.

185

After Task 0’s policy is changed (Figure 4.7c), because on_rq was observed to be TASK_ON_RQ_

QUEUED, the change pattern calls rt_sched_class’s enqueue_task() function. This places

Task 0 back on CPU 0’s runqueue. This enqueue is necessary for correct scheduling; now that Task 0 has

left SCHED_DEADLINE, the scheduler does not care that runtime is exhausted. N

Note that similarly to how dequeue_task_dl(), when called from the change pattern, must not

dequeue an already throttled task, enqueue_task_dl() must not accidentally enqueue a throttled task

when called from the change pattern. enqueue_task_dl() checks dl.dl_throttled to determine

if the task should actually be enqueued. This falls under CBS logic that will be discussed in Section 4.4.3.

4.4.2.2 Pushes and Pulls

A migration dequeues a task from one runqueue and enqueues it on another runqueue. Most migrations

in SCHED_DEADLINE occur due to pushes and pulls. We start with pulls because they are less complex

than pushes.

Pulls. A pull migrates a high-priority task from a source runqueue onto the pulling runqueue. pull_dl_

task() is presented in Listing 4.22.

A majority of pull_dl_task() is the for loop beginning at line 9. for_each_cpu() iterates

over the CPUs in dlo_mask using cpu as the iteration variable. Recall from the discussion of root_

domains in Section 4.2 that dlo_mask contains the CPUs in the corresponding root_domain with

spare (i.e., at least one unscheduled and migratable) tasks. pull_dl_task() iterates over these CPUs to

pull such spare tasks.

For the CPU cpu of a given iteration of the for loop, pull_dl_task() first checks if an attempt

should be made to pull from cpu. The remainder of the iteration is skipped if not. This check compares

earliest_dl.curr of this_rq->dl, the earliest deadline of any task on the pulling dl_rq, against

earliest_dl.next of src_rq->dl, the earliest deadline of a migratable task on cpu’s dl_rq. If

the deadline corresponding with the pulling dl_rq precedes that of cpu’s dl_rq, a pull is not attempted.

Note that earliest_dl.next is oblivious as to whether the task with its deadline actually has affinity

for this_cpu.

Function pick_earliest_pushable_dl_task() iterates over the tasks in the tree rooted at

src_rq->dl.pushable_dl_tasks_root to find the earliest-deadline task p such that p has affinity

186

1 void pull_dl_task(struct rq *this_rq)
2 {
3 int this_cpu = this_rq->cpu, cpu;
4 struct task_struct *p, *push_task = NULL;
5 bool resched = false;
6 struct rq src_rq;
7 u64 dmin = LONG_MAX;
8
9 for_each_cpu(cpu, this_rq->rd->dlo_mask) {

10 src_rq = cpu_rq(cpu);
11
12 /* Check should pull from src_rq */
13
14 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
15
16 if (p && p->dl.deadline < dmin &&
17 (!this_rq->dl.dl_nr_running ||
18 p->dl.deadline < this_rq->dl.earliest_dl.curr))
19 {
20 if (p->migration_disabled)
21 push_task = get_push_task(src_rq);
22 else {
23 p->on_rq = TASK_ON_RQ_MIGRATING;
24 dequeue_task_dl(src_rq, p, 0);
25 migrate_task_rq_dl(p, this_cpu);
26 __set_task_cpu(p, this_cpu);
27 enqueue_task_dl(this_rq, p, ENQUEUE_MIGRATED);
28 p->on_rq = TASK_ON_RQ_QUEUED;
29
30 dmin = p->dl.deadline;
31 resched = true;
32 }
33 }
34
35 if (push_task) {
36 stop_one_cpu_nowait(src_rq->cpu, push_cpu_

stop, push_task, &src_rq->push_work);
37 push_task = NULL;
38 }
39 }
40
41 if (resched)
42 resched_curr(this_rq);
43 }

Listing 4.22: Pull task pseudocode.

187

for this_cpu (specifically, this_cpu is set in p->cpus_mask). If no such task is on the tree, pick_

earliest_pushable_dl_task() returns NULL.

The condition starting at line 16 determines if a task is migrated from src_rq to this_rq. This

condition is not redundant with respect to the aforementioned checks (line 12) for two reasons. First, the

earlier checks referred to earliest_dl.next, which is oblivious to affinities, while the condition at

line 16 refers to p, which is guaranteed to have affinity for this_cpu by pick_earliest_pushable_

dl_task(). Second, the earlier checks are done without holding src_rq’s spinlock, while this lock is

acquired by line 16.

At line 16, pull_dl_task() checks that pick_earliest_pushable_dl_task() returned

a task (p), that p has an earlier deadline than any task pulled in an earlier iteration (p->dl.deadline

< dmin), and either this_rq has no tasks (!this_rq->dl.dl_nr_running) or p has an earlier

deadline than any task on this_rq (p->dl.deadline < this_rq->dl.earliest_dl.curr).

If the condition at line 16 is true, then pull_dl_task() checks if p, the to-be-pulled task, has

disabled migration. If migration is disabled, then the stop class is used to migrate src_rq->curr (recall

Example 4.3). push_cpu_stop() is queued on src_rq on line 36. Otherwise, if migration is enabled,

p is migrated to this_rq (lines 23-28). resched is set to true to indicate that this_cpu should

reschedule (line 41) due to an earlier-deadline task migrating to this_rq.

Pushes. push_dl_task(), which sends a task from a pushing runqueue to a runqueue with either no

SCHED_DEADLINE tasks or only tasks with deadlines later than that of the pushed task’s deadline, is more

complicated than pull_dl_task(). The runqueue being pushed to is called a later runqueue. Instead

of iterating over CPUs, as done by pull_dl_task() to select which runqueue to pull from, push_dl_

task() checks the cpudl to determine the later runqueue to push to. This checking of the cpudl is done

by helper function find_lock_later_rq(), which itself calls function find_later_rq(). find_

later_rq() takes a task_struct pointer p as its sole argument and returns the CPU index of the later

runqueue (or -1 if no later runqueue can be found). When find_later_rq() returns a CPU index that

is not -1, the CPU is always set in p->cpus_mask.

The complexity of find_later_rq() makes presenting pseudocode impractical. The return value

of find_later_rq() is best understood when broken down into cases. For pushing runqueue rq and

pushed task p, the return value of find_later_rq() is as follows.

188

1. The intersection of p->cpus_mask and rq->cpudl.free_cpus has CPUs.

(a) The system contains CPUs with asymmetric capacities.

Discussion of this case is deferred to Section 4.4.6.

(b) All CPU capacities are equal.

i. task_cpu(p) is in the intersection of cpus_mask and free_cpus.

find_later_rq() returns task_cpu(p).

ii. task_cpu(p) is not in the intersection of cpus_mask and free_cpus.

find_later_rq() returns a CPU that is both in the intersection and in the lowest-

possible sched_domain that also contains task_cpu(p). If there is no such CPU, an

arbitrary CPU in the intersection is returned.

2. The intersection of p->cpus_mask and rq->cpudl.free_cpus is empty.

Then find_later_rq() considers the CPU at the root of cpudl.elements. Let this CPU be

best_cpu with corresponding deadline latest_deadline in elements.

(a) p has affinity for (i.e., p->cpus_mask includes) best_cpu and p->dl.deadline is

earlier than latest_deadline.

find_later_rq() returns best_cpu.

(b) p does not have affinity for best_cpu or has a later deadline than latest_deadline.

find_later_rq() returns -1.

push_dl_task() does not call find_later_rq() directly, instead calling function find_

lock_later_rq(), which is also SCHED_DEADLINE’s class-specific find_lock_rq() function

(recall this sched_class function is used in push_cpu_stop()). Be aware of the distinction between

find_lock_rq(), which is a function pointer in sched_class, and find_later_rq(), which is a

helper function in SCHED_DEADLINE. find_lock_later_rq() shares the same prototype as find_

lock_rq(), taking a task and runqueue pointers as arguments. The purpose of find_lock_later_

rq() is to call find_later_rq() on said task, lock the runqueue corresponding to the CPU find_

later_rq() returns, and return a pointer to the newly locked runqueue (or NULL if find_later_rq()

returned -1).

189

find_lock_later_rq() may attempt to call find_later_rq() multiple times. Let the run-

queue corresponding to the return value of find_later_rq() be the tentative runqueue. It is necessary to

call find_later_rq() multiple times because in between find_later_rq() returning and acquiring

the tentative runqueue’s spinlock, the state of the tentative runqueue may have changed such that the task

being pushed would no longer be the earliest-deadline task on the tentative runqueue (e.g., a task with

an earlier deadline wakes on the tentative runqueue). After find_later_rq() returns, find_lock_

later_rq() checks if such a state is observed, and if so, calls find_later_rq() again to attempt to

push to a different runqueue. find_later_rq() can be called DL_MAX_TRIES (3) times before find_

lock_later_rq() gives up and returns NULL.

In acquiring the tentative runqueue’s spinlock, it may be necessary to unlock the pushing runqueue in

order to acquire both runqueues’ locks in CPU-index order. If find_lock_later_rq() observes that

the state of the pushing runqueue or to-be-pushed task has changed while the pushing runqueue’s spinlock

was dropped (e.g., the to-be-pushed task disabled migration, was migrated away by some other function, was

scheduled, etc.), then find_lock_later_rq() immediately gives up and returns NULL.

Having covered find_lock_later_rq(), push_dl_task() is presented in Listing 4.23. At

line 6, push_dl_task() calls pick_next_pushable_dl_task(), which returns the leftmost

task in red-black tree rq->dl.pushable_dl_tasks_root to determine which task is to be pushed

(i.e., next_task). pick_next_pushable_dl_task() is similar in purpose to pick_earliest_

pushable_dl_task(), used in pull_dl_task() to select a task to be pulled, except pick_next_

pushable_dl_task() needs not consider the affinity mask of its returned task. At line 11, push_dl_

task() gives up on pushing next_task if it has disabled migration. Otherwise, push_dl_task()

calls find_lock_later_rq() to identify which runqueue to push next_task to.

In the case that find_lock_later_rq() returns NULL, then no suitable runqueue was found. In

this case, push_dl_task() rechecks that next_task is the earliest-deadline pushable task on rq

(recall that find_lock_later_rq() may temporarily release rq’s spinlock) by calling pick_next_

pushable_dl_task() again. If pick_next_pushable_dl_task() returns NULL (i.e., there are

no longer pushable tasks on rq) or returns next_task (which cannot be pushed due to find_lock_

later_rq() returning NULL), then push_dl_task() returns without pushing a task. Otherwise,

push_dl_task() sets next_task to the new task and jumps back to line 11, attempting to push the

new next_task.

190

1 int push_dl_task(struct rq *rq)
2 {
3 struct task_struct *next_task;
4 struct rq *later_rq = NULL;
5
6 next_task = pick_next_pushable_dl_task(rq);
7 if (!next_task)
8 return 0;
9

10 while (!later_rq) {
11 if (next_task->migration_disabled)
12 return 0;
13
14 later_rq = find_lock_later_rq(next_task, rq);
15 if (!later_rq) {
16 struct task_struct *task = pick_next_pushable_dl_task(rq);
17 if (!task || task == next_task)
18 return 0;
19
20 next_task = task;
21 }
22 }
23
24 next_task->on_rq = TASK_ON_RQ_MIGRATING;
25 dequeue_task_dl(rq, next_task, 0);
26 migrate_task_rq_dl(next_task, later_rq->cpu);
27 __set_task_cpu(next_task, later_rq->cpu);
28 enqueue_task_dl(later_rq, next_task, ENQUEUE_MIGRATED);
29 next_task->on_rq = TASK_ON_RQ_QUEUED;
30
31 resched_curr(later_rq);
32 return 1;
33 }

Listing 4.23: Push task pseudocode.

191

1 int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2 {
3 if (!on_dl_rq(&p->dl) && dl_prio(p->prio))
4 pull_dl_task(rq);
5 return rq->dl.dl_nr_running > 0;
6 }

Listing 4.24: balance_dl().

On the other hand, if find_lock_later_rq() returns a runqueue pointer, then next_task is

migrated to the later runqueue (lines 24-29).

4.4.2.3 Suspending and Waking

Pushes and pulls are generally triggered by reschedules, which (ignoring CBS throttling and replenish-

ments) are primarily caused by tasks suspending (a suspending task directly calls scheduling functions) and

waking (a waking task may preempt the running task).

Suspending. A suspending task calls __schedule() to unschedule itself and remove itself from its

runqueue. Recall Listing 4.4 of the __schedule() function. For SCHED_DEADLINE, a suspending task

means that a task that previously had an early-enough deadline to be scheduled is no longer runnable. The

CPU of the suspending task must choose a new task with an early deadline to schedule. This new task may

need to be pulled from another runqueue. Pulling is done by balance_dl(), which will be called by __

schedule() (recall the loop at line 16 of Listing 4.4).

balance_dl() is presented in Listing 4.24. balance_dl() checks if tasks need to be pulled

to this rq by verifying that p, the previously scheduled task, is both a SCHED_DEADLINE task (dl_

prio(p->prio)) and was suspended (not on_dl_rq(&p->dl)). on_dl_rq() is a function that

returns true if a given sched_dl_entity is queued on any tree. These two conditions indicate that p

was the earliest-deadline task on runqueue rq and has become unschedulable; thus, the other runqueues

should be searched for a task with a potentially earlier deadline than the remaining tasks on runqueue rq, i.e.,

pull_dl_task() must be called. balance_dl() returns whether there are SCHED_DEADLINE tasks

on runqueue rq. Returning true indicates that the balance() functions of the lower scheduling classes

need not be called.

This concludes discussion on how suspending results in tasks being pulled from other runqueues.

192

1 void select_task_rq_dl()(struct task_struct *p, int cpu, int flags)
2 {
3 int target;
4 struct dl_rq *dl_rq;
5
6 if (!(flags && WF_TTWU))return cpu;target = ‘find_later_rq(p);
7 if (target == -1)
8 return cpu;
9

10 dl_rq = &cpu_rq(target)->dl;
11 if (!dl_rq->dl_nr_running || p->dl.deadline < dl_rq->earliest_dl.curr)
12 return target;
13
14 return cpu;
15 }

Listing 4.25: select_task_rq_dl().

Waking. The waking function try_to_wake_up() causes two migrations. The first migration is of

the waking task to the runqueue selected by select_task_rq(). This migration is performed without

acquiring a runqueue lock, and has a primary purpose of enqueueing the waking task on some runqueue.

Once the waking task has been enqueued on some runqueue, its priority is either higher or lower than the

currently running task on said runqueue. The second migration is a push from this runqueue triggered within

task_woken(). The purpose of this push is to migrate the waking task to a runqueue with only tasks with

later deadlines. This push is performed with runqueue locks acquired.

We discuss the logic behind these migrations by stepping through the functions called by try_to_

wake_up(). The first function call of note is to the class-specific select_task_rq() function, which

returns the target runqueue of the aforementioned first migration. For SCHED_DEADLINE, this is select_

task_rq_dl(), which is presented in Listing 4.25.

select_task_rq_dl() immediately returns if flag WF_TTWU is not set in flags (line 6). If

try_to_wake_up() is unset, then select_task_rq() was called as a result of either a task forking

(WF_FORK), which is not permitted in SCHED_DEADLINE, or replacing its binary (WF_EXEC), which

does not necessitate a migration. For either WF_FORK or WF_EXEC, select_task_rq_dl() is called

with argument cpu having the value of task p’s current CPU, which select_task_rq_dl() then

immediately returns.

193

void task_woken_dl(struct rq *rq, struct task_struct *p)
{

struct task_struct *curr = rq->curr;
if (curr != p &&

dl_prio(curr->prio) &&
curr->dl.deadline < p->dl.deadline)
while (push_dl_task(rq));

}

Listing 4.26: task_woken_dl().

If WF_TTWU is set, then, as in push_dl_task(), find_later_rq() is used to identify the latest

CPU to send waking task p to. Note that, unlike push_dl_task(), select_task_rq_dl() directly

calls find_later_rq() instead of calling find_lock_later_rq().

After calling select_task_rq(), try_to_wake_up() also potentially calls migrate_task_

rq(). For SCHED_DEADLINE, migrate_task_rq_dl() updates statistics used by GRUB and is

independent of how tasks are migrated. migrate_task_rq_dl() will be discussed when discussing

GRUB in Section 4.4.8.

Next, try_to_wake_up() enqueues the waking task by calling enqueue_task(). enqueue_

task_dl()was discussed previously. If the waking task and the current task on the corresponding runqueue

are of the same sched_class, try_to_wake_up() calls wakeup_preempt() to determine if the

current task should be preempted. wakeup_preempt_dl() calls resched_curr() if the waking task

has an earlier deadline deadline than the currently scheduled task.

The last sched_class function called by try_to_wake_up() is task_woken(). task_

woken_dl() is presented in Listing 4.26. Having now enqueued the waking task p on the runqueue

returned by select_task_rq_dl(), task_woken_dl() migrates p if this runqueue is no longer

appropriate. This is the aforementioned second migration triggered by try_to_wake_up(). If p does not

have an early enough deadline to preempt the current task on its runqueue, then task_woken_dl() calls

push_dl_task() to migrate the task.

4.4.2.4 Other Scheduling Class Functions

There remain miscellaneous sched_class functions that are described here.

194

1 void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2 {
3 update_curr_dl(rq);
4 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
5 enqueue_pushable_dl_task(rq, p);
6 }

Listing 4.27: put_prev_task_dl().

1 void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2 {
3 p->se.exec_start = rq_clock_task(rq);
4
5 dequeue_pushable_dl_task(rq, p);
6
7 if (!first)
8 return;
9

10 hrtick_start(rq, p->dl.runtime);
11
12 deadline_queue_push_tasks(rq);
13 }

Listing 4.28: set_next_task_dl().

Putting, picking, and setting. We briefly discuss the remaining SCHED_DEADLINE sched_class

functions called by __schedule(). These are put_prev_task_dl(), pick_task_dl(), and

set_next_task_dl().

After balancing, __schedule() calls the put_prev_task() function on the task being unsched-

uled. For SCHED_DEADLINE, this is put_prev_task_dl() (Listing 4.27). The primary function of

put_prev_task_dl() is to potentially call enqueue_pushable_dl_task() on p. This is neces-

sary because p, having been unscheduled, must be made available to be pushed to or pulled by other CPUs.

The call to update_curr_dl() will be explained later when CBS throttling is discussed.

Next in __schedule() are calls to the pick_task() functions. pick_task_dl() is trivial.

The leftmost (i.e., earliest-deadline) task on root is returned, or NULL if no SCHED_DEADLINE tasks are

enqueued on this runqueue.

If pick_task_dl() returns a task in __schedule(), set_next_task_dl() (Listing 4.28) is

called on this task to denote it as the scheduled task. The setting of the exec_start field (line 3), which

stores when task p was initially scheduled and the call to hrtick_start() at line 10 will be explained

later when discussing CBS throttling (Section 4.4.3).

195

Inversely from put_prev_task_dl(), set_next_task_dl() calls dequeue_pushable_

dl_task() due to task p being scheduled (and thus, no longer migratable).

set_next_task_dl() ends by calling function deadline_queue_push_tasks(), which

causes push_dl_task() to be called on runqueue rq after p has become the scheduled task. deadline_

queue_push_tasks() does this by queueing push_dl_task() onto the queue of callback functions

rq->balance_callback. The purpose of queueing push_dl_task() here is to migrate the task

preempted by p to a later CPU.

Note that, when called from __schedule(), argument first, which indicates that set_next_

task() was not called from the change pattern, is true. Thus, set_next_task_dl() does not return

at line 8.

Entering and leaving. Policy changes call the sched_class functions switched_to(), switched_

from(), and prio_changed(). For SCHED_DEADLINE, these function pointers point to switched_

to_dl(), switched_from_dl(), and prio_changed_dl(). Be aware that these functions do not

contain ACS code. The purpose of these functions is to migrate tasks in response to tasks entering and

leaving SCHED_DEADLINE. For example, switched_from_dl(), called when a task leaves SCHED_

DEADLINE, calls pull_dl_task(). This should be intuitive because, from the point of view of SCHED_

DEADLINE, a task leaving SCHED_DEADLINE is analogous to said task permanently suspending. Recall

that a suspending task calls pull_dl_task() via calling balance_dl() in __schedule().

Runqueue onlining and offlining. sched_class functions rq_online() and rq_offline() are

called whenever a CPU is added to a root_domain. For SCHED_DEADLINE, rq_online_dl() and

rq_offline_dl() are responsible for initializing and clearing the SCHED_DEADLINE-relevant state

for the corresponding CPU in the root_domain of interest. This state is the CPU’s corresponding bit in

mask dlo_mask as well as its presence in either cpudl’s heap elements or mask free_cpus.

4.4.3 CBS

Linux tasks do not naturally have deadlines because they are not obligated to follow any real-time task

model. The deadline of a task arises from its encapsulating CBS, which increments the deadline whenever

the task exhausts its budget. The CBS also throttles tasks that exhaust their budget.

196

0 2 4 6 8 10 12 14 16 18 20

clock

IRQ

0 2 4 6 8 10 12 14 16 18 20

clock

Task 0

0 2 4 6 8 10 12 14 16 18 20

clock

Task 1

0 2 2 4 4 6 8 10 12 12 14
clock_task

Task 1

Figure 4.8: clock_task example.

clock vs. clock_task. There are several points in the CBS logic where it is necessary to know the

current time instant (e.g., when setting the first deadline of a task when it enters SCHED_DEADLINE or

when computing how much budget to decrease for a given interval of execution). Recall that the current

time instant is stored in rq members clock, or its derived quantities clock_task and clock_pelt.

For a given runqueue rq, if rq->clock is a measure of the local (rq’s CPU’s) time, then rq->clock_

task can be interpreted as a measure of time such that time spent executing interrupts does not contribute to

clock_task, i.e., time only advances while executing tasks or idling.

H Example 4.6. Consider the schedule in Figure 4.8. The first row illustrates the execution of IRQs,

the second row illustrates the execution of a task with PID 0, and the third and fourth row illustrate the

execution of a task with PID 1. The first through third row share a horizontal time axis as would be

observed by clock, while the fourth row has a time axis as observed by clock_task. Observe that

clock_task does not does not advance whenever an IRQ is executing.

Suppose we want to decrement Task 1’s budget for execution within the time interval represented by

[5, 8) in the clock axis and [3, 5) in the clock_task axis. The scheduler, which is only informed

when tasks are scheduled, is only aware that Task 1 was the only task scheduled in this interval, and is

197

oblivious to time spent executing IRQs. As such, if the scheduler were to observe time according to the

clock axis, it would decrement 8 − 5 = 3 units of budget. In comparison, if the scheduler were to

observe time according to clock_task, it would decrement 5− 3 = 2 units of budget. This reflects

the actual amount of execution provided to Task 1. N

The CBS refers to clock when setting deadlines and replenishment times and to clock_task when

doing budget calculations.

Throttling. CBS throttling occurs when tasks exhaust their budgets. Idealized budget-based servers decrease

their budgets continuously with time. This is not possible on a real system. Instead, SCHED_DEADLINE

maintains an invariant: the actual budget of any unscheduled task must match its ideal budget, and the actual

budget of any scheduled task must have a budget update queued on an hrtimer set to fire no later than

(within a small margin of error) the exhaustion time of its ideal budget. Maintaining this invariant allows

SCHED_DEADLINE to correctly throttle tasks at ideal budget exhaustion times.

CBS budget updates occur on calls to update_curr_dl(), which is the update_curr() function

of SCHED_DEADLINE. We will discuss specifics of update_curr_dl() after discussing how and when

it is called. That budgets of unscheduled tasks match ideal budgets is maintained by calling update_curr_

dl() in put_prev_task_dl() (line 3 of Listing 4.27). put_prev_task_dl() is called whenever

a task is unscheduled (line 20 of Listing 4.4).

Maintaining the invariant for scheduled tasks is more complicated. update_curr_dl() is called

from task_tick_dl(), SCHED_DEADLINE’s task_tick() function. Recall from Section 4.3.3 that

task_tick() is called from hrtick(), the timer function of the per-runqueue hrtimers hrtick_

timer. To maintain the invariant for a scheduled task, hrtick_timer on said task’s runqueue is armed

to fire at the expected time instant that budget would be depleted, i.e., the current time added to the task’s

remaining budget. Firing at this time instant causes hrtick() to call task_tick_dl(), which calls

update_curr_dl(), which updates the budget.

Maintaining that hrtick_timer is always armed at the budget exhaustion time of the scheduled

task involves the functions set_next_task_dl(), task_tick_dl(), and __schedule(). set_

next_task_dl(), called whenever a task is scheduled (line 25 of Listing 4.4), arms hrtick_timer

based on the remaining budget, i.e., runtime of the corresponding sched_dl_entity (line 10 of

Listing 4.28). While at first glance, this is sufficient to maintain the invariant, the task may consume less

198

void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{

update_curr_dl(rq);
if (queued && p->dl.runtime > 0 && is_leftmost(p, &rq->dl))

hrtick_start(rq, p->‘dl.runtime);
}

Listing 4.29: task_tick_dl().

than runtime units of budget over runtime time units of execution. Less than runtime units may be

consumed under GRUB, asymmetric capacities, and DVFS, which will be detailed in Sections 4.4.8-4.4.9.

Note that budget for tasks is relative to execution on a maximum capacity CPU operating at maximum

frequency, thus, more than runtime units of budget cannot be consumed in runtime time units.

To maintain the invariant for scheduled tasks, task_tick_dl() rearms hrtick_timer when

it observes that budget has not been exhausted. Consider Listing 4.29. task_tick_dl() first calls

update_curr_dl() to update the budget of the running task. hrtick_timer is then rearmed if

task_tick_dl() was called by hrtick_timer firing (i.e., queued is set), budget is not exhausted

(p->dl.runtime> 0), and the current task is still the task with the earliest deadline on the runqueue (is_

leftmost(p, &rq->dl)). is_leftmost() returns true if p is the leftmost (i.e., has the earliest

deadline) task in tree rq->dl.root. update_curr_dl() may update the current task p’s deadline

(this will be discussed later when covering CBS budget replenishment), thereby changing its position in

this tree. If p is no longer the leftmost task, then it will soon be unscheduled, and there is no need to arm

hrtick_timer.

__schedule() cancels hrtick_timer (line 9 of Listing 4.4). There is no need to keep hrtick_

timer armed for a task when __schedule() is called, as put_prev_task_dl() will call update_

curr_dl(). Canceling hrtick_timer also prevents task_tick() from hitting a task other than the

task that was scheduled when hrtick_timer was armed.

The following example demonstrates how runtime is decremented to match an ideal CBS budget.

H Example 4.7. Consider Task 0 with dl_runtime of 6 and dl_deadline of 10 and Task 1 with

dl_runtime of 2 and dl_deadline of 6 running on a single CPU. Task 0 starts at time 2 and Task 1

starts at time 5. Figure 4.9 illustrates the idealized and actual budget (i.e., runtime) of Task 0.

The schedule of this system over interval [2, 5) is illustrated in Figure 4.9a. Both the ideal budget

and runtime start with 6 units at time 2. While the ideal budget decreases continuously with time

199

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6Ideal

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6runtime
hrtick_start()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task 0
set_next_task_dl()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time

Task 1

(a) Task 0 scheduled over [2, 5).

Figure 4.9: runtime vs. ideal budget.

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6Ideal

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6runtime
update_curr_dl()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task 0
put_prev_task_dl()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time

Task 1

(b) Task 0 unscheduled over [5, 7).

Figure 4.9: runtime vs. ideal budget (continued).

201

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6Ideal

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6runtime
hrtick_start()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task 0
set_next_task_dl()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time

Task 1

(c) Task 0 scheduled over [7, 10).

Figure 4.9: runtime vs. ideal budget (continued).

202

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6Ideal

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

6runtime
hrtick_start()update_curr_dl()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task 0
hrtick()

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time

Task 1

(d) Task 0 throttled at time 10 by hrtick().

Figure 4.9: runtime vs. ideal budget (continued).

203

void yield_task_dl()(struct rq *rq)
{

rq->curr->dl.dl_yielded = 1;
update_curr_dl(rq);

}

Listing 4.30: yield_task_dl().

over [2, 5), runtime is constant. Instead, set_next_task_dl(), called on Task 0 when it was

scheduled at time 2, calls hrtick_start() to arm hrtick_timer on the CPU’s runqueue to fire

runtime (6) time units after the current time (2). Observe that this firing time is time 8, the expected

exhaustion time of Task 0’s ideal budget.

At time 5, Task 0 is preempted by Task 1 (Figure 4.9b). hrtick_timer is canceled in __

schedule(), removing the firing at time 8 illustrated in Figure 4.9a. When Task 0 is unscheduled,

put_prev_task_dl() calls update_curr_dl() to set runtime to the same value as the ideal

budget (3). While Task 0 is unscheduled over [5, 7), neither the ideal budget nor runtime change from

3 units.

At time 7, Task 0 is again scheduled (Figure 4.9c). Upon being scheduled, set_next_task_dl()

is called on Task 0, which again calls hrtick_start() to arm hrtick_timer to fire runtime

(3) time units after the current time (7). This is time 10, which, because Task 0 is not preempted in

interval [7, 10), is the actual exhaustion time of the ideal budget.

At time 10, hrtick_timer fires and calls hrtick(), which calls task_tick_dl(), which

calls update_curr_dl() to set runtime to the value of the ideal budget (0). update_curr_

dl() observes that Task 0 has depleted runtime, and throttles Task 0 until its replenishment at its

next period. N

The last location where update_curr_dl() is called is in yield_task_dl(). yield_task_

dl() (Listing 4.30) invokes the current task to immediately throttle itself. This is done by setting the dl_

yielded flag in the current task’s sched_dl_entity and calling update_curr_dl(). update_

curr_dl() observes this flag and behaves as if runtime was depleted.

Having discussed how update_curr_dl() is called, we now discuss its implementation. Before

discussing pseudocode, we discuss exec_start, a member of the EEVDF scheduling entity used by

update_curr_dl(). As stated previously, update_curr_dl() sets runtime to the ideal budget’s

204

1 void update_curr_dl(struct rq *rq)
2 {
3 struct task_struct *curr = rq->curr;
4 struct sched_dl_entity *dl_se = &curr->dl;
5 u64 delta_exec, scaled_delta_exec now;
6 int cpu = rq->cpu;
7
8 now = rq_clock_task(rq);
9 delta_exec = now - curr->se.exec_start;

10 curr->se.exec_start = now;
11
12 /* delta_exec to scaled_delta_exec by GRUB or Asym. Cap. & DVFS */
13
14 dl_se->runtime -= scaled_delta_exec;
15
16 throttle:
17 if (dl_se->runtime <= 0 || dl_se->dl_yielded) {
18 dl_se->dl_throttled = 1;
19
20 dequeue_task_dl(rq, curr, 0);
21 if (dl_se->pi_se != dl_se || !start_dl_timer(curr))
22 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
23
24 if (!is_leftmost(curr, &rq->dl))
25 resched_curr(rq);
26 }
27 }

Listing 4.31: update_curr_dl().

value. This is done by decreasing runtime by the units of execution completed since the later of when

runtime was last updated (i.e., update_curr_dl() was called) or the current task was scheduled (i.e.,

set_next_task_dl() was called). The scheduler happens to store the latest time instant that either

update_curr() or set_next_task() was called for any scheduling class except idle_sched_

class. This time instant is stored in exec_start, i.e., for task p, in p->se.exec_start.

Pseudocode for update_curr_dl() is presented in Listing 4.31. In lines 8-10, update_curr_

dl() sets delta_exec to the duration of time spent executing the task since the previous update_

curr_dl() call. This duration is the difference between the current time now and exec_start, which is

set in update_curr() (line 10 in Listing 4.31) and set_next_task() (line 3 in Listing 4.28). exec_

start is set to now’s value in update_curr(). Note that exec_start and now are always set by

rq_clock_task(). Thus, delta_exec, the difference of these two values, does not include time spent

executing IRQs.

205

delta_exec is then scaled to scaled_delta_exec by either GRUB or by the executing CPU’s

capacity and frequency. How scaled_delta_exec is computed will be discussed in Sections 4.4.8

(GRUB) and 4.4.9 (capacities and DVFS). scaled_delta_exec represents the actual amount of execution

that runtime is decremented by (line 14).

After computing the new runtime value, update_curr_dl() checks if the current task should

be throttled, i.e., runtime has been exhausted or dl_yielded has been set (line 17), until the next

replenishment time. If the task should be throttled, then it is dequeued.

A task dequeued due to throttling may be immediately re-enqueued if the next replenishment time has

already passed or the task is inheriting another task’s priority (line 21). This enqueue is called with flag

ENQUEUE_REPLENISH, which adds maximum budget dl_runtime to the current budget runtime

(enqueue_task_dl() will be discussed in later paragraphs). We call this immediate enqueueing of the

task a bypassed throttle.

update_curr_dl() determines if the next replenishment time has passed by checking whether or

not start_dl_timer() returns 0. start_dl_timer() will be discussed in later paragraphs.

Whether the task is inheriting priority is determined by checking whether the task’s pi_se pointer

points to itself. Recall that this pointer is set in function rt_mutex_setprio() (line 23 of Listing 4.10)

to point to the sched_dl_entity of the task being inherited from. Why priority-inheriting tasks bypass

throttles will be discussed in Section 4.4.7.

At line 24, update_curr_dl() determines if rescheduling is necessary due to the current task being

throttled by checking if the current task is not leftmost in the deadline-ordered tree root. If throttling was

bypassed, as part of being enqueued with ENQUEUE_REPLENISH, the deadline of the current task may

have increased, making the current task no longer the leftmost task in root. Then the new leftmost task

has an earlier deadline and should be scheduled. If throttling was not bypassed, then the current task can no

longer be scheduled. Then the current task is not leftmost in root because it is removed from this tree when

dequeued.

Bypassed throttle bug. There appears to be a defect in update_curr_dl() and balance_dl() when

throttling is bypassed that causes SCHED_DEADLINE to act differently from EDF. This is illustrated in the

following example.

206

0 10 20 30 40 50 60 70

Task 0

0 10 20 30 40 50 60 70

Task 1

0 10 20 30 40 50 60 70

Time

Task 2

(a) Task 2 bypasses throttling at time 40.

CPU 1

task_struct
dl.deadline : 60

pid : 0

task_struct
dl.deadline : 62

pid : 1

CPU 0

task_struct
dl.deadline : 64

pid : 2

(b) Runqueues at time 40.

Figure 4.10: Out-of-deadline-order execution at time 40.

H Example 4.8. Consider three implicit-deadline tasks with dl_runtime of 20. Let Task 0 have

dl_period of 30, Task 1 have dl_period of 31, and Task 2 have dl_period of 32. These three

tasks execute on two CPUs and begin executing at time 0. A schedule of this system is illustrated in

Figure 4.10a.

At time 30, Task 0 is replenished. At this time, Task 2, with deadline of 32, has an earlier deadline

than Task 0, with deadline of 60. Thus, Task 0 is pushed from its original CPU, CPU 0, to CPU 1 and

begins executing.

At time 31, Task 1 is replenished. With deadline of 62, it cannot preempt either of Task 0 or

Task 2, and thus remains unscheduled on CPU 1’s runqueue.

At time 40, Task 2 depletes its runtime. However, because its next replenishment time, 32, is in

the past, Task 2 bypasses throttling in update_curr_dl(). Thus, Task 2 is immediately re-enqueued

on CPU 0’s runqueue. The state of the runqueues at this time is shown in Figure 4.10b. Because

Task 2 remains the earliest-deadline task on CPU 0’s runqueue, update_curr_dl() does not call

resched_curr() (see line 24 of Listing 4.31). Task 2 remains scheduled despite unscheduled task

Task 1 having an earlier deadline. N

207

The problem in update_curr_dl() that causes the above example is that the check on line 24 of

Listing 4.31 does not consider the possibility that tasks with earlier deadlines may be on other runqueues.

The other runqueues are only observed during a pull in balance_dl(), which is only called as part of a

reschedule.

Note that unconditionally calling resched_curr() in update_curr_dl() is insufficient to fix

this defect. balance_dl() will not call pull_dl_task() if the previously scheduled task is still on

the runqueue, which is the case for a task that has bypassed throttling.

Replenishment from throttling. The topic of replenishment can be broadly divided into how replenishment

is armed via timers and how replenishment is implemented in enqueue_task_dl()’s CBS logic. We

cover how replenishment is armed first.

If throttling is not bypassed, then the task must be replenished (i.e., enqueued with dl_runtime added

to runtime) at a later time. This later time is the next replenishment time, which is computed as the period

dl_period added to the difference between the absolute deadline deadline and relative deadline dl_

deadline. Note how, for a sporadic task, this computes the next arrival time, which is analogous to the

replenishment time under CBS.

In update_curr_dl(), function start_dl_timer() arms hrtimer dl_timer in the task’s

sched_dl_entity to fire at the next replenishment time (assuming it has not already passed). dl_

timer’s callback function is dl_task_timer() (Listing 4.32). At the next replenishment time, dl_

task_timer() enqueues and replenishes the runtime of its throttled task (line 9). After runtime is

replenished and the task is enqueued, the scheduling and migration logic in dl_task_timer() (lines 11-

16) is similar to that of try_to_wake_up() (lines 20-26 of Listing 4.5). This should be expected because

in both dl_task_timer() and try_to_wake_up(), a task is becoming runnable.

Having discussed how enqueue_task_dl() is called in the timer callback function dl_task_

timer(), we now discuss the internals of enqueue_task_dl()’s CBS logic (Listing 4.33). This

CBS logic examines the flags argument to determine the context enqueue_task_dl() was called

from. Being called with ENQUEUE_REPLENISH signifies the task is being enqueued due to a task being

unthrottled (which may occur in dl_task_timer(), the throttle being bypassed in update_curr_

dl(), or the task inheriting priority in rt_mutex_setprio()).

208

1 enum HRTIMER_RESTART dl_task_timer(struct hrtimer *timer)
2 {
3 struct sched_dl_entity *dl_se = container_of(timer,
4 struct sched_dl_entity,
5 dl_timer);
6 struct task_struct *p = container_of(dl_se, struct task_struct, dl);
7 struct rq *rq = task_rq(p);
8
9 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);

10
11 if (dl_prio(rq->curr->prio))
12 wakeup_preempt_dl(rq, p, 0);
13 else
14 resched_curr(rq);
15
16 push_dl_task(rq);
17
18 return HRTIMER_NORESTART;
19 }

Listing 4.32: dl_task_timer().

1 void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2 {

3
...

4
5 if (flags & ENQUEUE_WAKEUP)
6 update_dl_entity(p->dl);
7 else if (flags & ENQUEUE_REPLENISH)
8 replenish_dl_entity(p->dl);
9 else if (flags & ENQUEUE_RESTORE)

10 if (p->dl.deadline < rq_clock(task_rq(p)))
11 setup_new_dl_entity(p->dl);
12

13
...

14 }

Listing 4.33: enqueue_task_dl() CBS logic.

209

void replenish_dl_entity(struct sched_dl_entity *dl_se)
{

while (dl_se->runtime <= 0) {
dl_se->deadline += dl_se->pi_se->dl_period;
dl_se->runtime += dl_se->pi_se->dl_runtime;

}

dl_se->dl_yielded = 0;
dl_se->dl_throttled = 0;

}

Listing 4.34: replenish_dl_entity().

On observing ENQUEUE_REPLENISH, enqueue_task_dl() calls replenish_dl_entity().

Function replenish_dl_entity() (Listing 4.34) increments the task’s budget runtime and absolute

deadline deadline.

Wakeup rules. Linux’s CBS logic defines conditions under which, on wakeup, current budget runtime

and absolute deadline deadline are preserved, reset, or scaled. By preserved, we mean that on wakeup, a

task’s runtime and deadline values are unchanged from when the task suspended. By reset, we mean

that on wakeup, runtime is set to dl_runtime and deadline is set to dl_deadline added to the

wakeup time. By scaled, we mean that on wakeup, a task’s runtime is set to a value proportional to the

duration of time until deadline. deadline is unchanged. These rules are designed such that the CBS

satisfies certain HRT properties (Abeni and Buttazzo, 1998; Abeni et al., 2015), so we do not justify them in

this dissertation. Whether runtime and deadline are preserved, reset, or scaled on wakeup is determined

in the update_dl_entity() function called by enqueue_task_dl() (line 6 of Listing 4.33).

runtime and deadline are preserved if deadline is at least the wakeup time and

runtime

deadline− wakeup time
≤ pi_se->dl_runtime

pi_se->dl_deadline
. (4.3)

(4.3) being true indicates that the remaining budget runtime can be conceptually treated as its own separate

job with deadline deadline without exceeding the task’s density.

Otherwise, the wakeup time occurred after deadline or (4.3) is false. For implicit-deadline tasks,

runtime and deadline are always reset. For tasks such that dl_deadline is less than dl_period,

if the wakeup time occurred before deadline, then runtime is scaled. Specifically, runtime is set to

210

the product dl_density and the difference between deadline and the wakeup time. Otherwise, if the

wakeup time occurred after deadline, then runtime and deadline are reset.

Change pattern. The remaining case to be discussed in Listing 4.33 is that ENQUEUE_RESTORE is set in

flags. ENQUEUE_RESTORE indicates that enqueue_task_dl() was called due to the change pattern.

The most important case of this flag is when the change pattern is used to change a task’s policy to SCHED_

DEADLINE. Function setup_new_dl_entity(), called by enqueue_task_dl(), sets the initial

values of the new SCHED_DEADLINE task. runtime and deadline are set similarly to a reset under a

wakeup, only with the wakeup time replaced with the policy request time.

enqueue_task_dl() may be called with ENQUEUE_RESTORE due to other uses of the change

pattern such as affinity change requests. For such changes, runtime and deadline should not be reset.

enqueue_task_dl() differentiates these other changes from policy change requests by checking if

deadline is prior to the current time (line 10 of Listing 4.33). This is because the default value of

deadline for non-SCHED_DEADLINE tasks is 0. Thus, a non-SCHED_DEADLINE task will always pass

the check on line 10.

Note that under multiprocessor scheduling, it is possible for the current time to exceed deadline, i.e.,

a task is tardy. A tardy task will also pass the check on line 10. Thus, requests on behalf of a tardy task that

invoke the change pattern such as changing affinities or locking mutexes will have the unintended side effect

of resetting the task’s runtime and deadline.

4.4.4 Admission Control

Recall from the discussion in Sections 4.1.5 and 4.4.1 that the ACS enforces that (4.2), which re-expresses

(4.1) in terms of Linux variables, is true for every root_domain. (4.2) must be re-checked whenever a

task enters SCHED_DEADLINE, a SCHED_DEADLINE task changes its parameters, a task is added to or

removed from a root_domain, a root_domain changes its CPUs, or the system parameters sched_

rt_runtime_us and sched_rt_period_us are modified.

Different functions check (4.2) depending on what change in the system resulted in the re-check. For

policy changes to SCHED_DEADLINE or changing of existing SCHED_DEADLINE parameters, these checks

are done in __sched_setscheduler(). A task changing its root_domain is checked in cpuset_

can_attach(). Modifying the CPUs in a root_domain is checked in dl_cpuset_cpumask_

211

can_shrink(). Changes to sched_rt_runtime_us and sched_rt_period_us are checked in

sched_dl_global_validate(). Outside of sched_dl_global_validate(), these functions

all call the same helper function __dl_overflow(). __dl_overflow() has the following prototype.

bool __dl_overflow(struct dl_
bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw);

dl_b is the dl_bw of the root_domain being checked. cap is the total capacity of CPUs in the

root_domain. old_bw is the total bandwidth of any tasks requesting SCHED_DEADLINE parameter

changes, and new_bw is the prospective total bandwidth of these tasks if these changes are accepted. __

dl_overflow() returns true if the ACS is enabled and (4.2) would be violated.

Affinities. Besides ensuring that (4.2) is maintained, the ACS also restricts tasks’ affinities such that each

task must have affinity for every CPU in its root_domain. This must be checked when tasks enter

SCHED_DEADLINE via __sched_setscheduler() and when tasks set their affinities via __sched_

setaffinity(). Pseudocode for these checks is presented in Listing 4.35.

We start with __sched_setscheduler(). At line 4, __sched_setscheduler() calls __

checkparam_dl(), which verifies that the requested relative deadline of a task attempting to change

its policy to SCHED_DEADLINE (or a SCHED_DEADLINE task changing its parameters) is at most its

requested period. Technically, this check does not fall under the ACS as the check is performed regardless

of whether the ACS is enabled or not (recall from Section 4.1.5 that the ACS can be disabled by writing to

sched_rt_runtime_us).

The check in lines 6-8 verifies that the task has affinity for each CPU in the root_domain. cpumask_

subset() if the former CPU bitmask is a subset of the latter. The function dl_bandwidth_enabled()

returns true when the ACS is enabled. As such, this check is ignored when the ACS is disabled.

The check at line 11 checks that the requested parameters would not violate (4.2) if enacted. Function

sched_dl_overflow() is a wrapper of __dl_overflow(), discussed earlier in Section 4.4.4.

In __sched_setaffinity(), the check at line 19 is the same check performed over lines 6-8 in _

_sched_setscheduler().

Instantaneous bandwidth changes. SCHED_DEADLINE does not wait for the zero-lag time before allowing

a task to modify its parameters. SCHED_DEADLINE will immediately enact any change in parameters

requested with sched_setattr() so long as the task’s resulting dl_bw does not violate (4.2). While

212

1 int __sched_setscheduler()(struct task_struct *p, struct sched_attr *attr)
2 {

3
...

4 if (policy == SCHED_DEADLINE && !__checkparam_dl(attr))
5 return -EINVAL;
6 if (dl_bandwidth_enabled() && policy == SCHED_DEADLINE) {
7 cpumask_t *span = rq->rd->span;
8 if (!cpumask_subset(span, p->cpus_ptr))
9 return -EPERM;

10 }
11 if ((policy == SCHED_DEADLINE || dl_prio(p->prio)) && sched_dl_

overflow(p, policy, attr))
12 return -EBUSY;

13
...

14 }
15
16 int __sched_setaffinity(struct task_struct *p, struct cpumask *mask)
17 {

18
...

19 if (p->policy == SCHED_DEADLINE && dl_bandwidth_enabled() && !cpumask_
subset(task_rq(p)->rd->span, new_mask))

20 return -EBUSY;

21
...

22 }

Listing 4.35: ACS with affinities.

213

0 100 200 300 400

Task 0
dl_runtime← 1 94 1 94 1

0 100 200 300 400

Time

Task 1
dl_runtime← 94 1 94 1 94

Figure 4.11: Unbounded response times due to dynamic tasks

the task’s static parameters (e.g., dl_runtime, dl_period, dl_bw) are changed immediately, the task’s

current runtime and deadline are unchanged. This can be exploited as follows to result in unbounded

response times.

H Example 4.9. Consider the schedule in Figure 4.11. We assume the tasks in this example never

suspend. The system contains one CPU and begins with no tasks. At time 0, Task 0 requests to

enter SCHED_DEADLINE with (dl_runtime,dl_period) = (94, 100). This task is accepted

because doing so will not violate (4.2). Task 0 begins executing at time 0 with runtime = 94

and deadline = 100, before immediately requesting dl_runtime to be changed to 1. Task 0’s

runtime and deadline remain as 94 and 100 after this change. At time 10, Task 1 requests to

enter SCHED_DEADLINE with (dl_runtime,dl_period) = (94, 100). This request is accepted

by the ACS because Task 0 reduced its bandwidth. Task 1 begins executing with runtime = 94 and

deadline = 110. After this point, both tasks alternate executing on the CPU.

However, prior to when Task 0 returns from the throttled state, Task 1 changes its dl_runtime to

1 and Task 0 changes its dl_runtime to 94. When Task 0 becomes ready at time 100, its runtime

and deadline are determined entirely by Task 0’s dl_runtime and dl_period at the instant it

becomes ready. Thus, the runtime of Task 0 is set to 94. Likewise, prior to when Task 1 is replenished

at time 188 (recall that a task that exhausts runtime after its deadline is immediately replenished),

Task 0 sets its dl_runtime to 1 such that Task 1 can set its dl_runtime to 94. As the total bandwidth

of the system technically never exceeds 0.95, all requests are accepted by the ACS.

214

If Tasks 0 and 1 continue taking turns with having dl_runtime = 94, then every runtime

replenishment in this system occurs as if both tasks always have dl_bw of 0.94. Because the CPU only

has a capacity of 1.0, the system is overloaded and results in unbounded response times even though

(4.2) is never violated. N

That the behavior in Example 4.9 is possible is documented in the SCHED_DEADLINE source code.

Bounded response times can be restored by exhausting the runtime of any task that changes its parameters

via sched_setattr() and delaying the change in total_bw in the corresponding root_domain’s

dl_bw until the zero-lag time.

sched_dl_global_validate() bug. sched_dl_global_validate() is unique in that it does

not call __dl_overflow() to check if (4.2) is maintained. sched_dl_global_validate() does

not appear to consider that CPUs may have asymmetric capacities. This seems to be a bug that permits

sched_rt_runtime_us to be set to lower values than would otherwise be permitted by the ACS. This

seems like an oversight that can be easily remedied by modifying sched_dl_global_validate() to

call __dl_overflow().

4.4.5 Affinities

As stated in Section 4.4.4, disabling the ACS allows arbitrary affinities to be set for SCHED_DEADLINE

tasks. SCHED_DEADLINE does not follow Weak-APA-EDF when the ACS is disabled. This is because the

cpudl, which is used by SCHED_DEADLINE to optimize computing target CPUs when pushing tasks, is

oblivious to affinities, so tasks may be left unscheduled even when they have affinity for CPUs executing

tasks with later deadlines. This is demonstrated in the following example.

H Example 4.10. Consider three implicit-deadline tasks executing on three CPUs such that tasks’

affinities are as in Figure 4.12a. All three CPUs belong to a single root_domain. Let the dl_

runtime and dl_period of Tasks 0, 2, and 3 be 3 and 6, respectively. For Task 1, its dl_runtime

and dl_period are both 2.

A schedule of this system is illustrated in Figure 4.13. Task 1 never suspends and initially executes

on CPU 0. Even though Task 0, which only has affinity for CPU 0, enters the system at time 1, Task 1

does not migrate until Task 0 has an earlier deadline at time 6. However, prior to Task 1’s attempt to

215

CPU 0 CPU 1 CPU 2

Task 0 Task 1 Task 2 Task 3

(a) Affinity graph.

dl : 7
cpu : 0

dl : 8
cpu : 1

dl : 11
cpu : 2

(b) cpudl heap at time 6.

Figure 4.12: Example 4.10 illustrations.

migrate, Tasks 2 and 3 enter the system such that all CPUs execute tasks at time 6. The cpudl heap

of the root_domain at time 6 is illustrated in Figure 4.12b. CPU 2 with deadline 11 is at the root of

the heap. Thus, SCHED_DEADLINE will attempt to push Task 1 onto CPU 2. Because Task 1 does not

have affinity for CPU 2, this push will fail, and Task 1 is not scheduled. This is despite Task 1 having an

earlier deadline than Task 2, which is executing on CPU 1, thereby violating Weak-APA-EDF. Task 1

remains unscheduled until it is pulled by CPU 1 at time 7.

Weak-APA-EDF is similarly violated at time 17, except at this time Task 2, rather than Task 0,

forces Task 1 to attempt to migrate. As illustrated in Figure 4.13, this pattern can be repeated infinitely

often, and with each occurrence, the maximum response time experienced by Task 1 increases by 1.0.N

Note that Example 4.10 is unrealistic in that unbounded response times for the considered task system

would likely not occur in a real system. The example relies on contrived waking times for Tasks 0, 2, and

3 in order to force Task 1 to reference the cpudl heap. Even though the presented example is unlikely to

be observed in practice, its existence is problematic because it proves that response-time bounds cannot be

guaranteed.

4.4.6 Asymmetric Capacities

Function (or macro on some architectures) arch_scale_cpu_capacity() takes a CPU index as

its argument and returns said CPU’s capacity. When decrementing a task’s runtime value in update_

216

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Ta
sk

0

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Ta
sk

1
L

at
e

by
1.

0
L

at
e

by
2.

0
L

at
e

by
3.

0
L

at
e

by
4.

0
L

at
e

by
5.

0

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Ta
sk

2

0
5

10
15

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Ti
m

e

Ta
sk

3

Fi
gu

re
4.

13
:E

xa
m

pl
e

4.
10

sc
he

du
le

.

217

curr_dl(), if flag SCHED_FLAG_RECLAIM is unset, execution duration delta_exec is multiplied by

the capacity of the CPU the task executed on.

Origin. The capacities of the CPUs on a given platform are derived from empirical per-CPU values in the

devicetree (i.e., .dtb and .dts files), a standard file for providing hardware information to the OS. In the

devicetree, each CPU is given a capacity-dmips-mhz value that is proportional to its Linux capacity.

DMIPS/MHz is an instructions-per-second performance measurement of the CPU on the Dhrystone (Weicker,

1984) benchmark when the CPU operates at a fixed 1 MHz frequency. The Linux capacity for a CPU is

computed from the product of maximum frequency (in MHz) and capacity-dmips-mhz. These products

are then normalized such that the greatest capacity of any CPU is 1024. 1024 should be thought of as the

value 1.0 (i.e., full capacity), only left-shifted by SCHED_CAPACITY_SHIFT (i.e., 10) such that fractional

capacities can be represented as integers.

Migration logic. SCHED_DEADLINE does not implement Ufm-EDF in the presence of asymmetric ca-

pacities. The extent of SCHED_DEADLINE’s migration logic with respect to asymmetric capacities is that

SCHED_DEADLINE will attempt to avoid migrating tasks to CPUs with low capacity (relative to the tasks

being migrated). Specifically, SCHED_DEADLINE considers asymmetric capacities in its migration logic

in function find_later_rq(), which is used by push_dl_task() and select_task_rq() to

find target runqueues. Recall that the behavior of this function was separated into cases in Section 4.4.2.

Asymmetric capacities are considered when the intersection between cpus_mask of the task of interest

(either a pushed task or a waking task) and free_cpus in the corresponding root_domain is non-empty,

i.e., there are CPUs in the root_domain’s span that the task of interest has affinity for and have no SCHED_

DEADLINE tasks. When this intersection is non-empty, find_later_rq() attempts to return a CPU

with capacity at least the task’s density dl_density. If no CPUs in the intersection have capacity greater

than dl_density, the CPU with the greatest capacity in this intersection is returned.

Response time bounds. The ACS does not guarantee bounded response times under asymmetric capacities.

Consider a root_domain containing two tasks with dl_bw of 0.95 (ignoring the shift by BW_SHIFT)

and one full-capacity CPU with arbitrarily many CPUs with capacity 0.5 (ignoring the shift by SCHED_

CAPACITY_SHIFT). Because tasks cannot execute in parallel with themselves, these two tasks are executed

on at most two CPUs at any time. Even though this root_domain is accepted by the ACS (total_bw

is 1.9 while total capacity is arbitrarily large), these two tasks can only consume 1.5 units of capacity. As

218

total_bw exceeds the capacity provided to the tasks, the tasks would have unbounded response times

(assuming they do not suspend).

4.4.7 Priority Inheritance

This and the remaining subsections in this section pertain to features of SCHED_DEADLINE or Linux

that are incompatible with the analysis in this dissertation. As such, these features are discussed at a higher

level than the previous subsections. We start with priority inheritance.

When a task inherits a SCHED_DEADLINE task’s priority, the inheriting task’s pi_se member is set to

point to the inherited from task’s sched_dl_entity by rt_mutex_setprio() (recall Listing 4.10).

This has two effects on the inheriting task: said task behaves as if its static parameters (e.g., dl_deadline,

dl_runtime, dl_period) are replaced with the inherited-from task’s parameters and said task always

bypasses throttling.

As an example of static parameters being replaced, recall Listing 4.34 of replenish_dl_entity().

Observe that deadline and runtime are incremented according to the dl_period and dl_runtime

of the pi_se task.

Throttling is bypassed for priority-inheriting tasks because they hold mutexes being waited on by higher-

priority tasks. Tasks that would otherwise be throttled may reach the end of their critical sections earlier and

release their mutexes.

As a result of bypassing throttling, a priority-inheriting task is always immediately re-enqueued with

ENQUEUE_REPLENISH in update_curr_dl() whenever it is dequeued due to depleting runtime.

This has an effect analogous to early releasing (see Definition 2.11 in Section 2.1) in that the task consumes

the budget of what would otherwise be future replenishments. As in early releasing, deadlines are set based

on the original future replenishment times (i.e., original arrival times), and not based on when budget is

consumed (i.e., early release times).

H Example 4.11. Consider two implicit-deadline tasks executing on two CPUs as illustrated in Fig-

ure 4.14. Task 0 has dl_runtime of 3 and dl_period of 5, while Task 1 has dl_runtime of 4

and dl_period of 6.

Tasks 0 and 1 share some RT-mutex. Task 0 locks this mutex at time 3. Because no other task is

waiting on the mutex, Task 0’s pi_se pointer remains pointed at Task 0.

219

0 2 4 6 8 10 12 14 16 18 20 22

Task 0
rt mutex lock() rt mutex unlock()

0 2 4 6 8 10 12 14 16 18 20 22

Time

Task 1
rt mutex lock()

Figure 4.14: Priority inheritance.

At time 5, Task 1 attempts to acquire the mutex. This sets the pi_se pointer of Task 0, the holder

of the mutex, to Task 1. rt_mutex_setprio() enqueues (line 24 of Listing 4.10) the previously

throttled Task 0. Task 0 receives 4 units of runtime, which is Task 1’s dl_runtime value. Task 0’s

deadline is incremented from 6 to 12, in accordance with Task 1’s dl_period value.

Task 0 continues early releasing in this fashion until it releases the mutex at time 11. This resets its

pi_se pointer to itself. When Task 0 exhausts its runtime at time 13, it is throttled until time 18, its

next replenishment time.

At time 18, Task 0 receives 3 units of runtime and its deadline is incremented by 5 time units,

as per its original dl_runtime and dl_period. N

4.4.8 GRUB

GRUB (short for Greedy Reclaimation of Unused Bandwidth) reduces the budget consumption rate of

tasks. Analytically, this is similar to reducing execution speed. This reduction allows each CBS to run for

longer, which is desirable for tasks that occasionally overrun their budgets. The reduction in consumption

must be limited to prevent SCHED_DEADLINE tasks from consuming more than sched_rt_runtime_

us/sched_rt_period_us of capacity, as guaranteed by the ACS.

Unused bandwidth. The idea behind GRUB is that the farther the total bandwidth of active tasks is from

sched_rt_runtime_us/sched_rt_period_us of capacity, the more the budget consumption rate

220

can be reduced. The difference between the total active bandwidth and this fraction of capacity is the unused

bandwidth.

There exist several GRUB variants that differ by how unused bandwidth is reclaimed. The GRUB

variant used in Linux is a combination of the sequential and parallel reclaiming variants proposed by Abeni

et al. (2016). Unused bandwidth is subdivided between the dl_rqs, with the amount of unused bandwidth

allocated to a given dl_rq determining the rate of budget consumption for tasks on that dl_rq. Unused

bandwidth is accounted for in members this_bw and extra_bw. this_bw is like running_bw except

the bandwidths of inactive tasks that suspended while on this dl_rq are also counted (note that because

these tasks are inactive, they are not on the dl_rq). The unused bandwidth from inactive tasks is the inactive

bandwidth, and is computed on a dl_rq as this_bw− running_bw.

The remaining unused bandwidth is due to the difference between the total bandwidth (both active and

inactive) and sched_rt_runtime_us/sched_rt_period_us of capacity in the root_domain

corresponding with the runqueues of interest. This is called the extra bandwidth. Extra bandwidth is computed

from the root_domain’s dl_bw member. For a dl_rq dl with root_domain rd that has a span of

cpus CPUs, dl->extra_bw is equivalent to sched_rt_runtime_us/sched_rt_period_us−

rd.dl_bw.total_bw/cpus.

Note that extra_bw is computed using the number of CPUs. This assumes that all CPUs have equal

capacity. GRUB should not be enabled on systems with asymmetric capacities.

Decreasing runtime under GRUB. GRUB relies on two additional dl_rq members, max_bw and bw_

ratio. max_bw is set to the fraction sched_rt_runtime_us/sched_rt_period_us and bw_

ratio is set to the inverse of this fraction.

GRUB is used when flag SCHED_FLAG_RECLAIM is set. Under GRUB, in update_curr_dl(),

the execution duration delta_exec is multiplied by some factor to yield scaled_delta_exec. This

factor is bw_ratio multiplied by

max {dl_bw,max_bw− (this_bw− running_bw)− extra_bw} .

Maintaining this_bw. For a given dl_rq, this_bw is set by functions __add_rq_bw() and __

sub_rq_bw(), while running_bw is set by __add_running_bw() and __sub_running_bw().

__add_rq_bw() and __add_running_bw() are presented below.

221

void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)

{

dl_rq->this_bw += dl_bw;

}

void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)

{

dl_rq->running_bw += dl_bw;

cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);

}

__sub_rq_bw() and __sub_running_bw() are identical outside of replacing addition with subtrac-

tion. These functions also include checks for overflow and improper locking that are omitted from the above

listing. Function cpufreq_update_util() alerts the frequency scaling governor that the utilization

on a runqueue has changed, and will be discussed in Section 4.4.9. Function rq_of_dl_rq() uses

container_of() to return a pointer to a dl_rq’s containing rq.

Recall that this_bw is the total bandwidth of all tasks that last migrated to the corresponding runqueue

(such tasks may not be queued on this runqueue). __add_rq_bw() is primarily called from within

enqueue_task_dl() when the task is enqueued as part of a migration (e.g., a push, pull, or waking

on a different CPU). That enqueue_task_dl() was called as part of a migration can be determined by

observing if on_rq is TASK_ON_RQ_MIGRATING or if the flag ENQUEUE_MIGRATED is set.

__sub_rq_bw() is similarly primarily called by dequeue_task_dl() when on_rq is TASK_

ON_RQ_MIGRATING. Note that in the case of a suspension, dequeue_task_dl() will not call __sub_

rq_bw() because on_rq will have value 0. This is valid because this_bw includes suspended tasks

until such tasks are migrated away. If a suspended task is migrated during wakeup, function migrate_

task_rq_dl() calls __sub_rq_bw() on the previous runqueue. Recall that migrate_task_rq()

is called whenever a task moves to a different runqueue. migrate_task_rq() is called before __set_

task_cpu() and enqueue_task(), thus task_rq() returns the previous runqueue when called from

migrate_task_rq_dl().

222

Maintaining running_bw. running_bw corresponds to the subset of tasks accounted for in this_

bw that are active. Thus, while a task is active and migrated, __add_running_bw() and __sub_

running_bw() are also called when __add_rq_bw() and __sub_rq_bw() are called, respectively.

__sub_running_bw() and __add_running_bw() must also be called when a task becomes

inactive and active, respectively. A task becomes inactive by suspending and passing its zero-lag time. For a

CBS represented by a sched_dl_entity, the zero-lag time is computed as

deadline− runtime · dl_period
dl_runtime

. (4.4)

That dequeue_task_dl() is called due to a suspension is determined by observing if flag DEQUEUE_

SLEEP is set. If DEQUEUE_SLEEP is set, then dequeue_task_dl() calls __sub_running_bw() if

the zero-lag time has passed. If the zero-lag time is in the future, dequeue_task_dl() arms inactive_

timer to fire at the zero-lag time. The callback function of inactive_timer, inactive_task_

timer(), calls __sub_running_bw() when triggered. An inactive task becomes active by waking, in

which case enqueue_task_dl() will call __add_running_bw().

Note that the zero-lag time formula in (4.4) is not equivalent to Definition 2.12 for non-implicit-deadline

tasks. deadline should be replaced with the next replenishment time deadline − dl_deadline +

dl_period to make (4.4) equivalent to Definition 2.12. Because these zero-lag time formulas are distinct,

GRUB may cause additional deadline misses on single-CPU systems.

enqueue_task_dl() must be able to determine whether a waking task was previously inactive or

active and waiting for its zero-lag time. For the latter, enqueue_task_dl() must not call __add_

running_bw(), as __sub_running_bw() has not been called on this task (due to delaying the calling

of __sub_running_bw() until the zero-lag time). enqueue_task_dl() makes this distinction by

observing the dl_non_contending flag, which is set by dequeue_task_dl() when waiting for the

zero-lag time and cleared by enqueue_task_dl() and inactive_task_timer().

4.4.9 DVFS

DVFS with SCHED_DEADLINE tasks is based on the GRUB-PA algorithm (Scordino et al., 2018).

While the GRUB variant discussed in Section 4.4.8 reduces budget consumption to improve quality of service

to tasks, GRUB-PA reduces budget consumption to reflect that tasks executed at lower frequencies. The

223

main idea of GRUB-PA is to set the frequency of a CPU to the maximum frequency multiplied by the total

active bandwidth of its runqueue (i.e., running_bw on the CPU’s corresponding dl_rq). If the total active

bandwidth exceeds 1.0, the frequency is capped at the maximum frequency.

Function (or macro on some architectures) arch_scale_freq_capacity() takes a CPU index

and returns the ratio of the current frequency divided by the maximum frequency of said CPU. Note this

ratio is also left-shifted by SCHED_CAPACITY_SHIFT to be represented as an integer. When decrementing

runtime for a task in update_curr_dl(), if flag SCHED_FLAG_RECLAIM is not set, the execution

duration delta_exec is multiplied by the frequency ratio prior to multiplying by the CPU’s capacity.

GRUB-PA and unbounded response times. As originally proposed, GRUB-PA Scordino et al. (2018) can

lead to unbounded response times, as will be demonstrated in the following example. Note that we discuss

the original GRUB-PA algorithm and not its more complicated implementation in the schedutil governor.

It is difficult to model schedutil for an example due to its complexities, which will be discussed in later

paragraphs.

H Example 4.12. Consider three implicit-deadline tasks running on two CPUs such that each task has

dl_runtime of 3 and dl_period of 5. Both CPUs have capacity of 1.0 and equivalent maximum

frequency. No task suspends after entering SCHED_DEADLINE. Task 0 enters the system at time 0,

Task 1 at time 1, and Task 2 at time 2.

A schedule of this system is illustrated in Figure 4.15. Initially, when Task 0 enters the system at

time 0, it is the only task contributing to CPU 0’s running_bw, which is 3/5. Thus, CPU 0’s frequency

is scaled to 3/5 of the maximum frequency. CPU 0 continues executing at 3/5 = 0.6 of its maximum

frequency starting from time 0. Over time interval [0, 2), Task 0 is executed for 2 time units on CPU 0,

which delivers 0.6 units of capacity per time unit. Task 0 has dl_runtime− 0.6 · 2 = 3− 1.2 = 1.8

units of runtime remaining.

At time 1, Task 1 enters the system. It either enters already on CPU 1 or is pushed from CPU 0

to CPU 1 when it enters the system. As with Task 0 on CPU 0, Task 1 is the only task contributing to

CPU 1’s running_bw, and so CPU 1’s frequency is also scaled to 3/5 = 0.6 of its maximum. Over

time interval [1, 6), Task 1 consumes 0.6 · (6 − 1) = 3 = dl_runtime units of runtime. Task 1

exhausts its runtime exactly at its deadline, 6. Task 1 continues to exhaust its runtime exactly at

its deadline every 5 time units until it is preempted at time 36.

224

At time 2, Task 2 enters the system. Assume it enters on CPU 0’s runqueue. Because two tasks

now contribute to CPU 0’s running_bw, which becomes 6/5 > 1.0, CPU 0’s frequency is scaled to

its maximum. Task 0, with 1.8 units of runtime remaining at time 2, exhausts its runtime at time

2 + 1.8/1.0 = 3.8 (CPU 0 provides its maximum capacity, 1.0, at its maximum frequency). Task 0 and

Task 1 continue alternating executing on CPU 0 until CPU 1 pulls Task 0 at time 36.

Once Task 0 is pulled to CPU 1 at time 36, the running_bw of both CPUs changes. CPU 1 scales

its frequency to 1.0 of its maximum and CPU 0 scales its frequency to 0.6 of its maximum. Because there

are three tasks and only two CPUs, there is always a CPU executing at 0.6 of its maximum frequency.

The task executing on this CPU can never reduce the response times of successive jobs because the

capacity delivered by this CPU is equal to the task’s bandwidth. This can be observed for Task 1 over

[1, 36), during which Task 1 always exhausts runtime at its deadline.

Whatever CPU is not executing at 0.6 of its maximum frequency executes at its maximum frequency.

This is not sufficient for the two tasks that contribute to said CPU’s running_bw, which equals

2 · 3/5 = 1.2. Because this CPU delivers at most 1.0 units of capacity per time unit, successive jobs of

these two tasks will increase in response time. This can be observed for Tasks 0 and 2 over [0, 36). N

Frequency invariance and clock_pelt. The implementation of GRUB-PA in the schedutil governor

differs due to the presence of non-SCHED_DEADLINE tasks in the system. Failing to account for these

tasks in GRUB-PA could result in these tasks being starved as higher-priority SCHED_DEADLINE tasks

executing at reduced frequencies consume the entire system’s capacity. schedutil requires bandwidth

information to account for these non-SCHED_DEADLINE tasks. Because Linux is not given the bandwidths

of non-SCHED_DEADLINE tasks, it must estimate them by measuring the fraction of time such tasks occupy

the CPUs.

For each CPU, Linux maintains an estimate of the total bandwidth of tasks belonging to fair_sched_

class and rt_sched_class. These bandwidth estimates are added to running_bw when performing

GRUB-PA on each CPU. Estimating bandwidths in the presence of frequency scaling results in a circular

dependency: bandwidth estimates are used to scale CPU frequencies and scaling frequencies affects measured

bandwidths. This circular dependency is resolved by normalizing bandwidth estimates, i.e., scaling bandwidth

using the corresponding CPU’s frequency to compute the expected bandwidth at maximum frequency.

225

0
5

10
15

20
25

30
35

40
0

1.0
Task

0
L

ate
by

0.80
L

ate
by

1.80
L

ate
by

2.80
L

ate
by

3.80
L

ate
by

4.00
L

ate
by

2.00

0
5

10
15

20
25

30
35

40
0

1.0
Task

1

0
5

10
15

20
25

30
35

40

Tim
e

0

1.0
Task

2
L

ate
by

0.80
L

ate
by

1.80
L

ate
by

2.80
L

ate
by

3.80
L

ate
by

5.33

Figure
4.15:G

R
U

B
-PA

schedule.

226

0 2 4 6 8 10 12 14 16 18 20
clock_task

0

1.0Task 0

Freq: 50%

0 2 4 6 8 10 12 14 16 18 20
clock_task

0

1.0Task 1

0 2 4 6 8 10 12 14 16 18 20

clock_task

0

1.0Combined

0 2 4 5 6 7 10 11 13 14 15 16 19 20
clock_pelt

0

1.0Combined
Re-sync. Re-sync. Re-sync.

Figure 4.16: clock_pelt example.

Applying this normalization to the bandwidth requires knowledge of the current CPU frequency. The

current frequency can be read from the hardware (i.e., by reading specific registers) or from the CPU fre-

quency driver (arch_scale_freq_capacity() observes these sources to return a frequency ratio).14

Normalizing bandwidth by reading from the hardware is called frequency-invariant bandwidth estimation.

Frequency-invariant bandwidth estimation makes use of clock_pelt.

Recall the discussion in Section 4.4.3 comparing clock and clock_task. clock_pelt is another

measure of the current time derived from clock_task (recall that clock_task is itself derived from

clock). When frequency is scaled down, the timeline observed by clock_pelt slows the rate that time

advances. The timeline catches up to clock_task when the CPU idles. A simplified example of the use of

clock_pelt in frequency-invariant bandwidth estimation is provided below.

14Note that reading the current frequency from the frequency driver is generally considered unreliable compared to
reading from the hardware. Reading from the hardware requires architectural support.

227

H Example 4.13. Consider two rt_sched_class tasks executing on a single CPU. At maximum

frequency, Task 0 executes for 1 time unit every 5 time units and Task 1 executes for 1 time unit every 7

time units. A schedule of these two tasks is illustrated in Figure 4.16. The tasks are illustrated individually

in the first two rows, and then their combined execution is illustrated in the last two rows. The first three

rows share a common time axis as observed by clock_task, while the last row has a time axis as

observed by clock_pelt.

Suppose that at time 4, the CPU scales its frequency to 50% of its maximum. This causes the

timelines observed by clock_task and clock_pelt to diverge. The interval represented by [5, 9)

by clock_task is represented by [5, 7) by clock_pelt because clock_pelt advances time at

50% of the rate of clock_task while the frequency is scaled to 50%. clock_pelt and clock_

task re-synchronize at the end of this interval when the CPU idles. The two clock values similarly

diverge at times 10 and 14.

Consider how the total bandwidth of these tasks is computed when clock_task and clock_

pelt are used. When observing clock_task, the two tasks executed over [0, 2), [5, 9), [10, 12),

and [14, 18). The two tasks executed for a total of (2 − 0) + (9 − 5) + (12 − 10) + (18 − 14) =

2 + 4 + 2 + 4 = 12 time units over the 20 time units illustrated in the schedule, i.e., a measured total

bandwidth of total execution time
observed time = 12

20 = 60%. Compare this against the actual total bandwidth of Tasks 0

and 1, 1
5 + 1

7 ≈ 34%.

When observing clock_pelt, the two tasks executed over [0, 2), [5, 7), [10, 11), and [14, 16).

The two tasks executed for a total of (2−0) + (7−5) + (11−10) + (16−14) = 2 + 2 + 1 + 2 = 7 time

units over the 20 illustrated time units, i.e., a measured bandwidth of 7
20 = 35%. This is much closer

to the true total bandwidth of Tasks 0 and 1 (34%) than the total bandwidth measured from clock_

task. N

Under frequency-invariant bandwidth estimation, bandwidth normalization is inherent due to the usage

of clock_pelt during measurement. If the frequency cannot be read from the hardware, the bandwidth is

normalized by multiplying the measured bandwidth by the ratio of the current and max frequencies. This

reduces the bandwidth estimation when frequency is scaled down.

GRUB-PA in schedutil. schedutil computes a total active runqueue bandwidth for each CPU by

adding the bandwidth estimates for fair_sched_class and rt_sched_class tasks to running_

228

bw. How schedutil sets CPU frequency depends on if frequency-invariant bandwidth estimation is

supported. If supported, the frequency of a CPU is set to

1.25 ·max frequency · active runqueue bandwidth
CPU’s capacity

. (4.5)

This product is capped at the maximum frequency. The frequency computed by (4.5) differs from the original

GRUB-PA algorithm (Scordino et al., 2018) because of the leading 1.25 constant and the division by the

CPU’s capacity. The constant 1.25 seems to be a magic number without a basis in theory. The original

GRUB-PA algorithm does not consider asymmetric capacities. The active runqueue bandwidth is divided by

the CPU’s capacity to increase frequencies set for low-capacity CPUs. For example, a CPU with running_

bw of 0.5 and a capacity of 0.5 should run at maximum frequency.

If frequency-invariant bandwidth estimation is not supported, the frequency is instead set to

1.25 · current frequency · non-invariant active runqueue bandwidth
CPU’s capacity

. (4.6)

The rationale behind using the current frequency is that the frequency-invariant active runqueue bandwidth is

approximated by multiplying the measured bandwidth by the ratio of the current and maximum frequencies.

Combining (4.5) with this approximation yields (4.6).

Note that (4.6) breaks GRUB-PA for SCHED_DEADLINE tasks. The contribution of running_bw

to the active runqueue bandwidth is the total bandwidth of SCHED_DEADLINE tasks. Recall that the

bandwidths of SCHED_DEADLINE tasks are derived from parameters dl_runtime and dl_period,

which are provided to Linux during a policy change request. Because dl_runtime and dl_period are

not determined by measurement, they are invariant to CPU frequencies. This contribution by running_bw

should be multiplied by the maximum frequency regardless of whether frequency invariance is supported.

Multiplying by the current frequency in (4.6) incorrectly reduces frequency. In practice, this probably does

not cause additional deadline misses due to the 1.25 scaling factor.

Triggering frequency updates. Frequency updates under schedutil are triggered by calling cpufreq_

update_util(). Recall from Section 4.4.8 that this function is called by __add_running_bw() and

__sub_running_bw(), the helper functions for modifying running_bw on the corresponding CPU.

Thus, schedutil attempts to set the CPU frequency whenever running_bw is modified on a CPU.

229

cpufreq_update_util() calls a callback function set by the selected frequency governor. For

schedutil, the callback function is one of sugov_update_single_perf(), sugov_update_

single_freq(), or sugov_update_shared(). These callback functions communicate with the

frequency driver. sugov_update_single_perf() and sugov_update_single_freq() differ

in how they communicate with the driver. These differences are beyond the scope of this dissertation.

sugov_update_shared() is used when the corresponding CPU is in a cpufreq_policy that

contains other CPUs. A cpufreq_policy is a set of CPUs that share hardware for controlling frequency.

sugov_update_shared() scales the frequencies of all CPUs in the cpufreq_policy according to

the largest total bandwidth of any CPU in the cpufreq_policy.

4.4.10 Core Scheduling

Core scheduling is optionally enabled under SMT. In Linux terms, a core is a set of neighboring logical

CPUs under SMT. Under core scheduling, tasks are assigned tags called cookies such that the scheduler will

only schedule tasks with the same cookie on the CPUs in a core. A task’s cookie is stored in member core_

cookie in struct task_struct. A new cookie can be generated for a task and a cookie can be shared

between tasks using the prctl (process control) system call. Note that a forked task automatically inherits

its parent’s cookie. By default, each task’s cookie has value 0. Kernels configured with core scheduling add

additional members (presented in Listing 4.36) to task_struct and rq. The usage of these member is

detailed in the following paragraphs.

For each core, one rq corresponding with a CPU in said core is designated the core runqueue that stores

the state of said core. This state is the “shared state” members in Listing 4.36. The most important of these

members if core_cookie, the cookie value of the core. core_cookie in the core runqueue matches

core_cookie in task_struct for any task scheduled on a CPU in the core. For each runqueue of a

CPU in a core, pointer core points to the core runqueue storing the shared state. The remaining shared state

members are core_task_seq and core_pick_seq. These are sequence numbers that are used with

per-runqueue members core_pick and core_sched_seq to implement coordinated scheduling with

the core, which will be detailed in later paragraphs. The final members we discuss are core_tree in rq

and core_node in task_struct. core_node is used to insert a task into core_tree. The usage of

core_tree will be described in later paragraphs.

230

struct rq {
...
/* per rq */
struct rq *core;
struct task_struct *core_pick;
unsigned int core_sched_seq;
struct rb_root core_tree;

/* shared state */
unsigned int core_task_seq;
unsigned int core_pick_seq;
unsigned long core_cookie;

};

struct task_struct {
...
struct rb_node core_node;
unsigned long core_cookie;

};

Listing 4.36: Core scheduling members.

Coordinated scheduling. Under core scheduling, the __schedule() function behaves differently than

the pseudocode presented in Listing 4.4. Specifically, the logic represented by lines 16-28 of Listing 4.4 are

replaced with the coordinated scheduling logic to be described in this subsection.

CPUs in a core must coordinate their scheduling to only schedule tasks with the same cookie. To facilitate

this, any CPU that calls __schedule() suggests to the other CPUs in the core which tasks they should

schedule. The CPU calling __schedule() writes these suggested tasks to the core_pick pointers in

the other CPUs’ runqueues.

Let a CPU calling __schedule() be denoted as a rescheduling CPU. Core scheduling in __

schedule() occurs in three steps.

Core Sched. 1: Decide whether to schedule a suggested task.

In the first step, the rescheduling CPU observes its corresponding core_pick pointer to see if another

CPU in the core has already suggested a task from within its own previous call to __schedule(). If

core_pick is valid (how core_pick may become invalid will be explained later when discussing

sequence numbers), then core_pick is scheduled and the second and third steps are skipped.

Core Sched. 2: Compute cookie for the core.

231

The second step involves selecting core->core_cookie for the core. The rescheduling CPU

identifies the highest priority task on any of the runqueues corresponding with the core. This is done by

iterating over the CPUs in the core and calling pick_task() (for each sched_class) to return

the highest priority task on said CPUs runqueue. core->core_cookie is set to the highest-priority

task’s core_cookie.

Core Sched. 3: Pick tasks for CPUs in the core matching the cookie.

The third step computes core_pick for each CPU in the core such that core_pick->core_

cookie matches core->core_cookie. Again, the CPUs in the core are iterated over, though

this time only tasks with core_cookie matching core->core_cookie are considered. For the

CPU in a given iteration, core_pick is set to the highest-priority task with a matching cookie.

The rescheduling CPU, which is currently calling __schedule(), straightforwardly schedules its

corresponding core_pick task. The rescheduling CPU alerts the other CPUs to reschedule by calling

resched_curr(). This causes the other CPUs to call __schedule(), during which they will

schedule their corresponding core_pick tasks in Core Sched. 1.

Cookie search tree. Core Sched. 3 requires efficiently searching for high-priority tasks matching a given

cookie. For this purpose, each task_struct that has non-zero core_cookie and is enqueued onto a

runqueue is also added to that runqueue’s core_tree, a binary search tree ordered on core_cookie.

Ties between tasks with equal core_cookie are broken such that higher-priority tasks are to the left of

lower-priority tasks. This simplifies searching for the highest-priority task with a certain cookie.

H Example 4.14. Consider a runqueue containing Tasks 0-6 with values as illustrated in Figure 4.17.

Figure 4.17 illustrates the structure of core_tree for this runqueue. core_tree is ordered first by

core_cookie (e.g., Task 6 with core_cookie of 5 is to the right of Tasks 0 and 1 with core_

cookie of 3) and second by task priority (e.g., Task 0 with deadline of 9 is to the right of Task 1

with deadline of 7). To find the highest-priority task with a given core_cookie, the scheduler

explores core_tree as a binary search tree. If a node with the desired core_cookie is found, the

scheduler then iterates through the left-side children to discover the highest-priority task with this core_

cookie.

232

Note that core_tree is an rb_root and not an rb_root_cached. There is no benefit to

caching the leftmost node of core_tree because there is no reason to believe the corresponding task

would have the desired core_cookie. N

Sequence numbers. In Core Sched. 1, it was mentioned that the value of core_pick may no longer be

valid when a CPU calls __schedule(). core_pick for a runqueue is invalidated whenever a task is

enqueued or dequeued from any runqueue of a CPU in the same core. Validity is determined via observing

three sequence numbers:

• core->core_task_seq, which is incremented whenever any runqueue in the core enqueues or

dequeues a task and whenever new core_pick tasks are chosen;

• core->core_pick_seq, which is set to core->core_task_seq’s value after a rescheduling

CPU sets core_pick for the runqueues in the core;

• and core_sched_seq, which is set to core->core_pick_seq whenever a runqueue schedules

its suggested core_pick task.

core_pick is valid if core->core_task_seq and core->core_pick_seq are equal and

core->core_pick_seq and core->core_sched_seq are unequal. Agreement between core_

task_seq and core_pick_seq indicates that the set of tasks available to be scheduled on the CPUs in

the core has not changed since the core_pick tasks were computed. Otherwise, if a new highest-priority

task was enqueued on a runqueue in the core, the core_cookie for the core must be set to this new task’s

core_cookie, necessitating new core_pick selections that match said core_cookie. Disagreement

between core_pick_seq and core_sched_seq indicates that the current core_pick suggestion

has not already been scheduled.

H Example 4.15. Consider a core with two CPUs as illustrated in Figure 4.18a. The rq of CPU 0 is the

core runqueue, thus, both rq’s core pointers point to the rq of CPU 0. Initially, both CPUs schedule

the tasks with earliest deadlines on their respective rqs. This is Task 1 on CPU 0 and Task 3 on CPU 1.

This is reflected in the curr pointers in both rqs. Both of these tasks have a core_cookie of 1. This

matches the core_cookie in rq 0, the core runqueue.

Suppose Task 2 wakes on CPU 1, as illustrated in Figure 4.18b. Because a task was enqueued onto a

rq in the core, core->core_task_seq is incremented from 10 to 11.

233

struct task_struct

pid : 1

core_cookie : 3

dl.deadline : 7

core_node

...

struct task_struct

pid : 2

core_cookie : 3

dl.deadline : 6

core_node

...

struct task_struct

pid : 6

core_cookie : 5

dl.deadline : 4

core_node

...

struct task_struct

pid : 3

core_cookie : 1

dl.deadline : 10

core_node

...

struct task_struct

pid : 5

core_cookie : 3

dl.deadline : 2

core_node

...

struct task_struct

pid : 0

core_cookie : 3

dl.deadline : 9

core_node

...

struct task_struct

pid : 4

core_cookie : 5

dl.deadline : 8

core_node

...

Figure 4.17: core_tree example.

234

CPU 1 reschedules due to the waking of Task 2. In Core Sched. 1 of core scheduling, CPU 1 decides

whether or not to schedule its rq’s suggested task, which is pointed to by core_pick (which happens

to be NULL). CPU 1 does not schedule its core_pick task because it observes that core->core_

task_seq (11) and core->core_pick_seq (10) are unequal.

CPU 1 begins Core Sched. 2, which computes the new core_cookie for the core. The highest

priority task on any rq in the core is identified. This is Task 2 on rq 1. CPU 1 sets core->core_

cookie to Task 2’s core_cookie, which is 2. CPU 1 also increments core->core_task_seq

from 11 to 12. (Why core_task_seq is incremented here will be illustrated later in Example 4.16.)

The state of the system is as illustrated in Figure 4.18c.

CPU 1 begins Core Sched. 3, which selects core_pick tasks for each rq in the core. On each of

these rqs, core_pick is set to the highest-priority task on said rq that has core_cookie equal to

core->core_cookie (2). This is Task 0 on rq 0 and Task 2 on rq 1. CPU 1 sets core->core_

pick_seq to core->core_task_seq (12). The state of the system is as illustrated in Figure 4.18d.

CPU 1 completes its rescheduling by scheduling its core_pick task (Task 2). This sets curr to

Task 2 and core_pick to NULL on rq 1. core_sched_seq is also set to core->core_pick_

seq (12). The state of the system is as illustrated in Figure 4.18e.

CPU 1 alerts CPU 0 to reschedule. When CPU 0 executes Core Sched. 1, it observes that

core->core_task_seq is equal to core->core_pick_seq (12). This indicates that the set of

tasks (Tasks 0-3) on the rqs in the core have not changed since core_pick was set on rq 0. CPU 0

also observes that core->core_pick_seq is unequal to core_sched_seq on rq 0. This indi-

cates that the core_pick value on rq 0 has not already been scheduled on CPU 0. Because of these

two observations, CPU 0 schedules its core_pick task (Task 0), as suggested by CPU 1. This sets

curr to Task 0 and core_pick to NULL on rq 0. The system is as illustrated in Figure 4.18f. Each

CPU schedules the highest-priority task on its rq that has core_cookie matching core->core_

cookie. N

The second increment of core->core_task_seq from 11 to 12 between Figures 4.18b and 4.18c

may seem unnecessary at first glance. The following example demonstrates how avoiding this increment can

result in redundant rescheduling.

235

rq 0

curr: Task 1

core: rq 0

core_pick: NULL

core_sched_seq:10

core_task_seq: 10

core_pick_seq: 10

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

rq 1

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:10

(a) Initial system.

rq 0

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:10

core_task_seq: 11

core_pick_seq: 10

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 2

dl.deadline : 3

pid : 2

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

rq 1

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:10

(b) Task 2 enqueued.

Figure 4.18: Core scheduling example.

236

rq 0

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:10

core_task_seq: 12

core_pick_seq: 10

core_cookie: 2
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 2

dl.deadline : 3

pid : 2

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

rq 1

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:10

(c) New core_cookie selected.

rq 0

curr: Task 3

core: rq 0

core_pick: Task 0

core_sched_seq:10

core_task_seq: 12

core_pick_seq: 12

core_cookie: 2
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 2

dl.deadline : 3

pid : 2

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

rq 1

curr: Task 3

core: rq 0

core_pick: Task 2

core_sched_seq:10

(d) New core_picks selected.

Figure 4.18: Core scheduling example (continued).

237

rq 0

curr: Task 3

core: rq 0

core_pick: Task 0

core_sched_seq:10

core_task_seq: 12

core_pick_seq: 12

core_cookie: 2
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 2

dl.deadline : 3

pid : 2

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

rq 1

curr: Task 2

core: rq 0

core_pick: NULL

core_sched_seq:12

(e) CPU 1 finishes rescheduling.

rq 0

curr: Task 0

core: rq 0

core_pick: NULL

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

core_cookie: 2
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 2

dl.deadline : 3

pid : 2

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

rq 1

curr: Task 2

core: rq 0

core_pick: NULL

core_sched_seq:12

(f) CPU 0 reschedules.

Figure 4.18: Core scheduling example (continued).

238

H Example 4.16. This example continues from the system in Example 4.15 and Figure 4.18f. Suppose

that after being scheduled on CPU 1 for some duration, Task 2 exhausts its runtime or yields such

that it bypasses being throttled. Task 2 increases its deadline from 3 to 11. Because throttling was

bypassed, Task 2 is not dequeued from rq 1. Thus, core->core_task_seq is not incremented due

to a task being enqueued or dequeued. Because Task 2 no longer has the earliest deadline among the

tasks on rq 1, CPU 1 reschedules. The state of the system is as illustrated in Figure 4.19a.

When CPU 1 executes Core Sched. 1, it observes that core->core_pick_seq and core_

sched_seq on rq 1 are equal. This indicates that core_pick on rq 1 is no longer valid.

CPU 1 executes Core Sched. 2, in which a new core->core_cookie value is selected. The

highest-priority task on any rq in the core is Task 1 with core_cookie of 1. core->core_cookie

is set to 1. The state of the system is illustrated in Figure 4.19b.

In the actual implementation, CPU 1 would increment core->core_task_seq from 12 to 13, as

in between Figures 4.18b and 4.18c in Example 4.15. Consider the hypothetical where core->core_

task_seq is not incremented and remains at 12.

CPU 1 executes Core Sched. 3, in which new core_pick tasks are selected. core_pick is set to

Task 1 on rq 0 and Task 3 on rq 1. CPU 1 sets core->core_pick_seq to core->core_task_

seq; however, because core_task_seq was not incremented, both core_pick_seq and core_

task_seq remain at 12. The state of the system is illustrated in Figure 4.19c.

CPU 1 schedules Task 3, setting, on rq 1, curr to Task 3, core_pick to NULL, and core_

sched_seq to 12. CPU 1 completes its rescheduling and alerts CPU 0 to reschedule. The state of the

system is illustrated in Figure 4.19d.

CPU 0 executes Core Sched. 1. Ideally, CPU 0 should schedule the core_pick task set on

rq 0 by CPU 1. Note that in Figure 4.19d, core->core_pick_seq equals core_sched_seq on

rq 0. This is because core_pick_seq was unchanged when it was set to core->core_task_

seq (in Figure 4.19c), which itself was previously not incremented (in Figure 4.19b). Because CPU 0

observes that core->core_pick_seq and core_sched_seq are equal, CPU 0 does not schedule

its core_pick task, instead continuing on to Core Sched. 2.

After CPU 0 selects new core_pick tasks in Core Sched. 3, CPU 0 will alert CPU 1 to schedule

its core_pick task. When CPU 1 reschedules, it will observe that core->core_pick_seq equals

core_sched_seq on rq 1, causing CPU 1 to also continue on to Core Sched. 2. CPU 1 will alert

239

CPU 0 to reschedule in Core Sched. 3. The two CPUs will continuously force each other to reschedule

until some task is enqueued or dequeued from rq 0 or 1, finally incrementing core->core_task_

seq. N

Example 4.17 demonstrates how incrementing core->core_task_seq whenever new core_pick

tasks are selected avoids the redundant rescheduling shown in Example 4.16.

H Example 4.17. This example continues from the system illustrated in Figure 4.19a. CPU 1 increments

core->core_task_seq from 12 to 13 in Figure 4.20a. When CPU 1 selects core_pick tasks for

rqs 0 and 1, it sets core->core_pick_seq to core->core_task_seq, which is 13. This is

reflected in Figure 4.20b. CPU 1 sets core_sched_seq on rq 1 to 13 when it finishes rescheduling

(Figure 4.20c). When CPU 0 is alerted to reschedule by CPU 1, it observes that core_sched_seq

on rq 0 (12) is unequal to core->core_pick_seq (13). Thus, CPU 0 schedules the core_pick

task (Task 1) selected previously by CPU 1. CPU 0 then sets core_sched_seq to 13, as illustrated in

Figure 4.20d. N

Balancing under core scheduling. CPUs whose runqueues are without any tasks matching the core’s

core_cookie are forced to schedule the idle task. CPUs forced to idle in this way attempt to pull tasks

with matching core_cookie from other CPUs. As in pull_dl_task(), this pull iterates over the other

CPUs. Note that this pull differs from those done by pull_dl_task() in that iteration terminates as

soon as a single task is migrated. pull_dl_task(), in comparison, iterates over all CPUs in the root_

domain in case a higher-priority task may be migrated from a CPU covered by a later iteration. Thus, core

scheduling may leave higher-priority tasks unscheduled even when they could preempt lower-priority tasks

with the same core_cookie.

4.5 Chapter Summary

In this chapter, we reviewed the SCHED_DEADLINE implementation as of kernel version 6.7. We

discussed how the shared scheduling infrastructure calls sched_class functions in order to implement

policies such as SCHED_DEADLINE. We have also briefly discussed features of the scheduler such as support

for affinities, asymmetric capacities, priority inheritance, GRUB, DVFS, and core scheduling.

240

rq 0

curr: Task 0

core: rq 0

core_pick: NULL

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

core_cookie: 2
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 2

core: rq 0

core_pick: NULL

core_sched_seq:12

(a) Task 2 yields.

rq 0

curr: Task 0

core: rq 0

core_pick: NULL

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 2

core: rq 0

core_pick: NULL

core_sched_seq:12

(b) New core_cookie selected.

Figure 4.19: Consequence of not incrementing core_task_seq.

241

rq 0

curr: Task 0

core: rq 0

core_pick: Task 1

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 2

core: rq 0

core_pick: Task 3

core_sched_seq:12

(c) New core_picks selected.

rq 0

curr: Task 0

core: rq 0

core_pick: Task 1

core_sched_seq:12

core_task_seq: 12

core_pick_seq: 12

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:12

(d) CPU 1 finishes rescheduling.

Figure 4.19: Consequence of not incrementing core_task_seq (continued).

242

rq 0

curr: Task 0

core: rq 0

core_pick: NULL

core_sched_seq:12

core_task_seq: 13

core_pick_seq: 12

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 2

core: rq 0

core_pick: NULL

core_sched_seq:12

(a) New core_cookie selected.

rq 0

curr: Task 0

core: rq 0

core_pick: Task 1

core_sched_seq:12

core_task_seq: 13

core_pick_seq: 13

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 2

core: rq 0

core_pick: Task 3

core_sched_seq:12

(b) New core_picks selected.

Figure 4.20: Correctly incremented core_task_seq.

243

rq 0

curr: Task 0

core: rq 0

core_pick: Task 1

core_sched_seq:12

core_task_seq: 13

core_pick_seq: 13

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:13

(c) CPU 1 finishes rescheduling.

rq 0

curr: Task 1

core: rq 0

core_pick: NULL

core_sched_seq:13

core_task_seq: 13

core_pick_seq: 13

core_cookie: 1
CPU 0

task_struct

core_cookie : 1

dl.deadline : 5

pid : 1

task_struct

core_cookie : 2

dl.deadline : 8

pid : 0

CPU 1

task_struct

core_cookie : 1

dl.deadline : 6

pid : 3

task_struct

core_cookie : 2

dl.deadline : 11

pid : 2

rq 1

curr: Task 3

core: rq 0

core_pick: NULL

core_sched_seq:13

(d) CPU 0 reschedules.

Figure 4.20: Correctly incremented core_task_seq (continued).

244

CHAPTER 5: MODIFYING SCHED_DEADLINE 1

This chapter presents two SCHED_DEADLINE patches aimed at restoring response-time bounds under

the ACS for special cases of heterogeneous multiprocessors. Both patches are available online (Tang, a,b).

Recall from Section 2.1 that, while a CBS is permitted to suspend and wake arbitrarily, such suspensions and

wakeups must be analytically treated as job completions and arrivals to comply with our task model. Our

response-time analysis does not apply without this treatment.

5.1 Version Differences

We briefly discuss differences between the kernels targeted by our patches and kernel 6.7, which was

discussed in Chapter 4. Our first patch, which will be discussed in Section 5.2, targets kernel 5.4, which

was the most recent long-term support kernel when this patch was first written. In the 5.4 kernel, the ACS

and SCHED_DEADLINE migration logic do not take asymmetric capacities into account. This kernel also

predates Linux scheduling features such as disabling migration and core scheduling.

Our second patch, which will be discussed in Section 5.3, targets a fork of the Linux kernel (Hardkernel)

made by Hardkernel, the creators of the ODROID series of board computers. We use this fork because it

supports the ODROID-XU4, the ARM big.LITTLE multiprocessor upon which we evaluate our patch. The

branch we target is based on kernel version 6.1. From the perspective of SCHED_DEADLINE, kernels 6.1

and 6.7 are practically the same outside of some minor bug fixes and code refactoring.

Generally, though the organization of the code has since changed, the behavior of SCHED_DEADLINE

(with the exception of the aforementioned unsupported features in the 5.4 kernel) in both earlier kernels is

basically consistent with the discussion in Chapter 4.

1Contents of this chapter previously appeared in the following paper:

Stephen Tang, James H. Anderson, and Luca Abeni. On the defectiveness of SCHED DEADLINE w.r.t. tardiness and
affinities, and a partial fix. In 2021 29th International Conference on Real-Time Networks and Systems, pages 46–56,
2021a.

245

5.2 IDENTICAL/SEMI-PARTITIONED

Our first patch (Tang, a) targets IDENTICAL/SEMI-PARTITIONED systems, i.e., systems where all

CPUs have the same capacity and each task has affinity for either all CPUs or one CPU. We target IDENTI-

CAL/SEMI-PARTITIONED systems for two reasons. The first reason is that setting SEMI-PARTITIONED

affinities is a straightforward method of decreasing migration overheads. The second reason is that, as we

will show in this section, response-time bounds can be restored for SCHED_DEADLINE under IDENTI-

CAL/SEMI-PARTITIONED with minimal changes to the existing implementation.

Our patch for IDENTICAL/SEMI-PARTITIONED attempts to change SCHED_DEADLINE to be closer

to Strong-APA-EDF without requiring a major overhaul of the existing code. We describe our proposed patch

in four subsections, each addressing a distinct aspect of the implementation: bypassing throttles, pushing to

the latest CPU, the ACS, and dynamic affinities. We begin each subsection by reviewing how each aspect

causes problems under IDENTICAL/SEMI-PARTITIONED. Afterwards, we explain how our patch modifies

the implementation.

5.2.1 Bypassing Throttles

Problem. Recall from the discussion in Section 4.4.3 that in SCHED_DEADLINE, a task that exhausts its

budget or calls sched yield after its next replenishment time will remain eligible, bypassing the throttled

state. If so, this task continues executing on the same CPU if it is not preempted by a different task on

the same runqueue with an earlier deadline. Recall Example 3.4 in Section 3.4.1. This behavior can cause

unbounded response times when partitioned tasks (i.e., tasks with affinity for only a single CPU) exist.

H Example 5.1. Consider a root_domain with CPUs 0-2 with implicit-deadline Tasks 0-4. Tasks’

affinities are illustrated in Figure 5.1a. Let (dl_runtime,dl_period) of Tasks 0 and 4 be (2, 6), of

Tasks 1 and 3 be (2, 2), and of Task 2 be (1, 6).

A schedule of this system is illustrated in Figure 5.1b. Tasks 1 and 3 are replenished every period.

Initially, Task 1 and Task 3 execute on CPU 0 and CPU 2, respectively. Even though Tasks 0 and 4

become ready at time 1, because Tasks 1 and 3 bypass their throttled states due to exhausting their

runtime at or past their deadlines (because these are implicit-deadline tasks, the next replenishment

time is also the deadline), they do not migrate to the idle CPU 1. This continues until time 6 when fixed

Tasks 0 and 4 preempt Tasks 1 and 3, respectively. The only other CPU available to both Task 1 and

246

CPU 0 CPU 1 CPU 2

Task 0 Task 1 Task 2 Task 3 Task 4

(a) Example 5.1 affinity graph.

0 2 4 6 8 10 12 14 16 18 20

Task 0

0 2 4 6 8 10 12 14 16 18 20

Task 1

0 2 4 6 8 10 12 14 16 18 20

Task 2

0 2 4 6 8 10 12 14 16 18 20

Task 3
Resp. Time of 4.0

0 2 4 6 8 10 12 14 16 18 20

Time

Task 4

(b) Example 5.1 schedule.

Figure 5.1: Unbounded response times due to bypassing throttling.

247

Task 3 is CPU 1 (Task 1 cannot preempt Task 4 on CPU 2 and Task 3 cannot preempt Task 0 on CPU 0),

which they cannot both use. We assume the tie-break here favors Task 1 and it is scheduled, while Task 3

does not execute until time 8 when it resumes execution on CPU 2. Task 1 is also forced to migrate off of

CPU 1 by fixed Task 2 at time 12. This repeats at time 18, except here Task 3 is scheduled over Task 1

because it is tardy by 2.0 time units due to not being scheduled over [6, 8).

Observe that this schedule is identical to the beginning of the schedule of the system in Example 3.4

and Figure 3.7 in Section 3.4.1 (though the tasks in Example 3.4 have different affinities than in this

example, the migrations that are taken are the same). As in Figure 3.7, the schedule in Figure 5.1b can be

repeated to yield unbounded response times. N

Patch. Example 5.1 would not have unbounded response times if successive jobs of Task 1 and Task 3

would migrate when a free CPU or CPU scheduling a task with a later deadline is available, thereby allowing

partitioned tasks to execute. For example, if Task 1 had migrated to free CPU 1 at time 2 instead of time 6 in

Figure 5.1b, then the first job of Task 0 would have been able to execute on CPU 0 over the interval [2, 4).

This would have freed CPU 0 over [6, 8), allowing Task 3 to execute and preventing its increase in response

time.

Recall that successive jobs of tardy tasks do not migrate because they bypass the throttled state, skipping

the push that occurs in function dl_task_timer(), which is called when a task returns from being

throttled. Our patch addresses this by removing the branch in which a task bypasses throttling. This causes

successive jobs of tardy tasks that would have otherwise continued to execute on the same CPU to be pushed

from that CPU. For example, at time 2 in Figure 5.1b, Task 1 completes its job. Under our patch, Task 1

would be throttled and immediately unthrottled because its next replenishment time is also at time 2 (instead

of not being throttled at all, as in the original implementation). Due to calling dl_task_timer(), Task 1

would be pushed from CPU 0 to free CPU 1. This is the schedule described in the previous paragraph that

reduces response times.

Note that dl_task_timer() will not push a scheduled task, as the scheduled task on a runqueue is

removed from said runqueue’s tree of pushable tasks (recall from Section 4.4.2.4 that set_next_task_

dl() calls dequeue_pushable_dl_task()). This is problematic because throttled tasks may still be

scheduled when dl_task_timer() executes because rescheduling is not instantaneous. To guarantee

that a tardy task is pushed in our patch, dl_task_timer() may need to wait for the tardy task to be

248

unscheduled. Unfortunately, it does not help to wait within dl_task_timer() for the relevant CPU to

reschedule, as both dl_task_timer() and __schedule() are both required to hold the runqueue’s

lock to execute. In our patch, when dl_task_timer() executes and observes that the task to be pushed is

still scheduled, the callback releases the runqueue’s lock and retries in the future, giving the relevant CPU the

chance to reschedule. This is done by calling hrtimer_forward() within dl_task_timer() and

returning HRTIMER_RESTART.

5.2.2 Pushing to the Latest CPU

Problem. The target CPU of a push is the CPU scheduling the task with the latest deadline if no CPUs in the

root_domain are free of SCHED_DEADLINE tasks. In SCHED_DEADLINE, this latest CPU is identified

via the cpudl heap. This heap orders CPUs by the earliest deadline of any task on the corresponding CPU’s

runqueue. Because a task being pushed is on its runqueue prior to being migrated, the deadline of the pushing

CPU in the cpudl heap may be that of the task being pushed. This can result in priority inversions under

SEMI-PARTITIONED.

H Example 5.2. Consider a root_domain with CPUs 0 and 1 and implicit-deadline Tasks 0-2 with

(dl_runtime,dl_period) of (10, 70) for Task 0, (10, 50) for Task 1, and (5, 10) for Task 2. Tasks’

affinities are illustrated in Figure 5.2a. A schedule for this system is presented in Figure 5.2b. Task 2

releases its first job at time 0 and executes on CPU 0 until time 5, at which point Task 2 is throttled.

At time 7, both Task 0 and Task 1 release their first jobs and begin executing. At time 10, Task 2 is

replenished. This results in Task 2 being placed back onto CPU 0’s dl_rq (as CPU 0 was Task 2’s last

CPU) and CPU 0 attempting to push Task 2 (in dl_task_timer()).

Because, at the instant Task 2 is pushed, CPU 0 executes Task 0 with deadline 77 and CPU 1

executes Task 1 with deadline 57, Task 2 should remain on CPU 0 and preempt Task 0, whose

deadline is later than that of Task 1. The actual behavior exhibited by SCHED_DEADLINE is that

CPU 0 will have Task 2’s deadline of 20 in the cpudl heap. This causes SCHED_DEADLINE to

believe that CPU 1 with Task 1’s deadline in the heap is the later CPU, resulting in Task 2 being

pushed to CPU 1, preempting Task 1. N

Patch. The cpudlwould not mistakenly target the wrong CPU in a push if it did not consider the deadline

of the task being pushed. Our patch accomplishes this by dequeuing (from the dl_rq, not the runqueue

249

CPU 0 CPU 1

Task 0 Task 1 Task 2

(a) Example 5.2 affinity graph.

0 20 40 60 80

Task 0

0 20 40 60 80

Task 1

0 20 40 60 80

Time

Task 2

(b) Example 5.2 schedule.

Figure 5.2: Pushes can cause priority inversions.

250

rq) any task in the process of being pushed before the cpudl is accessed to determine the target CPU (in

function find_later_rq()). Dequeueing updates the cpudl, preventing the pushing CPU from being

represented by the pushed task’s deadline in the cpudl.

We enqueue a pushed task back onto the pushing CPU’s dl_rq once find_later_rq() returns.

Though this enqueue is redundant if a target CPU is successfully identified and the push does not fail due to

the race conditions discussed in Section 4.4.2.2, as the task must then be dequeued once again to be enqueued

onto the target CPU’s dl_rq, enqueuing the task on its original dl_rq is necessary because push_dl_

task() expects the task to be enqueued.

5.2.3 ACS

Problem. The existing ACS does not prevent a user from overloading a given CPU in a root_domain by

partitioning tasks with combined utilization exceeding 1.0 onto that CPU.

Patch. Our patch supports the creation of partitioned tasks by using __sched_setaffinity() to set

a task’s affinity to a single CPU in its root_domain prior to entering SCHED_DEADLINE (as will be

discussed in the next subsection, SCHED_DEADLINE tasks are not allowed to change their affinities). We

modify __sched_setscheduler() to not fail if a task has affinity for a single CPU.

Besides the condition in (4.1), we modify the ACS to also maintain,

∀πj ∈ π :
∑

τi: αi={πj}

ui ≤
sched_rt_runtime_us

sched_rt_period_us
. (5.1)

As in (4.1), π in (5.1) refers to the CPUs belonging to a single root_domain. Checks for (5.1) are

added wherever __dl_overflow() is called and in sched_dl_global_validate() (recall from

the discussion in Section 4.4.4 that these functions check that (4.2) will not be violated by a request). Similar

to how the left-hand side of (4.1) is tracked in total_bw (recall that (4.2) is (4.1)’s equivalent in terms of

SCHED_DEADLINE variables), the left-hand side of (5.1) is tracked in a new member partitioned bw

stored in each runqueue’s dl_rq.

(5.1) is not checked in dl_cpuset_cpumask_can_shrink(), which is called when the set of

CPUs in a root_domain changes. This is because the expected behavior under Linux when the CPUs

251

0 1 2 3 4 5 6 7 8 9

Task 0
CPU 1 CPU 0 CPU 1 CPU 0

0 1 2 3 4 5 6 7 8 9

Time

Task 1

Figure 5.3: Dynamic affinities can starve tasks.

in a root_domain are changed is that any affinity changes made with __sched_setaffinity()

are lost. Thus, all partitioned SCHED_DEADLINE tasks in the root_domain will become global (for

all CPUs in the root_domain), making (5.1) irrelevant. Because all partitioned tasks become global,

partitioned bw must be set to 0 for any CPUs in the root_domain.

5.2.4 Dynamic Fine-Grained Affinities

Problem. We neglected to mention any checks made for (5.1) when __sched_setaffinity() is used

to change a partitioned task’s CPU, nor did we mention how we modified __sched_setaffinity() to

accept such requests. As it turns out, allowing SCHED_DEADLINE tasks to dynamically change their affinity

can unpredictably change a tardy task’s deadline.

H Example 5.3. This example corresponds with Figure 5.3. Consider a SEMI-PARTITIONED system

on a root_domain with CPUs 0 and 1 and two implicit-deadline tasks Task 0 (initially partitioned

on CPU 0) and Task 1 with affinity for both CPUs. The parameters (dl_runtime,dl_period) are

(1, 2) for Task 0 and (1, 1) for Task 1. Both tasks enter the system at time 0.

Task 1, whose deadline is earlier than Task 0’s deadline, executes on CPU 0 until preempted

by Task 0 at time 2. Task 1 migrates to CPU 1 once preempted. However, Task 0 calls __sched_

setaffinity() to change its affinity from being partitioned on CPU 0 to CPU 1. __sched_

setaffinity() invokes the change pattern (see Section 4.3.5). When the change pattern enqueues

Task 0 onto CPU 1’s runqueue, enqueue_task_dl() is called with flag ENQUEUE_RESTORE. Be-

cause enqueue_task_dl() observes that ENQUEUE_RESTORE is set and that Task 0’s deadline

252

of 2 has passed, Task 0’s runtime and deadline parameters are reset as if it entered SCHED_

DEADLINE at time 2. Task 0’s deadline is updated from 2 to 4. Thus, Task 0 does not have an early

enough deadline to preempt Task 1, and so it continues to be unscheduled. Repeating this pattern of

dynamic affinity requests can prevent Task 0 from executing indefinitely, as in Figure 5.3. N

Patch. We forbid SCHED_DEADLINE tasks from changing their affinities. We do this by modifying __

sched_setaffinity() to automatically reject any requests for SCHED_DEADLINE tasks. If a user

desires to change the affinity of a SCHED_DEADLINE task, the task must first leave SCHED_DEADLINE,

change its affinity as a non-SCHED_DEADLINE task, and reenter SCHED_DEADLINE. This makes explicit

to users that affinity changes will reset tasks’ SCHED_DEADLINE parameters.

Rejecting all requests to __sched_setaffinity() may be heavy handed, but it is non-trivial to

determine what restrictions are necessary to both prevent race conditions and account for such requests in

proofs of bounded response times.

Altogether, our patch is fairly minor, modifying roughly 200 lines of code (for context, the main SCHED_

DEADLINE file is roughly 3,000 lines of code).

5.2.5 Bounded Response Times

An objective of this patch is to guarantee that response times are bounded under the patched ACS.2 We

discuss at a high level why our changes to SCHED_DEADLINE result in bounded response times in this

subsection. Formal details are presented in Appendix B.

Our patch is designed such that, assuming the relative order of deadlines is unchanged over a sufficiently

long time interval, the configurations chosen by SCHED_DEADLINE in this interval approach a configuration

that would be chosen by Strong-APA-EDF.

H Example 5.4. Consider four tasks and three CPUs such that affinites are as illustrated in Figure 5.4

and the relative order of deadline values from earliest to latest at the current time instant is Task 1,

Task 2, Task 0, and Task 3. Suppose the configuration chosen at this time is as illustrated in Figure 5.4a.

There is an alternating path of (Task 0, CPU 0, Task 1, CPU 2, Task 3) from a higher- to a lower-priority

task.

2This assumes an idealized version of SCHED_DEADLINE without features such as disabling migration, CPU hotplug,
priority inheritance, GRUB, DVFS, core scheduling, etc.

253

CPU 0 CPU 1 CPU 2

Task 0 Task 1 Task 2 Task 3

(a) Alternating path of (Task 0, CPU 0, Task 1, CPU 2,
Task 3).

CPU 0 CPU 1 CPU 2

Task 0 Task 1 Task 2 Task 3

(b) Migration of Task 1 inverts alternating path.

Figure 5.4: Alternating paths under SEMI-PARTITIONED.

Strong-APA-EDF would select a configuration that inverts the edges along this alternating path.

Observe that inverting these edges involves a single migration of Task 1 from CPU 0 to CPU 2 (Fig-

ure 5.4b). Under our patch, Task 1 takes this migration once it is pushed in dl_task_timer(),

which is never skipped due to bypassing throttling. Thus, the behavior under our patch matches that of

Strong-APA-EDF after Task 1 exhausts its remaining runtime (due to Task 1 needing to be throttled

for dl_task_timer() to be called). N

Under SEMI-PARTITIONED, for any alternating path from a higher-priority task to a lower-priority

task or free CPU, there is always a shortest alternating path containing one global task such that inverting

the edges of the shortest path results in the same tasks being scheduled as inverting the edges of the original

path (e.g., in Example 5.4, path (Task 0, CPU 0, Task 1, CPU 2, Task 3) is a shorter alternating path than

(Task 0, CPU 0, Task 1, CPU 1, Task 2, CPU 2, Task 3), and inverting either path in Figure 5.4a results in

Tasks 1, 2, and 3 being scheduled). Thus, there is no need to compute paths to achieve Strong-APA-EDF-like

behavior. It is sufficient to migrate the global task in the shortest path to the latest CPU, which always occurs

on replenishment under our patch.

As a consequence of waiting for a task’s runtime to be exhausted before migrating to remove an

alternating path, the response-time bounds derived under our patch are inflated from those derived for

Strong-APA-EDF in Corollay 3.23. The details of this are presented in Appendix B.

254

5.2.6 Evaluation

In this subsection, we evaluate the performance of our patched SCHED_DEADLINE kernel against the

original implementation. We present histograms showing the distribution of relevant measured overheads.

The cumulative impact of different overheads will be presented later in Table 5.1, which presents the sum of

measurements for each overhead we consider.

Validation. To the author’s knowledge, there does not exist a suitable suite of tests for validating SCHED_

DEADLINE patches. Juri Lelli (the SCHED_DEADLINE maintainer) and Steven Rostedt (who, among many

other functions, is a SCHED_DEADLINE reviewer) both maintain Git repositories (Lelli, 2016; Rostedt,

2018) of tests, but these repositories are rarely updated (e.g., at time of writing, the latest commits were made

between five and ten years ago). These tests also seem to focus on either testing kernel stability or SCHED_

DEADLINE features that our patches do not interact with (e.g., priority inheritance, GRUB, dynamically

modifying cpusets). As such, we did not use these tests to validate our patches.

We validated our patches by observing the behavior of tailored test task systems (such that the expected

migration behavior is known) with few tasks and large parameters (i.e., dl_runtime and dl_period in

[0.1, 1.0] second). Large parameters are necessary to ensure the general migration behavior is not affected

by jitter in initial arrival times (i.e., the time instants when tasks enter SCHED_DEADLINE). The taskset

command was used to pin each task to its initial CPU in the test while running as a SCHED_NORMAL

task. The taskset command was then used to set the task’s affinity to that required by the test, before

immediately changing the task’s policy to SCHED_DEADLINE (this use of taskset must be done prior to

changing the task’s policy because our patch does not permit dynamic affinities, as discussed in Section 5.2.4).

For a global task, this second use of taskset is used to give the task affinity for each CPU in the root_

domain. For a partitioned task, a second use of taskset is not required. Each partitioned task only has

affinity for its initial CPU. trace-cmd and KernelShark were used to visualize schedules of these test

task systems. This process was used to confirm that our patch eliminates bypassing throttles and correctly

pushes to the latest CPU.

Experimental setup. Our experiments were conducted on a 16-CPU Intel Xeon Silver 4110 multiprocessor.

Measured workloads were restricted to a cluster composed of eight CPUs, as these compose a single socket

and NUMA node. Periodic workloads were generated for these experiments using taskgen (Emberson

et al., 2010; Lelli, 2014) and rt-app (rt-app). Tasks with SEMI-PARTITIONED affinities were created by

255

applying worst-fit packing to the task sets generated by taskgen and determining any unpacked tasks to

have affinity for all eight CPUs.

We are interested in how our modifications to SCHED_DEADLINE’s migration code affect overheads.

Changes to overheads are due to forcing tasks executing past their deadlines to be throttled, thereby

requiring that such tasks wait for hrtimer callback dl_task_timer() to complete before becoming

eligible again, and due to the added dequeue and enqueue operations required for every push. For measuring

the additional latency caused by waiting for dl_task_timer() (versus bypassing throttling), we inserted

ftrace event tracepoints into our patched kernel that are triggered whenever a task executing past its

deadline is forced into being throttled and when dl_task_timer() returns said task onto a runqueue.

To measure the duration of pushes, we also inserted tracepoints around push_dl_task(). To get a more

holistic view of how these changes to migration code affect performance, we also measured the tardiness

tasks experience scaled by their periods. Tardiness was measured instead of response times because SCHED_

DEADLINE stores the deadlines of a task but not its arrival times.

taskgen is configured such that each generated task set has a total utilization of 7.52. This is slightly

below 95% of eight CPUs’ worth of capacity to guarantee that the ACS will not reject tasks due to potential

rounding in taskgen in our patched kernel (the ACS must be disabled for SEMI-PARTITIONED scheduling

in the unpatched kernel). We considered task systems composed of 16 and 40 tasks to consider systems with

both heavy and light per-task utilizations. Ten different task systems were measured for each number of tasks.

Timestamps for each task system were collected over an interval of ten minutes on both the original and our

patched kernel.

Latency of forced throttles. Note that we do not compare against the original SCHED_DEADLINE imple-

mentation when considering the throttling of tardy tasks because this overhead is unique to our patched kernel.

The distribution of sampled durations during which our patched SCHED_DEADLINE forced a task to be

throttled when it would not have in the original implementation is presented in Figure 5.5. The average latency

caused by a forced throttle was 44 µs for systems with 16 tasks and 34 µs for systems with 40 tasks. The

multimodal distribution of throttle times in Figure 5.5a is likely due to our usage of hrtimer_forward()

within the dl_task_timer() callback to ensure that tardy tasks forced into throttling are unscheduled

before dl_task_timer() attempts to push a task. The distance between peaks in the distribution roughly

corresponds with the forwarding time of the hrtimer. As each usage of hrtimer_forward() requires

256

20 40 60

Time (µs)

0

2000

4000

6000

8000

10000
Fr

eq
ue

nc
y

(a) n = 16; 228,152 samples.

20 40 60

Time (µs)

0

200

400

600

Fr
eq

ue
nc

y

(b) n = 40; 12,525 samples.

Figure 5.5: Forced Throttle Duration.

the task to wait an additional timer interval, each peak in this histogram likely corresponds with a different

number of calls to this function. In Figure 5.5b, higher competition for CPUs due to a higher number of tasks

than in Figure 5.5a may cause the throttled task to always be unscheduled by the time dl_task_timer()

is called, thereby removing the multimodal distribution. Higher competition for CPUs also explains why

there is a lower frequency of forced throttles for n = 40. It is less likely that a task that completes after

its deadline will remain the highest-priority task on its runqueue under this competition. When a task is

unscheduled due to a higher-priority task on its runqueue, there is no need to force the unscheduled task into

throttling.

These latencies may not be acceptable for servers whose workloads require sub-ms response times.

However, if the size of these latencies is being caused by waiting for the hrtimer as we suspect, an

alternative method for forcing tasks that exhaust their runtimes to migrate that avoids using the hrtimer

may be more practical.

Duration of pushes. The distributions of sampled push durations for both SCHED_DEADLINE and our

patched kernel are presented in Figure 5.6. These distributions are multimodal because of the retry loop in

find_lock_later_rq(), which is called by push_dl_task(). The effect of the added enqueue and

dequeue operations on push overheads is minor, entailing a change of about 1 µs to the average duration of a

push.

Tardiness. The distribution of samples of tasks’ tardiness levels is presented in Figure 5.7. Note that, for

both the original and patched kernels, the large difference between samples collected for n = 16 and n = 40

257

0 2 4 6 8 10

Time (µs)

0

20000

40000

60000

Fr
eq

ue
nc

y

(a) Original (n = 16); 959,363 samples.

0 2 4 6 8 10

Time (µs)

0

20000

40000

60000

Fr
eq

ue
nc

y

(b) Patched (n = 16); 946,796 samples.

0 2 4 6 8 10

Time (µs)

0

20000

40000

60000

Fr
eq

ue
nc

y

(c) Original (n = 40); 1,191,766 samples.

0 2 4 6 8 10

Time (µs)

0

20000

40000

60000

Fr
eq

ue
nc

y

(d) Patched (n = 40); 1,211,837 samples.

Figure 5.6: Push Durations.

258

0.0 0.5 1.0 1.5

Tardiness Rel. to Period

0

10000

20000

30000

40000

50000

60000
Fr

eq
ue

nc
y

(a) Original (n = 16); 701,266 samples.

0.0 0.5 1.0 1.5

Tardiness Rel. to Period

0

10000

20000

30000

40000

50000

60000

Fr
eq

ue
nc

y

(b) Patched (n = 16); 626,166 samples.

0.0 0.5 1.0 1.5

Tardiness Rel. to Period

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

(c) Original (n = 40); 99,223 samples.

0.0 0.5 1.0 1.5

Tardiness Rel. to Period

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

(d) Patched (n = 40); 106,541 samples.

Figure 5.7: Tardiness.

is due to task systems with a higher number of tasks having a lower average task utilization. Average tardiness

is negligibly lower under our patched kernel compared to the original implementation.

Altogether, the changes made by our patch do not seem to increase overheads by a substantial amount.

The most concerning overhead is the latency caused by forwarding the dl_task_timer() callback

function, and even this overhead occurs relatively infrequently. This can be observed by comparing the

number of samples measured in Figures 5.5 and 5.6. The number of pushes performed by the system vastly

outnumbers the number of instances where tardy tasks are forced to throttle. As can be seen in Table 5.1,

though the cumulative time spent forcing throttles is higher for n = 16 (recall from the discussion of

Figure 5.5 that forced throttling is only frequent when a few tasks have large utilizations), it is within the

same order of magnitude as the cumulative time of pushes.

259

n = 20 n = 40
Original Patched Original Patched

Forced Throttle N/A 10,134 N/A 423
Push 4,991 4,279 6,060 5,593

Table 5.1: Aggregated overheads (ms).

2MB L2

32KB L1-D

32KB L1-I

Cortex-A15

512KB L2

32KB L1-D

32KB L1-I

Cortex-A7

Figure 5.8: Samsung Exynos 5422.

5.3 UNIFORM/SEMI-CLUSTERED

Our patch for UNIFORM/SEMI-CLUSTERED (Tang, b) implements a special case of Unr-WC on a

2-type multiprocessor, i.e., each processor has one of two speeds.

5.3.1 Hardware platform

This patch was implemented on the ODROID-XU4 (Roy and Bommakanti, 2017), which contains a

Samsung Exynos 5422 multiprocessor, illustrated in Figure 5.8. This multiprocessor contains four big

Cortex-A15 CPUs (2.0 GHz) and four LITTLE Cortex-A7 CPUs (1.4 GHz). Each set of four CPUs shares an

L2 cache.

We impose SEMI-CLUSTERED affinities by requiring that any task has affinity for either all big CPUs,

all LITTLE CPUs, or all CPUs. Having affinity for only big or only LITTLE CPUs is desirable because

migrations between the same type of CPU result in fewer L2 cache misses. Some CPUs must have affinity

for all CPUs in order to avoid bin-packing-related capacity loss.

260

5.3.2 Scheduler

Implementing Unr-WC directly requires solving its defined AP instance to compute an optimal config-

uration whenever a rescheduling is necessary. This is impractical due to the computational complexity of

the AP (recall from Section 2.3 that solving an instance using the incremental method has O (max {n,m})

time complexity) and the unpredictable migrations discussed in Section 3.5.1.1. This can be mitigated by

implementing a simplified special case of Unr-WC, which we denote as Ufm-SC-EDF, for our considered

multiprocessor model. Other examples of simplified special cases are Ufm-WC and Strong-APA-WC, which

have lower computational complexity than Unr-WC and only migrate tasks on scheduling events (i.e., job

arrivals and completions).

Note that our proof that Ufm-SC-EDF is a special case of Unr-WC relies on the following two

assumptions.

. Constrained Deadlines Assumption. All tasks are constrained-deadline tasks, i.e., for any task

τi ∈ τ : Di ≤ T i. /

Recall from the discussion of the ACS in Section 4.4.4 that SCHED_DEADLINE already maintains the

Constrained Deadlines Assumption.

. No-Early-Releasing Assumption. There is no early releasing, i.e., for any job τ i,j , rdy i,j ≥ ai,j . /

Note that priority inheritance (recall Section 4.4.7) is incompatible with the No-Early-Releasing Assump-

tion, and should not be used in conjunction with our patch.

We will later use these assumptions to define priority points under Ufm-SC-EDF that mitigate the issues

inherent to Unr-WC (of which Ufm-SC-EDF is a special case) discussed in Section 3.5.1.1.

Our definition of Ufm-SC-EDF relies on Definitions 5.1-5.8, presented below.

O Definition 5.1. The set of big CPUs is denoted πbig and the set of LITTLE CPUs is denoted πLIT.

The number of big and LITTLE CPUs are denoted as mbig and mLIT, respectively.

The subset of tasks τi with affinity αi = πbig is denoted τ big, with affinity αi = πLIT is denoted τLIT,

and with affinity αi = π = πbig ∪ πLIT is denoted τ glob.

At time t, the subset of active tasks in τ big, τLIT, and τ glob are denoted τ big
act (t), τLIT

act (t), and τ glob
act (t),

respectively. 4

261

It follows from our platform that π = πbig ∪ πLIT, τ = τ big ∪ τLIT ∪ τ glob, and, for any time t,

τact(t) = τ
big
act (t) ∪ τLIT

act (t) ∪ τ glob
act (t).

O Definition 5.2. The speed of a big CPU πj ∈ πbig is 1.0. The speed of a LITTLE CPU πj ∈ πLIT is

denoted as spL ∈ (0, 1.0). 4

Definition 5.2 reflects that the maximum capacity of any CPU in Linux is 1.0 (recall Section 4.4.6).

In order to schedule an optimal configuration, it is sometimes necessary to migrate a running task

τi ∈ τ glob from a LITTLE to a big CPU, even if no other task preempts this running task. Such migrations

are analogous to those under Ufm-EDF where running tasks migrate to faster CPUs when the formerly

higher-priority tasks running on these CPUs suspend. For our to-be-presented definition of Ufm-SC-EDF, it

is convenient to represent such migrations as task τi being preempted by an idle task, defined below.

O Definition 5.3. The set of m idle tasks, which is disjoint from the set of real-time tasks τ , is denoted

τ idle , {τn+1, τn+2, . . . , τn+m}. ‘Scheduling’ an idle task is symbolic of not scheduling any real-time

task in τ . For each idle task τi ∈ τ idle, the deadline of τi is defined as di(t) , t+ T [1].

For each CPU πj ∈ π, the affinity of idle task τn+j is defined as αn+j , {πj}, i.e., the idle task

τn+j only has affinity for CPU πj . 4

While tasks of τ denote SCHED_DEADLINE tasks, tasks of τ idle are named after the idle tasks on

each rq. Recall that, in Linux, each CPU always schedules some task because the idle task on a rq is

always ready. Tasks of τ idle are similar in that every CPU πj is guaranteed to schedule some task (either in τ

or τ idle) in an augmented configuration, formalized in Definitions 5.4 and 5.5 below.

O Definition 5.4. The augmented set of tasks is τ̄ , τ ∪ τ idle. The augmented set of active tasks at

time t is τ̄act(t) , τact(t)∪ τ idle. The augmented set of ready tasks at time t is τ̄rdy(t) , τrdy(t)∪ τ idle.4

For any time t, we have τ idle ⊆ τ̄rdy(t) because any idle task is always ready, i.e., not scheduling a

SCHED_DEADLINE task is always an option on any CPU.

O Definition 5.5. For a configuration X, its augmented configuration X̄ ∈ R(n+m)×m is X vertically

concatenated with the m ×m matrix such that ∀πj ∈ π :
(
∀τi ∈ τrdy(t) : xi,j = 0

)
⇒ x̄n+j,j = 1, i.e.,

any CPU πj not matched with a ready task in X is matched to its corresponding idle task τn+j in X̄.4

262

π1

τ5

π2

τ6

π3

τ7

π4

τ8

π5

τ9

τ1 τ2 τ3 τ4

Figure 5.9: Augmented configuration X̄(2).

H Example 5.5. Recall the configuration X(2) from Example 2.7 and illustrated in Figure 2.6b. Matrix

X̄(2) =

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

,

illustrated in Figure 5.9, is the augmented configuration corresponding with X(2). CPUs π1, π3, and π5,

which are unmatched in X(2), are matched to idle tasks τ5, τ7, and τ9 in X̄(2), respectively. N

It follows from Definition 5.5 that there is a one-to-one mapping between configurations and augmented

configurations. Going forward, the absence or presence of an overline (e.g., X and X̄) is used to denote a

given configuration and its corresponding augmented configuration.

O Definition 5.6. The deadline of CPU πj at time t under configuration X̄ is dCPU
j

(
X̄, t

)
, di(t),

where i is such that x̄i,j = 1, i.e., task τi ∈ τ̄rdy(t) is matched to πj in X̄. 4

263

In words, dCPU
j

(
X̄, t

)
denotes the deadline at time t of the task matched with CPU πj in configuration X̄.

This task must exist because CPU πj must be matched in X̄ with either a SCHED_DEADLINE task in τ or

CPU πj’s corresponding idle task τn+j ∈ τ idle.

O Definition 5.7. Let

dbig(X̄, t) , max
πj∈πbig

{
dCPU
j

(
X̄, t

)}
and

dLIT(X̄, t) , max
πj∈πLIT

{
dCPU
j

(
X̄, t

)}
. 4

In words, dbig
(
X̄, t

)
and dLIT

(
X̄, t

)
are the latest deadlines at time t of the tasks matched with big CPUs

in X̄ and with LITTLE CPUs in X̄, respectively.

Each task is assigned a weighted deadline (to be defined in Definition 5.8) that depends on dbig
(
X̄, t

)
and

dLIT
(
X̄, t

)
. The intuition behind weighted deadlines is to allow tasks in τ big, which must execute exclusively

on big CPUs, and tasks in τLIT, which must execute exclusively on LITTLE CPUs, to preempt a running task

in τ glob if doing so would cause said task in τ glob to migrate to a more preferable CPU. For example, suppose

that at a time t, a task τe ∈ τ glob is running on a LITTLE CPU while a big CPU runs an idle task and there is

an unscheduled task τ` ∈ τLIT such that de(t) < d`(t), i.e., task τe has an earlier deadline than task τ`.

Even though τe has an earlier deadline, it is preferable for τ` to preempt τe because doing so schedules τ`,

which was formerly unscheduled, and allows τe to migrate to a faster CPU. We allow τ` to preempt task τe by

comparing task τ`’s deadline against task τe’s weighted deadline in the preemption code instead of task

τe’s deadline.

On the other hand, suppose that τe ∈ τ glob is scheduled on a big CPU while a LITTLE CPU schedules

an idle task and τ` ∈ τ big is unscheduled. Even if τe has an earlier deadline than τ`, if the deadlines of

τe and τ` are ‘close,’ it is preferable that τe migrate to this LITTLE CPU to make room for τ`. Again, we

allow τ` to preempt τe by comparing task τ`’s deadline against task τe’s weighted deadline.

Because only tasks in τ glob have access to the CPUs in both πbig and πLIT (and thus, can potentially

be migrated to more preferable CPUs), only the tasks in τ glob have weighted deadlines distinct from their

264

deadlines. How much later the weighted deadline of a task τe ∈ τ glob is from its deadline is determined

by dbig
(
X̄, t

)
if τe is scheduled on a LITTLE CPU in X̄ and dLIT

(
X̄, t

)
if τe is scheduled on a big CPU in X̄.

O Definition 5.8. Given configuration X̄, time t, and processor πj , the weighted deadline of task τi is

d̄i
(
X̄, t

)
,

(
1.0− spL

)
· di(t) + spL · dLIT

(
X̄, t

)
and di(t) < dLIT

(
X̄, t

)τi ∈ τ glob, x̄i,j = 1, πj ∈ πbig,

1.0
spL · dbig

(
X̄, t

)
− 1.0−spL

spL · di(t)
and di(t) < dbig

(
X̄, t

)τi ∈ τ glob, x̄i,j = 1, πj ∈ πLIT,

di(t) otherwise

. 4

Having covered Definitions 5.1-5.8, we now present the definition of Ufm-SC-EDF.

. Ufm-SC-EDF. At time t, a configuration X̄ is chosen such that X̄ obeys the following rules.

USE 1: If task τ` ∈ τ̄rdy(t) is unmatched, then each CPU πj ∈ α` is matched with a task τe with

d̄e
(
X̄, t

)
≤ d`(t).

USE 2: If tasks τe, τ` ∈ τ glob are matched to CPUs πj1 and πj2 (i.e., x̄e,j1 = x̄`,j2 = 1) and

de(t) < d`(t), then sp(j1) ≥ sp(j2). /

USE 1 can be thought of as an extension of the scheduling shifts in Strong-APA-EDF. To see this,

consider the implications of USE 1 as spL → 1.0. The platform becomes a special case of an IDENTI-

CAL/ARBITRARY multiprocessor, for which Strong-APA-EDF is designed. We have

d̄i
(
X̄, t

)
→

dLIT

(
X̄, t

)
τi ∈ τ glob, x̄i,j = 1, πj ∈ πbig, and di(t) < dLIT

(
X̄, t

)
dbig
(
X̄, t

)
τi ∈ τ glob, x̄i,j = 1, πj ∈ πLIT, and di(t) < dbig

(
X̄, t

)
di(t) otherwise

.

Suppose that at some time t, tasks τe, τ`1 , and τ`2 are such that τe ∈ τ glob is scheduled on CPU πj1 ∈ πbig,

τ`1 ∈ τ big is unscheduled, and τ`2 ∈ τLIT is scheduled on CPU πj2 ∈ πLIT (see Figure 5.10a). Deadlines

are such that de(t) < d`1(t) < d`2(t) and d`2(t) = dLIT
(
X̄, t

)
, i.e., task τ`2 has the latest deadline of

any task scheduled on a CPU in πLIT. Under Strong-APA-EDF, a scheduling shift would occur such that

265

πj1 πj2

τ`1 τe τ`2

(a) Initial state.

πj1 πj2

τ`1 τe τ`2

(b) Shift under Strong-APA-EDF because d`1(t) <
d`2(t).

πj1 πj2

τ`1 τe τ`2

(c) τ`1 preempts τe because d`1(t) < d̄e
(
X̄, t

)
.

πj1 πj2

τ`1 τe τ`2

(d) τe preempts τ`2 because de(t) < d`2(t).

Figure 5.10: USE 1 as an extension of Strong-APA-EDF.

πj1 would schedule τ`1 and πj2 would schedule τe (see Figure 5.10b). Under Ufm-SC-EDF, even though

de(t) < d`1(t), USE 1 allows τ`1 to preempt τe (see Figure 5.10c) because

d`1(t) < d`2(t)

= dLIT(X̄, t)
= d̄e

(
X̄, t

)
.

Once τe is preempted by τ`1 on πj1 , task τe can then preempt τ`2 on πj2 (see Figure 5.10d). Observe by

comparing Figures 5.10b and 5.10d that the behavior under Ufm-SC-EDF is the same as that of Strong-

APA-EDF.

USE 2 can be thought of as an extension of Ufm-EDF. If τ = τ glob, then the platform becomes a special

case of a UNIFORM/GLOBAL multiprocessor, for which Ufm-EDF is designed. USE 2 becomes equivalent

to Ufm-EDF.

266

5.3.3 Ufm-SC-EDF is a Special Case of Unr-WC

Our proof that Ufm-SC-EDF is a special case of Unr-WC requires substantial setup. We recommend

reviewing the discussion of symmetric differences presented in Section 3.5.1.3.

5.3.3.1 Converting Speeds between UNRELATED and UNIFORM/SEMI-CLUSTERED

To show that Ufm-SC-EDF, which targets a UNIFORM/SEMI-CLUSTERED system, is a special case

of Unr-WC, which targets an UNRELATED system, we will need to convert between the notation used for

the two multiprocessor models (e.g., spi,j versus sp(j)). The relationships between spi,j , sp(j), 1.0 (capacity

of a big CPU), and spL (capacity of a LITTLE CPU) for which of τ glob, τ big, or τLIT task τi belongs to and

which of πbig or πLIT CPU πj belongs to are enumerated in (5.2)-(5.7) below. These equations follow from

Definitions 5.1 and 5.2. Recall from the discussion in Section 1.1 that a task ‘executing’ on a CPU it does not

have affinity for is analytically treated as executing with 0 speed.

τi ∈ τ glob ∧ πj ∈ πbig ⇒ spi,j = sp(j) = 1.0 (5.2)

τi ∈ τ glob ∧ πj ∈ πLIT ⇒ spi,j = sp(j) = spL (5.3)

τi ∈ τ big ∧ πj ∈ πbig ⇒ spi,j = sp(j) = 1.0 (5.4)

τi ∈ τ big ∧ πj ∈ πLIT ⇒ spi,j = 0 (5.5)

τi ∈ τLIT ∧ πj ∈ πbig ⇒ spi,j = 0 (5.6)

τi ∈ τLIT ∧ πj ∈ πLIT ⇒ spi,j = sp(j) = spL (5.7)

5.3.3.2 Priority Points and Deadlines

To argue that we have implemented a special case of Unr-WC, we need to show that our patched SCHED_

DEADLINE chooses configurations that optimally solve the AP instances corresponding with Unr-WC. These

AP instances depend on the profit functions Ψ i(t) of each task τi (Definition 3.7), which themselves depend

on how tasks’ priority points ppi(t) are defined.

O Definition 5.9. Under Ufm-SC-EDF, the priority point of task τi ∈ τ̄ is ppi(t) , di(t)− T [1]. 4

267

Note that because each idle task τi ∈ τ idle has a well-defined deadline di(t) (Definition 5.3), ppi(t) is

also well-defined for any τi ∈ τ idle.

As stated previously in this section, the choice of ppi(t) in Definition 5.9 is made over letting ppi(t) =

di(t), as in standard EDF, to mitigate the issues discussed in Section 3.5.1.1.

. Lemma 5.1. For any time t and task τi ∈ τrdy(t), we have ppi(t) ≤ t. /

Proof. We have

ppi(t) = {Definition 5.9}

di(t)− T [1]

= ai(t) +Di − T [1]

≤ ai(t) +Di − T i

≤ {Constrained Deadlines Assumption}

ai(t).

(5.8)

By the No-Early-Releasing Assumption, we have τi ∈ τrdy(t) ⇒ t ≥ ai(t). By (5.8), we have

τi ∈ τrdy(t)⇒ t ≥ ppi(t). �

Corollaries 5.2 and 5.3 show that t+T [1] is an upper bound on tasks’ deadlines, as well as dbig
(
X̄, t

)
and dLIT

(
X̄, t

)
. Corollary 5.2 follows from Definition 5.9 and Lemma 5.1.

. Corollary 5.2. For any time t and task τi ∈ τrdy(t), we have di(t) ≤ t+ T [1]. /

An implication of Definition 5.3 and Corollary 5.2 is that any ready real-time task in τ has no later of a

deadline than any idle task in τ idle.

Corollary 5.3 follows from Definitions 5.3, 5.6, and 5.7 and Corollary 5.2.

. Corollary 5.3. For any time t and configuration X̄, we have both dbig
(
X̄, t

)
≤ t + T [1] and

dLIT
(
X̄, t

)
≤ t+ T [1]. /

Lemma 5.4 relates a task’s weighted deadline and deadline.

. Lemma 5.4. For any configuration X̄, time t, and task τi, we have d̄i
(
X̄, t

)
≥ di(t). /

Proof. We consider three cases corresponding with the three cases in Definition 5.8.

268

J Case 5.4.1. τi ∈ τ glob, x̄i,j = 1, πj ∈ πbig, and di(t) < dLIT
(
X̄, t

)
. I

We have

d̄i
(
X̄, t

)
= {Definition 5.8}(

1.0− spL) · di(t) + spL · dLIT(X̄, t)
>
{
dLIT(X̄, t) > di(t)

}
(
1.0− spL) · di(t) + spL · di(t)

= di(t). �

J Case 5.4.2. τi ∈ τ glob, x̄i,j = 1, πj ∈ πLIT, and di(t) < dbig
(
X̄, t

)
. I

We have

d̄i
(
X̄, t

)
= {Definition 5.8}

1.0

spL · d
big(X̄, t)− 1.0− spL

spL · di(t)

>
{
dbig(X̄, t) > di(t)

}
1.0

spL · di(t)−
1.0− spL

spL · di(t)

=
spL

spL · di(t)

= di(t). �

J Case 5.4.3. Neither of the conditions in Cases 5.4.1 and 5.4.2 are true. I

By Definition 5.8, we have d̄i
(
X̄, t

)
= di(t). �

In all cases, we have d̄i
(
X̄, t

)
≥ di(t). �

5.3.3.3 Profit

We now present how profit is defined for idle tasks. Using this definition, we will augment the profit

matrix of the AP instance that corresponds with Unr-WC to yield an instance that considers all tasks in τ̄ .

269

We do this because it will be easier to prove that Ufm-SC-EDF yields configurations that optimally solve

this augmented AP instance.

O Definition 5.10. The profit of idle task τi ∈ τ idle is Ψ i(t) , 0. 4

. Lemma 5.5. Consider any time t. Let AP(τ , π,P) denote the AP instance corresponding with Unr-

WC at time t. Consider the optimization problem AP
(
τ̄ , π, P̄

)
such that

P̄ ,

Ψ1(t) · sp1,1 Ψ1(t) · sp1,2 . . . Ψ1(t) · sp1,m

Ψ2(t) · sp2,1 Ψ2(t) · sp2,2

...
. . .

Ψn+m(t) · spn+m,1 Ψn+m(t) · spn+m,m

.

AP
(
τ̄ , π, P̄

)
differs from AP(τ , π,P) in that AP

(
τ̄ , π, P̄

)
considers idle tasks. Let X and X̄ be a

configuration and its corresponding augmented configuration. X is an optimal solution of AP(τ , π,P) if

and only if X̄ is an optimal solution of AP
(
τ̄ , π, P̄

)
. /

Proof. By (2.1), the objective function value of a solution of AP
(
τ̄ , π, P̄

)
is

∑
τi∈τ̄

∑
πj∈π

Ψ i(t) · spi,j · x̄i,j =
{

By Definition 5.4, τ̄ = τ ∪ τ idle}
∑
τi∈τ

∑
πj∈π

Ψ i(t) · spi,j · x̄i,j

+

 ∑
τi∈τ idle

∑
πj∈π

Ψ i(t) · spi,j · x̄i,j

= {Definition 5.10}∑

τi∈τ

∑
πj∈π

Ψ i(t) · spi,j · x̄i,j

+

 ∑
τi∈τ idle

∑
πj∈π

0 · spi,j · x̄i,j

=
∑
τi∈τ

∑
πj∈π

Ψ i(t) · spi,j · x̄i,j

= {By Definition 5.5, for any τi ∈ τ and πj ∈ π, x̄i,j = xi,j}∑
τi∈τ

∑
πj∈π

Ψ i(t) · spi,j · xi,j .

Thus, the objective function values of X for AP(τ , π,P) and X̄ for AP
(
τ̄ , π, P̄

)
are equal. The lemma

follows. �

270

. Lemma 5.6. For any task τi ∈ τ̄ , we have

Ψ i(t) =

t+ T [1] − di(t) τi ∈ τ̄rdy(t)

0 τi /∈ τ̄rdy(t)

. /

Proof. If τi ∈ τ idle, we have

Ψ i(t) = {Definition 5.10}

0

= t+ T [1] − t− T [1]

= {Definition 5.3}

t+ T [1] − di(t)

=
{
τi ∈ τ idle and, by Definition 5.4, τ idle ⊆ τ̄rdy(t)

}
t+ T [1] − di(t) τi ∈ τ̄rdy(t)

0 τi /∈ τrdy(t)

.

The remaining possibility is τi /∈ τ idle. Here, we have τi ∈ τ . Because τi /∈ τ idle, by Definition 5.4,

we have

τi ∈ τ̄rdy(t)⇔ τi ∈ τrdy(t). (5.9)

We have

Ψ i(t) = {Definition 3.7}
t− ppi(t) t > ppi(t) and τi ∈ τrdy(t)

0 t ≤ ppi(t) or τi /∈ τrdy(t)

= {If t = ppi(t), then t− ppi(t) = 0}

271

t− ppi(t) t ≥ ppi(t) and τi ∈ τrdy(t)

0 t < ppi(t) or τi /∈ τrdy(t)

= {Lemma 5.1}
t− ppi(t) τi ∈ τrdy(t)

0 t < ppi(t) or τi /∈ τrdy(t)

=
{
τi /∈ τrdy(t)⇒

(
t < ppi(t) or τi /∈ τrdy(t)

)}
t− ppi(t) τi ∈ τrdy(t)

0 τi /∈ τrdy(t)

= {Definition 5.9}
t+ T [1] − di(t) τi ∈ τrdy(t)

0 τi /∈ τrdy(t)

= {Equation (5.9)}
t+ T [1] − di(t) τi ∈ τ̄rdy(t)

0 τi /∈ τ̄rdy(t)

.

The lemma is true whether τi ∈ τ idle or τi ∈ τ . This proves the lemma. �

5.3.3.4 Connected Components

Our proof that Ufm-SC-EDF is a special case of Unr-WC will involve reasoning about the symmetric

difference between the configurations chosen by Ufm-SC-EDF and Unr-WC. Rather than considering the

entire symmetric difference, it will be more convenient to reason about a particular connected component of

the symmetric difference. We introduce new notation for connected components.

H Example 5.6. Consider the matchings M, illustrated in Figure 5.11a, and M′, illustrated in Fig-

ure 5.11b. The symmetric difference (recall Definition 3.8 in Section 3.5.1.3) M∆M′ is illustrated in

Figure 5.11c. This symmetric difference contains two connected components: the paths (τ2, π2, τ4, π3)

and (τ3, π4, τ5).

272

π1 π2
π3 π4

τ1 τ2 τ3 τ4 τ5

(a) Matching M.

π1 π2
π3 π4

τ1 τ2 τ3 τ4 τ5

(b) Matching M′.

π1 π2
π3 π4

τ1 τ2 τ3 τ4 τ5

(c) Symmetric difference M∆M′.

πj1
πj2

τi1 τi2

(d) Structure of connected component (τ2, π2, τ4, π3).
Dots (•) denote edges in M′.

π1 π2
π3 π4

τ1 τ2 τ3 τ4 τ5

(e) M with component (τ2, π2, τ4, π3) inverted.

Figure 5.11: Illustration of a connected component.

273

Figure 5.11d shows the structure of connected component (τ2, π2, τ4, π3) with i1 ← 2, i2 ← 4,

j1 ← 2, and j2 ← 3. In Figure 5.11d and later figures that illustrate components, task and CPU indices

are written indirectly (i.e., as i1, i2, . . . instead of 1, 2, . . .) because, in later proofs (Lemmas 5.21

and 5.22) that reason about the structure of connected components, the specific tasks and CPUs in said

components are unknown. A dot (•) is used to differentiate which edges in the component belong to

which matching (e.g., dots denote edges from M′ in Figure 5.11d). N

A connected component in a symmetric difference is assigned a numerical value called its contribution.

O Definition 5.11. Let X and X′ be two solutions to an AP instance with profit matrix P. Let M and

M′ be the matchings corresponding with X̄ and X̄′, respectively. Let edge set E ⊆M∆M′ be the edges

of a path or cycle. The contribution of E from M to M′ is

∑
(τi,πj)∈E

pi,j (τi, πj) ∈M′

−pi,j (τi, πj) ∈M

 .

The contribution of a connected component in M∆M′ from M to M′ is the contribution of the edges

in this connected component. 4

Note that the contribution of an edge set E from M′ to M is the negative of its contribution from M to

M′.

The contribution of E from M to M′ is equivalent to the change in objective function value of X̄ caused

by inverting each edge in E (i.e., for each edge (τi, πj) ∈ E, setting x̄i,j ← 1 if (τi, πj) ∈M′ and x̄i,j ← 0 if

(τi, πj) ∈M). This is demonstrated in the following example.

H Example 5.6 (continued). As in the system illustrated in Figure 5.11, let τ = {τ1, τ2, . . . , τ5} and

π = {π1, π2, . . . , π4}. Consider optimization problem AP(τ , π,P), where

P =

1 1 0 0

2 2 0 0

3 3 6 6

4 4 8 8

0 0 10 10

.

274

The contribution of component (τ2, π2, τ4, π3) (Figure 5.11d) in symmetric difference M∆M′ is (recall

that the edges in M′ are denoted by dots in Figure 5.11d) p2,2 + p4,3 − p4,2 = 2 + 8− 4 = 6.

Observe that matching M has objective function value p1,1 + p3,4 + p4,2 = 1 + 6 + 4 = 11. The

matching yielded by inverting component (τ2, π2, τ4, π3) in matching M, which is shown in Figure 5.11e,

has value p1,1 + p2,2 + p3,4 + p4,3 = 1 + 2 + 6 + 8 = 17. The increase in objective function value is

17− 11 = 6, which matches the contribution of (τ2, π2, τ4, π3) computed earlier. N

5.3.3.5 Relabeling

Later on we will reason about the symmetric difference between configurations selected by Ufm-SC-EDF

and Unr-WC. We introduce a procedure we call relabeling (Algorithm 2) that simplifies this symmetric

difference. Given two configurations X and X′, the goal of relabeling X′ by X is to swap task-to-CPU

matchings in X′ to more closely resemble those in X.

For simplicity, relabeling is a procedure that takes and returns non-augmented configurations. Relabeling

between augmented configurations is implicitly defined because there is a one-to-one mapping between

configurations and augmented configurations. For example, suppose we have configurations X̄(1) and

X̄(2). These have non-augmented configurations X(1) and X(2). Let X(3), with corresponding augmented

configuration X̄(3), denote the relabeling of X(2) by X(1). X̄(3) is the relabeling of X̄(2) by X̄(1).

As we present the following definitions, lemmas, and corollaries (i.e., those in Section 5.3.3.5) that

consider relabeling between configurations, note that they all concern only the tasks in τ . Recall that, by

Definition 5.5, any task in τ that is matched to a CPU in a configuration X is also matched to this same

CPU in augmented configuration X̄. Thus, these definitions, lemmas, and corollaries also apply to relabeling

between augmented configurations.

H Example 5.7. Consider a system with five tasks, three LITTLE CPUs, and three big CPUs. Consider

the configurations X, illustrated in Figure 5.12a, and X′, illustrated in Figure 5.12b. Figure 5.12

illustrates the relabeling (Algorithm 2) of X′ via X. Initially, output configuration X∗ is set to X′.

Consider the first iteration (i← 1) of the for loop at line 3. Task τ1 is unmatched in configuration X.

Thus, the condition of the if statement at line 4 is false. Configuration X∗ is unchanged, as illustrated in

Figures 5.12b and 5.12c.

275

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(a) Configuration X.

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(b) Configuration X′.

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(c) Configuration X∗ (first iteration).

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(d) Configuration X∗ (second iteration).

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(e) Configuration X∗ (third iteration).

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(f) Configuration X∗ (fourth iteration).

π1 π2 π3
π4 π5 π6

τ1 τ2 τ3 τ4 τ5

(g) Configuration X∗ (fifth iteration).

Figure 5.12: Relabeling example.

276

1 Function Relabel(X′,X):
2 X∗ ← X′

3 for i← 1 . . .n do
4 if ∃πji , πj∗i ∈ π : xi,ji = 1 and x ∗i,j∗i

= 1 then // τi matched in X and X∗

5 if πji , πj∗i ∈ π
big or πji , πj∗i ∈ π

LIT then
6 if ∃τi∗ ∈ τ : x ∗i∗,ji = 1 then
7 x ∗i∗,ji ← 0 // τi∗ unmatched from πji
8 x ∗i∗,j∗i

← 1 // τi∗ matched with πj∗i
9 end if

10 x ∗i,j∗i
← 0 // τi unmatched from πj∗i

11 x ∗i,ji ← 1 // τi matched with πji
12 end if
13 end if
14 end for
15 return X∗

16 end
Algorithm 2: Configuration relabeling.

Consider the second iteration (i← 2). Task τ2 is matched with CPU π1 in configuration X (j2 ← 1)

and on CPU π2 in configuration X∗ (j∗2 ← 2). The condition on line 4 is satisfied. The if block at line 5

is entered because CPUs π1 and π2 are both LITTLE CPUs. Because CPU π1 is already scheduling task

τ1 in configuration X∗ (i∗ ← 1), the if block at line 6 is entered. Task τ1 is moved to CPU π2 (lines 7

and 8). Task τ2 is moved to CPU π1 (lines 10 and 11). Configuration X∗ is as illustrated in Figure 5.12d.

Consider the third iteration (i← 3). Task τ3 is matched with CPU π4 in configuration X (j3 ← 4)

and on CPU π3 in configuration X∗ (j∗3 ← 3). The condition on line 4 is satisfied. The condition on

line 5 is false because CPU π3 is LITTLE and CPU π4 is big. Configuration X∗ is unchanged in this

iteration.

Consider the fourth iteration (i← 4). Task τ4 is matched with CPU π6 in configuration X (j4 ← 6)

and on CPU π5 in configuration X∗ (j∗4 ← 5). The condition on line 4 is satisfied. The condition on

line 5 is satisfied because both CPUs π5 and π6 are big. CPU π6 is free in configuration X∗, so task τ4 is

moved to CPU π6. Configuration X∗ is as illustrated in Figure 5.12f.

In the fifth iteration (i← 5), task τ5 is unmatched in configuration X∗. Thus, configuration X∗ is

unchanged in this iteration. The for loop at line 3, as well as function Relabel, terminate. N

277

. Lemma 5.7. Consider configurations X and X′. After any iteration of the for loop at line 3 in

Relabel, any task τi is matched with CPU πj in X′ (i.e., x ′i,j = 1) if and only if τi is matched with a

CPU πj∗ in X∗ (i.e., x ∗i,j∗ = 1) such that πj , πj∗ ∈ πbig or πj , πj∗ ∈ πLIT. /

Proof. We prove by induction. For the base case, consider the state of Relabel immediately after

line 2, i.e., after zero iterations of the for loop at line 3. Because X∗ is set to X′, the lemma statement is

true after zero iterations.

Consider the ith iteration of the for loop for some i > 0. Assume that the lemma statement has not

been violated by the beginning of the ith iteration. In this iteration, tasks τi and τi∗ (if it exists) swap

their matched CPUs πji and πj∗i only if the condition on line 5 is true. Thus, the swap only occurs if πji

and πj∗i are such that πji , πj∗i ∈ π
big or πji , πj∗i ∈ π

LIT. Because the lemma statement was not violated

prior to the ith iteration, the lemma statement cannot be violated due to this swap. Because this swap is

the only change in X∗ made in the ith iteration, the ith iteration does not violate the lemma statement.

This completes the proof by induction. �

. Lemma 5.8. Consider configurations X and X′. Let X∗ = Relabel(X′,X). For any time t, X′

and X∗ have equal objective function value for the AP instance corresponding with Unr-WC at time t. /

Proof. X∗ is initialized to X′. Thus, X′ and X∗ initially have equal objective function value. Consider

the change in value of X∗ due to a single iteration of the for loop at line 3.

Line 7 decreases the value by sp(ji) ·Ψ i∗(t) and line 8 increases the value by sp(j∗i) ·Ψ i∗(t). By

Lemma 5.7 and Definition 5.2, we have sp(ji) = sp(j∗i). Thus, the net change by lines 7 and 8 is 0.

Line 10 decreases the value by sp(j∗i) ·Ψ i(t) and line 11 increases the value by sp(ji) ·Ψ i(t). By

Lemma 5.7 and Definition 5.2, we have sp(j∗i) = sp(ji). Thus, the net change by lines 10 and 11 is 0.

The net change in any iteration of the for loop is 0. Thus, the net change by Relabel is 0. Because

X′ and X∗ began with equal objective function value, they yield equal value after Relabel completes.

�

O Definition 5.12. The similarity between configurations X and X′ is the number of tasks τi ∈ τ such

that τi is matched with big CPUs in both X and X′ or with LITTLE CPUs in both X and X′. 4

Note that idle tasks in τ idle do not count towards similarity between configurations. Thus, the similarity

between X and X′ is equivalent to the similarity between augmented configurations X̄ and X̄′.

278

Corollary 5.9 follows from Lemma 5.7 and Definition 5.12.

. Corollary 5.9. Consider configurations X and X′. Let X∗ = Relabel(X′,X). The similarity

between X and X′ is equal to the similarity between X and X∗. /

. Lemma 5.10. Consider configurations X and X′. Let X∗ = Relabel(X′,X). If task τi ∈ τ is

matched with πj in configuration X (i.e., xi,j = 1) and on πj′ in configuration X′ (i.e., x ′i,j′ = 1) such

that πj , πj′ ∈ πbig or πj , πj′ ∈ πLIT, then task τi is matched with πj in X∗ (i.e., x ∗i,j = 1). /

Proof. Let task τi1 be such that τi1 is matched with πj in X and with πj′ in X′, i.e., xi1,j = x ′i1,j′ = 1,

and either πj , πj′ ∈ πbig or πj , πj′ ∈ πLIT. Our proof obligation is to show that task τi1 is matched with

CPU πj in X∗, i.e., x ∗i1,j = 1.

We prove by induction that x ∗i1,j = 1 after the ith iteration of the for loop at line 3 for any i such that

i1 ≤ i ≤ n .

For the base case, consider the (i1)th iteration (i← i1). Because x ′i1,j′ = 1, by Lemma 5.7, at the

beginning of the (i1)th iteration, task τi1 is matched with some CPU πj∗ in X∗ (i.e., x ∗i1,j∗ = 1) such that

either πj′ , πj∗ ∈ πbig or πj′ , πj∗ ∈ πLIT. Because x ∗i1,j∗ = 1 and we have assumed that task τi1 is such

that xi1,j = 1, the condition on line 4 is true with ji ← j and j∗i ← j∗. Because task τi1 is such that

πj , πj′ ∈ πbig or πj , πj′ ∈ πLIT, we have that πj , πj∗ ∈ πbig or πj , πj∗ ∈ πLIT. Thus, the condition on

line 5 is also satisfied.

Because the conditions on lines 4 and 5 are satisfied, lines 10-11 are executed in this iteration.

Because i ← i1 and ji ← j in this iteration, the execution of line 11 sets x ∗i1,j = 1. This is the proof

obligation of the base case.

For the induction step, consider the (i2)th iteration (i← i2) such that i1 < i2 ≤ n and x ∗i1,j = 1 at

the beginning of this iteration. It remains to show that task τi1 is never unmatched from πj in X∗ in this

iteration. Task τi1 can only be unmatched from CPU πj during lines 7-8 because lines 10-11 only affect

task τi2 . For lines 7-8 to have been executed in this iteration and affect the matching of task τi1 in X∗,

the condition on line 6 must be true with i∗ ← i1.

We prove that this condition is not true with i∗ ← i1 by contradiction. Assume otherwise that

x ∗i1,ji = 1. We have assumed, by induction, that x ∗i1,j = 1. Because x ∗i1,j = 1, x ∗i1,ji = 1, and each task is

matched to at most one CPU in X∗, we must have that ji = j. For lines 7-8 to have been executed, the

condition on line 4 must have been true. Thus, 1 = xi,ji = xi2,j . Because we have assumed that task τi1

279

is such that xi1,j = 1 and each CPU is matched with at most one task in X, we must have i2 = i1. This

contradicts that i2 > i1.

Thus, the condition on line 6 is not true with i∗ ← i1. Lines 7-8 cannot affect the matching of task

τi1 in X∗. No lines in the (i2)th iteration can affect the matching of task τi1 in X∗. Thus, x ∗i1,j = 1

remains true after the (i2)th iteration. This completes the proof by induction. �

5.3.3.6 Proving Ufm-SC-EDF is a Special Case of Unr-WC

We prove that Ufm-SC-EDF is a special case of Unr-WC by examining the structure of the symmetric

difference between configurations selected by the two schedulers. We will show that each connected compo-

nent in this symmetric difference has one of four possible structures. By reasoning about the contribution of

these connected components, we will prove that at least one of USE 1 or USE 2 must have been broken if the

configuration selected by Unr-WC has a higher objective function value than the configuration selected by

Ufm-SC-EDF.

O Definition 5.13. Let X̄USE(t) denote the augmented configuration selected by Ufm-SC-EDF at

time t.

Let X̄opt(t) denote the augmented configuration such that Xopt(t) = Relabel(X,XUSE(t))

where X is an optimal configuration for the AP instance corresponding with Unr-WC at time t that,

among all optimal configurations, has maximum similarity to XUSE(t).

Let M̄USE(t) and M̄opt(t) denote the matchings that correspond with X̄USE(t) and X̄opt(t), respec-

tively. 4

. Corollary 5.11. X̄opt(t) is an optimal solution of AP
(
τ̄ , π, P̄

)
, where profit matrix P̄ is as defined in

Lemma 5.6. /

Proof. The corollary follows from Definition 5.13 and Lemmas 5.5 and 5.8. �

. Corollary 5.12. X̄opt(t) is the optimal solution of AP
(
τ̄ , π, P̄

)
, where P̄ is as defined in Lemma 5.6,

that has maximum similarity to X̄USE(t). /

Proof. The corollary follows from Definition 5.13 and Corollaries 5.9 and 5.11. �

280

. Corollary 5.13. If task τi ∈ τ̄ is matched on CPU πj1 in M̄USE(t) and on CPU πj2 in M̄opt(t) such

that πj1 , πj2 ∈ πbig or πj1 , πj2 ∈ πLIT, then πj1 = πj2 . /

Proof. Recall that τ̄ = τ ∪ τ idle. The corollary is true for any task τi ∈ τ by Lemma 5.10. For any

τi ∈ τ idle, by Definition 5.3, task τi has affinity for only one CPU πj . If matched in both M̄USE(t) and

M̄opt(t), task τi must be matched to πj in both M̄USE(t) and M̄opt(t). �

. Lemma 5.14. Every task τi in a non-trivial (i.e., contains more than a single node) path in symmetric

difference M̄USE(t)∆M̄opt(t) is such that τi ∈ τ̄rdy(t). /

Proof. If τi ∈ τ idle, then by Definition 5.4, we have τi ∈ τ̄rdy(t).

If task τi ∈ τ is in a non-trivial path, it is incident on at least one edge in M̄USE(t)∆M̄opt(t). By

Definition 3.8, task τi must be matched in at least one of M̄USE(t) and M̄opt(t). Because M̄USE(t) and

M̄opt(t) correspond with (canonical) configurations X̄USE(t) and X̄opt(t), by Definition 2.26, we have

τi ∈ τrdy(t). By Definition 5.4, we have τi ∈ τ̄rdy(t). �

. Lemma 5.15. Every CPU πj is incident on either zero or two edges in M̄USE(t)∆M̄opt(t). /

Proof. X̄USE(t) and X̄opt(t) are both augmented configurations. By Definition 5.5, in both matchings

M̄USE(t) and M̄opt(t), πj is matched with either a task τrdy(t) or a task in τ idle. Regardless of whether

such tasks are in τrdy(t) or τ idle, CPU πj is matched with some task τi1 in M̄USE(t) and task τi2 in

M̄opt(t). Stated formally, (τi1 , πj) ∈ M̄USE(t) and (τi2 , πj) ∈ M̄opt(t).

If τi1 = τi2 , then (τi1 , πj) ∈ M̄USE(t) ∩ M̄opt(t). By Definition 3.8, we have (τi1 , πj) /∈

M̄USE(t)∆M̄opt(t). Thus, πj is incident on zero edges in M̄USE(t)∆M̄opt(t).

Otherwise, we have τi1 6= τi2 . Then, by Definition 3.8, we have both (τi1 , πj) ∈ M̄USE(t)∆M̄opt(t)

and (τi2 , πj) ∈ M̄USE(t)∆M̄opt(t). Thus, πj is incident on two edges in M̄USE(t)∆M̄opt(t). �

. Lemma 5.16. Every task τi ∈ τ idle is incident on at most one edge in M̄USE(t)∆M̄opt(t). /

Proof. By Definition 5.3, each task τi ∈ τ idle has affinity for one CPU. Let this CPU be πj . Because

X̄USE(t) and X̄opt(t) are configurations, they are canonical at t (see Definition 2.26), and thus can

only be matched with πj in both M̄USE(t) and M̄opt(t). Thus, τi can only be incident on (τi, πj) in

M̄USE(t) ∪ M̄opt(t). By Definition 3.8, M̄USE(t)∆M̄opt(t) is a subset of M̄USE(t) ∪ M̄opt(t), thus τi can

only be incident on (τi, πj) in M̄USE(t)∆M̄opt(t). �

281

πj1 πj2

τi3 τi1 τi4 τi2

Figure 5.13: Tasks τi1 and τi2 exist in distinct connected components.

. Lemma 5.17. Every task τi ∈ τ big ∪ τLIT is incident on at most one edge in M̄USE(t)∆M̄opt(t). /

Proof. Task τi is incident on at most two edges in M̄USE(t)∆M̄opt(t) because, by Definition 3.8,

M̄USE(t)∆M̄opt(t) ⊆ M̄USE(t) ∪ M̄opt(t) and each task is matched at most once in any matching.

We prove that τi is not incident on two edges by contradiction. Task τi is incident on two edges in

M̄USE(t)∆M̄opt(t) if τi is matched to different CPUs in M̄USE(t) and M̄opt(t). Suppose task τi is matched

to πj1 in M̄USE(t) and to πj2 in M̄opt(t) such that πj1 6= πj2 . Because τi ∈ τ big ∪ τLIT, τi has affinity

for either only CPUs in πbig or only CPUs in πLIT. Thus, either πj1 , πj2 ∈ πbig or πj1 , πj2 ∈ πLIT. That

πj1 6= πj2 contradicts Corollary 5.13. �

. Lemma 5.18. If task τi ∈ τ glob is incident on two edges in M̄USE(t)∆M̄opt(t), then these edges are

(τi, πj1) and (τi, πj2) such that πj1 ∈ πbig and πj2 ∈ πLIT. /

Proof. Suppose otherwise that πj1 , πj2 ∈ πbig or πj1 , πj2 ∈ πLIT. Assume without loss of generality that

task τi is matched with πj1 in X̄USE(t) and with πj2 in X̄opt(t). By Corollary 5.13, we have πj1 = πj2 .

Thus, (τi, πj1) = (τi, πj2), i.e., the ‘edges’ are actually the same edge. This contradicts that τi is incident

on two edges in M̄USE(t)∆M̄opt(t). �

. Lemma 5.19. In each connected component of M̄USE(t)∆M̄opt(t), at most one task τi ∈ τ glob is

incident on two edges in M̄USE(t)∆M̄opt(t). /

Proof. We prove by contradiction. Suppose otherwise that there are multiple tasks in τ glob that are

incident on two edges in M̄USE(t)∆M̄opt(t) in the same connected component.

I Claim 5.19.1. There exist two tasks τi1 , τi2 ∈ τ glob in the same connected component that are

both incident on two edges and have edges to the same CPU πj . J

282

πj1
πj2 πj3

τi1 τi2

(a) πj2 ∈ πbig.

πj1 πj2
πj3

τi1 τi2

(b) πj2 ∈ πLIT.

Figure 5.14: Component with two tasks in τ glob that are incident on two edges. Dots (•) denote edges in
M̄opt(t).

Proof. Suppose otherwise that for any such tasks τi1 and τi2 , τi1 and τi2 do not have edges to the

same CPU. We will prove that tasks τi1 and τi2 exist in distinct connected components (with structure

as illustrated in Figure 5.13), which contradicts the claim.

By the definition of task τi1 , task τi1 has edges to two distinct CPUs πj1 and πj2 . By Lemma 5.15,

both πj1 and πj2 are incident on two edges. For both πj1 and πj2 , one of these edges is known to be

to task τi1 . Let τi3 be the other task connected to πj1 and τi4 be the other task connected to πj2 .

It must be the case that τi3 is incident on at most one edge. If τi3 ∈ τ glob, then by the supposition

made at the beginning of this claim proof, task τi3 is incident on at most one edge. Otherwise,

τi3 /∈ τ glob, which implies τi3 ∈ τ idle∪ τ big∪ τLIT. By Lemmas 5.16 and 5.17, τi3 is , again, incident

on at most one edge.

It is already known that τi3 has an edge to πj1 , so (τi3 , πj1) must be the only edge τi3 is incident

on. By the same reasoning for τi4 and πj2 , it must be that (τi4 , πj2) is the only edge τi4 is incident

on.

Thus, (τi3 , πj1 , τi1 , πj2 , τi4) is the entirety of the connected component containing τi1 (see

Figure 5.13). Task τi1 is unconnected with task τi2 . This contradicts that τi1 and τi2 are in the same

connected component. �

As illustrated in the insets of Figure 5.14, let tasks τi1 and τi2 be as defined in Claim 5.19.1 such that

πj2 is their shared CPU. Let πj1 be the other CPU sharing an edge with τi1 and πj3 be the other CPU

283

sharing an edge with τi2 . These tasks and CPUs form a path (πj1 , τi1 , πj2 , τi2 , πj3).3 By Lemma 5.18,

if πj2 ∈ πbig, then πj1 , πj3 ∈ πLIT, and, if πj2 ∈ πLIT, then πj1 , πj3 ∈ πbig. The structure of path

(πj1 , τi1 , πj2 , τi2 , πj3) must match one of the insets of Figure 5.14. Note that we can assume without

loss of generality that {(τi1 , πj1), (τi2 , πi2)} ⊆ M̄opt(t) and {(τi1 , πj2), (τi2 , πj3)} ⊆ M̄USE(t). This is

because if this assumption is invalid, then we can swap the indexes of tasks τi1 and τi2 to make it valid.

We consider four cases depending on the sign of the contribution of (πj1 , τi1 , πj2 , τi2 , πj3) and

whether πj2 ∈ πbig or πj2 ∈ πLIT.

J Case 5.19.1. For AP
(
τ̄ , π, P̄

)
, the contribution of path (πj1 , τi1 , πj2 , τi2 , πj3) from M̄USE(t) to

M̄opt(t) is negative. I

By Definition 5.11, the contribution of (πj1 , τi1 , πj2 , τi2 , πj3) from M̄opt(t) to M̄USE(t) is positive.

This means that inverting the edges of (πj1 , τi1 , πj2 , τi2 , πj3) in M̄opt(t) results in a matching that

corresponds to a solution of AP
(
τ̄ , π, P̄

)
with a greater objective function value than X̄opt(t). This

contradicts Corollary 5.11. �

J Case 5.19.2. For AP
(
τ̄ , π, P̄

)
, the contribution of path (πj1 , τi1 , πj2 , τi2 , πj3) from M̄USE(t) to

M̄opt(t) is zero. I

By Definition 5.11, the contribution of (πj1 , τi1 , πj2 , τi2 , πj3) from M̄opt(t) to M̄USE(t) is zero.

This means that inverting the edges of (πj1 , τi1 , πj2 , τi2 , πj3) in M̄opt(t) results in a matching that

corresponds to a solution of AP
(
τ̄ , π, P̄

)
with an equal objective function value to that of X̄opt(t).

Inverting (πj1 , τi1 , πj2 , τi2 , πj3) in M̄opt(t) also matches task τi1 to CPU πj2 and task τi2 to CPU

πj3 , as in M̄USE(t) (in Figure 5.14, inverting this path effectively replaces the edges (τi1 , πj1)

and (τi2 , πj2) in M̄opt(t) with the edges (τi1 , πj2) and (τi2 , πj3) in M̄USE(t)). By Definition 5.12,

inverting path (πj1 , τi1 , πj2 , τi2 , πj3) in M̄opt(t) increases the similarity of the configuration with

X̄USE(t) by two. This contradicts Corollary 5.12. �

J Case 5.19.3. For AP
(
τ̄ , π, P̄

)
, the contribution of path (πj1 , τi1 , πj2 , τi2 , πj3) from M̄USE(t) to

M̄opt(t) is positive and πj2 ∈ πbig. I

3Note that, though we state that (πj1 , τi1 , πj2 , τi2 , πj3) is a path, we have not excluded the possibility that πj1 = πj3 ,
which would make this path a cycle. The remaining logic of the proof of this lemma remains unchanged even if this
path is actually a cycle.

284

Note that, because πj2 ∈ πbig, the structure of (πj1 , τi1 , πj2 , τi2 , πj3) is as in Figure 5.14a.

By Definition 5.11, we have

0 < p̄i1,j1 − p̄i1,j2 + p̄i2,j2 − p̄i2,j3

= Ψ i1(t) · spi1,j1 −Ψ i1(t) · spi1,j2 + Ψ i2(t) · spi2,j2 −Ψ i2(t) · spi2,j3 .

 (5.10)

Because τi1 , τi2 ∈ τ glob, by (5.2) and (5.3), we have spi1,j1 = sp(j1), spi1,j2 = sp(j2), spi2,j2 =

sp(j2), and spi2,j3 = sp(j3).

We have

0 < {Equation (5.10)}

Ψ i1(t) · spi1,j1 −Ψ i1(t) · spi1,j2 + Ψ i2(t) · spi2,j2 −Ψ i2(t) · spi2,j3

= Ψ i1(t) · sp(j1) −Ψ i1(t) · sp(j2) + Ψ i2(t) · sp(j2) −Ψ i2(t) · sp(j3)

= Ψ i1(t) ·
(

sp(j1) − sp(j2)
)
−Ψ i2(t) ·

(
sp(j3) − sp(j2)

)
=
{

sp(j1) = sp(j3) (see Figure 5.14)
}

Ψ i1(t) ·
(

sp(j1) − sp(j2)
)
−Ψ i2(t) ·

(
sp(j1) − sp(j2)

)
.

(5.11)

Note that the above derivations of (5.10) and (5.11) will also hold in Case 5.19.4.

Because πj2 ∈ πbig, we have sp(j1) − sp(j2) = spL − 1.0 < 0. By (5.11), we have Ψ i1(t) <

Ψ i2(t). By Lemmas 5.6 and 5.14, we have di1(t) > di2(t).

Recall from Figure 5.14a that, in M̄USE(t), τi1 is matched with πj2 ∈ πbig and τi2 is matched

with πj3 ∈ πLIT. Because τi1 , τi2 ∈ τ glob and di1(t) > di2(t), this violates USE 2. This contradicts

the definition of X̄USE(t) (Definition 5.13). �

J Case 5.19.4. For AP
(
τ̄ , π, P̄

)
, the contribution of path (πj1 , τi1 , πj2 , τi2 , πj3) from M̄USE(t) to

M̄opt(t) is positive and πj2 ∈ πLIT. I

Note that, because πj2 ∈ πLIT, the structure of (πj1 , τi1 , πj2 , τi2 , πj3) is as in Figure 5.14b.

Because, as in Case 5.19.3, the contribution of (πj1 , τi1 , πj2 , τi2 , πj3) is positive, we have that

(5.11) is true.

Because πj2 ∈ πLIT, we have sp(j1) − sp(j2) = 1.0− spL > 0. By (5.11), we have Ψ i1(t) >

Ψ i2(t). By Lemmas 5.6 and 5.14, we have di1(t) < di2(t).

285

πj1

τi1 τi2

(a)

πj1

τi1 τi2

(b)

πj1 πj2

τi1 τi2 τi3

(c)

πj1
πj2

τi1 τi2 τi3

(d)

Figure 5.15: All possible cases for connected components in M̄USE(t)∆M̄opt(t). Edges marked with • denote
edges in M̄USE(t), while unmarked edges denote edges in M̄opt(t).

Recall from Figure 5.14b that, in M̄USE(t), τi1 is matched with πj2 ∈ πLIT and τi2 is matched

with πj3 ∈ πbig. Because τi1 , τi2 ∈ τ glob and di1(t) < di2(t), this violates USE 2. This contradicts

the definition of X̄USE(t) (Definition 5.13). �

All cases yield a contradiction, completing the proof of the lemma. �

. Lemma 5.20. All non-trivial connected components in M̄USE(t)∆M̄opt(t) are paths. /

Proof. By Lemma 3.27, every connected component is either a path, unconnected node, or cycle.

It is sufficient to prove that no connected component is a cycle. In an undirected bipartite graph, a

cycle must include at least two task nodes. Each task in the cycle must be incident on two edges. By

Lemmas 5.16, 5.17, and 5.19, at most one task in any connected component is incident on two edges

in M̄USE(t)∆M̄opt(t). Every node in a cycle must be incident on two edges. A non-trivial cycle in an

undirected bipartite graph must contain, at minimum, two tasks. Thus, no connected component in

M̄USE(t)∆M̄opt(t) is a cycle. �

. Lemma 5.21. Every non-trivial connected component in M̄USE(t)∆M̄opt(t) has structure as illustrated

in one of the insets of Figure 5.15. /

Proof. Consider an arbitrary non-trivial connected component in M̄USE(t)∆M̄opt(t). By Lemma 5.20,

this connected component is a path. We first prove that this path has structure as illustrated in one of

the insets of Figure 5.15. We will initially ignore which edges in the component belong to M̄USE(t) or

M̄opt(t) (i.e., which edges are highlighted with dots in the insets of Figure 5.15).

286

By Lemma 5.15, any CPU πj has two edges in the path (if πj has zero edges, it cannot be in the

path). Thus, any ending node of the path, which must be incident on only a single edge, must be a task.

Let task τi1 be an ending node of the path. Because τi1 is incident on an edge, it must be connected

to some CPU by this edge. Let this CPU be πj1 . By Lemma 5.15, πj1 has another edge, and is thus

connected to another task besides τi1 . Let this task be τi2 .

Because τi2 is a node in a path, it is incident on either one or two edges. There are four cases

depending on whether πj1 ∈ πbig or πj1 ∈ πLIT and whether τi2 has one or two edges. Each case

corresponds with an inset of Figure 5.15.

J Case 5.21.1. πj1 ∈ πbig and τi2 is incident on one edge. I

The structure of the path is as illustrated in Figure 5.15a. �

J Case 5.21.2. πj1 ∈ πLIT and τi2 is incident on one edge. I

The structure of the path is as illustrated in Figure 5.15b. �

J Case 5.21.3. πj1 ∈ πbig and τi2 is incident on two edges. I

Because task τi2 is incident on two edges, by Lemmas 5.16 and 5.17, we have τi2 /∈ τ idle∪τ big∪τLIT.

The only remaining possibility is that τi2 ∈ τ glob. Let πj2 denote the CPU incident on the edge of

τi2 that is not (τi2 , πj1). Because πj1 ∈ πbig, by Lemma 5.18, we have πj2 ∈ πLIT. By Lemma 5.15,

πj2 is connected to another task by an edge. Let this task be τi3 . By Lemmas 5.16, 5.17, and 5.19,

we have that τi3 is incident on at most one edge. Thus, τi3 must be an endpoint of the path. The

structure of the path in this case is as illustrated in Figure 5.15c. �

J Case 5.21.4. πj1 ∈ πLIT and τi2 is incident on two edges. I

The reasoning of this case closely resembles that of Case 5.21.3. Because task τi2 is incident on

two edges, we have τi2 ∈ τ glob. Let πj2 denote the other CPU sharing an edge with τi2 . Because

πj1 ∈ πLIT, by Lemma 5.18, we have πj2 ∈ πbig. By Lemma 5.15, πj2 is connected to another task

by an edge. Let this task be τi3 . By Lemmas 5.16, 5.17, and 5.19, we have that τi3 is incident on at

most one edge. Thus, τi3 must be an endpoint of the path. The structure of the path in this case is as

illustrated in Figure 5.15c. �

287

It remains to prove that the positions of dots in Figure 5.15 are sufficient to cover all possible cases

of connected components. Recall that each edge in a connected component in M̄USE(t)∆M̄opt(t) belongs

to either M̄USE(t) or M̄opt(t). Also recall that any node is matched at most once in a matching. Thus,

each matching contributes at most one edge to every node in the path. This means the path is alternating

for both M̄USE(t) and M̄opt(t). Dot placements on edges must either be as in the insets in Figure 5.15

or the opposite (e.g., in Figure 5.15a, removing the dot on (τi2 , πj1) and placing a dot on (τi1 , πj1),

and in Figure 5.15c, removing the dots on (τi2 , πj1) and (τi3 , πj2) and adding dots on (τi1 , πj1) and

(τi2 , πj2)). Note that the opposite dot placement of Figure 5.15a is a mirror image of Figure 5.15a.

Thus, Figure 5.15a and its opposite dot placement are isomorphic (i.e., the graphs are identical under

re-indexing). Likewise, the opposite dot placement of Figure 5.15b is also isomorphic with Figure 5.15b.

The opposite dot placement of Figure 5.15c is isomorphic with Figure 5.15d, and vice versa. Because

each possible alternative dot placement is isomorphic to an inset, the insets of Figure 5.15 are sufficient

to account for all possible dot placements. �

. Lemma 5.22. Ufm-SC-EDF is a special case of Unr-WC. /

Proof. We prove by contradiction. Suppose otherwise that Ufm-SC-EDF is not a special case of

Unr-WC. Then for some time instant t, configuration XUSE(t) is not an optimal solution of the AP

instance corresponding with Unr-WC at time t. By Lemma 5.5, X̄USE(t) is not an optimal solution

of AP
(
τ̄ , π, P̄

)
. By Corollary 5.11, X̄opt(t) has a higher objective function value than X̄USE(t). Thus,

there must exist a connected component in M̄USE(t)∆M̄opt(t) with positive contribution from M̄USE(t)

to M̄opt(t).

J Case 5.22.1. The positive connected component has structure as in Figures 5.15a or 5.15b. I

Because the connected component is positive, we must have Ψ i1(t) · sp(j1) > Ψ i2(t) · sp(j1).

By dividing both sides by sp(j1), we have Ψ i1(t) > Ψ i2(t). By Lemmas 5.6 and 5.14, we have

t + T [1] − di1(t) > t + T [1] − di2(t). This implies that di1(t) < di2(t). By Lemma 5.4, we have

di1(t) < d̄i2
(
X̄, t

)
. This contradicts USE 1. �

J Case 5.22.2. The positive connected component has structure as in Figure 5.15c. I

288

Because the connected component is positive, we must have

Ψ i1(t) · 1.0 + Ψ i2(t) · spL > Ψ i2(t) · 1.0 + Ψ i3(t) · spL.

Simplification and rearrangement yields

Ψ i1(t) > Ψ i2(t) ·
(
1.0− spL)+ Ψ i3(t) · spL.

By Lemmas 5.6 and 5.14, we have

t+ T [1] − di1(t) >
(
t+ T [1] − di2(t)

)
·
(
1.0− spL)+

(
t+ T [1] − di3(t)

)
· spL.

Simplification and rearrangement yields

di1(t) < di2(t) ·
(
1.0− spL)+ di3(t) · spL.

Because task τi3 is matched to CPU πj2 ∈ πLIT in X̄USE(t), by Definitions 5.6 and 5.7, we have

dLIT
(
X̄USE(t), t

)
≥ di3(t). Thus,

di1(t) < di2(t) ·
(
1.0− spL)+ dLIT(X̄USE(t), t

)
· spL. (5.12)

We will show that, by (5.12), regardless of whether di2(t) < dLIT
(
X̄USE(t), t

)
or di2(t) ≥

dLIT
(
X̄USE(t), t

)
, we have di1(t) < d̄i2

(
X̄USE(t), t

)
. Suppose we have di2(t) < dLIT

(
X̄USE(t), t

)
.

Recall that we have assumed the connected component of interest is as illustrated in Figure 5.15c.

Because τi2 is incident on two edges in Figure 5.15c, by Lemmas 5.16 and 5.17, we have τi2 ∈ τ glob.

Because τi2 is matched to big CPU πj1 in M̄USE(t) in Figure 5.15c, we have x̄USE
i2,j1

(t) = 1 and

πj1 ∈ πbig. Thus,

di1(t) < {Equation (5.12)}

di2(t) ·
(
1.0− spL)+ dLIT(X̄USE(t), t

)
· spL

=
{

Definition 5.8, di2(t) < dLIT(X̄USE(t), t
)
, τi2 ∈ τ glob, x̄USE

i2,j1(t) = 1, and πj1 ∈ πbig}

289

d̄i2
(
X̄USE(t), t

)
.

Suppose we instead have di2(t) ≥ dLIT
(
X̄USE(t), t

)
. We have

di1(t) < {Equation (5.12)}

di2(t) ·
(
1.0− spL)+ dLIT(X̄USE(t), t

)
· spL

≤ di2(t) ·
(
1.0− spL)+ di2(t) · spL

= di2(t)

≤ {Lemma 5.4}

d̄i2
(
X̄USE(t), t

)
.

Regardless of whether di2(t) < dLIT
(
X̄USE(t), t

)
or di2(t) ≥ dLIT

(
X̄USE(t), t

)
, we have

di1(t) < d̄i2
(
X̄USE(t), t

)
. This contradicts USE 1. �

J Case 5.22.3. The positive connected component has structure as in Figure 5.15d. I

Because the connected component is positive, we must have

Ψ i1(t) · spL + Ψ i2(t) · 1.0 > Ψ i2(t) · spL + Ψ i3(t) · 1.0.

Simplification and rearrangement yields

Ψ i1(t) · spL > Ψ i3(t)−Ψ i2(t) ·
(
1.0− spL) .

Dividing both sides by spL yields

Ψ i1(t) > Ψ i3(t) · 1.0

spL −Ψ i2(t) · 1.0− spL

spL .

By Lemmas 5.6 and 5.14, we have

t+ T [1] − di1(t) >
(
t+ T [1] − di3(t)

)
· 1.0

spL −
(
t+ T [1] − di2(t)

)
· 1.0− spL

spL .

290

Simplification and rearrangement yields

di1(t) < di3(t) · 1.0

spL − di2(t) · 1.0− spL

spL .

Because task τi3 is matched to CPU πj2 ∈ πbig in X̄USE(t), by Definitions 5.6 and 5.7, we have

dbig
(
X̄USE(t), t

)
≥ di3(t). Thus,

di1(t) < dbig(X̄USE(t), t
)
· 1.0

spL − di2(t) · 1.0− spL

spL . (5.13)

We will show that, by (5.13), regardless of whether di2(t) < dbig
(
X̄USE(t), t

)
or di2(t) ≥

dbig
(
X̄USE(t), t

)
, we have di1(t) < d̄i2

(
X̄USE(t), t

)
. Suppose we have di2(t) < dbig

(
X̄USE(t), t

)
.

Recall that we have assumed the connected component of interest is as illustrated in Figure 5.15d.

Because τi2 is incident on two edges in Figure 5.15d, by Lemmas 5.16 and 5.17, we have τi2 ∈ τ glob.

Because τi2 is matched to LITTLE CPU πj1 in M̄USE(t) in Figure 5.15d, we have x̄USE
i2,j1

(t) = 1 and

πj1 ∈ πLIT. Thus,

di1(t) < {Equation (5.13)}

dbig(X̄USE(t), t
)
· 1.0

spL − di2(t) · 1.0− spL

spL

=
{

Definition 5.8, di2(t) < dbig(X̄USE(t), t
)
, τi2 ∈ τ glob, x̄USE

i2,j1(t) = 1, and πj1 ∈ πLIT}
d̄i2
(
X̄USE(t), t

)
.

Suppose we instead have di2(t) ≥ dbig
(
X̄USE(t), t

)
. We have

di1(t) < {Equation (5.12)}

dbig(X̄USE(t), t
)
· 1.0

spL − di2(t) · 1.0− spL

spL

≤ di2(t) · 1.0

spL − di2(t) · 1.0− spL

spL

= di2(t)

≤ {Lemma 5.4}

d̄i2
(
X̄USE(t), t

)
.

291

Regardless of whether di2(t) < dbig
(
X̄USE(t), t

)
or di2(t) ≥ dbig

(
X̄USE(t), t

)
, we have

di1(t) < d̄i2
(
X̄USE(t), t

)
. This contradicts USE 1. �

All cases contradict USE 1. Thus, either X̄USE(t) is not a configuration selected by Ufm-SC-EDF

or configuration X̄opt(t) with higher objective function value does not exist. Because the configuration

chosen by Ufm-SC-EDF is optimal, Ufm-SC-EDF is a special case of Unr-WC. �

5.3.4 ACS Conditions

This subsection derives conditions maintained by our patched ACS that, on our platform, are equivalent

to (3.42)-(3.44). We modify the ACS to maintain conditions (3.42)-(3.44) in order to guarantee bounded

response times (by Theorem 3.36). Direct implementation of (3.42)-(3.44), which can be solved as a linear

program, is impractical in the Linux kernel. Similarly to how Ufm-SC-EDF is a special case of Unr-WC, a

special case of (3.42)-(3.44) can be implemented on our assumed platform. Note that in our implementation,

the value used for s` in (3.42) is

s` = 1.0− sched_rt_runtime_us

sched_rt_period_us
.

Recall from Section 4.1.5 that sched_rt_runtime_us/sched_rt_period_us, when the ACS is

enabled, represents the fraction of CPU capacity permitted to be consumed by SCHED_DEADLINE tasks.

The value 1.0− s`, which represents the fraction of each CPU’s speed necessary for the task system to remain

feasible (recall Definition 3.9), is a natural analogue of sched_rt_runtime_us/sched_rt_period_

us.

The special case of (3.42)-(3.44) that we implement depends on the following definition.

O Definition 5.14. For task τi ∈ τ glob, let

u
big
i ,

ui−(1.0−s`)·spL

1.0−spL ui > (1.0− s`) · spL

0 ui ≤ (1.0− s`) · spL
. 4

Note that a task τi with ui > (1.0− s`) · spL has higher bandwidth than the capacity provided by any

LITTLE CPU. Task τi would be starved if scheduled exclusively on LITTLE CPUs. For such a task τi, u
big
i

292

roughly corresponds with the minimum component of task τi’s bandwidth ui that, in the long-term, must be

serviced by big CPUs.

We will show that (3.42)-(3.44) are equivalent to the following.

∀τi ∈ τ big
act (t) ∪ τ glob

act (t) : ui ≤ 1.0− s` (5.14)

∀τi ∈ τLIT
act (t) : ui ≤ (1.0− s`) · spL (5.15) ∑

τi∈τ big
act (t)

ui

+

 ∑
τi∈τ glob

act (t)

u
big
i

 ≤ (1.0− s`) ·mbig (5.16)

∑
τi∈τLIT

act (t)

ui ≤ (1.0− s`) ·mLIT · spL (5.17)

∑
τi∈τact(t)

ui ≤ (1.0− s`) · (mbig +mLIT · spL) (5.18)

The above are the conditions that will be maintained in our patched ACS. We will briefly discuss how

the ACS is patched in Section 5.3.5.3.

. Lemma 5.23. For any time t, if there exists X ∈ Rn×m
≥0 such that (3.42)-(3.44) are true, then (5.14)-

(5.18) are true. /

Proof. Consider any X ∈ Rn×m
≥0 . We consider each of (5.14)-(5.18).

For (5.14), we prove the contrapositive: if (5.14) is false, then at least one of (3.42)-(3.44) is false.

As guaranteed by the negation of (5.14), let task τi ∈ τ big
act (t) ∪ τ glob

act (t) be such that ui > 1.0 − s`.

Assume that (3.43) is true of X, as otherwise one of (3.42)-(3.44) is false, which is our proof obligation

when considering (5.14). We have

∑
πj∈π

(1.0− s`) · spi,j · xi,j

≤
{

By Definition 5.2 and (5.2)-(5.7), spi,j ≤ 1.0
}

∑
πj∈π

(1.0− s`) · xi,j

= (1.0− s`)
∑
πj∈π

xi,j

293

≤ {Equation (3.43)}

1.0− s`

< ui.

The above is the negation of (3.42). Thus, if (5.14) is false, at least one of (3.42)-(3.44) is false. This is

the contrapositive.

We also prove the contrapositive for (5.15): if (5.15) is false, then at least one of (3.42)-(3.44) is

false. As guaranteed by the negation of (5.15), let task τi ∈ τLIT
act (t) be such that ui > (1.0− s`) · spL.

Assume that (3.43) is true, as otherwise one of (3.42)-(3.44) is false, which is our proof obligation when

considering (5.15). We have

∑
πj∈π

(1.0− s`) · spi,j · xi,j

=

 ∑
πj∈πbig

(1.0− s`) · spi,j · xi,j

+

 ∑
πj∈πLIT

(1.0− s`) · spi,j · xi,j

=
{

By (5.6) and τi ∈ τLIT
act (t) ⊆ τLIT ∧ πj ∈ πbig, spi,j = 0

} ∑
πj∈πbig

(1.0− s`) · 0 · xi,j

+

 ∑
πj∈πLIT

(1.0− s`) · spi,j · xi,j

=

∑
πj∈πLIT

(1.0− s`) · spi,j · xi,j

=
{

By (5.7 and τi ∈ τLIT
act (t) ⊆ τLIT ∧ πj ∈ πLIT, spi,j = spL}∑

πj∈πLIT

(1.0− s`) · spL · xi,j

= (1.0− s`) · spL ·
∑

πj∈πLIT

xi,j

≤ (1.0− s`) · spL ·
∑
πj∈π

xi,j

≤ {Equation (3.43)}

(1.0− s`) · spL

< ui.

294

The above is the negation of (3.42). Thus, if (5.15) is false, at least one of (3.42)-(3.44) is false. This is

the contrapositive.

For (5.16), consider any task τi ∈ τ glob
act (t). We have

∑
πj∈πbig

(1.0− s`) · xi,j

=
{

By (5.2) and τi ∈ τ glob
act (t) ⊆ τ glob ∧ πj ∈ πbig, spi,j = 1.0

}
∑

πj∈πbig

(1.0− s`) · spi,j · xi,j

≥ {Equation (3.42)}

ui −
∑

πj∈πLIT

(1.0− s`) · spi,j · xi,j

=
{

By (5.3) and τi ∈ τ glob
act (t) ⊆ τ glob ∧ πj ∈ πLIT, spi,j = spL

}
ui −

∑
πj∈πLIT

(1.0− s`) · spL · xi,j

= ui − (1.0− s`) · spL ·
∑

πj∈πLIT

xi,j

≥ {Equation (3.43)}

ui − (1.0− s`) · spL ·

1.0−
∑

πj∈πbig

xi,j

= ui − (1.0− s`) · spL + (1.0− s`) · spL ·

∑
πj∈πbig

xi,j

= ui − (1.0− s`) · spL + spL ·
∑

πj∈πbig

(1.0− s`) · xi,j

(5.19)

Subtracting both sides of (5.19) by spL ·
∑

πj∈πbig(1.0−s`) ·xi,j and then dividing both sides by 1.0−spL

yields ∑
πj∈πbig

(1.0− s`) · xi,j ≥
ui − (1.0− s`) · spL

1.0− spL

≥ {Definition 5.14}

u
big
i .

(5.20)

295

We have ∑
τi∈τ big

act (t)

ui

+

 ∑
τi∈τ glob

act (t)

u
big
i

≤ {Equation (3.42)} ∑

τi∈τ big
act (t)

∑
πj∈π

(1.0− s`) · spi,j · xi,j

+

 ∑
τi∈τ glob

act (t)

u
big
i

=

 ∑
τi∈τ big

act (t)

 ∑
πj∈πbig

(1.0− s`) · spi,j · xi,j +
∑

πj∈πLIT

(1.0− s`) · spi,j · xi,j

+

 ∑
τi∈τ glob

act (t)

u
big
i

=
{

By (5.4) and τi ∈ τ big
act (t) ⊆ τ big ∧ πj ∈ πbig, spi,j = 1.0

}
 ∑
τi∈τ big

act (t)

 ∑
πj∈πbig

(1.0− s`) · xi,j +
∑

πj∈πLIT

(1.0− s`) · spi,j · xi,j

+

 ∑
τi∈τ glob

act (t)

u
big
i

=
{

By (5.5) and τi ∈ τ big
act (t) ⊆ τ big ∧ πj ∈ πLIT, spi,j = 0

}
 ∑
τi∈τ big

act (t)

 ∑
πj∈πbig

(1.0− s`) · xi,j +
∑

πj∈πLIT

(1.0− s`) · 0 · xi,j

+

 ∑
τi∈τ glob

act (t)

u
big
i

=

 ∑
τi∈τ big

act (t)

∑
πj∈πbig

(1.0− s`) · xi,j

+

 ∑
τi∈τ glob

act (t)

u
big
i

≤ {Equation (5.20)} ∑

τi∈τ big
act (t)

∑
πj∈πbig

(1.0− s`) · xi,j

+

 ∑
τi∈τ glob

act (t)

∑
πj∈πbig

(1.0− s`) · xi,j

=

 ∑
πj∈πbig

∑
τi∈τ big

act (t)

(1.0− s`) · xi,j

+

 ∑
πj∈πbig

∑
τi∈τ glob

act (t)

(1.0− s`) · xi,j

= (1.0− s`)

∑
πj∈πbig

∑
τi∈τ big

act (t)∪τ glob
act (t)

xi,j

≤
{
τ

big
act (t) ∪ τ glob

act (t) ⊆ τact(t), s` < 1.0 (by Definition 3.9), and X ∈ Rn×m
≥0

}
(1.0− s`)

∑
πj∈πbig

∑
τi∈τact(t)

xi,j

296

≤ {Equation (3.44)}

(1.0− s`)
∑

πj∈πbig

1.0

= (1.0− s`) ·mbig.

This is (5.16).

For (5.17), we have

∑
τi∈τLIT

act (t)

ui ≤ {Equation (3.42)}

∑
τi∈τLIT

act (t)

∑
πj∈π

(1.0− s`) · spi,j · xi,j

= (1.0− s`)
∑

τi∈τLIT
act (t)

∑
πj∈π

spi,j · xi,j

= (1.0− s`)
∑

τi∈τLIT
act (t)

 ∑
πj∈πLIT

spi,j · xi,j +
∑

πj∈πbig

spi,j · xi,j

=
{

By (5.6) and τi ∈ τLIT
act (t) ⊆ τLIT ∧ πj ∈ πbig, spi,j = 0

}
(1.0− s`)

∑
τi∈τLIT

act (t)

∑
πj∈πLIT

spi,j · xi,j

=
{

By (5.7) and τi ∈ τLIT
act (t) ⊆ τLIT ∧ πj ∈ πLIT, spi,j = spL}

(1.0− s`)
∑

τi∈τLIT
act (t)

∑
πj∈πLIT

spL · xi,j

= (1.0− s`) · spL ·
∑

τi∈τLIT
act (t)

∑
πj∈πLIT

xi,j

= (1.0− s`) · spL ·
∑

πj∈πLIT

∑
τi∈τLIT

act (t)

xi,j

≤ {Equation (3.44)}

(1.0− s`) · spL ·
∑

πj∈πLIT

1.0

= (1.0− s`) · spL ·mLIT.

This is (5.17).

297

For (5.18), we have

∑
τi∈τact(t)

ui

≤ {Equation (3.42)}∑
τi∈τact(t)

∑
πj∈π

(1.0− s`) · spi,j · xi,j

= (1.0− s`)
∑

τi∈τact(t)

∑
πj∈π

spi,j · xi,j

= (1.0− s`)
∑
πj∈π

∑
τi∈τact(t)

spi,j · xi,j

= (1.0− s`)

 ∑
πj∈πbig

∑
τi∈τact(t)

spi,j · xi,j +
∑

πj∈πLIT

∑
τi∈τact(t)

spi,j · xi,j

= (1.0− s`)

∑

πj∈πbig

+
∑

τi∈τ glob
act (t)

spi,j · xi,j

+
∑

τi∈τLIT
act (t) spi,j · xi,j

∑
τi∈τ big

act (t)
spi,j · xi,j

+
∑

πj∈πLIT

+
∑

τi∈τ glob
act (t)

spi,j · xi,j

+
∑

τi∈τLIT
act (t) spi,j · xi,j

∑
τi∈τ big

act (t)
spi,j · xi,j

= {Equations (5.2), (5.4), and (5.6)}

(1.0− s`)

∑

πj∈πbig

+
∑

τi∈τ glob
act (t)

xi,j

+
∑

τi∈τLIT
act (t) 0 · xi,j

∑
τi∈τ big

act (t)
xi,j

+
∑

πj∈πLIT

+
∑

τi∈τ glob
act (t)

spi,j · xi,j

+
∑

τi∈τLIT
act (t) spi,j · xi,j

∑
τi∈τ big

act (t)
spi,j · xi,j

= (1.0− s`)

∑

πj∈πbig

+
∑

τi∈τ glob
act (t)

xi,j

∑
τi∈τ big

act (t)
xi,j

+
∑

πj∈πLIT

+
∑

τi∈τ glob
act (t)

spi,j · xi,j

+
∑

τi∈τLIT
act (t) spi,j · xi,j

∑
τi∈τ big

act (t)
spi,j · xi,j

≤
{
τact(t) = τ

big
act (t) ∪ τLIT

act (t) ∪ τ glob
act (t) and X ∈ Rn×m

≥0

}

(1.0− s`)

∑

πj∈πbig

∑
τi∈τact(t)

xi,j +
∑

πj∈πLIT

+
∑

τi∈τ glob
act (t)

spi,j · xi,j

+
∑

τi∈τLIT
act (t) spi,j · xi,j

∑
τi∈τ big

act (t)
spi,j · xi,j

= {Equations (5.3), (5.5), and (5.7)}

298

(1.0− s`)

∑

πj∈πbig

∑
τi∈τact(t)

xi,j +
∑

πj∈πLIT

+
∑

τi∈τ glob
act (t)

spL · xi,j

+
∑

τi∈τLIT
act (t) sp

L · xi,j

∑
τi∈τ big

act (t)
0 · xi,j

≤
{
τact(t) = τ

big
act (t) ∪ τLIT

act (t) ∪ τ glob
act (t) and X ∈ Rn×m

≥0

}
(1.0− s`)

 ∑
πj∈πbig

∑
τi∈τact(t)

xi,j +
∑

πj∈πLIT

∑
τi∈τact(t)

spL · xi,j

= (1.0− s`)

 ∑
πj∈πbig

∑
τi∈τact(t)

xi,j + spL ·
∑

πj∈πLIT

∑
τi∈τact(t)

xi,j

≤ {Equation (3.44)}

(1.0− s`)

 ∑
πj∈πbig

1.0 + spL ·
∑

πj∈πLIT

1.0

= (1.0− s`)

(
mbig + spL ·mLIT) .

This is (5.18).

All of (5.14)-(5.18) are implied by (3.42)-(3.44). This completes the proof. �

Lemma 5.23 proves one direction of the equivalence between (3.42)-(3.44) and (5.14)-(5.18). We prove

the other direction by providing an algorithm which, if (5.14)-(5.18) are true at time t, constructs an X that

satisfies (3.42)-(3.44). The high-level steps of this algorithm are as follows.

Step 1. Initialize the elements of X to 0.

Step 2. Allocate ui of capacity to each τi ∈ τ big
act (t) from the CPUs in πbig.

Step 3. Allocate ubig
i of capacity to each τi ∈ τ glob

act (t) from the CPUs in πbig.

Step 4. Allocate ui of capacity to each τi ∈ τLIT
act (t) from the CPUs in πLIT.

Step 5. Allocate ui − ubig
i of capacity to each τi ∈ τ glob

act (t) from any of the CPUs in π.

Example 5.8 illustrates this algorithm.

H Example 5.8. Consider a system withmbig = 3,mLIT = 3, s` = 0.05, and spL = 0.6. In Figure 5.16,

we represent the capacity (scaled by 1.0− s`) of each CPU with a rectangle. Each rectangle has a height

299

equal to its corresponding CPU’s scaled capacity (i.e., 1.0− s` for the CPUs in πbig and (1.0− s`) · spL

for the CPUs in πLIT), and width 1.0, which reflects the fraction of this CPU’s capacity that has been

allocated to tasks. Initially, all rectangles are shaded to reflect that no allocations of capacity have been

given to tasks in Step 1. Subsequent steps of the algorithm will allocate blocks of these rectangles to

tasks. The value of xi,j set by the algorithm is the total width of blocks from CPU πj’s rectangle allocated

to task τi after all steps have completed.

At time t, suppose the active tasks are such that τ big
act (t) = {τ1, τ2}, τ glob

act (t) = {τ3, τ4, τ5, τ6}, and

τLIT
act (t) = {τ7, τ8, τ9}. Let u1 = 0.3, u2 = 0.2, u3 = 0.7, u4 = 0.8, u5 = 0.7, u6 = 0.5, u7 = 0.4,

u8 = 0.3, and u9 = 0.5.

Step 2 is illustrated in Figure 5.17. Each τi ∈ τ big
act (t) is allocated ui of capacity. Blocks of π1, π2,

and π3 in πbig are provided to tasks τ1 and τ2 in τ big
act (t). For example, to allocate u1 = 0.3 of capacity to

task τ1, a block of CPU π1 is allocated to τ1 with width u1
1.0−s` = 0.3

1.0−0.05 = 0.316 such that the block

has area 0.316 · (1.0− s`) = 0.316 · (1.0− 0.05) = 0.3 = u1.4 x1,1 is set to 0.316, matching the width

of this block.

Step 3 is illustrated in Figure 5.18. Each τi ∈ τ glob
act (t) is allocated ubig

i of capacity. Blocks of π1,

π2, and π3 in πbig are provided to tasks τ3, τ4, and τ5. For example, to allocate ubig
4 = u4−(1.0−s`)·spL

1.0−spL =

0.8−0.95·0.6
1.0−0.6 = 0.576 of capacity to task τ4 ∈ τ glob

act (t), a block of π1 with width 0.132 and a block of π2

with width 0.474 are allocated to task τ4. The total capacity is 0.132 · (1.0− s`) + 0.474 · (1.0− s`) =

0.132×0.95+0.474 ·0.95 = 0.576 = u
big
4 . x4,1 is set to 0.132 and x4,2 is set to 0.474. Task τ6 ∈ τ glob

act (t)

has u6 = 0.5 < 0.95 · 0.6 = (1.0− s`) · spL. Thus, τ6 has ubig
6 = 0, and τ6 is not allocated any blocks

in Step 3.

Step 4 is illustrated in Figure 5.19. Each τi ∈ τLIT
act (t) is allocated ui of capacity. Blocks of π4, π5, and

π6 in πLIT are provided to tasks τ7, τ8, and τ9 in τLIT
act (t). For example, to allocate u8 = 0.3 of capacity to

task τ8 ∈ τLIT
act (t), a block of π5 with width 0.228 and a block of π6 with width 0.298 are allocated to task

τ8. The total area is 0.228·(1.0−s`)·spL+0.298·(1.0−s`)·spL = 0.228·0.95·0.6+0.298·0.95·0.6 =

0.3− u8. x8,5 is set to 0.228 and x8,6 is set to 0.298.

Step 5 is illustrated in Figure 5.20. Each τi ∈ τ glob
act (t) is allocated its remaining ui− ubig

i of capacity.

Blocks from any CPU with remaining capacity are allocated to tasks τ3, τ4, τ5, and τ6. For example, task

4Note that all decimals in Example 5.8 have been truncated at three digits.

300

π6 (1.0− s`) · spL

π5 (1.0− s`) · spL

π4 (1.0− s`) · spL

π3 1.0− s`

π2 1.0− s`

π1

1.0

1.0− s`

Figure 5.16: Step 1: initially, no tasks are allocated (X← 0).

τ6 ∈ τ glob
act (t) has u6 − ubig

6 = u6 − 0 = u6 = 0.5 of remaining capacity that must be allocated in this

Step 5. Task τ6 is allocated blocks of width 0.158 on CPU π3 and 0.614 on CPU π4. This yields total

area 0.158 · (1.0− s`) + 0.614 · (1.0− s`) · spL = 0.158 · 0.95 + 0.614 · 0.95 · 0.6 = 0.5.

After Step 5, X is set such that each task τi ∈ τact(t) is allocated ui of capacity. N

. Lemma 5.24. For any time t, if (5.14)-(5.18) are true, then there exists X ∈ Rn×m
≥0 such that (3.42)-

(3.44) are true. /

Proof. We prove that the algorithm discussed in Example 5.8 constructs X ∈ Rn×m
≥0 such that (3.42)-

(3.44) are true so long as (5.14)-(5.18) are true.

If the algorithm completes, the algorithm allocates ui of area for each task τi ∈ τact(t), which

satisfies (3.42). The algorithm must also satisfy (3.44) if it completes because the total width of any

301

π6 (1.0− s`) · spL

π5 (1.0− s`) · spL

π4 (1.0− s`) · spL

π3 1.0− s`

π2 1.0− s`

π1 τ1

0.316

τ2

0.211

1.0

1.0− s`

Figure 5.17: Step 2: each τi ∈ τ big
act (t) is allocated ui of capacity in X.

302

π6 (1.0− s`) · spL

π5 (1.0− s`) · spL

π4 (1.0− s`) · spL

π3 1.0− s`

π2 τ4

0.474

τ5

0.342

1.0− s`

π1 τ1

0.316

τ2

0.211

τ3

0.342

τ4

0.132

1.0

1.0− s`

Figure 5.18: Step 3: each τi ∈ τ glob
act (t) is allocated ubig

i of capacity in X.

303

π6 τ7

0.702

τ8

0.298

(1.0− s`) · spL

π5 τ8

0.228

τ9

0.772

(1.0− s`) · spL

π4 τ9

0.105

(1.0− s`) · spL

π3 1.0− s`

π2 τ4

0.474

τ5

0.342

1.0− s`

π1 τ1

0.316

τ2

0.211

τ3

0.342

τ4

0.132

1.0

1.0− s`

Figure 5.19: Step 4: each τi ∈ τLIT
act (t) is allocated ui of capacity in X.

304

π6 τ7

0.702

τ8

0.298

(1.0− s`) · spL

π5 τ8

0.228

τ9

0.772

(1.0− s`) · spL

π4 τ6

0.614

τ9

0.105

(1.0− s`) · spL

π3 τ3

0.211

τ4

0.237

τ5

0.395

τ6

0.158

1.0− s`

π2 τ4

0.474

τ5

0.342

τ3

0.184

1.0− s`

π1 τ1

0.316

τ2

0.211

τ3

0.342

τ4

0.132

1.0

1.0− s`

Figure 5.20: Step 5: each τi ∈ τ glob
act (t) is allocated ui − ubig

i of capacity in X.

305

rectangle belonging to a CPU is 1.0. The algorithm can only fail to complete if there is insufficient

remaining capacity to allocate blocks as required by any step.

Recall that Step 2 allocates ui of area for each task τi ∈ τ big
act (t) and Step 3 allocates ubig

i of area for

each task τi ∈ τ glob
act (t) from the CPUs in πbig. The total area of CPUs in πbig is (1.0 − s`) ·mbig. By

(5.16), there is sufficient area for Step 2 and Step 3. Thus, Step 2 and Step 3 must complete.

Step 4 allocates ui of area for each task τi ∈ τLIT
act (t) from the CPUs in πLIT. The total area of

CPUs in πLIT is (1.0− s`) · spL ·mLIT. By (5.17), there is sufficient area for Step 4. Thus, Step 4 must

complete.

Step 5 allocates ui − ubig
i of area for each task τi ∈ τ glob

act (t) from any CPU with remaining capacity.

The total area allocated from CPUs for tasks in τ glob
act (t) in Step 3 and Step 5 is

∑
τi∈τ glob

act (t)
u

big
i +(

ui − ubig
i

)
=
∑

τi∈τ glob
act (t)

ui. The total area allocated for tasks of τ big
act (t) and τLIT

act (t) in Step 2 and

Step 4 is
∑

τi∈τ big
act (t)∪τLIT

act (t)
ui. The total area allocated to all tasks in τact(t) = τ

big
act (t)∪ τLIT

act (t)∪ τ glob
act (t)

is
∑

τi∈τact(t)
ui. The total area to be allocated from CPUs is (1.0− s`) ·mbig + (1.0− s`) · spL ·mLIT =

(1.0−s`) ·
(
mbig +mLIT · spL

)
. By (5.18), there is sufficient area for Step 5. Thus, Step 5 must complete.

Because Step 5 is the final step, the algorithm must complete. Because the algorithm completes, as

discussed earlier in this proof, the algorithm satisfies (3.42) and (3.44).

It remains to prove that the algorithm satisfies (3.43) for each task in τact(t). For each task τi ∈ τ big
act (t),

the algorithm only allocates area from CPUs in πbig, which have heights of 1.0−s`. Because the algorithm

allocates ui of area, the total width of blocks allocated to τi is ui
1.0−s` . By (5.14), the total width allocated

to τi is at most 1.0. Because the widths of blocks correspond with the values of xi,j for each πj ∈ π,

(3.43) is satisfied for each task τi ∈ τ big
act (t).

For each task τi ∈ τLIT
act (t), the algorithm only allocates area from CPUs in πLIT, which have heights

of (1.0 − s`) · spL. Because the algorithm allocates ui of area, the total width of blocks allocated to

τi is ui
(1.0−s`)·spL . By (5.15), the total width allocated to τi is at most 1.0. Because the widths of blocks

correspond with the values of xi,j for each πj ∈ π, (3.43) is satisfied for each task τi ∈ τLIT
act (t).

For each task τi ∈ τ glob
act (t), the algorithm allocates ui of area, at least ubig

i of which must be allocated

from CPUs in πbig. Because at least ubig
i of which must be allocated from CPUs in πbig, we have

∑
πj∈πbig

(1.0− s`) · xi,j ≥ ubig
i

306

≥ {Definition 5.14}

ui − (1.0− s`) · spL

1.0− spL .

Multiplying both sides by 1.0− spL yields

∑
πj∈πbig

(1.0− s`) · (1.0− spL) · xi,j ≥ ui − (1.0− s`) · spL. (5.21)

Because the algorithm allocates a total of ui of area, we have

ui =
∑

πj∈πbig

(1.0− s`) · xi,j +
∑

πj∈πLIT

(1.0− s`) · spL · xi,j

=
∑

πj∈πbig

(1.0− s`) · (1.0− spL) · xi,j +
∑

πj∈πbig

(1.0− s`) · spL · xi,j

+
∑

πj∈πLIT

(1.0− s`) · spL · xi,j

≤ {Equation (5.21)}

ui − (1.0− s`) · spL +
∑

πj∈πbig

(1.0− s`) · spL · xi,j

+
∑

πj∈πLIT

(1.0− s`) · spL · xi,j .

Subtracting ui − (1.0− s`) · spL from both sides and then dividing both sides by (1.0− s`) · spL yields

1.0 ≥
∑

πj∈πbig

xi,j +
∑

πj∈πLIT

xi,j .

Because π = πbig ∪ πLIT, we have (3.43).

We have (3.43) for any τi ∈ τ big
act (t) ∪ τLIT

act (t) ∪ τ glob
act (t) = τact(t). This completes the proof of the

lemma. �

5.3.5 Implementation

This subsection concerns implementing Ufm-SC-EDF by modifying SCHED_DEADLINE to follow

USE 1 and USE 2.

307

5.3.5.1 Data structures

Modifications are made to data structures such that SCHED_DEADLINE can more easily recognize when

USE 1 or USE 2 are broken.

dl_rq. Recall from Section 4.4.1 that each dl_rq contains the struct earliest_dl. The original

members of earliest_dl are curr, which stores the deadline of the SCHED_DEADLINE task

scheduled on the corresponding CPU (or zero if the scheduled task is not a SCHED_DEADLINE task), and

next, which stores the deadline of the pushable (i.e., is unscheduled and has affinity for more than one

CPU) task that has the earliest deadline on the corresponding dl_rq.

Our patch adds two members. The first member is curr_is_global, a boolean flag that is set when

the task with deadline equal to curr is in τ glob (i.e., in SCHED_DEADLINE terms, when this task has

affinity for every CPU in the span of the corresponding dl_rq’s root_domain). Note that the value

of curr_is_global only has meaning when curr is nonzero. The second member is next_global,

which serves the same function as next, but only considers the subset of pushable tasks that are also in τ glob.

curr_is_global is relevant to USE 1 because whether or not a task is in τ glob determines its weighted

deadline (see Definition 5.8). curr_is_global is relevant to USE 2 because USE 2 only considers tasks

in τ glob. next and next_global are used to identify the next deadline of a CPU.

O Definition 5.15. Consider a given CPU and the set of unscheduled SCHED_DEADLINE tasks with

affinity for said CPU. The next deadline of this CPU is the value of the earliest deadline belonging to

any of said tasks. 4

For example, if this given CPU is in πbig, then the next deadline is the minimum of the values of next for

the other CPUs in πbig (because any SCHED_DEADLINE task on these dl_rqs should also have affinity for

the given CPU) and the values of next_global for the CPUs in πLIT (because only tasks of τ glob on these

dl_rqs should have affinity for the given CPU).5 Identifying the next deadline of a given CPU is relevant to

maintaining USE 1 (the next deadline corresponds with d`(t) in USE 1).

5If mbig = 1 or mLIT = 1, then it may not be possible to compute the next deadline of a CPU using only next and
next_global. The problem is that next and next_global only consider pushable tasks, i.e., tasks with affinity
for more than one CPU. For example, suppose mbig = 1 and we are interested in the next deadline of a CPU in πbig.
Suppose the earliest deadline of any unscheduled task with affinity for this CPU is already on its dl_rq. Because
mbig = 1, this unscheduled task is not pushable, meaning its deadline will not be reflected in this dl_rq’s next
or next_global members. We permit this minor bug in our patch because, to our knowledge, architectures with
only a single big or LITTLE CPU are rare.

308

To efficiently update next_global, a new tree named global_dl_tasks_root is added to

each dl_rq. The subset of tasks inserted into pushable_dl_tasks_root that are in τ glob are in-

serted into global_dl_tasks_root. Similarly to how next is the deadline of the leftmost task

in pushable_dl_tasks_root, next_global is the deadline of the leftmost task in global_

dl_tasks_root. A new rb_nodeglobal_dl_tasks (analogous to pushable_dl_tasks) for

insertion onto global_dl_tasks_root is added to each task_struct.

As with the original members of earliest_dl and pushable_dl_tasks_root, the added mem-

bers curr_is_global and next_global and tree global_dl_tasks_root are updated within

enqueue_task_dl() and dequeue_task_dl(). Note that our patch modifies dequeue_task_

dl() such that next is set to zero when the last task on pushable_dl_tasks_root is removed.

next_global is also set to zero when the last task on global_dl_tasks_root is removed. When

computing the next deadline for a CPU, only nonzero next and next_global are considered. In the case

that all such values are zero, then, according to our analysis, the next deadline is t+ T [1], the deadline of the

considered CPU’s idle task (see Definition 5.3). In this case, t is the return value of rq_clock() and T [1]

is stored in max_dl_period.

We also add an hrtimer named wdl_timer with callback function wdl_check_timer(). The

usage of this timer will be detailed in Section 5.3.5.2.

root_domain. The cpudl heap in the root_domain is not suited for a Ufm-SC-EDF implementation

because it is oblivious to the asymmetric capacities and affinities present in our platform. As such, we remove

it in our patch.

Several new members take the place of the cpudl. We add two cpumask_var_ts, big_online

and little_online, which indicate the span of πbig and πLIT, respectively. Our implementation assumes

that πbig consists of the CPUs with a capacity of 1.0 and πLIT consists of the CPUs with a capacity of less

than 1.0. min_cpu_capacity stores the minimum capacity of any CPU in little_online. Because

our analysis is limited to two distinct speeds, our ACS pessimistically assumes that all CPUs in little_

online have capacity equal to min_cpu_capacity. This will be detailed further in Section 5.3.5.3.

max_dl_period stores the value of T [1] for tasks in this root_domain. Note that the analysis in

Chapter 3 and in this chapter assumes that the value of T [1] is known a priori. Because T [1] is not known

a priori to SCHED_DEADLINE, max_dl_period is initialized to zero and updated as new tasks are

309

accepted by the ACS. For our analysis to be applicable, the task that has period equal to T [1] should enter

SCHED_DEADLINE prior to any other task. Note that, because T [1] refers to the largest period in the entire

task set τ , and not the largest period among the active tasks τact(t), max_dl_period is not decreased if its

corresponding task leaves SCHED_DEADLINE.

The values of dbig
(
X̄, t

)
and dLIT

(
X̄, t

)
(where X̄ is the current configuration under our patched SCHED_

DEADLINE) are stored in big_deadline and little_deadline, respectively. Storing dbig
(
X̄, t

)
and dLIT

(
X̄, t

)
speeds up the computation of weighted deadlines (see Definition 5.8), which are of relevance

to maintaining USE 1. big_deadline is set to the latest earliest_dl.curr value corresponding

with any CPU in big_online. A special case is when some CPU in big_online has an curr of zero,

i.e., said CPU does not schedule a SCHED_DEADLINE task. In this case, big_deadline is also set to

zero. According to the analysis presented in this chapter, the value of dbig
(
X̄, t

)
should be t+ T [1] (i.e., the

deadline of an idle task) in this case, where t is the current time. It is not practical to set big_deadline to

t+ T [1] because this value changes continuously with time. Instead, when a big_deadline value of zero

is observed in the code, the value t + T [1] (where t is set to the return value of rq_clock() and T [1] is

max_dl_period) is used in place of big_deadline. little_deadline is analogously set based

on the CPUs in little_online.

5.3.5.2 Scheduling and Migration Changes

The implementation is mostly unchanged by our patch outside of modifications to find_later_rq()

and the addition of two new functions that correspond to USE 1 and USE 2.

find_later_rq(). Recall that when push_dl_task() or select_task_rq_dl() is called on

a task being migrated, both functions internally call find_later_rq(). In the original implementation,

find_later_rq() references the cpudl heap to identify which CPU has the latest deadline. Because

we do not maintain the cpudl heap, when our modified find_later_rq() is called on a task, it must

identify the latest CPU by iterating over the CPUs in said task’s affinity mask. The latest CPU is the CPU

whose dl_rq has the latest earliest_dl.curr value.

Modifying find_later_rq() to iterate over the CPUs in a task’s affinity mask prevents push_

dl_task() and select_task_rq_dl() from failing to migrate a task due to find_later_rq()

returning a CPU that said task does not have affinity for. Recall that pull_dl_task() does not fail

310

to migrate tasks in this manner because pull_dl_task() does not reference an affinity-oblivious data

structure such as the cpudl heap. Because CPUs pull the earliest unscheduled tasks from other dl_rqs and

tasks are now correctly pushed to the latest CPUs they have affinity for, SCHED_DEADLINE, under these

modifications implements Weak-APA-EDF.6 The addition of two new functions extends Weak-APA-EDF

to Ufm-SC-EDF. Both functions are callback functions that are invoked by waking the stop tasks of CPUs

that schedule tasks in τ glob (i.e., a task with affinity for every CPU in the root_domain’s span).

USE 1 and set_next_task_dl(). Because SCHED_DEADLINE already implements Weak-APA-

EDF, any unscheduled task τ` must have a later deadline d`(t) than any task τe with deadline de(t) that

is scheduled on a CPU πj that τ` has affinity for. Recall from Definition 5.8 that only a scheduled task in

τe ∈ τ glob can potentially have d̄e
(
X̄, t

)
6= de(t). Thus, we only need to check for violations of USE 1

whenever a task τe ∈ τ glob is newly scheduled on a CPU πj or when the weighted deadline d̄e
(
X̄, t

)
of task

τe scheduled on a CPU πj changes.

We first address scenarios when a task τe ∈ τ glob is newly scheduled on a CPU πj . We modify set_

next_task_dl() to call a new function check_wdl_preempt() that checks for violations of USE 1.

d̄e
(
X̄, t

)
is computed by referencing task τe’s deadline (i.e., de(t)) and the added fields min_cpu_

capacity (i.e., spL), big_deadline (i.e., dbig
(
X̄, t

)
), and little_deadline (i.e., dLIT

(
X̄, t

)
).

These values are plugged into the formula presented in Definition 5.8. The earliest deadline d`(t) of any

unscheduled task τ` with affinity for CPU πj is πj’s next deadline (see Definition 5.15), which, as discussed

in Section 5.3.5.1, is computed using fields next and next_global.

If USE 1 is found to be violated in check_wdl_preempt() for a task τe ∈ τ glob scheduled on a

CPU πj , set_next_task_dl() calls stop_one_cpu_nowait() on CPU πj with callback function

push_wdl_stop(), which is added by our patch. When push_wdl_stop() is executed by the stop

task, the target CPU is the latest LITTLE CPU if πj ∈ πbig and the target CPU is the latest big CPU if

πj ∈ πLIT. push_wdl_stop() acquires the rq locks of CPU πj and the target CPU, after which it

rechecks that τe ∈ τ glob is still the highest-priority SCHED_DEADLINE task on πj and that the highest-

priority SCHED_DEADLINE task on the target CPU still has a later deadline than de(t). If this recheck

passes, task τe is pushed from CPU πj to the target CPU. push_wdl_stop() then returns, allowing CPU

6We claim that SCHED_DEADLINE with these changes implements Weak-APA-EDF without formal proof. It is
impractical to formally reason about SCHED_DEADLINE given the size of the Linux scheduler. Our justification that
SCHED_DEADLINE implements Weak-APA-EDF is that the changes made in this patch mitigate the affinity-related
issues discussed in Section 4.4.5. These issues are the cause of the counterexample in Example 4.10.

311

πj’s stop task to suspend. When πj reschedules due to the stop task suspending, it pulls and schedules

the task τ` that was involved in the violation of USE 1.

Changes in weighted deadlines. It remains to discuss when USE 1 is violated due to the weighted deadline

d̄e
(
X̄, t

)
of task τe, which is scheduled on CPU πj , changing. By Definition 5.8, this can only occur if either

de(t) (i.e., the deadline of task τe), dbig
(
X̄, t

)
(i.e., big_deadline), or dLIT

(
X̄, t

)
(i.e., little_

deadline) changes.

Instances of de(t) changing are dealt with implicitly by eliminating throttle bypassing. In SCHED_

DEADLINE, the deadline of a task can only change upon wakeup or replenishment (be aware that this

assumes no priority inheritance). If the task was woken, then it was necessarily unscheduled while suspended.

If the task was replenished, then without throttle bypassing, it was necessarily unscheduled while throttled.

Thus, any task that changed its deadline will first need to be rescheduled, upon which the task will

encounter the aforementioned checks in set_next_task_dl().

Instances of dbig
(
X̄, t

)
or dLIT

(
X̄, t

)
changing are dealt with by calling resched_curr() on certain

CPUs. If dbig
(
X̄, t

)
is set to a new value in enqueue_task_dl() or dequeue_task_dl(), then the

weighted deadlines of tasks in τ glob that are scheduled on CPUs in πLIT may have changed. enqueue_

task_dl() or dequeue_task_dl() then calls resched_curr() on these CPUs in πLIT. These

CPUs are those for which earliest_dl.curr is nonzero and earliest_dl.curr_is_global

is set. Likewise, if dLIT
(
X̄, t

)
is set to a new value, enqueue_task_dl() or dequeue_task_dl()

calls resched_curr() on such CPUs in πbig. CPUs that have resched_curr() called on them in this

manner will check for USE 1 violations using the updated dbig
(
X̄, t

)
and dLIT

(
X̄, t

)
values in set_next_

task_dl().

Non-SCHED_DEADLINE tasks. There is an edge case when a CPU is not executing a SCHED_DEADLINE

task. If a CPU in πbig does not schedule a SCHED_DEADLINE task, then dbig
(
X̄, t

)
= t + T [1] (by

Definition 5.3, 5.6, and 5.7 and Corollary 5.3). Likewise, if a CPU in πLIT does not schedule a SCHED_

DEADLINE task, then dLIT
(
X̄, t

)
= t+ T [1]. Because dbig

(
X̄, t

)
or dLIT

(
X̄, t

)
changes continuously with

time while a CPU executes a non-SCHED_DEADLINE task, it no longer becomes practical to call resched_

curr() on the relevant CPUs upon every change in dbig
(
X̄, t

)
or dLIT

(
X̄, t

)
. Instead, resched_curr()

is called on these CPUs only when big_deadline or little_deadline is set to zero (recall that this

signifies that dbig
(
X̄, t

)
or dLIT

(
X̄, t

)
is equal to t+ T [1]).

312

When resched_curr() is called on a CPU due to big_deadline or little_deadline being

set to zero, set_next_task_dl() will perform the aforementioned checks if USE 1 is violated. If it

is found that USE 1 is violated (while using the sum of rq_clock() and max_dl_period in place

of big_deadline or little_deadline), then the relevant tasks are migrated as described above.

Otherwise, USE 1 is not violated, and the issue becomes that USE 1 may become violated at some future

time t′ due to t+ T [1] (and hence, dbig
(
X̄, t

)
or dLIT

(
X̄, t

)
) increasing with time. To see this, observe from

Definition 5.8 that the weighted deadline of a task is non-decreasing with dbig
(
X̄, t

)
and dLIT

(
X̄, t

)
, thus, a

continuous increase in dbig
(
X̄, t

)
or dLIT

(
X̄, t

)
can lead to a violation of USE 1 by increasing a scheduled

task’s weighted deadline.

The time instant t′ is computed in set_next_task_dl(), which arms hrtimer wdl_timer to

fire at time t′. wdl_check_timer(), wdl_timer’s callback function, triggers a reschedule on this CPU,

which will result in a call to set_next_task_dl() that will observe the violation of USE 1 at time t′.

The computation of time t′ in set_next_task_dl() makes three assumptions. Note that these

assumptions need not be true; the violation of any of these assumptions only means that the time t′ must be

recomputed and wdl_timer must be armed to fire at the new time. The computation assumes that from the

time set_next_task_dl() is called to the time t′:

• the task τe ∈ τ glob being scheduled in set_next_task_dl() remains scheduled on the same CPU,

• this task τe has constant deadline de(t),

• and the next deadline of task τe’s CPU is constant.

We now justify these three assumptions.

It is assumed that τe remains scheduled until time t′ because USE 1 only considers d̄e
(
X̄, t

)
while task

τe is scheduled. If τe is later rescheduled, then we can defer checking for violations of USE 1 to the call of

set_next_task_dl() that corresponds with that rescheduling. If necessary, that call to set_next_

task_dl() will recompute t′.

It is assumed that de(t) is constant until time t′ because, due to eliminating throttle bypassing, τe must

have been unscheduled for de(t) to have changed. As with the prior assumption, set_next_task_dl()

will recompute t′ if τe is rescheduled.

It is not safe to assume that the next deadline of task τe’s CPU is constant until time t′. If a task replaces

task τ` as the unscheduled task with the earliest deadline with affinity for this CPU, the implementation

313

needs to explicitly call resched_curr() to trigger a call to set_next_task_dl() such that t′ will

be recomputed. We will address how the patch does this after discussing how t′ is computed given the above

assumptions.

Suppose we have a CPU in πLIT that schedules a non-SCHED_DEADLINE task and a CPU in πbig

that schedules a task τe ∈ τ glob. Task τ` ∈ τ̄rdy(t) is the unscheduled task whose deadline corresponds

with the next deadline of task τ`’s CPU. USE 1 is violated immediately after the time instant t′ such that

d̄e
(
X̄, t′

)
= d`(t

′). This time instant is

t′ =
d`(t)−

(
1.0− spL

)
· de(t)

spL − T [1], (5.22)

This is because

d̄e
(
X̄, t′

)
=
{

Definition 5.8 and τe ∈ τ glob is scheduled on a big CPU
}

(
1.0− spL) · de(t′)+ spL · dLIT(X̄, t′)

=
{

Assumed constant de(t) from current time to t′
}

(
1.0− spL) · de(t) + spL · dLIT(X̄, t′)

=
{
dLIT(X̄, t) = t+ T [1] while a CPU in πLIT schedules a non-SCHED_DEADLINE task

}
(
1.0− spL) · de(t) + spL ·

(
t′ + T [1]

)
= {Equation (5.22)}

(
1.0− spL) · de(t) + spL ·

(
d`(t)−

(
1.0− spL

)
· de(t)

spL − T [1] + T [1]

)

=
(
1.0− spL) · de(t) + spL ·

d`(t)−
(
1.0− spL

)
· de(t)

spL

=
(
1.0− spL) · de(t) + d`(t)−

(
1.0− spL) · de(t)

= d`(t)

=
{

Assumed next deadline d`(t) is constant until t′
}

d`
(
t′
)
.

Likewise, if we have a CPU in πbig that schedules a non-SCHED_DEADLINE task, a CPU in πLIT that

schedules a task τe ∈ τ glob, and task τe’s CPU’s next deadline is d`(t) for some task τ` ∈ τ̄rdy(t), then we

314

have

t′ = spL · d`(t) +
(
1.0− spL) · de(t)− T [1]. (5.23)

This is because

d̄e
(
X̄, t′

)
=
{

Definition 5.8 and τe ∈ τ glob is scheduled on a LITTLE CPU
}

1.0

spL · d
big(X̄, t′)− 1.0− spL

spL · de
(
t′
)

=
{

Assumed constant de(t) from current time to t′
}

1.0

spL · d
big(X̄, t′)− 1.0− spL

spL · de(t)

=
{
dbig(X̄, t) = t+ T [1] while a CPU in πbig schedules a non-SCHED_DEADLINE task

}
1.0

spL ·
(
t′ + T [1]

)
− 1.0− spL

spL · de(t)

= {Equation (5.23)}

1.0

spL ·
(
spL · d`(t) +

(
1.0− spL) · de(t)− T [1] + T [1]

)
− 1.0− spL

spL · de(t)

=
1.0

spL ·
(
spL · d`(t) +

(
1.0− spL) · de(t))− 1.0− spL

spL · de(t)

= d`(t) +

(
1.0− spL

)
spL · de(t)−

1.0− spL

spL · de(t)

= d`(t)

=
{

Assumed next deadline d`(t) is constant until t′
}

d`
(
t′
)
.

Changes in the next deadline. The computation of time t′ and the arming of wdl_timer assume that

the next deadline is constant until time t′. The code must detect when this assumption is broken in order

to know when to recompute t′ and rearm wdl_timer. Recall from the discussion in Section 5.3.5.1

that the next deadline is computed as the minimum of certain earliest_dl.next and earliest_

dl.next_global values, which are updated within functions enqueue_task_dl() and dequeue_

task_dl(). We modify enqueue_task_dl() and dequeue_task_dl() such that, if any next

or next_global is set to a lesser value while big_deadline or little_deadline is zero (recall

315

that this signifies that dbig
(
X̄, t

)
= t + T [1] or dLIT

(
X̄, t

)
= t + T [1], which is the cause for needing to

compute time t′ and arm wdl_timer), then resched_curr() is called on the CPUs that schedule tasks

in τ glob (i.e., CPUs with curr_is_global set to true). After rescheduling, set_next_task_dl()

will recompute time t′ and arm wdl_timer if necessary.

USE 2. USE 2 can only be violated when a task in τ glob is newly scheduled on a CPU. As with USE 1,

we check curr_is_global within set_next_task_dl() to determine if checking for a violation is

necessary, and, if a violation of USE 2 is discovered, execute a callback function to perform a migration. The

function for checking USE 2 is check_global_order(). The callback function for USE 2 is swap_

global_stop(), the purpose of which is to swap the CPUs of a high-priority task τi1 ∈ τ glob that is

scheduled on a CPU πj1 ∈ πLIT and a lower-priority task τi2 ∈ τ glob that is scheduled on a CPU πj2 ∈ πbig.

How check_global_order() checks for violations of USE 2 depends on whether the calling CPU

belongs to πbig or πLIT. If the calling CPU belongs to πbig, then it corresponds with CPU πj2 and its scheduled

task corresponds with task τi2 . A violation of USE 2 has occurred if there is a CPU πj1 ∈ πLIT that schedules

a task τi1 ∈ τ glob such that task τi1 has an earlier deadline than task τi2 , i.e., di1(t) < di2(t). The code

determines if this has occurred by comparing the deadline of τi2 against earliest_dl.curr for each

CPU πj1 ∈ πbig where earliest_dl.curr_is_global is set. Likewise, if the calling CPU belongs to

πLIT, then it corresponds with CPU πj1 and its scheduled task corresponds with task τi1 . A violation of USE 2

has occurred if there is a CPU πj2 ∈ πbig that schedules a task τi2 ∈ τ glob such that di1(t) < di2(t). The

code determines if this has occurred by comparing the deadline of τi1 against earliest_dl.curr for

each CPU πj2 ∈ πLIT where earliest_dl.curr_is_global is set.

If a violation is discovered, swap_global_stop() is called on CPUs πj1 and πj2 using stop_

two_cpus().7 swap_global_stop() first acquires the locks of the calling and target CPUs. swap_

global_stop() then rechecks that the highest-priority SCHED_DEADLINE tasks on both CPUs are

still tasks in τ glob and that the task belonging to the LITTLE CPU still has an earlier deadline than the

deadline of the task belonging to the big CPU. If the recheck passes, swap_global_stop() migrates

the tasks such that they swap CPUs.

7More specifically, swap_global_stop() is called from a non-blocking version of stop_two_cpus(), which
is added in our patch. A non-blocking version is necessary to avoid nested calls of __schedule(). Note that stop_
two_cpus() is being called from set_next_task_dl(), which is called by __schedule(). If stop_two_
cpus() were to block, it would call __schedule() to select a new task to run.

316

Note that it is redundant to check for violations of both USE 1 and USE 2 within the same instance of

set_next_task_dl() because a violation in either will result in the scheduled task being migrated away.

Thus, set_next_task_dl() will only call check_wdl_preempt() to check USE 1 if check_

global_order() finds that USE 2 is upheld. This ordering of check_wdl_preempt() and check_

global_order() in our patch is arbitrary.

5.3.5.3 ACS

Our patch must modify the ACS to enforce (5.14)-(5.18), which were derived in Section 5.3.4. We now

discuss how the terms in conditions (5.14)-(5.18) are stored. Some terms are already maintained by the

original code, which we briefly review. Consider a given root_domain. Recall from Section 4.4.1 that

dl_bw.bw stores the fraction sched_rt_runtime_us
sched_rt_period_us . As discussed in Section 5.3.4, we choose to interpret

this fraction as 1.0 − s`. Member dl_bw.total_bw stores the total of the dl_bws of the SCHED_

DEADLINE tasks executing on the CPUs belonging to this root_domain, i.e., total_bw corresponds

with
∑

τi∈τact(t)
ui.

Some terms in (5.14)-(5.18) added by our patch have already been discussed. The number of CPUs

in big_online corresponds with mbig and the number of CPUs in little_online corresponds with

mLIT. min_cpu_capacity corresponds with spL.

We add members dl_bw.total_big_bw, which corresponds with
∑

τi∈τ big
act (t)

ui; dl_bw.total_

little_bw, which corresponds with
∑

τi∈τLIT
act (t) ui; and dl_bw.total_global_b_bw, which corre-

sponds with
∑

τi∈τ glob
act (t)

u
big
i . Note that the additional ‘b’ in total_global_b_bw indicates that the sum

of ubig
i ’s, not ui’s, is being stored. As with total_bw, these three members are updated whenever a task

enters or leaves SCHED_DEADLINE.

Thus, every term in (5.14)-(5.18) corresponds to some variable in SCHED_DEADLINE. We modify _

_dl_overflow() to verify that (5.14)-(5.18) would not be violated upon enacting a change in a task’s

bandwidth. Note that it is necessary to add an additional argument to __dl_overflow() that indicates

the affinity of the task being considered. For example, only tasks with affinity for the LITTLE CPUs must

satisfy (5.15).

For the same reasons as our patch targeting IDENTICAL/SEMI-PARTITIONED systems (recall Sec-

tion 5.2.4), this patch forbids SCHED_DEADLINE tasks from changing their affinities. Tasks are categorized

317

into τ big
act (t), τ glob

act (t), or τLIT
act (t) based on their affinities upon entering SCHED_DEADLINE. To change a

task’s affinity, said task must first exit SCHED_DEADLINE.

Furthermore, we forbid the addition or removal of CPUs to any cpuset that contains SCHED_

DEADLINE tasks. There are two reasons for forbidding this. The first reason is that modifying a cpuset

can potentially change the span of a root_domain, which resets the affinity of every task corresponding

with that root_domain to said root_domain’s span. The second reason is that a new CPU added

to a root_domain’s span may have capacity less than min_cpu_capacity, which would set min_

cpu_capacity to this new lesser capacity. Recall that, because our model only permits two distinct

capacities, we pessimistically assume that all LITTLE CPUs have capacity min_cpu_capacity. Tasks

that were already accepted by the ACS under the old min_cpu_capacity (i.e., spL) value may no longer

satisfy (5.14)-(5.18) with the new value. Modifying min_cpu_capacity would also require that ubig
i be

recomputed for every task in τ glob
act (t) (see Definition 5.14).

Modifying the fraction sched_rt_runtime_us
sched_rt_period_us is also forbidden because this fraction corresponds with

1.0− s`. Thus, decreasing sched_rt_runtime_us
sched_rt_period_us can cause tasks that were previously accepted by the ACS

to no longer satisfy (5.14)-(5.18). Similarly to min_cpu_capacity, changing this fraction would also

require that ubig
i be recomputed for every task in τ glob

act (t) (see Definition 5.14).

5.3.6 Evaluation

We compared the overheads and tardiness under our patched kernel against those of the original imple-

mentation on the ODROID-XU4. As with the evaluation discussed in Section 5.2.6, rt-app (rt-app) was

used for workload generation and ftrace was used for recording timestamps. We modified taskgen to

generate bandwidths and affinities satisfying (5.14)-(5.18), the conditions checked by our modified ACS.

Task parameter generation under our modified taskgen is detailed in later paragraphs in this subsection.

Ten task systems were generated for each of n ∈ {20, 40}. Timestamps were collected for each task system

for a minimum of 10 minutes for both the original and our patched kernel.

Note that timestamps were collected under the original kernel for longer than under our patched kernel.

This is because the ODROID-XU4 was prone to overheating when running this experiment, which stresses all

CPUs at near maximum capacity for several hours. This would frequently cause thermal protection to force a

shutdown, which caused some task systems to be rerun when the experiment was restarted. Overheating also

318

seems to cause rt-app, which measures elapsed time in CPU cycles, to run for longer than the requested

10 minutes. This may be due to thermal protection stopping CPUs. These issues predominately affected runs

of task systems on the original kernel, which were done prior to runs on the patched kernel. The patched

kernel was measured with greater spacing between runs, which reduced overheating.

Table 5.2 will present the cumulative time spent on relevant overheads. Note that, because the kernels

were not evaluated for the same duration of time, the number of samples of events (e.g., enqueues, dequeues,

etc.) are incomparable between the original and patched kernels. Thus, the cumulative time spent is also

incomparable. Only the distribution (i.e., the average and worst-case durations) of samples should be

compared between the kernels. Comparisons of the impact of different overheads measured within the same

kernel are also valid.

Task parameter generation. Recall from Section 5.3.1 that, on our considered platform, we have mbig =

mLIT = 4. The capacity of each LITTLE CPU is spL = 377
1024 ≈ 0.368. The value of 1.0 − s` =

sched_rt_runtime_us
sched_rt_period_us was kept at its default of 95%. We generated task systems satisfying (5.14)-(5.18) with

n ∈ {20, 40} using the following procedure. Note that, for each task system, all tasks both simultaneously

enter and simultaneously leave SCHED_DEADLINE, i.e., for all time instants t while a task system τ is being

evaluated, we have τact(t) = τ . Our generation procedure initially generates a system of only global tasks

(Step 1 through Step 3), after which certain tasks are partitioned out into τLIT (Step 4) and τ big (Step 5).

Step 1: Use Randfixedsum (Stafford, 2024), the algorithm used internally by taskgen (Emberson et al.,

2010; Lelli, 2014), to uniformly generate a set of n utilizations ui ∈ [0, 1.0] that sum to
∑

τi∈τ ui =

mbig + spL ·mLIT.

Step 2: Scale each utilization such that ui ← (1.0− s`) · ui.

Each utilization ui is now in [(1.0 − s`) · 0, (1.0 − s`) · 1.0] = [0, 1.0 − s`], which satisfies (5.14).

The sum of all utilizations is now
∑

τi∈τ ui = (1.0− s`) ·
(
mbig + spL ·mLIT

)
, which satisfies (5.18).

Step 3: Compute ubig
i for each utilization ui. If

∑
τi∈τ u

big
i > (1.0− s`) ·mbig, then restart from Step 1.

Note that it is unlikely that the procedure returns to Step 1 at the end of Step 3, which we argue infor-

mally. The average utilization is
∑
τi∈τ

ui

n ≤
∑
τi∈τ

ui

20 =
(1.0−s`)·(mbig+spL·mLIT)

20 ≈ 0.95·(4+0.368·4)
20 ≈

0.260. Thus, the average utilization is less than (1.0 − s`) · spL ≈ 0.95 · 0.368 ≈ 0.350. Because

319

the average utilization is less than (1.0− s`) · spL, by Definition 5.14, an average utilization ui has a

corresponding ubig
i = 0. Thus, it is unlikely that

∑
τi∈τ u

big
i > (1.0− s`) ·mbig = 0.95 · 4 = 3.8.

Passing Step 3 satisfies (5.16) for our initial task system, which consists of only global tasks. Note that

Step 5, which will move tasks from τ glob into τ big, must do so without violating (5.16).

Step 4: Sort the tasks of τ = τ glob in order of non-decreasing utilization. Move tasks of τ glob into τLIT until

either of constraints (5.15) or (5.17) would be violated or until τLIT = τ .

The tasks are sorted in non-decreasing order because this maximizes the number of tasks that can be

placed in τLIT without violating (5.15) or (5.17). We assume that a system designer would, to save

power, prefer that as many tasks as possible execute exclusively on the LITTLE CPUs.

Step 5: Move the remaining tasks of τ glob into τ big until (5.16) would be violated or until τ big = τ \ τLIT.

Note that these remaining tasks of τ glob are still sorted in order of non-decreasing utilization. As when

moving tasks from τ glob to τLIT in Step 4, this order maximizes the number of tasks moved from τ glob

to τ big. While there is less benefit in maximizing the number of tasks that execute exclusively on big

CPUs than on LITTLE CPUs (exclusively scheduling tasks on big CPUs does not save power), the rate

of L2 cache misses should decrease as more tasks are moved into τ big (recall from Figure 5.8 that the

big CPUs share an L2 cache).

Step 6: Sample a period T i for each utilization ui from the log-uniform distribution (as proposed by Ember-

son et al. (2010)) ranging from 10 ms to 1 s. Compute Ci as T i · ui.

As discussed by Emberson et al. (2010), periods are sampled from a log-uniform distribution because

sampling from a purely uniform distribution rarely generates periods at the lesser extreme. For example,

uniformly sampling the range from 10 ms to 1 s has a less than 10% chance of generating a period of

less than 100 ms. The log-uniform distribution biases samples such that periods that are on the order of

10 ms have a higher chance of being generated.

Note that the above task generation procedure results in a low number of tasks in τ glob, especially for

systems where n = 40. Similarly to how bin-packing efficiency increases as the average weight of items

decreases, at higher task counts, the average task’s bandwidth becomes low enough that almost all tasks can

be placed into τ big or τLIT. Systems generated with n = 20 tend to have around three tasks in τ glob. All

evaluated systems with n = 40 had at most one task in τ glob.

320

The low number of tasks in τ glob influences the overhead measurements. As discussed in Section 5.3.5.2,

our newly added functions push_wdl_stop() and swap_global_stop() can only be called when

tasks of τ glob are scheduled. We argue that a low number of tasks in τ glob is realistic. A system designer has

incentive to pack as many tasks into τ big and τLIT as possible in order to reduce migration and cache miss

overheads.

Validation. As with the patch described in Section 5.2, we validated this patch by observing traces (made

with trace-cmd and KernelShark) of constructed task systems. Initial task CPU placements were again

set by use of the taskset command. These task systems were constructed such that push_wdl_stop()

or swap_global_stop() are called soon after the task system begins executing. We confirmed from

the schedule traces that global tasks were correctly migrated by these functions. To test our modified ACS

logic, for each root_domain, we made the members of dl_bw readable from userspace via debugfs.

For constructed task systems, we hand-computed the expected values for these members (e.g., total_

global_b_bw) and confirmed that the values from debugfs matched.

Enqueueing and dequeueing. A modification made by our patch is the removal of the cpudl and the

addition of members curr_is_global and next_global to earliest_dl and of members big_

deadline and little_deadline to root_domain. These data structures are all maintained on calls

to enqueue_task_dl() and dequeue_task_dl(). We measured the duration of these function calls

in the original kernel and in our patched kernel.8

Histograms illustrating the distribution of these call durations are presented in Figures 5.21 and 5.22. For

both n = 20 and n = 40, in both the original kernel and our patched kernel, a majority of call durations fall

under 20 µs for enqueue_task_dl() and 30 µs for dequeue_task_dl(). For enqueue_task_

dl(), worst-case measurements were roughly 50 µs for the original kernel and 60 µs for our patched kernel

(this was consistent for both n = 20 and n = 40). For dequeue_task_dl(), worst-case measurements

were roughly 60 µs for both kernels and n values. This shows that the overhead involved in maintaining the

cpudl in the original kernel is roughly equivalent to the overhead involved in maintaining big_deadline

and little_deadline in our patched kernel.

8Note that not all of enqueue_task_dl() and dequeue_task_dl() are included in these measurements. For
example, code pertaining to GRUB and CBS logic (see Listing 4.21) is excluded because it is unaffected by our patch.

321

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

15000

Fr
eq

ue
nc

y

(a) Original (n = 20); 633,006 samples.

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

15000

Fr
eq

ue
nc

y

(b) Patched (n = 20); 285,373 samples.

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

15000

Fr
eq

ue
nc

y

(c) Original (n = 40); 570,110 samples.

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

15000

Fr
eq

ue
nc

y

(d) Patched (n = 40); 389,010 samples.

Figure 5.21: enqueue_task_dl() overhead.

322

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

(a) Original (n = 20); 633,161 samples.

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

(b) Patched (n = 20); 285,535 samples.

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

(c) Original (n = 40); 570,454 samples.

0 20 40 60

Time (µs)

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

(d) Patched (n = 40); 389,357 samples.

Figure 5.22: dequeue_task_dl() overhead.

323

Note that this equivalence in overheads is unlikely to scale to higher CPU counts (within the same root_

domain), as the cpudl is organized as a heap, while big_deadline and little_deadline are

updated by iterating over the CPUs. In our patched kernel, this could be mitigated by using two heaps, one for

the CPUs in πbig and another for those in πLIT, to maintain big_deadline and little_deadline. We

chose not to implement this because there are only four CPUs in both πbig and in πLIT on the ODROID-XU4,

so maintaining two heaps of only four elements each would be wasteful. We also argue that there is little

incentive to run SCHED_DEADLINE with a single root_domain containing a large number of CPUs. The

fraction of CPU capacity lost by partitioning the CPUs into several root_domains quickly decreases with

the size of the root_domains.

find_later_rq(). Because our patched kernel removes the cpudl, find_later_rq() is required

to iterate over the CPUs in the task being migrated’s affinity mask to discover which of these CPUs schedules

the task with the latest deadline (or schedules a non-SCHED_DEADLINE task). Histograms of function

call durations are presented in Figure 5.23. A majority of find_later_rq() calls take around 10 µs

for both kernels and n values. Both kernels had worst-case find_later_rq() durations of roughly 40

µs. Our patch does not significantly impact the overhead of calling find_later_rq(), though, as with

enqueue_task_dl() and dequeue_task_dl(), this is unlikely to scale with larger CPU counts.

check_wdl_preempt() and push_wdl_stop(). Our patched kernel introduces overheads for check-

ing for violations of USE 1 and USE 2 and migrations that occur in response to such violations. Because

these overheads are unique to our patched kernel, we do not compare against the original kernel. Violations

of USE 1 are checked in check_wdl_preempt(). Durations of calls to check_wdl_preempt() are

presented in Figure 5.24. A majority of calls complete within 10 µs, and the worst-case call observed during

measurement took roughly 40 µs. This overhead is within the same order of magnitude as that of calling

enqueue_task_dl(), dequeue_task_dl(), and find_later_rq(). As such, the addition of

these checks for USE 1 are not a significant source of overhead.

This is not the case for push_wdl_stop(), which is called when check_wdl_preempt() discov-

ers a violation of USE 1. Overheads for push_wdl_stop() are presented in Figure 5.25, in which most

calls take on order 100 µs to complete. Not illustrated in Figure 5.25 are the long tails of these call duration

distributions. The worst-case duration observed for check_wdl_preempt() was over a millisecond.

324

0 5 10 15 20

Time (µs)

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

(a) Original (n = 20); 542,260 samples.

0 5 10 15 20

Time (µs)

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

(b) Patched (n = 20); 416,242 samples.

0 5 10 15 20

Time (µs)

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

(c) Original (n = 40); 664,588 samples.

0 5 10 15 20

Time (µs)

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

(d) Patched (n = 40); 598,514 samples.

Figure 5.23: find_later_rq() overhead.

325

0 5 10 15 20

Time (µs)

0

2500

5000

7500

10000

12500
Fr

eq
ue

nc
y

(a) n = 20; 334,339 samples.

0 5 10 15 20

Time (µs)

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

(b) n = 40; 163,692 samples.

Figure 5.24: check_wdl_preempt() overhead.

0 100 200 300

Time (µs)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

(a) n = 20; 305,408 samples.

0 100 200 300

Time (µs)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

(b) n = 40; 160,265 samples.

Figure 5.25: push_wdl_stop() overhead.

Note that these measurements start from when check_wdl_preempt() first discovers a violation

and end when push_wdl_stop() returns after performing the relevant migration. As such, these mea-

surements include the time needed to wake and schedule the stop task. This demonstrates that invoking

the stop task to call push_wdl_stop() is expensive relative to operations such as enqueueing and

dequeueing tasks. For workloads that do not require sub-millisecond granularity, these overheads may still be

acceptable.

check_global_order() and swap_global_stop(). Overheads for function check_global_

order() are presented in Figure 5.26 and overheads for function swap_global_stop() are presented

in Figure 5.27. check_global_order() and swap_global_stop() are analogous to check_

326

0 5 10 15 20

Time (µs)

0

2000

4000

6000

8000

10000

12000
Fr

eq
ue

nc
y

(a) n = 20; 347,280 samples.

0 5 10 15 20

Time (µs)

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

(b) n = 40; 163,687 samples.

Figure 5.26: check_global_order() overhead.

0 200 400 600

Time (µs)

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Figure 5.27: swap_global_stop() overhead (n = 20); 12,961 samples.

wdl_preempt() and push_wdl_stop() when it comes to overheads. check_global_order()

is fast, while swap_global_stop() induces higher latency. The average duration of swap_global_

stop() exceeds that of push_wdl_stop(), which is to be expected because swap_global_stop()

must wake the stop tasks on two CPUs.

Note that Figure 5.27 does not contain a distribution for n = 40. As stated previously, when n = 40,

our evaluated task systems each had at most one task in τ glob. Because at least two tasks in τ glob must

be scheduled in order for USE 2 to be violated, swap_global_stop() was never called for such task

systems. The low number of tasks in τ glob when n = 40 is also why there is a lower number of samples

in Figure 5.26b than in Figure 5.26a. check_global_order() is only called when a task in τ glob is

scheduled. With fewer tasks in τ glob, there are fewer calls to check_global_order().

327

0 5 10 15 20

Tardiness Rel. to Period

0

5000

10000

15000

Fr
eq

ue
nc

y

(a) Original (n = 20); 288,172 samples.

0 5 10 15 20

Tardiness Rel. to Period

0

5000

10000

15000

Fr
eq

ue
nc

y

(b) Patched (n = 20); 82,794 samples.

0 5 10 15 20

Tardiness Rel. to Period

0

5000

10000

15000

Fr
eq

ue
nc

y

(c) Original (n = 40); 317,687 samples.

0 5 10 15 20

Tardiness Rel. to Period

0

5000

10000

15000

Fr
eq

ue
nc

y

(d) Patched (n = 40); 239,180 samples.

Figure 5.28: Relative tardiness.

328

n = 20 n = 40
Original Patched Original Patched

enqueue_task_dl() 5,066 3,016 4,432 3,586
dequeue_task_dl() 8,904 3,700 7,640 5,402
find_later_rq() 2,956 2,309 3,901 3,760
check_wdl_preempt() N/A 1,530 N/A 789
push_wdl_stop() N/A 17,695 N/A 9,147
check_global_order() N/A 1,622 N/A 805
swap_global_stop() N/A 2,362 N/A 0

Table 5.2: Aggregated overheads (ms).

Tardiness. Tardiness relative to tasks’ periods is presented in Figure 5.28. The addition of our patch does

not impact observed tardiness. This is expected because only a small minority of tasks are in τ glob. Only

these tasks are treated differently by our patched kernel.

Note that the tardiness presented in Figure 5.28 is much higher than that observed when evaluating our

patch for IDENTICAL/SEMI-PARTITIONED (see Figure 5.7 in Section 5.2.6). This seems to be due to the

ODROID-XU4’s lack of computing capacity relative to the desktop machine used to evaluate the other patch.

When the real-time workload consumes 95% of capacity, as is the case in this evaluation, the ODROID-XU4

begins to lag behind. This can delay the throttling and replenishment of SCHED_DEADLINE tasks, which

causes increased tardiness.

Table 5.2 presents aggregated overhead measurements. Time spent executing push_wdl_stop()

dominates the other overheads by an order of magnitude. Despite being expensive relative to other overheads,

the cumulative time spent executing this function is still a small portion of the total runtime.

5.4 Chapter Summary

In this chapter, we presented two patches to SCHED_DEADLINE aimed at restoring bounded response-

time guarantees under special cases of heterogeneous multiprocessors. One patch targets IDENTICAL/SEMI-

PARTITIONED systems, while the other targets a UNIFORM/SEMI-CLUSTERED system with two distinct

speeds such that each task has affinity for either only the fast CPUs, only the slow CPUs, or all CPUs. We

evaluated the increases in overheads due to our patches. While both patches increased overheads, such

increases are acceptable for workloads not requiring sub-millisecond response times.

329

CHAPTER 6: CONCLUSION

The behavior of EDF with respect to SRT remains poorly understood. This dissertation extends existing

SRT-optimality results by considering heterogeneity and the broader class of WC schedulers. We have also

experimented with implementing EDF variants targeting special cases of heterogeneous multiprocessors.

In this chapter, we summarize the results of this dissertation in Section 6.1, discuss other works to

which the author contributed that were outside the scope of the dissertation in Section 6.2, acknowledge the

contributions of coauthors in Section 6.3, and discuss future work in Section 6.4.

6.1 Summary of Results

Response-time bounds. In Chapter 3, we derived improved response-time bounds for Unr-WC on UNI-

FORM multiprocessors. We proved that Strong-APA-WC is SRT-optimal under IDENTICAL/ARBITRARY

multiprocessors. We defined Unr-WC for UNRELATED multiprocessors, demonstrated that Unr-WC and

Strong-APA-WC are special cases of Unr-WC, and proved response-time bounds under Unr-WC that

asymptotically approach infinity as the task system and multiprocessor approach infeasibility.

Implementations. In Chapter 5, we presented two patches to SCHED_DEADLINE, Linux’s EDF implemen-

tation. The goal of these patches is to guarantee bounded response times (assuming an idealized SCHED_

DEADLINE) for special cases of heterogeneous multiprocessors. The first patch targets IDENTICAL/SEMI-

PARTITIONED systems and the second patch targets UNIFORM/SEMI-CLUSTERED systems with two

distinct speeds and affinities such that each task has affinity for either all fast CPUs, all slow CPUs, or all

CPUs. Overheads increase as a result of these patches, but the increase seems acceptable so long as tasks do

not require sub-millisecond granularity.

6.2 Other Work

Other works that were done by the author concurrently with this dissertation but exist outside of its scope

are discussed here. The author considered response-time bounds under Strong-APA-EDF with progression-

330

guaranteed sections and non-preemptive sections (Tang and Anderson, 2020). A progression-guaranteed

section is similar to a non-preemptive section in that the section must continue executing once it starts. Unlike

a non-preemptive section, a task may migrate between processors within a progression-guaranteed section.

It is shown that progression-guaranteed sections can be supported under Strong-APA-EDF without loss

of SRT-optimality, while non-preemptive sections (recall from Section 3.4.1 that Strong-APA-EDF under

non-preemptive sections is not SRT-optimal) are incorporated into the analysis by inflating tasks’ worst-case

execution times.

The remaining other works done by the author are concerned with providing isolation between tasks

or between components comprised of tasks. Isolation mitigates interference, which is the inflation of tasks’

WCETs due to competition for shared resources such as caches, memory, accelerators, etc. Inflated WCETs

may make it impossible to guarantee that real-time requirements are met. Isolation mitigates interference by

partitioning shared resources across space (e.g., concurrently running tasks are guaranteed exclusive access to

distinct cache sets during their execution) and time (e.g., two tasks that access the same cache sets are never

scheduled concurrently).

Most of these works fall under the Mixed-Criticality on Multi-Core (MC2) project (Anderson et al., 2009;

Bakita et al., 2021; Chisholm et al., 2015, 2016, 2017; Kim et al., 2017, 2020; Ward et al., 2013). A goal

of MC2 is to provide varying degrees of isolation to tasks belonging to different criticalities (e.g., failure of

a high-criticality task may lead to loss of life, while failure of a low-criticality task may only lead to mild

discomfort or inconvenience). Permitting a lower degree of isolation between low-criticality tasks allows

systems to reap the throughput benefits of shared resources for low-criticality tasks without compromising

the schedulability of high-criticality tasks. The author contributed to MC2 by considering support for mode

changes (Chisholm et al., 2017), OS features such as I/O and inter-process communication mechanisms (Kim

et al., 2020), and simultaneous multithreading (Bakita et al., 2021). The author contributed to these works by

the coding of schedulability studies, which evaluate the benefits of MC2 by comparing the ratio of randomly

generated synthetic task systems that can meet real-time guarantees under MC2 against the ratio of systems

when all tasks are isolated according to the highest criticality level.

Outside of the MC2 project was a work by Voronov et al. (2021) concerning the sharing of accelerators

between components (which are composed of tasks) while tasks may have interdependencies. These

interdependencies are often represented as directed graphs such that nodes represent tasks and edges represent

data dependencies. In such systems, the end-to-end response-time bound of a graph is of interest. This work

331

considered merging nodes, i.e., forcing jobs belonging to tasks of merged nodes to execute sequentially, for

the purpose of reducing end-to-end response-time bounds. Merging reduces end-to-end bounds by removing

analytical pessimism that scales with the length of the longest path in a graph; however, merging also reduces

task-level parallelism, which can make the system unschedulable if merging is done too aggressively. This

work presented heuristics for deciding what nodes to merge. The author contributed to coding the evaluation

of these heuristics.

6.3 Acknowledgements

This dissertation would not have been possible without the collaboration of my co-authors. The analysis

ofHP-LAG systems in Section 3.2 arose from discussion with Sergey Voronov. Sergey also assisted in the

coding of the evaluation of Unr-WC in Section 3.5.3. Luca Abeni aided us in developing our understanding

of the SCHED_DEADLINE implementation, which we used to design the patches discussed in Chapter 5.

6.4 Future Work

Unanswered questions about Unr-WC. As stated previously, simulations of periodic tasks under Unr-WC

suggest that it may be SRT-optimal. Observed response times did not go to infinity as the slowdown factor

of generated task systems went to 0, which is the behavior of the analytical bound in Theorem 3.36. Some

modification to the analysis presented in Section 3.5.2, such as a more cleverly constructed invariant, may be

necessary to demonstrate Unr-WC’s SRT-optimality.

Tighter response-time bounds. As stated in Chapter 1, a well-known shortcoming of existing SRT analysis

for EDF is that analytical response-time bounds are much larger than observed response times (outside of

some constrained systems such as those with only a few processors Devi and Anderson (2008) or harmonic

task systems Ahmed and Anderson (2021)). This remains true of the bounds proven in this dissertation

for WC variants, of which EDF is a special case. A major limitation of our analysis is that deviation is

constrained to be non-negative (recall Definition 3.3). Though this is necessary for the proofs, a consequence

is that our analysis does not account for execution during which the virtual time exceeds the actual time.

At a high level, this means our analysis permits jobs to not begin executing until they are already lagging

behind. This does not match the behavior of EDF, under which (assuming a feasible system) a majority of

332

jobs’ execution generally occurs before their deadlines. Inability to account for such execution in our analysis

is a major source of pessimism that may prevent the derivation of tighter bounds. The author conjectures that

different abstractions are necessary to derive tighter bounds.

Implementing variants in an RTOS. Linux is attractive to develop on top of due to its popularity and

richness of features. These points become drawbacks for formalization, as the frequent introduction of new

features contribute to the kernel’s size and complexity. The distributed runqueue structure in the scheduler is

also difficult to reason about because of the lack of a consistent state agreed upon by all CPUs. This lack

of a consistent state can result in failed migrations, which is generally incompatible with real-time analysis.

These drawback may not apply to an RTOS, as these are typically small and need not scale to as many CPUs

as Linux. For example, in the Zephyr RTOS (Zephyr), all CPUs share a single runqueue (unless Zephyr is

configured for PARTITIONED scheduling). Resources pertaining to symmetric multiprocessing are protected

by a single lock. EDF scheduling is also supported. It may be possible to formally guarantee bounds under

our considered EDF variants if implemented on an RTOS like Zephyr.

333

APPENDIX A: EQUIVALENCE BETWEEN HRT- AND SRT-FEASIBILITY

This appendix concerns the equivalence between HRT-feasibility under implicit deadlines and SRT-

feasibility for all multiprocessor models considered in this dissertation. Because all multiprocessor models

considered in this dissertation are either UNRELATED or special cases of UNRELATED, it is sufficient to

prove this equivalency for UNRELATED multiprocessors.

That an HRT-feasible system is SRT-feasible follows directly from Definitions 2.27 and 2.28. Proving

that an SRT-feasible system is HRT-feasible with implicit deadlines relies on the following definition and

theorems from Adhikari and Adhikari (2022). Note that they reference metric spaces and compactness. A

complete understanding of these concepts is unnecessary for the proofs in this appendix. It is sufficient to

accept that Rn and Rn·m are metric spaces.

O Definition A.1 (Definition 2.8.8). Let X be a metric space. A subset A ⊆ X is said to be closed if it

contains each of its limit points. 4

. Theorem A.1 (Theorem 2.17.7). Subset X ⊆ Rn is compact if and only if it is closed and bounded.

/

. Theorem A.2 (Corollary 2.17.9). Let X and Y be two metric spaces and f : X→ Y be a continuous

map. If X is compact, then f(X) is also so. /

The intuition behind the proof that an SRT-feasible system is also HRT-feasible with implicit deadlines

is as follows. We observe a schedule of an arbitrary task system of interest such that response times are

bounded over a time interval. In Lemma A.3, we record the fraction of time xi,j that processor πj schedules

task τi within this interval, and show that the matrix X become arbitrarily close to a solution of constraints

(2.14)-(2.16) of UNRELATED-Feasible as the observation time interval increases. In Lemma A.4, we show

that having X approach a solution of (2.14)-(2.16) in the limit guarantees the existence of a solution X∗. The

above definition and theorems concerning limit points and continuity are referenced in this step. Because X∗

is a solution of (2.14)-(2.16), the task system satisfies UNRELATED-Feasible, and thus is HRT-feasible with

implicit deadlines.

. Lemma A.3. Let task system τ be SRT-feasible. Consider a schedule of a synchronous periodic

instance of τ such that each job τ i,j requires Ci units of execution and has response time at most R and

334

the system is without early releasing. For k ∈ N, let X(k) ∈ Rn·m
≥0 be such that x

(k)
i,j denotes the duration

of time task τi executes on processor πj within time interval [0, k ·R] divided by k ·R. Then

∀τi ∈ τ :
∑
πj∈π

spi,j · x (k)
i,j ≥

Ci
k ·R

·
⌊

(k − 1) ·R
T i

⌋
, (A.1)

∀τi ∈ τ :
∑
πj∈π

spi,j · x (k)
i,j ≤

Ci
k ·R

·
⌈
k ·R
T i

⌉
, (A.2)

∀τi ∈ τ :
∑
πj∈π

x
(k)
i,j ≤ 1.0, (A.3)

∀πj ∈ π :
∑
τi∈τ

x
(k)
i,j ≤ 1.0 (A.4)

are true for each k ∈ N. /

Proof. Because no task is scheduled on more than one processor at a time and no processor schedules

more than one task at a time, we have (A.3) and (A.4).

By the definition of x
(k)
i,j , each processor πj executes task τi for a duration of x

(k)
i,j · k ·R time units.

Thus, the total execution provided to τi by time k ·R is

∑
πj∈π

spi,j · x (k)
i,j · k ·R. (A.5)

Because the response time of any job is at most R, any job of task τi that arrives before time

(k− 1) ·R must be complete by time k ·R. Because this instance of τ is synchronous and periodic, there

are
⌊

(k−1)·R
T i

⌋
such jobs. Because each job τ i,j requires Ci units of execution, at least

Ci ·
⌊

(k − 1) ·R
T i

⌋

units of execution must be provided to task τi by time k ·R. Because (A.5) is the execution provided by

time k ·R, we have

∑
πj∈π

spi,j · x (k)
i,j · k ·R ≥ Ci ·

⌊
(k − 1) ·R

T i

⌋
.

Dividing both sides by k ·R yields (A.1).

335

Because the system is without early releasing, only jobs of task τi that arrive by time k · R may

execute by time k ·R. Because this instance of τ is synchronous and periodic, there are
⌈
k·R
T i

⌉
such jobs.

Each job executes for at most Ci units of execution. Thus, task τi receives at most

Ci ·
⌈
k ·R
T i

⌉
(A.6)

of execution by time k ·R. Because (A.5) is the execution provided by time k ·R, we have

∑
πj∈π

spi,j · x (k)
i,j · k ·R ≤ Ci ·

⌈
k ·R
T i

⌉
.

Dividing both sides by k ·R yields (A.2). �

. Lemma A.4. If a task system τ is SRT-feasible on an UNRELATED multiprocessor, then τ is

HRT-feasible with implicit deadlines. /

Proof. We prove by showing that a solution to constraints (2.14)-(2.16) from UNRELATED-Feasible

exists.

Let X ⊂ Rn·m
≥0 be the set of solutions satisfying (2.15) and (2.16). Because X ⊂ Rn·m

≥0 , each xi,j ≥ 0.

By (2.15), each xi,j ≤ 1.0. Because each xi,j ∈ [0, 1.0], X is bounded. Because (2.15) and (2.16) are

non-strict inequalities, X is closed. Because X is closed and bounded, by Theorem A.1, X is compact.

Let function f : X→ Rn be

f(X) ,

[∑
πj∈π sp1,j · x1,j

∑
πj∈π sp2,j · x2,j . . .

∑
πj∈π spn,j · xn,j

]T
.

Because each spi,j is a constant, f is continuous. Because f is continuous and X is compact, by

Theorem A.2, f(X) is compact. By Theorem A.1, f(X) is closed. By Definition A.1, f(X) contains

each of its limit points.

We next show that
[

u1 u2 . . . un

]T
is limit point of f(X). For each k ∈ N, let X(k) be

as defined in Lemma A.3. By (A.3) and (A.4), for each k ∈ N, we have X(k) ∈ X. We show that[
u1 u2 . . . un

]T
is limit point of f(X) by showing that limk→∞ f(X(k)) =

[
u1 u2 . . . un

]T
.

336

We have

lim
k→∞

Ci
k ·R

·
⌊

(k − 1) ·R
T i

⌋
≥ lim

k→∞

Ci
k ·R

·
(

(k − 1) ·R
T i

− 1

)
= lim

k→∞

Ci
k ·R

· (k − 1) ·R
T i

− Ci
k ·R

= lim
k→∞

Ci
k ·R

· (k − 1) ·R
T i

= lim
k→∞

Ci
k
· k − 1

T i

= lim
k→∞

Ci
T i
· k − 1

k

= lim
k→∞

Ci
T i

=
Ci
T i

= ui

(A.7)

and

lim
k→∞

Ci
k ·R

·
⌈
k ·R
T i

⌉
≤ lim

k→∞

Ci
k ·R

·
(
k ·R
T i

+ 1

)
= lim

k→∞

Ci
k ·R

· k ·R
T i

+
Ci
k ·R

= lim
k→∞

Ci
k ·R

· k ·R
T i

= lim
k→∞

Ci
T i

=
Ci
T i

= ui.

(A.8)

By (A.1), (A.2), (A.7), and (A.8), we have limk→∞
∑

πj∈π spi,j · x (k)
i,j = ui. By the definition of f ,

we have limk→∞ f(X(k)) =

[
u1 u2 . . . un

]T
.

Because each X(k) ∈ X and f(X) contains its limit points, we have
[

u1 u2 . . . un

]T
∈ f(X).

Because f(X) is the image of f on X, there exists X∗ ∈ X such that f(X∗) =

[
u1 u2 . . . un

]T
.

By the definition of X, X∗ satisfies (2.15) and (2.16). Because f(X∗) =

[
u1 u2 . . . un

]T
, by

the definition of f , we have ∀τi ∈ τ :
∑

πj∈π spi,j · x ∗i,j = ui. Thus, X∗ satisfies (2.14). Because

X∗ satisfies (2.14)-(2.16), X∗ satisfies UNRELATED-Feasible. UNRELATED-Feasible is the HRT-

337

feasibility (with implicit deadlines) condition for UNRELATED. Thus, τ is HRT-feasible with implicit

deadlines. �

338

APPENDIX B: PROOF MODIFICATIONS FOR SCHED_DEADLINE PATCH

This appendix proves response-time bounds for the patched SCHED_DEADLINE detailed in Section 5.2

for IDENTICAL/SEMI-PARTITIONED. We reason about an idealized version of SCHED_DEADLINE

where migrations are instantaneous. This ignores issues caused by synchronization such as failing to push a

task from a runqueue due to a change in another runqueue’s state.

The analysis in this appendix is fairly similar to that ofHP-LAG systems. Lemma B.3, to be proven in

this appendix, is analogous to Lemma 3.14, which concernsHP-LAG systems.

O Definition B.1. Consider τ ′ ⊆ τ . Let

τG(τ ′) , {τi ∈ τ ′ : αi = π
}
,

τP(τ ′, πj) , {τi ∈ τ ′ : αi = {πj}
}
,

πP(τ ′) , {πj ∈ π :
∣∣τP(τ ′, πj)∣∣ > 0

}
,

i.e., τG(τ ′) denotes the subset of Global tasks in τ ′, τP(τ ′, πj) denotes the subset of tasks in τ ′ that are

Partitioned on processor πj , and πP(τ ′) denotes the processors in π that have Partitioned tasks in τ ′.4

. Lemma B.1. If a set of tasks τ ′ is such thatHP(τ ′, t∗) and τ ′ ⊆ τrdy(t∗) for t∗ ∈ [t− C [1], t], then

at time t, we have
∑

τi∈τ ′ cspi(t) ≥ min
{

m,
∣∣τG(τ ′)

∣∣+
∣∣πP(τ ′)

∣∣}. /

Proof. Let an occupied processor be any processor whose runqueue contains a task in τ ′.

I Claim B.1.1. The number of occupied processors is non-decreasing over [t− C [1], t]. J

Proof. The only way for an occupied processor to become unoccupied is for its last remaining task

τi of τ ′ on its runqueue to be migrated to another runqueue. Because tasks of τ ′ are ready and have

highest priority over [t−C [1], t], task τi is scheduled on this (previously) occupied processor. While

scheduled, task τi cannot be pulled. The only way for task τi to be migrated is to be pushed when

returning from being throttled (recall our patch removes bypassing throttling). Under our patch,

task τi can only be pushed to a processor whose runqueue only contains later-deadline tasks than

the remaining tasks on the original runqueue. Because task τi is the last task of τ ′ on its original

runqueue, any target runqueue being pushed to also has no tasks of τ ′. Thus, the target runqueue

339

corresponds to an unoccupied processor that becomes occupied once task τi is pushed to it. Because,

over [t− C [1], t], whenever an occupied processor becomes unoccupied, an unoccupied processor

must become occupied, the number of occupied processors is non-decreasing. �

I Claim B.1.2. We can assume there is at least one unoccupied processor throughout [t− C [1], t].

J

Proof. Suppose the assumption is false such that there are time instants in [t − C [1], t] such that

there are no unoccupied processors. By Claim B.1.1, there are no unoccupied processors at time t.

Then each processor has a task of τ ′ on its runqueue. Because tasks of τ ′ are ready and have

highest priority at time t, each processor schedules a task of τ ′ at time t. Thus, we would have∑
τi∈τ ′ cspi(t) = m , which satisfies the lemma statement. Because the assumption being false

yields the lemma, we can assume for the remainder of the proof that the assumption is true. �

I Claim B.1.3. All tasks of τG(τ ′) are scheduled throughout [t− C [1], t]. J

Proof. Suppose otherwise that there is simultaneously an unoccupied processor (by the assumption

in Claim B.1.2) and an unscheduled task in τG(τ ′) with affinity for said processor (tasks in τG(τ ′)

have affinity for all processors in the root_domain). This contradicts that SCHED_DEADLINE

would have scheduled such a task. �

I Claim B.1.4. At time t, every processor πj ∈ πP(τ ′) schedules a task τi ∈ τP(τ ′, πj). J

Proof. Over [t − C [1], t], a processor πj ∈ πP(τ ′) will never pull a task in τG(τ ′) because, by

Claim B.1.3, tasks in τG(τ ′) are already scheduled. Also over [t − C [1], t], a task in τG(τ ′) will

never be pushed to processor πj because, by Claim B.1.2, there is always an unoccupied processor

that will be pushed to instead of processor πj . Thus, the only way πj ∈ πP(τ ′) may not schedule a

task τi ∈ τP(τ ′, πj) at time t is if there is a higher-priority task τk ∈ τG(τ ′) scheduled on πj over

[t− C [1], t]. By Claim B.1.3, there is at most one τk ∈ τG(τ ′) on πj’s runqueue over [t− C [1], t].

Because Ck ≤ C [1], task τk must finish at least one job in [t − C [1], t]. Thus, τk is throttled and

replenished in [t− C [1], t]. When τk is replenished, it will be pushed to an unoccupied processor,

after which some task τi ∈ τP(τ ′, πj) will be scheduled until at least time t. �

340

By Claims B.1.3 and B.1.4, there are at least
∣∣τG(τ ′)

∣∣ +
∣∣πP(τ ′)

∣∣ scheduled tasks of τ ′ at time t.

Thus,
∑

τi∈τ ′ cspi(t) ≥
∣∣τG(τ ′)

∣∣+
∣∣πP(τ ′)

∣∣. This satisfies the lemma statement. �

. Lemma B.2. For any time t and task set τ ′ ⊆ τ ,

∀t∗ ≤ t :
∑
τi∈τ ′

√
ui · dev i(t

∗) ≥

∑
τi∈τ ′

√
ui · dev i(t)

− U(τ ′) · (t− t∗) . /

Proof. Consider a single task τi ∈ τ ′. We have

√
ui · dev i(t)− ui · (t− t∗) = {Definition 3.3}

√
ui ·max {0,

√
ui · (t− vt i(t))} − ui · (t− t∗)

= max {0, ui · (t− vt i(t))} − ui · (t− t∗)

= max {−ui · (t− t∗) , ui · (t∗ − vt i(t))}

≤ {t− t∗ ≥ 0}

max {0, ui · (t∗ − vt i(t))}

≤ {Lemma 3.6}

max {0, ui · (t∗ − vt i(t
∗))}

=
√

ui ·max {0,
√

ui · (t∗ − vt i(t
∗))}

= {Definition 3.3}
√

ui · dev i(t
∗).

(B.1)

Summing (B.1) over the tasks in τ ′ yields the lemma. �

O Definition B.2. For each subset τ ′ ⊆ τ , let

βDLτ ′ ,

(
T [1] +

2m · C [1]

u [n]

)
U(τ ′)

2u [n]

(
2Umax − U

(
τ ′
))
. 4

. Lemma B.3. Let [t0, t1) be a time interval such that

∃τ const ⊆ τ : ∀t ∈ [t0, t1) : τact(t) = τ const

341

and at time t0, we have

∀t ≤ t0 : ∀τ ′ ⊆ τact(t) :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βDLτ ′ . (B.2)

We have

∀τ ′ ⊆ τ const :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βDLτ ′ . (B.3)

for any t ∈ [t0, t1). /

Proof. We prove by contradiction. Suppose otherwise that there exist time instants in [t0, t1) such that

(B.3) is false. By (B.2), (B.3) is true at time t0. Let tb ∈ [t0, t1) denote the latest time instant such that

(B.3) is true over [t0, tb). We will show that the existence of tb leads to a contradiction.

I Claim B.3.1. ∀t ≤ tb : ∀τ ′ ⊆ τact(t) :
∑

τi∈τ ′
√

ui · dev i(t) ≤ βDLτ ′ . J

Proof. By the definition of tb, we have that

∀t ∈ [t0, tb) : ∀τ ′ ⊆ τ const :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βDLτ ′ . (B.4)

Thus, at time tb, for any τ ′ ⊆ τ const, we have

βDLτ ′ ≥ {Equation (B.4)}

lim
t∗→t−b

∑
τi∈τ ′

√
ui · dev i(t

∗)

=
∑
τi∈τ ′

√
ui · lim

t∗→t−b
dev i(t

∗)

≥ {Lemma 3.10}∑
τi∈τ ′

√
ui · dev i(tb).

(B.5)

The claim follows from (B.2), (B.4), and (B.5). �

342

I Claim B.3.2. At time tb, there exists τ b ⊆ τ const such that both

∀ψ > 0 : ∃t∗ ∈ (tb, tb + ψ) :
∑
τi∈τ b

√
ui · dev i(t

∗) > βDLτ b and (B.6)

∑
τi∈τ b

√
ui · dev i(tb) = βDLτ b (B.7)

are true. J

Proof. First prove (B.6) by contradiction. Suppose otherwise that

∀τ b ⊆ τ const : ∃ψ > 0 : ∀t ∈ (tb, tb + ψ) :
∑
τi∈τ b

√
ui · dev i(t) ≤ βDLτ b .

Because tb is defined such that (B.3) is true over [t0, tb) and [t0, tb) ∪ (tb, tb + ψ) = [t0, tb + ψ),

we have

∀τ b ⊆ τ const : ∀ ∈ [t0, tb + ψ) :
∑
τi∈τ b

√
ui · dev i(t

∗) ≤ βDLτ b .

This contradicts the definition of tb as the latest time instant such that (B.3) is true over [t0, tb).

It remains to prove (B.7). We have

∑
τi∈τ b

√
ui · dev i(tb) = {Corollary 3.12}

∑
τi∈τ b

√
ui · lim

t∗→t+b
dev i(t

∗)

= lim
t∗→t+b

∑
τi∈τ b

√
ui · dev i(t

∗)

≥ {Equation (B.6)}

βDLτ b .

343

By Claim B.3.1, we have

∑
τi∈τ b

√
ui · dev i(tb) ≤ βDLτ b .

Because
∑

τi∈τ b
√

ui ·dev i(tb) is both upper and lower bounded by βDL
τ b , (B.7) is the only possibility.

This completes the proof of the claim. �

I Claim B.3.3. ∀t ∈ [tb − C [1], tb] : ∀τe ∈ τ b :

deve(t)√
ue

≥
T [1] +

2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
−
U
(
τ b
)

ue
· (tb − t) . J

Proof. We have

√
ue · deve(t)

=
∑
τi∈τ b

√
ui · dev i(t)−

∑
τi∈τ b\{τe}

√
ui · dev i(t)

≥ {Lemma B.2}∑
τi∈τ b

√
ui · dev i(tb)− U

(
τ b) · (tb − t)− ∑

τi∈τ b\{τe}

√
ui · dev i(t)

= {Claim B.3.2, Equation (B.7)}

βDLτ b − U
(
τ b) · (tb − t)− ∑

τi∈τ b\{τe}

√
ui · dev i(t)

= {Lemma 3.5}

βDLτ b − U
(
τ b) · (tb − t)− ∑

τi∈(τ b\{τe})∩τact(t)

√
ui · dev i(t)

≥ {Claim B.3.1}

βDLτ b − U
(
τ b) · (tb − t)− βDL(τ b\{τe})∩τact(t)

≥
{

Definition B.2, Lemma 3.15, and
(
τ b \ {τe}

)
⊂ τ b ⊆ τact(tb)

}
βDLτ b − U

(
τ b) · (tb − t)− βDLτ b\{τe}

= {Definition B.2}

344

T [1] +
2m·C[1]

u [n]

2u [n]

(
U
(
τ b)) (2Umax − U

(
τ b))− U(τ b) · (tb − t)

−
T [1] +

2m·C[1]

u [n]

2u [n]

(
U
(
τ b \ {τe}

)) (
2Umax − U

(
τ b \ {τe}

))
=
{

By Definition 2.15, U
(
τ b) = U

(
τ b \ {τe}

)
+ ue

}
T [1] +

2m·C[1]

u [n]

2u [n]

(
U
(
τ b \ {τe}

)
+ ue

) (
2Umax − U

(
τ b \ {τe}

)
− ue

)
− U

(
τ b) · (tb − t)

−
T [1] +

2m·C[1]

u [n]

2u [n]

(
U
(
τ b \ {τe}

)) (
2Umax − U

(
τ b \ {τe}

))
=
T [1] +

2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
ue − U

(
τ b) · (tb − t) .

Dividing by ue yields the claim. �

I Claim B.3.4. ∀τe ∈ τ b : ∀t ∈ [tb − C [1], tb] : deve(t) > 0 and τe ∈ τrdy(t). J

Proof. For any τe ∈ τ b, we have

√
ue · deve(t) ≥ {Claim B.3.3}

T [1] +
2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
ue − U

(
τ b) · (tb − t)

≥
{
U
(
τ b) ≤ Umax

}
T [1] +

2m·C[1]

u [n]

2u [n]
u2
e − U

(
τ b) · (tb − t)

>
{
T [1] > 0

}
m · C [1]

u2
[n]

u2
e − U

(
τ b) · (tb − t)

≥
{

ue ≥ u [n]

}
m · C [1] − U

(
τ b) · (tb − t)

≥
{
t ≥ tb − C [1]

}
(
m − U

(
τ b)) (tb − t)

≥
{
tb ≥ t and m ≥ U

(
τ b)}

345

0.

The claim follows from Lemma 3.1. �

I Claim B.3.5. ∀t ∈ [tb − C [1], tb] : ∀τ` ∈ τact(t) \ τ b :

dev `(t)√
ue

≤
T [1] +

2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)− u`

)
+
U
(
τ b
)

u`
(tb − t) . J

Proof. We have

√
u` · dev `(t)

=
∑

τi∈τ b∪{τ`}

√
ui · dev i(t)−

∑
τi∈τ b

√
ui · dev i(t)

≤ {Lemma B.2}∑
τi∈τ b∪{τ`}

√
ui · dev i(t)−

∑
τi∈τ b

√
ui · dev i(tb) + U

(
τ b) · (tb − t)

= {Claim B.3.2, Equation (B.7)}∑
τi∈τ b∪{τ`}

√
ui · dev i(t)− βDLτ b + U

(
τ b) · (tb − t)

= {Lemma 3.5}∑
τi∈(τ b∪{τ`})∩τact(t)

√
ui · dev i(t)− βDLτ b + U

(
τ b) · (tb − t)

≤ {Claim B.3.1}

βDL(τ b∪{τ`})∩τact(t)
− βDLτ b + U

(
τ b) · (tb − t)

=
{
τ` ∈ τact(t) and, by Claim B.3.4, τ b ⊆ τact(t)

}
βDLτ b∪{τ`} − β

DL
τ b + U

(
τ b) · (tb − t)

= {Definition B.2}

T [1] +
2m·C[1]

u [n]

2u [n]

(
U
(
τ b ∪ {τ`}

)) (
2Umax − U

(
τ b ∪ {τ`}

))
−
T [1] +

2m·C[1]

u [n]

2u [n]

(
U
(
τ b)) (2Umax − U

(
τ b))+ U

(
τ b) · (tb − t)

346

=
{

By Definition 2.15, U
(
τ b ∪ {τ`}

)
= U

(
τ b)+ u`

}
T [1] +

2m·C[1]

u [n]

2u [n]

(
U
(
τ b)+ u`

) (
2Umax − U

(
τ b)− u`

)
−
T [1] +

2m·C[1]

u [n]

2u [n]

(
U
(
τ b)) (2Umax − U

(
τ b))+ U

(
τ b) · (tb − t)

=
T [1] +

2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)− u`

)
u` + U

(
τ b) · (tb − t) .

Dividing by u` yields the claim. �

I Claim B.3.6. ∀t ∈ [tb − C [1], tb] : HP
(
τ b, t

)
. J

Proof. For any t ∈ [tb − C [1], tb], consider any task τe ∈ τ b and τ` ∈ τact(t) \ τ b. We have

deve(t)√
ue

≥ {Claim B.3.3}

T [1] +
2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)+ ue

)
−
U
(
τ b
)

ue
(tb − t)

=
T [1] +

2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b))+

T [1] +
2m·C[1]

u [n]

2u [n]
ue −

U
(
τ b
)

ue
(tb − t)

=
T [1] +

2m·C[1]

u [n]

2u [n]

(
2Umax − 2U

(
τ b)− u`

)
+
U
(
τ b
)

u`
(tb − t)

+
T [1] +

2m·C[1]

u [n]

2u [n]
(ue + u`)− U

(
τ b)(1

ue
+

1

u`

)
(tb − t)

≥ {Claim B.3.5}

dev `(t)√
u`

+
T [1] +

2m·C[1]

u [n]

2u [n]
(ue + u`)− U

(
τ b)(1

ue
+

1

u`

)
(tb − t)

≥
{

ue + u` ≥ 2u [n]

}
dev `(t)√

u`
+ T [1] +

2m · C [1]

u [n]
− U

(
τ b)(1

ue
+

1

u`

)
(tb − t)

≥
{

2

u [n]
≥ 1

ue
+

1

u`
, m ≥ U

(
τ b), and C [1] ≥ tb − t

}
dev `(t)√

u`
+ T [1].

347

By Lemma 3.3 (recall that with ppi(t) = di(t), by Definition 2.20, φ = 0), we have ppe(tb) <

pp`(tb). The claim follows by Definition 3.4. �

I Claim B.3.7.
∑

τi∈τ b cspi(tb) ≥ U
(
τ b
)
. J

Proof. By Claim B.3.4, any task in τ b is ready at any t ∈ [tb − C [1], tb], i.e., τ b ⊆ τrdy(t).

Additionally, by Claim B.3.6, tasks in τ b have the highest priorities at any t ∈ [tb − C [1], tb], i.e.,

HP
(
τ b, t

)
. By Lemma B.1, we have

∑
τi∈τ b cspi(tb) ≥ min

{
m,
∣∣τG
(
τ b
)∣∣+

∣∣πP
(
τ b
)∣∣}. At least

one of the following cases must apply of
∑

τi∈τ b cspi(tb).

J Case B.3.1.
∑

τi∈τ b cspi(tb) ≥ m . I

We have

∑
τi∈τ b

cspi(tb) ≥ m

=
∑
πj∈π

1.0

=
{

Under IDENTICAL, capacity sp(j) is 1.0
}

∑
πj∈π

sp(j)

≥
{

Under ACS,
sched_rt_runtime_us

sched_rt_period_us
≤ 1.0

}
sched_rt_runtime_us

sched_rt_period_us
·
∑
πj∈π

sp(j)

≥ {Equation (4.1) of ACS}∑
τi∈τact(tb)

ui

≥
{
τ b ⊆ τact(tb)

}
∑
τi∈τ b

ui

= {Definition 2.15}

U
(
τ b). �

348

J Case B.3.2.
∑

τi∈τ b cspi(tb) ≥
∣∣τG
(
τ b
)∣∣+

∣∣πP
(
τ b
)∣∣. I

We have

∑
τi∈τ b

cspi(tb)

≥
∣∣τG(τ b)∣∣+

∣∣πP(τ b)∣∣
=

∑
τi∈τG(τ b)

1 +
∣∣πP(τ b)∣∣

≥ {Under SCHED_DEADLINE, each ui ≤ 1.0}∑
τi∈τG(τ b)

ui +
∣∣πP(τ b)∣∣

=
∑

τi∈τG(τ b)

ui +
∑

πj∈πP(τ b)

1

≥
{

Under ACS,
sched_rt_runtime_us

sched_rt_period_us
≤ 1.0

}
∑

τi∈τG(τ b)

ui +
∑

πj∈πP(τ b)

sched_rt_runtime_us

sched_rt_period_us

≥ {Equation (5.1) of patched ACS}

∑
τi∈τG(τ b)

ui +
∑

πj∈πP(τ b)

 ∑
τi: αi={πj}

ui

=
{

Under SEMI-PARTITIONED, τi ∈ τG(τ b) or αi = {πj} for some πj ∈ πP(τ b)}∑
τi∈τ b

ui

= {Definition 2.15}

U
(
τ b). �

In either case, we have
∑

τi∈τ b cspi(tb) ≥ U
(
τ b
)
. �

By Lemma 3.13 and Claim B.3.4, for any task τe ∈ τ b, there exists ψ > 0 such that ∀t ∈ [tb, tb +ψ) :

√
ue · deve(t) ≤

√
ue · deve(tb) + (t− tb) · (ui − cspe(tb)) .

349

Summing over the tasks in τ b, we have ∀t ∈ [tb, tb + ψ) :

∑
τe∈τ b

√
ue · deve(t) ≤

∑
τe∈τ b

√
ue · deve(tb) + (t− tb) · (ui − cspe(tb))

=

∑
τe∈τ b

√
ue · deve(tb)

+ (t− tb)

∑
τe∈τ b

(ui − cspe(tb))

= {Claim B.3.2, Equation (B.7)}

βDLτ b + (t− tb)

∑
τe∈τ b

(ui − cspe(tb))

= {Definition 2.15}

βDLτ b + (t− tb)

U(τ b)− ∑
τe∈τ b

cspe(tb)

≤

t− tb ≥ 0 and, by Claim B.3.7, U
(
τ b)− ∑

τe∈τ b

cspe(tb) < 0

βDLτ b .

This contradicts (B.6) of Claim B.3.2. This contradiction completes the proof of Lemma B.3. �

The proof of Lemma B.4 below is the same as that of the proof of Lemma 3.16 except with βτ ′ replaced

by βDLτ ′ and Lemma 3.14 replaced by Lemma B.3.

. Lemma B.4. Under the patched ACS, we have

∀τ ′ ⊆ τact(t) :
∑
τi∈τ ′

√
ui · dev i(t) ≤ βDLτ ′

for any time t. /

The proof of Theorem B.5 is the same as that of the proof of Theorem 3.17 except with βτ ′ replaced by

βDLτ ′ and Lemma 3.16 replaced by Lemma B.4.

. Theorem B.5. Under the ACS, the response time of any task τi is at most

T i +
T [1] +

2m·C[1]

u [n]

2u [n]
(2Umax − ui) . /

350

BIBLIOGRAPHY

Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systems. In 2013
IEEE 34th Real-Time Systems Symposium, page 4, 1998.

Luca Abeni, Giuseppe Lipari, and Juri Lelli. Constant bandwidth server revisited. ACM SIGBED Review, 11
(4):19–24, 2015.

Luca Abeni, Giuseppe Lipari, Andrea Parri, and Youcheng Sun. Multicore CPU reclaiming: Parallel or
sequential? In Proceedings of the 31st Annual ACM Symposium on Applied Computing, page 1877–1884,
2016.

Avishek Adhikari and Mahima Ranjan Adhikari. Basic Topology 1: Metric Spaces and General Topology.
Springer Singapore, 2022.

Sara Afshar, Farhang Nemati, and Thomas Nolte. Resource sharing under multiprocessor semi-partitioned
scheduling. In 2012 IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 290–299, 2012.

Shareef Ahmed and James H. Anderson. Tight tardiness bounds for pseudo-harmonic tasks under global-
EDF-like schedulers. In 33rd Euromicro Conference on Real-Time Systems, volume 196, pages 11:1–11:24,
2021.

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. An empirical
survey-based study into industry practice in real-time systems. In 2020 IEEE Real-Time Systems Symposium,
pages 3–11, 2020.

Tanya Amert, Sergey Voronov, and James H. Anderson. OpenVX and real-time certification: The troublesome
history. In 2019 IEEE Real-Time Systems Symposium, pages 312–325, 2019.

James H. Anderson, Sanjoy Baruah, and Björn B. Brandenburg. Multicore operating-system support for
mixed criticality. In Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification, 2009.

James H. Anderson, Jeremy P. Erickson, UmaMaheswari C. Devi, and Benjamin N. Casses. Optimal
semi-partitioned scheduling in soft real-time systems. In 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 1–10, 2014.

Joshua Bakita, Shareef Ahmed, Sims Hill Osborne, Stephen Tang, Jingyuan Chen, F. Donelson Smith, and
James H. Anderson. Simultaneous multithreading in mixed-criticality real-time systems. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium, pages 278–291, 2021.

Sanjoy Baruah. Feasibility analysis of preemptive real-time systems upon heterogeneous multiprocessor
platforms. In 25th IEEE International Real-Time Systems Symposium, pages 37–46, 2004.

Sanjoy Baruah and Björn B. Brandenburg. Multiprocessor feasibility analysis of recurrent task systems with
specified processor affinities. In 2013 IEEE 34th Real-Time Systems Symposium, pages 160–169, 2013.

Sanjoy Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-Spaccamela. ILP-based approaches
to partitioning recurrent workloads upon heterogeneous multiprocessors. In 2016 28th Euromicro Confer-
ence on Real-Time Systems, pages 215–225, 2016.

351

Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):
842–844, 1957.

Giovanni Buzzega, Gianluca Nocetti, and Manuela Montangero. Characterizing G-EDF scheduling tardiness
with uniform instances on multiprocessors. In Proceedings of the 31st International Conference on
Real-Time Networks and Systems, page 45–55, 2023.

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. Task splitting and load balancing of dynamic
real-time workloads for semi-partitioned EDF. IEEE Transactions on Computers, 70(12):2168–2181,
2021.

Felipe Cerqueira, Arpan Gujarati, and Björn B. Brandenburg. Linux’s processor affinity API, refined: Shifting
real-time tasks towards higher schedulability. In 2014 IEEE Real-Time Systems Symposium, pages 249–259,
2014.

Micaiah Chisholm, Bryan C. Ward, Namhoon Kim, and James H. Anderson. Cache sharing and isolation
tradeoffs in multicore mixed-criticality systems. In 2015 IEEE Real-Time Systems Symposium, pages
305–316, 2015.

Micaiah Chisholm, Namhoon Kim, Bryan C. Ward, Nathan Otterness, James H. Anderson, and F. Donelson
Smith. Reconciling the tension between hardware isolation and data sharing in mixed-criticality, multicore
systems. In 2016 IEEE Real-Time Systems Symposium, pages 57–68, 2016.

Micaiah Chisholm, Namhoon Kim, Stephen Tang, Nathan Otterness, James H. Anderson, F. Donelson Smith,
and Donald E. Porter. Supporting mode changes while providing hardware isolation in mixed-criticality
multicore systems. In Proceedings of the 25th International Conference on Real-Time Networks and
Systems, page 58–67, 2017.

Hoon Sung Chwa, Jaebaek Seo, Jinkyu Lee, and Insik Shin. Optimal real-time scheduling on two-type
heterogeneous multicore platforms. In 2015 IEEE Real-Time Systems Symposium, pages 119–129, 2015.

Will Deacon. Asymmetric 32-bit SoCs. https://github.com/torvalds/linux/blob/
master/Documentation/arch/arm64/asymmetric-32bit.rst, 2021. Online; accessed
20 September 2023.

Deadline Task Scheduling. Deadline task scheduling. https://github.com/torvalds/linux/
blob/master/Documentation/scheduler/sched-deadline.rst. Online; accessed 03
June 2020.

UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under global EDF scheduling on a
multiprocessor. Real-Time Systems, 38(2):133–189, 2008.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow
problems. Journal of the ACM, 19(2):248–264, 1972.

Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of multiprocessor tasksets.
In 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems,
pages 6–11, 2010.

Jeremy P. Erickson and James H. Anderson. Response time bounds for G-EDF without intra-task precedence
constraints. In Proceedings of the 15th International Conference on Principles of Distributed Systems,
page 128–142, 2011.

352

https://github.com/torvalds/linux/blob/master/Documentation/arch/arm64/asymmetric-32bit.rst
https://github.com/torvalds/linux/blob/master/Documentation/arch/arm64/asymmetric-32bit.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst

Jeremy P. Erickson and James H. Anderson. Fair lateness scheduling: Reducing maximum lateness in
G-EDF-like scheduling. In 2012 24th Euromicro Conference on Real-Time Systems, pages 3–12, 2012.

Jeremy P. Erickson, UmaMaheswari C. Devi, and Sanjoy Baruah. Improved tardiness bounds for global EDF.
In 2010 22nd Euromicro Conference on Real-Time Systems, pages 14–23, 2010.

Shelby Funk, Joël Goossens, and Sanjoy Baruah. On-line scheduling on uniform multiprocessors. In
Proceedings 22nd IEEE Real-Time Systems Symposium, pages 183–192, 2001.

Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. Schedulability analysis of the linux push
and pull scheduler with arbitrary processor affinities. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 69–79, 2013.

Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. Multiprocessor real-time scheduling with
arbitrary processor affinities: from practice to theory. Real-Time Systems, 51:440–483, 2014.

Hardkernel. Hardkernel linux. https://github.com/hardkernel/linux. Online; accessed 2
May 2024.

Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge University Press, 1952.

Clara Hobbs, Zelin Tong, Joshua Bakita, and James H. Anderson. Statically optimal dynamic soft real-time
semi-partitioned scheduling. Real-Time Systems, 57(1–2):97–140, 2021.

Shinpei Kato and Nobuyuki Yamasaki. Semi-partitioned fixed-priority scheduling on multiprocessors. In
2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 23–32, 2009.

Namhoon Kim, Micaiah Chisholm, Nathan Otterness, James H. Anderson, and F. Donelson Smith. Allowing
shared libraries while supporting hardware isolation in multicore real-time systems. In 2017 IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 223–234, 2017.

Namhoon Kim, Stephen Tang, Nathan Otterness, James H. Anderson, F. Donelson Smith, and Donald E.
Porter. Supporting I/O and IPC via fine-grained OS isolation for mixed-criticality real-time tasks. Real-Time
Systems, 56(4):349–390, 2020.

Juri Lelli. taskgen. https://github.com/jlelli/taskgen, 2014. Online; accessed 23 Oct 2020.

Juri Lelli. sched-deadline-tests. https://github.com/jlelli/sched-deadline-tests, 2016.
Online; accessed 27 June 2024.

Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline scheduling in the linux kernel.
Software: Practice and Experience, 46(6):821–839, 2016.

Hennadiy Leontyev and James H. Anderson. Generalized tardiness bounds for global multiprocessor
scheduling. In 28th IEEE International Real-Time Systems Symposium, pages 413–422, 2007.

Jiřı́ Matoušek and Bernd Gärtner. Understanding and Using Linear Programming. Springer, 2007.

Steven Rostedt. sched deadline. https://github.com/rostedt/sched_deadline, 2018. On-
line; accessed 27 June 2024.

Rob Roy and Venkat Bommakanti. ODROID-XU4 User Manual. Hardkernel, 2017.

rt-app. rt-app. https://github.com/scheduler-tools/rt-app, 2009. Online; accessed 23
Oct 2020.

353

https://github.com/hardkernel/linux
https://github.com/jlelli/taskgen
https://github.com/jlelli/sched-deadline-tests
https://github.com/rostedt/sched_deadline
https://github.com/scheduler-tools/rt-app

Claudio Scordino, Luca Abeni, and Juri Lelli. Energy-aware real-time scheduling in the Linux kernel. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, page 601–608, 2018.

Anand Srinivasan and James H. Anderson. Optimal rate-based scheduling on multiprocessors. Journal of
Computer and System Sciences, 72(6):1094–1117, 2006.

Roger Stafford. Random vectors with fixed sum. https://www.mathworks.com/matlabcentral/
fileexchange/9700-random-vectors-with-fixed-sum, 2024. Online; accessed 17 May
2024.

Ion Stoica and Hussein Abdel-Wahab. Earliest eligible virtual deadline first: A flexible and accurate
mechanism for proportional share resource allocation. Technical report, 1995.

Stephen Tang. Identical/semi-partitioned patch. https://www.cs.unc.edu/˜sytang/
semipartitioned_v5.4.69.patch, a.

Stephen Tang. Uniform/semi-clustered patch. https://www.cs.unc.edu/˜sytang/uscedf.
patch, b.

Stephen Tang and James H. Anderson. Towards practical multiprocessor EDF with affinities. In 41st IEEE
Real-Time Systems Symposium, pages 89–101, 2020.

Stephen Tang, Sergey Voronov, and James H. Anderson. GEDF tardiness: Open problems involving uniform
multiprocessors and affinity masks resolved. In 31st Euromicro Conference on Real-Time Systems, volume
133, pages 13:1–13:21, 2019.

Stephen Tang, James H. Anderson, and Luca Abeni. On the defectiveness of SCHED DEADLINE w.r.t.
tardiness and affinities, and a partial fix. In 2021 29th International Conference on Real-Time Networks
and Systems, pages 46–56, 2021a.

Stephen Tang, Sergey Voronov, and James H. Anderson. Extending EDF for soft real-time scheduling on
unrelated multiprocessors. In 2021 IEEE Real-Time Systems Symposium, pages 253–265, 2021b.

Ismail H. Toroslu and Göktürk Üçoluk. Incremental assignment problem. Information Sciences, 177:
1523–1529, 2007.

Paolo Valente. Using a lag-balance property to tighten tardiness bounds for global EDF. Real-Time Systems,
52:486–561, 2016.

Sergey Voronov and James H. Anderson. An optimal semi-partitioned scheduler assuming arbitrary affinity
masks. In 2018 IEEE Real-Time Systems Symposium, pages 408–420, 2018.

Sergey Voronov, Stephen Tang, Tanya Amert, and James H. Anderson. AI meets real-time: Addressing
real-world complexities in graph response-time analysis. In 2021 IEEE Real-Time Systems Symposium,
pages 82–96, 2021.

Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson. Making shared caches
more predictable on multicore platforms. In 2013 25th Euromicro Conference on Real-Time Systems, pages
157–167, 2013.

Reinhold P. Weicker. Dhrystone: A synthetic systems programming benchmark. Communications of the
ACM, 27(10):1013–1030, 1984.

354

https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.cs.unc.edu/~sytang/semipartitioned_v5.4.69.patch
https://www.cs.unc.edu/~sytang/semipartitioned_v5.4.69.patch
https://www.cs.unc.edu/~sytang/uscedf.patch
https://www.cs.unc.edu/~sytang/uscedf.patch

Kecheng Yang and James H. Anderson. Optimal GEDF-based schedulers that allow intra-task parallelism
on heterogeneous multiprocessors. In 2014 IEEE 12th Symposium on Embedded Systems for Real-time
Multimedia, pages 30–39, 2014.

Kecheng Yang and James H. Anderson. On the soft real-time optimality of global EDF on multiprocessors:
From identical to uniform heterogeneous. In 2015 IEEE 21st International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 1–10, 2015.

Kecheng Yang and James H. Anderson. On the soft real-time optimality of global EDF on uniform multipro-
cessors. In 2017 IEEE Real-Time Systems Symposium, pages 319–330, 2017.

Zephyr. Zephyr. https://github.com/zephyrproject-rtos/zephyr. Online; accessed 21
May 2024.

Peter Zijlstra. An update on real-time scheduling on Linux. http://archives.ecrts.org/
fileadmin/files_ecrts17/ecrts17-peterz.pdf, 2017. Online; accessed 27 June 2023.

355

https://github.com/zephyrproject-rtos/zephyr
http://archives.ecrts.org/fileadmin/files_ecrts17/ecrts17-peterz.pdf
http://archives.ecrts.org/fileadmin/files_ecrts17/ecrts17-peterz.pdf

	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Problem: EDF (and its Derivatives) are Poorly Understood
	An Orthogonal Open Problem: Loose Response-Time Bounds
	Thesis Statement
	Contributions
	Improving SRT Analysis for UNIFORM and Extending to IDENTICAL/ARBITRARY
	WC Variant and Response-Time Bounds under UNRELATED
	Patching SCHED_DEADLINE for IDENTICAL/SEMI-PARTITIONED and 2-Type UNIFORM/SEMI-CLUSTERED

	Organization

	Theoretical Background
	Task Model
	Scheduler Classifications
	Optimization Review
	Related Work
	Work under IDENTICAL
	Work under IDENTICAL/ARBITRARY
	Work under UNIFORM
	Work under UNRELATED

	Chapter Summary

	Response-Time Bounds
	Deviation
	Scheduling
	Response Times
	Evolution
	Proof Strategy

	Analysis under HP-LAG Systems
	Analysis under UNIFORM
	Analysis under IDENTICAL/ARBITRARY
	Counterexamples

	Analysis under UNRELATED
	Defining the Variant
	Interpreting Unr-WC
	Ufm-WC is a Special Case of Unr-WC
	Strong-APA-WC is a Special Case of Unr-WC

	Response-Time Bounds
	Evaluation

	Chapter Summary

	SCHED_DEADLINE Background
	User-Space API
	Scheduling Policies
	Suspending and Yielding
	Affinities
	Priority Inheritance Mutexes
	Admission Control
	DVFS

	Common Data Structures
	Scheduling Class Internals
	Scheduling and Suspending
	Waking
	Ticks
	Yielding
	Change Pattern
	Policy Changes and Priority Inheritance
	Affinities
	Stop Class

	SCHED_DEADLINE
	Data Structures
	Multiprocessor Scheduling
	Enqueuing and Dequeuing
	Pushes and Pulls
	Suspending and Waking
	Other Scheduling Class Functions

	CBS
	Admission Control
	Affinities
	Asymmetric Capacities
	Priority Inheritance
	GRUB
	DVFS
	Core Scheduling

	Chapter Summary

	Modifying SCHED_DEADLINE
	Version Differences
	IDENTICAL/SEMI-PARTITIONED
	Bypassing Throttles
	Pushing to the Latest CPU
	ACS
	Dynamic Fine-Grained Affinities
	Bounded Response Times
	Evaluation

	UNIFORM/SEMI-CLUSTERED
	Hardware platform
	Scheduler
	Ufm-SC-EDF is a Special Case of Unr-WC
	Converting Speeds between UNRELATED and UNIFORM/SEMI-CLUSTERED
	Priority Points and Deadlines
	Profit
	Connected Components
	Relabeling
	Proving Ufm-SC-EDF is a Special Case of Unr-WC

	ACS Conditions
	Implementation
	Data structures
	Scheduling and Migration Changes
	ACS

	Evaluation

	Chapter Summary

	Conclusion
	Summary of Results
	Other Work
	Acknowledgements
	Future Work

	Equivalence Between HRT- and SRT-Feasibility
	Proof Modifications for SCHED_DEADLINE Patch
	BIBLIOGRAPHY

