
A New Fast-Path Mechanism for Mutual Exclusion
�

James H. Anderson and Yong-Jik Kim

Department of Computer Science

University of North Carolina at Chapel Hill

July 2000

Abstract

Several years ago, Yang and Anderson presented an N -process algorithm for mutual exclusion under

read/write atomicity that has �(logN) time complexity, where \time" is measured by counting remote

memory references. In this algorithm, instances of a two-process mutual exclusion algorithm are embed-

ded within a binary arbitration tree. In the two-process algorithm that was used, all busy-waiting is done

by \local spinning." Performance studies presented by Yang and Anderson showed that their N -process

algorithm exhibits scalable performance under heavy contention. One drawback of using an arbitration

tree, however, is that each process is required to perform �(logN) remote memory operations even

when there is no contention. To remedy this problem, Yang and Anderson presented a variant of their

algorithm that includes a \fast-path" mechanism that allows the arbitration tree to be bypassed in the

absence of contention. This algorithm has the desirable property that contention-free time complexity is

O(1). Unfortunately, the fast-path mechanism that was used caused time complexity under contention

to rise to �(N) in the worst case. To this day, the problem of designing a read/write mutual exclusion

algorithm with O(1) time complexity in the absence of contention and O(logN) time complexity under

contention has remained open. In this paper, we close this problem by presenting a fast-path mecha-

nism that achieves these time complexity bounds when used in conjunction with Yang and Anderson's

arbitration-tree algorithm.

Keywords: Fast mutual exclusion, local spinning, read/write atomicity, scalability, shared memory

�Work supported by NSF grants CCR 9732916 and CCR 9972211. The �rst author was also supported by an Alfred P. Sloan

Research Fellowship. A preliminary version of this paper was presented at the 13th International Symposium on Distributed

Computing [2].

1



1 Introduction

The mutual exclusion problem has been studied for many years, dating back to the seminal paper of Dijkstra

[6]. In this problem, each of a set of N processes repeatedly executes a \critical section" of code. Each

process's critical section is preceded by an \entry section" and followed by an \exit section." The objective

is to design the entry and exit sections to ensure that at most one process executes its critical section at any

time, and that each process in its entry section eventually enters its critical section.

Recent work on mutual exclusion has focused on the design of \scalable" algorithms that minimize

the impact of the processor-to-memory bottleneck through the use of local spinning . A mutual exclusion

algorithm is scalable if its performance degrades only slightly as the number of contending processes increases.

In local-spin mutual exclusion algorithms, good scalability is achieved by requiring all busy-waiting loops

to be read-only loops in which only locally-accessible shared variables are accessed that do not require a

traversal of the processor-to-memory interconnect. On a distributed shared-memory multiprocessor, a shared

variable is locally accessible if it is stored in a local memory module. On a cache-coherent multiprocessor, a

shared variable is locally accessible if it is stored in a local cache line.

A number of queue-based local-spin mutual exclusion algorithms have been proposed in which only O(1)

remote memory references are required for a process to enter and exit its critical section [3, 7, 9]. In each of

these algorithms, waiting processes form a \spin queue." Read-modify-write instructions are used to enqueue

a blocked process onto the end of the queue. Performance studies presented in several papers [3, 7, 9, 12]

have shown that these algorithms scale well as contention increases.

In subsequent work, Yang and Anderson questioned whether read-modify-write operations are in fact

necessary for scalable mutual exclusion [12]. The main contribution of their work was an N -process mutual

exclusion algorithm with �(logN) time complexity that uses only read and write operations. Somewhat

surprisingly, experiments conducted by them showed that this algorithm is only slightly slower than the

fastest queue locks. In Yang and Anderson's algorithm, instances of a local-spin mutual exclusion algorithm

for two processes are embedded within a binary arbitration tree, as depicted in Figure 1(a). The entry and

exit sections associated with the two edges connecting a given node to its children constitute a two-process

mutual exclusion algorithm. Initially, all processes start at the leaves of the tree. To enter its critical section,

a process is required to traverse a path from its leaf up to the root, executing the entry section of each edge

on this path. Upon exiting its critical section, a process traverses this path in reverse, this time executing

the exit section of each edge. Yang and Anderson's two-process algorithm is designed to ensure that all spins

are local, even though the two processes that invoke the algorithm are determined dynamically. Because of

the structure of the tree, �(logN) remote memory references are required for a process to enter and exit its

critical section.

Although Yang and Anderson's algorithm exhibits scalable performance, in complexity-theoretic terms,

2



yes

no

contention?

"fast path"

(a) (b)

"slow path"

Figure 1: (a) Yang and Anderson's arbitration-tree algorithm and (b) its fast-path variant.

there is still a gap between the �(logN) time complexity of their algorithm and the constant time com-

plexity of algorithms based on stronger synchronization primitives. This gap is particularly troubling when

considering performance in the absence of contention. Even without contention, the arbitration tree forces

each process to perform �(logN) remote memory references in order to enter and exit its critical section.

To alleviate this problem, Yang and Anderson presented a variant of their algorithm that includes a \fast-

path" mechanism that allows the arbitration tree to be bypassed in the absence of contention. This variant is

illustrated in Figure 1(b). As the �gure shows, an extra two-process mutual exclusion algorithm is placed on

top of the arbitration tree to allow any fast-path process to compete with processes from the arbitration tree.

This two-process algorithm is the same as that used inside the arbitration tree. The contention-detection

mechanism in Yang and Anderson's algorithm is based on one proposed previously by Lamport [8]. Indeed,

Lamport was the �rst to investigate \fast-path" mutual exclusion algorithms under read/write atomicity,

and most subsequent fast-path algorithms (including the one in this paper) extend his original fast-path

mechanism in some way. A description of Lamport's fast-path algorithm is given in the next section.

Yang and Anderson's fast-path algorithm has the desirable property that contention-free time complexity

is O(1). Unfortunately, it has the undesirable property that worst-case time complexity under contention is

�(N), rather than �(logN). In most fast-path algorithms (including Yang and Anderson's), once the fast

path has been successfully \acquired" by a process, it must be \closed" so that multiple processes do not

simultaneously acquire it. When a period of contention ends, the fast path must be \reopened." Because

processes are asynchronous, and because only atomic reads and writes are being assumed, it is quite tricky

to ensure that these properties hold. In Yang and Anderson's fast-path algorithm, a process checks whether

the fast path can be reopened by \polling" each process individually to see if it is still contending. This

polling loop is the reason why the time complexity of their algorithm is �(N) in the worst case.

3



To this day, the problem of designing a read/write mutual exclusion algorithm with O(1) time complexity

in the absence of contention and O(logN) time complexity under contention has remained open. In this

paper, we close this problem by presenting a fast-path mechanism that achieves these time complexity bounds

when used in conjunction with Yang and Anderson's arbitration-tree algorithm. Our fast-path mechanism

has the novel feature that it can be reopened after a period of contention without having to poll each process

individually to see if it is still contending. In our algorithm, a process reopens the fast path after executing

its critical section if it detects that no other process has successfully acquired the fast path. Unfortunately,

because processes execute asynchronously, it can be diÆcult to distinguish between a situation in which no

process has acquired the fast path and a situation in which some process is \about to" acquire the fast path.

We defend against this possibility by ensuring that, when the fast path is reopened, any process that is

\about to" acquire the fast path is de
ected to the slow path.

The rest of this paper is organized as follows. In Section 2, we present our fast-path algorithm. In

presenting the algorithm, we give proof sketches for several of the key properties that show that the algorithm

is correct. Formal proofs of these properties are given in appendix. We end the paper with concluding remarks

in Section 3.

2 Fast-Path Algorithm

Our fast-path algorithm is the last of three algorithms considered in turn in this section. The �rst of

these algorithms is the original fast-path algorithm of Lamport [8]. The second is an algorithm that allows

Lamport's fast-path mechanism to be eÆciently \reset" when contention ends, at the expense of using

unbounded variables. The �nal algorithm is a variant of the second that uses only bounded variables. In

explaining these three algorithms, we actually present proof sketches for some of the key properties of each

algorithm. Our intent is to use these proof sketches as a means for explaining the basic mechanisms of

each algorithm in a way that is as intuitive as possible. A formal, assertional correctness proof for the �nal

algorithm is presented in an appendix.

Lamport's fast-path mechanism is de�ned by the code fragment shown in Figure 2. In this and subsequent

�gures, we assume that each labeled sequence of statements is atomic; in each �gure, each labeled sequence

reads or writes at most one shared variable. (The references to unspeci�ed code fragments in Figure 2 (see

statements 3, 5, and 6) should be interpreted as branches to these code fragments.) Lamport's fast-path

mechanism has the property that at most one process at a time can \take the fast path." To see this, suppose

to the contrary that two processes p and q are at statement 6. Let p be the process that executed statement

5 last. Because p found that X = p held at statement 5, X is not written by any process between p's

execution of statement 1 and p's execution of statement 5. Thus, q executed statement 5 before p executed

statement 1. This implies that q executed statement 4 before p executed statement 2. Thus, p must have

4



shared variable X: 0::N � 1; Y : boolean initially true

private variable y: boolean

process p::

0: Noncritical Section;

1: X := p;

2: y := Y ;

3: if :y then \compete with other processes (slow path)"

else

4: Y := false;

5: if X 6= p then \compete with other processes (slow path )"

else

6: \take the fast path"

Figure 2: Lamport's fast-path mechanism.

read Y = false at statement 2 and then taken the slow path at statement 3, which is a contradiction.

It is straightforward to see that, with the stated initial conditions, if one process executes the code

fragment in Figure 2 in isolation, then that process will take the fast path. The problem with using this code

is that, after a period of contention ends, it is diÆcult to \reopen" the fast path so that it can be acquired

by other processes. If a process does succeed in taking the fast path, then that process can reopen the fast

path itself by simply assigning Y := true. On the other hand, if no process succeeds in taking the fast path,

then the fast path ultimately must be reopened by one of the slow-path processes. Unfortunately, because

processes are asynchronous and communicate only by means of atomic read and write operations, it can be

diÆcult for a slow-path process to know whether the fast path has been acquired by some process, and if it

has, which process has acquired it.

The algorithm shown in Figure 3 uses unbounded memory to solve this problem. Before describing how

this algorithm works, we �rst examine its basic structure. Four shared variables and an in�nite shared array

are used in the algorithm: X , Y , Reset , Name Taken (the array), and Infast . Variables X and Y are as

in Lamport's algorithm, with the exception that Y now has an additional integer indx �eld. As explained

below, the unbounded algorithm works by \renaming" any process that acquires the fast path with a new

temporary process identi�er. The indx �eld of Y is used in renaming processes. The variable Reset is used

to reinitialize the indx �eld of Y after a period of contention ends. The variable Name Taken [k] is used to

indicate whether name k has been assigned to some process. The variable Infast is set to record that the

fast path has been acquired by some process.

A process determines if it can access the fast path by executing statements 1-8; of these, statements 1-4

comprise Lamport's fast-path mechanism. Note that the fast path is open if Y:free = true ^ Infast =

false ^ Y = Reset holds | if a process p begins executing statements 1-8 when this expression holds,

and if all other processes remain in their noncritical sections, then p will reach statement 9. If a process p

detects any other competing process while executing within statements 1-8, then p is \de
ected" out of the

5



type Ytype = record free: boolean; indx : 0::1 end =� stored in one word �=

shared variable

X: 0::N � 1;

Y , Reset : Ytype initially (true ; 0);

Name Taken : array[0::1] of boolean initially false;

Infast : boolean initially false

private variable y: Ytype

process p:: =� 0 � p < N �=

while true do

0: Noncritical Section;

1: X := p;

2: y := Y ;

if :y:free then SLOW 1()

else

3: Y := (false; 0);

4: if (X 6= p _

5: Infast) then SLOW 2()

else

6: Name Taken [y:indx ] := true ;

7: if Reset 6= y then

8: Name Taken [y:indx ] := false;

SLOW 2()

else

9: Infast := true ;

10: ENTRY 2(0); =� fast path �=

11: Critical Section;

12: Reset := (true; y:indx + 1);

13: Y := (true ; y:indx + 1);

14: EXIT 2(0);

15: Infast := false

� � �

od

procedure SLOW 1()

16: ENTRY N(p);

17: ENTRY 2(1);

18: Critical Section;

19: EXIT 2(1);

20: EXIT N(p)

procedure SLOW 2()

21: ENTRY N(p);

22: ENTRY 2(1);

23: Critical Section;

24: y := Reset ;

25: Reset := (false; y:indx );

26: if :Name Taken [y:indx ] then

27: Reset := (true ; y:indx + 1);

28: Y := (true ; y:indx + 1)

�;

29: EXIT 2(1);

30: EXIT N(p)

Figure 3: Fast-path algorithm with unbounded memory.

fast path and invokes either SLOW 1 or SLOW 2. SLOW 1 is invoked if p has not updated any variables

that must be reset in order to reopen the fast path. Otherwise, SLOW 2 is invoked. A detailed explanation

of the de
ection mechanism is given below. If a process is not de
ected, then it successfully acquires the

fast path, which consists of statements 9-15. A process that either acquires the fast path or is de
ected to

SLOW 2 attempts to reopen the fast path by executing statements 12-15 or 24-28, respectively. A detailed

explanation of how the fast path is reopened is given below.

We assume that a fast-path process competes with other processes by placing a two-process mutual exclu-

sion algorithm \on top" of an N -process mutual exclusion algorithm, as depicted in Figure 1(b). Although

the N -process algorithm in Figure 1(b) is an arbitration tree, this algorithm could be implemented by some

other means. In our discussion of time complexity given later, we will assume that the underlying two-

process and N -process mutual exclusion algorithms are implemented using Yang and Anderson's algorithm,

but this is not required for correctness. (As discussed later, for the overall algorithm to be starvation-free,

6



the underlying algorithms must be starvation-free.) A fast-path process executes the \topmost" two-process

mutual exclusion algorithm using 0 as a virtual process identi�er. The entry code for this algorithm is

denoted \ENTRY 2(0)" in Figure 3 (see statement 10). The corresponding two-process exit code is denoted

\EXIT 2(0)" (statement 14). Each process p that is de
ected to SLOW 1 or SLOW 2 must �rst compete

within the N -process mutual exclusion algorithm (using its own process identi�er). The entry and exit

code for the N -process mutual exclusion algorithm are denoted \ENTRY N(p)" and \EXIT N(p)," respectively

(statements 16, 20, 21, and 30). After competing within the N -process algorithm, a de
ected process accesses

the \topmost" two-process algorithm using 1 as a virtual process identi�er. The entry and exit code for this

are denoted \ENTRY 2(1)" and \EXIT 2(1)," respectively (statements 17, 19, 22, and 29). Because all ENTRY

and EXIT routines are assumed to be correct and do not access any of the variables (other than program

counters) of our fast-path algorithm, we can assume that they are executed atomically when reasoning about

our algorithm.

One critical property of the algorithm bears mentioning before we consider some of the algorithm's more

complicated properties. In particular, note that many of the accesses to shared variables actually occur

within code sequences that execute as critical sections (statements 12-13 and 24-28). Thus, when reasoning

about the algorithm, we can assume that these code sequences do not interleave with one another. In fact,

as we shall see, this assumption is not merely a matter of convenience | the algorithm's correctness relies

crucially on the fact that these code sequences execute as critical sections.

As explained above, one of the problems with Lamport's fast-path code is that it is diÆcult for a slow-

path process to know which (if any) process has acquired the fast path. In the unbounded algorithm in

Figure 3, this problem is solved by including in Y an additional �eld, which is an identi�er that is used to

\rename" any process that acquires the fast path. This identi�er will increase without bound over time, so

we will never have to worry about the possibility that two processes are renamed with the same identi�er.

With this added �eld, a slow-path process has a way of identifying a process that has taken the fast path.

To see how this works, consider what happens when, starting from the initial state, some set of processes

execute their entry sections. At least one of these processes will read Y = (true; 0) at statement 2 and assign

Y := (false ; 0) at statement 3. By the correctness of Lamport's fast-path code, of the processes that assign

Y , at most one will reach statement 6. A process that reaches statement 6 will either acquire the fast path

by reaching statement 9, or will be de
ected to SLOW 2 at statement 8.

This gives us two cases to analyze: of the processes that read Y = (true; 0) at statement 2 and assign Y

at statement 3, either all are de
ected to SLOW 2, or one, say p, acquires the fast path. In the former case,

at least one of the processes that executes SLOW 2 �nds Name Taken [0] to be false at statement 26, and

then reopens the fast path by executing statements 27 and 28, which establish Y:free = true ^ Y:indx >

0 ^ Y = Reset . To see why at least one process executes statements 27 and 28, note that each process under

consideration reads Y = (true; 0) at statement 2, and thus its y:indx variable equals 0 while executing within

7



statements 3-8. Note also that Name Taken [0] = true is established only by statement 6. Furthermore, each

process that is de
ected to SLOW 2 at statement 8 �rst assigns Name Taken [0] := false . Thus, at least one

of the processes de
ected to SLOW 2 �nds Name Taken [0] to be false at statement 26.

In the case that some unique process p has acquired the fast path, we must argue that (i) the fast-path

process p reopens the fast path upon leaving it, and (ii) no SLOW 2 process \prematurely" reopens the fast

path before p has left the fast path. Establishing (i) is straightforward. Process p will reopen the fast path

by executing statements 12-15, which establish Y = (true; 1) ^ Infast = false ^ Y = Reset . Note that

the assignment to Infast at statement 15 prevents the reopening of the fast path from actually taking e�ect

until after p has �nished executing EXIT 2(0).

To establish (ii), suppose, to the contrary, that some SLOW 2 process reopens the fast path by executing

statement 28 while p is executing within statements 9-15. Let q be the �rst such SLOW 2 process to execute

statement 28. Since we are assuming that the ENTRY and EXIT calls are correct, q cannot execute statement

28 while p is executing within statements 11-13. Moreover, if p is enabled to execute statement 14 or 15, then

Infast is true, and hence the fast path is closed. The remaining possibility is that p is enabled to execute

statement 9 or 10. (Note that if p were enabled to execute statement 9, and if q were to reopen the fast

path, then we could end up with two processes concurrently invoking ENTRY 2 or EXIT 2 at statements 10

and 14 with a virtual process identi�er of 0! The ENTRY 2 and EXIT 2 calls obviously cannot be assumed to

work correctly if such a scenario could happen.)

So, assume that q executes statement 28 while p is enabled to execute statement 9 or 10. For this to

happen, q must have read Name Taken [0] = false at statement 26 before p assigned Name Taken [0] := true

at statement 6. (Recall that all the processes under consideration read Y = (true; 0) at statement 2. This is

why p writes to Name Taken [0] instead of some other element of Name Taken. q reads from Name Taken [0]

at statement 26 because it is the �rst process to attempt to reset the fast path, which implies that q reads

Reset = (true; 0) at statement 24.) Because q executes statement 26 before p executes statement 6, statement

25 is executed by q before statement 7 is executed by p. Thus, p must have found Reset 6= y at statement 7,

i.e., it was de
ected to SLOW 2, which is a contradiction. It follows from the explanation given here that after

an initial period of contention ends, we must have Y:free = true ^ Y:indx > 0 ^ Y = Reset ^ Infast = false .

This argument can be applied inductively to show that the fast path is properly reopened after each period

of contention ends. When applied inductively, all reasoning is as above, except that, instead of Y:indx = 0,

we have Y:indx = k for some k > 0.

From the discussion above, we have the following properties for the algorithm in Figure 3. (Corresponding

properties for the bounded version of this algorithm are formally proved in an appendix.)

Property U1: If all processes are in their noncritical sections, then Y:free = true ^ Infast = false ^ Y =

Reset holds. 2

8



Property U2: If some process is executing within statements 9-15 (i.e., its program counter is least 9 and

at most 15), then no other process is executing within these statements. 2

By Property U1, if some process p executes its entry section in the absence of any contention, i.e., all

other processes remain in their noncritical sections, then p \takes the fast path," i.e., it executes its critical

section at statement 11. By Property U2, at most one process may \take the fast path" at any time. Thus,

the ENTRY and EXIT routines are invoked properly, and presuming their correctness, the algorithm in Figure

3 ensures that at most one process executes its critical section at any time.

Of course, the problem with this algorithm is that the indx �eld of Y that is used for renaming will

continue to grow without bound. The algorithm of Figure 4 solves this problem by requiring Y:indx to be

incremented modulo-N . With Y:indx being updated in this way, the following potential problem arises. A

process p may reach statement 7 in Figure 4 with y:indx = k and then get delayed. While delayed, other

processes may repeatedly increment Y:indx (in SLOW 2) until it \cycles back" to k. At this point, another

process q may reach statement 7 with y:indx = k. This is a problem because p and q may interfere with

each other in updating Name Taken [k].

The algorithm in Figure 4 prevents such a scenario from happening by preventing Y:indx from cycling

while some process p executes within statements 7-18. Informally, cycling is prevented by requiring process

p to erect an \obstacle" that prevents Y:indx from being incremented beyond the value p. More precisely,

note that before reaching statement 7, p must �rst assign Obstacle [p] := true at statement 4. Note further

that before a process can increment Y:indx from n to n+1 mod N (statement 17 or 37), it must �rst check

Obstacle [n] (statement 15 or 35) and �nd it to be false. This check prevents Y:indx from being incremented

beyond the value p while p executes within statements 7-18. The correctness of the code that reopens the

fast path rests heavily on the fact that most of this code (statements 13-18 and 29-37) is executed within

a critical section. Note that this obstacle-placement strategy might prevent the reopening of the fast path

when it is actually safe to do so. For example, if p is the only process with Obstacle [p] = true and if p is

delayed at statement 5 with X 6= p, then p's obstacle may prevent other processes from reopening the fast

path even though p is destined to be de
ected to SLOW 2. However, there is no harm in not reopening the

fast path in a case like this, because the presence of an obstacle means there is contention.

To this point, we have explained every di�erence between the algorithms in Figures 3 and 4 except one:

in Figure 4, there are added assignments to Y and X (statements 29 and 30) in SLOW 2. The reason for

these assignments is as follows. Suppose some process p is about to assign Obstacle [p] := true at statement

4 but gets delayed. (In other words, p is \about to" erect an obstacle to prevent Y:indx from cycling.) We

must ensure that if p ultimately reaches statement 7, then Y:indx does not get incremented beyond the value

p. Let k be the value read from Y:indx by p at statement 2. For Y:indx to be incremented beyond p, some

other process q that reads Y:indx = k must attempt to reopen the fast path. If such a process q reopens the

fast path by executing statement 17 while process p is delayed at statement 4, then by the correctness of

9



type Ytype = record free: boolean; indx : 0::N � 1 end =� stored in one word �=

shared variable

X: 0::N � 1;

Y , Reset : Ytype initially (true ; 0);

Name Taken , Obstacle : array[0::N � 1] of boolean initially false;

Infast : boolean initially false

private variable y: Ytype

process p:: =� 0 � p < N �=

while true do

0: Noncritical Section;

1: X := p;

2: y := Y ;

if :y:free then SLOW 1()

else

3: Y := (false; 0);

4: Obstacle [p] := true ;

5: if (X 6= p _

6: Infast) then SLOW 2()

else

7: Name Taken [y:indx ] := true ;

8: if Reset 6= y then

9: Name Taken [y:indx ] := false;

SLOW 2()

else

10: Infast := true ;

11: ENTRY 2(0); =� fast path �=

12: Critical Section;

13: Obstacle [p] := false;

14: Reset := (false; y:indx);

15: if :Obstacle [y:indx ] then

16: Reset := (true ; y:indx + 1 mod N);

17: Y := (true ; y:indx + 1 mod N)

�;

18: Name Taken[y:indx ] := false;

19: EXIT 2(0);

20: Infast := false

� � �

od

procedure SLOW 1()

21: ENTRY N(p);

22: ENTRY 2(1);

23: Critical Section;

24: EXIT 2(1);

25: EXIT N(p)

procedure SLOW 2()

26: ENTRY N(p);

27: ENTRY 2(1);

28: Critical Section;

29: Y := (false; 0);

30: X := p;

31: y := Reset ;

32: Obstacle [p] := false;

33: Reset := (false; y:indx);

34: if (:Name Taken [y:indx ] ^

35: :Obstacle [y:indx ]) then

36: Reset := (true ; y:indx + 1 mod N);

37: Y := (true ; y:indx + 1 mod N)

�;

38: EXIT 2(1);

39: EXIT N(p)

Figure 4: Fast-path algorithm.

Lamport's fast-path mechanism, process p will �nd X 6= p at statement 5 and will be de
ected to SLOW 2.

Suppose instead that process q reopens the fast path by executing statement 37. As before, we assume

this happens while process p is delayed at statement 4. If process q executes statement 30 after p executes

statement 1, then p will �nd X 6= p at statement 5 and will be de
ected to SLOW 2. So, assume that

q executes statement 30 before p executes statement 1. This implies that q establishes Y:free = false

by executing statement 29 before p reads Y at statement 2. Note that Y:free = true is only established

within critical sections (statements 17 and 37). Also, note that we have established the following sequence

of statement executions (perhaps interleaved with statement executions of other processes): q executes

statements 29 and 30; p executes statements 1-4; q executes statement 37 (q's execution of statements 31-36

10



may interleave arbitrarily with p's execution of statements 1-4). Because statements 28-37 are executed as

a critical section, this implies that p reads Y:free = false at statement 2, and thus does not reach statement

4, which is a contradiction. We conclude from this reasoning that if p is delayed at statement 4, and if p

ultimately reaches statement 7, then Y:indx does not get incremented beyond the value p.

From the discussion above, we have the following properties for the algorithm in Figure 4.

Property B1: If all processes are in their noncritical sections, then Y:free = true ^ Infast = false ^ Y =

Reset holds. 2

Property B2: If some process is executing within statements 10-20, then no other process is executing

within these statements. 2

Property B3: If some process p that read Y:indx = k at statement 2 is executing within statements 6-9,

and if Y:free is true, then either k � Y:indx � p, or Y:indx � p � k, or p � k � Y:indx . Informally, Y:indx

is \trapped" between k and p (modulo-N) and cannot cycle. 2

These properties follow from invariants that are formally established in the appendix. In particular, B1

follows from invariant (I26), B2 follows from invariant (I11), and B3 follows from invariants (I6) and (I19).

We now establish the time complexity of the algorithm. If the calls to ENTRY 2, EXIT 2, ENTRY N, and

EXIT N are implemented using Yang and Anderson's algorithm [12], then each call to ENTRY 2 and EXIT 2

requires a constant number of remote memory operations, and each call to ENTRY N and EXIT N requires

O(logN) remote memory operations. From the code in Figure 4, it should be clear that each process performs

a constant number of memory operations, and hence a constant number of remote memory operations, outside

of calls to these ENTRY and EXIT routines. (Note that there are no loops or recursive calls outside of these

routines.) Thus, each process performs a constant number of remote memory operations in the absence

of contention, and O(logN) remote memory operations under contention. Moreover, because Yang and

Anderson's algorithm is starvation-free, our algorithm is too. Thus, we have the following theorem.

Theorem 1 The algorithm in Figure 4 is a correct N -process mutual exclusion algorithm, and is starvation-

free, provided the two-process and N-process mutual exclusion algorithms used to implement the ENTRY and

EXIT routines are starvation-free. Moreover, if the ENTRY and EXIT routines are implemented using Yang and

Anderson's algorithm, then each critical section access requires a constant number of remote memory oper-

ations in the absence of contention, and O(logN) remote memory operations in the presence of contention.

2

11



3 Concluding Remarks

We have presented a fast-path algorithm for mutual exclusion under read/write atomicity. When used in

conjunction with Yang and Anderson's arbitration tree algorithm, each critical section access requires O(1)

remote memory references in the absence of contention, and O(logN) remote memory references in the

presence of contention, where N is the number of processes. This is the �rst read/write mutual exclusion

algorithm to achieve these time complexity bounds.

In presenting our fast-path algorithm, we have abstracted away from the details of the underlying algo-

rithms used to implement the ENTRY and EXIT calls. With the ENTRY 2/EXIT 2 calls in Figure 4 implemented

using Yang and Anderson's two-process algorithm, our fast-path algorithm can be simpli�ed slightly. In par-

ticular, the writes to Infast can be removed, and the test of Infast in statement 6 can be replaced by a test

of a similar variable (speci�cally, the variable C[0]) used in Yang and Anderson's algorithm [12].

Results by Cypher have shown that read/write atomicity is too weak for implementing mutual exclusion

with a constant number of remote memory references per critical section access [5]. The actual lower bound

established by him is a slow growing function of N . We suspect that 
(logN) is probably a tight lower bound

for this problem. At the very least, we know from Cypher's work that time complexity under contention must

be a function of N . Thus, mechanisms for achieving constant time complexity in the absence of contention

should remain of interest even if algorithms with better time complexity under contention are developed.

The problem of implementing a fast-path mechanism bears some resemblance to the wait-free long-lived

renaming problem [11]. Long-lived renaming algorithms are used to \shrink" the size of the name space

from which process identi�ers are taken. The problem is to design operations that processes may invoke

in order to acquire new names from the reduced name space when they are needed, and to release any

previously-acquired name when it is no longer needed. By using such renaming operations, it is possible to

speed up computations with time complexity that depends on name space size.

Thinking about connections to renaming actually led us to discover the fast-path algorithm described

in this paper. In principle, a fast-path mechanism could be implemented by associating a name with the

fast path and by having each process attempt to acquire that name in its entry section; a process that

successfully acquires the fast-path name would release it in its exit section. Despite this rather obvious

connection, the problem of implementing a fast-path mechanism is actually a much easier problem than

the long-lived renaming problem. In particular, while a renaming algorithm must be wait-free, most of the

steps involved in releasing a \fast-path name" can be done within a process's critical section. Our algorithm

heavily exploits this fact.

Several years ago, work on adaptive mutual exclusion under read/write atomicity was initiated in papers

by Merritt and Taubenfeld [10] and by Choy and Singh [4]. The problem here is to design a mutual exclusion

algorithm with time complexity that is a function of the number of contending processes. Unfortunately,

12



all previous adaptive algorithms use busy-waiting loops that generate an unbounded number of remote

memory references in the worst case, and thus they fail to qualify as adaptive algorithms under the time

complexity measure adopted in this paper. Under this measure, an algorithm is adaptive if each critical

section access requires O(k) remote memory references, where k is the number of contending processes.

O(k) time complexity is clearly possible only if all busy waiting is by means of local spinning.

In recent work, we showed that an adaptive local-spin mutual exclusion algorithm can be obtained by

applying the fast-path mechanism of this paper within a structure similar to that used in the grid-based,

long-lived renaming algorithm of Moir and Anderson [11]. In their algorithm, processes move among \points"

in a grid, where each point is de�ned by a small number of shared variables. Each such point corresponds

to a name. A process acquires a new name by moving among the grid points, starting with the grid point

corresponding to name 0. If multiple processes concurrently access the same grid point, then they may

\collide" and be de
ected to other grid points. A process continues moving among the grid points until it

successfully acquires the name associated with some grid point (for brevity, we will not describe the algorithm

in any more detail than this; an inductive argument is used to show that each process eventually visits a

grid point without colliding and successfully acquires the corresponding name [11]). To release a name, a

process must attempt to \reopen" each of the grid points it visited in acquiring its name.

The main idea behind our adaptive algorithm is to allow an arbitration tree to form dynamically within

a structure that is similar to the Moir-Anderson renaming grid. The tree grows when new grid points are

visited, and shrinks when previously-visited grid points are reopened. Although the tree may not remain

balanced, its height is bounded by the number of contending processes. In Moir and Anderson's algorithm,

O(N) time is required to reopen a point in the grid. Using a mechanism that is similar to that used in this

paper to reopen the fast path, we can reopen a grid point in only O(1) time. The result is an algorithm with

O(k) time complexity, where k is the number of contending processes.

Acknowledgement: We are grateful to the anonymous referees for their helpful suggestions.

Appendix: Correctness Proof

In this appendix, we formally prove that the algorithm in Figure 4 is correct. Speci�cally, we prove that the

mutual exclusion property (at most one process executes it critical section at any time) holds and that the

fast path is always open in the absence of contention. (The algorithm is easily seen to be starvation-free if

the underlying algorithms used to implement the ENTRY and EXIT calls are starvation-free.) The following

notational conventions will be used in the proof.

Notational Conventions: Unless stated otherwise, we assume i, j, and k range over f0::N � 1g. We use

n:i to denote the statement with label n of process i, and i:y to represent i's private variable y. Let S be a

13



subset of the statement labels in process i. Then, i@fSg holds if and only if the program counter for process

i equals some value in S. (Note that if l is a statement label, then i@flg means that process i is enabled to

execute statement l, i.e., it hasn't executed statement l yet.) As stated earlier, we assume that each labeled

sequence of statements in Figure 4 is atomic (in particular, note that statement 5:i establishes either i@f6g

or i@f26g, depending on whether X equals i, and that statement 34:i establishes either i@f35g or i@f38g,

depending on the value of Name Taken [i:y:indx ]). 2

De�nition: We de�ne a process i to be FAST-possible if the condition F (i), de�ned below, is true.

F (i) � i@f3::8; 10::20g ^ (i@f3::5g ) X = i) ^ (i@f3::8g ) Reset = i:y) 2

Informally, this condition indicates that process i may potentially acquire the fast path. It does not

necessarily mean that i is guaranteed to acquire the fast path: if F (i) holds, then process i still can be

de
ected to SLOW 1 or SLOW 2. If i@f3::9g holds and F (i) is false, then then we de�ne process i to be

FAST-disabled . We will later show that it is impossible for a FAST-disabled process to acquire the fast path.

We now turn our attention to establishing the mutual exclusion property.

Mutual Exclusion

We will establish the mutual exclusion property by proving that the conjunction of a number of assertions

is an invariant. This proves that each of these assertions individually is an invariant. These invariants are

listed below. For each invariant I , we prove (i) I holds initially, and (ii) for any pair of consecutive states

t and u, if all invariants hold at t, then I holds at u. For convenience, we list here each invariant that is

established in the proof of mutual exclusion.

I) Invariants that give conditions that must hold if a process is FAST-possible.

invariant F (i) ^ i@f4::8; 10::17g ) Y = (false; 0) (I1)

invariant F (i) ^ i@f8; 10::17g ) Name Taken [i:y:indx ] = true (I2)

invariant i@f10::16g ) Reset :indx = i:y:indx (I3)

invariant i@f11::20g ) Infast = true (I4)

II) Invariants that prevent \cycling." These invariants are used to show that if i@f6::9g holds and process

i is FAST-disabled, then Reset :indx must be \trapped" between i:y:indx and i. Therefore, there is no way

Reset can cycle back, erroneously making process i FAST-enabled again.

invariant i@f3::5g ^ X = i ) Reset = i:y (I5)

invariant i@f6::9g ) (i:y:indx � Reset :indx � i) _

(Reset :indx � i � i:y:indx ) _ (i � i:y:indx � Reset :indx ) (I6)

14



invariant i@f6::9g ^ Reset :indx = i ) :(9j :: j@f16; 36g) (I7)

invariant i@f6::9g ^ i:y:indx = i ) Reset :indx = i:y:indx (I8)

invariant i@f9g ^ Reset :indx = i:y:indx ) Reset :free = false (I9)

III) Invariants showing that certain regions of code are mutually exclusive.

invariant F (i) ^ F (j) ^ i 6= j ) :(i@f3::6g ^ j@f3::8; 10::17g) (I10)

invariant F (i) ^ F (j) ^ i 6= j ) :(i@f7; 8; 10::20g ^ j@f7; 8; 10::20g) (I11)

invariant F (i) ) :(i@f3::5g ^ j@f31::37g) (I12)

invariant F (i) ) :(i@f6; 7g ^ j@f34::37g) (I13)

invariant F (i) ) :(i@f8; 10::19g ^ j@f35::37g) (I14)

invariant i@f6::9g ^ j@f6::17g ^ i 6= j ) i:y:indx 6= j:y:indx (I15)

IV) Miscellaneous invariants that are either trivial or follow almost directly from the mutual exclusion

property (I22).

invariant i@f32; 33g ) Reset = i:y (I16)

invariant i@f15; 16; 34::36g ) Reset = (false; i:y:indx) (I17)

invariant i@f30::37g ) Y = (false; 0) (I18)

invariant Y:free = true ) Y = Reset (I19)

invariant i@f3::20g ) i:y:free = true (I20)

invariant (i@f5::13; 26::32g) = (Obstacle [i] = true) (I21)

V) Mutual exclusion (our goal).

invariant (Mutual exclusion) jfi :: i@f12::19; 23; 24; 28::38ggj � 1 (I22)

In establishing the above invariants, statements that might potentially establish F (i) must be repeatedly

considered. The following lemma shows that only one such statement must be considered.

Lemma 1: If t and u are consecutive states such that F (i) is false at t but true at u, and if each of (I1)

through (I22) holds at t, then u is reached from t via the execution of statement 2:i.

Proof: The only statements that could potentially establish F (i) are 2:i (which establishes i@f3::8; 10::20g

and may establish Reset = i:y), 5:i (which falsi�es i@f3::5g), 8:i (which falsi�es i@f3::8g), 1:i and 30:i

(which establish X = i), and 31:i, 14:j, 16:j, 33:j, and 36:j (which may establish Reset = i:y), where j is

any arbitrary process. We now show that none of these statements other than 2:i can establish F (i).

Statement 5:i can establish i@f6g, and hence F (i), only if X = i holds at t. (If X 6= i holds at t, then

5:i establishes i@f26g, which implies that F (i) is false.) By (I5), if X = i holds at t, then Reset = i:y holds

at t as well. By the de�nition of F (i), this implies that F (i) holds at t, a contradiction.

15



Statement 8:i can establish i@f10g, and hence F (i), only if Reset = i:y holds at t. But this implies that

F (i) holds at t, a contradiction.

Statements 1:i, 30:i, and 31:i establish i@f2; 31; 32g. Therefore, they cannot establish F (i).

Statements 14:j and 33:j could establish F (i) only if i@f3::8g ^ Reset 6= i:y holds at t, and upon

executing 14:j or 33:j, Reset = i:y is established. However, by (I3) and (I16), 14:j and 33:j can change the

value of Reset only by changing the value of Reset :free from true to false. By (I20), if i@f3::8g holds at t,

then i:y:free = true holds as well. Thus, statements 14:j and 33:j cannot possibly establish Reset = i:y, and

hence cannot establish F (i).

Statements 16:j and 36:j likewise can establish F (i) only if i@f3::8g ^ Reset 6= i:y holds at t. We

consider two cases, depending on whether i@f3::5g or i@f6::8g holds at t. If i@f3::5g ^ Reset 6= i:y holds

at t, then by (I5), X 6= i holds at t. This implies that X 6= i holds at u as well, i.e., F (i) is false at u.

Now, suppose that i@f6::8g ^ Reset 6= i:y holds at t. By (I17), statements 16:j and 36:j increment

Reset :indx by 1 modulo-N . Therefore, they may establish F (i) only if Reset :indx = (i:y:indx � 1) mod N

holds at t. By (I6), this implies that i = Reset :indx or i = i:y:indx holds at t. By (I8), the latter implies

that i = Reset :indx holds at t. Hence, in either case, i = Reset :indx holds at t. Because we have assumed

that i@f6::8g ^ j@f16; 36g holds at t, by (I7), we have a contradiction. Therefore, statements 16:j and 36:j

cannot establish F (i). 2

We now prove each invariant listed above. Recall that our strategy is to show, for each invariant I , (i)

I holds initially, and (ii) for any pair of consecutive states t and u, if all invariants hold at t, then I holds

at u. In proving (ii), we do not consider statement executions that trivially do not a�ect I .

invariant F (i) ^ i@f4::8; 10::17g ) Y = (false; 0) (I1)

Proof: Initially (8i :: i@f0g) holds, and hence (I1) is true. To prove that (I1) is not falsi�ed, it suÆces to

consider only those statements that may establish the antecedent or falsify the consequent. By Lemma 1, the

only statement that can establish F (i) is 2:i. However, 2:i establishes i@f3g and thus cannot establish the

antecedent. The condition i@f4::8; 10::17g may be established only by statement 3:i, which also establishes

the consequent.

The consequent may be falsi�ed only by statements 17:j or 37:j, where j is any arbitrary process. If

j = i, then both 17:j and 37:j establish i@f18; 38g, which implies that the antecedent is false.

Suppose that j 6= i. By (I10) and (I11), the antecedent and j@f17g cannot both hold simultaneously

(recall that j@f17g implies F (j), by de�nition). Hence, statement 17:j cannot be executed while the an-

tecedent holds. Similarly, by (I12), (I13), and (I14), the antecedent and j@f37g cannot hold simultaneously.

16



Hence, statement 37:j also cannot be executed while the antecedent holds. 2

invariant F (i) ^ i@f8; 10::17g ) Name Taken [i:y:indx ] = true (I2)

Proof: Initially (8i :: i@f0g) holds, and hence (I2) is true. By Lemma 1, the only statement that can

establish F (i) is 2:i. However, 2:i, establishes i@f3g and hence cannot establish the antecedent. The

condition i@f8; 10::17g may be established only by statement 7:i, which also establishes the consequent.

The consequent may be falsi�ed only by statements 2:i and 31:i (which may change the value of i:y:indx)

and 9:j and 18:j (which assign the value false to an element of the Name Taken array), where j is any

arbitrary process. Statements 2:i and 31:i establish i@f3; 21; 32g, which implies that the antecedent is false.

If j = i, then 9:j and 18:j establish i@f19; 26g, which implies that the antecedent is false.

Suppose that j 6= i. In this case, statement 9:j may falsify the consequent only if i:y:indx = j:y:indx

holds. By (I15) (with i and j exchanged), j@f9g ^ i:y:indx = j:y:indx implies that the antecedent of (I2)

is false. Thus, 9:j cannot falsify (I2). Similarly, by (I11), if j@f18g holds (which implies that F (j) holds),

then the antecedent of (I2) is false. Thus, 18:j also cannot falsify (I2). 2

invariant i@f10::16g ) Reset :indx = i:y:indx (I3)

Proof: Initially (8i :: i@f0g) holds, and hence (I3) is true. The antecedent may be established only by

statement 8:i, which does so only if Reset = i:y holds. Therefore, statement 8:i preserves (I3).

The consequent may be falsi�ed only by statements 2:i and 31:i (which may change the value of i:y:indx)

and 14:j, 16:j, 33:j, and 36:j (which update Reset), where j is any arbitrary process. The antecedent is

false after the execution of 2:i and 31:i and also after the execution of 16:j, 33:j, and 36:j if j = i. If j = i,

then statement 14:j preserves the consequent.

Consider 14:j, 16:j, 33:j, and 36:j, where j 6= i. By (I11), the antecedent of (I3) and j@f14; 16g cannot

hold simultaneously (recall that i@f10::16g ) F (i) and j@f14; 16g ) F (j)). Similarly, by (I14), the

antecedent and j@f36g cannot hold simultaneously. Hence, statements 14:j, 16:j, and 36:j can be executed

only when the antecedent is false, and thus do not falsify (I3). By (I16), statement 33:j cannot change the

value of Reset :indx . Hence, it does not falsify (I3). 2

invariant i@f11::20g ) Infast = true (I4)

Proof: Initially (8i :: i@f0g) holds, and hence (I4) is true. The antecedent may be established only by

statement 10:i, which also establishes the consequent. The consequent may be falsi�ed only by statement

17



20:j, where j is any arbitrary process. If j = i, then statement 20:j also falsi�es the antecedent. If j 6= i,

then by (I11), the antecedent and j@f20g cannot hold simultaneously. Hence, the antecedent is false after

the execution of statement 20:j. 2

invariant i@f3::5g ^ X = i ) Reset = i:y (I5)

Proof: Initially (8i :: i@f0g) holds, so (I5) is true. The antecedent may be established only by statements

1:i and 30:i (which establish X = i) and 2:i (which may establish i@f3::5g). However, 1:i and 30:i establish

i@f2; 31g and hence cannot establish the antecedent. Also, by (I19), if statement 2:i establishes i@f3::5g,

then it also establishes Reset = i:y.

The consequent may be falsi�ed only by statements 2:i and 31:i (which may change the value of i:y) and

14:j, 16:j, 33:j, and 36:j (which update Reset), where j is any arbitrary process. However, statement 2:i

preserves (I5) as shown above. Furthermore, the antecedent is false after the execution of 31:i and also after

the execution of each of 14:j, 16:j, 33:j, and 36:j if j = i.

Consider 14:j, 16:j, 33:j, and 36:j, where j 6= i. If the antecedent and consequent of (I5) both hold, then

F (i) holds by de�nition. If j 6= i, then by (I10) and (I12), j@f14; 16; 33; 36g cannot hold as well. Hence,

these statements cannot falsify (I5). 2

invariant i@f6::9g ) (i:y:indx � Reset :indx � i) _

(Reset :indx � i � i:y:indx ) _ (i � i:y:indx � Reset :indx ) (I6)

Proof: Initially (8i :: i@f0g) holds, so (I6) is true. The antecedent may be established only if statement 5:i

is executed when X = i holds. In this case, by (I5), Reset = i:y holds, so the consequent is preserved.

The consequent may be falsi�ed only by statements 2:i and 31:i (which may change the value of i:y:indx)

and 14:j, 16:j, 33:j, and 36:j (which may change the value of Reset :indx ), where j is any arbitrary process.

The antecedent is false after the execution of 2:i and 31:i and also after the execution of each of 14:j, 16:j,

33:j, and 36:j if j = i.

Consider statements 16:j and 36:j, where j 6= i. By (I17), these statements increment Reset :indx by

1 modulo-N . Therefore, these statements may falsify the consequent only if Reset :indx = i holds before

execution (this can be seen by considering each disjunct of the consequent of (I6) in turn; note that if the

third disjunct holds, then incrementing Reset :indx by 1 modulo-N either preserves this disjunct or establishes

the second disjunct). However, if Reset :indx = i holds before the execution of 16:j or 36:j, then by (I7), the

antecedent of (I6) is false. Thus, statements 16:j and 36:j cannot falsify (I7).

Finally, consider statements 14:j and 33:j, where j 6= i. By (I3) and (I16), these statements do not

change Reset :indx . Hence, they cannot falsify the consequent. 2

18



invariant i@f6::9g ^ Reset :indx = i ) :(9j :: j@f16; 36g) (I7)

Proof: Initially (8i :: i@f0g) holds, and hence (I7) is true. The antecedent may be established only by

statements 5:i (which may establish i@f6::9g) and 14:k, 16:k, 33:k, and 36:k (which may change the value

of Reset :indx ), where k is any arbitrary process. Statement 5:i establishes the antecedent only if executed

when X = i holds. In this case, by (I5), Reset = i:y holds, and hence F (i) is true. By (I10) and (I12), this

implies that :(9j :: j@f16; 36g) also holds. This implies that statement 5:i cannot falsify (I7).

If k = i, then the antecedent is false after the execution of each of 14:k, 16:k, 33:k, and 36:k. Suppose

that k 6= i. By (I22), (8j :: k@f16; 36g ^ j@f16; 36g ) k = j) holds. Therefore, 16:k and 36:k both

establish (8j :: :j@f16; 36g), which is equivalent to the consequent. Now, consider statements 14:k and

33:k, where k 6= i. By (I3) and (I16), these statements do not change Reset :indx . It follows that, although

statements 14:k and 33:k may preserve the antecedent, they do not establish it.

The consequent may be falsi�ed only if either statement 15:j or 35:j is executed when Obstacle[j:y:indx ]

= false holds. However, if the antecedent of (I7) and j@f15; 35g both hold, then the following hold:

Reset :indx = j:y:indx , by (I17), Reset :indx = i, by the antecedent, and Obstacle [i] = true, by (I21). Taken

together, these assertions imply that Obstacle [j:y:indx ] = true. From this, we conclude that statements 15:j

and 35:j cannot falsify the consequent while the antecedent holds. 2

invariant i@f6::9g ^ i:y:indx = i ) Reset :indx = i:y:indx (I8)

Proof: Initially (8i :: i@f0g) holds, so (I8) is true. The antecedent may be established only by statements

5:i (which may establish i@f6::9g) and 2:i and 31:i (which may change the value of i:y:indx ). However,

statements 2:i and 31:i establish i@f3; 32g, which implies that the antecedent is false. Furthermore, by (I5),

if statement 5:i establishes i@f6::9g, then the consequent holds.

The consequent may be falsi�ed only by statements 2:i and 31:i (which may change the value of i:y:indx)

and 14:j, 16:j, 33:j, and 36:j (which update Reset), where j is any arbitrary process. However, the antecedent

is false after the execution of 2:i and 31:i and also after the execution of each of 14:j, 16:j, 33:j, and 36:j if

j = i.

Consider statements 14:j, 16:j, 33:j, and 36:j, where j 6= i. By (I3) and (I16), statements 14:j and 33:j

do not change Reset :indx , and hence cannot falsify the consequent. Note also that, by (I7), the antecedent,

the consequent, and j@f16; 36g cannot all hold simultaneously. Hence, statements 16:j and 36:j cannot

falsify the consequent when the antecedent holds. 2

invariant i@f9g ^ Reset :indx = i:y:indx ) Reset :free = false (I9)

19



Proof: Initially (8i :: i@f0g) holds, so (I9) is true. (I9) may be falsi�ed only by statements 8:i (which

may establish i@f9g), 2:i and 31:i (which may change the value of i:y:indx), and 14:j, 16:j, 33:j, and

36:j (which update Reset), where j is any arbitrary process. Statements 2:i and 31:i establish i@f3; 32g,

which implies that the antecedent is false. Statement 8:i establishes the antecedent only if executed when

Reset 6= i:y ^ Reset :indx = i:y:indx holds, which implies that Reset :free 6= i:y:free. However, by (I20),

i:y:free = true. Thus, Reset :free = false.

If j = i, then each of 14:j, 16:j, 33:j, and 36:j establishes i@f15; 17; 34; 37g, which implies that the

antecedent is false.

Consider statements 14:j, 16:j, 33:j, and 36:j, where j 6= i. Statements 14:j and 33:j trivially establish

or preserve the consequent. By (I17), statements 16:j and 36:j increment Reset :indx by 1 modulo-N .

Therefore, these statements may establish the antecedent of (I9) only if executed when i@f9g ^ Reset :indx =

(i:y:indx � 1) mod N holds. In this case, by (I6), i = Reset :indx or i = i:y:indx holds. By (I8), the latter

implies that i = Reset :indx holds. In either case, i = Reset :indx holds. By (I7), this implies that i@f9g is

false. It follows that statements 16:j and 36:j cannot falsify (I9). 2

invariant F (i) ^ F (j) ^ i 6= j ) :(i@f3::6g ^ j@f3::8; 10::17g) (I10)

Proof: Initially (8i :: i@f0g) holds, and thus (I10) is true. By Lemma 1, the only statement that can

establish F (i) is 2:i. Therefore, the only statements that may falsify (I10) are 2:i and 2:j. Without loss of

generality, it suÆces to consider only statement 2:i.

Statement 2:i may establish F (i) ^ i@f3::6g only if Y:free = true. We consider two cases. First,

suppose that (9j : j 6= i :: F (j) ^ j@f3::5g) holds before 2:i is executed. In this case, X = j holds by

the de�nition of F (j). Hence, X 6= i, which implies that 2:i does not establish F (i). Second, suppose that

(9j : j 6= i :: F (j) ^ j@f6::8; 10::17g) holds before 2:i is executed. In this case, by (I1), Y:free = false. In

either case, statement 2:i cannot establish F (i) ^ i@f3::6g. 2

invariant F (i) ^ F (j) ^ i 6= j ) :(i@f7; 8; 10::20g ^ j@f7; 8; 10::20g) (I11)

Proof: Initially (8i :: i@f0g) holds, so (I11) is true. By Lemma 1, the only statement that can establish

F (i) is 2:i. However, 2:i establishes i@f3g and hence cannot falsify (I11). The only other statements that

could potentially falsify (I11) are 6:i and 6:j, which may falsify the consequent. Without loss of generality,

it suÆces to consider only statement 6:i.

By Lemma 1, statement 6:i may establish F (i) ^ i@f7; 8; 10::20g only if F (i) ^ Infast = false holds

before execution. We consider two cases. First, suppose that (9j : j 6= i :: F (j) ^ j@f7; 8; 10::17g) holds

before the execution of 6:i. In this case, by (I10), F (i) ^ i@f6g is false. This implies that 6:i cannot

20



establish F (i) ^ i@f7; 8; 10::20g. Second, suppose that (9j : j 6= i :: F (j) ^ j@f18::20g) holds before 6:i is

executed. In this case, by (I4), Infast = true. Hence, statement 6:i cannot establish i@f7::20g. 2

invariant F (i) ) :(i@f3::5g ^ j@f31::37g) (I12)

Proof: Initially (8i :: i@f0g) holds, and hence (I12) is true. By Lemma 1, the only statement that can

establish F (i) is 2:i. Therefore, the only statements that may falsify (I12) are 2:i and 30:j, which may falsify

the consequent.

Statement 2:i may falsify (I12) only if executed when Y:free = true ^ j@f31::37g holds, but this is

precluded by (I18). Statement 30:j may falsify (I12) only if executed when F (i) ^ i@f3::5g ^ i 6= j holds.

Because statement 30:j falsi�es X = i, it also falsi�es F (i) ^ i@f3::5g. Thus, it preserves (I12). 2

invariant F (i) ) :(i@f6; 7g ^ j@f34::37g) (I13)

Proof: Initially (8i :: i@f0g) holds, so (I13) is true. By Lemma 1, the only statement that can establish

F (i) is 2:i. However, 2:i establishes i@f3g and hence cannot falsify (I13). The only other statements that

may potentially falsify (I13) are 5:i and 33:j, which may falsify the consequent.

Statement 5:i may falsify (I13) only if executed when F (i) ^ j@f34::37g holds, but this is precluded by

(I12). Statement 33:j may falsify (I13) only if executed when F (i) ^ i@f6; 7g holds, which, by (I20), implies

that i:y:free = true holds. Because statement 33:j establishes Reset :free = false, Reset 6= i:y holds after its

execution, which implies that F (i) ^ i@f6; 7g is false. Therefore, statement 33:j preserves (I13). 2

invariant F (i) ) :(i@f8; 10::19g ^ j@f35::37g) (I14)

Proof: Initially (8i :: i@f0g) holds, and hence (I14) is true. By Lemma 1, the only statement that can

establish F (i) is 2:i. However, 2:i establishes i@f3g and hence cannot falsify (I14). The only other statements

that could potentially falsify (I14) are 7:i and 34:j. Statement 7:i may falsify (I14) only if executed when

F (i) ^ j@f35::37g holds, but this is precluded by (I13).

Statement 34:j may falsify (I14) only if executed when F (i) ^ i@f8; 10::19g ^ Name Taken [j:y:indx ] =

false holds. By (I22), i@f12::19g and j@f34g cannot hold simultaneously. Thus, 34:j could potentially

falsify (I14) only if executed when F (i) ^ i@f8; 10; 11g ^ Name Taken [j:y:indx ] = false holds. In this

case, Name Taken [i:y:indx ] = true holds as well, by (I2), as does Reset :indx = i:y:indx , by the de�nition

of F (i) and (I3). In addition, by (I17), j@f34g implies that Reset :indx = j:y:indx holds. Combining these

assertions, we haveName Taken [j:y:indx ] = false ^ Name Taken [j:y:indx ] = true, which is a contradiction.

Hence, statement 34:j cannot falsify (I14). 2

21



invariant i@f6::9g ^ j@f6::17g ^ i 6= j ) i:y:indx 6= j:y:indx (I15)

Proof: Initially (8i :: i@f0g) holds, so (I15) is true. The only statements that may falsify the consequent

are 2:i and 31:i (which may change the value of i:y:indx) and 2:j and 31:j (which may change the value of

j:y:indx ). However, the antecedent is false after the execution of each of these statements.

The only statements that can establish the antecedent are 5:i and 5:j. We show that 5:i does not falsify

(I15); the reasoning for 5:j is similar. Statement 5:i can establish the antecedent only if executed when

X = i holds. By (I5), this implies that Reset = i:y holds, which in turn implies that F (i) is true. So, assume

that X = i ^ Reset = i:y ^ F (i) holds before 5:i is executed. We analyze three cases, which are de�ned

by considering the value of process j's program counter.

� Case 1: j@f6::8g holds before 5:i is executed. In this case, because F (i) is true, by (I10), F (j) does

not hold. Thus, we have j@f6::8g ^ :F (j), which implies that Reset 6= j:y. Because Reset = i:y, this

implies that i:y 6= j:y. In addition, by (I20), we have i:y:free = true ^ j:y:free = true. Hence, because

i:y 6= j:y, we have i:y:indx 6= j:y:indx . Thus, the consequent of (I15) holds before, and hence after, 5:i

is executed.

� Case 2: j@f9g holds before 5:i is executed. In this case, we show that the consequent of (I15) holds

before, and hence after, 5:i is executed. Assume to the contrary that i:y:indx = j:y:indx holds before

5:i is executed. Then, because Reset = i:y holds, we have j:y:indx = Reset :indx . By (I9), this implies

that Reset :free = false. Because Reset = i:y holds, this implies that i:y:free = false holds. However,

by (I20), we have i:y:free = true, which is a contradiction.

� Case 3: j@f10::17g holds before 5:i is executed. In this case, by (I10), F (i) ^ i@f5g is false, which

is a contradiction. 2

invariant i@f32; 33g ) Reset = i:y (I16)

invariant i@f15; 16; 34::36g ) Reset = (false; i:y:indx) (I17)

invariant i@f30::37g ) Y = (false; 0) (I18)

invariant Y:free = true ) Y = Reset (I19)

Proof Sketch: By (I22), all writes to Reset (statements 14, 16, 33, 36) and to Y , except for statement 3

(statements 17, 29, 37), are within mutually exclusive regions of code. Given this and the initial condition

Y = (true; 0) ^ Reset = (true; 0), each of these invariants easily follows. Note that statement 3 establishes

Y = (false; 0), and hence cannot falsify either (I18) or (I19). Note also that (I1) and (I18) imply that

statements 14, 16, 33, and 36 (which update Reset) cannot falsify (I19). 2

22



invariant i@f3::20g ) i:y:free = true (I20)

invariant (i@f5::13; 26::32g) = (Obstacle [i] = true) (I21)

Proof: These invariants follow easily from the program text and the initial condition (8i :: Obstacle[i] =

false). 2

invariant (Mutual exclusion) jfi :: i@f12::19; 23; 24; 28::38ggj � 1 (I22)

Proof: From the speci�cation of ENTRY 2/EXIT 2 and ENTRY N/EXIT N, (I22) may fail to hold only if two

processes simultaneously execute within statements 10-20. However, this is precluded by (I11). 2

Fast Path is Always Open in the Absence of Contention

Having shown that the mutual exclusion property holds, we now prove that when all processes are within

their noncritical sections, the fast path is open. This property is formally captured by (I26) given below.

Before proving (I26), we �rst establish three other invariants.

invariant Name Taken [k] = true ) (9i :: i@f8::18g ^ k = i:y:indx ) (I23)

Proof: Initially (8k :: Name Taken [k] = false) holds, and hence (I23) is true. The antecedent can only be

established if, for some process i, statement 7:i is executed, where i:y:indx = k. However, in this case, 7:i

also establishes the consequent. The only statements that may falsify the consequent are 2:i and 31:i (which

may change the value of i:y:indx ) and 9:i and 18:i (which may falsify i@f8::18g). Statements 2:i and 31:i

cannot be executed when i@f8::18g ^ k = i:y:indx holds. Statements 9:i and 18:i falsify the antecedent. 2

invariant (8i :: i@f0::2; 18::25; 38; 39g) ) Y:free = true (I24)

Proof: Initially Y:free = true holds, so (I24) is true. The only statements that can establish the antecedent

are 15:i, 17:i, 34:i, 35:i, and 37:i, where i is any process. Both 17:i and 37:i establish the consequent.

Statements 15:i and 35:i can establish the antecedent only if Obstacle [k] = true, where k = i:y:indx . By

(I21), Obstacle[k] = true implies that k@f5::13; 26::32g holds, which implies that the antecedent is false.

Similarly, statement 34:i can establish the antecedent only if Name Taken [i:y:indx ] = true. By (I23),

this implies that (9j :: j@f8::18g ^ i:y:indx = j:y:indx ) holds. By (I22), j@f12::18g ^ i@f34g is false. It

follows that (9j :: j@f8::11g ^ i:y:indx = j:y:indx ) holds, which implies that the antecedent is false.

23



The only statements that can falsify the consequent are 3:i and 29:i, where i is any process. Both establish

i@f4; 30g, which implies that the antecedent is false. 2

invariant Infast = true ) (9i :: i@f11::20g) (I25)

Proof: Initially Infast = false holds, so (I25) is true. The only statement that can establish the antecedent

is 10:i, which also establishes the consequent. The only statement that can falsify the consequent is 20:i,

which also falsi�es the antecedent. 2

invariant (Fast path is open in the absence of contention)

(8i :: i@f0g) ) Y:free = true ^ Infast = false ^ Y = Reset (I26)

Proof: If (8i :: i@f0g) holds, then Y:free = true holds by (I24), and Infast = false holds by (I25). By

(I19), Y:free = true implies that Y = Reset holds as well. 2

References

[1] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. To appear in Proceedings of

the 14th International Symposium on Distributed Computing.

[2] J. Anderson and Y.-J. Kim. Fast and scalable mutual exclusion. In Proceedings of the 13th International

Symposium on Distributed Computing, pages 180{194, Springer-Verlag, 1999.

[3] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE

Transactions on Parallel and Distributed Systems, 1(1):6{16, 1990.

[4] M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Distributed Computing,

8(1):1{17, 1994.

[5] R. Cypher. The communication requirements of mutual exclusion. In Proceedings of the Seventh Annual

Symposium on Parallel Algorithms and Architectures, pages 147{156, 1995.

[6] E. Dijkstra. Solution of a problem in concurrent programming control. Communications of the ACM,

8(9):569, 1965.

[7] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors. IEEE

Computer, 23:60{69, 1990.

[8] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems, 5(1):1{11,

1987.

24



[9] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multipro-

cessors. ACM Transactions on Computer Systems, 9(1):21{65, 1991.

[10] M. Merritt and G. Taubenfeld. Speeding Lamport's fast mutual exclusion algorithm. Information

Processing Letters, 45:137{142, 1993.

[11] M. Moir and J. Anderson. Wait-free algorithms for fast, long-lived renaming. Science of Computer

Programming, 25(1):1{39, 1995.

[12] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm Distributed Computing,

9(1):51{60, 1995.

25


