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Abstract

A composite register is an array-like shared data object that is partitioned into a number of compo-

nents. An operation of such a register either writes a value to a single component, or reads the values

of all components. A composite register reduces to an ordinary atomic register when there is only one

component. In this paper, we show that a composite register with multiple writers per component can

be implemented in a wait-free manner from a composite register with a single writer per component. It

has been previously shown that registers of the latter kind can be implemented from atomic registers

without waiting. Thus, our results establish that any composite register can be implemented in a wait-

free manner from atomic registers. We show that our construction has comparable space complexity and

better time complexity than other constructions that have been presented in the literature.
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1 Introduction

The wait-free implementation of concurrent shared data objects is a subject that has received much attention

in the concurrent programming literature. A shared data object is a data structure that is accessed by a

collection of processes by means of a �xed set of operations. An implementation of a shared data object is

wait-free i� the operations of the data object are implemented without any unbounded busy-waiting loops

or idle-waiting primitives. Wait-free implementations are preferable to those that employ mutually exclusive

\critical sections" because they are inherently resilient to halting failures. In particular, a process that halts

while accessing a wait-free shared data object cannot prevent subsequent accesses by other processes. Also,

because such an object can be accessed concurrently by any number of the processes that share it, wait-free

implementations allow processes to execute with maximum parallelism.

The notion of an atomic register is of fundamental importance in the study of wait-free shared data

objects [24, 25, 28, 30]. An atomic register is a shared data object that can either be read or written (but

not both) in a single operation. An atomic register can be characterized by the number of processes that

can read or write it, and the number of bits that it stores. The simplest atomic register can be read by one

process, can be written by one process, and can store a one-bit value; the most complicated can be read

or written by several processes and can store any number of bits. It has been shown in a series of papers

that the most complicated atomic register can be implemented without waiting in terms of the simplest

[6, 13, 14, 20, 21, 25, 26, 29, 30, 31, 32, 33, 34]. This work shows that, using only atomic registers of the

simplest kind, the classical readers-writers problem [17] can be solved without requiring either readers or

writers to wait.

In this paper, we consider a shared data object, called a composite register , that extends the notion of

an atomic register. The notion of a composite register was �rst introduced by Anderson [2, 3, 4], and is

similar to the atomic snapshot memory of Afek et al. [1]. A composite register is an array-like shared data

object that is partitioned into a number of components. An operation of a composite register either writes

a value to a single component, or reads the values of all components. Note that a composite register di�ers

signi�cantly from an atomic register: a write operation of a composite register only overwrites a portion of

the register, namely the contents of a particular component, while leaving the rest of the register unchanged.

By contrast, a write operation of an atomic register overwrites the previous contents of the entire register.

In this paper, we show that composite registers can be implemented from atomic registers without waiting.

Speci�cally, we show that a composite register with multiple writers per component | hereafter called a

multi-writer composite register | can be constructed in a wait-free manner from a composite register with

one writer per component | hereafter called a single-writer composite register. As explained below, wait-

free constructions of single-writer composite registers from atomic registers have been given previously by

several authors. Along with these previous constructions, the results of this paper show that multi-writer

composite registers can be implemented in a wait-free manner using only atomic registers. It follows from

this result that atomic registers can be used to implement a shared memory that can be read in its entirety

in a single \snapshot" operation, without using mutual exclusion.

The problem of constructing a composite register from atomic registers was �rst considered by us in

[2, 3, 4] and by Afek et al. in [1]. The construction given in this paper is based on the multi-writer construction
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of [2, 4]. More recently, several constructions have been presented by Kirousis et al. [22, 23], for the special

case in which there is only one reader.

Our approach in constructing a composite register from atomic registers di�ers from that of Afek et al.

in several respects. Afek et al. presented two constructions, one that implements a single-writer composite

register from multi-reader, single-writer atomic registers, and another that implements a multi-writer com-

posite register from multi-reader, multi-writer atomic registers. We have also given constructions for both

the single- and multi-writer cases. Like that of Afek et al., our single-writer composite register construction,

which is given in [2, 3], is based on multi-reader, single-writer atomic registers. However, our multi-writer

construction di�ers from theirs in that it is based on a single-writer composite register. By employing the

single-writer constructions previously mentioned, our multi-writer construction shows that a multi-writer

composite register can be implemented using only single-writer atomic registers. As such, our construc-

tion solves the problem of implementing a multi-writer atomic register (the case in which there is only one

component) from single-writer ones.

The construction of this paper and the multi-writer construction of Afek et al. also di�er in complexity.

It is assumed in [1] that the constructed composite register is shared by N processes, and that each process

may read the register or write any component. Under these assumptions, our multi-writer construction has

comparable space complexity and better time complexity than the multi-writer construction of Afek et al.

In fact, the time complexity of our construction is (asymptotically) the same as the single-writer composite

register used in the construction. Thus, because the time complexity of the single-writer construction in [1]

is �(N2), our construction shows that multi-writer composite registers can also be implemented with time

complexity that is �(N2).1 The multi-writer construction of Afek et al. has time complexity that is �(N3).

Composite registers are quite powerful and can be used to implement a number of interesting shared data

objects without waiting. For example, as shown in [7, 8, 10], composite registers can be used to implement

wait-free shared data objects with \pseudo" read-modify-write (PRMW) operations. A PRMW operation

is similar to a \true" read-modify-write (RMW) operation in that it modi�es the value of a shared variable2

based upon the original value of that variable. However, unlike RMW operations, a PRMW operation does

not return the value of the variable that it modi�es. An operation that increments a shared variable without

returning its value is an example of a PRMW operation. It is shown in [7, 8, 10] that composite registers can

be used to implement without waiting any shared data object that can either be read, written, or modi�ed

by a commutative PRMW operation. As explained in Section 5, these results have been recently extended

in [9], where it is shown that composite registers can be used to implement an even larger class of objects.

Such results stand in sharp contrast to those of [5, 18], where it is shown that RMW operations cannot, in

general, be implemented from atomic registers without waiting.

The rest of the paper is organized as follows. In Section 2, we formally de�ne the problem of constructing

a composite register of one type from a composite register of a simpler type, and in Section 3 we present a

1At about the same time as this paper was accepted for publication, a �(N logN) single-writer construction was presented

by Attiya and Rachman in [11]. By using their construction as the basis for ours, we get a multi-writer construction with time

complexity �(N logN). If other, more e�cient single-writer constructions are developed, then our construction can be used to

obtain a corresponding improvement for the multi-writer case.
2The term variable is used to denote an arbitrary data item. The term register is used when referring to a particular shared

data object, such as an atomic register or composite register.
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su�cient condition for proving that a construction is correct. Then, in Section 4, we present our construction

along with its proof of correctness. Concluding remarks appear in Section 5.

2 Composite Register Construction

In this section, we consider the problem of constructing a composite register of one type from composite

registers of a simpler type, and give the conditions that such a construction must satisfy to be correct. (The

simpler composite register used in such a construction could, for instance, have fewer components, fewer

readers, etc.)

A construction consists of a set of procedures along with a set of variables. Each procedure has the

following form:

procedure name(inputs)

private var : : :

begin

body;

return(outputs)

end

where name is the name of the procedure, either Reader or Writer , inputs is an optional list of input

parameters, outputs is an optional list of output parameters, and body is a program fragment comprised of

atomic statements. One may think of each procedure as being resident to a particular process. A Reader

procedure is invoked by a process to read the values of all components of the constructed register, and a

Writer procedure is invoked by a process to write a value to a particular component of the register. Each

Reader procedure has one output parameter for each component of the constructed register, and each Writer

procedure has an input parameter indicating the value to be written. We assume that each process invokes

its resident procedures in a serial manner.

For convenience, we designate a composite register construction by a 4-tuple C=B=W=R, where C is the

number of components, B is the number of bits per component, W is the number of Writers per component,

and R is the number of Readers. (Thus, a 1=B=W=R composite register is an ordinary atomic register.) The

structure of a C=B=W=R composite register construction is depicted in Figure 1. Note that this �gure only

depicts the Writer procedures for component i. For an example of a Reader or Writer procedure, see Figure

3.

Each variable of a construction is either private or shared. A private variable is de�ned only within

the scope of a single procedure, whereas a shared variable is de�ned globally and may be accessed within

more than one procedure. (Each procedure's program counter is considered to be a private variable.) A

construction is required to satisfy the following two restrictions.

� Atomicity Restriction: Each shared variable is required to be of the same type as the simpler composite

register used in the construction. Note that this restriction constrains those statements that access

shared variables.
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Figure 1: C=B=W=R composite register structure.

� Wait-Freedom Restriction: As mentioned in the introduction, each procedure is required to be \wait-

free," i.e., idle-waiting primitives and unbounded busy-waiting loops are not allowed. (A more formal

de�nition of wait-freedom is given in [5].)

We now de�ne several concepts that are needed to state the correctness condition for a construction.

These de�nitions apply to a given construction. A state is an assignment of values to all variables (private

and shared) of the construction. One or more states are designated as initial states. An event is an execution

of a statement of a procedure. We use s
e
!t to denote the fact that state t is reached from state s via the

occurrence of event e. A history of the construction is a sequence (either �nite or in�nite) s0
e0
!s1

e1
!� � �

where s0 is an initial state. It is important to note that a given statement may be executed many times in a

history; each such execution corresponds to a distinct event. Event e precedes another event f in a history

i� e occurs before f in the history.

The sequence of events in a history corresponding to some procedure invocation is called an operation.

Note that every event in a history is part of some operation of the constructed register. Thus, our notion

of a history abstracts from those \external activities" of the processes sharing the constructed register that

do not directly a�ect that register. An operation p precedes another operation q in a history i� each event

of p precedes all events of q. An operation of a Reader (Writer) procedure is called Read operation (Write

operation).3 A Write operation of component k of the constructed composite register, where 0 � k < C, is

called a k-Write operation.

As mentioned above, each Reader procedure has an output parameter for each component of the con-

structed register, which is used to return the value read from that component; the value read by a Read

operation from a component is called the output value of the operation for that component. As also men-

tioned above, each Writer procedure has an input parameter that speci�es the value to be written to the

constructed register; the value written to the constructed register by a Write operation is called the input

value of that operation.

An operation of a procedure P in a history is complete i� the last event of the operation occurs as the

3In order to avoid confusion, we henceforth capitalize the terms \Read" and \Write" when referring to the operations of the

constructed register, and leave them uncapitalized when referring to the variables used in the construction.
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result of executing the return statement of P . A history is well-formed i� each operation in the history is

complete.

Given this terminology, we are now in a position to state the correctness condition for a construction. In

order to avoid special cases in the correctness condition, we make the following assumption concerning the

initial Write operations.

Initial Writes: For each k, where 0 � k < C, there exists a k-Write operation that precedes each other

k-Write operation and all Read operations. 2

The correctness condition is based upon the notion of \linearizability." Linearizability provides the il-

lusion that each operation is executed instantaneously, despite the fact that it is actually executed as a

sequence of events. Intuitively, a history is linearizable if every operation in the history \appears" to take

e�ect at some point between its �rst and last events. It can be shown that the following de�nition is equiv-

alent to the more general de�nition of linearizability given by Herlihy and Wing in [19], when restricted to

the special case of constructing a composite register.

Linearizable Histories: Let h be a well-formed history of a construction. History h is linearizable i� the

precedence relation on operations (which is a partial order) can be extended4 to a total order < where for each

Read operation r in h and each k in the range 0 � k < C, the output value of r for component k is the same as

the input value of the k-Write operation v de�ned as follows: v < r ^ :(9w : w is a k-Write : v < w < r). 2

Note that the Write operation v in the de�nition above exists by our assumption concerning the initial

Writes. A construction of a composite register is correct i� it satis�es the Atomicity and Wait-Freedom

restrictions and each of its well-formed histories is linearizable.

3 Shrinking Lemma

The correctness condition given in Section 2, while intuitive, is rather di�cult to use. We now present

a lemma that gives a set of conditions that are su�cient for establishing that a history is linearizable.

Intuitively, a history is linearizable if each operation in the history can be shrunk to a point; that is, there

exists a point between the �rst and last events of each operation at which that operation appears to take

e�ect. For this reason, the following lemma is referred to as the \Shrinking Lemma."

Shrinking Lemma: A well-formed history h is linearizable if for each k, where 0 � k < C, there exists a

function �k that maps every Read operation and k-Write operation in h to some natural number, such that

the following �ve conditions hold.

� Uniqueness: For each pair of distinct k-Write operations v and w in h, �k(v) 6= �k(w). Furthermore,

if v precedes w, then �k(v) < �k(w).

4A relation R over a set S extends another relation R0 over S i� for each x and y in S, xR0y ) xRy.
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� Integrity : For each Read operation r in h, and for each k in the range 0 � k < C, there exists a k-Write

operation w in h such that �k(r) = �k(w). Furthermore, the output value of r for component k is the

same as the input value of w.

� Proximity : For each Read operation r in h and each k-Write operation w in h, if r precedes w then

�k(r) < �k(w), and if w precedes r then �k(w) � �k(r).

� Read Precedence: For each pair of Read operations r and s in h, if (9k :: �k(r) < �k(s)) or if r precedes

s, then (8k :: �k(r) � �k(s)).

� Write Precedence: For each Read operation r in h, and each j-Write operation v and k-Write operation

w in h, where 0 � j < C and 0 � k < C, if v precedes w and �k(w) � �k(r), then �j(v) � �j(r). 2

Uniqueness totally orders the Write operations on a given component in accordance with the partial

precedence ordering de�ned by h. According to Integrity, the output value of a Read operation for a given

component must equal the input value of some Write operation for that component. This condition prohibits

a Read operation from returning a predetermined value for some component. Proximity ensures that a Read

operation does not return a value from the \future," or one from the \far past" that has subsequently been

\overwritten" (i.e., each output value of a Read operation must be the input value of a Write operation in

close proximity). Read Precedence disallows two Read operations from obtaining inconsistent snapshots.

Write Precedence orders Write operations of one component with respect to Write operations of another

component. Conditions similar to Integrity, Proximity, and Read Precedence have been used elsewhere

as a correctness condition for atomic register constructions; see, for example, the Integrity, Safety, and

Precedence conditions in [32], Proposition 3 in [25], and the de�nition of an atomic run and the Shrinking

Function Theorem in [12].

The correctness proof for the Shrinking Lemma is given in [3]. The proof is somewhat tedious, but is not

hard. First, the precedence relation on operations in history h is augmented by adding pairs of operations.

These added pairs of operations are de�ned based upon the �ve conditions of the lemma. Then, the resulting

relation is shown to be an irre
exive partial order. Finally, it is shown that any extension of this relation to

an irre
exive total order satis�es the condition given in the de�nition of a linearizable history in Section 2.

4 C=B=W=R Construction

In this section, we present a construction of a C=B=W=R composite register. The construction is based

upon a single CW=B0=1=CW + R composite register, where, as explained below, B0 = �(B + W logW ).

This single-writer composite register is used to record input values (and associated information) of Write

operations of the constructed register.

The basic idea behind the construction is as follows. Each Write operation appends an integer \tag" to

its input value. A Read operation returns a value for component k of the constructed register by comparing

the tags of input values stored in that component, choosing the input value with the maximum tag. Note

that, because all input values and tags are stored in a single-writer composite register, a Read operation can

obtain all information it needs to compute its C return values in a single snapshot.
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To ensure that tags can be stored over some bounded range, a mechanism is needed for distinguishing

\new" tags from \old" ones (so that new tags are not confused with old ones in the event that tags \wrap

around"). We use sequence numbers to distinguish old tags from new ones. In addition to choosing a tag,

each Write operation chooses a sequence number and makes copies of other Writers' sequence numbers. The

sequence number chosen by a Write operation is selected so as to be distinct from all corresponding copies.

Once the sequence number associated with a given tag has been copied \several" times by the same Writer,

that tag is considered old.

A more detailed description of the construction is presented next in Section 4.1. A discussion of space

and time complexity follows in Section 4.2. Then, in Section 4.3, a correctness proof is given. Finally, in

Section 4.4, we show that the tags used in the construction can be stored over a bounded range.

4.1 Informal Description

The architecture of our C=B=W=R construction is shown in Figure 2. This �gure depicts only the W Writers

for component k. The construction itself is given in Figure 3. Other than auxiliary variables, the only shared

variable used in the construction is variable Q, a CW -component composite register. Each pair of variables

Q[k;m] and Q[k;W +m], where 0 � k < C and 0 � m < W , corresponds to a single component of Q and is

written by Writer (k;m). All CW + R Reader and Writer procedures read Q. Unless indicated otherwise,

the term \component" is henceforth assumed to refer to the constructed composite register; we call each

Q[k; j] an \element" of Q. (Thus, each component of the constructed register consists of 2W elements.)

As seen in Figures 2 and 3, each element of Q consists of the following �elds: val, tag, done, flag, seq,

count, and phi. The val �eld is used to record the input value of a Write operation. The tag �eld is used

to identify the most recently-written input value. We initially assume that each tag �eld is an integer, but

later show that the tag �elds can be restricted to range over 0::8W � 2. The done �eld is boolean and is

used to distinguish between the two writes to Q by a Write operation. The flag, seq, and count �elds are

used to bound the size of the tag �elds. This is explained in detail below.

The phi �eld is an auxiliary variable. (To emphasize that this �eld is auxiliary, we have enclosed it in

parentheses in Figure 2.) Note also that each Reader procedure has a private auxiliary variable phi, and

each Writer procedure has two private auxiliary variables phi0 and phi1 . These auxiliary variables are used

in de�ning the functions �0; : : : ; �C�1 of the Shrinking Lemma. The values assigned to phi0 and phi1 are

determined by using a shared integer auxiliary array P . We stress that these auxiliary variables are used

only to facilitate the proof of correctness, and have no bearing on the correctness of the construction (no

auxiliary variable's value is ever assigned to a nonauxiliary variable or tested in any control statement).

Before considering the Reader and Writer procedures depicted in Figure 3, several comments concerning

notation are in order. The initialization requirement is de�ned by the initialization sections given with

the shared variable declarations and within each procedure (if any). Each initial state of the construction is

required to satisfy this initialization requirement. (If a given variable is not included in any initialization

section, then its initial value is arbitrary.) To make the construction easier to understand, the keywords read

and write are used to distinguish reads and writes of (nonauxiliary) shared variables from reads and writes

of private variables. We use � to denote modulo-2W addition. Finally, each labeled sequence of statements
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Figure 2: C=B=W=R construction architecture.

is assumed to be a single atomic statement.

Each Write operation writes to a particular element of Q; we call a Write operation that writes to Q[k; j]

a (k; j)-Write operation. The Write operations for a given component follow a protocol that is similar

to that used in the multi-writer atomic register construction of Vitanyi and Awerbuch [34]. Each Write

operation for a particular component appends a \tag" to its input value; a Write operation computes its tag

by incrementing the value of the maximum tag that it reads from the elements of Q corresponding to its

component. A Read operation returns the value from the element of that component with the maximum tag

(ties are broken using the indices of the Writers). The C values returned by a Read operation constitute a

consistent snapshot since all of the elements of Q are read in a single statement.

Each Write operation consists of two phases: in each phase, Q is read and then written. As we shall

see later, a Read operation determines its output value for component k based solely on the values of those

elements Q[k; j] such that Q[k; j]:done holds. Thus, if a k-Write operation is between phases when a Read

operation reads Q, then the element of Q that is written by that Write operation is ignored when the Read

operation determines its output value for component k. As a result, the value of component k is well-de�ned

only if there exists an element Q[k; j] such that Q[k; j]:done holds. To ensure that this is always the case,

successive operations of the same Writer write to di�erent elements of Q. In particular, the operations of
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type valtype = a B-bit value;

Qtype = record

val : valtype;

tag : integer; =� As shown in Section 4.4, a range of 0::8W � 2 su�ces �=

done; flag : boolean;

seq : array[0::2W � 1] of 0::2W ;

count : array[0::2W � 1] of 0::3;

phi : integer =� Auxiliary variable �=

end

shared var

Q : array[0::C � 1][0::2W � 1] of Qtype; =� Single-writer composite register �=

P : array[0::C � 1] of integer =� Auxiliary variable �=

initialization

(8k;m : 0 � k < C ^ 0 � m < 2W : Q[k;m]:tag = 0 ^ Q[k;m]:done ^ :Q[k;m]:f lag ^

0 � Q[k;m]:phi < P [k] ^ (8n : 0 � n < 2W : Q[k;m]:seq[n] = m ^ Q[k;m]:count[n] = 0))

procedure Reader(j : 0::R� 1) returns array[0::C � 1] of valtype

private var

x : Qtype;

k : 0::C � 1;

n : 0::2W � 1;

max : array[0::C � 1] of 0::2W � 1;

val : array[0::C � 1] of valtype;

phi : array[0::C � 1] of integer =� Auxiliary variable �=

begin

0: read x := Q;

1: for k = 0 to C � 1 do

select max[k] such that ALIVE(x; k;max[k]) ^ =� Note: ALIVE(x; k; n) holds for some n by

(8n : ALIVE(x; k; n) : (x[k;n]:tag; n) � (x[k;max[k]]:tag; max[k])); Lemma 6 of Section 4.3 �=

val[k]; phi[k] := x[k;max[k]]:val; x[k;max[k]]:phi

od;

2: return(val[0]; : : : ; val[C � 1])

end

Figure 3: C=B=W=R construction.
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procedure Writer(k : 0::C � 1; m : 0::W � 1; val : valtype)

private var

y; z : Qtype;

i; max; n : 0::2W � 1;

tag : integer; =� As shown in Section 4.4, a range of 0::8W � 2 su�ces �=

flag : boolean;

seq : array[0::2W � 1] of 0::2W ;

count : array[0::2W � 1] of 0::3;

phi0 ; phi1 : integer =� Auxiliary variables �=

initialization

(8n : 0 � n < 2W : y[k; n]:tag = z[k;n]:tag = 0)

begin

0: if i =m then i :=W +m else i :=m �; phi0 ; P [k] := P [k]; P [k] + 1;

=� First Phase: update val, seq[0::2W � 1], and count[0::2W � 1] �elds �=

1: read y := Q;

2: select seq[i] such that (8n : 0 � n < 2W : seq[i] 6= y[k; n]:seq[i]);

3: for n = 0 to 2W � 1 skip i do

seq[n] := y[k; n]:seq[n];

if seq[n] 6= y[k; i�W ]:seq[n] then count[n] := 0 else count[n] := min(3; y[k; i�W ]:count[n] + 1) �

od;

=� The following �elds are left unchanged by �rst phase �=

4: tag; flag; count[i]; phi1 := y[k; i]:tag; y[k; i]:f lag; 0; y[k; i]:phi;

5: write Q[k; i] := (val; tag; false; f lag; seq[0::2W � 1]; count[0::2W � 1]; phi1);

=� Second Phase: update tag, flag, and phi �elds �=

6: read z := Q;

7: flag := (9n : 0 � n < 2W ^ n 6= i : z[k; n]:count[i]� 2 ^ z[k;n]:seq[i] = seq[i]);

8: select max such that ALIVE(z;k;max) ^ =� Note: ALIVE(z;k; n) holds for some n by

(8n : ALIVE(z;k; n) : (z[k; n]:tag; n) � (z[k;max]:tag; max)); Lemma 6 of Section 4.3 �=

9: tag := z[k;max]:tag + 1;

10: phi1 ; P [k] := P [k]; P [k] + 1;

write Q[k; i] := (val; tag; true; f lag; seq[0::2W � 1]; count[0::2W � 1]; phi1);

11: return

end

Figure 3: C=B=W=R construction (continued).
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Writer (k;m), where 0 � k < C and 0 � m < W , alternate between writing to Q[k;m] and Q[k;m+W ].

This is why each component of the constructed register consists of 2W elements of Q, instead of just W .

This strategy guarantees that it is always the case that the done �eld is true for at least half of the elements

of each component.

In order to determine which element of a component has the maximumtag, it is necessary only to consider

those elements that have been written \recently." By exploiting this fact, it is possible to bound the size

of the tag �elds. We say that a recently-written element is \alive." The alive elements are identi�ed by

including a number of additional �elds in each element of Q. One of these �elds is an array seq[0::2W � 1]

of \sequence numbers." The �eld Q[k; j]:seq[j] holds the \primary" sequence number of the most recent

(k; j)-Write operation. The �eld Q[k; j]:seq[n], where n 6= j, is a copy of Q[k; n]:seq[n] (which records the

primary sequence numbers of (k; n)-Write operations) as read by the most recent (k; j)-Write operation.

Each Write operation updates its seq �elds during its �rst phase. A (k; j)-Write operation changes the

value of its primary sequence number, Q[k; j]:seq[j], so that the resulting value is distinct from all copies of

it. (Observe that, because each sequence number ranges over 0::2W , it is possible for a Write operation to

choose a value for its primary sequence number di�ering from its previous value and any of the 2W �1 copies

of it.) At the same time, the Write operation updates its copy of each other primary sequence number to

correspond to the current value of that sequence number as stored in Q. More speci�cally, each (k; j)-Write

operation tries to make the value of Q[k; j]:seq[n] equal to that of Q[k; n]:seq[n], for each n 6= j.

If the primary sequence number for a given element of Q remains unchanged for a su�ciently long period

of time, then it will eventually be copied by some Write operation. An element of Q is no longer \alive"

once its primary sequence number has been copied by \several" successive operations of the same Writer.

This condition is detected by means of the flag and count �elds in Q. Each Write operation updates the

count �elds of its element of Q during its �rst phase, and updates the flag �eld of its element in its second

phase, while its tag value is being computed. The bit Q[k; j]:flag is set by a (k; j)-Write operation if it

detects that its own primary sequence number, as recorded in Q[k; j]:seq[j], has been copied by at least

three successive operations of some other Writer. The �eld Q[k; j]:count[n], where n 6= j, is incremented

(until a maximum value of 3) by a (k; j)-Write operation if the value it reads from Q[k; n]:seq[n] equals

the value read from Q[k; n]:seq[n] by the preceding operation of the same Writer (note that the preceding

operation is a (k; j �W )-Write operation).

As shown in Section 4.4, the tags of the alive elements of a given component are within a range of size

4W . Therefore, we can restrict the size of each tag to range over 0::8W � 2. (If the smallest alive tag value

is 0, then the largest is 4W � 1. If the smallest is 4W � 1, then the largest is 8W � 2.) The maximum tag

for the alive elements can then be determined with respect to this range. To see that the tag �elds can be

restricted to range over some bounded range, consider a (k; j)-Write operation w. Note that the maximum

tag for the alive elements of component k can increase by a \large" amount between w's second read and

second write of Q (i.e., while w is computing its tag) only if a \large" number of k-Write operations occur

in this interval. But, in this case, the primary sequence number for w will be read by \several" successive

operations of some Writer, and Q[k; j] will not be alive after w's second write to Q. So, if Q[k; j] is alive

after w's second write to Q, then the value of its tag �eld will di�er from that of some other alive element

by only a \small" amount.

11
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Figure 4: Example history.

The alive elements of Q are determined formally by the predicate ALIVE , which is de�ned as follows.

De�nition of ALIVE : Let 0 � k < C and 0 � j < 2W . Then,

ALIVE (Q; k; j) � Q[k; j]:done ^ :Q[k; j]:flag ^

(8n : n 6= j ^ Q[k; n]:done : Q[k; n]:count[j] = 3 ) Q[k; n]:seq[j] 6= Q[k; j]:seq[j]) . 2

According to the �rst conjunct in this de�nition, ALIVE (Q; k; j) fails to hold if the last Write opera-

tion to write to Q[k; j] has done so only once, i.e., is between phases. According to the second conjunct,

ALIVE (Q; k; j) fails to hold if the last Write operation to update the bit Q[k; j]:flag detected that its own

primary sequence number, i.e., that recorded in Q[k; j]:seq[j], was read by at least three successive oper-

ations of some other Writer (see statement 7 of the Writer procedure). According to the third conjunct,

ALIVE (Q; k; j) fails to hold if at least four successive operations of some Writer have read the current value

of Q[k; j]:seq[j].

We complete our explanation of the ALIVE (Q; k; j) predicate by explaining more precisely the role of the

flag and count �elds. For the sake of this discussion, let us refer to the maximum tag value taken from the

alive elements of a component as the \best" tag value for that component. As seen in Section 4.3, to show

that each Read operation gets a consistent snapshot, one of the key proof obligations is that of showing that

each component's best tag value never decreases. Intuitively, this property ensures that if a Read operation

r precedes another Read operation s, then the return value of r for component k will not be \more recent"

than that of s. In establishing this proof obligation, one important case that arises occurs when the element

containing the previous best tag value for a component becomes dead.

This case is illustrated in Figure 4. In this and subsequent �gures, operations are denoted by line

segments, with \time" running from left to right. An event is denoted by a point along a line segment,

labeled by the corresponding statement number. In Figure 4, t and u are consecutive states. At state

t, element Q[k; j], which was last written by Write operation w, has the best tag value for component

k. State u is reached from t via a write to Q[k; n], n 6= j, by Write operation v. This write establishes

Q[k; n]:done ^ Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j], which implies that Q[k; j] is no longer

alive at state u. Note that v is the fourth consecutive operation of the same Writer to copy w's primary

sequence number; call v's three predecessors v�3, v�2, and v�1, respectively. As illustrated in Figure 4,

v�3 may have obtained w's sequence number \by accident," i.e., by copying an old sequence number from

12



Q[k; j] that w has subsequently recycled. However, it can be shown that v�2 and v�1 must have actually

read from Q[k; j] after it was written by w. Note that, because Q[k; j] is alive at state t, w computes its

flag variable to be false. Thus, it must be the case that v�1 (the third consecutive operation to copy w's

sequence number) performs its �rst write to Q after w's second read from Q. This implies that v�1 and v

compute their tag values after w's second read from Q. From this, it is possible to show that the tag value

for v�1 is at least that of w, and the tag value for v is bigger than that of w. The latter can be used to show

that the best tag value for component k increases from state t to state u.

One �nal point bears mentioning before leaving this example. Observe that, if v�1 had performed its

�rst write to Q before w's second read, then w would have computed its flag variable to be true. Intuitively,

this corresponds to the situation in which w is overwritten by a concurrent k-Write operation. Note that,

in this case, because v�2 is completely contained within w, in linearizing the operations, w can be \shrunk"

to occur at a point immediately prior to v�2. Had the algorithm been such that w set its flag upon �nding

that its sequence number had been copied once or twice, rather than three times, then the existence of such

an operation contained within w would not have been guaranteed.

The method described above for bounding the tag �elds is very similar to the one employed in the atomic

register construction of Li, Tromp, and Vitanyi in [26]. This construction is also based on the protocol of

Vitanyi and Awerbuch described above. The method for bounding the tag �elds employed by Li et al. is

similar to the one described above in that \newer" operations mark the tag values of \older" ones. Although

their implementation of markers di�ers from that described above, the two implementations are very similar:

in both cases, a tag value is declared \old" (no longer alive) once it has been marked several times by some

Writer.

4.2 Complexity

The space and time complexity of our construction depend on the space and time complexity of Q. If we

remove the auxiliary phi �elds from Q, then the size of each �eld of each element is as follows: val uses

B bits; tag uses log(8W � 1) bits; done and flag each use 1 bit; seq[i], 0 � i < 2W , uses log(2W + 1)

bits; and count[i], 0 � i < 2W , uses 2 bits. Thus, variable Q is a CW=B0=1=CW + R composite register,

where B0 = �(B +W logW ). Let S(C;B;W;R) denote the number of single-reader, single-writer atomic

bits required to construct a C=B=W=R composite register. Then, for our construction, S(C;B;W;R) =

S(CW;B0; 1; CW +R). Similarly, let TR(C;B;W;R) and TW (C;B;W;R) denote the number of reads and

writes of multi-reader, single-writer atomic registers required to Read and Write, respectively, a C=B=W=R

composite register. (For simplicity, we do not go down to the level of single-reader, single-writer atomic

bits when computing time complexity.) Then, for our construction, TR(C;B;W;R) = TR(CW;B0; 1; CW +

R) and TW (C;B;W;R) = 2TR(CW;B0; 1; CW + R) + 2TW (CW;B0; 1; CW + R). The actual values of

S(CW;B0; 1; CW+R), TR(CW;B0; 1; CW+R), and TW (CW;B0; 1; CW+R) depend on the implementation

of Q.

Let us now compare the complexity of our construction with the multi-writer construction of Afek et al.

[1]. In [1], the assumption is made that each of the processes that share the constructed register can both

read the register and write each component. Under this assumption, it is possible to reduce the complexity
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of our construction. In particular, suppose that there are N processes, and that each process may write each

component. Then, we have R = N and W = N . Furthermore, each process i, where 0 � i < N , writes

Q[k; i] and Q[k; i+ N ] for each component k. This implies that we can store Q[0; i]; Q[0; i+N ]; : : : ; Q[C �

1; i]; Q[C � 1; i + N ] as a single component (of Q), as all of these elements are written only by process

i. This reduces the number of components of Q from CN to N and increases the number of bits per

component from B0 to CB0. Thus, the space complexity becomes S(C;B;N;N ) = S(N;B00; 1; N ), where

B00 = CB0 = �(CB + CN logN ). The time complexity for Reading and Writing, respectively, becomes

TR(C;B;N;N ) = TR(N;B00; 1; N ) and TW (N;B;N;N ) = 2TR(N;B00; 1; N ) + 2TW (N;B00; 1; N ). If the

single-writer composite register construction of [1] is used to implement Q, then we have S(N;B00; 1; N ) =

�(B00N3) and TR(N;B00; 1; N ) = TW (N;B00; 1; N ) = �(N2). Thus, for our construction, S(C;B;N;N ) =

�(BCN3 + CN4 logN ) and TR(C;B;N;N ) = TR(C;B;N;N ) = �(N2).5 The multi-writer construction

given in [1] has space complexity that is �(BCN2 +CN3 +N4) and time complexity that is �(N3). (Note

that Afek et al. incorrectly state that the time complexity of our construction is �(N4)).

4.3 Correctness Proof

To prove that the construction is correct, we must show that it satis�es the Atomicity and Wait-Freedom

restrictions and each of its well-formed histories is linearizable. The Atomicity restriction is satis�ed because

Q is the only (nonauxiliary) shared variable, and Q is a single-writer composite register. The Wait-Freedom

restriction is satis�ed because no procedure contains any unbounded loops or synchronization primitives. In

this section, we prove that each well-formed history is linearizable. We �rst prove this for the construction

as is, i.e., with unbounded tags. In the next section, we show how to transform the construction into one

with bounded tags.

The correctness proof is based on the Shrinking Lemma. We �rst de�ne functions �0; : : : ; �C�1 for a given

history, and then show that the de�ned �'s satisfy the �ve conditions of Uniqueness, Integrity, Proximity,

Read Precedence, and Write Precedence. We now present a number of de�nitions and notational conventions

that will be used in the rest of the paper.

Unless stated otherwise, we henceforth assume that k ranges over f0; : : : ; C � 1g, that i, j, and n each

range over f0; : : : ; 2W � 1g, and that v and w are k-Write operations. In order to avoid using too many

parentheses, we de�ne a binding order for the symbols that we use. The following is a list of these symbols,

grouped by binding power; the groups are ordered from highest binding power to lowest.

all subscripts and superscripts

[ ], ( ), j j

:

!

:, :

+, �, �

=, 6=, <, >, �, �, �, �

^, _

5See footnote 1.
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unless

), �

j=

If event e precedes event f , then we write e � f . We let (e � f) � (e = f _ e � f). If x is a private

variable of operation p, then p!x denotes the �nal value of variable x as assigned by p. (Note that, in the

proof of correctness, p!x can be thought of as a \constant" value: once we have �xed on a particular history,

and an operation p in that history, the value p!x is also �xed. In other words, p!x is not to be thought of as

a variable whose value varies from state to state.) Let i be a label of a statement of some Reader or Writer

procedure, and let p denote an operation of that procedure. Then, p : i denotes the event corresponding to

the execution of statement i by p.

If E is an expression that holds at state t, then we write t j= E. Whenever we say that a given assertion

holds without referring to a particular state, we mean that the assertion is an invariant ; i.e., it is true at each

state of every history. Let E and F be two expressions over the variables of a construction. Following [15],

we say that the assertion E unless F holds i� for every pair of consecutive states in any history, if E ^ :F

holds in the �rst state, then E _ F holds in the second state. An assertion E is stable i� E unless false

holds.

We assume that each state in every history is distinct. This assumption is easy to ensure by introducing

an integer auxiliary variable that is incremented with each event. In the history t0
e0
!� � � ti

ei
!ti+1 � � �, ti is

the state prior to the event ei and ti+1 is the state following ei. Similarly, ei is the event prior to the state

ti+1 and the event following state ti. Note that the events prior to and following a given state are uniquely

de�ned since, by assumption, each state appears at most once in a history.

Let p be an operation of some Reader or Writer procedure P . As in Section 4.1, we use p�1 to denote

the operation of P that immediately precedes p, p�2 to denote the operation of P that immediately precedes

p�1, etc. Similarly, we use p+1 to denote the operation of P that immediately succeeds p, p+2 to denote the

operation of P that immediately succeeds p+1, etc. Observe that if w is a (k; j)-Write operation, then w�1

and w+1 (if they exist in the given history) are (k; j �W )-Write operations. This follows from the fact that

each Writer (k;m) alternates between writing to Q[k;m] and Q[k;m+W ].

Let X be a shared variable of the construction, and let p be an operation. The assertion last(X) = p

holds at a state i� the last event to write to X before that state is an event of p. (Note that, because

the construction uses only single-writer shared variables, p is an operation of the Reader or Writer with

write-access to X.) If e is an event in some history, then after(e) is true at a state of the history i� that

state occurs after event e.

Based on the de�nition of ALIVE given in Section 4.1, we de�ne two predicates: alive indicates whether

a Write operation is \alive," and pref indicates whether an alive operation is \preferable," i.e., has the \best"

tag value for its component.

De�nition of alive and pref : Let w be a (k; j)-Write operation. Then,

alive(w; k) � last(Q[k; j]) = w ^ ALIVE(Q; k; j)

pref (w ; k) � alive(w; k) ^ (8v : alive(v; k) : (v!tag; v!i) � (w!tag; j)) 2

15



As mentioned in Section 4.1, each procedure has one or more private auxiliary variables. These variables

have been introduced in order to facilitate the de�nition of �0; : : : ; �C�1.

De�nition of �k: Let r be a Read operation and let w be a k-Write operation. Then, �k is de�ned as

follows.

�k(r) � r!phi[k]

�k(w) �

(
w!phi1 if pref (w ; k) holds at the state following w : 10

w!phi0 otherwise 2

Before establishing the conditions of Uniqueness, Integrity, Proximity, Read Precedence, and Write Prece-

dence, we �rst prove a number of lemmas. The following lemma gives us a means for determining the value

of Q[k; j] at a given state. According to the �rst part of the lemma, if Q[k; j] was last written by operation

v, then Q[k; j]:val equals the value of v's input parameter val, and the seq and count �elds in Q[k; j] equal

the corresponding values computed by v. Note that these �elds of Q are all updated during the �rst phase of

v. According to the second part of the lemma, if Q[k; j] was last written by operation v and v has completed

execution, then Q[k; j]:tag equals the tag value computed by v, Q[k; j]:done is true, and Q[k; j]:flag and

Q[k; j]:phi equal the values assigned by v to its private variables flag and phi1 , respectively. Note that these

�elds of Q are all updated during the second phase of v.

Lemma 1: Let v be a (k; j)-Write operation. Then,

� last(Q[k; j]) = v ) Q[k; j]:val = v!val ^ (8n :: Q[k; j]:seq[n] = v!seq[n] ^ Q[k; j]:count[n] =

v!count[n])

� last(Q[k; j]) = v ^ after(v : 10) ) Q[k; j]:tag = v!tag ^ Q[k; j]:done ^ Q[k; j]:flag = v!flag ^

Q[k; j]:phi= v!phi1

Proof: The lemmaholds because v : 5 assigns the values v!val, false, v!seq[0::2W � 1], and v!count[0::2W � 1]

to the �elds val, done, seq[0::2W � 1], and count[0::2W � 1], respectively, of Q[k; j], while leaving the value

of each other �eld unchanged; and v : 10 assigns the values v!tag, true, v!flag, and v!phi1 to the �elds tag,

done, flag, and phi, respectively, of Q[k; j], while leaving the value of each other �eld unchanged. 2

The following simple lemma follows from the fact that each Write operation selects a unique value for

its primary sequence number. It states that, for any (k; j)-Write operation w, at the state prior to w's �rst

read from Q, Q[k; n]:seq[j] di�ers from the value w!seq[j], for each n. Note that Q[k; n]:seq[j] is a copy of

Q[k; j]:seq[j], as made by a (k; n)-Write operation, and w!seq[j] is the value w assigns to Q[k; j]:seq[j]. The

lemma follows from the fact that w selects the value w!seq[j] to be di�erent from all copies of Q[k; j]:seq[j].

(Again, we stress that once we have �xed upon a speci�c history, and a speci�c operation w in that history,

w!seq[j] is a �xed value, i.e., it is not a state-dependent quantity.)

Lemma 2: If w is a (k; j)-Write operation, then (8n :: Q[k; n]:seq[j] 6= w!seq[j]) at the state prior to w : 1.
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Figure 5: Proof of Lemma 3.

Proof: By statement 1 of the Writer procedure, Q = w!y at the state prior to w : 1. By statement 2

of the Writer procedure, (8n :: w!seq[j] 6= w!y[k; n]:seq[j]). Hence, at the state prior to w : 1, we have

(8n :: w!seq[j] 6= Q[k; n]:seq[j]). 2

In the next lemma, we consider the case in which at least three successive operations of one Writer have

copied the current sequence number of another Writer. This lemma is illustrated in Figure 5. The lemma

states that if there exists a state at which Q[k; n] and Q[k; j] were last written by Write operations v and w,

respectively, and if at that state Q[k; n]:count[j]� 2 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j] holds (indicating that

v is the third of three successive operations of the same Writer to copy the current value of Q[k; j]:seq[j]),

then v�1, the immediate predecessor of v, exists in the given history. Moreover, the �rst read by v�1 from

Q happened after w wrote to Q, and the value read by v�1 from the �eld Q[k; j]:seq[j] during that read

equals w's primary sequence number.

Lemma 3: ( n 6= j ^ last(Q[k; n]) = v ^ last(Q[k; j]) = w ^ Q[k; n]:count[j] � 2 ^ Q[k; n]:seq[j] =

Q[k; j]:seq[j] ) ) ( v�1 exists ^ w : 5 � v�1 : 1 ^ v�1!seq[j] = w!seq[j] ).

Proof: Let n 6= j, let n0 = n�W , and assume that the following expression holds for some state t.

t j= last(Q[k; n]) = v ^ last(Q[k; j]) = w ^ Q[k; n]:count[j]� 2 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j]

By Lemma 1 and the above assertion, v!count[j] � 2 ^ v!seq[j] = w!seq[j]. We show that this implies v�1

exists and v�1!seq[j] = w!seq[j]. (Note that the above assertion implies that v is a (k; n)-Write operation,

w is a (k; j)-Write operation, and v�1, if it exists in the given history, is a (k; n0)-Write operation.)

Let u be the state prior to v : 1. Because v!count[j] � 2, by statement 3 of the Writer procedure,

v!y[k; n0]:seq[j] = v!seq[j] ^ v!y[k; n0]:count[j] � 1. This implies that u j= Q[k; n0]:seq[j] = v!seq[j] ^

Q[k; n0]:count[j] � 1. Because Q[k; n0]:count[j] is initially 0, and because Q[k; n] and Q[k; n0] are written by

the same Writer, this implies that u j= last(Q[k; n0]) = v�1. Thus, by Lemma 1, u j= Q[k; n0]:seq[j] =

v�1!seq[j] ^ Q[k; n0]:count[j] = v�1!count[j]. Therefore,

v�1!seq[j] = v!seq[j] = w!seq[j] ^ v�1!count[j] � 1 : (1)

Our remaining proof obligation is to show that w : 5 � v�1 : 1. To this end, we �rst prove that w : 1 �

v�1 : 5. Assume, to the contrary that v�1 : 5 � w : 1. Let e be the event prior to state t, and let t0 be the

state prior to w : 1. Because t j= last(Q[k; j]) = w, we have w : 5 � e. Therefore, v�1 : 5 � w : 1 � e.
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Consider the two events w : 1 and v : 5. Either w : 1 � v : 5 or v : 5 � w : 1. In the former case, we have

v�1 : 5 � w : 1 � v : 5; because v�1 and v are successive operations of the same Writer, this implies that

t0 j= last(Q[k; n0]) = v�1. In the latter case, we have v : 5 � w : 1 � e; because last(Q[k; n]) = v at state

t (i.e., the state following e), this implies that t0 j= last(Q[k; n]) = v. Combining these two cases, by

Lemma 1, we have t0 j= Q[k; n0]:seq[j] = v�1!seq[j] _ Q[k; n]:seq[j] = v!seq[j]. By (1), this implies

that t0 j= Q[k; n0]:seq[j] = w!seq[j] _ Q[k; n]:seq[j] = w!seq[j], which contradicts Lemma 2. Thus, our

assumption that v�1 : 5 � w : 1 is false, i.e., w : 1 � v�1 : 5.

We now prove that w : 5 � v�1 : 1. Assume, to the contrary, that v�1 : 1 � w : 5. We consider two cases,

depending on the relative ordering of w : 1 and v�1 : 1. We show that both cases lead to a contradiction.

First, suppose that w : 1 � v�1 : 1 � w : 5. Because v�1 is a (k; n0)-Write and w is a (k; j)-Write operation,

this precedence assertion implies that j 6= n0. Because v�1 : 1 occurs between w : 1 and w : 5, the value

of Q[k; j] is the same at both the state prior to w : 1 and the state prior to v�1 : 1. By statement 1 of

the Writer procedure, this implies that w!y[k; j]:seq[j] = v�1!y[k; j]:seq[j]. Because w is a (k; j)-Write

operation, by statement 2 of the Writer procedure, w!seq[j] 6= w!y[k; j]:seq[j]. Because v�1 is a (k; n0)-Write

operation and n0 6= j, by statement 3 of the Writer procedure, v�1!seq[j] = v�1!y[k; j]:seq[j]. Therefore,

w!seq[j] 6= v�1!seq[j]. However, this contradicts (1).

Now, consider the other case mentioned above, i.e., v�1 : 1 � w : 1. In this case, because w : 1 � v�1 : 5,

we have v�1 : 1 � w : 1 � v�1 : 5. By (1), v�1!count[j] � 1. Because v�1!count[j] is nonzero, by statement

3 of the Writer procedure, v�1!seq[j] = v�1!y[k; n]:seq[j]. This implies that Q[k; n]:seq[j] = v�1!seq[j]

at the state prior to v�1 : 1. Because v�1 : 1 � w : 1 � v�1 : 5, and because the (k; n0)- and (k; n)-Write

operations are totally ordered (being operations of the same Writer), Q[k; n] has the same value both at

the state prior to v�1 : 1 and at the state prior to w : 1. Therefore, Q[k; n]:seq[j] = v�1!seq[j] at the state

prior to w : 1. By (1), this implies that Q[k; n]:seq[j] = w!seq[j] at that state, which contradicts Lemma 2. 2

According to the following lemma, if a completed k-Write operation w is not \alive" then there exists

another completed k-Write operation v such that w : 5 � v : 1.

Lemma 4: (after(w : 10) ^ :alive(w; k))) (9v :: w : 5 � v : 1 ^ after(v : 10)).

Proof: Suppose that after(w : 10) ^ :alive(w; k) holds at some state t, where w is a (k; j)-Write operation.

Our proof obligation is to show that there exists a k-Write operation v such that w : 5 � v : 1 and t j=

after(v : 10).

We �rst dispose of the case in which t j= last(Q[k; j]) 6= w. In this case, because after(w : 10) holds at

t, there exists a (k; j)-Write operation w0, where w precedes w0, such that t j= last(Q[k; j]) = w0. Because

successive operations of the same Writer write to di�erent elements of Q, this implies that Write operation

w+1 exists and after(w+1 : 10) holds at t. Because w and w+1 are successive operations of the same Writer,

w : 5 � w+1 : 1. This establishes our proof obligation.

In the remainder of the proof, we assume that t j= last(Q[k; j]) = w. In this case, because t j=

:alive(w; k), by the de�nition of alive, t j= :ALIVE (Q; k; j). We now show that there exists a state u,
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where u either equals or occurs before t, such that for some n 6= j the following expression holds.

u j= last(Q[k; j]) = w ^ Q[k; n]:count[j]� 2 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j] (2)

Because t j= last(Q[k; j]) = w ^ after(w : 10), by Lemma 1, t j= Q[k; j]:done. Therefore, because

t j= :ALIVE (Q; k; j), by the de�nition of ALIVE , there are two possibilities to consider: (i) there exists

n 6= j such that t j= Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j]; or (ii) t j= Q[k; j]:flag. If (i)

holds, then take u = t. Because t j= last(Q[k; j]) = w, this establishes (2).

Now, suppose that (ii) holds, i.e., Q[k; j]:flag holds at t. Because t j= last(Q[k; j]) = w ^ after(w : 10),

by Lemma 1, t j= Q[k; j]:flag = w!flag. Therefore, w!flag is true. Let u be the state prior to w : 6.

Because after(w : 10) holds at t, u occurs before t. Because u occurs in the interval of states between w : 5

and w : 10, u j= last(Q[k; j]) = w. Because w!flag holds, there exists n 6= j such that w!z[k; n]:count[j]�

2 ^ w!z[k; n]:seq[j] = w!seq[j]. By the de�nition of state u, u j= Q = w!z. Also, because event w : 5

assigns Q[k; j]:seq[j] := w!seq[j], we have u j= Q[k; j]:seq[j] = w!seq[j]. Therefore, u j= Q[k; n]:count[j]�

2 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j]. This establishes (2).

We now use (2) to establish our proof obligation. Let v be the Write operation such that u j=

last(Q[k; n]) = v. (v exists because Q[k; n]:count[j] is initially 0.) Then, by (2) and Lemma 3, the Write

operation v�1 exists and w : 5 � v�1 : 1. Because v�1 and v are successive operations of the same Writer

and last(Q[k; n]) = v at state u, after(v�1 : 10) holds at u. Because u either equals or occurs before t, this

implies that after(v�1 : 10) holds at t. This establishes our proof obligation. 2

The next lemma shows that alive(w; k) holds for some w at every state that occurs after the initial

k-Write operation.

Lemma 5: (9v :: after(v : 10))) (9w :: alive(w; k) ^ (8w0 : w : 5 � w0 : 5 : :after(w0 : 10)).

Proof: Let t be a state such that for some k-Write operation v, t j= after(v : 10). Let S denote the set of

k-Write operations de�ned as follows: p is in S i� t j= after(p : 10). Note that v is in S, i.e., S is nonempty.

Let w denote the k-Write operation in S such that for each other k-Write operation w0 in S, w0 : 5 � w : 5.

Then, by Lemma 4, t j= alive(w; k). 2

Corollary: (9v :: after(v : 10))) (9w :: pref (w ; k)). 2

According to the next lemma, (9j :: ALIVE (Q; k; j)) is an invariant. As a result, the computation of

max[k] and max in the Reader and Writer procedures, respectively, is well-de�ned.

Lemma 6: (9j :: ALIVE (Q; k; j)).

Proof: The given assertion is initially true, by the de�nition of the initial state. It could potentially be

falsi�ed only by an event of the form w : 5 or w : 10, where w is a k-Write operation. Consider an event e of

this form, and let t be the state following e. Also, let v denote the initial k-Write operation, and assume
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Figure 6: Proof of Lemma 7.

that v is a (k; j)-Write operation. We consider two cases, depending on whether after(v : 10) holds at t. If

after(v : 10) does hold at t, then by Lemma 5, t j= (9w :: alive(w; k)). By the de�nition of alive, this

implies that t j= (9n :: ALIVE (Q; k; n)).

Now, suppose that after(v : 10) does not hold at t. By our assumption concerning the initial Writes, v

precedes all other k-Write operations. This implies that e is the event v : 5. Because t is the state following

v : 5, t j= :Q[k; j]:done. Because v precedes all other k-Write operations, by the de�nition of the initial

state, t j= (8n : n 6= j : Q[k; n]:done ^ :Q[k; n]:flag ^ (8i : 0 � i < 2W : Q[k; n]:count[i] = 0)). By

the de�nition of ALIVE , this implies that t j= (8n : n 6= j : ALIVE (Q; k; n)). Because, by assumption, n

ranges over 0 � n < 2W , the range in this expression is not empty. Therefore, t j= (9n :: ALIVE (Q; k; n)).

2

The next lemma applies to the interval of states for which last(Q[k; j]) = w holds: if the expression

(9n : n 6= j : Q[k; n]:done ^ Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j]) holds at some state in

this interval, then it holds at all subsequent states in this interval. Note that this expression is true i� at

least four successive operations of some Writer have read the same value from Q[k; j]:seq[j]. When reading

the proof of this lemma, the reader may wish to refer to Figure 6.

Lemma 7: ( last(Q[k; j]) = w ^ (9n : n 6= j : Q[k; n]:done ^ Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] =

Q[k; j]:seq[j]) ) unless ( last(Q[k; j]) 6= w ).

Proof: Let t and u be consecutive states such that t j= last(Q[k; j]) = w and u j= last(Q[k; j]) = w, and

assume that the following expression holds for some n 6= j.

t j= Q[k; n]:done ^ Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j] (3)

Our proof obligation is to show that there exists some n0 6= j such that u j= Q[k; n0]:done^Q[k; n0]:count[j] =

3 ^ Q[k; n0]:seq[j] = Q[k; j]:seq[j]. Because last(Q[k; j]) = w at both states t and u, by Lemma 1,

Q[k; j]:seq[j] has the same value at both t and u. Therefore, if Q[k; n] has the same value at both t and u,

then by (3), our proof obligation is satis�ed with n0 = n. In the remainder of the proof, assume that the

value of Q[k; n] at u di�ers from its value at t.

Let v be the (k; n)-Write operation such that t j= last(Q[k; n]) = v. (v exists because Q[k; n]:count[j]

is initially 0.) By (3), t j= Q[k; n]:done. Therefore, t j= after(v : 10). Because t j= last(Q[k; n]) = v,

and because the value of Q[k; n] at u di�ers from its value at t, this implies that u is reached from t via the

occurrence of the event v+2 : 5. Consider the Write operation v+1. Note that v+1 is a (k; n0)-Write operation,
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where n0 = n �W . In the remainder of the proof, we establish our proof obligation by showing that the

following assertion holds.

(n0 6= j) ^ (u j= Q[k; n0]:done ^ Q[k; n0]:count[j] = 3 ^ Q[k; n0]:seq[j] = Q[k; j]:seq[j])

Because u is reached from t via the occurrence of v+2 : 5, and because v+1 and v+2 are successive operations

of the same Writer, we have u j= last(Q[k; n0]) = v+1 ^ after(v+1 : 10). Therefore, because u j=

last(Q[k; j]) = w, by Lemma 1, it su�ces to prove the following.

n0 6= j ^ v+1!count[j] = 3 ^ v+1!seq[j] = w!seq[j] (4)

Because t j= last(Q[k; j]) = w ^ last(Q[k; n]) = v, by Lemma 1, t j= Q[k; n]:seq[j] = v!seq[j] ^

Q[k; n]:count[j] = v!count[j] ^ Q[k; j]:seq[j] = w!seq[j]. Therefore, by (3),

v!count[j] = 3 ^ v!seq[j] = w!seq[j] : (5)

Because n 6= j, and because t j= last(Q[k; j]) = w ^ last(Q[k; n]) = v, by (3) and Lemma 3, Write

operation v�1 exists and w : 5 � v�1 : 1. Because v�1, v, v+1, and v+2 are successive operations of the same

Writer, v�1 : 1 � v+1 : 1 � v+1 : 10 � v+2 : 5. This establishes the following precedence assertion.

w : 5 � v+1 : 1 � v+1 : 10 � v+2 : 5 (6)

By (6), v+1 6= w. Therefore, because u j= last(Q[k; n0]) = v+1 ^ last(Q[k; j]) = w, we have n0 6= j.

Hence, to establish (4), it su�ces to show that v+1!count[j] = 3 ^ v+1!seq[j] = w!seq[j].

Let t0 be the state prior to v+1 : 1. Because last(Q[k; j]) = w at state u (the state following v+2 : 5),

by (6), t0 j= last(Q[k; j]) = w. Also, because v and v+1 are successive operations of the same Writer,

t0 j= last(Q[k; n]) = v. Therefore, by Lemma 1, t0 j= Q[k; j]:seq[j] = w!seq[j] ^ Q[k; n]:seq[j] =

v!seq[j] ^ Q[k; n]:count[j] = v!count[j]. By (5), this implies that t0 j= Q[k; j]:seq[j] = Q[k; n]:seq[j] =

w!seq[j] ^ Q[k; n]:count[j] = 3. By statement 1 of the Writer procedure, t0 j= v+1!y = Q. Therefore,

v+1!y[k; j]:seq[j] = v+1!y[k; n]:seq[j] = w!seq[j] ^ v+1!y[k; n]:count[j] = 3 :

By statement 3 of the Writer procedure, v+1!seq[j] = v+1!y[k; j]:seq[j] and (v+1!seq[j] = v+1!y[k; n]:seq[j]))

v+1!count[j] = min(3; v+1!y[k; n]:count[j]+1). It follows, then, that v+1!seq[j] = w!seq[j] ^ v+1!count[j] =

3. 2

According to the next lemma, if a completed Write operation is not \alive" at some state, then it is

forever after not \alive."

Lemma 8: :alive(w; k) ^ after(w : 10) is stable.

Proof: Let t and u be consecutive states such that t j= :alive(w; k) ^ after(w : 10). By the de�nition of

after , u j= after(w : 10). Thus, our proof obligation is to show that u j= :alive(w; k).
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Assume that w is a (k; j)-Write operation. By the de�nition of alive, if u j= last(Q[k; j]) 6= w, then

u j= :alive(w; k). So, assume that u j= last(Q[k; j]) = w. Because after(w : 10) holds at state u, we have

u j= last(Q[k; j]) = w ^ after(w : 10) : (7)

Because u j= last(Q[k; j]) = w, by the de�nition of alive, our proof obligation is to show thatALIVE (Q; k; j)

is false at state u.

Because t and u are consecutive states and t j= after(w : 10), by (7) and the text of the Writer procedure,

t j= last(Q[k; j]) = w ^ after(w : 10) : (8)

Because t j= last(Q[k; j]) = w ^ :alive(w; k), by the de�nition of alive, t j= :ALIVE(Q; k; j). By (8) and

Lemma1, t j= Q[k; j]:done. Therefore, by the de�nition ofALIVE , t j= Q[k; j]:flag or there exists n, where

n 6= j, such that t j= Q[k; n]:done ^ Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j]. In the former case,

by (7) and (8) and Lemma 1, we have u j= Q[k; j]:flag. In the latter case, by (7), (8), and Lemma 7, there

exists n0, where n0 6= j, such that u j= Q[k; n0]:done ^ Q[k; n0]:count[j] = 3 ^ Q[k; n0]:seq[j] = Q[k; j]:seq[j].

Therefore, in either case, u j= :ALIVE (Q; k; j). 2

The following lemma considers a (k; j)-Write operation v and a (k; n)-Write operation w. According to

this lemma, if v assigns the value false to its private variable flag (indicating that its sequence number has

not yet been copied three times by any other Writer), and if w is the third of three successive operations

of the same Writer to read the value v!seq[j] from Q[k; j]:seq[j], then v does not read the value assigned to

Q[k; n] by w when computing flag.

Lemma 9: Let v be a (k; j)-Write operation, and let w be a (k; n)-Write operation. If :v!flag ^ w!seq[j] =

v!seq[j] ^ w!count[j] � 2, then last(Q[k; n]) 6= w at the state prior to v : 6.

Proof: Let v and w be as de�ned in the lemma, and let t be the state prior to v : 6. Assume that

:v!flag ^ w!seq[j] = v!seq[j] ^ w!count[j] � 2. Our proof obligation is to show that t j= last(Q[k; n]) 6= w.

Assume, to the contrary, that t j= last(Q[k; n]) = w. Then, by Lemma 1, t j= Q[k; n]:count[j] =

w!count[j] ^ Q[k; n]:seq[j] = w!seq[j]. Because w!seq[j] = v!seq[j] ^ w!count[j] � 2, this implies that

t j= Q[k; n]:count[j] � 2 ^ Q[k; n]:seq[j] = v!seq[j]. Because t is the state prior to v : 6, t j= Q = v!z.

Therefore, v!z[k; n]:count[j] � 2 ^ v!z[k; n]:seq[j] = v!seq[j]. Because w!count[j] is nonzero, by statement

4 of the Writer procedure, w is not a (k; j)-Write operation, i.e., j 6= n. This implies that v!flag is true,

which is a contradiction. Thus, our assumption that t j= last(Q[k; n]) = w is false. 2

In the following two lemmas, we consolidate a number of simple properties that will be used repeatedly

in the lemmas that follow.

Lemma 10: Let w be a (k; j)-Write operation. Then, pref (w ; k) ) alive(w ; k) and alive(w; k) )

last(Q[k; j]) = w ^ ALIVE (Q; k; j) ^ after(w : 10).
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Proof: Let w be a (k; j)-Write operation. By the de�nition of pref , pref (w ; k) ) alive(w ; k). By the

de�nition of alive, alive(w; k) ) last(Q[k; j]) = w ^ ALIVE (Q; k; j). By the de�nition of ALIVE ,

ALIVE (Q; k; j) ) Q[k; j]:done. By the text of the Writer procedure, last(Q[k; j]) = w ^ Q[k; j]:done )

after(w : 10). 2

Lemma 11: For each k-Write operation w, w!tag > 0. Also, if w is the initial k-Write operation, then

w!tag = 1 and pref (w ; k) holds at the state following w : 10.

Proof: Let w be a k-Write operation, and let m = w!max. (Note that Lemma 6 implies that w!max is

well-de�ned.) It can be shown that each tag �eld in the construction is always nonnegative. Therefore,

w!tag = w!z[k;m]:tag+ 1 > 0. Now, suppose that w is the initial k-Write operation, and assume that w is

a (k; j)-Write operation. By our assumption concerning the initial Writes, w precedes each other k-Write

operation. By the de�nition of the initial state, each tag �eld in Q is initially 0. It follows, then, that

w!tag = 1. Moreover, the following expression holds at the state following w : 10.

last(Q[k; j]) = w ^ Q[k; j]:done ^ :Q[k; j]:flag ^

(8n : n 6= j : Q[k; n]:count[j] = 0 ^ Q[k; j]:tag > Q[k; n]:tag)

This implies that pref (w ; k) holds. 2

The next lemma gives the conditions under which alive(v; k) may be falsi�ed. The two cases of the

lemma are illustrated in Figures 7(a) and 7(b).

Lemma 12: Suppose that t and u are consecutive states such that t j= alive(v; k) and u j= :alive(v; k).

Then, there exists a k-Write operation w such that u j= after(w : 10), and v : 10 � w : 0 or v : 6 � w�1 : 5.

(Note that, in either case, v : 6 � w : 5.)

Proof: Let t, u, and v be as de�ned in the statement of the lemma. Assume that v is a (k; j)-Write

operation. We �rst dispose of the case in which u j= last(Q[k; j]) 6= v. Because t j= alive(v; k), by the

de�nition of alive, t j= last(Q[k; j]) = v. Because t and u are consecutive states and last(Q[k; j]) = v holds

at t but not u, u is reached from t via the occurrence of the event v+2 : 5. This is illustrated in Figure 7(a).

Consider the Write operation v+1. Because v+2 : 5 is the event prior to u, u j= after(v+1 : 10). Because v

and v+1 are successive operations of the same Writer, v : 10 � v+1 : 0. Therefore, letting w = v+1, our proof

obligation is satis�ed.

In the remainder of the proof, we assume that u j= last(Q[k; j]) = v. This case is illustrated in

Figure 7(b). Because t j= alive(v; k), by Lemma 10 and the de�nition of ALIVE , t j= last(Q[k; j]) =

v ^ after(v : 10) ^ Q[k; j]:done ^ :Q[k; j]:flag. Because t and u are consecutive states and t j= after(v : 10),

we have u j= after(v : 10). Because last(Q[k; j]) = v ^ after(v : 10) holds at both states t and u, by Lemma1,

Q[k; j] has the same value at both t and u. Therefore, u j= last(Q[k; j]) = v ^ Q[k; j]:done ^ :Q[k; j]:flag.

Because alive(v; k) does not hold at u, this implies that there exists n, where n 6= j, such that the following
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Figure 7: Proof of Lemma 12.

expression holds.

u j= Q[k; n]:done ^ Q[k; n]:count[j] = 3 ^ Q[k; n]:seq[j] = Q[k; j]:seq[j] (9)

Let w be the Write operation such that u j= last(Q[k; n]) = w. (w exists because Q[k; n]:count[j] is

initially 0.) Because u j= last(Q[k; n]) = w ^ last(Q[k; j]) = v, by (9) and Lemma 3, the Write operation

w�1 exists and w�1!seq[j] = v!seq[j]. Moreover, because u j= after(v : 10) ^ :Q[k; j]:flag, by (9) and

Lemma 1, :v!flag ^ w!seq[j] = v!seq[j] ^ w!count[j] = 3. Because w�1 and w are successive operations

of the same Writer and w!count[j] = 3, we have w�1!count[j] � 2. This establishes the following assertion.

w�1!count[j] � 2 ^ w!count[j] = 3 ^ w�1!seq[j] = w!seq[j] = v!seq[j] ^ :v!flag : (10)

Because u j= last(Q[k; n]) = w ^ Q[k; n]:done, we have u j= after(w : 10). Therefore, we can meet

our proof obligation by showing that v : 6 � w�1 : 5. Assume, to the contrary, that w�1 : 5 � v : 6. Note

that w�1 is a (k; n0)-Write operation, where n0 = n � W . Let t0 be the state prior to v : 6, and let e be

the event prior to state u. Because u j= after(v : 10), we have v : 6 � e. Consider the event w : 5. Either

w : 5 � v : 6 or v : 6 � w : 5. In the former case, we have w : 5 � v : 6 � e. Because last(Q[k; n]) = w at state

u, this implies that t0 j= last(Q[k; n]) = w. In the latter case, we have w�1 : 5 � v : 6 � w : 5. Because w�1

and w are successive operations of the same Writer, this implies that t0 j= last(Q[k; n0]) = w�1. Because

t0 j= last(Q[k; n]) = w _ last(Q[k; n0]) = w�1, by (10) and Lemma 9, we have a contradiction. Thus, our

assumption that w�1 : 5 � v : 6 is false, i.e., v : 6 � w�1 : 5. 2

The next lemma considers a (k; j)-Write operation w; this lemma speci�es an assertion over the �elds of

Q that holds whenever pref (w ; k) does.

Lemma 13: Let w be a (k; j)-Write operation. Then, pref (w ; k) ) Q [k ; j ]:val = w!val ^ Q [k ; j ]:tag =

w!tag ^ Q [k ; j ]:phi = w!phi1 ^ ALIVE (Q; k; j) ^ (8n : ALIVE (Q; k; n) : (Q[k; n]:tag; n) � (Q[k; j]:tag; j)).
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Proof: Let w be a (k; j)-Write operation, and suppose that pref (w ; k) holds at some state t. Then, by Lemma

10, t j= last(Q[k; j]) = w ^ after(w : 10) ^ ALIVE (Q; k; j). Therefore, by Lemma 1,

t j= Q[k; j]:val = w!val ^ Q[k; j]:tag = w!tag ^ Q[k; j]:phi = w!phi1 : (11)

Let n 6= j and suppose that t j= ALIVE (Q; k; n). Our remaining proof obligation is to show that

t j= (Q[k; n]:tag; n) � (Q[k; j]:tag; j). We �rst dispose of the case t j= Q[k; n]:tag = 0. By Lemma 11,

w!tag > 0. Thus, in this case, by (11), t j= (Q[k; n]:tag; n)� (Q[k; j]:tag; j).

Now, consider the case t j= Q[k; n]:tag 6= 0. In this case, the value of Q[k; n]:tag at state t di�ers from

its initial value. Therefore, there exists a k-Write operation v such that t j= last(Q[k; n]) = v. Because

t j= last(Q[k; n]) = v ^ ALIVE (Q; k; n), we have t j= alive(v; k). Therefore, because t j= pref (w ; k),

(v!tag; n) � (w!tag; j). Also, by Lemma 10 and Lemma 1, t j= Q[k; n]:tag = v!tag. Hence, by (11),

t j= (Q[k; n]:tag; n)� (Q[k; j]:tag; j). 2

The next lemma shows that the \best" tag value for a component does not decrease from state to state.

It also gives a necessary condition for an increase to occur. This condition will be used later when we show

that the tag �elds can be bounded.

Lemma 14: Let t and u be consecutive states such that t j= pref (v ; k) and u j= pref (w ; k). Then, either

w!tag = v!tag or w!tag = v!tag + 1, and in the latter case, u is reached from t via the occurrence of event

w : 10.

Proof: Let t and u be consecutive states such that t j= pref (v ; k) and u j= pref (w ; k). It su�ces to prove

that the lemma holds for states t and u, given the assumption that the lemma holds for the pre�x of the

given history ending with state t. Let e be the event prior to state u. Our proof obligation is to show that

either w!tag = v!tag or w!tag = v!tag + 1, and in the latter case, e = w : 10.

We �rst show that if w!tag = v!tag + 1, then e = w : 10. In this case, because pref (v ; k) holds at t,

alive(w; k) does not hold at t. Because u j= pref (w ; k), by Lemma 10, u j= alive(w; k) ^ after(w : 10).

Because t and u are consecutive states such that t j= :alive(w; k) and u j= alive(w; k) ^ after(w : 10), by

Lemma 8, t j= :after(w : 10). Therefore, because after(w : 10) is false at t but true at u, u is reached from

t via the occurrence of the event w : 10.

Our remaining proof obligation is to show that v!tag � w!tag � v!tag + 1. We �rst prove that w!tag �

v!tag + 1. Observe that if w is the initial k-Write operation, then by Lemma 11, w!tag = 1 < v!tag + 1.

So, assume that w is not the initial k-Write operation. Let u0 be the state prior to the event w : 6. Because

w is not the initial k-Write operation, the initial k-Write operation precedes w. Therefore, by the corollary

to Lemma 5, there exists a k-Write operation v0 such that u0 j= pref (v 0; k). By Lemma 13 and the text

of the Writer procedure, this implies that w!tag = v0!tag + 1. Because u j= pref (w ; k), by Lemma 10,

u j= after(w : 10). Because t and u are consecutive states, this implies that u0 occurs before t. Because

t j= pref (v ; k), and because the lemma holds for the pre�x of the given history ending with state t, this

implies that v0!tag � v!tag. (Note that the corollary to Lemma 5 implies that pref is well-de�ned for all

states between u0 and t.) Therefore, w!tag � v!tag + 1.

25



Our �nal proof obligation is to show that v!tag � w!tag. If u j= alive(v; k), then, because u j=

pref (w ; k), we have v!tag � w!tag. Also, if v is the initial k-Write operation, then, by Lemma 11, v!tag =

1 � w!tag. In the remainder of the proof, assume that v is not the initial k-Write operation and that

u j= :alive(v; k).

Because t j= pref (v ; k), by Lemma 10, t j= alive(v; k). Therefore, by Lemma 12, there exists a k-Write

operation w0 such that v : 6 � w0 : 5 and u j= after(w0 : 10). Because u j= after(w0 : 10), by Lemma 5, there

exists a k-Write operation w00 such that

u j= alive(w00; k) ^ (8q : q is a k-Write ^ w00 : 5 � q : 5 : :after(q : 10)) : (12)

Because u j= alive(w00; k), by Lemma 10, u j= after(w00 : 10). This implies that w00 : 10 � e. Also, because

u j= after(w0 : 10), by (12), we have w0 : 5 � w00 : 5. Therefore,

v : 6 � w0 : 5 � w00 : 5 � w00 : 10 � e :

Let t0 be the state prior to v : 6 and let t00 be the state prior to w00 : 6. Notice that the above precedence

assertion implies that t00 occurs between t0 and t. Because v is not the initial k-Write operation, by our as-

sumption concerning the initial Writes, the initial k-Write operation precedes both v and w00. Hence, by the

corollary to Lemma5, there exist Write operations v0 and v00 such that t0 j= pref (v 0; k) and t00 j= pref (v 00; k).

By Lemma 13 and the text of the Writer procedure, v!tag = v0!tag+ 1, and w00!tag = v00!tag+ 1. Moreover,

because the lemma holds for the pre�x of the given history ending with state t, v0!tag � v00!tag. Therefore,

v!tag � w00!tag. By (12), u j= alive(w00; k). Therefore, because u j= pref (w ; k), we have w00!tag � w!tag.

Consequently, by transitivity, v!tag � w!tag. 2

The next lemma directly follows from the previous one.

Lemma 15: If v : 6 � w : 6, then v!tag � w!tag.

Proof: If v is the initial k-Write operation, then by Lemma 11, v!tag = 1 � w!tag. In the remainder

of the proof, assume that v is not the initial k-Write operation. Then, by our assumption concerning the

initial Writes, the initial k-Write operation precedes both v and w. Hence, by the corollary to Lemma 5,

there exists k-Write operations p and q such that pref (p; k) holds at the state prior to v : 6, and pref (q ; k)

holds at the state prior to w : 6. By Lemma 13 and the text of the Writer procedure, v!tag = p!tag + 1 and

w!tag = q!tag + 1. Because v : 6 � w : 6, by Lemma 14, p!tag � q!tag. Therefore, v!tag � w!tag. 2

The following lemma shows that the value of the \best" tag/process identi�er pair does not decrease

from state to state.

Lemma 16: Let t and u be consecutive states such that t j= pref (v ; k) and u j= pref (v 0; k). Then,

(v!tag; v!i) � (v0!tag; v0!i).

Proof: Let t, u, v, and v0 be as de�ned in the lemma. If u j= alive(v; k), then because u j= pref (v 0; k),
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we have (v!tag; v!i) � (v0!tag; v0!i). Thus, in this case, our proof obligation is satis�ed. In the remainder of

the proof, assume that u j= :alive(v; k).

Because u j= pref (v 0; k), by Lemma 10, u j= after(v0 : 10). Hence, by Lemma 5, there exists a k-Write

operation w such that

u j= alive(w; k) ^ (8p : p is a k-Write ^ w : 5 � p : 5 : :after(p : 10)) : (13)

Because u j= alive(w; k) ^ pref (v 0; k), by the de�nition of pref , w!tag � v0!tag. Therefore, we can establish

our proof obligation by showing that v!tag < w!tag.

Because t j= pref (v ; k), by Lemma 10, t j= alive(v; k). Because t and u are consecutive states and

alive(v; k) holds at t but not u, by Lemma 12, there exists a k-Write operation q such that u j= after(q : 10),

and either v : 10 � q : 0 or v : 6 � q�1 : 5. Because u j= after(q : 10), by (13), q : 5 � w : 5. Therefore, either

v : 10 � w : 5 or v : 6 � q�1 : 5 � q�1 : 10 � q : 5 � w : 5. We consider these two cases separately.

First, suppose that v : 10 � w : 5. Let e be the event prior to state u, i.e., t
e
!u. By (13) and Lemma 10,

u j= after(w : 10). Hence, w : 10 � e. This implies that v : 10 � w : 5 � w : 6 � w : 10 � e. Hence, because

alive(v; k) holds at state t, i.e., the state prior to e, by Lemma 8, alive(v; k) also holds at the state prior to

w : 6. Therefore, letting j = v!i, by Lemma 10 and Lemma 1, ALIVE (Q; k; j) ^ Q[k; j]:tag = v!tag holds at

that state. This implies that w chooses a larger tag value than v, i.e., w!tag > v!tag.

Now, consider the other case mentioned above, i.e., v : 6 � q�1 : 5 � q�1 : 10 � q : 5 � w : 5. Let t0 be

the state prior to w : 6. Observe that t0 j= after(q�1 : 10). Therefore, by Lemma 5, there exists a k-Write

operation w0 such that

t0 j= alive(w0; k) ^ (8p : p is a k-Write ^ w0 : 5 � p : 5 : :after(p : 10)) : (14)

Let n = w0!i. Because t0 j= alive(w0; k), by Lemma10 and Lemma1, ALIVE (Q; k; n)^ Q[k; n]:tag = w0!tag.

This implies that w chooses a larger tag value than w0, i.e., w!tag > w0!tag. Because t0 j= after(q�1 : 10),

by (14), q�1 : 5 � w0 : 5. This implies that v : 6 � q�1 : 5 � w0 : 5 � w0 : 6. Because v : 6 � w0 : 6, by Lemma 15,

v!tag � w0!tag. Therefore, by transitivity, v!tag < w!tag. 2

According to the next lemma, if a completed Write operation is not \preferable" at some state, then it

is forever after not \preferable."

Lemma 17: :pref (w ; k) ^ after(w : 10) is stable.

Proof: Let t and u be consecutive states such that t j= :pref (w ; k) ^ after(w : 10). By the de�nition of

after , u j= after(w : 10). Thus, our proof obligation is to show that u j= :pref (w ; k). If alive(w; k) is

false at u, then by Lemma 10, u j= :pref (w ; k). So, assume that alive(w; k) holds at u. By Lemma 8, this

implies that alive(w; k) holds at t as well.

Because after(w : 10) holds at both states t and u, by the corollary to Lemma 5, there exist k-Write op-

erations v and v0 such that t j= pref (v ; k) and u j= pref (v 0; k). Because t j= alive(w; k) ^ :pref (w ; k),

by the de�nition of pref , (w!tag; w!i) < (v!tag; v!i). Because t and u are consecutive states, by Lemma

16, (v!tag; v!i) � (v0!tag; v0!i). Therefore, by transitivity, (w!tag; w!i) < (v0!tag; v0!i). Hence, because
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u j= pref (v 0; k), we have, u j= :pref (w ; k). 2

The next lemma is used in the proof of Proximity to show that if Read operation r returns the input

value of k-Write operation w, then no other k-Write operation succeeds w and precedes r.

Lemma 18: Suppose that pref (w ; k) holds at the state prior to r : 0. Then, for each k-Write operation w0

that di�ers from w, w0 : 0 � w : 10 or r : 0 � w0 : 10.

Proof: Let r and w be as de�ned in the lemma. Assume that w is a (k; j)-Write operation. Let t be the state

prior to r : 0. Because t j= pref (w ; k), by Lemma 10, t j= alive(w; k) ^ last(Q[k; j]) = w ^ after(w : 10).

This implies that w : 10 � r : 0. We establish our proof obligation by assuming, to the contrary, that there

exists a (k; n)-Write operation w0 (that di�ers from w) such that

w : 10� w0 : 0 � w0 : 10 � r : 0 : (15)

Because last(Q[k; j]) = w at state t, this precedence assertion implies that j 6= n.

By (15), t j= after(w0 : 10). Hence, by Lemma 5, there exists a k-Write operation v such that

t j= alive(v; k) ^ (8p : p is a k-Write ^ v : 5 � p : 5 : :after(p : 10)) : (16)

We now show that v!tag > w!tag. Because t j= after(w0 : 10), (16) implies that w0 : 5 � v : 5. Therefore, by

(15), w : 10 � v : 5. Because t j= alive(v; k), by Lemma 10, t j= after(v : 10). Hence, because t is the state

prior to r : 0, v : 10 � r : 0. Therefore, w : 10 � v : 5 � v : 10 � r : 0. Because alive(w; k) holds at state t, by

Lemma 8, this implies that alive(w; k) holds at the state prior to v : 6. Therefore, by Lemma 10 and Lemma

1, ALIVE (Q; k; j) ^ Q[k; j]:tag = w!tag holds at that state. This implies that v chooses a larger tag value

than w, i.e., v!tag > w!tag.

Because t j= alive(v; k) and v!tag > w!tag, by the de�nition of pref , t j= :pref (w ; k). But, by the

statement of the lemma, t j= pref (w ; k). Therefore, we have a contradiction. Hence, our assumption that

there exists w0 such that w : 10 � w0 : 0 � w0 : 10 � r : 0 is false. 2

According to the next lemma, for each Read operation r there exists a preceding k-Write operation w

that is \preferable" when r reads from Q. As shown in the proof of Integrity, the output value of r for

component k equals the input value of w.

Lemma 19: Let r be a Read operation. Then, there exists a k-Write operation w such that w : 10 � r : 0

and pref (w ; k) holds at each state between w : 10 and r : 0.

Proof: Let r be a Read operation and let t be the state prior to the event r : 0. Let j = r!max[k]. (Lemma

6 implies that r!max[k] is well-de�ned.) Then, by the text of the Reader procedure,

t j= ALIVE (Q; k; j) ^ (8n : ALIVE (Q; k; n) : (Q[k; n]:tag; n)� (Q[k; j]:tag; j)) : (17)

We now show that the value of Q[k; j] at state t di�ers from its initial value. By our assumption

concerning the initial Writes, there exists a k-Write operation that precedes r. By Lemma 5, this implies
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that there exists a (k; l)-Write operation p such that t j= alive(p; k). By Lemma 10 and Lemma 1,

t j= ALIVE (Q; k; l) ^ Q[k; l]:tag = p!tag. By Lemma 11, p!tag > 0. Therefore, by (17), t j= Q[k; j]:tag �

Q[k; l]:tag > 0. Thus, the value of Q[k; j]:tag at state t di�ers from its initial value.

This implies that t j= last(Q[k; j]) = w for some k-Write operation w. By (17), t j= alive(w; k).

We now show that t j= pref (w ; k). Consider a (k; n)-Write operation v such that t j= alive(v; k).

Our proof obligation is to show that (v!tag; n) � (w!tag; j). Because t j= alive(v; k), by Lemma 10 and

Lemma 1, t j= ALIVE (Q; k; n) ^ Q[k; n]:tag = v!tag. Similarly, because t j= alive(w; k), we have

t j= ALIVE (Q; k; j) ^ Q[k; j]:tag = w!tag. Consequently, by (17), (v!tag; n) � (w!tag; j).

Because t j= alive(w; k), by Lemma 10, after(w : 10) holds at state t (i.e., the state prior to r : 0).

Therefore, w : 10 � r : 0. Because pref (w ; k) holds at state t, by Lemma 17, pref (w ; k) holds at each state

between w : 10 and r : 0. This establishes our proof obligation. 2

We now use the preceding lemmas to establish the correctness of the construction.

Theorem 1: Each well-formed history of the construction is linearizable.

Proof: We establish the theorem by proving that the �ve conditions of the Shrinking Lemma are satis�ed.

Uniqueness: Uniqueness is satis�ed since the shared auxiliary variable P [k] is atomically incremented

whenever a k-Write operation assigns its value to either private variable phi0 or phi1 . 2

Integrity: Consider a Read operation r. By Lemma 19, there exists a k-Write operation w such that

w : 10 � r : 0 and pref (w ; k) holds at each state between w : 10 and r : 0. Assume that w is a (k; j)-Write

operation, and let t be the state prior to r : 0. Because t j= pref (w ; k), by Lemma 13 and the text of the

Reader procedure, r!val[k] = w!val and r!phi[k] = w!phi1 . By the de�nition of �k, we have �k(r) = r!phi[k].

Also, because pref (w ; k) holds at the state following w : 10, �k(w) = w!phi1 . Hence, �k(r) = �k(w). 2

Proximity: Let r be a Read operation and let v be a k-Write operation. We prove that Proximity is

satis�ed by proving the stronger result r : 0 � v : 0 ) �k(r) < �k(v) and v : 10 � r : 0 ) �k(v) � �k(r).

Let t denote the state prior to the event r : 0, let u denote the state prior to the event v : 0, and let u0

denote the state prior to the event v : 10.

Case 1: r : 0 � v : 0. By the de�nition of �k, either u j= �k(v) = P [k] or u0 j= �k(v) = P [k]. Because

r : 0 � v : 0, state t occurs before both states u and u0. Notice that a Write operation only changes the value

of P [k] by atomically incrementing it; thus, the value of P [k] at either state u or u0 is at least the value of

P [k] at state t. Therefore, t j= P [k] � �k(v).

By Lemma 6, the text of the Reader procedure, and the de�nition of �k, there exists j such that

t j= Q[k; j]:phi = �k(r). Because P [k] is incremented atomically when its value is assigned by a Write

operation to either of its private variables phi0 or phi1 , t j= Q[k; j]:phi < P [k]. Therefore, by transitivity,

�k(r) < �k(v).
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Case 2: v : 10 � r : 0. By Lemma 19, there exists a k-Write operation w such that w : 10� r : 0 and pref (w ; k)

holds at each state between w : 10 and r : 0. Moreover, by the proof of Integrity, �k(r) = �k(w) = w!phi1 .

We establish our proof obligation by showing that �k(v) � �k(w). If v = w, then the result trivially

holds, so assume that v 6= w. Then, by Lemma 18, v : 0 � w : 10. If v : 10 � w : 10, then v!phi0 < w!phi1

and v!phi1 < w!phi1 ; thus, by the de�nition of �k, �k(v) < �k(w). Now consider the other case, i.e., v : 0 �

w : 10� v : 10 � r : 0. Because pref (w ; k) holds for all states between w : 10 and r : 0, this precedence assertion

implies that pref (v ; k) is false at the state following v : 10. Hence, by the de�nition of �k, �k(v) = v!phi0 .

Because v : 0 � w : 10, v!phi0 < w!phi1 . Therefore, �k(v) < �k(w). 2

Read Precedence: Let r and s be two Read operations. We prove that Read Precedence holds by proving

r : 0 � s : 0 ) (8k :: �k(r) � �k(s)). Assume that r : 0 � s : 0. By Lemma 19, there exists a k-Write

operation w such that w : 10� r : 0 and pref (w ; k) holds at each state between w : 10 and r : 0. By transitivity,

w : 10 � s : 0. By the proof of Proximity, this implies that �k(w) � �k(s). By the proof of Integrity,

�k(w) = �k(r). Therefore, �k(r) � �k(s). 2

Write Precedence: Let r be a Read operation, let v be a j-Write operation, and let w be a k-Write

operation. Assume that v precedes w and �k(w) � �k(r). In the proof of Proximity, we showed that

r : 0 � w : 0 ) �k(r) < �k(w). By the contrapositive of this expression and by our assumption that

�k(w) � �k(r), we conclude that w : 0 � r : 0. Because v precedes w, v : 10 � w : 0. Thus, by transitivity,

v : 10 � r : 0. By the proof of Proximity, this implies that �j(v) � �j(r). 2

4.4 Bounding the Tags

In this section, we show that is possible to bound the size of the tag �elds. As seen in Figure 3, a Read or

Write operation compares the tag �elds of two di�erent elements of Q only if both elements are alive. In

what follows, we show that the tag �elds of the alive elements of a particular component are within some

bounded range, particularly a range of size 4W . Based on this, we then explain how to obtain a construction

that uses only bounded variables. We establish the former by proving that the following expression holds.

(ALIVE (Q; k; i) ^ ALIVE (Q; k; j)) ) (jQ[k; i]:tag�Q[k; j]:tagj � 4W � 1)

(It is actually possible to prove a slightly tighter bound, at the expense of a somewhat longer proof.)

Therefore, if the smallest tag �eld among the alive elements for some component is b, then the tag �elds for

these elements lie within the range b; : : : ; b+ 4W � 1. As explained below, this implies that we can restrict

the size of each tag �eld to range over 0::8W � 2.

The following lemma is used in the proof. This lemma gives us means for determining how much the

\best" tag value for a given component can increase over an interval of states.

Lemma 20: Let v and v0 be k-Write operations such that t j= pref (v ; k) and u j= pref (v 0; k), where

state t either equals or occurs before state u. Furthermore, suppose that Q[k; j]:seq[j] has the same value at

each state in the closed interval [t; u]. If u j= ALIVE (Q; k; j), then v0!tag � v!tag + 4W � 2.
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Proof: Let t, u, v, and v0 be as de�ned in the statement of the lemma. Assume that Q[k; j]:seq[j] has the

same value at every state in the closed interval [t; u] and that u j= ALIVE (Q; k; j). Let D denote the

number of events between t and u of the form p : 10, where p is a k-Write operation. Then, by Lemma 14,

v0!tag � v!tag +D. Therefore, it su�ces to show that D � 4W � 2.

Let j0 = j � W . By the text of the Writer procedure, if p is a (k; j)-Write operation, then the value

of Q[k; j]:seq[j] at the state prior to p : 5 di�ers from its value at the state following p : 5. Hence, because

Q[k; j]:seq[j] has the same value at every state in [t; u], there are no events between t and u of the form

p : 5, where p is a (k; j)-Write operation. Because successive operations of the same Writer write to di�erent

elements of Q, this implies that between t and u there is at most one event p : 10, where p is a (k; j)-Write

operation, and at most one such event, where p is a (k; j0)-Write operation.

Let n 6= j ^ n 6= j0, and let n0 = n�W . In the remainder of the proof, we use q to denote an arbitrary

(k; n)- or (k; n0)-Write operation. We show that there are at most four events of the form q : 10 between t

and u. Assume, to the contrary, that there are at least �ve such events between t and u, and let w : 10 be the

last such event. Let e be the event following state t, and let f be the event prior to state u. Then, because

there are at least �ve events of the form q : 10 between t and u, the following precedence assertion holds.

e � w�3 : 0 � w�3 : 10 � w�2 : 0 � w�2 : 10 � w�1 : 0 � w�1 : 10 � w : 0� w : 10 � f (18)

Without loss of generality, assume that w is a (k; n)-Write operation. Because w : 10 is the last event

between t and u of the form q : 10 (and because successive operations of the same Writer write to di�erent

elements of Q), (18) implies that w : 10 is the last event to write to Q[k; n] before state u.

By assumption, there exists a value c such that Q[k; j]:seq[j] = c at every state in the interval [t; u]. By

(18), this implies that w�3!seq[j] = w�2!seq[j] = w�1!seq[j] = w!seq[j] = c. Hence, w!count[j] = 3. Because

w : 10 is the last event to write to Q[k; n] before state u, we have u j= Q[k; n]:done ^ Q[k; n]:count[j] =

3 ^ Q[k; n]:seq[j] = c. Because u j= Q[k; j]:seq[j] = c, this implies that u j= :ALIVE(Q; k; j), which is

a contradiction.

So, to summarize, there is at most one event between t and u of the form p : 10, if p is a (k; j)-Write

operation; at most one such event, if p is a (k; j0)-Write operation; and at most four such events, if p is

either a (k; n)- or (k; n �W )-Write operation, 0 � n < W and n 6= j modulo W . Therefore, there are at

most 2 + 4(W � 1) such events in total between t and u. Hence, D � 4W � 2. This establishes our proof

obligation. 2

Lemma 21: (ALIVE (Q; k; i) ^ ALIVE(Q; k; j)) ) (jQ[k; i]:tag� Q[k; j]:tagj � 4W � 1).

Proof: Let u be a state, and suppose that u j= ALIVE (Q; k; i) ^ ALIVE (Q; k; j), where i 6= j. Our proof

obligation is to show that u j= jQ[k; i]:tag� Q[k; j]:tagj � 4W � 1.

If u j= Q[k; i]:tag = 0 ^ Q[k; j]:tag = 0, then our proof obligation is satis�ed. So, without loss

of generality, assume that u j= Q[k; j]:tag 6= 0. We have two cases to consider, depending on whether

u j= Q[k; i]:tag = 0.

Case 1: u j= Q[k; i]:tag = 0. In this case, it su�ces to prove that u j= Q[k; j]:tag � 4W � 1. Let v be
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the initial k-Write operation, and let t be the state following v : 10. By the de�nition of the initial state and

our assumption concerning the initial Writes, Q[k; j]:tag = 0 at every state that occurs before t. Because

u j= Q[k; j]:tag 6= 0, this implies that t either equals or occurs before u.

We now show that Q[k; i]:seq[i] has the same value at every state in the closed interval [t; u]. If no (k; i)-

Write operation exists in the given history, then clearly Q[k; i]:seq[i] has the same value at every state in

[t; u]. Otherwise, it su�ces to prove that the event p : 5 does not occur between t and u, where p is the initial

(k; i)-Write operation. (Recall that all (k; i)-Write operations are of the same process and hence are totally

ordered. Hence, assuming there exists a (k; i)-Write operation in the given history, there exists an initial

(k; i)-Write operation that precedes all others.) By Lemma 11, each Write operation assigns a nonzero value

to its tag �eld. Because u j= Q[k; i]:tag = 0, this implies that the event p : 10 occurs after u. By assumption,

u j= ALIVE (Q; k; i). By the de�nition of ALIVE , this implies that u j= Q[k; i]:done. Therefore, because

p is the initial (k; i)-Write operation and p : 10 occurs after u, p : 5 does not occur between t and u.

Because v is the initial k-Write operation, by Lemma 11, t j= pref (v ; k) and v!tag = 1. Because u occurs

after the initial k-Write operation, by the corollary to Lemma 5, there exists a k-Write operation w such

that u j= pref (w ; k). Because Q[k; i]:seq[i] has the same value at every state in the closed interval [t; u], by

Lemma 20, w!tag � v!tag+4W �2. Hence, because v!tag = 1, w!tag � 4W �1. Because u j= pref (w ; k) ^

ALIVE (Q; k; j), by Lemma 13, Q[k; j]:tag � 4W � 1. This establishes our proof obligation.

Case 2: u j= Q[k; i]:tag 6= 0. In this case, the value of Q[k; i]:tag at state u di�ers from its initial value.

Therefore, there exists a (k; i)-Write operation v such that u j= last(Q[k; i]) = v. Similarly, because

u j= Q[k; j]:tag 6= 0, there exists a (k; j)-Write operation w such that u j= last(Q[k; j]) = w.

Because u j= last(Q[k; i]) = v ^ ALIVE (Q; k; i), we have u j= alive(v; k). Similarly, because

u j= last(Q[k; j]) = w ^ ALIVE (Q; k; j), we have u j= alive(w; k). Therefore,

u j= alive(v; k) ^ alive(w; k) : (19)

By (19), Lemma 10, and Lemma 1, u j= Q[k; i]:tag = v!tag ^ Q[k; j]:tag = w!tag. This implies that we

can establish our proof obligation by showing that jv!tag � w!tagj � 4W � 1.

Without loss of generality, assume that v : 6 � w : 6. Let e be the event prior to state u. By (19) and

Lemma 10, u j= after(w : 10). This implies that w : 10 � e. Therefore,

v : 6 � w : 6 � w : 10 � e : (20)

By (20) and Lemma 15, v!tag � w!tag. Also, by (20) and the corollary to Lemma 5, there exists a k-Write

operation w0 such that pref (w 0; k) holds at u (the state following e). By (19) and the de�nition of pref ,

w!tag � w0!tag. Because v!tag � w!tag � w0!tag, to establish our proof obligation, it su�ces to prove that

w0!tag � v!tag + 4W � 1.

We consider two cases, depending on whether v is the initial k-Write operation. First, suppose that v is

the initial k-Write operation. Let t be the state following v : 10. Because v is the initial k-Write operation,

by our assumption concerning the initial Writes, v precedes w. Furthermore, by Lemma 11, t j= pref (v ; k).

Because v precedes w, by (20), we have v : 6 � v : 10 � w : 0 � w : 6 � w : 10 � e. This implies that t occurs

before u. Because last(Q[k; i]) = v at state u, this precedence assertion also implies that last(Q[k; i]) = v
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at each state in the closed interval [t; u]. By Lemma 1, this implies that Q[k; i]:seq[i] has the same value at

every state in [t; u]. Therefore, by Lemma 20, w0!tag � v!tag + 4W � 2.

Now, suppose that v is not the initial k-Write operation. Let t0 be the state prior to v : 6. By our assump-

tion concerning the initial Writes, the initial k-Write operation precedes v. By the corollary to Lemma 5, this

implies that there exists a k-Write operation v0 such that t0 j= pref (v 0; k). By Lemma 13 and the text of the

Writer procedure, v!tag = v0!tag+1. By (20), t0 occurs before u. Moreover, because last(Q[k; i]) = v at state

u, (20) implies that last(Q[k; i]) = v at each state in the closed interval [t0; u]. By Lemma 1, this implies

that Q[k; i]:seq[i] has the same value at every state in [t0; u]. Hence, by Lemma 20, w0!tag � v0!tag+4W �2.

Therefore, w0!tag � v!tag + 4W � 3. 2

We now explain how the original construction given in Figure 3 can be modi�ed to use only bounded vari-

ables. We obtain the bounded construction via a series of correctness-preserving transformations. The �rst

transformation involves the introduction of new �elds in Qtype for holding bounded tags, and corresponding

modi�cations to the Reader and Writer procedures for reading and updating these �elds. Speci�cally, we

change the de�nition of Qtype by adding a new �eld btag, ranging over 0::8W � 2. We require that all btag

�elds, both in Q and in the private variables y and z of each Writer, are initially 0. We modify the Reader

procedure by changing statement 1 to the following.

1: for k = 0 to C � 1 do

select max[k] such that ALIVE(x; k;max[k]) ^

(8n : ALIVE(x; k; n) : (x[k;n]:tag; n) � (x[k;max[k]]:tag; max[k]));

select bmax[k] such that ALIVE(x;k; bmax[k]) ^

(8n : ALIVE(x; k; n) : (x[k;n]:btag; n) �mod 8W�1 (x[k; bmax[k]]:btag; bmax[k]));

val[k]; phi[k] := x[k;max[k]]:val; x[k;max[k]]:phi

od;

In the above code fragment, bmax[k] is a new private variable that ranges over 0::2W � 1. The relation

\�mod 8W�1" is de�ned as follows.

(z[k;n]:btag; n) �mod 8W�1 (z[k;m]:btag; m) � (z[k;m]:btag = z[k;n]:btag ^ n �m) _

(z[k;m]:btag > z[k;n]:btag ^ (z[k;m]:btag � z[k;n]:btag � 4W � 1)) _

(z[k;m]:btag < z[k;n]:btag ^ (z[k;m]:btag + 8W � 1� z[k;n]:btag � 4W � 1))

We modify the Writer procedure by introducing the following two new statements.

80: select bmax such that ALIVE(z; k; bmax) ^

(8n : ALIVE(z;k; n) : (z[k; n]:btag; n) �mod 8W�1 (z[k; bmax]:btag; bmax));

90: btag := z[k; bmax]:btag + 1 modulo 8W � 1;

In the above code fragment, bmax is a new private variable that ranges over 0::2W � 1, and btag is a new

private variable that ranges over 0::8W � 2, initially 0. Statement 80 is inserted after statement 8, and

statement 90 is inserted after statement 9. Finally, we modify statements 5 and 10 of the Writer procedure

so that the value of the private variable btag is assigned to the corresponding btag �eld of Q.

Observe that, with the above transformation, all bmax and btag variables can be viewed as being aux-

iliary. Thus, the construction's correctness is preserved. We now prove two lemmas that show that it is
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possible to interchange the roles of the bmax and btag variables with that of the max and tag variables,

respectively, making the former nonauxiliary and the latter auxiliary. Our �nal transformation will then

involve removing the max and tag variables. The following lemma shows that the unbounded and bounded

tags within each element of Q remain congruent.

Lemma 22: Q[k; j]:btag = Q[k; j]:tag modulo 8W � 1.

Proof: The lemma is proved by induction. The base case follows from the initial conditions speci�ed above

and in Figure 3. Now, assume that the lemma holds for the given history at all states prior to some state

u. We show that the lemma also holds at state u. Note that the lemma could possibly be falsi�ed only

if state u is reached via the occurrence of the event w : 10 for some (k; j)-Write operation w. However, by

the induction hypothesis, the lemma holds at the state prior to w : 6. Thus, at that state, the tag and btag

�elds of each element of Q are congruent. From statements 8, 80, 9, and 90 of the Writer procedure, the

de�nition of �mod 8W�1, and Lemma 21, this implies that w!btag = w!tag modulo 8W � 1. Thus, we have

Q[k; j]:btag = Q[k; j]:tag modulo 8W � 1 at state u. 2

Our �nal lemma shows that the bmax and max variables of each procedure can be interchanged.

Lemma 23: For each Read operation r, r!max[k] = r!bmax[k], and for each Write operation w,

w!max = w!bmax.

Proof: This lemma follows from Lemmas 21 and 22 and the text of the Writer procedure as modi�ed above.

2

Let us now transform the construction by using bmax[k] instead of max[k] when computing val[k] and

phi[k] in the Reader procedure. By Lemma 23, this transformation preserves the construction's correctness.

Note that, with this change, allmax and tag variables can now be viewed as being auxiliary variables. Thus,

all such variables can be removed without a�ecting the construction's correctness. The resulting construction

uses only bounded variables. Furthermore, because this construction was obtained from the original one via

transformations that were shown to preserve the latter's correctness, by Theorem 1, we have the following.

Theorem 2: Each well-formed history of the bounded construction is linearizable. 2

5 Concluding Remarks

According to our results, if each operation of a concurrent program either writes a single shared variable or

reads several shared variables (but not both), then the operations of that program can be implemented from

atomic registers without waiting. By contrast, operations that either write several shared variables, or that

both read and write shared variables cannot, in general, be implemented from atomic registers in a wait-free

manner [5, 16, 18, 27].

34



Our construction shows that multi-writer composite registers can be implemented with space and time

complexity that is very close to that required for implementing single-writer composite registers. (The

time complexity is asymptotically the same, given the assumption of [1] that each process that shares the

constructed register can both read the register and write each component.) Thus, in the quest for optimal

composite register constructions, it probably su�ces to focus on the single-writer case: using our multi-writer

construction, any improvement in complexity in the single-writer case yields a corresponding improvement

for the multi-writer case.

The results of [7, 8, 10] show that composite registers are quite powerful and can be used to implement

a variety of other nontrivial shared data objects without waiting. A complete characterization of the class

of shared data objects that can be implemented in a wait-free manner from composite registers (and hence

atomic registers) remains an important open question. An initial step towards answering this question is

given in [9], where a necessary and su�cient condition for wait-free implementation is established for a class

of objects called \snapshot objects." A snapshot object can be modi�ed by a set of operations that do not

return values, or can be read in its entirety by any process by means of a \snapshot" operation. The condition

for wait-free implementation requires that for any pair of operation invocations, either the two invocations

commute or one overwrites the other. Assuming unbounded space, the su�ciency of this condition follows

from previous results given in [10], where composite registers are used to obtain a wait-free construction

with unbounded space complexity that implements any snapshot object satisfying the commutes/overwrites

condition. A bounded-space construction for a large subclass of snapshot objects is given in [9]. It is further

shown in [9] that no snapshot object that fails to satisfy the commutes/overwrites condition has a wait-free

implementation from atomic registers.
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