Efficient Synchronization under Global EDF Scheduling on
Multiprocessors *

UmaMaheswari C. Devi, Hennadiy Leontyev, and James H. Aswter
Department of Computer Science, The University of NorthoGaa at Chapel Hill

Abstract Pfair schemes. However, all prior work &DF has pertained

We consider coordinating accesses to shared data strﬂdturé)nly to systems of mdependent taske, tasks that do not have
multiprocessor real-time systems scheduled under preib,mnlozfynchromzatlon constraints. Clearly, to be really usehs cur-
global EDF. To our knowledge, prior work on glob&DF has rent theory OfEDF_ sc_heduhng_ must be exter_1ded to properly
focused only on systems of independent tasks. We take &l inﬁ‘dd_r?$5| synchrongtloln r_eﬂuwerrr:ents._ In this pk?per, v_\l_eema
step here towards a generic resource-sharing frameworkiy @n |n|'F|a attempt to ea .W't such requirements by corige
sidering simple shared objects, such as queues, stackiin/ed techniques for coordinating accesses to shared dataigtesct

lists. In many applications, the predominate use of synules Our particular focus in this paper is themmon case/vh!ch

tion constructs is for sharing such simple objects. We arehyo we take to b,e non-nested accesses to simple shared objeets. R
synchronization methods for such objects, one based onequéﬁamh studies have been conducted that support the bedief t

based spin locks and a second based on lock-free algorithnf¥T'Pl€ objects are the predominate form of data sharing imyma
applications. For example, Tsigas and Zhang [16, 17] ana-

. lyzed shared-memory applications from the SPLASH-2 bench-

1 Introduction mark suite [19] and Spark98 kernels suite [13] and found that
In work on real-time systems, multiprocessor platforms B3y almost all synchronization in these applications is fordamata
are of growing importance. This is due to both hardware serfifructures such as buffers, queues, or stacks. Our coosltrsit
such as the emergence of multicore technologies and tha-pré¥s is the common case is also supported anecdotally bystisc
lence of computationally-intensive applications for whaingle- sions that the third author has had on this issue with many re-
processor designs are not sufficient. searchers over the years. Hence, we believe that it is apatep

In work on real-time multiprocessor systems, three badfirst consider supporting short, non-nested object aese®r
scheduling approaches have been considgraditioning, Pfair- object calls) before enabling support for more complex ctsje
based global schedulingndnon-Pfair-based global scheduling Which will require more expensive approaches and exteisire
Under partitioning, tasks are statically assigned to pssees, nel support, such as priority inheritances and ceiling$. [T&o
and a uniprocessor scheduling algorithm is used on each igple object-sharing approaches are therefore considetkis
cessor to schedule its assigned tasks. In contrast, unolealglpaper: queue-based spin locks and lock-free shared-aiget
scheduling, a task may execute on any processor and may 'ffims. Each is considered in turn below.

grate across processors. Pfair scheduling [3] is curréméipnly oeue locks. In the first approach we consider, shared object
known way ofoptimally scheduling recurrent real-time task syssa|is are implemented as critical sections accessed viaegue
tems on a multlprocessor. However, Pfair algo_rlthms scleedygsed spin locks (ogueue locksfor short) invoked within non-
tasks one quantum at a time, and as a result, jobs may be grgamptive regions. In queue-lock algorithms, a task wajts
empted and migrate across processors frequently._ Such OMBSy-waiting, or spinning, on a “spin variable&, continuously
heads can lower the amount of useful work accomplished. testing its status), and waiting tasks are ordered withisgin
Non-Pfair scheduling algorithms require restrictions otal queue” [12]. When a task attempts to acquire a lock, it append
utilization that can approach roughly 50% of the availalie-p jts |ock request onto the end of the spin queue and spins on a
cessing capacity if every deadline is to be met [5]. Howeneer, gpin variable, which is exclusive to it. The task at the hefati®
cent work has shown that if bounded deadline tardiness mcqueue may access the critical section, after which, it wgsdtite
able, then such restrictions can be lifted for gloBBIF [6, 18]. spin variable for the next task in the queue so that it stops sp
These results suggest that gloB&)F (henceforth referred to @Sning. Queue locks have two interesting properties. Finssyb
justEDF) holds great promise as an effective scheduling methggiting is accomplished vimcal spinning in other words, each
for real-time multiprocessor applications: if boundeditaess i55k’s spin variable is chosen such that it can be localljiedc
is tolerable, thefeDF enables applications to be deployed withrp;g strategy ensures that waiting tasks do not generatsexc
out the utilization restrictions and rigidity of partitiog schemes gjye pus traffic. Second, lock requests are granted in FIE®ror
and without the potentially high implementation overheafls 5ng hence, bounds on waiting times can be easily determined.

“Work supported by NSF grants CNS 0309825, CNS 0408996, arid Clf) particular, becau_se we_allow_ such Ic_)cks to be invoked only
0541056. The first author was also supported by an IBM PhiDwighip. within non-preemptive regions, if an object with an accesst ¢

of at moste time units is shared by tasks executing on am- approach may be a reasonable option in the absence of kernel
processor system, then a waiting task (that is, a task ttsaalha support. Hence, as a second contribution, we show how todboun
ready initiated its request) can block for at m@sin(m, c)—1)-e the number of interferences in hard and soft real-time syste
time units before its critical section commences executibn scheduled undegDF.

the common case under consideration, such waiting timébevil]] o

short (as the term here will be small). Note that if a task could’@rformance evaluation. As a third contribution, we present
be preempted within a critical section, then the waitingginfior @ evaluation of the two approaches discussed above using
any tasks that it blocks could lengthen enormously. Thigiés tandomly-generated task systems. In this evaluation, werde
case even with critical sections that are short in duration. mined the loss in total system utilization and the increasart

Though a FIFO lock-granting order may delay higher-prjorifjiness bounds for tasks. Execution times for operationbares
jobs, the alternative, provided by a priority-based queak,Ihas objects when generating random tasks were chosen based on ex

a higher time complexity and requires a more complicatedémppe”memal dgta collected fr.om a real test bed. We fou_nd that
mentation. Moreover, undéDF, introducing priorities within OF SImPple objects, access times are very short, usuallgentt
queue locks does not alter worst-case analysis. Simildity, 2#S range. By extrapolating from these results, we concluded
abling preemptions for tasks that are spinning may seemewalhatretry co_sts in lock-free implementations would alssipeall.

ful. However, the rationale behind spinning is that for sfuoiti- Y/N€N considering randomly-generated tasks, such shoesacc
cal sections, waiting times would typically be much lessittree IMeS were seen to have only a low impact when the number

overhead involved in blocking (as with semaphores) and tate qf shargd—object invocations per task is at most three. We be
suming a process. The solution proposed is in line with views lieve this to be a reasonable upper bound on the degree of con-

pressed by others. For instance, in [20], the founder of Riiki tention in many applications. This is supported by Lampaa]]
recommends accessing simple critical sections non-préezhp who noted that contention for critical sections is rare inelw

To enable the functionality discussed above urgleF, prior designed systen’ll).. Htenr::e,_ our overatll cor;)clu3|oq(j|sdthaﬂnlm t
work on hard and soft real-time analysis unB&F must be ex- common case, object-sharing supportcan be provide r

tended to allow tasks to be comprised of preemptive and ndfithout complicated techniques and with little overhead.
preemptive regions. An important contribution of this pase Related work. As mentioned earlier, to our knowledge, task
to derive a tardiness bound under such a mixed preemptie/ng nchronization under glob&DF has not been considered in
preemptive task model. The analysis used in doing this isagny prior work. The problem has been addressed in some other
on that used previously by Devi and Andersor_l [6] in their Wo'ilﬁultiprocessor scheduling approaches, though. In [14kxan

on EDF and non-preemptivEDF. In fact, the prior bounds pre-tensjon of thepriority-ceiling protoco| which is for use with
sented by them are special cases of the bound presented kgfRaphores, has been presented for partitioned rate-omaot
G_lven these results_, the impact of queue-lock ove_rheadar(-)_n $cheduling. Semaphore-based approaches and the locigree
diness can be easily assessed. Though our main focus in ghiich have been considered for Pfair-scheduled systefs§ in
paper is soft real-time systems, we also show how to acceuntgnq [9], respectively. For use in multiprocessor-basebitie®
queue-lock overheads undeDF in hard real-time systems. Fi-kernels, an approach based on spin locks has been proposed
nally, it is worth noting that unlike in the case of uniprosess, i, [15]. However, this work is mainly concerned with lowegin

a fully non-preemptive solution would not be effective i@ jnterrypt latencies, and not with the schedulability of altime
nating contention to shared resources on multiproces3nss, \yorkload. and the evaluation is entirely empirical.

a simpler solution than queue locks, with comparable lodses

T , The rest of this paper is organized as follows. Our system
to synchronization, seems unlikely.

model is described in Sec. 2. A tardiness bound for tasks with

Lock-free synchronization. Because disabling preemption§0n-preemptive code segments is derived in Sec. 3. An asalys
requires kernel support, the approach discussed above atay’h EDF with the two proposed synchronization approaches for
be suitable in all contexts. As an alternative, we Suggejﬂ»gusboth hard and soft real-time systems is presented in Seex5S
lock-free shared-object algorithms, which work particylavell Presents the above-mentioned experimental evaluatiah fian
for the kinds of simple objects considered in this paper.uchs Nally, Sec. 6 concludes.
algorithms, operations on shared data structures are imgpited
using retry loops”: operations are opt|m|_st|cally att_aleqband 2 System Model and Notation
retried until successful. (See [1] for an in-depth disousf
lock-free synchronization.) Retries are needed in thetevet Towards determining a tardiness bound for tasks synchedniz
concurrent operations by different taskterferewith each other. using queue locks, we consider the schedulingsgaradic task
No kernel support is required. For lock-free objects to kabies systemr comprised of: > 2 sporadic taskslenotedr, . .., T},
in real-time systems, it is important that bounds on interiees onm > 2 identical processors. Each sporadic tdsks charac-
(and hence, retries) be determined. terized by a tuplée;, p;), wherep; is theminimum inter-arrival
While the viability of the lock-free approach faniprocessor time between two consecutive jobs @f (also known as itpe-
based real-time systems is well-known [1], wltiprocessors riod) ande; is theworst-case execution cosf each job ofT;.
lock-free sharing is often considered impractical, beeafslif- The k*" job of T; is denotedl; ;. The release time df; , is
ficulties in computing reasonable retry bounds. Neverdselihis denotedr; . p; is also therelative deadlineof each job of7;.

The absolute deadlinor just, deadline) off; ; is denoted/; ; The derivation involves comparing the allocations to a cetec
(=rik + i) task systemr in a processor sharing§) schedule and aBDF-
Each job of each task; may be comprised of zero or morénybrid schedule, and quantifying the difference between the two.
non-preemptable code segments. The maximum execution tost PS schedule, each job df; is allocated a fractiom; of a
of any such segment of any task is denobggd..! (As noted processor at each instant in the interval between its reltas
earlier, it is our intention to invoke queue-lock algorithmithin and deadline. Becau$é,.,, < m holds and relative deadlines
such segments. In this ca$g,.. will depend on spinning times. equal periods, the total demand at any instant will not exeee
We consider this issue later in Sec. 4.) Tutdization of T; is in aPS schedule, and every job will complete executing exactly
given byu, = e;/p;. Thetotal utilization of 7 is defined as at its deadline.
Usum(T) = >, u;. The minimum execution cost of any task o
is denoted i, (7). 3.1 Definitions
A sporadic task systemis concretdf the release time of every The system start time is assumed to be zero. For anyitimé,
job of each of its tasks is specified, amon-concreteotherwise. ¢~ denotes the timeé— e in the limite — 0+.

The type of the task system is specified only when necesshey. Befinition 1 (active tasks and active jobs): A taskT; is said
results in this paper are for non-concrete task systemsh@nce g peactiveat timet if there exists a joli; ; (called7;'s active
hold for every concrete task system. jobatt) such that, ; <t < d; ;. By our task model, every task

In soft real-time systems, jobs may miss their deadlingg,n have at most one active job at any time.
The tardiness of a jobT;; in a scheduleS is defined as

tardiness(T; ;,S) = max(0,¢t — d; ;), wheret is the time at
which T; ; completes executing i§. If is the maximum tar-
diness of any job of any task of any feasible task system un
scheduling algorithm4, then A is said toensure a tardiness
bound ofx. We assume thadeadline misses do not delay fuPefinition 3 (ready jobs): A pending jobT; ; is said to be
ture job releases That is, even if a job misses its deadline, tH€adyat ¢ in a scheduleS if ¢ > r; ; and all prior jobs ofI;
release time of the next job of that task remains unaltered. have completed execution byn S.

We will refer to the EDF algorithm that is cognizant of LetA(S,T;,t1,t2) denote the total time allocated 1o in an
the non-preemptive sections of a task and executes them rghitrary schedulé for in [t1, ¢2). Then, since iPS; (thePS
preemptively a&EDF-hybrid. (In a real implementation, speciaPChedl_"e forr), T; is allocated a fractiom; at each instant it is
system calls will be required to inform the scheduler whepm-n 8CtVe in[t1, i), we haveA(PS., T;, t1, 13) < (t2 — t1)ui. The
preemptive section is entered and exited.) At any time, érigﬁOtal allocation tor in the same interval RS- is
priority is_ accqrded to jpbs with .earl_ier deadlines, su‘qtecnot A(PS., Tyt t2) < Z (ta — t1)ui = Usum (7) - (t2 — t1).)
preempting a job that is executing in a non-preemptive secti Ticr
Ties are resolved arbitrarily. A job executing in a preempti _ . : .
section may be preempted by an arriving higher-priority3oi The difference between the totgl aIIo_catlonglcup to timet in
may later resume execution on a different processor. Nate t StT. and_ an arbitrary schedu& is defined as théag of taskT;

. . X imet in scheduleS, and is given by
fully-preemptive and non-preemptieDF are special cases o
EDF'hybrld lag(T3,t,S) = A(PS-,T3,0,t) — A(S, T3,0,t). 3)

The tardiness bound we derive is expressed in terms of the
highest task execution costs and utilizations, and thé sys Thetotal lag of a task system at ¢, denotedLAG(7, ¢, S), is
tem utilization. To express the bound easily, wedge{resp., given by
;) denote the'” execution cost (resp., task utilization) in non- LAG(T,t,S) = Z lag(T3, ¢, S)

Definition 2 (pending jobs): T; ; is said to bependingatt in

a scheduleS if r; ; < t andT; ; has not completed execution
8¥rt in S. Note that a job with a deadline at or befarés not
considered to be active aeven if it is pending at.

increasing ordet. A is defined as follows. Trer
A(PS,,7,0,t) — A(S, 7,0,). 4

A~ { Usum(7) — 1, Usum(7) is integral)
[Usum(7)], otherwise Note thatLAG(7,0,S) andlag(7;,0,S) are both zero, and that

. . by (3) and (4), we have the following fos > ¢;.
3 A Tardiness Bound for EDF-hybrid 0g(Th. 12.8) = lag(Ti. 00,) +

In this section, we derive a tardiness bound EDF-hybrid. A(PS,, T, t1,t2) — A(S, T, t1, t2)

Our agpro?jch is(j'[hefs]allme as th::t useddin [6] in derivi;% tardi- LAG(7,t2,8) = LAG(r,t1,S) +

Our contribution here i ntearating e two dervatims APS- 7t t2) ~ASTtnta) O

deriving a bound that is dependent on not just the indivita&k | o for jobs. The notion of lag defined above for tasks and

parameters but also on total system utilization. task sets can be applied to jobs and job sets in an obvious man-
1In fact, tasks with the shortest relative deadline can b&uded in determin- ner. Letr denote a concrete task system, ahca subset of

iNg bmax, Since such tasks cannot block any task UrERF. jobs inT. Let A(PS;,T; ;,t1,t2) andA(S,T; ;, 11, 12) denote
2¢; andy; may not correspond t@; and may not represent the parameters $he allocations tdl; ; in [t1,t2) in PS, and S, respectively.
the same task. Then,lag(T; ;,t,S) = A(PS;,T; j,7i;,t) — A(S, Ti 5,7i,5, 1),

andLAG(¥,t,S) = > . Jev lag(T; ;,t, S). The total allocation Then, determining the smallestindependent of the parameters

in [0, ¢), wheret > 0, to a job that is neither pending @t in S 0f Tz, such that the tardiness ®f ; remains at most + ¢, would
nor is active at~ is the same in bot!$ andPS.., and hence, its by induction imply a tardiness of at mast+ ¢;, for all jobs of

lag att is zero. Therefore, far > 0, we have every taskl in 7. Becauser is arbitrary, the tardiness bound
will hold for every concrete instance of" .
LAG(Y,1,5) = Y. lag(Ti;tS). Our objective is easily met il ; completes by its deadline,
{Ti,; isin ¥, and is pending tq, SO assume otherwise. The completion tim&of depends on
or active att™ } the amount of work that can compete with ; aftert,. Hence,

The above can be rewritten using tdsks as follows (since no We follow the steps below to determine

ob can be scheduled before its release time). (S1) Compute an upper bountdB) on the work (including that

LAG(T,t,S) < Z lag (T3, t,S) (6) due toTy ;) that can compete witlh, ; aftert,.
{Ti € 7: T isin ¥, and is (S2) Determine a lower bound.B) on the amount of such work
pending or active af” } required for the tardiness @t ; to exceed: + e;.
utilizations of tasks with an active job &atn ¥: mostz + ¢, usingUB andLB. 7
Usum (¥, 1) = > ui = Usum(m)- (7)) | et ¥ and¥T be defined as follows.
{T; € 7 : T;,; isin ¥ and is ac-
tive att} ¥ %" setof all jobs with deadlines at mastof tasks inr
The counterparts of (2) and (5) for job sets are as follows. T © setofall jobs ofr that are not in¥

t2 (i.e., jobs with deadlines later thap)
A(PS,, U, t1,t2) = / Usum (W, t)dt < (t2 — t1) - Usum (7)
“ ®) Under EDF-hybrid, competing work forT, ; att, is given by
(i) the amount of work pending a&; for jobs in ¥ plus (i) the
LAG(Y,12,5) = LAG(L,t1,8) + amount of work demanded aftéy by non-preemptive sections
A(PS:, W, t1,12) — A(S, W, 11, t2) (9 of jobs that are not inl but that commenced execution before
o) S tq. Because the deadline of every joblinis at mostt;, the first
Definition 4 (busy and non-busy intervals): A time interval component is given byAG(,t,4,S). To facilitate computing

[t1,t2), Wh?re’f2 > t1, is §aid to bebgsyfor v if all m ProCessors the second component, which will be denoBia, ¥, ¢4, S), we
are executing some job it at each instant in the intervale., N0 yefine the following.

processor is ever idle in the interval or executes a job ndt.in
An interval[¢1, t2) that is not busy forl is said to benon-busy
for ¥, and ismaximally non-busif every time instant if¢;, t2)
is non-busy, and eithef = 0 or¢; is busy.

If at leastUs,. (¥, t) tasks are executing their jobsinat any
instantt in [t1,¢2) in a scheduleS, then the total allocation in
S to jobs in¥ is at least the allocation thdt receives in &S
schedule. Therefore, by (9), thé\G of ¥ at ¢, cannot exceed
that att;, and we have the following lemma.

Definition 5 (priority inversions, blocking jobs, and blocked
jobs): UnderEDF-hybrid, a priority inversionoccurs when a
ready, higher-priority job waits while one or more loweiepity
jobs execute in non-preemptive sections. Under such sosnar
the waiting higher-priority jobs are said to bckedjobs, while
executing lower-priority jobs are said to b&ockingjobs. Note
that a pending, higher-priority job is not considered bkxtkin-
less it is readyi(e., no prior job of the same task is pending).

Recall that in a non-busy interval fok, fewer thanm jobs

Lemma 1 If LAG(U,t 4+ 4,S) > LAG(T,t,S), wheres > 0 from ¥ execute. In arEDF-hybrid schedule, such a non-busy
ands is a schedule for, then[t, ¢ + §) is a non-busy interval for interval for & can be classified into two types depending on
. Furthermore, there exists at least one insténin [t,# +) Whethera job inl is executing while a ready job from is wait-

at which fewer thai/,,,,,, (¥, ') tasks are executing their jobs ining. We will refer to the two types asiockingandnon-blocking
U, non-busy intervals. Alocking, non-busy intervas one in which

a job in ¥ is executing while a ready job fron¥ is waiting,
. . whereas aon-blocking, non-busy intervad one in which fewer
3.2 Deriving a Tardiness Bound thanm jobs fromW¥ are executing, but there does not exist a ready
Given an arbitrary non-concrete task systefh, we are inter- joh in ¥ that is waiting. Definitions of maximal versions of these

ested in determining the maximum tardiness of any job of apyervals are analogous to that of a maximally non-busyruate
task in any concrete instantiation o . Let be a concrete in- given in Def. 4.

stantiation ofr?, Ty ;ajobinTt, ty = d¢ ;, andS anEDF-hybrid

schedule for- with the following property. Definition 6 (pending blocking jobs (8) and work (B)): The

set of all jobs in¥ that commence executing a non-preemptive
(P) Thetardiness of every job of every tagkin = with deadline section beforet and may continue to execute the same non-
less thart, is at mostr + e, in S, wherex > 0. preemptive section dtin S is denoted3(, ¥, ¢, S) and the total

amount of work pending atfor such non-preemptive sections is(J) In [t4, '), no job in¥ executes in a non-preemptive section

denotedB(r, ¥,t,S). that did not commence befotg or in a preemptive section,
We now determine an upper bound on the sum of the and at mosin — 1 tasks have jobs i or non-preemptive
two components of the competing work described abdes, sections that commenced befosgoending at or aftet’.

LAG(W, 14, S) + B(7, ¥, 14, S) (step (S1)). Hence, no job off can be blocked by a job i¥ at or aftert’.

Therefore, iff; ; has not completed executing befeger y, then
eitherT; ; or a prior job ofT}, should be executing at. If T, ; is

By Lemma 1, theLAG of ¥ can increase only across a norxeécutingat’, then becausé < ¢,+y holds,T; ; will complete
busy interval forl. Similarly, note that if8(r, ¥, ¢4, S) is non- €xecuting beforé; +y +e¢ — 9, <t +a + ;. The remaining
zero, then one or more jobs i should be executing in non-POsSibility is thay > 1 holds, and that a job df; that is prior to
preemptive sections af, that is,; should be a non-busy in-T¢.; is executing at’. In this caseTy ; could not h/ave executed
stant. Hence, to determine an upper bound on the value fgforéts, and hencé, = 0 andy = = holds. Thust’ < i4+y =
we are seeking, it suffices to consider only non-busy interiva ta +* holds. Lett. denote the time at whiclf; ;. completes
[0, 4). By reasoning about the number of tasks that can exect#fgcuting. Then, by (R} <tq—pe+a+er < tq+a holds. If
in and just before a non-busy interval and their lags, tHedohg ‘e = ' holds, then by (J)%,; can commence executionft<

lemma (proved in an appendix) can be shown to hold. tq + z (on the same processor as that on whigh_, executed),
and hence, can complete executinghy- = + e,. On the other

Lemma 2 LAG(U,t4,8) + B(,¥,t4,8) < (X2 ,(z - u; + hand, iftc <t holds, then becaus ;_; completes execution
-b

3.2.1 Upper Bound onLAG(®, ¢4, S) + B(7, ¥, t4,S)

=1

max(€;, bmax))) + (M — A) - bnax. att., T, ; is ready at’. Therefore, by (J)I,, ; cannot be blocked
att'. Hence,I; ; commences execution Ht<tg+y=tqg+=x
and completes executing by + x + ey. |

3.2.2 Lower Bound onLAG + B (Step (S2))

Lemma 3 If LAG(Y,t4,S) + B(7, ¥, t4,S) < mz + ey, then, 3.2.3 Finishing Up (Step (S3))
tardiness(Ty ;,S) is at moste + ey. Solving for 2 using the upper bound obAG + B given by
Lemma 2 and the lower bound on the same quantity, as given

Proof: To prove the lemma, we show th&t ; completes execut- by Lemma 3, required for tardiness'Bf ; to exceed: + ey, i.e.,
ing bytq + = + e If j > 1, thend,,;—1 < ts — p, holds, and splving forz in (Z?Zl(:v-uﬁma)((q,bmax)))+(m—A)-bmax <

hence by (P), we have the following. mzx + ey yields
(R) Ty,_1 completes executing by, + z + e, — py, for j > 1. . (i, max(€i, bmax)) + (m = A) - bnax — o)
- m — Zﬁ\:l M
Hence, ifx equals the right-hand side of the above inequality,

then the tardiness df, ; would not exceed + e,. A value ofz
thatis independent of the parametergdpfs obtained by replac-

Let §; < e, denote the amount of time thd} ; has executed
for before timet,. Then, the amount of work pending @y ;
att, is e — ;. Recall that the total amount of work pendin
att, for jobs in ¥ and th? non-pre.emptive sections of jobslin ing e; by ey in (10). By inducting over the jobs ofin deadline
that commenced execution befaggas given byLAG(Y, t4, S) + order. we have the following theorem

B(r, ¥, tq4,S), which, by the statement of the lemma, is at mosf e 9 ‘

mx + eg. Lety = x + §;/m. At the risk of abusing terms, let aTheorem 1 Let 7 be as defined earlier. L&y, (1) < m and
time interval aftet; in which each processor is busy executinglat b,,,.x be the maximum length of any non-preemptive section of
job of ¥ or that non-preemptive part of a job&{(r, ¥, t4, S) that any task inr. Then,EDF-hybrid ensures a tardiness of at most
commenced execution befargbe referred to as a busy intervalz + e to every taskl’, in 7, where

We consider the following two cases.

A
i—1 Max\€;, bmax)) + (m — A)- bmax — €min
Case 1:[tq, tq + y) isbusy. Inthis case, the amountof work = = (i () +() .

A
completed inty, tq + y) is exactlymy = mzx + &,, and hence, m = iy Hi
the amount of work pending &4 + y for jobs in ¥ and the non-

preemptive sections of jobs # that commenced execution be-

foret, is at mostnz + ep — (ma + 6¢) = e¢ — §¢. Hence, ifT; ; 4 Analysis with Synchronization
does not execute ift4, ts + y), then this pending work corre-

sponds to that of ;. Note thatl}; cannot be preempted once iy_Ve now show how to extend the analysissiF to synchroniza-
commences execution aftey. Thus, the latest time that, ; re- 10N with the queue-lock and lock-free approaches.
sumes (or begins, & = 0) execution aftet; ist4+y, and hence,

T,,; completes execution at or befatety+e,—d; < tq+x+ey. 4.1 AnalySIS with Queue Locks

Under queue-lock-based synchronization, a job may be subje
Case 2:[tq,tqa + y) is not busy. Lett’ denote the first non- to blocking under two scenarios) the job is executing and re-
busy instant int4, ts + y). By the definition of a busy interval quires access to a resource for which one or more jobs have al-
used in this lemma, this implies the following. ready enqueued their requests onto the spin queyg) tne job

becomes ready when one or more lower-priority jobs (withrlat retry loop of any task
deadlines) are in their non-preemptive sections, eithemsang def

. . . ' i v: = set of all tasks that share one or more objects @ith
or executing a critical section, and no processor is avialathe def
former lengthens the amount of time a job spins on a lock. Benc fi» = number of retry loops df}; that access the same
to account for its effect, the execution cost of each ciieation object as accessed by some retry looff'pf

has to be increased by the maximum amount of time for which 5. 4t 5 314iness bound fdF, in the absence of interferences
entry into the critical section can be delayed after reqfarghe
lock is initiated. As explained in the introduction, comipgtthis

is straightforward. Also, the worst-case execution costaahT’;
has to be increased by the cumulative increase in the eracuti))
costs of all its critical sections. We denote the inflateccexien A Pound on the number of interferences to any joblpfin a
cost of7; ase!®). The overhead of non-preemptivity during spirdiven interval of time is given by the following.

ning and in critical-section execution is accounted for Bjng
the inflated critical-section execution costs in schedlitalbests
and tardiness-bound computations, as explained below.

. A+63
Analysis for soft real-time. A tardiness bound for with 18 8tmos® g, o ([Z=]+1) - B

shared resources is obtained by usi}§l instead ofe; and proof: The number of interferences @ due to7}, in an inter-
u§s) = el(-s)/pi instead ofu;, for all 7, and the maximum inflatedval of lengthA depends on the number of jobs Bf that can
execution cost of any critical section of any task#igrx in The- potentially execute in such an interval. The deadline ofehe
orem 1. Note that bounded tardiness :@nprocessors can beliest job of 7}, that can execute ift,t + A) is aftert — &/ (be-
guaranteed only i€{*) < p; holds for alli and>""_, u{*) < m. cause tardiness fd¥ is at most!), and hence, its release is after
Analysis for hard real-time. Under EDF, and hence undert — (px + 6}). At most[”’“*ﬁ%} jobs of T}, can be released
EDF-hybrid, a task with a longer relative deadline cannot hg [t — p, — 6/, + A). Hence, ifT}, shares an object witff;,
blocked by a task with a shorter or equal relative deadlirig. [1then the number of interferences, and hence, failures, alifig t
Thus, if b; denotes the maximum execution cost of any nofy [t,t+ A)is bounded from above by (number of jobslafthat
preemptable segment @f;, and tasks are ordered in the norcan potentially execute in the intervaf) (the number of retry
decreasing order of their relative deadlines, then eactoidd |oops ofT}, that share an object with,). Summing over all the
can be blocked for at mo&t; = max;1<;<n b; time units. Fur- tasks that share objects wilh, the claim follows. [
thermore, since jobs may not miss deadlines and relativd-dea

lines equal periods, no job can execute after the next johef Analysis for hard real-time. In a hard real-time system, every
same task is released. Hence, each joban be blocked, by job J of T; needs to complete executing within an interval of
a lower-priority job executing in its non-preemptive sentias €ngthpi. Hence, the lengtih of the interval in whichJ can
soon as/ is released onlyife., only at the beginning of its pe—gi mTtﬁLfgridngQirf i‘t mg%ﬂa'gzoéi’é cjtignhggdsstlg(;rdi\éetg/
riod). Therefore, guaranteeing that, under preem@b€, each ;% "7 ' : : :
job of each task};, can be allocated;, units of time in the inter- interferences in retry loops, and hence, failed object saes; is
val [a+ By, a+ px), wherea is the arrival time of the job anf, ez(.“") < e+ Z ([&w +1) - Bik - Pmax. (11)

is as defined above, is sufficient to ensure that all deadiiiles Tiey, | PF

be met whenr is scheduled undegEDF-hybrid. Hence, a sim-

ple sufficient schedulability test f@&DF-hybrid is given by the An EDF schedulability testin whicbz(.s) is used instead ef; will
following. For eachr, comprised of tasks with non-preemptablserve as a sufficient schedulability test for lock-free $yoniza-
code segments, let be defined as follows:’ % {77,..., 77}, tionunderEDF. (Recall that there is no blocking with lock-free.)

def
whereT] = (ei,pi — Bi). If p; — B;i > e;, forall Ti, and apalysis for soft real-time. In the absence of interferences,

7' is schedulable undéDF, thenT is schedulable undé&fDF- eyery job of7; would complete executing within an interval of
hybrid. Schedulability undeEDF can be determined using testfangthp, + ;. However, accounting for interferences can lead
provided in [7, 2, 4]. When analyzing with queue locks, aswitg higher execution costs for the tasks, which in turn cau lea
soft real-time analysis above,”’ should be used instead@f to a higher tardiness bound. An increase in the tardinesscbou
. . L amounts to an increase in the duratitrof the interval in which
4.2 Analysis with Lock-Free Synchronization each job can be interfered. Furthéf,is unknown to begin with.
With lock-free synchronization, a bound on the number aéint Thys, bounding the number of interferences, and hencénesi
ferences that can lead to failed retry loop iterations iZv@gin- - ¢, ta5ks in soft real-time systems is a bit complicated aaslth
itr?rt\r/1ae| g;g?gfgizisetﬁ) gfsdﬁtne(;g'?heedl'oggy%’reevee;pr;)%eamt&n be done iteratively. One set of iterative formulas is giveiot.
not block and there are no non-preemptive segments. To ai&%su_perscrlpt of |nd|cate_s thatjthe value is computed in ytie
stating results, we first define the following. |terat|on.) The computation af is by Theorem 1 and that of
/! is by Claim 1. A7 is an upper bound in iterationto the

2

rmax = maximum execution cost of a single iteration of any length of the interval in which each job @f can be interfered.

to any retry loop of any task

57 % atardiness bound fdF; in the presence of interferences

Claim 1 For any taskT;, the total number of times that all retry
loops combined of any of its jobs can fail in an inter{tat + A)

is based on the measured object-access costs reportedaizbve

the fact that the size of a quantum is typically at least 1ms on
e

el = e uwl = =% modern systems. Note that the higher the total executiofy cos
K b v the lower the synchronization overhead would be.
5 = iz (€ Tmax) ~ Cnn For each task set generated, the inflation to task utilinatmd
' m—y ' the total system utilization were computed as describecdn &
Al = pi40d for both the queue-lock and lock-free approaches. Restdts a
. A 4§ plotted in Fig. 1. The number of samples for each data poithitgn
et = et > ([Li’;‘ + 1) Bik - Tmax graphs was around 2,000 (except insets (e) and (f), and the cu
Ty €, k for m = 8 andu,.x = 0.5 in inset (c), for which, as explained

) L . y)) below, a large percentage of the samples was discarded)aFabr
In iterationj, we assj;ir?e tha, is at most;, and continue iter- o) time systems, overhead is reported in terms of theséser

ating until either(i) e;"" = ¢/ for all 4, i.e,, when the tardinesstg total utilization, while for soft real-time systems, pentage

bound converges for all the tasks,(@) >,] > m, in which increase to the tardiness bound is reported, in additiom.tte

case bounded tardiness cannot be guaranteed @ocessors. comparison of tardiness bounds with and without syncheeniz
) tion to be meaningful, task sets whose total utilizationseexied

5 Performance Evaluation m upon inflation were discarded in computing increases tda-tard

In this section, we present an evaluation of the two appresch N€SS- Similarly, any_task_set with at least a task who_s_eatibn

As a first step, we determined typical execution times for coffxceeded 1.0 upon inflation was excluded in determining theth
mon operations (such as insert, delete, lookup) on simpte d3crease to utilization and tardiness.
structures guarded using queue locks. The execution tirees w Synchronization overheads for queue locks is shown ingnset
measured on an SMP system with four 2.7 GHz Pentium 4 p(a)—(c) of Fig. 1. Referring to insets (a) and (b), when= 4,
cessors, 2 GB memory, 8 KB L1 data cache, and 512 KB unifitsg increase to the total utilization with queue locks is a@istn
L2 cache running Linux 2.6. The data structures considerzé w0.25 6.25% of 4) for & < 3 and is at most 0.5 (12.5% of 4)
an eight-word buffer, a stack, a queue, a doubly-linkeddist a for & < 6. Form = 8, the required inflation is at most 1.0
binary heap. (The list and heap were initialized with 50 rsomted (12.5% of 8) wherk < 2. In inset (a), the utilization loss for
grew to up to 1,000 and 30,000 nodes, respectively.) The-maxi.x = 0.5 is lower than that fok,., = 0.2 due to a decrease
mum time required for any operation, including the time ieggh in the number of tasks. The trend in inset (b) is different due
to queue a lock request to the spin queue, but excluding the spo a higher total utilization for the soft real-time case.rélthe
ning time, was in the 1-fs range. Though lock-free implemeneurves foruy,., = 0.3 anduy., = 0.5 coincide. No task set was
tations of the same operations using retry loops differ ftbeir discarded with queue locks for the hard case, and wheh 2
queue-lock based counterparts, by extrapolating from biose Or umax < 0.3 for the soft case. However, for the soft case,
measurements, we concluded that execution costs of raipgloaround 2% of the task sets were discardedugy,. > 0.3 and
would also fall in the same range. Hence, in our simulatiorls= 2. Inset (c) shows that for the task systems generated, the
we varied contention-free costs for object operationsarnify increase to tardiness is around 10% wiher= 4 (resp.,m = 8)
in the 1.36.5 us range for both the approaches. andk < 3 (resp.,k < 2), which are also reasonable. Also,

Next, sample data was generated as follows. Simulations wie percentage of task sets discarded for these cases imahini
conducted form = 4 andm = 8 processors. To reasonablyrhus, when the number of object operations per task is at most
constrain the experiments, task parameters were restastéol- two or threej.e., when the degree of sharing is reasonable (which
lows. The maximum number of taska/, in each task set waswe believe is the common case), queue locks provide an efficie
restricted to 20 whem = 4, and to 40 whemn = 8. The max- synchronization solution. On the other hand, we believe dha
imum utilization of any taskyu.,.x, Was systematically choserhigher degrees of sharing, even more complex synchroaizati
from the set{0.1,0.2,0.3,0.5}. Tasks were added to each taskpproaches may not be capable of performing much bettes. Thi
set until either the limit on the number of tasks or on theltot& because, as sharing increases, opportunities for camtlyr
system utilization was reached. The utilization of eack taas executing the tasks decreases, leading to wasted prodassor
uniformly distributed in the rang@.0, tmax]- to the point where execution is reduced to an almost selenti

For each task set, the maximum number of object operatiomne at extreme degrees of sharing.

per task/, was chosen randomly between 1 and 10 and the totalnsets (d) and (e) depict the inflation in utilization witheth
number of shared objects was fixed% . Thus, on an average,ock-free approach, for the hard and soft cases, respéctite
each object was shared among2 tasks. The actual number ofexpected, the performance of this approach is poorer thaneju
object operations per task was uniformly distributed betw# locks. Though the plots in inset (e) seem comparable to, @nd i
andk, where the cost of each operation in the absence of cenme cases better than, those in inset (d), in computingviire o
tention was chosen as specified above. Finally, the execotist heads in inset (e), a high percentage of task sets had to be dis
of each task, excluding that due to operations on shareatsbjecarded as the inflated utilizations of tasks exceeded 1 1Chdrol

was uniformly distributed in the rang&0.0, 500.0] us. There is task systems, no task set was discarded and the inflatioa-is re
not much guidance on how to assign execution costs. Ourehaionable forn = 4, if k£ < 3, and form = 8, if k is at most one.

Util. overhead vs. No. of critical sections Util. overhead vs. No. of critical sections Increase in tardiness vs. No. of critical sections

35 » 09
Umax=0.5 m=8 —— 4 o0g | Umax=0.5m=8 ——
. A 3| Umax=0.3 m=8 —-«-- c : Umax=0.3 m=8 =%~ -7
= = Umax=0.2 m=8 --=-- B 07| Umax=02m=8 --x-- -
=1 =] 25 Umax=0.1 m=8 ----&--- I) Umax=0.1 m=8 ----&--- o -
= = ’ Umax=0.5 m=4 —-s-- Y 0.6 Unmax=05m=4 —-s-- g -
= = = . o
o o - =
- = 2 i) 0.5
£ =] = @
@ © 15 o 04
%] %] o
3 s £ o3
2 2 2 o2
£ £ =
05 S gz
p JEET o g =
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Max. no. of critical sections per task Max. no. of critical sections per task Max. no. of critical sections per task
@) (b) (c)
Util. overhead vs. No. of critical sections Util. overhead vs. No. of critical sections Increase in tardiness vs. No. of critical sections
12 12 o 14
=8 Umax=0.3 m=8 —+— 3 Umax=]
. 10 =8 . 10| Umax=0.2m=8 —-- £ 12] Umax=0. L
= =8 - = Umax=0.1 m=8 - -=-- S *
5 = 5 Umax=0.3 m= 8 10
< 8 =4 < 8] Umax=0.2m=4 —-=--- pas
b= =4 s Umax=0.1 m=4 . =
= =)
£ £ §
o o =
g 2 2
k] 2
[9) N
- [hd F*
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Max. no. of critical sections per task Max. no. of critical sections per task Max. no. of critical sections per task
(d) (e) ®

Figure 1:Synchronization overheads for queue locks and the loekdpproach. Inflation in total utilization for hard tasksw() queue locks an¢t) lock-free,

and for soft tasks witt{b) queue locks ande) lock-free. Relative increase in tardiness oy queue locks angf) lock-free. (The order of the legends and curves
coincide in all insets except in (e) and (f). Discrepanciesetare due to the increase in the % of discarded task setinwitasing total utilization.)

However, for the soft case, the performance (especiallyptir- their use may be sufficient if the nesting is not deep and tbjec
centage of undiscarded task sets) is poor except# 4, k < 2, are acquired in order. The overhead of the Iock—free appreac
andunm., < 0.2. Even here, the increase in tardiness (refer indégher than that of queue locks; nevertheless, this approey

(f)) is close to a 100%, which may not be acceptable. One r&g-reasonable in the absence of kernel support when the mumbe
son for the poor performance may be the presence of tasks WitRrocessors and the number of object calls are both low.

extremely low utilizations. For instance, several task sentain References
a few tasks with utilizations as low ag,.x/100. The number

of interferences to such low-utilization tasks could ptily be [1] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-timemating
in the hundreds, leading to high retry costs. We believetthat with lock-free shared objectsACM Transactions on Computer
results would be much better if the ratio of the maximum to-min Systems15(2):134-165, May 1997.

imum utilization is restricted to at most 10.0. Another @afor [2] 1. p, Baker. Multiprocessor EDF and deadline monotoofeslula-

the poor results is the pessimism in the analysis. Howewer, i bjlity analysis. InProceedings of the 24th IEEE Real-Time Systems
proving the analysis does not seem to be simple, eitherllffina Symposiumpages 120-129, December 2003.
the disparity in the hard and soft real-time performanceaisly 3]

i) S S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Prapoate
due to the higher uninflated total utilization for the latter

progress: A notion of fairness in resource allocatiéslgorithmicg
15(6):600-625, June 1996.

. [4] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedhility

6 Conclusion analysis of EDF on multiprocessor platforms. Rroceedings of
the 17th Euromicro Conference on Real-Time Systearges 209—

We have taken an initial step towards developing a generic 218, July 2005.
resource-sharing framework for sporadic real-time task®d- 5] 3. carpenter, S. Funk, P. Holman, A. Srinivasan, J. Asalerand
uled on a multiprocessor under glolizDF. Based on evidence * * s garyah. A categorization of real-time multiprocessbestiling
that suggests that a predominate use of synchronization con proplems and algorithms. In Joseph Y. Leung, edktandbook on
structs is for coordinating accesses to simple objects $8Ch scheduling Algorithms, Methods, and Modedages 30.1-30.19.
queues, stacks, and linked lists, we have proposed and-evalu chapman Hall/CRC, Boca Raton, Florida, 2004.
ated two approaches for sharing such simple objects: orexlbas , ,
on queue-based spin locks, and a second based on lock-freel8] Y- Devi and J. Anderson. Tardiness bounds under globaF ED
gorithms. Results of performance-evaluation studies stia schedu_llng ona multlproces_sor. Mroceedings of the 26th IEEE
queue locks impose very little overhead and may be very appro Real-Time Systems Symposipages 330-341, December 2005.
priate for both hard and soft real-time systems when the mumb7] J. Goossens, S. Funk, and S. Baruah. Priority-driveedglng
of shared-object operations per task is small. Though saisl of periodic task systems on multiprocessoReal-Time Systems
may not be appropriate for nested critical sections, in gdne 25(2-3):187-205, 2003.

[8] P. Holman and J. Anderson. Locking in Pfair-scheduledtimu To see why this lemma holds, note that, becdts®) is maxi-
processor systems. [Rroceedings of the 23rd IEEE Real-Timenally non-busy and is non-blocking, at every instant in thisr-
Systems Symposiupages 149-158, December 2002. val, at least one processor is idle or a jobliris executing while

[9] P.Holman and J. Anderson. Object sharing in Pfair-saletimul- no job in¥ is waiting. The absolute deadline of a jobdis after
tiprocessor systems. Froceedings of the 14th Euromicro Confert;. Hence, ifT}, is not executing at’—, then it has no pending

ence on Real-Time Systemages 111-120, June 2002. work att’—, and hence, itlag att’ is at most zero. On the other
[10] L.Lamport. Afast mutual exclusion algorithtACM Transactions hand, if T}, is executing at’—, but was not executing some time

on Computer Systems(1):1-11, February 1987. earlier in[t, '), then it must have had no pending work when its
[11] J.W.S. Liu.Real-Time System®rentice Hall, 2000. most-recent job was released and must have executed continu

[12] J. Mellor-Crummey and M. Scott. Algorithms for scalaigyn- OUSly since then. In this case too, its lag cannot exceed zero
chronization on shared-memory multiprocessodCM Transac- T he lemmathat follows bounds theg of a task at any arbitrary
tions on Computer Systen®1):21-65, February 1991. time at or before,.

[13] D. O’Hallaron. Spark98: Sparse matrix kernels for gitamemory

and message passing systems. Technical Report CMU-C387
Carnegie Mellon University, Oct. 1997.

[14] R. Rajkumar. Real-time synchronization protocols &rared proof: If no job of T}, is pending at, thenT}’s lag at ¢ is at
memory multiprocessors. Froceedings of the International Con-, 1<t zero and the lemma holds trivially. Hence, assume that o
ference on Distributed Computing Systepeges 116123, 1990. or more jobs of}, are pending at and letT}, , be the earliest

[15] H. Takada and K. Sakamura. A novel approach to mU|tiprBending job. Let, , < ex be the amount of7time thdf, , ex-
grammed multiprocessor synchronization for real-timenks. . a4 for before 7We prove the lemma for the cade ’ <t
In Proceedings of the 18th IEEE Real-Time Systems Symposi%”aving the casel,, > ¢ to the reader. The amoun7tqof W,Ol’k

134-143, 1997. ; 4= s
pages : pending forT}, , att is ey — d0y,4. T} is allocated at mosty,

[16] P. Tsigas and Y. Zhang. Evaluating the performance of- N%ime at every instant aftef , in PS,. Thereforelag(T}, t,S) <

blocking synchronization on shared-memory multiprocessdn _] _ .
Proceedings of the 2001 ACM SIGMETRICS Int! Conference o _ %-:a) Uk €k — diq hOlds. By (P), the tardiness Gt ,
IS at mostz + e;. Thereforet + ey — di,q < diq + = + €k,

Measurement and Modeling of Computer Systerages 320—-321. =

ACM Press. 2001. ie,t—dig < x4+ 4 holds. Substituting fot — dj, 4 in the
expression fofag, we arrive at the lemma. |

_i_emma 5 lag(Tk,t,S) < x-uy + ey, holds for every tasl{}, for
any time instant < ¢,.

[17] P. Tsigas and Y. Zhang. Integrating non-blocking syoofsation

in parallel applications: performance advantages and adetb- \\e next make the following three claims, which will be used
gies. InProceedings of the Third Int'l Workshop on Software ang, proving later lemmas.

Performancepages 55-67. ACM Press, 2002.
[18] P. Valente and G. Lipari. An upper bound to the latendssoft Claim _2 Let[t, ') bea maxw_nally blo_cklng, noQ-busy!ntervaI in
real-time tasks scheduled by EDF on multiprocessor®raceed- [0,%4) in S. Then, the following hold(i) ¢ > 0. (ii) Any job that

ings of the 26th IEEE Real-Time Systems Symposiages 311— is in ¥ and is executing at, wheret < ¢ < t/, executes a single
320, December 2005. non-preemptive section continuoushyfin,).

[19] S.Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. THeiP2 proof: Since every job oft has an earlier deadline than a job in
programs: Characterization find methqdologlcal consiiders In. 7, ajobin¥ cannot be blocked at time 0 by a jobin Therefore
Ejrrz(;esgéliszc:—tgg iggg Intl Symposium on Computer Archite - 5|4, By the definition oft, '), no job of ¥ (including

_ A _ _ _ jobsthatare blocked &} is blocked by a job in at¢—. Hence, it

[20] V. Yadalken.. Against priority inheritance. Technicaport, Finite cannot be the case that a joblris blocked at due to a job in¥
State Machine Labs, June 2002. commencing executing a non-preemptive sectian Rather, the

blocking non-preemptive section should have commencezlexe

Appendix: Proof of Lemma 2 tion beforet and the blocked job becomes ready @iecause it is

either released or preempted by a higher-priority job that i

In this appendix, we give a proof of Lemma 2. For concisenedél). Similarly, since every instant ift, ') is a blocking instant

we omit specifying the schedu (the final argument) in func- &t which one or more ready jobs ¥fare waiting, no job in can

tionsLAG andB. be executing in a preemptive section and no non-preemgore s

In [6], we showed that if a task does not execute continuoufi§n of a job in¥ can commence execution i t'). The claim

within a non-busy interval in aBDF schedule, then itag at the follows from these facts. u

end of the interval is at most zero. This property holds fooa-n

blocking, non-busy interval of aBDF-hybrid schedule also andClaim 3 Let |, ') be a maximally blocking, non-busy interval in

is stated formally below. [0,£4) in S such thatLAG(¥,#') > LAG(¥,t). Then, att and

t~, at mostA tasks have their jobs i executing.(Note: The

Lemma 4 (from [6]) Let [t,t') be a maximally non—blocking,taskS executing atand#~ need not be the sanje.

non-busy interval if0,¢,) in S and letT}, be a task inr with
ajob in ¥ that is active or pending &t~ . If T}, does not executeProof: BecauseLAG(¥,¢') > LAG(¥,t) holds, by Lemma 1
continuously int, t'), thenlag (7}, t") < 0. and (1), there exists at least one time instantheret < { < t,

such that at most tasks have executing jobsinat?. Letk < A < Z (z - ui +e;) {by Lemma 5§
denote the number of such tasks. Then, sinaé) is a blocking, Ti€a

non-busy interval, no processor is idle in the interval. é&&en k

exactlym — k jobs from¥ are executing at By Claim 2,¢ > 0 < D (@opite) (13)

i=1

and each of then — k jobs is executing continuously i~ . L
{by (12) and the definintions ¢f; ande; }

Hence, at~ andt, at mostk < A tasks may have executing jobs

inw. u Hence, Part (ii) follows, becauge< A (from Part (i)). Finally,

_ . since at least jobs in¥ are executing at~, at mostmn — k jobs
Claim 4 Foranyk < A, (3_;_y - pi +€)+ (m—k)-bmax < of ¥ can be executing at~. The maximum time that all such
(Zle x - i + max(€;, bmax)) + (m — A) - bax. jobs in ¥ can execute for afterin non-preemptive sections that

: b
Proof: The claim trivially holds fork = A. Below, we prove for commenced befort i.e., B(r, ,¢') is at most(m — k) - bmax.

k< A Hence, by (13)LAG(W,) + B(, U, ') < S°F (¢ i+ &) +
k (m_ k) 'bmax S Zi\:l('rul +InaX(€1‘, bmax)) + (m_A) 'bmaX1
(Z T i+ €) + (m — k) - bomax where the last inequality follows from Claim 4. |
=1
- (Zk:m i+ e) + (m = A) - banax + (A — k) - bmax Lemma 7 Let[t,t') be a maximally blocking, non-busy interval
=1 in [0,¢4) in S such thatk < A tasks have their jobs i¥ ex-
k ecuting att. Then, we have the following(i) LAG(¥,t') <
< Q@ g+ max(€s, bnax)) + (M — A) - binax (R 2 i+ €) + bmax, and(ii) LAG(U, ') + B(7, ¥, ') <

=1

A
+ Z max(€;, bmax)
i=k+1
A
(Z Z - i + max(€;, bmax)) + (M — A) - bmax

=1

(Zé\:l x - p; + max(e;, bmax)) + (M — A) - bax.

Proof: Let J denote the set of all jobs @f that are executing at
and hence are blocking one or more jobslofLetb = |J|.Since
k jobs from¥ are executing dtand[t, t') is a blocking, non-busy
interval (hence, no processor is idle), we have

IN

[| 19l =b=m — k. (14)

The next two lemmas show how to boubdG at the end of a By our definition oft and Claim 2, it follows that~ is a non-
non-blocking, non-busy interval and a blocking, non-buggr- blocking, non-busy instant. By (14) and Claim 2 again, itdots
val. that at leasin — k jobs of U are executing at—. Therefore, at

) . _ mostk jobs fromW can be executing d@t”. Since no job ofl
Lemma 6 Let[t,t') be a maximally non-blocking, non-busy inthat is not executing at a non-blocking, non-busy instant
terval in [0,¢4) in S such that eithel AG(¥, ') > LAG(¥,t) pending (and hence no such job may have a podiiyatt), by
or at mostA tasks are executing at~. Let k denote the num- (6), we have the following.
ber of tasks that are executing jobsincontinuously int,t').

Then,() k < A, (i) LAG(T,#) < 3% (2 - s +), and(iii) ~ HACY1)

LAG(,t)+B(¥,t') < (Zle x - pu; + max(€;, bmax)) + (M — < Z lag(T3, t,S)

A) - bax- {T, € 7 : T;; isin ¥, and is

Proof: Let o denote the subset of all tasksrirthat are executing executing at J

jobs in¥ continuously int, t'). Then,|a| = k holds. If at most < Z x-ui +e; {by Lemma §
A tasks are executing &t then clearlyk < A holds. On the {T; € 7 : Ty, isin ¥, and is

other hand, iLAG(P, ') > LAG(¥, t) holds, then, by Lemma 1, executing at ™~ }

k
> (z-ps+e) {because, as discussed above, at rost
=1

la] = k < max {Usum(\ll,f)} < Usum(T). (12)
t<i<t!

Becausé: is an integer, by (12) and (1), we hake< A, which
establishes Part (i).

By (6), theLAG of U at¢' is at most the sum of thiags at’ gy (g), inPS., the total allocation ta in [t, #') cannot exceed
of all tasks inr with at least one job i’ that is active or pend- (t' — 1) Usum (7). By (14) and Part (ii) of Claim 2, at most — k

ing at¢'~. By Lemma 4, the lag of such a task that does rl'f&tbs of ¥ execute at any instant fin). Hence, because, ¢') is

) L
execute continuously it, ') is /a'g most zero. Hence, to dete a maximally blocking interval, at leastjobs fromU execute at
mine an upper bound drAG att’, itis sufficient to determine ang o jnstant irft, ') in S. Therefore, the total allocation ® in
upper bound on the sum &fgs of such tasks that are executing i t least: - (' — t). Hence, by (9), we have

continuously inft, t'), i.e., tasks ina . Thus,

tasks with jobs inl are executing at™ } (15)

LAG(T, ¢)

LAG(Y, ') <) lag(Ti,t',S) < (' =) (Usum(7) — k) + LAG(,)

T;€a

10

k . .
Proof: We consider the following three cases based on the nature
(' =DA+1-k)+ 3 pi+e) {by@and(15) ofs,. ' wing u

<
i=1
k
< bmax - (A+1-k)+) (z-pi+e) Case 1:t is a busy instant. In this case, becausg is busy,
=1 by definition,B(r, ¥,t4) = 0. By Lemma 1, thdAG of ¥ can
{because, by Claim 2, every job $fexecutes a single non- jncrease only across a non-busy interval. Therefbs at ¢,
preemptive section ift, '), and hencet’ — ¢ < bmax} is at most that at the end of the latest non-busy instant befor
k tq. If no non-busy interval exists if0, t4), thenLAG(¥,t;) <
= bmax - (A= k) +bmax + > (- pi + &) LAG(,0) = 0. Otherwise, by Part (ii) of Lemma 6 and Part (i)
< b (A— k) + b =t of Lemma 7 is at mosZ?:1 (2 u; + max(€;, bmax)) + bmax- BY

N (1), m — A > 1, and hence, the lemma follows.
k
Y Tty e {because: < A}
1=1 =1

A
< Z(l’ - pti + max(€;, bmax)) + bmax. {becausé: < A}

i=1

Case 2:t is a blocking, non-busy instant. Lett <t be the
earliest instant beforg such thaft, ¢4) is a maximally blocking,
non-busy interval. Lek denote the number of tasks whose jobs

.)) in ¥ are executing at We consider the following two subcases.
That establishes Part (i). Next, we determine an upper bound

on the sum ofLAG(¥,¢') and B(r, ¥,¢'). For this, we first

determine an upper bound @Y7, ¥,¢). By Claim 2, every Subcase 2(a):LAG(¥,ty) > LAG(¥,t) ork < A. |If
job of W that is executing anywhere i, ') is in J. Further- LAG(¥,t;) > LAG(V,?) holds, then by Claim 3y < A holds.
more, every such job executes a single non-preemptiveoseciiherefore, for this subcase, the lemma follows from Paytofii
in [t—,t'). Hence, for any time: in [¢,t'), B(7, ¥, u) is given Lemma?7.

by the amount of work pending atfor the non-preemptive sec-

tions executing at of jobs inJ. Let J be a job inJ. Then, the

amount of work that can be pending for its non-preemptive s&xdbcase 2(b):k > A and LAG(¥,ta) < LAG(¥,t). By
tion executing at is at mosthy,.«. Therefore, by (14), we havethe conditions of this subcase, it follows th#G att, is bounded

B(7, U,) < (m — k) - bmax, and hence, by (15), we have from above by the AG at the end of the latest non-blocking or
T ’ ' ' blocking non-busy interval beforeacross whichLAG increases.

LAG(V, 1) + B(7, ¥,1) If no such interval exists, thebAG(7,t;) < LAG(7,0) = 0.
k Otherwise, by Part (ii) of Lemma 6 and Part (i) of Lemma 7, we
< (Zm © i + 62‘) + (m - k:) : bmax have
27\1 A
< O« i+ max(er, bmax)) + (M — A) - brax, (16) LAG(Y, ta) < (& - i +) + bmax. an
i=1 i=1
where the last inequality follows from Claim 4. Sincek > A holds, at mostn — A — 1 jobs from ¥ can be

Finally, we are left with determining an upper bound on th&ecuting at and by Claim 2, at most. — A — 1 such jobs can
sum OfLAG andB at#'. Let X < B(r,¥,1) denote the total pe executing at, as well. The amount of time such jobs can
amount of time that jobs ifi execute on alin processorsif¥, t'). execute past; in non-preemptive sections is at mést.. Thus,

(For example, if there are two jobs i with one job executing (7 W, ¢;) < (m — A — 1) - bay holds. Therefore, by (17),
for the entire interval and the second executing for thelfiatitof LAG(,) + B(r, U, tg) < (ZA

. ’ e . i=1 L Mg + max(eiabmax)) +
the |n.terval, thenX = 3(t.—.t)/2_.) Becausét, t') is maxma]ly (m — A) - byax holds.
blocking, no processor is idle ift,t’). Hence, the total time
allocated to jobs inP in [¢,t'), A(S, ¥, t,t'), is equal tan - (¢ —
t) — X. In PS,, jobs in ¥ could execute for at mosf,..,(7) - Case 3:t, is a non-blocking, non-busy instant. The argu-
(t' —t) time,i.e, A(PS,, U, ¢,t') < Usum(7)- (' —t). Therefore, ments for this case are somewhat similar to that used in Case 2
LAG(U,t') = LAG(U,t) + A(PS,, U, t,t') — A(S,U,¢,t') < Lettdenote the earliest time instant befegesuch thaft,) is
LAG(U, t) + (Usum(7) —m) - (' —t) + X < LAG(V,t) + amaximally non-blocking, non-busy interval. If either abshA
X. However, since jobs i execute for a total time of in tasks execute their jobs ¥ at¢; or LAG(V, ta) > LAG(Y, 1),
[t,t'), the pending work for non-preemptive sections of jobs fRen the lemma holds for this case by Part (iii) of Lemma 6.
g, and hence, those ifi(r, U, ') att’, i.e, B(r, ¥, '), is at most The remaining possibility is that at least+ 1 tasks execute
B(r,V,t) — X. Thus,LAG(, ') + B(r, ¥, #') < LAG(¥,¢) + theirjobs in¥ at¢; andLAG(V,t5) < LAG(¥,?) holds. In
B(r, ¥, ¢), which by (16), establishes Part (ii) of the lemmal this caseAG at 4 is given by theLAG at the end of the lat-
est non-busy interval beforeacross whichLAG increases. If no
Finally, Lemmas 6 and 7 can be used to establish the folloyyrch interval exists, thebAG(¥, t;) < LAG(V,0) = 0. Oth-

ing. A erwise, by Part (ii) of Lemma 6, and Claim 3 and Part (i) of
Lemma 2 LAG(¥,tq) + B(7,¥,ta) < >25,(- i + Lemma7, theLAG at the end of the latest non-busy interval be-
max(€;, bmax)) + (m — A) - bpax. foret across whichLAG increases, and hendeAG(¥, t,), is at

11

most(Zé\:1 x - i + €;) + bmax. Because atleadt + 1 tasks ex-
ecute their jobs i att; at mostn — A — 1 jobs from¥ can be
executing at; . The amount of time each such job can execute
pastt, in a non-preemptive section that commenced befgis

at mosty,ax. Thus,B(7, ¥, t4) < (m—A—1)-bmax, and hence,
LAG(P,tq) + B(7, U, t4) < (Z?:l x - i + max(€;, bmax)) +

(m — A) - byax holds. []

12

