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Abstract

Multicore architectures, which have multiple processing
units on a single chip, have been adopted by most chip man-
ufacturers. Most such chips contain on-chip caches that are
shared by some or all of the cores on the chip. To effec-
tively use the available processing resources on such plat-
forms, scheduling methods must be aware of these caches. In
this paper, we explore various heuristics that attempt to im-
prove cache performance when scheduling real-time work-
loads. Such heuristics are applicable when multiple multi-
threaded applications exist with large working sets. In ad-
dition, we present a case study that shows how our best-
performing heuristics can improve the end-user performance
of video encoding applications.

1 Introduction

Multicore architectures, which contain multiple processing
cores on a single chip, have been adopted by most chip man-
ufacturers due to the thermal- and power-related limitations
of single-core designs. Most chip manufacturers have re-
leased dual-core chips, Intel and AMD each have four-core
chips on the market, and Sun’s Niagara and more recent Ni-
agara 2 processors are eight-core chips with multiple hard-
ware threads per core. Furthermore, Intel has announced
plans to release chips with as many as 80 cores within five
years [10].

In most proposed multicore platforms, different cores
share on-chip caches. To effectively exploit the available
parallelism in these systems, such caches must not be-
come performance bottlenecks. In fact, the issue of ef-
ficient cache usage on multicore platforms is one of the
most important problems with which chip makers are cur-
rently grappling. In this paper, we consider this issue in
the context of soft real-time applications. To reasonably
constrain the discussion, we henceforth limit attention to
the widely-studied multicore architecture shown in Fig. 1,
where all cores are symmetric, single-threaded, and share
an L2 cache. Both aforementioned Sun processors contain
an L2 cache shared by all eight cores; also, Intel and AMD
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Figure 1: Multicore architecture.

have announced quad-
core machines where all
cores share a cache (prior
architectures had pairs
of cores sharing a cache,
even on quad-core chips).

The goal of this paper
is to explore ways to im-
prove shared cache per-
formance by encouraging or discouraging the co-scheduling
of groups of tasks based on their expected cache impact.
We want to co-schedule task groups that reference a com-
mon region of memory, and avoid co-scheduling groups that
will thrash the cache. It can be shown that the problem of
encouraging or discouraging co-scheduling while ensuring
real-time constraints is NP-hard in the strong sense.

In this paper, we assume that tasks are organized into mul-
tithreaded tasks (MTTs), where each MTT consists of peri-
odic (sequential) tasks, which may have different execution
costs but a common period. Each MTT has a working set
(WS) that is shared by all tasks within it. The WS is the
region of memory referenced by tasks within an MTT—the
size of this region is known as the working set size (WSS)
of the MTT. MTTs are useful for specifying groups of coop-
erating tasks. (Note that an ordinary periodic task is just a
“single-threaded” MTT.) MTTs arise naturally in many set-
tings. For example, multiple threads could perform different
functions on the same MPEG video frame at the same rate,
as given by the desired frame rate.

In recent work, we showed that it is possible to discourage
high-cache-impact tasks from being co-scheduled while en-
suring real-time constraints [2], and that it is possible to en-
courage the co-scheduling of MTTs [1]. Similar issues have
also been explored in the context of throughput-oriented sys-
tems (e.g., in [11, 12, 4, 16, 19]). Unfortunately, since the
method in [2] places restrictions on parallelism that violate
assumptions made in [1], prior work does not support both
encouragement and discouragement simultaneously.

Fig. 2 presents an example for a three-core platform where
encouraging and discouraging co-scheduling can be useful.
Assuming the use of earliest-deadline-first (EDF) schedul-
ing, jobs J and K have the highest priority at time 0, but
would thrash the shared cache if co-scheduled. We can avoid
thrashing by scheduling V instead of K . Additionally, since
V and W are part of the same MTT, we want to encourage



W to be scheduled when V is scheduled. To accomplish
this, the priorities of V and W need to be increased. How-
ever, this may negatively impact real-time guarantees later in
the schedule.

Job J
768K WSS

Job K
768K WSS

Job W

Job V

256K WSS
MTT

0 1 2 3

moved here
Priority points

Figure 2: An example of where
promoting jobs can improve cache
performance, assuming the WSSs
shown and a cache size of 1 MB.

Fortunately, recent
work in [17] provides a
mechanism to manipu-
late job priorities while
still providing real-time
guarantees. This work
assigns priority points
to every eligible job
and prioritizes jobs
by increasing priority
point values. For exam-
ple, when using EDF
scheduling, the priority point of each job is its deadline. If
the priority point of every job is within a window bounded
by its release time and deadline, then job priorities are
window-constrained. It is shown in [17] that under any
global scheduling algorithm with window-constrained
priorities, deadline tardiness is bounded provided the system
is not over-utilized, even if the priority point of a job moves
arbitrarily within its window. (Such a guarantee is not
possible under partitioned scheduling.) Knowing this, we
can promote jobs V andW in Fig. 2 by moving their priority
points to the current time. Doing so causes V and W to
be scheduled next, thus improving cache performance, and
still allows real-time guarantees to be made. This method
of promoting jobs indirectly discourages the co-scheduling
of certain groups of tasks by encouraging other groups
to be co-scheduled instead. Related work on symbiotic
scheduling [14, 18, 21] takes a similar “discouragement
by encouragement” approach; however, this work lacks
analysis for validating real-time constraints.

Improved cache performance can directly result in re-
duced execution costs for real-time tasks. We can take ad-
vantage of these reduced costs in several ways, such as using
the same platform to support a larger workload, or perform-
ing additional computation that increases task utility. We
elaborate on this in our case study, presented in Sec. 4.3.

While promoting jobs can lead to improved cache perfor-
mance in the near term, it might result in poor cache perfor-
mance later. For example, if we always promote jobs from
MTTs with the smallest WSSs, then eligible jobs from MTTs
with larger WSSs will be pushed later in the schedule. Thus,
the choice of when to promote jobs, and which jobs to pro-
mote, can have a substantial impact on the effectiveness of
this method, and is not always straightforward. For this rea-
son, we propose and evaluate a large number of heuristics
within this paper. Each heuristic represents a set of design
decisions that dictate when to promote jobs and which jobs
to promote. These heuristics are described in detail in Sec. 3.

Potential applications. Several types of applications
could benefit from cache-aware real-time scheduling ap-
proaches. First, MPEG-2 video encoding applications have
soft real-time constraints and are compute- and memory-
intensive. Given the current multicore trend, these applica-
tions will need to become multithreaded as the demanded
video quality increases. Video encoding requires a search
as part of motion estimation—improving cache performance
may allow for a more extensive search, thus improving video
quality. Alternately, a digital content provider might be able
to encode more videos using the same hardware.

Second, high-performance computing applications typi-
cally involve splitting large tasks into manageable pieces that
can be handled by individual processors. As one might ex-
pect, such tasks are compute- and memory-intensive. It is
often beneficial if all processors have made approximately
the same amount of progress at any point in time, due to
the need to periodically synchronize processors. If we repre-
sented such an application as one or more MTTs, then real-
time constraints and MTT co-scheduling could help to main-
tain the same pace among all processors, improve cache per-
formance, and reduce the overall time to complete a task.

Finally, real-time graphics applications are typically as-
sisted by GPUs. Due to the nature of GPU hardware and
graphics processing, such applications tend to be inherently
parallel (i.e., multithreaded) and memory-intensive. These
applications also have real-time requirements (hence their
name, and the need for GPU assistance), and are likely to
run alongside other applications on the same platform. Our
heuristics may be useful to improve cache performance and
reduce execution requirements for such applications, and
those with similar characteristics, which may become more
common as interest in treating GPUs as co-processors for
general computation continues to increase [13].

Summary of contributions. In this paper, we propose
and evaluate cache-aware scheduling heuristics for real-
time tasks on multicore platforms, assuming a tick-based
global scheduling approach. We show that our heuris-
tics result in better cache performance than global EDF
(G-EDF) scheduling, yet still guarantee bounded tardiness.
We demonstrate the performance impact of our method
through experiments, including a video encoding case study.

The rest of this paper is organized as follows. In Sec. 2, we
present an overview of our task model and other background
information. Then, in Sec. 3, we describe our heuristics, and
derive a tardiness bound for these heuristics. In Sec. 4, we
present experimental results, and in Sec. 5, we conclude.

2 Background
In this section, we briefly introduce our task model as related
to MTTs and some other background information.



For simplicity, we consider only periodic task systems,
though our results apply to sporadic task systems as well.1

In a periodic task system τ , each task T releases successive
jobs T1, T2, . . ., and is characterized by a worst-case per-job
execution cost e(T ) and a period p(T ). Every p(T ) time
units, starting at time 0, T releases a new job with an exe-
cution cost of e(T ) time units. The quantity e(T )/p(T ) is
called the utilization of T , denoted u(T ).

The deadline d(Tk) of a job Tk coincides with the release
time of job Tk+1. If job Tk completes its execution after time
d(Tk), then it is tardy. For some scheduling algorithms, tar-
diness may be bounded by some amountB, meaning that any
job Tk will complete execution no later than time d(Tk)+B.

Execution costs and periods are assumed to be integral. In
this paper, we consider only tick-based scheduling, where
scheduling decisions are made at each quantum boundary
(i.e., “tick”). Scheduling quanta can be any convenient size
such that execution costs and periods are integral. Tick-based
scheduling simplifies our heuristics by making it easier to
predict cache performance. We briefly discuss the impact of
allowing scheduling between ticks later.

Our goal is to schedule on M processors (or cores) a set
of periodic tasks of total utilization at most M , where some
tasks correspond to threads within an MTT. We make the
simplifying assumption throughout this paper that each of
an MTT’s threads has the same execution cost (as well as
period)—later, we briefly discuss how this restriction could
be removed. We also assume that each MTT has at most M
threads, the maximum parallelism achievable on M cores.

G-EDF scheduling. Under G-EDF scheduling, jobs are
scheduled in order of increasing deadlines, with ties broken
arbitrarily. All of our heuristics use G-EDF until a specified
cache-utilization threshold is reached.2 G-EDF is not opti-
mal, so tasks may miss their deadlines; however, deadline
tardiness under G-EDF is bounded [9].

3 Heuristics
The heuristics presented in this paper are used to make
scheduling decisions at each tick in an effort to improve
cache performance based on MTT information such as WSS.
Note that our heuristics do not perform any scheduling, mon-
itoring, or other activity between ticks—later in this sec-
tion, we briefly consider allowing scheduling between ticks.
Scheduling decisions are made iteratively over all cores—
even when jobs are promoted, jobs that have already been
scheduled on some core at the current tick are unaffected.

Several rules, stated below, are common to all heuristics.
1 In sporadic task systems, task periods within an MTT must still coincide.
2 We use G-EDF since prior work has shown that it results in better schedu-

lability for soft real-time systems than other approaches [7]. Note also
that controlling co-scheduling under partitioned scheduling is problematic
because processors are scheduled independently.

MAKESCHEDULINGDECISIONS(numCores, cacheSize)

� Initialize variable to track sum of MTT WSSs
1 usedCache := 0;

� Make scheduling decisions by iterating over all cores
2 for i := 1 to numCores do

� Assign each job a priority point equal to its deadline
3 ASSIGNJOBPRIORITYPOINTSEQUALTODEADLINES();

� Promote job if applicable
4 if (No eligible urgent jobs) then
5 C := max(0, cacheSize − usedCache);
6 N := numCores − i + 1;
7 if (usedCache

cacheSize
≥ Lost-cause Threshold) then

8 Promote job using Lost-cause Policy;
9 elseif (usedCache

cacheSize
≥ Cache Utilization Threshold) then

10 Promote job using Cache-aware Policy;
11 if (Use phantom tasks∨

Avoid scheduling partially-eligible MTTs) then
12 Adjust job promotion policy accordingly;

fi
fi
� Else no job is promoted, use G-EDF

fi
13 Schedule job on core i according to Priorities rule;
14 mtt := MTT of scheduled job;
15 if (scheduled job is first job of mtt scheduled at this tick) then
16 usedCache := usedCache + WSS(mtt);

fi
17 Set urgent flags and promote/demote jobs according to

Promoted Jobs and Urgent Jobs rules;
od

Figure 3: Pseudo-code for all heuristics, invoked each tick.

• Promoted Jobs. A promoted job is given a new pri-
ority point that is equal to the minimum of its deadline
and the current time (so that tardy jobs are not penal-
ized). A promoted job is highly encouraged, but not
guaranteed, to be scheduled next. This rule ensures that
priority points are window-constrained and tardiness is
bounded. Job promotions are only valid until the next
scheduling decision is made, with the exception of ur-
gent jobs, described next.

• Urgent Jobs. When a job Ti is scheduled, where task
T corresponds to a thread within some MTT R, and T
is the first thread in R to schedule its ith job at this tick,
each job Ui, where U is also a thread of R and U �= T ,
is flagged urgent and promoted until it too is scheduled.
Note that this only occurs if Ti itself is not urgent. Ur-
gent jobs remain promoted until they are next sched-
uled, and no non-urgent job can be promoted while eli-
gible urgent jobs exist. This rule encourages jobs from
the same MTT to be scheduled together.

• Priorities. Released jobs are scheduled in increasing
order of their current priority points (including promo-
tions). Ties are broken in favor of promoted jobs, since
scheduling such jobs is expected to improve cache per-
formance. (There is no tie-breaking rule related to ur-
gent jobs, since urgent and non-urgent promoted jobs
cannot both exist when making a scheduling decision.)

Fig. 3 presents pseudo-code that describes how scheduling



��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1/4−util.

1/2 util.
256K

1/2 util.
768K

768K
1/2 util.

MTT

threads
256K

0 1 2 3 4

(b)

1/2 util.
256K

1/2 util.
768K

768K
1/2 util.

MTT

threads
256K

0 1 2 3 4

(a)

1/4−util.

50% cache
utilization
threshold
reached

Figure 4: Two-core schedules for a set of five tasks (three tasks
of util. 1/2, and one MTT with two 1/4-util. threads) with (a)
G-EDF scheduling and (b) one of our heuristics. WSSs are shown
along with the task utilizations. Thrashing occurs during “hatched”
quanta, assuming a shared cache size of 1 MB, and black triangles
indicate the new priority points of promoted jobs.

decisions are made by each heuristic. Note that some thresh-
olds and policies used in the pseudo-code are undefined, as
indicated by bold type. A heuristic is defined in terms of the
thresholds and policies that it employs; however, similari-
ties exist among all heuristics. First, all heuristics encourage
jobs to be scheduled by promoting them. Second, all heuris-
tics encourage the co-scheduling of MTTs in the same way.
Third, all heuristics keep track of cache utilization, defined
as the sum of the WSSs of all MTTs with jobs scheduled
during this tick divided by the shared cache size. For exam-
ple, if jobs from two MTTs with WSSs of 256K and 512K
have been scheduled, then the current cache utilization of a
1 MB cache would be 75%. Fourth, all heuristics use G-EDF
scheduling until the cache utilization reaches a cache utiliza-
tion threshold, at which point a cache-aware policy is em-
ployed. Finally, if cache utilization reaches the lost-cause
threshold, then a lost-cause policy is employed. Note that,
while WSS is the cache utilization metric used in this pa-
per, other metrics based on more sophisticated cache profil-
ing techniques could be used instead. This might require the
creation of policies that are suitable for the new metric.

Fig. 4 presents an example of how cache performance can
be improved over G-EDF scheduling using our heuristics.
The heuristic shown uses a 50% cache utilization threshold, a
very high lost-cause threshold, and a cache-aware policy that
promotes jobs from the MTT with the smallest WSS. At time
0, the job of the 1/2-utilization task with the smallest WSS
is promoted by the cache-aware policy, while at time 1, the
second task of the MTT is promoted and flagged urgent by
the Urgent Jobs rule. The Priorities rule causes the promoted
jobs to be scheduled next (at times 0 and 2) in both cases.

Note that a large number of tardy jobs can make it very
difficult to influence scheduling decisions through job pro-
motion, but this is necessary if any real-time guarantees are
to be made. By making intelligent scheduling decisions be-
fore these scenarios arise, we can minimize negative impacts

on cache performance when we “lose control” of the system
in this manner. In the discussion of policies that follows, we
return to this issue.

3.1 Policies

We now present the policies that define a heuristic. While
thresholds specify when to promote a job, policies specify
which job to promote. In the discussion that follows, we
speak of promoting MTTs instead of jobs. This means that
we choose a single eligible job within that MTT to pro-
mote; however, by the Urgent Jobs rule, all other eligible
jobs within that MTT will be flagged urgent and promoted
as soon as the promoted job is scheduled. By the Priorities
rule, co-scheduling of the MTT will be encouraged.

Cache-aware policy. This policy is employed when cache
utilization reaches the cache utilization threshold. This pol-
icy is used for the current tick until all cores are scheduled
or cache utilization reaches the lost-cause threshold. Each
policy chooses an MTT to promote based on the remaining
“un-utilized” cache C and “free” cores N (see Fig. 3). We
present five different policies in the paper. Assume that the
thread count and WSS of an MTT R are denoted tc(R) and
WSS(R), respectively. Note that, for all policies, we only
promote an MTT if it contains eligible jobs.

1. Promote R with the smallest WSS(R).

2. Promote R with the largest WSS(R) that does not ex-
ceed C, or exceeds it by the smallest amount if no such
MTT exists.

3. Promote R with the smallest WSS(R)/tc(R) ratio.

4. PromoteR with the largest WSS(R)/tc(R) ratio, where
WSS(R) does not exceed C, or exceeds it by the small-
est amount if no such MTT exists.

5. Promote R with the largest WSS(R)/tc(R) ratio that
does not exceed C/N , or exceeds it by the smallest
amount if no such MTT exists.

When C = 0, policies (2) and (4) become equivalent to (1),
and policy (5) becomes equivalent to (3).

Insets (b) through (f) of Fig. 5 show the differences be-
tween policies when scheduling the task set in inset (a).
Policies (1) and (3) make locally greedy decisions that im-
prove cache performance in the near term, but result in cache
thrashing later, since the remaining eligible jobs are from
MTTs with large WSSs. Over time, these policies would
result in periodic cache thrashing for this task set. Policies
(2) and (4) attempt to minimize the impact of high-cache-
impact MTTs by scheduling them whenever they will not
cause thrashing. As a result, the jobs that are eligible later
are from lower-cache-impact MTTs, cache utilizations are
lower, and thrashing is less extreme. However, these policies
differ in their definition of a “high-cache-impact” MTT. We
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Figure 5: Four-core schedules demonstrating a variety of cache-aware policies, assuming a cache utilization threshold of 0%, an infinite
lost-cause threshold, and a 1 MB shared cache. Each task has an execution cost of one and period of five. The numbers in boxes indicate
the MTT that is scheduled on a core during a quantum—for example, in inset (b), three jobs of MTT 1 are scheduled on cores 1-3 between
times 3 and 4. Hatching indicates cache thrashing, i.e., cache util. exceeding 100%—cross-hatching indicates a cache util. exceeding 150%.
Inset (a) shows the task set to be scheduled, and insets (b)-(f) show schedules when using cache-aware policies (1)-(5), respectively. Insets
(g) and (h) show schedules when using policy (4) and phantom tasks—for inset (h), we also avoid scheduling partially-eligible MTTs.

believe that the definition used by policy (4) is more accurate,
as MTTs with large WSS

thread count ratios demand a large amount
of the cache, yet are easily co-scheduled with jobs from other
MTTs. This makes such MTTs quite difficult to schedule
when cache performance is a concern. Finally, policy (5) is
similar to (4), except that it tends to delay scheduling MTTs
with the highest cache impact; this results in overall perfor-
mance that is similar to policies (1) and (3).

While some policies were not very effective in this ex-
ample, they may be more effective when cache utilization
thresholds are higher, depending on which MTTs are sched-
uled before the threshold is reached. Therefore, it is not clear
which policy will result in the best performance in all cases,
or if such a policy exists—we use experiments to assist us in
making recommendations.

Lost-cause policy. Each heuristic also employs a lost-
cause policy when cache utilization reaches the lost-cause
threshold. Once this threshold is reached, we assume that
poor cache performance will be inevitable during the current
quantum. We present three policies for when this occurs.

1. Revert to G-EDF.

2. Promote R with the largest WSS(R).

3. Promote R with the largest WSS(R)/tc(R) ratio.

Policy (1) attempts to reduce average tardiness, while poli-
cies (2) and (3) schedule high-cache-impact MTTs so that it
is easier to avoid thrashing in future quanta, since near-term

cache performance is essentially guaranteed to be poor. Note
that policies (2) and (3) can backfire—since high-cache-
impact MTTs will be most negatively affected by cache
thrashing, and such MTTs generate the majority of memory
references, the overall cache miss rate might increase rather
than decrease.

Phantom tasks. If the system is not fully utilized, then it
may be possible to idle one or more cores to prevent thrash-
ing. A heuristic can choose to idle cores by promoting jobs
of phantom tasks, which are single-threaded tasks that have a
period equal to the hyperperiod of the real-time workload, an
execution cost of one, and a WSS of zero. Phantom tasks rep-
resent the available idle time. A heuristic will only promote
jobs of phantom tasks to avoid cache thrashing—if the num-
ber of eligible jobs of phantom tasks is at least the number of
eligible jobs of the promoted MTT, and the WSS of the pro-
moted MTT is larger than C, then jobs of the phantom tasks
will be promoted instead. If phantom tasks are used, then a
job of a phantom task must be scheduled whenever a core is
idle, even if no “real” jobs are eligible. Fig. 5(g) shows the
impact of using phantom tasks along with cache-aware pol-
icy (4), which allows cores 2 and 3 to be idle at time 0, and
core 3 to be idle at time 1. As a result, cache thrashing is
avoided entirely.

Partially-eligible MTTs. We consider an MTT R to be
partially eligible either because fewer than tc(R) jobs are
eligible at the time that it is considered for promotion by the



cache-aware policy, or tc(R) exceeds the current value of
N . We may want to avoid scheduling such MTTs since their
WSs will need to be referenced in at least one future quan-
tum in addition to the quantum that follows the current tick.
If a heuristic chooses to avoid scheduling partially-eligible
MTTs, then such MTTs are promoted only when all other
MTTs have WSSs that are greater than C. Fig. 5(h) shows
how this is used along with policy (4) and phantom tasks.
At time 2, we avoid scheduling MTT 2 in favor of MTT 10,
which allows all jobs of MTT 2 to be co-scheduled at time 3.
As a result, the amount of time that the WS of MTT 2 must be
present in the cache decreases by 50%. Note that we choose
to schedule a partially-eligible MTT to avoid cache thrash-
ing before scheduling phantom tasks, as the former choice
allows some real work to be accomplished.

Scheduling between ticks. We now consider allowing
scheduling decisions to be made between ticks, e.g., when
jobs complete between ticks. In this case, by letting N = 1
and defining C based on the MTTs executing on the other
M − 1 cores, we can use the same heuristics used at each
tick. However, since job priorities change over time due to
promotions, jobs scheduled between ticks may be quickly
preempted at the next tick. Additionally, reliably predict-
ing per-quantum cache performance becomes more difficult.
These factors can decrease cache performance and may off-
set any utilization gains.

Removing the same-execution-cost restriction. If MTT
threads are allowed to have different execution costs, then
the policies described above that make decisions based on
MTT thread counts must be changed. In particular, we can
redefine tc(R) for an MTTR to be the number of threads that
have not completed their current job, and redefine a partially-
eligible MTT with respect to this new definition. In the ex-
periments that follow, we assume MTTs with the same exe-
cution costs for all threads, and leave further exploration of
this issue as future work.

3.2 Tardiness Bound

Our tardiness bound follows directly from the work in [17],
since job priorities are window-constrained for all heuris-
tics. The tardiness for a task T k ∈ τ scheduled using our
heuristics is thus x + e(T k), where x is defined as follows
(from [17], with minor changes for compatibility with our
notation from Sec. 2).

x =
EL +A(k)
M − UL

(1)

In (1),EL (UL) is the sum of the M − 1 highest execution
costs (utilizations) over all tasks in τ , andM is the number of
processing cores. A(k) is defined as follows (also from [17]).

A(k) = (M−1)·ρ−e(T k)+
∑

T j∈τ\Tk

(
�ψk+φj

p(T j) �+1
)
·e(T j)

φh (resp., ψh) indicates the amount by which the priority
point of a job of T h can be before its release time (resp., af-
ter its deadline), and ρ = maxTh∈τ (φh) + maxTh∈τ (ψh).
Since our heuristics never allow a job’s priority point to
be less than its release time or greater than its deadline,
φh = ψh = 0 for all T h ∈ τ , and ρ = 0. Therefore, A(k)
becomes

∑
T j∈τ\Tk e(T j)−e(T k), and our tardiness bound

is
EL+

P
T j∈τ\Tk e(T

j)−e(Tk)

M−UL
+ e(T k). Note that scheduling

phantom tasks will increase the tardiness bound, since such
tasks must be treated as “real work” in this case.

4 Experimental Results
To assess the efficacy of our heuristics in improving both
cache and user-perceived performance, we conducted exper-
iments using the SESC Simulator [20], which is capable of
simulating a variety of multicore architectures. The simu-
lated architectures that we considered consist of eight or 32
3-GHz cores, each with a dedicated 4-way (resp., 2-way) set
associative 16K L1 data (resp., instruction) cache with a ran-
dom (resp., LRU) replacement policy; and a shared 8-way
set associative 2 MB (8 MB on the 32-core machine) on-
chip unified L2 cache with an LRU replacement policy. Each
cache has a 64-byte line size. The 32-core architecture is a
“scaled-up” version of the 8-core architecture that is used to
gain a basic understanding of how our heuristics might per-
form on a large-scale multicore platform—we acknowledge
that, in practice, 32 cores may not directly share a cache.

While 8-core architectures such as the Sun Niagara are
available today, we chose to use a simulator for a number
of reasons. First, the simulator allowed us to get detailed
results on the performance of our heuristics in a more con-
trolled environment where only a minimal operating-system
layer exists. In future work, we plan to implement and eval-
uate the most promising heuristics within LITMUSRT [5].
Second, a simulator allows us to experiment with systems
with more cores than commonly available today, such as our
32-core platform. Experimenting with both an 8-core and
32-core platform in simulation allows us to make reasonable
comparisons between an architecture that is feasible today
and one that may exist several years in the future, and al-
lows us to determine if our heuristics will continue to have a
performance impact.

We used CACTI 4.2 [15] to obtain realistic cache access
time estimates for our simulations. (The cache access time
is the time required to access a single block of the shared
cache.) CACTI is a tool that uses analytical models based on
empirical data to provide estimates of cache access times, en-
ergy consumption, and chip area, when given certain cache
attributes such as size and associativity. The estimates pro-



Figure Miss Rate Per-MTT Improvement
Fig. 4(a) 23.99% [0, 0, 0]%
Fig. 4(b) 15.41% [11.02, 41.69, 71.30]%
Fig. 5(b) 9.07% [0, 0, 0]%
Fig. 5(c) 7.90% [-50.05, 21.26, 155.20]%
Fig. 5(d) 8.70% [-64.93, 0.54, 76.97]%
Fig. 5(e) 7.94% [-16.88, 15.41, 71.39]%
Fig. 5(f) 8.94% [-64.22, 0.76, 68.39]%
Fig. 5(g) 6.60% [-13.82, 37.45, 166.12]%
Fig. 5(h) 6.71% [-13.51, 36.58, 166.30]%

Table 1: Shared cache performance for example task sets.

vided by CACTI were used in place of the default cache ac-
cess times in the SESC configuration files. Since the default
times in the configuration files assume different shared cache
attributes (e.g., 512K shared cache size), the use of CACTI
improved the temporal accuracy of our simulations.

The following sections describe three sets of experiments
involving example task sets, randomly-generated task sets,
and multithreaded video encoding applications. In each set
of experiments, G-EDF scheduling was compared to some
subset of our heuristics. All task sets were scheduled and
run for 20 (simulated) milliseconds. Previous experimental
studies using SESC have indicated that this is long enough
to observe performance differences [2]—we ran a subset of
our randomly-generated task sets for 100 ms to confirm this.

MTTs are assigned memory regions according to their
WSSs. In Sec. 4.1 and 4.2, each thread references the mem-
ory region of its MTT sequentially, looping back to the be-
ginning of the region when the end is reached, for its en-
tire specified execution time—thus, tasks are backlogged.
The memory reference pattern for video-encoding MTTs
(Sec. 4.3) is more complicated—each thread references its
assigned video frame slice, plus some “nearby” slices. We
accounted for scheduling, preemption, and migration costs
in all simulations.

4.1 Example Task Sets

To demonstrate the performance impact of our heuristics, we
first present results for the example schedules in the figures
located in earlier sections of this paper. The results are cate-
gorized by figure number and presented in Table 1. Each task
set was run using the heuristic, cache size, and core count
indicated in the example figure. The “Per-MTT Improve-
ment” column presents the minimum, average, and maxi-
mum percentage increase in number of per-quantum mem-
ory references for each MTT, relative to the first schedule
in each figure. For example, the schedule in Fig. 5(c) re-
sulted in a 21.26% increase in per-quantum memory ref-
erences on average for each MTT when compared to the
schedule in Fig. 5(b); for one MTT, per-quantum memory
references increased by 155.20%, but for another MTT, per-
quantum memory references decreased by 50.05%. The re-
sults show that, when suitable heuristics are employed, per-
formance improves substantially (see the bold entries in Ta-

ble 1). For example, the overall shared cache miss-rate de-
creases by over one third over G-EDF for the task set in
Fig. 4 when one of our heuristics is used, and MTTs are able
to perform an average of over 41% more memory references.
For the schedules in Fig. 5, we see that different cache poli-
cies can influence performance in very significant ways. The
best-performing heuristic results in a 37% increase in mem-
ory references on average, and a 166% increase in the best
case, over the heuristic with the worst average-case perfor-
mance. Note that even heuristics that perform better on aver-
age can result in worse performance for some MTTs, result-
ing in negative minimum performance improvement values;
however, these values are often small when compared to the
average- and best-case performance improvements when the
best-performing heuristics are used. Of course, these exper-
iments are not conclusive—the results in the following sec-
tions demonstrate the general applicability of our heuristics.

4.2 Randomly-Generated Task Sets

In this set of experiments, we evaluated many heuristics, rep-
resenting different combinations of design decisions, on task
sets representing a variety of task utilizations, system uti-
lizations, and WSS distributions. Experiments were initially
conducted on the 8-core architecture—the best-performing
heuristics were then evaluated on the 32-core architecture.
We considered heuristics representing the following thresh-
olds and policies.

• Cache utilization threshold: 0%, 50%, or 75%.

• Cache-aware policy: all policies (1)-(5) considered.

• Lost-cause threshold: 110%.

• Lost-cause policy: all policies (1)-(3) considered.

• Phantom tasks: used and not used.

• Avoid scheduling partially-eligible MTTs: yes.

We chose to avoid scheduling partially-eligible MTTs in ev-
ery experiment, since it should limit the amount of time that
working sets of MTTs must be present in the cache.

Task-set generation methodology. When generating ran-
dom task sets, we varied the following parameters.

• System utilization: 50% or 100% utilized.

• MTT periods: between 10 and 100 ms (some values
removed to avoid arithmetic overflow), except for the
the last generated MTT, which may have a larger period.

• MTT utilizations: uniform over [0.01, 0.1], [0.1, 0.4],
[0.5, 0.9], or [0.01, 0.9].

• MTT execution costs: derived from periods and utils.

• MTT thread counts: uniform over [1, 8].

• MTT WSSs: uniform over [64 bytes, 2 MB]; or equal
to the thread count multiplied by a size uniform over
[64 bytes, 512K], and capped at 2 MB.



Task Set Parameters Best-Performing Heuristic L2 Miss Rate Instrs. per Cycle (IPC)
Sys. Util. MTT Util. WSS Dist. Cache Util. Thresh. Cache Pol. LC Pol. Phant. Tasks G-EDF Heur. % Impr. G-EDF Heur. % Impr.

50% [0.01, 0.1] TC Corr. 0 (1) (1) used 3.62 1.60 55.88 0.97 1.23 26.46
50% [0.01, 0.1] Uniform 0 (1) (3) used 7.14 3.16 55.76 0.80 1.17 44.90
50% [0.1, 0.4] TC Corr. 0 (1) (1) used 1.22 0.36 70.62 1.21 1.20 -1.07
50% [0.1, 0.4] Uniform 0 (3) (1) used 6.70 0.67 90.00 0.93 1.17 25.19
50% [0.5, 0.9] TC Corr. 0 (1) (1) used 1.07 0.28 73.67 1.03 1.01 -2.28
50% [0.5, 0.9] Uniform 0 (3) (1) used 15.38 0.98 93.61 0.77 0.92 18.99
50% [0.01, 0.9] TC Corr. 0 (3) (1) used 3.61 0.63 82.68 1.01 1.12 10.77
50% [0.01, 0.9] Uniform 0 (1) (1) used 7.92 0.78 90.12 0.97 0.95 -2.15
100% [0.01, 0.1] TC Corr. 0 (3) (1) N/A 5.30 1.67 68.55 0.85 1.16 36.96
100% [0.01, 0.1] Uniform 0 (3) (2) N/A 7.22 2.57 64.38 0.76 1.11 45.26
100% [0.1, 0.4] TC Corr. 0 (3) (2) N/A 3.75 1.35 64.00 0.96 1.18 22.44
100% [0.1, 0.4] Uniform 0 (3) (3) N/A 7.02 3.46 50.71 0.89 1.14 28.20
100% [0.5, 0.9] TC Corr. 0 (1) (3) N/A 3.81 2.83 25.66 1.05 1.13 7.20
100% [0.5, 0.9] Uniform 50 (1) (1) N/A 5.03 3.58 28.93 0.99 1.06 6.28
100% [0.01, 0.9] TC Corr. 0 (1) (1) N/A 2.49 0.88 64.56 1.09 1.23 13.29
100% [0.01, 0.9] Uniform 50 (1) (1) N/A 4.30 3.70 14.04 0.99 1.05 6.26

Table 2: The best-performing heuristics for random task sets.

Each heuristic was used to schedule 20 task sets for each
combination of these parameters. In total, this resulted in
nearly 30,000 experimental runs using SESC. Due to the
large amount of time required for each experimental run, we
were unable to run a larger set of experiments. Even with the
assistance of a large research cluster, we were able to com-
plete only a few thousand experimental runs per day. Like
many architecture simulators, SESC is quite slow, especially
when timing accuracy is required.

Task set justification. We believe our task periods repre-
sent a reasonable range of those observed in real applica-
tions. Our task utilization ranges are similar to those used in
other work [6, 7, 3]. System utilizations were chosen so that
scheduling flexibility was either substantial (at 50%) or very
limited (at 100%). Finally, for half of the experiments, MTT
WSSs were correlated with thread count. This seems realis-
tic, since a larger number of threads could better process a
larger memory region. WSSs were often large, but never ex-
ceeded the size of the L2 cache—otherwise, thrashing would
be inevitable. Such large WSSs are realistic in practice; for
example, the authors of [8] claim that the WSS for an HDTV-
quality MPEG decoding task could be as high as 4.1MB, and
statistics presented in [22] show that substantial memory us-
age is required for video-on-demand applications.

Results. Due to space constraints, it is impossible to
present results for every explored heuristic in this paper;
however, Table 2 presents the heuristics that performed best
in the average case for each combination of task set gener-
ation parameters, and compares them to G-EDF in terms of
average cache-miss rates and average per-core instructions
per cycle (IPC), which typically correlates with memory ref-
erences. We can make several observations from this data.
First, in almost all cases, the best-performing heuristic out-
performs G-EDF, often by a substantial margin (see the bold
entries in Table 2). Second, heuristics that used cache-aware
policies (1) or (3) performed best, with policy (3) performing

better than (1) when system utilization was high and MTT
utilizations were low. Third, the best-performing heuristics
almost unanimously employed a cache utilization threshold
of 0% and lost-cause policy (1), though lost-cause policies
(2) and (3) sometimes performed best for the high-system-
utilization, low-MTT-utilization task sets. Fourth, phantom
tasks were employed by all best-performing heuristics, when
applicable. Finally, performance improvements tended to be
larger when MTT utilizations were lower. We therefore con-
clude that the overall best-performing heuristic employed a
cache utilization threshold of 0%, cache-aware policy (1),
lost-cause policy (1), and phantom tasks. In the cases where
other heuristics performed best, the difference was not typi-
cally substantial. Phantom tasks only performed worse when
they could not be employed effectively, e.g., when the sys-
tem was fully utilized—we could infer from this result that
scheduling between ticks rather than idling a core (as done
here) would often decrease performance.

Algorithm Avg. Max.
G-EDF 0.216 474
Heuristics 1.843 572
Best heur. only 3.711 493

Table 3: Tardiness for G-EDF
and our heuristics (in quanta).

We next tabulated aver-
age and maximum observed
deadline tardiness. These re-
sults are shown in Table 3. In
this case, we ran each task
set for 2,000 quanta rather
than 20 quanta. Tardiness is
higher with our heuristics than with G-EDF, but average tar-
diness is reasonable, and maximum tardiness is comparable
to G-EDF with our best heuristic. The somewhat high max-
imum tardiness values are an artifact of our task generation
methodology, which produces some tasks with very large ex-
ecution costs. The average-case results suggest that tardiness
will not significantly restrict the extent to which heuristics
can be employed.

32-core architecture evaluation. We next ran a similar set
of experiments for the 32-core architecture, where task sets
were scheduled with both G-EDF and the best-performing



heuristic for the 8-core experiments (cache utilization thresh-
old of 0%, cache-aware policy (1), lost-cause policy (1), and
phantom tasks). The results are not shown here due to space
constraints, but they are very similar to the 8-core case, with
the heuristic outperforming G-EDF.

These experiments certainly should not be considered
definitive; however, similar task sets have been effectively
used in other published work [6, 7, 1, 2].

4.3 Video Encoding: A Case Study

We next evaluated the performance of real-time MPEG-
2 video encoding applications when using our heuristics
by emulating the motion estimation portion of the encod-
ing within SESC. This is the most compute- and memory-
intensive portion of MPEG video encoding. We achieved this
emulation by mimicking a potential memory reference pat-
tern for multithreaded motion estimation. As the core counts
of multicore platforms increase, and the performance of in-
dividual cores remains similar (or decreases), most compute-
intensive applications such as video encoding will be re-
quired to use a multithreaded approach to continue to achieve
performance gains. Such performance gains are mandatory
if the video quality demanded by users continues to increase.

Our memory reference pattern emulates multithreaded
motion estimation where each video frame is split into
identically-sized horizontal slices, each of which is pro-
cessed by an individual thread. For example, 720p HDTV
video contains frames of 1280 x 720 pixels (900K per frame
assuming one byte per pixel); this video could be divided into
15 slices of size 1280 x 48 (60K per frame) or eight slices of
size 1280 x 90 (112.5K per frame). For our heuristic, the lat-
ter division is more applicable so that the motion estimation
task can be represented as an MTT on an 8-core machine.

Each thread processes the same slice of every video frame.
All motion estimation requires a search—for each thread,
this involves searching a memory region that includes both
its assigned slice and several nearby slices, such as the slices
immediately above and below its assigned slice. It is often
desirable to search the largest space possible (to approximate
an exhaustive search), so we assume that tasks are back-
logged in that they continue the search for as long as time
permits unless the search space is exhausted. The memory
regions that are referenced by each thread in an MTT overlap
more as the size of the region searched per-thread increases.

In our experiments, threads reference the memory region
of their assigned slice first, and then search progressively
more distant slices until they have exhausted their execu-
tion times. Both G-EDF scheduling and the best-performing
heuristic from Sec. 4.2 were used to schedule task sets on the
8-core architecture. MTTs were generated according to the
video quality level of the video that they represented. These
levels define resolutions and frame rates that are typical for
real applications, some more demanding than others. Table 4

Level Resolution Frames/Sec. WSS Thr. Ct. Exec. Cost Period
1 1920 x 1080 30 2025K 8 1 33
2 1920 x 1080 30 2025K 5 1 33
3 1280 x 720 60 900K 8 1 16
4 1280 x 720 60 900K 4 1 16
5 720 x 480 30 338K 1 1 33
6 352 x 288 30 99K 1 1 33
7 320 x 240 24 75K 1 1 41
8 176 x 144 15 25K 1 1 66

Table 4: Video quality levels and their corresponding MTTs.

presents these levels and their corresponding MTTs.
Video encoding task sets were randomly-generated ac-

cording to the following methodology. System utilization
was either 50% or 100%, and video quality levels for the
MTTs in each task set were uniform over [1, 8], [1, 6], [7, 8],
or [1, 4]. Since there is little freedom when choosing task
parameters for the MTTs in these task sets, only 10 task sets
were generated for each combination of the above parame-
ters. All results are shown in Table 5. In almost all cases,
the best-performing heuristic (from Sec. 4.2) outperforms
G-EDF, resulting in an average 10.65% increase in IPC over
all experiments. Note that an increase in IPC can allow for a
proportionate increase in the number of videos supported by
the platform, an increase in the space searched for each video
during motion estimation (to improve encoding quality), or
upgrades in the quality level of some videos.

Other observations. We make several additional observa-
tions about the use of our heuristics for video encoding. First,
if we shift all job releases and deadlines right by an amount
equal to the tardiness bound B, and allow all jobs to be ex-
ecuted up to B time units before their actual release times,
then deadlines will never be missed if we allow a preprocess-
ing interval of lengthB before any job is released. Tardiness
bounds are generally low enough (e.g., hundreds of millisec-
onds) that such an interval will usually be acceptable to an
end-user. This is similar to a method described in [1], but
occurs in the opposite direction. Second, note that if exe-
cution costs drop due to cache performance improvements,
then tardiness bounds should also decrease [17]. Finally, we
could use our heuristics to ensure that the real-time work-
load typically occupies only a portion of the shared cache
by setting the “cache size” artificially low. In this way, our
heuristics allow us to create “soft” cache partitions.

5 Concluding Remarks
In this paper, we proposed heuristics to improve the perfor-
mance of shared caches on multicore platforms while ensur-
ing real-time guarantees in the form of bounded tardiness.
We showed that when a suitable heuristic is employed for
a real-time workload, cache performance significantly im-
proves. Our case study showed that cache performance im-
provements can translate into performance improvements for
higher-level metrics that can be perceived by an end user.



Parameters
Sys. Video L2 Miss Rate Instrs. per Cycle (IPC)
Util. Qual. G-EDF Heur. % Impr. G-EDF Heur. % Impr.
50% [1, 8] 25.97 17.12 34.06 1.36 1.30 -4.37
50% [1, 6] 27.55 17.12 37.86 1.30 1.42 9.26
50% [7, 8] 74.52 60.09 19.36 0.24 0.26 10.87
50% [1, 4] 28.34 16.45 41.94 1.29 1.38 6.62
100% [1, 8] 25.21 18.22 27.75 1.29 1.29 0.05
100% [1, 6] 26.15 18.00 31.16 1.27 1.38 8.42
100% [7, 8] 55.36 17.70 68.04 0.22 0.32 44.44
100% [1, 4] 30.85 16.94 45.10 1.23 1.35 9.85

Table 5: Results for video-encoding MTTs (best results in bold).

Our results suggest a number of avenues for further re-
search. First, our experiments currently use relatively simple
memory reference patterns, due to our reliance on WSS as
our cache-profiling metric. We plan to undertake significant
work in an upcoming paper to determine a more accurate
cache-profiling metric that is suitable for soft real-time ap-
plications. This metric should be obtainable dynamically,
and should identify cooperating tasks that can be placed into
MTTs. Second, we wish to investigate how system and
synchronization overheads affect our heuristics. Finally, we
plan to showcase our heuristics by implementing those that
perform best within LITMUSRT [5], and evaluating them
for real (multimedia) applications on a multicore platform.
This will include minimizing the scheduling overhead of our
heuristics, and determining how to best measure and refine
task execution costs when cache performance improves.
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