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Abstract—Architectures in which multicore chips are
augmented with graphics processing units (GPUs) have
great potential in many domains in which computationally
intensive real-time workloads must be supported. How-
ever, unlike standard CPUs, GPUs are treated as I/O
devices and require the use of interrupts to facilitate
communication with CPUs. Given their disruptive nature,
interrupts must be dealt with carefully in real-time systems.
With GPU-driven interrupts, such disruptiveness is further
compounded by the closed-source nature of GPU drivers.
In this paper, such problems are considered and a solution
is presented in the form of an extension to LITMUSRT

called klmirqd. The design of klmirqd targets systems
with multiple CPUs and GPUs. In such settings, interrupt-
related issues arise that have not been previously addressed.

I. INTRODUCTION

Graphics processing units (GPUs) are capable of per-
forming parallel computations at rates orders of mag-
nitude greater than traditional CPUs. Driven both by
this and by increased GPU programmability and single-
precision floating-point support, the use of GPUs to solve
non-graphical (general purpose) computational problems
began gaining wide-spread popularity about ten years
ago [1], [2], [3]. However, at that time, non-graphical
algorithms had to be mapped to graphics-specific lan-
guages. GPU manufactures realized they could reach
new markets by supporting general purpose computa-
tions on GPUs (GPGPU) and released flexible language
extensions and runtime environments.1 Since the release
of these second-generation GPGPU technologies, both
graphics hardware and runtime environments have grown
in generality, enabling GPGPU across many domains.
Today, GPUs can be found integrated on-chip in mobile
devices and laptops [4], [5], [6], as discrete cards in
higher-end consumer computers and workstations, and
within many of the world’s fastest supercomputers [7].

GPUs have applications in many real-time domains.
For example, GPUs can efficiently perform multidi-
mensional FFTs and convolutions, as used in signal
processing, as well as matrix operations such as fac-
torization on large data sets. Such operations are used
in medical imaging and video processing, where real-
time constraints are common. A particularly compelling
use case is driver-assisted and autonomous automobiles,
where multiple streams of video and sensor data must
be processed and correlated in real time [8]. GPUs are
well suited for this purpose.

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from Nvidia, Stream from AMD/ATI, OpenCL from
Apple and the Khronos Group, and DirectCompute from Microsoft.

Prior Work. GPUs have received serious consideration
in the real-time community only recently. Both theo-
retical work ([9], [10]) on partitioning and scheduling
algorithms and applied work ([11], [12], [13]) on quality-
of-service techniques and improved responsiveness has
been done. Outside the real-time community, others have
proposed operating system designs where GPUs are
scheduled in much the same way as CPUs [14].

In our own work, we have investigated the challenges
faced when augmenting multicore platforms with GPUs
that have non-real-time, throughput-oriented, closed-
source device drivers [15]. These drivers exhibit prob-
lematic behaviors for real-time systems. For example,
tasks non-preemptively execute on a GPU in first-in-first-
out order.2 Also, GPU access is arbitrated by non-real-
time spinlocks that lack priority-inheritance mechanisms.
CPU time lost to spinning can be significant: GPU ac-
cesses commonly take tens of milliseconds up to several
seconds [15]. Further, blocked tasks may experience
unbounded priority inversions due to the lack of priority
inheritance.3

The primary solution we presented in [15] to address
these issues is to treat a GPU as a shared resource,
protected by a real-time suspension-based semaphore.
This removes the GPU driver from resource arbitration
decisions and enables bounds on blocking time to be
determined. We validated this approach in experiments
on LITMUSRT [16], UNC’s real-time extension to Linux,
and demonstrated that our methods reduced both CPU
utilization and deadline tardiness.

Contributions. One issue not addressed in our prior
work is the effect GPU interrupts have on real-time
execution. Interrupts cause complications in the design
and analysis of real-time systems. Ideally, interrupt han-
dling should respect the priorities of executing real-time
tasks. However, this is a non-trivial issue, especially for
systems with shared I/O resources. In this paper, we
examine the effects interrupt servicing techniques have
on real-time execution on a multiprocessor, with GPU-
related interrupts particularly in mind.

Our major contributions are threefold. First, we de-
velop techniques that enable interrupts due to asyn-
chronous I/O to be handled without violating the single-

2Newer GPUs allow some degree of concurrency, at the expense
of introducing non-determinism due to conflicts within co-scheduled
work. Further, execution remains non-preemptive in any case.

3A priority inversion occurs when a task has sufficient priority to
be scheduled but it is not. Priority inversions can be introduced by a
variety of sources, including locking protocols and interrupt services.
These inversions must be bounded to ensure real-time guarantees.



threaded sporadic task model, improving schedulability
analysis. Prior interrupt-related work has not directly
addressed asynchronous I/O on multiprocessors. Second,
we propose a technique to override the interrupt process-
ing of closed-source drivers and apply this technique to
a GPU driver. This required significant challenges to be
overcome to alter the interrupt handling of the closed-
source GPU driver. Third, we discuss an implementation
of the proposed techniques and present an associated
experimental evaluation. This implementation is given in
the form of an extension to LITMUSRT called klmirqd.

The rest of this paper is organized as follows. In
Sec. II, we provide necessary background. In Sec. III,
we review prior work on real-time interrupt handling
and describe our solution, klmirqd. In Sec. IV, we show
how GPU interrupt processing can be intercepted and
rerouted, despite the use of a closed-source GPU driver.
In Secs. V–VII, we present an experimental evaluation
of klmirqd. We conclude in Sec. VIII.

Due to space limitations, we henceforth limit attention
to GPU technologies from the manufacture NVIDIA,
whose CUDA [17] platform is widely accepted as the
leading GPGPU solution.

II. INTERRUPT HANDLING

An interrupt is a hardware signal issued from a system
device to a system CPU. Upon receipt of an interrupt,
a CPU halts its currently-executing task and invokes an
interrupt handler, which is a segment of code responsible
for taking the appropriate actions to process the interrupt.
Each device driver registers a set of driver-specific
interrupt handlers for all interrupts its associated device
may raise. An interrupted task can only resume execution
after the interrupt handler has completed.

Interrupts require careful implementation and analysis
in real-time systems. In uniprocessor and partitioned
multiprocessor systems, an interrupt handler can be
modeled as the highest-priority real-time task [18], [19],
though the unpredictable nature of interrupts in some
applications may require conservative analysis. Such
approaches can be extended to multiprocessor systems
where tasks may migrate between CPUs [20]. However,
in such systems, the subtle difference between an inter-
ruption and preemption creates an additional concern: an
interrupted task cannot migrate to another CPU since the
interrupt handler temporarily uses the interrupted task’s
program stack. As a result, conservative analysis must
also be used when accounting for interrupts in these
systems too. A real-time system, both in analysis and
in practice, benefits greatly by minimizing interruption
durations. Split interrupt handling is a common way of
achieving this, even in non-real-time systems.

Under split interrupt handling, an interrupt handler
performs the minimum amount of processing necessary
to ensure proper functioning of hardware; additional
work to be carried out in response to an interrupt is
deferred. This deferred work may then be scheduled in a

separate thread of execution with an appropriate priority.
The duration of interruption is minimized and deferred
work competes fairly with other tasks for CPU time.

GPU interrupt management is important to real-time
systems for two reasons. First, we want to minimize
the interference of GPU interrupts on all system tasks,
including those that do not use a GPU. Second, we
want a system that can be modeled analytically, so that
schedulability can be assessed. Such analysis could be
useful for systems such as driver-assisted automobiles.
For example, response time bounds of GPU-based sensor
processing may be required by an automatic collision
avoidance component since response time equates di-
rectly to distance-travelled in a moving vehicle. Through
analysis, we can determine the minimum system pro-
visioning that meets the requirements of the collision
avoidance component, as well as any other timing re-
quirements of other components.
Interrupt Handling In Linux. We now review how
Linux performs split interrupt handling. We focus on
Linux for two reasons. First, despite its general-purpose
origins, variants of Linux are widely used in supporting
real-time workloads. Second, GPGPU is well supported
on Linux and it is the only OS where we can make use of
GPGPU and have the ability to modify OS source code.
Other operating systems with reasonably robust GPGPU
support (Windows and Mac OS X) are closed-source.
Virtualization techniques that enable GPGPU in guest
operating systems (ex. [21]) cannot be used because the
GPGPU software, including the GPU driver, must still be
hosted in a traditional OS environment, such as Linux.

During the initialization of the Linux kernel, device
drivers (even closed-source ones) register interrupt han-
dlers with the kernel’s interrupt services layer, mapping
interrupt signals to interrupt service routines (ISRs).
Upon receipt of an interrupt on a CPU, Linux imme-
diately invokes the registered ISR. The ISR is the top-
half of the split interrupt handler. If an interrupt requires
additional processing beyond what can be implemented
in a minimal top-half, a deferrable bottom-half may be
issued to the Linux kernel in the form of a softirq.
There are several types of softirqs, but in this paper,
we consider only tasklets, which are the type of softirq
used by most I/O devices, including GPUs; we use the
terms “softirq” and “tasklet” synonymously.

The Linux kernel executes tasklets using a heuris-
tic. Immediately after executing a top-half, but before
resuming execution of the interrupted task, the kernel
executes up to ten tasklets. Any remaining tasklets are
dispatched to one of several (per-CPU) kernel threads
dedicated to tasklet processing; these are the “ksoftirq”
daemons. The ksoftirq daemons are scheduled with high
priority, but are preemptible. The described heuristic can
introduce long interrupt latencies, causing one to wonder
if this can even be considered a split interrupt system.
In all likelihood, in a system experiencing few interrupts
(though it may still be heavily utilized), for every top-
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Figure 1. Priority inversion: TL should be scheduled on processor
P1 at time t0 since it is one of the top two highest-priority tasks.

half that yields a tasklet (bottom-half), that tasklet will
subsequently be executed before the interrupted task is
restored to the CPU. If a tasklet is deferred to a ksoftirq
daemon, it is generally not possible to analytically bound
the length of the deferral since these daemons are not
scheduled with real-time priorities.

The PREEMPT_RT Linux kernel patch addresses this
issue by using real-time schedulable worker threads to
process all tasklets. Ideally, the scheduling priority of a
worker thread should match that of the client task using
the interrupt-raising device. However, these threads have
a single fixed priority, even if an associated device is
shared by multiple client tasks of differing priorities.
This can easily lead to harmful priority inversions, as
demonstrated in Sec. VI.

Priority inversions may also arise when asynchronous
I/O is used. In asynchronous I/O, a task may issue a
batch of I/O requests while continuing on to other pro-
cessing. The task defers receipt of I/O results to a later
time. This technique helps improve overall performance
and is commonly used in GPU applications to mask bus
latencies. Since synchronization with the I/O device is
deferred, it is possible for interrupts to be received, and
the corresponding bottom-halves to be executed, while
a client task is scheduled. In such a case, the client task
essentially becomes temporarily multithreaded, breaking
the assumption of single-threaded execution common in
real-time task models such as the sporadic model. A
co-scheduled bottom-half can be interpreted as causing
a priority inversion. This is illustrated in Fig. 1 for a
two-processor system with tasks TH and TL, where TH
has higher priority. At time t0, a bottom-half for TH ,
BHH , preempts TL and is co-scheduled with TH . Under
a single-threaded task model, TL should be scheduled at
t0, so a priority inversion occurs.

Priority inversions caused by asynchronous I/O in non-
partitioned multiprocessors are not merely limited to
Linux variants. Most methods in the real-time literature
also have these shortcomings, and only a few techniques
can avoid inversions in special cases.4 To our knowl-
edge, priority inversions caused by asynchronous I/O in

4 These priority inversions may be avoided when bottom-halves
are scheduled exclusively by bandwidth servers ([22], [23]), provided
that real-time tasks are not dependent upon the completion of these
bottom-halves. This is because bottom-halves are scheduled with a
dedicated server’s priority, not that of a task using the interrupt-raising
device, and tasks in this case never block waiting for a bottom-halves
to complete. Unique priorities among servers and tasks ensure that
co-scheduling does not result in inversions. Further, inversions due to
blocking are avoided since tasks never block.

non-partitioned multiprocessors have not been directly
addressed in the real-time literature.

Neither standard Linux interrupt handling (SLIH) nor
the PREEMPT_RT method implement split interrupt
handling in a way amenable to real-time schedulability
analysis. This is especially unfortunate since Linux-
based systems are currently the only reasonable option
for developing GPU-enabled real-time systems. In the
next section, we propose a Linux-based solution that is
amenable to analysis.

III. INTERRUPT HANDLING IN LITMUSRT

LITMUSRT, a real-time extension of Linux, has been
under continual development at UNC for over five
years. To date, LITMUSRT has largely been limited to
workloads that are not I/O intensive, since LITMUSRT

has provided no mechanisms for real-time I/O. The
implementation of real-time I/O is a considerable effort,
and proper implementation of split interrupt handling is
one critical aspect of this work. We begin this work here.

As discussed in Sec. II, current Linux-based operat-
ing systems use fixed-priority softirq daemons. In this
paper, we introduce a new class of LITMUSRT-aware
daemons called klmirqd.5 This name is an abbreviation
for “Litmus softirq daemon” and is prefixed with a “k”
to indicate that the daemon executes in kernel space.
klmirqd daemons may function under any LITMUSRT-
supported job-level static-priority (JLSP) scheduling al-
gorithm, including partitioned-, clustered-, and global-
earliest-deadline-first and -fixed-priority schedulers.

klmirqd is designed to be extensible. Unlike the
ksoftirq daemons, the system designer may create an
arbitrary number of klmirqd threads to process tasklets
from a single device, or a single klmirqd thread may
be shared among many devices. A klmirqd thread may
be configured in either a dependent or independent
mode. In dependent mode, a klmirqd thread executes
on behalf of a tasklet owner (the real-time client task
using the interrupt-raising device), and in independent
mode, a klmirqd thread runs as a bandwidth server. The
latter mode is useful for constraining the utilization of
anonymous tasklets (those with no owners), which is
common to network traffic [22], [23].

Instead of using the standard Linux
tasklet_schedule() function call to issue
a tasklet to the kernel, an alternative function
litmus_tasklet_schedule() is provided to
issue a tasklet to klmirqd. Owner and klmirqd thread
identifier parameters must be supplied by the caller
of litmus_tasklet_schedule(), to dispatch
work to a dependent-mode klmirqd thread. No owner
parameter is needed for independent mode. Idle
klmirqd threads suspend, waiting for tasklets to process.
Dependent-mode klmirqd threads adopt the scheduling
priority, including any inherited priority, of the tasklet
owner when it executes. The LITMUSRT scheduler

5Source code available at http://www.litmus-rt.org.

http://www.litmus-rt.org


Owner-Based Bandwidth Threaded Non-Partitioned Async I/O JSLP
Bottom-Half Server Interrupts Multiprocessor Without Support
Scheduling Support Schedulers Inversions

Linux (SLIH) X
PREEMPT_RT X X
LynxOS [24] X X X

Steinberg et al. [25], [26] X X
Lewandowski et al. [23] X X X

Manica et al. [22] X X X X
Zhang et al. (PAI) [27] X

klmirqd X X X X X X

Table I
SUMMARY OF SYSTEM INTERRUPT FEATURES, COMPARING KLMIRQD AGAINST NOTABLE PRIOR WORK.

also ensures that a dependent-mode klmirqd thread is
never co-scheduled with its tasklet owner. This allows
asynchronous I/O to be supported without violating the
single-threaded task models commonly assumed.

klmirqd may be used for all system tasklets, both
owned and anonymous. Unfortunately, applying klmirqd
to all tasklets in LITMUSRT (and by extension, Linux)
is a very significant task. As such, we limit our focus to
GPU applications in this paper.

Comparisons to prior work. We recognize that similar
architectures for split interrupt handling have been pro-
posed and implemented before. However, each approach
does not support a full array of desired features.

Priority inheritance mechanisms for threaded inter-
rupt handling have been used in LynxOS [24], the L4
microkernel [25], and the NOVA microhypervisor [26].
Bandwidth server techniques have also been used in
Linux-based solutions [23], [22]. With the exception of
LynxOS, all of these methods were originally developed
for uniprocessor or partitioned multiprocessor platforms,
and only [22] supports earliest-deadline-first scheduling.
The use of partitioned solutions may constrain the allo-
cation of shared resources, such as GPUs, between par-
titions. Schedulability analysis can also become overly
pessimistic when these methods are extended to non-
partitioned JLSP-scheduled multiprocessors.

The benefits of threaded interrupt handling comes at
the cost of additional thread context-switch overheads.
To address these concerns, Zhang et al. [27] developed
a “process-aware interrupt” (PAI) method where arriv-
ing tasklets that do not have sufficient priority to be
immediately scheduled are deferred, but not executed
by dedicated interrupt threads. This is accomplished
in the system’s thread context switch code path. Prior
to a context switch, the priority of the highest-priority
deferred tasklet is compared against that of the next
thread to be scheduled on the processor. The context
switch is skipped if the tasklet has greater priority, and
the tasklet is scheduled instead. The tasklet temporarily
uses the program stack of the task that was scheduled
prior to the aborted context switch. The resumption of
this task can be delayed since it may not be rescheduled
until the tasklet has completed, so the risk of prior-
ity inversions is not completely avoided. As shown in
Sec. VII, this turns out to be a major analytical liabil-

ity under non-partitioned multiprocessor scheduling. We
have implemented a multiprocessor variant of Zhang’s
method that supports JLSP scheduling and compare it
against klmirqd in later sections.6

A comparative summary of real-time interrupt han-
dling alternatives is given in Table I.7 klmirqd supports
the greatest range of features.

IV. GPU INTEGRATION

In order to integrate GPU interrupt handling with
klmirqd, we must first decide whether GPU klmirqd
threads should run in dependent or independent mode. In
the case of GPUs, the source device and ownership of ev-
ery GPU tasklet can be determined by leveraging mech-
anisms already in place for real-time GPU management
with additional reverse engineering of the closed-source
GPU driver. Thus, we use dependent-mode klmirqd
threads to avoid delays caused by budget exhaustion
and analytical utilization loss due to budgetary over-
provisioning, which can be introduced by bandwidth
servers under independent mode.

In order to use klmirqd in dependent mode, for each
tasklet we must identify: (1) the tasklet owner and (2)
a target klmirqd thread to execute the tasklet. While an
open source device driver could be modified to provide
these parameters, how shall we accomplish this with a
closed-source GPU driver that cannot be modified to
call litmus_tasklet_schedule()? We addressed
this issue by focusing separately on tasklet interception,
device identification, owner identification, and dispatch.
The approach taken to integrate GPUs into klmirqd is
summarized in Fig. 2.
Tasklet Interception. The closed-source GPU driver
must interface with the open source Linux kernel. We
exploit this fact to intercept tasklets dispatched by the
driver. This is done by modifying the standard internal
Linux tasklet_schedule() function.

When tasklet_schedule() is called by a kernel
component, the callback entry point of the deferred work
is specified by a function pointer. We identify a tasklet as
belonging to the closed-source GPU driver if this func-
tion pointer points to a memory region allocated to the

6PAI was originally designed for uniprocessor systems.
7The scheduling of interrupts can also be addressed orthogonally at

the hardware level [28] and may be used to complement these software-
based approaches.
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Figure 2. GPU tasklet redirection. (1) A tasklet from the GPU driver
is passed to tasklet_schedule(). (2) The tasklet is intercepted
if the callback points to the driver. (3) The GPU identifier is extracted
from the data attached to the tasklet using a known address offset,
and the GPU owner is found. (4) The GPU identifier is mapped
to a klmirqd thread, and (5) the GPU tasklet is dispatched through
litmus_tasklet_schedule().

driver. Luckily, it is possible to make this determination
since the driver is loaded as a module (or kernel plugin).
We inspect every callback function pointer of every
dispatched tasklet, online, using Linux’s module-related
routines.8 Thus, we alter to tasklet_schedule() to
intercept tasklets from the GPU driver and override their
scheduling. It should be possible to use this technique to
schedule tasklets of any closed-source driver in Linux,
not just those from GPUs.

Device Identification. Merely intercepting GPU tasklets
is not enough if a system has multiple GPUs; we must
also identify which GPU raised the initial interrupt in
order to determine tasklet ownership. While it may be
possible to perform this identification process at the
lowest levels of interrupt handling, we opt for a simpler
solution closer to tasklet scheduling. The GPU driver
attaches a memory reference to each tasklet, providing
input parameters for the tasklet callback. This reference
points to a data block that includes a device identifier
indicating which GPU raised the interrupt. However,
locating this identifier within the data block is chal-
lenging since it is packaged in a driver-specific format.
Fortunately, the driver’s links into the open source OS
code allow us to locate the device identifier.

NVIDIA does not distribute its GPU driver as an
entirely as a precompiled binary because the internal
APIs of Linux change frequently and many users use
custom configurations. To enable support for a changing
kernel in varied configurations, the distribution includes
plain source code for an OS/driver layer that bridges
the kernel interfaces with closed-source precompiled
object files. By visually inspecting this bridge code, we
gained insight into the format of the tasklet data block,
and determined the fixed address offset of the device
identifier.

We can now intercept and identify the source of a GPU
tasklet. What remains is to identify the tasklet owner and
dispatch the tasklet to the appropriate klmirqd thread.

8This may sound like a costly operation, but it is actually quite a
low-overhead process, as is shown in Sec. VI.

Owner Identification. As mentioned in Sec. I, we
may arbitrate GPU access using a real-time suspension-
based semaphore, thus preventing the GPU driver from
exhibiting behaviors detrimental to real-time predictabil-
ity [15]. Whenever a GPU is allocated to a task by the
locking protocol, an internal lookup table, called the
GPU ownership registry, indexed by device identifier,
is updated to record device ownership.

To manage a pool of k GPUs, we may use a real-
time k-exclusion protocol to assign any available GPU
to a GPU-requesting task.9 The arbitration protocol con-
sidered herein is a k-exclusion extension of the flexible
multiprocessor locking protocol (FMLP) [29], which we
call the k-FMLP.10 The k-FMLP is particularly attrac-
tive because worst-case wait times scale inversely with
the number of GPUs. The k-FMLP was implemented in
LITMUSRT to support this work. Special consideration
had to be paid to integrate with klmirqd. Specifically,
since the k-FMLP uses priority inheritance, a priority
inherited by a GPU holder must be propagated immedi-
ately to any klmirqd thread executing on its behalf.

With the device identifier extracted from the tasklet
and device registry table generated by the locking proto-
col, determining the current owner of a GPU is straight-
forward. We now have gathered all required information
to dispatch a GPU tasklet to klmirqd; now we must deter-
mine which klmirqd thread will perform the processing.
klmirqd Dispatch. The architecture of klmirqd is gen-
eral enough to support any number of daemon instances,
all scheduled by a JLSP real-time scheduler. We create a
single klmirqd thread per GPU to ensure that all GPUs
can be used simultaneously. Each thread is assigned to
a specific GPU, and the assignment is recorded in the
klmirqd assignment registry for later lookup.

V. EVALUATION OF PRIORITY INVERSIONS

In this and the next two sections, we present a
runtime evaluation of klmirqd. We first focus attention
on the severity of priority inversions arising from var-
ious bottom-half scheduling methods. We compare the
threaded interrupt handling of klmirqd to both Zhang
et al.’s PAI [27] deferred bottom-half scheduler, as well
as the heuristic-driven method of the standard Linux
interrupt handler (SLIH).
Evaluation Platform. The platform used in all of our
experiments is a dual-socket six-cores-per-socket Intel
Xeon X5060 CPU system running at 2.67GHz that
is equipped with eight NVIDIA GTX-470 GPUs. The
platform has a NUMA architecture of two NUMA nodes,
each with six CPU cores and four GPUs apiece.

9k-exclusion locking protocols can be used to arbitrate access to
pools of similar or identical resources, such as communication channels
or I/O buffers. k-exclusion extends ordinary mutual exclusion (mutex)
by allowing up to k tasks to simultaneously hold locks (thus, mutual
exclusion is equivalent to 1-exclusion).

10 A full description of the k-FMLP is available in Appendix A.
A detailed discussion of some issues that arise when constructing a
real-time k-exclusion protocol can be found in [30].



In all of our experiments, we used a clustered sched-
uler, with GPUs statically assigned to clusters, and GPU
access arbitrated by a separate k-FMLP instance within
each cluster. Clustered window-constrained schedulers,
such as clustered earliest-deadline-first (C-EDF), have
been shown to be effective if bounded deadline tardiness
is the real-time requirement of interest [31]. For this
reason, we consider only C-EDF in this section since
bounded deadline tardiness applies to many common
real-time GPU applications [15]. Clustering is split along
the NUMA architecture of the system, yielding two
clusters. This configuration minimizes bus contention,
given the memory and I/O bus architectures of the
system. This is especially important for the I/O bus since
contention can significantly affect data transmission rates
between CPUs and GPUs. We used CUDA 4.0 for our
GPU runtime environment.

Experimental Setup. LITMUSRT, based upon Linux
2.6.36, was used as the testbed operating system for this
evaluation since it enables fair comparisons among inter-
rupt handling methods. We did not include unmodified
Linux or PREEMPT_RT for this reason since they have
fundamentally different scheduler architectures (though
higher-level comparisons to these are made in Sec. VI).

We assessed the severity of priority inversions by
generating sporadic task sets and executing them in
LITMUSRT. Each generated task set included both CPU-
only and CPU-and-GPU-using (hereafter referred to as
GPU-using) tasks. Individual task parameters were ran-
domly generated as follows. The period of every task was
randomly selected from the range [15ms, 60ms]; such a
range is common for multimedia processing and sensor
feeds such as video cameras. The utilization of each
task was generated from an exponential distribution with
mean 0.5 (tasks with utilizations greater than 1.0 were
regenerated). This yields relatively large average per-
task execution times.11 We expect GPU-using tasks to
have such execution times since current GPUs typically
cannot efficiently process short GPU requests due to
I/O bus latencies. Next, between 20% and 30% of tasks
within each task set were selected as GPU-using tasks.
Each GPU-using task had a GPU critical section length
equal to 80% of its execution time. Of the critical
section length, 20% was allocated to transmitting data
to and from a GPU. This distribution of critical section
length and data transmission time is common to many
GPU applications, including FFTs and convolutions [15].
Finally, each task set was partitioned across the two
clusters using a two-pass worst-fit partitioning algorithm
that first assigns GPU-using tasks to clusters, followed
by CPU-only tasks. This tends to evenly distribute GPU-
using tasks between clusters. We generated task sets with
high utilizations to put the system under heavy load,
increasing the likelihood of priority inversions. Task set

11A GPU-using task’s execution time includes time spent executing
on both CPUs and GPUs.
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Figure 3. Cumulative distribution of priority inversion durations.

utilizations ranged from 7.5 to 11.5, in increments of
0.1, for a total of 41 task sets.

Tasks executed numerical code (on both CPUs and
GPUs) for the configured durations. GPUs were accessed
via asynchronous I/O. Every task set was executed once
in LITMUSRT for two minutes under each interrupt
handling method. Scheduling logs were recorded, from
which we compared the behaviors of each method.
Metrics. Ideally, a system should conform to the spo-
radic task model and not suffer any priority inversions.
However, this is difficult to achieve in a real system.
We assessed deviance from the ideal by: (i) determining
the distribution of priority inversion durations and (ii)
computing cumulative priority inversions.
Results. While priority inversions cannot be totally elim-
inated, they should nevertheless be as short as possible.
Fig. 3 shows a representative example of the cumulative
distribution function of priority inversion length induced
by scheduled tasklets under the three interrupt handling
methods for the task set with utilization 11.2.12 As
seen, a typical priority inversion is much shorter under
klmirqd than under PAI or SLIH. For example, 90% of
inversions under klmirqd are shorter than 5µs, whereas
the 90th percentile is roughly 35µs under PAI and
exceeds 40µs under SLIH. The cumulative distribution
function for SLIH also has a very long tail, extending
out to 16ms (not depicted in Fig. 3 due to scale). While
the performance of SLIH is not entirely surprising, the
performance of PAI is, since PAI schedules bottom-
halves by priority. However, if a bottom-half has the
priority to be scheduled, then it is likely that the owner
of the bottom-half, making use of asynchronous I/O, also
has sufficient priority to be scheduled. In such cases, both
the bottom-half and owner are co-scheduled, resulting in
an inversion on a non-partitioned multiprocessor.

Although priority inversions should be as short as
possible, the cumulative duration of inversions is also
important because a system that suffers many short
inversions may still be disrupted by their cumulative
effect. Fig. 4 shows cumulative priority inversion length
as a function of maximum priority inversion length for

12 Graphs for all tested task sets are available in Appendix C.
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Figure 4. Cumulative priority inversion length as a function of
maximum priority inversion length for the task set with utilization 11.2.
The total duration of priority inversion is much less under klmirqd in
comparison to PAI and SLIH. The curves for klmirqd and PAI plateau
abruptly, indicating little variance in priority inversion durations.

the same task set shown in Fig. 3. Observe in Fig. 4
that the sum duration of priority inversions is roughly
12,000µs under klmirqd, about 260,000µs under PAI,
and approximately 350,000µs under SLIH. The long
tail distribution under SLIH in Fig. 3 is also exhibited
here: the curve for SLIH in Fig. 4 increases slowly,
while the curves for klmirqd and PAI abruptly plateau.
The durations of priority inversions under klmirqd and
PAI have little variance in contrast to SLIH. Minimized
variance is desirable for predictable systems as it reduces
jitter in response times.

While we may never be able to completely bound
priority inversions caused by the closed-source GPU
driver, the observed deterministic behaviors exhibited by
klmirqd (in particular) and PAI are promising. It is clear
that heuristic-driven SLIH performs poorly in compari-
son. In addition to offering better performance, klmirqd
and PAI are also amenable to real-time analysis. The
poor performance of SLIH is not unexpected, but it is
important to note since a GPU-enabled real-time system
can only feasibly be supported on Linux platforms today.

VI. SYSTEM-WIDE EVALUATION OF INTERRUPT
HANDLING METHODS

In this section, we examine system-wide effects of
interrupt handling in terms under LITMUSRT, using
SLIH, PAI, and klmirqd methods; PREEMPT_RT; and
unmodified Linux (which also uses SLIH).
Experimental Setup. To demonstrate the real-time
weaknesses in unmodified Linux and PREEMPT_RT,
and evaluate both klmirqd and PAI, we executed a
workload of CPU-only and GPU-using tasks on the
platform described in Sec. V. In order to fairly com-
pare LITMUSRT against unmodified Linux and PRE-
EMPT_RT, the workload was scheduled using the clus-
tered rate-monotonic (C-RM) algorithm since unmodi-
fied Linux and PREEMPT_RT only support fixed real-
time priorities. Counting semaphores were used to pro-
tect each pool of GPU resources in unmodified Linux

and PREEMPT_RT, similarly to how the k-FMLP is
used under LITMUSRT. The workload consisted of 50
tasks: two GPU-using tasks that consume 2ms of CPU
time and 1ms of GPU time with a period of 19.9ms; 40
CPU-only tasks that consume 5ms of CPU time with
a period of 20ms; and finally, eight GPU-using tasks
that consume 2ms of CPU time and 1ms of GPU time
with a period of 20.1ms. The set of tasks was evenly
partitioned between the two clusters. Unique priorities
were assigned to each task within each cluster according
to task period.

This task set represents a pathological case for fixed-
priority threaded interrupt handling. Here, the highest
and lowest priority tasks share GPUs and the interrupt
handling threads, which each have a single fixed priority.
Unrelated CPU-only tasks are sandwiched between these
GPU-using tasks. If all tasks had equal priority, then
under RM scheduling, priorities could be reassigned such
that CPU-only tasks have priorities strictly greater or
strictly less than those of GPU-using tasks. However,
though task periods are close to being equal, it is not
the case here.

The workload was executed on eight platform config-
urations: (1) Unmodified Linux, using SLIH, to provide
a baseline of performance; (2) PREEMPT_RT, with
GPU-interrupt priorities set below that of any other
real-time task; (3) PREEMPT_RT with GPU-interrupt
priorities greater than the greatest GPU-using task;13 (4)
LITMUSRT using SLIH; (5) LITMUSRT with klmirqd;
(6) LITMUSRT with PAI; and finally, under C-EDF
(for the sake of comparison), both (7) LITMUSRT with
klmirqd, and (8) LITMUSRT with PAI. The unmodified
Linux and LITMUSRT configurations were based upon
Linux kernel version 2.6.36. PREEMPT_RT was based
upon the 2.6.33 Linux kernel, which was the most recent
kernel supported by PREEMPT_RT at the time of our
evaluation. This workload was executed 25 times for
each system configuration for a duration of 60 seconds
each. Measurements were recorded consistently on each
platform.
Results. Table II gives the average percentage of dead-
lines missed, as well as average response times (as
percent of period), for CPU-only and GPU-using tasks
under the various platform scenarios. The percentage of
deadlines missed is useful for comparing schedulability.
Response time measurements express the timeliness of
job completions (or severity of a deadline misses).

A deadline miss occurs if a job does not complete
within one period of its release time. We avoid penalizing
the response time of a subsequent job following a missed
deadline by shifting the job’s release point to coincide
with the tardy completion time of the prior job. However,
since these tests execute for a fixed duration, frequently
tardy tasks may not execute all their jobs within the
allotted time; any jobs that have not completed (even

13This is a rational choice when an interrupt-generating device is
shared by several tasks with differing priorities.



Scheduler: C-RM C-EDF
Operating System: PREEMPT_RT Unmod. Linux LITMUSRT

Interrupt Handling Method: Low Prio. High Prio. SLIH SLIH klmirqd PAI klmirqd PAI
Interrupts (a) Interrupts (b) (c) (d) (e) (f) (g) (h)

Avg. % Miss Per Task
CPU-Only Tasks 12.5% 12.5% 1.6% 10.0% 10.0% 9.9% 0% 0%
GPU-Using Tasks 10.1% 8.5% 6.8% 0% 0% 0% 0% 0%

Avg. Resp. Time as % Period
CPU-Only Tasks 22474.5% 24061.0% 8992.1% 55.8% 55.8% 55.6% 55.4% 55.4%
GPU-Using Tasks 23066.1% 34263.5% 61131.7% 46.7% 49.6% 46.2% 46.2% 46.2%

Table II
AVERAGE NUMBER OF DEADLINE MISSES PER TASK AND AVERAGE JOB RESPONSE TIMES (EXPRESSED AS A PERCENTAGE OF PERIOD) FOR

THE EXPERIMENTAL TASK SET EXECUTED UNDER SEVERAL SCHEDULING ALGORITHMS AND INTERRUPT HANDLING METHODS. THE
EXPERIMENTAL TASK SET WAS EXECUTED 25 TIMES PER CATEGORY.

those not yet released) by the end of a test are considered
to have missed deadlines, though these jobs are not
included in response time measurements.

Observation 1. There are no good options for selecting
a fixed priority for interrupt threads shared by tasks
of differing priorities. The increase of GPU interrupt
priority in column (b) causes all bottom-half thread
execution to preempt CPU-only jobs, directly increasing
their response times with respect to column (a), where
interrupts have the lowest priority. In most cases under
column (b), GPU interrupt execution is on behalf of
lower-priority GPU-using jobs, thus causing CPU-only
jobs to experience priority inversions. Priority inversions
also occur if interrupt priority is too low, resulting in the
starvation of GPU-using jobs. This is evident in column
(a), where GPU-using tasks miss deadlines more often
than in column (b).

Observation 2. Unmodified Linux outperforms PRE-
EMPT_RT (in this pathological case) due to lower
interrupt handling overhead. Under unmodified Linux,
bottom-halves are usually executed immediately after
top-halves; thus, bottom-halves essentially execute with
maximum priority (like column (b)), yet this is ac-
complished without the overhead of threaded interrupt
handling. Increased CPU availability greatly improves
the response times of CPU-only jobs in column (c) in
comparison to both columns (a) and (b), while deadline
misses of GPU-using jobs are reduced.

Observation 3. klmirqd dynamically assigns priori-
ties to interrupt threads, resulting in schedulable and
analyzable real-time systems. The average response time
values in columns (d) and (e) indicate that jobs typically
complete well before their deadlines (they are less than
100%). While the response time of GPU-using tasks is
slightly worse in column (e), the heuristic-driven nature
of SLIH is not amenable to schedulability analysis.

Observation 4. Overheads introduced by klmirqd into
LITMUSRT are largely negligible, in comparison to both
SLIH and PAI. The nearly-equal response times in
columns (d), (e), and (f) indicate that klmirqd overhead
costs are negligible. This indicates that techniques like
those of PAI are unnecessary in the case of GPU in-
terrupts. However, PAI does perform slightly better than
klmirqd in most cases, though it suffers from significant

analytical pessimism, as shown next in Sec. VII.
Observation 5. LITMUSRT with klmirqd or PAI out-

performs PREEMPT_RT. A comparison of column (b)
to columns (e) and (f) shows that deadline misses were
not significant under klmirqd or PAI, but were common
under PREEMPT_RT. Unfortunately, it is difficult to
identify a single difference between PREEMPT_RT and
LITMUSRT that causes this disparity in performance, as
there are many core differences (in scheduler implemen-
tation, etc.) between the two. Additional investigation
is merited. Nevertheless, these differences do not have
bearing on the previously made observations.

Observation 6. C-EDF scheduling is superior to C-
RM in limiting deadline tardiness. This is not surprising,
in light of prior work [32], but we mention it nonetheless.
This is another indication that PREEMPT_RT may not
be a desirable solution in all applications, especially in
soft real-time systems, since C-EDF is not supported.

VII. OVERHEAD-AWARE SCHEDULABILITY

As seen in Secs. V and VI, both klmirqd and PAI
reduce the frequency and duration of priority inversions.
klmirqd accomplishes this through some additional
scheduling overheads. PAI, on the other hand, incurs
lower system overheads due to the lack of scheduling,
but does so through the sharing of program stacks with
bottom-half execution. SLIH usually executes bottom-
halves immediately following the top-half, incurring
overheads less than even PAI. How do these trade-offs
affect general task set schedulability? The answer to this
question depends upon the actual system overheads and
worst-case priority inversions that may occur in each
approach.14 To address this question in the context of C-
EDF, we conducted schedulability experiments using a
methodology similar to that proposed in [33] to integrate
actual measured overheads.

Using the same hardware platform described in
Sec. V, we measured the following system overheads:
thread context switching, scheduling, job release queu-
ing, inter-processor interrupt latency, CPU clock tick
processing, both GPU interrupt top-half and bottom-half
processing, and, in the case of klmirqd and PAI, tasklet

14We assume for analysis that SLIH always executes bottom-halves
immediately following the top-halves.
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Figure 5. The percentage of schedulable task systems (y-axis) as a
function of CPU utilization (x-axis) under klmirqd (threaded) inter-
rupt handling, PAI (non-threaded) handling, and SLIH (non-threaded)
interrupt handling.

release queuing. We then randomly generated task sets
with properties similar to those in Sec. V. Schedulability
of each generated task set was determined by using a
soft real-time (bounded tardiness) schedulability test for
C-EDF scheduling [34], augmented to account for over-
heads. Average overhead values were used (as in [33]
when analyzing soft real-time systems). Interrupts were
accounted for using task-centric methods [20].15

A selection of our schedulability results is given in
Fig. 5,16 which presents results for task sets in which:
per-task utilizations vary uniformly over [0.5, 0.9]; GPU-
using tasks use 75% of their execution time on the GPU;
and 50% to 60% of tasks in each task set are GPU-
using. Variance in GPU behavior was controlled by a
parameter i ∈ {1, 3, 6}, which specifies the number
of GPU interrupts each GPU-using job may generate.
In Fig. 5, schedulability is higher under klmirqd than
both PAI and SLIH for each choice of i, with a greater
disparity between them for larger values of i.

Contrary to what we might expect from the results in
Secs. V and VI, PAI performs worse than SLIH. This is
because, while PAI attempts to schedule bottom-halves
to avoid priority inversions, it does so at the expense
of using the program stacks of other tasks. Under PAI,
a bottom-half can preempt the lowest-priority scheduled
job when the bottom-half arrives. However, on a non-
partitioned multiprocessor, the relative priority of the
preempted job may increase with respect to other jobs
before the bottom-half completes (this may occur when
higher-priority jobs on other processors complete). Un-
fortunately, the preempted job cannot resume execution
until the preempting bottom-half completes, freeing up
the task’s program stack. The job is blocked, and this
must be reflected in analysis. Accounting for bottom-
halves under PAI results in formulas matching those
for SLIH, except that PAI must also include additional
overheads due to bottom-half scheduling.

15Please see Appendix B for theoretical analysis, which includes a
detailed description of interrupt and overhead accounting methods.

16Additional graphs are available in Appendix D.
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Figure 6. Schedulability results similar to Fig. 5 except that a GPU
speedup of 16× is assumed.

It is important to note that this scenario for PAI
cannot occur on uniprocessors or partitioned multipro-
cessors since the preempted task never has a priority
great enough to be scheduled before the preempting
bottom-half completes.17 Like the issues raised by co-
scheduling bottom-halves and their owner tasks, this PAI
limitation reinforces the notion that prior solutions for
real-time interrupt handling may need reconsideration on
multiprocessor platforms.

The primary motivation for utilizing GPUs in a real-
time system is increased performance. The benefits of
threaded GPU interrupt handling are even more clear
when effective utilization is considered instead of actual
CPU utilization. By supposing a GPU-to-CPU speed-up
ratio of R, we may convert each GPU-using task into a
functionally equivalent CPU-only task by viewing each
time unit spent executing on a GPU as R times units
spent executing on a CPU. We define effective utilization
to be the utilization of a task set after such a conversion.
Fig. 6 depicts the same schedulability results shown in
Fig. 5, except that effective utilizations are considered,
for the case R = 16 (i.e., a GPU is 16× faster than a
CPU), a common speed-up.

As Fig. 6 shows, the impact of using klmirqd is even
greater if effective utilizations are considered. When
i = 6, 90% of task sets with an effective utilization of
65.0 CPUs are schedulable under klmirqd. In contrast,
effective utilization must be decreased to 55.0 CPUs to
achieve the same degree of schedulability under SLIH
or PAI. klmirqd supports effective utilizations ten CPUs
greater at 90% schedulability!

VIII. CONCLUSION

In this paper, we presented flexible real-time interrupt-
handling techniques for multiprocessor platforms that
are applicable to any JLSP-scheduler and that respect
single-threaded task execution. We also reported on our
efforts in implementing such techniques in LITMUSRT,
and showed that they can be successfully applied to
even a closed-source GPU driver, thus allowing for
improved real-time characteristics for real-time systems

17Barring priority inheritance mechanisms from locking protocols.



using GPUs. We presented an experimental evaluation
of this implementation that shows that it reduces the
interference caused by GPU interrupts in comparison to
standard interrupt handling in Linux, outperforms fixed-
priority interrupt handling methods, is competitive with
other real-time methods, and offers better results in terms
of overall schedulability (with overheads considered).

This paper lays the groundwork for future investiga-
tions into GPU-enabled real-time platforms. We limited
attention to clustered scheduling in this paper. In a
future study, we intend to consider a full gamut of
partitioned, clustered, and global schedulers and different
GPU-to-CPU assignment methods and GPU arbitration
(i.e., locking) protocols. The goal of this study will be
to identify the best combinations of scheduler, locking
protocol, etc., for both soft and hard real-time systems,
from the perspective of overhead-aware schedulability.
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APPENDIX

A. k-FMLP
Inspired by the Flexible Multiprocessor Locking Pro-

tocol (FMLP) [29], the k-Exclusion Flexible Multipro-
cessor Locking Protocol (k-FMLP) is a simple and easy
to understand protocol. The blocking experienced by a
job waiting for a resource protected by the k-FMLP is
O(n/k) where n is the number of tasks using the lock
and k is the size of the protected resource pool. Unlike
the more recent O(m) Locking Protocol (OMLP) the
k-FMLP is not optimal with respect to the number of
m CPU processors. Achieving an O(m/k) k-exclusion
protocol (one might expect a 1/k term in any reasonable
k-exclusion protocol) is actually a non-trivial [35], [30].
However, for the sake of the interrupt-handling focus
of this paper, the k-FMLP will suffice. The k-FMLP is
designed as follows.
Task Model. We consider the problem of scheduling a
mixed task set of n sporadic tasks, T = {T1, . . . , Tn},
on m CPUs with one pool of k resources. A subset
TR ⊂ T of the tasks require use of one of the system’s
k resources. We assume k ≤ m. A job is a recurrent
invocation of work by a task, Ti, and is denoted by
Ji,j where j indicates the jth job of Ti (we may
omit the subscript j if the particular job invocation is
inconsequential). Each task Ti is described by the tuple
Ti(ei, li, di, pi). The worst-case CPU execution time of
Ti, ei, bounds the amount of CPU processing time a
job of Ti must receive before completing. The critical
section length of Ti, li, denotes the length of time task
Ti holds one of the k resources. For tasks Ti /∈ TR,
li = 0. The deadline, di, is the time after which a job
is released by when that job must complete. Arbitrary
deadlines are supported by the k-FMLP. The period of
Ti, pi, measures the minimum separation time between
job invocations for task Ti.

We say that a job Ji is pending from the time of its
release to the time it completes. A pending job Ji is
ready if it may be scheduled for execution. Conversely,
if Ji is not ready, then it is suspend.

A job Ji,j (of a task Ti ∈ TR) may issue a resource
request Ri,j for one of the k resources. Requests that
have been allocated a resource (resource holders) are
denoted by Hx, where x is the index of the particular
resource (of the k) that has been allocated. Requests
that have not yet been allocated a resource are pending
requests. We assume that a job requests a resource
at most once, though the analysis presented in this
paper can be generalized to support multiple, non-nested,
requests. We let bi denote an upper bound on the duration
a job may be blocked.

In the k-FMLP, a job Ji suspends if it issues a
request Ri that cannot be immediately satisfied. We use

Priority inheritance as a mechanism to bound worst-
case blocking time. Under priority inheritance, a resource
holder may temporarily assume the higher-priority of a
blocked job that is waiting for the held resource. The
priority of a job Ji in the absence of priority inheritance
is the base priority of Ji. We call the priority with which
Ji is scheduled the effective priority of Ji.
Structure. The k-FMLP uses k FIFO request queues,
each queue assigned to one of the k protected resources.
A job Ji enqueues a resource request Ri onto the queue
FIFOx when the job requires a resource. A job with a
request at the head of its queue is considered the holder
of the associated resource and is ready to run.
Rules. We define the worst-case wait time for a
queue, FIFOx, at time t with the formula waitx(t) =∑

Rj∈FIFOx
lj . However, it may be too burdensome for an

implementation to maintain critical section length values
for each queued request. We may instead use the con-
servative approximation waitx(t) = max {l} · |FIFOx|,
where max{l} is the longest duration any job may hold
a resource and |FIFOx| denotes the number of requests
in FIFOx. We call an implementation which is informed
of critical section lengths to be l-aware and those that
are not as l-oblivious.

The k-FMLP is governed by the following rules.
R1 When Ji issues a request Ri at time t, Ri is

appended to the queue with the minimum worst-
case wait time, min1≤x≤k{waitx(t)}. Ji is granted
ownership of the xth resource when Ri is at the head
of FIFOx.

R2 All jobs with queued request are suspended except
for the resource holders, which are ready. Hx inherits
the priority of the highest-priority blocked job in
FIFOx if that priority exceeds the base priority of
Hx.

R3 When Ji frees resource x, Ri is dequeued from
FIFOx and the job with the next queued request in
FIFOx is granted the newly available resource. If
there is no pending job in FIFOx, then the highest-
priority blocked job waiting for one of the k re-
sources is “stolen” (removed from its queue) and
granted the free resource.18

Blocking Analysis. The k-FMLP essentially load-
balances resource requests amongst the k resources,
similar to how patrons at a grocery store may organize
themselves at several checkout stations, selecting the line
they anticipate to have the shortest wait time.

Lemma 1. When Ji issues a request for a resource at
time t, there exists a resource queue with a worst-case
wait time less than or equal to

(∑k
x=1 waitx(t)

)
/k.

18Request “stealing” does not affect worst-case blocking analysis,
but is a useful to ensure an efficient, work-conserving, system.



Proof: Suppose all other resource-using jobs cur-
rently hold a resource or have a queued request issued
before Ri. Therefore, all requests other than Ri have
been partitioned into k groups. The sum total worst-
case wait time at time t is

∑k
x=1 waitx(t). In the l-

aware case, then the total worst-case wait time is equal
to
∑

Tj∈TR\{Ti} lj . Otherwise, it may be approximated
by
∑k

x=1 max {l}·|FIFOx| = max {l}·
∣∣Tj ∈ TR\{Ti}

∣∣,
in the l-oblivious case.

On average, each queue has a worst-case wait
time of

(∑
Tj∈TR\{Ti} lj

)
/k in the l-aware case, or(

max {l} ·
∣∣Tj ∈ TR\{Ti}

∣∣) /k in the l-oblivious case.
If one queue has a worst-case wait time greater than
average, then another must have a worst-case wait time
less than average. Thus, the average worst-case wait time
upper-bounds the maximum wait time of the shortest
queue at time t.

Theorem 1. The maximum time a job may be blocked
under the k-FMLP in an l-aware implementation is
bounded by the formula

bi ≤

 ∑
Tj∈TR\{Ti}

lj

 /k. (1)

Proof: Follows from Lemma 1 and rule R1.

Theorem 2. The maximum time a job may be blocked
under the k-FMLP in an l-oblivious implementation is
bounded by the formula

bi ≤
(
max {l} ·

∣∣Tj ∈ TR\{Ti}
∣∣) /k. (2)

Proof: Follows from Lemma 1 and rule R1.

Observe that both Eq. 1 and Eq. 2 are O(n/k).

In the case of an l-aware implementation, we may
derive an exact bound for bi by determining the maxi-
mum worst-case wait time of the shortest FIFO queue.
Unfortunately, the problem to compute an exact solution
is a variant of the NP-hard (in the strong sense) job shop
scheduling problem. Nevertheless, bi may be computed
exactly by solving the following 0-1 integer linear pro-
gram for tasks in TR:

Maximize bi
subject to∑

Tj∈TR\{Ti} xj,q · lq ≥ bi ∀j ∈ {1, . . . , k}∑k
j=1 xj,q = 1 ∀Tq ∈ TR\{Ti}

xj,q ∈ {0, 1}
(3)

where xj,q is an indicator variable denoting the assign-
ment of Rq to FIFOj .

B. Overhead Accounting
In Sec. VII, we presented the results of overhead-

aware schedulability tests. It was shown that threaded
GPU interrupt processing in klmirqd is able to meet soft
real-time bounded tardiness constraints for more task sets
than standard Linux interrupt handling (SLIH), despite
additional overheads associated with klmirqd’s thread
scheduling. Due to page constraints in Sec. VII, we were
unable to present a detailed description of how overheads
were accounted in our schedulability experiments. This
is done here.

Traditional real-time schedulability tests usually
model a theoretical system where scheduling decisions
are instantaneous, with no execution overheads. How-
ever, overheads must be considered if we are to apply
schedulability test methods to real systems in practice.
The dissertation of B. Brandenburg [33] describes sev-
eral methods for incorporating system overheads from
various sources such as operating system ticks, timer
interrupts, scheduling decisions, etc. into traditional
schedulability tests, thus making them overhead-aware.
These tests better reflect real-world performance than
the traditional overhead-oblivious tests. One overhead
accounting technique described in [33] is the “task-
centric” method. We adapt the task-centric method in
this work to account for interrupts caused by GPUs.

This section proceeds in six parts. First, we describe
the schedulability test for bounded tardiness used in this
paper and outline the general process of task execution
inflation to account for overheads. Following, we up-
date our schedulability test to account for basic over-
heads such as blocking due to locking protocols, self-
suspensions, scheduling decisions, and context switches.
Next, we further develop this model to liberally account
for overheads of GPU interrupts under SLIH. Thereafter,
we alter this model to account for overheads of GPU
interrupts under klmirqd, as well as Zhang et al. [27]’s
Process-Aware Interrupt (PAI) method. Then, we account
for overheads due to operating system ticks. Finally,
we present the values of the observed overheads from
LITMUSRT running on our evaluation platform (platform
described in Sec. V) used in our schedulability tests.

We express our overhead accounting methods using
with the task model presented in Appx. A, with minor
additions presented as needed.

Schedulability. The basic schedulability test for
bounded tardiness in a soft real-time system scheduled
under G-EDF is described in [32]. Under this test, two
conditions must hold:

ei ≤ pi (4)∑
Ti∈T

ei/pi ≤ m (5)
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Figure 7. Basic accounting of overheads for simple CPU-only job,
Ji. Job execution is framed by overheads to due scheduling decisions
and context switches.

Condition Eq. (4) ensures that no individual task (or
single CPU) is over utilized, and condition Eq. (5)
ensures that the system as a whole (with m CPUs) is
not over utilized. To test schedulability under C-EDF
scheduling, we simply perform the G-EDF test on each
cluster, scaling m accordingly to reflect the number of
CPUs in each cluster.

To account for system overheads, such as scheduling
decisions, we inflate ei to include processing time for
the appropriate operations. Accounting techniques, such
as the task-centric method, determine what overheads
should be charged against which tasks. Also, under
suspension-oblivious analysis, we also inflate ei to in-
clude suspension-based delays in execution. In this work,
this includes the suspension of when a GPU-using job
blocks waiting for an available GPU, as well as when a
GPU-using job suspends while waiting for results from
a GPU.

Fixed-point iterative schedulability tests must be used
since the overhead accounting methods presented here
depend upon the worst-case response time jobs. For-
tunately, worst-case response times can be computed
using bounded tardiness analysis [34]. However, this
response time is likewise dependent upon the overheads
under consideration. Thus, schedulability tests must be
iteratively performed until tardiness bounds remain un-
changed.

Basic Accounting. Let us begin accounting for basic
overheads and suspension-based execution delays.

A system must make one scheduling decision for
every job arrival and once again for every job comple-
tion. We account for scheduling decision overheads by
charging every task the cost of two scheduling decisions.
Similarly, the arrival of a job may trigger a preemption,
causing a context switch. Another context switch occurs
again when the preempting job completes, and the sys-
tem switches back to the originally scheduled job. Thus,
we charge each task for the cost of two context switches.

Fig. 7 gives a basic depiction of execution of a CPU-only
job where job execution is framed by scheduling decision
and context switch costs. This gives the following basic
inflation equation:19

e
(cpu-only)6
i = ei + 2(∆sch + ∆cxs), (6)

where ∆sch denotes the duration of a scheduling deci-
sion and ∆cxs the time to perform a context switch.

We may also perform a basic accounting of overheads
for GPU-using jobs. Unlike CPU-only jobs, GPU-using
jobs must incur at least two suspensions in the worst-
case. The first suspension occurs when a GPU-using job
attempts to acquire a GPU when none are available;
the job must suspend to wait for an available GPU.
The next suspension occurs when the GPU-using job
blocks to wait for the results from a GPU invocation.
An additional suspension may be experienced for each
additional use of the GPU by a job. Each suspension
induces two additional scheduling decision overheads
and context switch costs. Thus,

e
(gpu-using)7
i = ei + (1 + 1 + ηi)(2(∆sch + ∆cxs)), (7)

where ηi denotes the number of times the job Ji uses the
GPU. Note that ηi also denotes the number of interrupts
the GPU will send to the system to signal the completion
of an invocation; this will be important later.

Due to our suspension-oblivious analysis, we must
treat all durations of self-suspensions as additional ex-
ecution time (i.e. CPU demand). To account for the
suspension due to GPU acquisition, we must inflate ei
by bi (Appx. A). To account for suspensions due to GPU
use, we introduce a new term si. Let si denote the total
time the GPU spends executing for Ji as well as the
execution time for any associated top-halves or bottom-
halves. Fig. 8 gives a depiction of a simple (ηi = 1)
GPU-using job and associated overhead costs.

By simplifying Eq. (7) and incorporating bi and si,
we get:

e
(gpu-using)8
i = ei+bi+si+(2+ηi)(2(∆sch+∆cxs)). (8)

Release Overheads. In addition to scheduling and con-
text switch overheads, there are also overheads associ-
ated with job releases. Consider a periodic task system
where jobs are released by OS timers that trigger via
timer interrupts. Suppose at time t0 a timer interrupt
is raised to release job Ji. In an ideal system, Ji
would instantaneously appear in the ready queue of the
appropriate CPU (or even immediately scheduled) at t0.
However, this is not the case in a real system, and there

19We will be progressively inflating execution costs and need a
means of keeping track of our incremental steps. We use the super-
script notation on ei such that the super-script value matches the
equation label where the inflated execution cost was defined.
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Figure 9. A newly released job experiences delays due to interrupt delivery latency and updates of ready queue data structures, in addition
to scheduling and context switch overheads.

are delays which should be accounted for.
Fig. 9 depicts the event sequence of a job released by

a timer. When the timer interrupt fires at time t0, it is
not received by CPU x until time t1. It takes a moment
for CPU x to respond to the interrupt, so the timer ISR
is not invoked until time t2. The interval [t0, t2] may
be modeled as delay due to hardware delays in interrupt
delivery, denoted by ∆hw. We ignore the effects of ∆hw

here since the goal of this paper is to compare the
effects klmirqd interrupt handling and standard Linux
interrupt handling have on schedulability. We presume
∆hw affects both methods equally.

Continuing after t2, the timer ISR must add Ji to
the appropriate ready queue. Before the ready queue

data structures can be updated, spinlocks must first be
acquired to enforce safe concurrent access. Once these
locks are acquired, Ji is added to the ready queues.
These operations are not completed until time t3. We
denote the duration [t2, t3] with ∆rel.

It is possible that at time t3, Ji should be immediately
scheduled, but Ji should not run on CPU x according
to the active scheduling algorithm. Instead, Ji must
be scheduled on CPU y. To handle this case, CPU x
updates data structures (links) at time t3 to make Ji
available to CPU y and then notifies CPU y of the need
to schedule Ji using an inter-processor interrupt (IPI),
which is received by CPU y at time t4. The interval
[t3, t4] captures delays caused by IPI latencies and is
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Figure 10. Interrupt handling overheads under standard Linux, with
the liberal assumption that bottom-halves are executed immediately and
not preceded by other bottom-halves from other sources or deferred to
ksoftirq processing.

denoted by ∆ipi.
Observe that ∆rel and ∆ipi overheads may delay

execution whenever a job becomes ready to run, not
just from timer-based releases, but also resumptions from
self-suspensions. We must account for these overheads
accordingly. CPU-only jobs only experience overheads
∆rel and ∆ipi once (per release), so

e
(cpu-only)9
i = e

(cpu-only)6
i + ∆rel + ∆ipi. (9)

GPU-using jobs experience several self-suspensions, so

e
(gpu-using)10
i = e

(gpu-using)8
i + (2 + ηi)(∆

rel + ∆ipi). (10)

GPU Interrupts. We now present our accounting
method for GPU interrupt overheads under SLIH,
klmirqd, and PAI.

Standard Linux Interrupts. Fig. 10 illustrates the se-
quence of events from a GPU interrupt, raised by the
GPU device, to the completion of the interrupt bottom-
half under SLIH. At time t0, the GPU raises an interrupt
and the associated top-half commences execution at time
t2. This sequence is similar to the sequence already
described for job release timer interrupts. Similarly, the
interval [t0, t2] models as delay due to hardware delays
in GPU interrupt delivery; we denote this duration with
the term ∆gpu_hw. However, like ∆hw, we also ignore
∆gpu_hw for the same reasons.

At time t2, the top-half of the GPU interrupt begins
execution and completes at time t3. This duration de-
noted by ∆th. We make the liberal assumption that the
GPU interrupt bottom-half begins execution immediately
at time t3 and completes at time t4. This duration is
denoted by ∆bh. The response time of the interrupt
handler, end-to-end, is [t0, t4] (recall that the CPU cannot
be preempted while it is processing the interrupt under
standard Linux).

We say that this bound for response time is liberal for
two important reasons: (1) it assumes no other bottom-
halves for other system interrupts are queued ahead of

the GPU interrupt bottom-half; and (2) it assumes the
GPU interrupt bottom-half is never deferred to Linux’s
ksoftirqd daemon. These are best-case assumptions for
standard Linux interrupt handling. If (1) fails to hold,
then the job interrupted by the GPU interrupt is further
delayed. If (2) fails to hold, then it is generally not
possible to bound the response time of the bottom-half
since ksoftirqd is not scheduled real-time priorities. If the
response time of the bottom-half is not bounded, then the
response time of the GPU-using job that depends upon
the bottom-half’s completion is also not bounded and no
real-time guarantees for the job can be made!

Since the execution on the interval [t2, t4] = ∆th +
∆bh is non-preemptive, GPU interrupt processing can
induce a priority inversion if a higher-priority job is
interrupted. This inversion is (∆th + ∆bh) in length
for every GPU interrupt in the worst-case. Under task-
centric accounting when there is no CPU dedicated to
interrupt handling (as is the case in this study), we
cannot know which CPUs will be affected by GPU
interrupts. As a result, we must model the processing
for a single interrupt as occurring on all CPUs (within
a given cluster) simultaneously (see [33] for a complete
explanation). Furthermore, any job, both CPU-only and
GPU-using, can be affected by these inversions.

To quantify the effect of GPU interrupts on job Ji, we
must first determine the maximum number of GPU in-
terrupts that may occur while Ji may be executing. Once
the total number of interrupts is known, we multiply the
number of interrupts by (∆th + ∆bh) to make a total
per-task accounting. The following formula computes the
number of GPU interrupts that may, in the worst-case,
delay job Ji in a soft real-time system with bounded
tardiness (assuming n is the number of tasks within the
cluster under consideration):

Hi =

n∑
i 6=j

(⌈
pi + xi + pj + xj

pj

⌉
· ηj
)
, (11)

where xi and xj denote tardiness bounds, as computed
by [34].

Since GPU interrupts affect both CPU-only and GPU-
using jobs, we further inflate ei with the same term
according to the following formulas:

e
(cpu-only)12
i = e

(cpu-only)9
i +Hi(∆

th + ∆bh) (12)

and

e
(gpu-using)13
i = e

(gpu-using)10
i +Hi(∆

th + ∆bh) (13)

for CPU-only and GPU-using tasks, respectively.

klmirqd Interrupts. The use of klmirqd shortens the du-
ration of non-preemptive execution of interrupt handling
at the expense of additional thread-scheduling overheads.
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Fig. 11 illustrates the sequence of events from a GPU
interrupt, raised by the GPU device, to the completion of
the interrupt bottom-half by klmirqd. Observe in Fig. 11
that immediately after the completion of an interrupt top-
half at time t3, the bottom-half is “released” (or queued)
to klmirqd. This operation completes at time t4. Thus,
the entire non-preemptive duration of interrupt handling
lasts from [t2, t4] = ∆th + ∆krel. Thus, we can update
Eqs. (12) and (13) to replace ∆bh with ∆krel. This gives
us

ê
(cpu-only)14
i = e

(cpu-only)9
i +Hi(∆

th + ∆krel) (14)

and

ê
(gpu-using)15
i = e

(gpu-using)10
i +Hi(∆

th + ∆krel) (15)

for CPU-only and GPU-using tasks, respectively.
Eqs. (14) and (15) account for the effects of GPU

interrupt top-half processing under klmirqd. However,
we must still account for additional thread-scheduling
overheads. These remaining overheads only affect GPU-
using tasks, so Eq. (14) completes our accounting under
klmirqd for CPU-only tasks (though tick interrupt ac-

counting remains).
We must inflate every GPU-using job to include addi-

tional thread-scheduling costs. To schedule each bottom-
half we charge costs for ∆sch, ∆cxs, and ∆ipi. We
isolate these charges to the single job that triggers them
because the bottom-half is scheduled with the priority of
the originating job. Charging GPU-using jobs for thread-
scheduling overheads, we get the formula:

ê
(gpu-using)16
i = ê

(gpu-using)15
i + ηi(2(∆sch + ∆cxs) + ∆ipi).

(16)
Observe that we do not make a charge for ∆rel because
bottom-half releasing is already accounted for by ∆krel.
Furthermore, ∆krel � ∆rel because klmirqd threads are
already in a prepped idle state.

Due to suspension-oblivious analysis, we do not have
to make any overhead charges for ∆bh under klmirqd
since si, by definition, already incorporates this overhead
into execution time. This can be observed in Fig. 12.

This completes our accounting of GPU interrupt over-
heads under both standard Linux interrupt handling and
klmirqd.



Process-Aware Interrupts.

The use of Zhang et al. [27]’s Process-Aware Inter-
rupt (PAI) handling also shortens the duration of non-
preemptive execution that occurs immediately after an
interrupt is received. Interrupt accounting under PAI
differs from both standard Linux and klmirqd interrupt
handling methods.

Assuming a bottom-half does not have sufficient pri-
ority to be scheduled immediately after its top-half has
completed, the bottom-half is enqueued into a bottom-
half ready queue. Similar to the bottom-half “release”
overhead ∆krel in klmirqd, the overhead of bottom-half
enqueueing under PAI is denoted by ∆pairel. ∆pairel

differs from ∆krel because while klmirqd operates on
the process ready queues, PAI operates on a separate
bottom-half-only ready queue. We account for ∆pairel

in the same fashion as we did ∆krel, giving

ẽ
(cpu-only)17
i = e

(cpu-only)9
i +Hi(∆

th + ∆pairel) (17)

and

ẽ
(gpu-using)18
i = e

(gpu-using)10
i +Hi(∆

th + ∆pairel) (18)

for CPU-only and GPU-using tasks, respectively.

Eqs. (17) and (18) account for the effects of GPU in-
terrupt top-half processing under PAI handling. However,
we must still account for additional overheads due to
multiprocessor scheduling. The bottom-half ready queue
must be examined after every scheduling decision to
see if a bottom-half should be scheduled instead of the
job selected by the normal scheduler. Access to this
ready queue must be synchronized across the globally
scheduled cores, so minor overheads can be incurred.
We account for this bottom-half scheduling under PAI
with the term ∆paisch, which is charged whenever a
scheduling decision is made. Thus,

ẽ
(cpu-only)19
i = ẽ

(cpu-only)17
i + 2 ·∆paisch (19)

and

ẽ
(gpu-using)20
i = ẽ

(gpu-using)18
i + (2 + ηi)(2 ·∆paisch) (20)

for CPU-only and GPU-using tasks, respectively.

The timely execution of bottom-halves may also be
delayed by interprocessor communication. Once a top-
half has completed, the accompanying bottom-half may
have sufficient priority to execute immediately, but not
on the processor where the top-half has been exe-
cuted. An IPI must be used to trigger the execution of
the bottom-half on the remote processor (this scenario
closely resembles the timer IPI latencies already dis-
cussed). We inflate every GPU-using job to include this
additional IPI latency cost for each bottom-half. Thus,

we have

ẽ
(gpu-using)21
i = ẽ

(gpu-using)20
i + ηi ·∆ipi. (21)

Observe the similarities and differences between Eq. (21)
and Eq. (16). Whereas Eq. (16) of klmirqd includes a
thread-scheduling cost for each of Ji’s bottom-halves,
Eq. (21) of PAI handling instead includes an IPI cost for
each of Ji’s bottom-halves.

Eqs. (19) and (21) account for bottom-half scheduling
overheads, but not the cost of executing the bottom-
halves themselves. These must be considered.

Recall that PAI attempts to schedule bottom-halves to
avoid priority inversions, but it does so at the expense
of using the program stacks of other tasks. Under PAI,
a bottom-half can preempt the lowest-priority scheduled
job when the bottom-half arrives. However, on a non-
partitioned multiprocessor, the relative priority of the
preempted job may increase with respect to other jobs
before the bottom-half completes (this may occur when
higher-priority jobs on other processors complete). Un-
fortunately, the preempted job cannot resume execution
until the preempting bottom-half completes, freeing up
the job’s program stack. The job is blocked. Although
PAI attempts to reduce priority inversions (and in prac-
tice does relatively well, as seen in Sec. V), it cannot
eliminate inversions in the worst-case. In the worst-case,
a job is blocked by every bottom-half that arrive between
a job’s release and completion. Furthermore, since any
task can be preempted by a bottom-half, CPU-only and
GPU-using tasks are affected alike. Thus,

ẽ
(cpu-only)22
i = ẽ

(cpu-only)19
i +Hi ·∆bh (22)

and
ẽ

(gpu-using)23
i = ẽ

(gpu-using)21
i +Hi ·∆bh (23)

for CPU-only and GPU-using tasks, respectively.

When we compare Eqs. (22) and (23) of PAI to
Eqs. (12) and (13) of SLIH, we find that the equations are
nearly the same. The only difference is that PAI includes
additional overheads due to bottom-half scheduling.

It is important to note that this scenario for PAI cannot
occur on uniprocessors or partitioned multiprocessors
since the preempted task never has a priority great
enough to be scheduled before the preempting bottom-
half completes (barring priority inheritance mechanisms
from locking protocols).

Tick Accounting. An operating system will periodically
execute, once every quantum, a tick interrupt to per-
form periodic maintenance of internal bookkeeping data.
Methods for accounting for operating system ticks are
well known. As described in [33] and other sources, ticks



Overhead Duration
∆sch 0.63µs
∆cxs 0.36µs
∆ipi 0.60µs
∆rel 0.67µs
∆th 16.44µs
∆bh 29.90µs

∆krel 1.39µs
∆paisch 0.13µs
∆pairel 0.56µs
∆tck 0.86µs
Q 1ms

Table III
OBSERVED OVERHEADS ON OUR EVALUATION PLATFORM. Q IS A

COMPILE-TIME CONFIGURED VALUE.

can be accounted for with the following equation:

e′tck
i = e′i +

⌈
pi + xi
Q

⌉
∆tck, (24)

where Q denotes the tick quantum length and e′i denotes
an already-inflated task execution time. For our account-
ing, we account for tick overheads last, after having
already inflated ei for the various system overheads.

Observed Overheads. We executed task sets made up
of both CPU-only and GPU-using tasks on our evalu-
ation platform in LITMUSRT using both klmirqd and
standard Linux interrupt handling and recorded logs of
all scheduling events. Roughly 28 hours of execution
was spent gathering these logs. From these logs we
determined average-case values for each of the required
overheads. We are only interested in average-case values
since our system is soft real-time. With the exception of
∆th and ∆bh, outliers were removed by only considering
values from the interquartile range (a standard statistical
technique) before computing averages. We choose to
not remove outliers in the averages for ∆th and ∆bh

because, unlike the other overheads, the duration of
each ∆th and ∆bh vary greatly. This is because each
may perform a very different operation each invocation.
For example, we have no visibility into the closed-
source driver and are unable to identify different types
of bottom-halves. Thus, we merely group all types of
bottom-halves together and compute an average.

Table III displays all the relevant overheads discussed
in this section. Note that Q is actually a compile-
time configured variable in Linux and not an observed
variable.

Please refer to Appx. D for all results to our overhead-
aware schedulability experiments.



C. Priority Inversion Results
As described in Sec. V, 41 task sets were executed

for two minutes in LITMUSRT three times: once with
klmirqd, once with PAI, and once with SLIH. Data
on the frequency and duration of priority inversions
was gathered. Figures for all of our gathered data are
presented here.

Fig. 13 through Fig. 53 depict the probability that an
observed priority inversion was less than a given value
(x-axis). When comparing two curves in these graphs,
a higher curve is generally better since this indicates
that more priority inversions are likely to be shorter by
comparison.

Fig. 54 through Fig. 94 depict the cumulative priority
inversion duration as a function of maximum priority
inversion duration (x-axis). In other words, for a given x
value, the corresponding y value is the sum weight of all
observed priority inversions with durations ≤ x. When
comparing two curves in these graphs, a lower curve for
larger values of x is better since this indicates a lesser
total duration of priority inversions. Stated more simply,
a lower curve reflects a system that spends less time in
an inversion state. Note that with these figures, the line
for klmirqd usually occupies the bottom-left corner of
the graph and may be difficult to see.
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Figure 13. Task set utilization (prior inflation): 7.5. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 14. Task set utilization (prior inflation): 7.6. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 15. Task set utilization (prior inflation): 7.7. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 16. Task set utilization (prior inflation): 7.8. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 17. Task set utilization (prior inflation): 7.9. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 18. Task set utilization (prior inflation): 8.0. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 19. Task set utilization (prior inflation): 8.1. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 20. Task set utilization (prior inflation): 8.2. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 21. Task set utilization (prior inflation): 8.3. Cumulative
distribution of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 8.4 

klmirqd PAI SLIH

Figure 22. Task set utilization (prior inflation): 8.4. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 23. Task set utilization (prior inflation): 8.5. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 24. Task set utilization (prior inflation): 8.6. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 25. Task set utilization (prior inflation): 8.7. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 26. Task set utilization (prior inflation): 8.8. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 27. Task set utilization (prior inflation): 8.9. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 28. Task set utilization (prior inflation): 9.0. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 29. Task set utilization (prior inflation): 9.1. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 30. Task set utilization (prior inflation): 9.2. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 31. Task set utilization (prior inflation): 9.3. Cumulative
distribution of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 9.4 

klmirqd PAI SLIH

Figure 32. Task set utilization (prior inflation): 9.4. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 33. Task set utilization (prior inflation): 9.5. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 34. Task set utilization (prior inflation): 9.6. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 35. Task set utilization (prior inflation): 9.7. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 36. Task set utilization (prior inflation): 9.8. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 37. Task set utilization (prior inflation): 9.9. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 38. Task set utilization (prior inflation): 10.0. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 39. Task set utilization (prior inflation): 10.1. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 40. Task set utilization (prior inflation): 10.2. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 41. Task set utilization (prior inflation): 10.3. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 42. Task set utilization (prior inflation): 10.4. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 43. Task set utilization (prior inflation): 10.5. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 44. Task set utilization (prior inflation): 10.6. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 45. Task set utilization (prior inflation): 10.7. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 46. Task set utilization (prior inflation): 10.8. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 47. Task set utilization (prior inflation): 10.9. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 48. Task set utilization (prior inflation): 11.0. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 49. Task set utilization (prior inflation): 11.1. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 50. Task set utilization (prior inflation): 11.2. Cumulative
distribution of priority inversion durations. Higher curve is better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

P
(I

n
v
e
rs

io
n
 D

u
ra

ti
o
n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.3 

klmirqd PAI SLIH

Figure 51. Task set utilization (prior inflation): 11.3. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 52. Task set utilization (prior inflation): 11.4. Cumulative
distribution of priority inversion durations. Higher curve is better.
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Figure 53. Task set utilization (prior inflation): 11.5. Cumulative
distribution of priority inversion durations. Higher curve is better.



 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 7.5 

klmirqd PAI SLIH

Figure 54. Task set utilization (prior inflation): 7.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 55. Task set utilization (prior inflation): 7.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 56. Task set utilization (prior inflation): 7.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 57. Task set utilization (prior inflation): 7.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 58. Task set utilization (prior inflation): 7.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 59. Task set utilization (prior inflation): 8.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 60. Task set utilization (prior inflation): 8.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 61. Task set utilization (prior inflation): 8.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 62. Task set utilization (prior inflation): 8.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 63. Task set utilization (prior inflation): 8.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 64. Task set utilization (prior inflation): 8.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 65. Task set utilization (prior inflation): 8.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 66. Task set utilization (prior inflation): 8.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 67. Task set utilization (prior inflation): 8.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 68. Task set utilization (prior inflation): 8.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 69. Task set utilization (prior inflation): 9.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 70. Task set utilization (prior inflation): 9.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 71. Task set utilization (prior inflation): 9.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 72. Task set utilization (prior inflation): 9.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 73. Task set utilization (prior inflation): 9.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 74. Task set utilization (prior inflation): 9.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 75. Task set utilization (prior inflation): 9.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 76. Task set utilization (prior inflation): 9.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 77. Task set utilization (prior inflation): 9.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 9.9 

klmirqd PAI SLIH

Figure 78. Task set utilization (prior inflation): 9.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 10.0 

klmirqd PAI SLIH

Figure 79. Task set utilization (prior inflation): 10.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 80. Task set utilization (prior inflation): 10.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 81. Task set utilization (prior inflation): 10.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 82. Task set utilization (prior inflation): 10.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 83. Task set utilization (prior inflation): 10.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 84. Task set utilization (prior inflation): 10.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 85. Task set utilization (prior inflation): 10.6. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 86. Task set utilization (prior inflation): 10.7. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 87. Task set utilization (prior inflation): 10.8. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 88. Task set utilization (prior inflation): 10.9. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 89. Task set utilization (prior inflation): 11.0. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

C
u
m

u
la

ti
v
e
 I
n
v
e
rs

io
n
 L

e
n
g
th

 (
m

ic
ro

s
e
c
o
n
d
s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.1 

klmirqd PAI SLIH

Figure 90. Task set utilization (prior inflation): 11.1. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 91. Task set utilization (prior inflation): 11.2. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 92. Task set utilization (prior inflation): 11.3. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 93. Task set utilization (prior inflation): 11.4. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.
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Figure 94. Task set utilization (prior inflation): 11.5. Cumulative
priority inversion duration as a function of maximum priority inversion
duration. Lower curve is better.



D. Schedulability Results

This section contains figures for all the schedulability
experiments that were performed in Sec. VII. The figures
are organized in the following manner. The first half
of the figures are for the schedulability experiments
where per-task utilizations were uniformly selected at
random from a given utilization range. These ranges
were [1%, 10%], [10%, 40%], and [50%, 90%]. The sec-
ond half of the figures are for schedulability experiments
where per-task utilizations were selected at random from
a given exponential distribution. These distributions had
average per-task utilizations set at 0.1, 0.25, and 0.5.
For both types of experiments (uniform utilizations or
exponential utilizations) the percentage share of GPU-
using tasks was varied in 10% blocks (yielding ten
graphs for each utilization range/distribution). These
experiments were repeated four times, varying the GPU-
to-CPU speed-up ratio such that R ∈ {1, 4, 8, 16},
as described in Sec. VII. This yields a total of 240
schedulability experiment graphs.

Note, when R = 1, the generated schedulability
graphs are plotted against CPU utilization. When R 6= 1,
then the generated schedulability graphs are plotted
against the effective system utilization.

Please also note that the following plots may not
be smooth at higher effective system utilizations when
R 6= 1. This is because it was difficult to generate
many task sets with these effective utilization. We could
make these plot lines smoother, but it would require a
significant increase in the number of tested task sets
(each schedulability graph already represents the testing
of several million task sets). As it is, it took over 24 hours
to perform the schedulability experiments reflected in the
following graphs. Furthermore, trends remain discernible
despite non-smooth plot lines.

The organization of the following graphs are summa-
rized in Table IV.



Per-Task x-axis Per-Task Utilization Figures
Utilization Distribution Range or Average

[1%, 10%] Fig. 95 to Fig. 104
CPU Utilization, R = 1 [10%, 40%] Fig. 105 to Fig. 114

[50%, 90%] Fig. 115 to Fig. 124
[1%, 10%] Fig. 125 to Fig. 134

Effective Utilization, R = 4 [10%, 40%] Fig. 135 to Fig. 144
Uniform [50%, 90%] Fig. 145 to Fig. 154

[1%, 10%] Fig. 155 to Fig. 164
Effective Utilization, R = 8 [10%, 40%] Fig. 165 to Fig. 174

[50%, 90%] Fig. 175 to Fig. 184
[1%, 10%] Fig. 185 to Fig. 194

Effective Utilization, R = 16 [10%, 40%] Fig. 195 to Fig. 204
[50%, 90%] Fig. 205 to Fig. 214

10% Fig. 215 to Fig. 224
CPU Utilization, R = 1 25% Fig. 225 to Fig. 234

50% Fig. 235 to Fig. 244
10% Fig. 245 to Fig. 254

Effective Utilization, R = 4 25% Fig. 255 to Fig. 264
Exponential 50% Fig. 265 to Fig. 274

10% Fig. 275 to Fig. 284
Effective Utilization, R = 8 25% Fig. 285 to Fig. 294

50% Fig. 295 to Fig. 304
10% Fig. 305 to Fig. 314

Effective Utilization, R = 16 25% Fig. 315 to Fig. 324
50% Fig. 325 to Fig. 334

Table IV
ORGANIZATION OF FIGURED FOR SCHEDULABILITY EXPERIMENTS.
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Figure 95. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected uniformly from the range [1%, 10%].
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Figure 96. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 97. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 98. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 99. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 100. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 101. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 102. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 103. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 104. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected uniformly from the range [1%, 10%].
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Figure 105. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected uniformly from the range [10%, 40%].
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Figure 106. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 107. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 108. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 109. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 110. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [60%, 70%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 111. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 112. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 113. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 114. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected uniformly from the range [10%, 40%].
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Figure 115. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected uniformly from the range [50%, 90%].
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Figure 116. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 117. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 118. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 119. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 120. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 121. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 122. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 123. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 124. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected uniformly from the range [50%, 90%].
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Figure 125. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].
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Figure 126. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 127. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 128. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 129. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 130. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 131. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 132. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 133. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 134. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].
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Figure 135. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].
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Figure 136. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 137. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 138. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 139. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 140. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [60%, 70%]; Util (uniform) [0.1, 0.4]; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 141. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 142. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 143. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 144. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].
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Figure 145. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].
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Figure 146. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [20%, 30%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 147. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 148. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 149. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 150. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 151. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 152. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 153. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 4×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 154. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].
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Figure 155. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].
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Figure 156. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 157. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 158. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 159. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 160. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 161. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 162. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 163. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 164. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].
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Figure 165. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].
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Figure 166. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 167. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 168. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 169. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 170. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 171. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 172. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 173. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 174. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].
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Figure 175. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].
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Figure 176. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 177. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 178. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 179. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 180. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 181. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 182. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 183. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 8×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 184. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].
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Figure 185. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].
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Figure 186. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 187. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 188. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 189. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 190. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 191. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 192. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 193. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [1%, 10%].
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Figure 194. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [1%, 10%].
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Figure 195. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].
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Figure 196. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 197. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 198. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 199. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 200. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 201. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 202. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 203. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [10%, 40%].
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Figure 204. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [10%, 40%].
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Figure 205. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range [1%,
10%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].
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Figure 206. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [10%, 20%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 207. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [20%, 30%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 208. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [30%, 40%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [40%, 50%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]
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Figure 209. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [40%, 50%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 210. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [50%, 60%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 211. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [60%, 70%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 212. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [70%, 80%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 213. The percentage of schedulable task sets as a function of
effective system utilization with a GPU speed-up of 16×. The percent-
age number of GPU-using tasks per task set is in the range [80%, 90%].
Suspension-oblivious per task utilization selected uniformly from the
range [50%, 90%].
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Figure 214. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The per-
centage number of GPU-using tasks per task set is in the range [90%,
100%]. Suspension-oblivious per task utilization selected uniformly
from the range [50%, 90%].
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Figure 215. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected from the exponential distribution with an average utilization
of 10%.
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Figure 216. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Crit Sec Exe 75%; GPU Task Share [20%, 30%]; Util Avg (exponential) 0.1; Per (uniform) [15ms, 60ms]
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Figure 217. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 218. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 219. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 220. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 221. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 222. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 223. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 224. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 10%.
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Figure 225. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected from the exponential distribution with an average utilization
of 25%.
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Figure 226. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 227. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 228. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 229. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [50%, 60%]; Util Avg (exponential) 0.25; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 230. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 231. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 232. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 233. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 234. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 25%.
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Figure 235. The percentage of schedulable task sets as a function of
CPU utilization. The percentage number of GPU-using tasks per task
set is in the range [1%, 10%]. Suspension-oblivious per task utilization
selected from the exponential distribution with an average utilization
of 50%.
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Figure 236. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [10%, 20%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 237. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [20%, 30%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 238. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [30%, 40%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 239. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [40%, 50%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 240. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [50%, 60%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 241. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [60%, 70%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 242. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [70%, 80%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 243. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [80%, 90%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 244. The percentage of schedulable task sets as a function
of CPU utilization. The percentage number of GPU-using tasks per
task set is in the range [90%, 100%]. Suspension-oblivious per task
utilization selected from the exponential distribution with an average
utilization of 50%.
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Figure 245. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 10%.
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Figure 246. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 247. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 248. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 249. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 250. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 251. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 252. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 253. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 254. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 255. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 25%.
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Figure 256. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 257. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 258. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 259. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 260. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 261. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 262. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 263. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 264. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 265. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 50%.
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Figure 266. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 267. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 268. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 269. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 270. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 271. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 272. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [80%, 90%]; Util Avg (exponential) 0.5; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 273. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 274. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 4×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 275. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 10%.
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Figure 276. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 277. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 278. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 279. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 280. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 281. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 282. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 283. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 284. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 285. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 25%.
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Figure 286. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 287. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 288. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 289. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 290. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 291. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 292. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 293. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 294. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 295. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 50%.
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Figure 296. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 297. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 298. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 299. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 300. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 301. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 302. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 303. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 304. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 8×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 305. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 10%.
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Figure 306. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 307. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 308. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 309. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 310. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 311. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 312. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 313. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 314. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 10%.
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Figure 315. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 25%.
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Figure 316. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 317. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 318. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 319. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 320. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 321. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 322. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 323. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 324. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 25%.
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Figure 325. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[1%, 10%]. Suspension-oblivious per task utilization selected from the
exponential distribution with an average utilization of 50%.
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Figure 326. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[10%, 20%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 327. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[20%, 30%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 328. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[30%, 40%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [40%, 50%]; Util Avg (exponential) 0.5; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 329. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[40%, 50%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 330. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[50%, 60%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 331. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[60%, 70%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

R
a
ti
o
 o

f 
S

c
h
e
d
u
la

b
le

 T
a
s
k
 S

e
ts

 (
s
o
ft
)

Effective CPU Utilization (prior inflations)

Crit Sec Exe 75%; GPU Task Share [70%, 80%]; Util Avg (exponential) 0.5; Per (uniform) [15ms, 60ms]

klmirqd, n=1
PAI, n=1

SLIH, n=1

klmirqd, n=3
PAI, n=3

SLIH, n=3

klmirqd, n=6
PAI, n=6

SLIH, n=6

Figure 332. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[70%, 80%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 333. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[80%, 90%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.
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Figure 334. The percentage of schedulable task sets as a function
of effective system utilization with a GPU speed-up of 16×. The
percentage number of GPU-using tasks per task set is in the range
[90%, 100%]. Suspension-oblivious per task utilization selected from
the exponential distribution with an average utilization of 50%.


	Introduction 
	Interrupt Handling 
	Interrupt Handling in LITMUSRT 
	GPU Integration 
	Evaluation of Priority Inversions  
	System-Wide Evaluation of Interrupt Handling Methods 
	Overhead-Aware Schedulability 
	Conclusion  
	References
	Appendix
	k-FMLP 
	Overhead Accounting 
	Priority Inversion Results 
	Schedulability Results 


