Using Lock Servers to Scale Real-Time Locking
Protocols: Chasing Ever-Increasing Core Counts

*

Catherine E. Nemitz
The University of North Carolina at Chapel Hill, USA
nemitz@cs.unc.edu

Tanya Amert
The University of North Carolina at Chapel Hill, USA

James H. Anderson
The University of North Carolina at Chapel Hill, USA

—— Abstract

During the past decade, parallelism-related issues have been at the forefront of real-time systems
research due to the advent of multicore technologies. In the coming years, such issues will loom
ever larger due to increasing core counts. Having more cores means a greater potential exists for
platform capacity loss when the available parallelism cannot be fully exploited. In this paper,
such capacity loss is considered in the context of real-time locking protocols. In this context,
lock nesting becomes a key concern as it can result in transitive blocking chains that force
tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine.
Contention-sensitive real-time locking protocols have been proposed as a means of “breaking”
transitive blocking chains, but such protocols tend to have high overhead due to more complicated
lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In
particular, four specific lock-server paradigms are proposed and many nuances concerning their
deployment are explored. Experiments are presented that show that, by executing cache hot,
lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make
contention-sensitive protocols a viable approach in practice.

2012 ACM Subject Classification Computer systems organization — Real-time systems, Com-
puter systems organization — Embedded and cyber-physical systems, Software and its engineer-
ing — Mutual exclusion, Software and its engineering — Real-time systems software, Software
and its engineering — Synchronization, Software and its engineering — Process synchronization

Keywords and phrases multiprocess locking protocols, nested locks, priority-inversion blocking,
reader /writer locks, real-time locking protocols

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2018.25

1 Introduction

The evolution of multicore technologies over the past decade has shifted the focus of real-
time systems research by making parallelism a paramount concern. During this time, the
extent of parallelism available in commercially produced machines has steadily increased.
Ten years ago, a quad-core machine was considered large. Today, machines with core counts

* Work supported by NSF grants CNS 1409175, CPS 1446631, CNS 1563845, and CNS 1717589, ARO
grant W911NF-17-1-0294, and funding from General Motors.This material is based upon work sup-
ported by the National Science Foundation Graduate Research Fellowship Program under Grant No.
DGS-1650116. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

© Catherine E. Nemitz, Tanya Amert, and James H. Anderson;

licensed under Creative Commons License CC-BY
30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 25; pp. 25:1-25:171

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nemitz@cs.unc.edu
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2

Using Lock Servers to Scale Real-Time Locking Protocols

Figure 1 An illustration of transitive blocking.

of dozens or more are available. Looking forward, ever increasing core counts are likely to
continue. The implication for real-time systems research is that resource-allocation methods
shown to work well in the past may not scale as hardware platforms continue to evolve.

In this paper, we consider the issue of scale as it pertains to real-time locking protocols.
For such a protocol to scale to large core counts, it must address intricate challenges posed
by nested lock requests, which occur in a variety of applications [7, 14]. In particular,
such requests can cause transitive blocking chains that cause tasks to unnecessarily execute
sequentially. The potential for lost parallelism due to sequential execution increases with
higher core counts. For example, assuming non-preemptive locks, if such a chain were to
involve all cores of a quad-core machine, then 75% of the available processing capacity would
be lost until the task at the head of the chain releases its acquired resources. On a much
larger machine with, say, 32 cores, this percentage of loss would swell to nearly 97% if all
cores were involved. Even if nested requests occur much less often than non-nested ones,
they can still result in long blocking chains, particularly in the worst case, which would
typically be considered in real-time schedulability analysis. We illustrate this point with an
example chain of blocking that could occur, and thus must be accounted for in analysis.

» Example 1. Consider a set of 30 requests, some of which are shown in Fig. 1. Request
R1 and requests R4 through Rso form a transitive blocking chain for the resources shown
on the horizontal axis. The vertical axis shows time, with different box heights representing
different critical-section lengths, and the placement along this axis representing when each
request will be satisfied. Most of the blocking shown in Fig. 1 is avoidable. For example,
Rs could move to position P;, and Rgg into P, greatly reducing their blocking. Note
that moving Rg earlier reduces the blocking of later issued requests. Note also that even
non-nested requests (e.g., Rg) can be transitively blocked.

Contention-sensitive real-time locking protocols guarantee the blocking time of each re-
quest is only proportional to the number of directly conflicting earlier requests by effectively
“breaking” transitive blocking chains [43, 55]. Referring back to Ex. 1, enqueuing Rg as
depicted is not contention sensitive as this queue ordering forces Rg to block on Ry, R4,
Rs5, and Rg, none of which directly conflicts with Rg (they access different resources). In
contrast, enqueuing Rg in position P; would ensure contention-sensitive blocking for it.

C.E. Nemitz, T. Amert, and J. H. Anderson

Unfortunately, the complex lock/unlock logic required to enable contention-sensitive en-
queuings can result in higher overhead. To mitigate this issue, we explore herein the usage
of lock servers to lessen such overhead. A lock server is a special process that sequentially
performs all lock and unlock functions of a given protocol. The main advantage of using lock
servers is that they can run cache hot (which is explained in the context of our platform in
Sec. 3). The main disadvantage is the need to dedicate whole cores, or fractions of cores, to
performing synchronization functions. However, on machines with high core counts, this may
be a reasonable thing to do, as has been observed by others in other contexts [41, 50]. The
main focus of this paper is to experimentally document the extent of overhead reduction lock
servers enable when supporting contention-sensitive locking protocols. We show that such
reductions can be substantial. We also examine various tradeoffs that arise with respect to
how lock servers are deployed. We elaborate on these tradeoffs and our contributions below,
after first presenting an overview of prior work to provide context.

Related work. The literature on real-time multiprocessor locking protocols is quite large [1,
2,3,4,6,8,9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34,
35, 36, 37, 42, 43, 48, 49, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 73]. Of
the just-cited papers, we comment on several that are particularly relevant to our work.

A number of server-based locking protocols have been proposed previously that employ
notions similar to a lock server but for a different purpose, namely, to ease the calculation
of bounds on priority-inversion blocking (pi-blocking).! The first such protocol was the
distributed priority ceiling protocol (DPCP) [57, 58, 59], which statically binds resources to
cores and requires tasks to perform lock and unlock calls for a resource on the core assigned to
that resource. Subsequently, a number of server-based protocols were proposed that follow
a similar approach [21, 32, 33, 41, 42, 49, 73]. In contrast to these various server-based
protocols, our focus in this paper is to preserve the blocking bounds of a given protocol
while reducing its overhead. Also, our main concern is dealing with nested lock requests,
which are actually precluded in most prior server-based protocols.

Only a few real-time multiprocessor locking protocols have been proposed that support
nested lock requests. Among such protocols, only those in the real-time nested locking
protocol (RNLP) family provide asymptotically optimal pi-blocking bounds [43, 55, 62, 63,
64, 65]. The RNLP family also includes the only proposed real-time locking protocols shown
to be contention sensitive. We review these protocols in more detail later. Outside of the
RNLP family, two other protocols have been proposed that directly support lock nesting,
the multiprocessor bandwidth inheritance protocol [32, 33] and MrsP [21, 36, 73]. Neither is
optimal, but both use creative techniques, like migration, to lessen blocking times.

Our work was partially inspired by work on a concept called remote core locking (RCL),
which was directed at improving the performance of legacy non-real-time code when moving
it from a uniprocessor system to a multiprocessor one [50]. In particular, RCL seeks to avoid
cache-line bouncing when a resource is accessed on different cores by requiring all resource
accesses to occur on a designated core. In these sense, RCL is similar to the DPCP and
related protocols, but the emphasis in work on RCL is to enable critical sections to run
cache hot. In contrast, we want lock and unlock routines to run cache hot.

1 Pi-blocking, which is more carefully considered in Sec. 2, is the primary basis on which different locking
protocols are compared.

25:3

ECRTS 2018

25:4

Using Lock Servers to Scale Real-Time Locking Protocols

Contributions. We present an in-depth study of lock servers as a means for providing effi-
cient implementations of contention-sensitive real-time locking protocols on large multicore
machines. We restrict attention to protocols that use spinning (i.e., busy waiting) to realize
task blocking. We take our particular test platform as an exemplar of a “large” machine;
this platform provides 36 cores split evenly across two sockets. We define lock servers in a
way that does not fundamentally alter the blocking analysis of the locking protocol being
supported. Thus, such analysis is not our major focus: overhead is.

We introduce lock servers by initially assuming a particular contention-sensitive locking
protocol is to be supported that was designed assuming that all critical sections are uniformly
of the same length. Using this protocol, we present four lock-server paradigms that are
defined by specifying servers as either static or floating and either global or local. A static
lock server is bound to a single core, while a floating one may migrate. A global lock server
handles requests from all cores, while a local one handles requests from only its socket. Our
test platform has two sockets, so in that context, the local case requires consideration of
two lock servers, which require further arbitration. We do this by letting these lock servers
alternate in phases, where the phase switching is controlled by a novel synchronization
mechanism introduced here for the first time called a phase-fair reader/reader lock. After
examining these various alternatives, we consider the ramifications of relaxing the uniformity
requirement and allowing critical sections to be of different lengths.

To assess the efficacy of using lock servers, we conducted an extensive experimental
evaluation on our test platform of all of the lock-server configurations mentioned above.
In these experiments, the use of lock servers often reduced overhead dramatically. When
supporting non-uniform critical sections, one of our lock-server paradigms reduced overhead
by up to 72%. When supporting uniform critical sections, this decrease was as high as 86%.

Organization. In the rest of this paper, we provide needed background (Sec. 2), introduce
static (Sec. 3) and floating (Sec. 4) lock servers assuming critical-section lengths are uniform,
eliminate this uniformity assumption (Sec. 5), present our experimental evaluation (Sec. 6),
and conclude (Sec. 7).

2 Background

In this section, we present relevant background material on task and resource models and
provide further details concerning the locking protocols most relevant to our work.

Task Model. We consider a sporadic task system I' = {7y, ..., 7,}. (We assume familiarity
with the sporadic model.) These n tasks are scheduled on m processors by a job-level fixed-
priority scheduler, such as one using earliest-deadline-first (EDF) priorities.

Resource Model. We focus on spin-based locking protocols invoked non-preemptively. We
assume a set of n, shared resources denoted £ = {¢1,...,£4,.}. When a job J requires access
to one or more of these resources, it issues a request. We index requests in the order they
are issued. An arbitrary request of J is denoted R;, and the set of resources it requires is
denoted D;. R; is said to be satisfied when J holds all resources in D;. J then executes its
critical section for L; time units. When J releases all of the resources it held, R; completes.
R; is considered to be active from the time it is issued until the time it completes.
Real-time locking protocols must have proven bounds on priority-inversion blocking (pi-
blocking). Pi-blocking occurs when a job cannot execute because of lower-priority work. In

C.E. Nemitz, T. Amert, and J. H. Anderson

76:‘ R:m 7€1n let
! . -
RNLP |
or icket locks
C-RNLP
L 6 b RNLP"
() RNLP (b) fast RNLP

Figure 2 Important RNLP variants.

the context of non-preemptive spin-based protocols, a job is pi-blocked if it is spinning or if
it cannot execute because some lower-priority job is executing non-preemptively.

Allowing requests to be issued for multiple resources at once as specified above provides
a mechanism called a dynamic group lock (DGL) [65]. With DGLs, lock nesting is supported
by requiring a job to issue one request for all of its needed resources, instead of issuing a
separate request for each resource. The dynamic nature of DGLs allows groups of requested
resources to be determined as required at runtime. This is in contrast to static group
locks [9], which require resource groups to be determined offline and remain fixed.

We use DGLs to prevent deadlock. Another common approach is to define a resource
ordering and require that resources be requested in that order [29, 38]. If conditional code
exists, DGLs require the acquisition of resources that may not actually be needed. However,
the use of DGLs and the use of a resource ordering result in the same pi-blocking bounds [62].

In stating such bounds, we assume that the maximum critical-section length, L.,qz, is
constant. Additionally, we refer to the contention c¢; experienced by a request R;: ¢; is
defined to be the number of requests that are active while R; is active and that require
one or more of the same resources as R;. A non-preemptive spin-based locking protocol is
contention sensitive if it ensures a pi-blocking bound of O(min(m, ¢;)) per request.

In comparing different locking protocols, we care about overhead in addition to pi-
blocking bounds. If a request R; is issued at time ¢, and ¢’ is the earliest time it either
starts spinning or is satisfied, then the lock overhead R; experiences is t' — ¢. Similarly,
the unlock overhead R; experiences is the total time needed to release all of its acquired
resources. When we use the term overhead without qualification, we mean total lock plus
unlock overhead.

The RNLP. The RNLP (real-time nested locking protocol) was the first real-time locking
protocol to support nested lock requests with asymptotically optimal worst-case pi-blocking
bounds [65]. The RNLP is actually a suite of protocols: both spin- and suspension-based
variants exist and deadlock avoidance can be achieved by using either resource orderings or
DGLs. We focus here on the spin-based DGL variant. At a high level, this variant is quite
simple. As shown in Fig. 2(a), per-resource FIFO spin queues are used, and when a request
for a set of resources is issued by some task, that resource is atomically enqueued onto the
queues of all requested resources. Note that this atomic enqueueing requires the usage of an
underlying mutex lock, which results in moderate lock overhead. Also, the RNLP provides
no mechanism for reducing transitive blocking. For example, all of the transitive blocking
shown in Fig. 1 can occur if requests are atomically enqueued as in the RNLP.

25:5

ECRTS 2018

25:6

Using Lock Servers to Scale Real-Time Locking Protocols

4
Table 6“0\1\"' 3\00\(&
~
Protocol Pi-blocking Overhead 4 bitvector 0 0
RNLP O(m) moderate L’W{ 0 1
C-RNLP O(min(m,c)) high
time| 2 R, | R, 0 2 | >s1zE
fast RNLP O(m) nested moderate (nested)
(with RNLP) | 51in(m,c)) non-nested | low (non-nested) 1R, | R, R4 0 1
fast RNLP O(min(m,c)) nested high (nested) _3 R1 7\71 R1 1 0
(with C-RNLP) | 5(min(m,c)) non-nested | low (non-nested) Head 7 A ‘ Z, ‘ -

a

Pending requests:

Figure 4 Variables used in the U-C-RNLP
(a similar depiction appears in [43]).

Figure 3 Important RNLP variants.

Contention-sensitive variants. The C-RNLP (contention-sensitive RNLP) was proposed
to eliminate the long transitive blocking chains that can occur under the RNLP [43]. Tt does
this by using a cutting ahead mechanism that enables contention-sensitive pi-blocking at the
expense of higher overhead. A fairly detailed overview of the C-RNLP is provided later in
Sec. 3 in discussing lock servers, so we refrain from providing further details now.

The fast RNLP? was proposed to achieve contention sensitivity and low overhead for
non-nested requests, which are likely the common case in practice [55]. Nested requests can
be made either contention sensitive at the expense of relatively high overhead for them, or
non-contention sensitive, which entails much lower overhead. This functionality is achieved
by employing a modular structure, as shown in Fig. 2(b). Each non-nested request acquires
a simple ticket lock associated with its resource, while each nested request competes within
either the RNLP (if contention sensitivity is not provided for such requests) or the C-RNLP
(if it is). The RNLP* is a low-overhead version of the RNLP that must merely arbitrate
between at most one non-nested request and at most one nested request per resource.

The RNLP variants just overviewed are summarized in Table 3.

3 Static Lock Servers

In this section, we consider the use of static lock servers to implement the C-RNLP. The
C-RNLP is described in [43] in an abstract rule-based way. These rules can be realized
in different ways in an actual implementation. For ease of exposition, we limit attention
for now to the wuniform implementation of the C-RNLP given in [43], which was designed
assuming that all critical sections are the same length. Later, in Sec. 5, we will relax this
assumption. In order to understand how to implement the uniform C-RNLP using lock
servers, a basic understanding of it is required.

Uniform C-RNLP. Under the uniform C-RNLP, denoted U-C-RNLP, each request R; is
satisfied within min(m, (¢; + 1)) Lynq, time units, which meets the definition of contention
sensitivity. This bound is realized by using a Table of possible satisfaction times. Each
row of Table stores one or more bit vectors and represents a single start time, with each

2 Actually, the fast RNLP was proposed as the fast RW-RNLP because it provides reader/writer sharing.
For simplicity, we ignore read requests in this paper and focus only on mutex sharing.

C.E. Nemitz, T. Amert, and J. H. Anderson

Socket 1

Socket 2
A A

o8 U-C-RNLP =

GEENENEN ENENENEEE 5
S5 NEENEEEERE =
= = ++ MCS

4—a U-C-RNLP + SGLS
\x\\;\;\

Lock Overhead (microseconds)
o

‘ L1 Data H L1 Instr. ‘ ‘ L1 Data H L1 Instr. ‘

L2 (shared between two cores)

. C e
0 5 10 15 20 25 30 35 40
Number of Tasks

L3 (shared on socket)

Figure 6 Lock overhead under the U-C-RNLP

Figure 5 Test platform architecture. with and without a lock server.

bit in that row representing one resource, as depicted in Fig. 4 with four requests. In the
simplest implementation on a 64-bit machine, one bit vector is used, allowing 64 resources to
be managed. The corresponding arrays Enabled and Blocked track which set of requests is
satisfied and how many requests are immediately blocking a row in Table, respectively. For
example, in Fig. 4, all requests in Row 0 of Table—here just request R4 for D1 = {¢, £, La}—
are currently satisfied, as indicated by Enabled[0] = 1. The requests in the other rows are
not currently satisfied. Requests in Row 1 are immediately waiting for one request, namely
R1, to complete, as recorded by Blocked[l] = 1. Requests in Row 2 are waiting for two
requests immediately preceding them to complete, as indicated by Blocked|2] = 2.

Platform description. In order to describe the lock-server paradigms considered in this
paper more concretely, we specifically focus on our particular test platform, which is a dual-
socket, 18-cores-per-socket Intel Xeon E5-2699. This platform provides significant per-socket
parallelism while allowing issues on a multi-socket machine to be explored. As depicted in
Fig. 5, each core has a 32KB L1 data cache and a 32KB L1 instruction cache. Pairs of cores
share a unified 256 KB L2 cache, and all cores on a socket share a unified 456MB L3 cache.
We refer to lock state as cache hot if it maintains cache affinity in the lowest-level cache
shared among all cores on which the server may execute.

The problem. Before delving into some of the nuances of using lock servers, let us examine
the problem that they are intended to solve. Fig. 6 plots lock overhead as a function of
core count (and thus number of requests) for three possibilities: the U-C-RNLP as origin-
ally presented in [43]; the same protocol but implemented using a single global lock server
(denoted U-C-RNLP + SGLS); and an implementation in which all resources are coalesced
under one lock using Mellor-Crummey and Scott’s queue lock (denoted MCS) [52]. We take
the latter as the gold standard for low overhead. We will carefully examine many such
graphs in Sec. 6, so we will not bother to describe this particular one in any more detail
now. However, notice the wide gap between the lock overhead for the U-C-RNLP compared
to that for MCS. Our objective in this paper is to narrow this gap, hopefully considerably.

Lock servers. Recall that our focus in this section is static lock servers that are pinned
to dedicated cores. We consider two variations of this idea: using a global lock server that
services requests from all cores, and using (on our platform) two local lock servers, each

servicing requests coming from one socket. Fig. 7 depicts these two possibilities in compar-

25:7

ECRTS 2018

25:8 Using Lock Servers to Scale Real-Time Locking Protocols

No Lock Servers Static Global Lock Server Static Local Lock Servers

request Lock Server request

request

UL enqueue - enqueue
critical section

submit

| Y = | —
ENEEEEEND EEEEEEEEE| | NEEEEEESE] EEEEEENEE| | (NEEEEEEEN SEEEEEEEE
EEENEEEEE SESSEESES| SESSSEEEN; SESSNNEEE| SESNEEEEN EENENEEEE

Core 32 Core 18
request

Core 32
request

enqueue

enqueue

critical section

critical section
|

Figure 7 Three options: no lock servers (left), a single static global lock server (middle), and
two per-socket static local lock servers (right).

Algorithm 1 Static Global Lock Server
1: procedure SGLS(core: array of ptr to core data)

2: var k: unsigned int
3: while (TRUE):
4: if core[k]—service = LOCK_SERVICE:
5: " core[k]—spin__location := LS-LOCK(core[k]—requested)
> Non-blocking LS-LOCK returns spin location
6: core[k]—service := NULL
T else if core[k]—service = UNLOCK_SERVICE:
8: LS-UNLOCK(core[k]—requested)
9: core[k]—service := NULL
10: k:=k+1 mod NR_CPUS

ison to a conventional locking protocol implementation that does not use lock servers. The
potential value of lock servers can be seen by comparing the curve for U-C-RNLP + SGLS
to the U-C-RNLP curve in Fig. 6. (Again, we consider graphs like this in detail later.)

3.1 A Static Global Lock Server

The simplest way to employ a lock server is to dedicate a single core to servicing all lock
requests. The server uses a special version of a given protocol’s LOCK call, denoted LS-
Lock, that updates the lock state to add a given request and then, instead of waiting by
spinning to be satisfied, returns the location of a variable on which to spin. Similarly, a
special version of UNLOCK, denoted LS-UNLOCK, is used. Note that these routines require
no underlying mutex, as no task other than the lock server will ever access the lock state.
The behavior of the lock server is as specified in Alg. 1. It is continually active (Line 3),
looping through each core (Line 10). Because our focus is non-preemptive, spin-based pro-
tocols, we know each core will have at most one active request at a given time. For a specific
core k, the server checks if there is an active request that needs lock service (Line 4). If so,
it uses LS-LOCK to add the request to the lock state and determine the spin location for
it (Line 5). In the case of the U-C-RNLP, this is the entry in Enabled that corresponds to
the row in Table to which the request was added. The server then indicates that this core
no longer requires service (Line 6). If instead, a request on core k requires unlock service
(Line 7), the server removes it from the lock state by calling LS-UNLOCK (Line 8). It then
updates the service variable indicating that core k no longer requires service (Line 9).

C.E. Nemitz, T. Amert, and J. H. Anderson

Algorithm 2 New “Lock” and “Unlock” Submit Routines

1: procedure SUBMIT-LOCK(c: ptr to core_data, D: set of resources)
c—orequested := D

c—service := LOCK_SERVICE

await c—service = NULL

await c—spin__location = TRUE

: procedure SUBMIT-UNLOCK(c: ptr to core_data, D: set of resources)
c—orequested := D

c—service := UNLOCK_SERVICE

await c—service = NULL

d
\\ﬁ“o\e oC\‘ed

Table 1% B\
4 0 1
3| R, | R, 0| 1
)RR, ol 2
R, | R, | R, 0| 1
0 R |R |R 1] 0

Head
A A

a

Pending_requests:

Figure 8 R5 is added to Row 3 of Table.

In the next example, we now turn our focus to the behavior of a requesting task.

» Example 2. Fig. 8 shows the result of processing a request Rs for Ds = {{,, ¢y} that is
issued after requests R1, R2, R3, and R4 shown in Fig. 4. With a single global lock server,
R5 executes SUBMIT-LOCK as shown in Alg. 2. It first sets Requested (Line 2) for its core
and then indicates that it is awaiting lock service by the server (Line 3). After it has been
serviced (Line 4), it spins on the location the server determined based on the other active
requests (Line 5). As implied by Fig. 8, R5 spins on Enabled][3].

Using a global lock server in this manner has no impact on blocking; it simply changes
the enqueuing and dequeuing portions of request processing in order to reduce overhead.

3.2 Static Local Lock Servers

In contrast to a global lock server, a local one is allowed to handle resource requests from
only one socket. Our test platform has two sockets, so two lock servers are required to
handle all requests; we denote them as £S; and LS,. In this section, we assume that these
lock servers are static, which means that each lock server is pinned to a specific core on its
socket. The advantage of having two lock servers is that each must handle requests from
only half the cores, and thus should execute with lower overhead. The disadvantage is that
some arbitration mechanism is needed to mediate conflicting requests managed by the two
servers. We illustrate the nature of the needed mediation with an example.

» Example 2 (continued). Suppose that the requests in Fig. 8 were actually issued on
Socket 1. Suppose now a request Rg for Dg = {{,, ¢y} is issued on Socket 2. This results in
the two lock states shown in Fig. 9. Though Rg is the only request in £S5’s lock state, it
should not be satisfied, as it conflicts with request R, for resource ¢,. Thus, it must wait.

25:9

ECRTS 2018

25:10

Using Lock Servers to Scale Real-Time Locking Protocols

Socket 1 Socket 2
4) el
\¢ W \¢! ()
Table E,\‘ob ‘5\06\~ Table @\‘0‘0 ‘}’\Oc*
4 0 1 4 0 0
3 735 735 0 1 3 0 0
2 R, | R, 0 2 2 0 0
1 Rz Rz R4 0 1 1 0 1
_2 R1 731 R1 1 0 _E Rs Rs 0 0
Head Head
L6 L Ll L6 L L L
Pending_requests: Pending_requests: E]

Figure 9 R is added to Table of Socket 2.

Algorithm 3 Static Local Lock Server

1: procedure SLLS(core: array of ptr to core_data, s: socket identifier)
Service lock and unlock requests like in Alg. 1, but with the following changes:
Only requests from the local socket s are handled
Coordinate Phase with other lock server
Set spin__location := TRUE for requests that are eligible to be satisfied while Phase = s

To mediate requests from the two lock servers, we propose to let them alternate execution
in phases. In App. A, we present a phase-management protocol to coordinate these phases.
In the U-C-RNLP, a natural way to define which requests belong to a certain phase is to let
each row of Table indicate a phase. As shown in App. A, when defining and managing phases
in this way, the blocking experienced by request R; is at most (¢; s+1)(Lmaz,1 +Lmaz,2) time
units, where ¢; ; is the contention R; experiences on Socket s and Ly, is the maximum
critical-section length on Socket s. In Alg. 3, this boundary and change between phases is
coordinated in Line 4 and the current phase is stored in the variable Phase. The coordination
must ensure bounded time before a change of Phase when requests are waiting on the other
socket. Thus, in Line 5, a request must be able to be satisfied (e.g., it is in the active row of
Table in the U-C-RNLP) and the phase must be set to the local socket before the request
can be marked as satisfied by updating its spin location.

4 Floating Lock Servers

In the prior section, we implicitly assumed that static lock server(s) are to be supported by
devoting full core(s) to them. While this may be reasonable on a large platform, we could
instead allow other work to execute on the core(s) assigned to static lock servers(s) as long
as that work executes at a lower priority. The impact lock servers have on such work could
be assessed similarly to how interrupt accounting is done.

In this section, we explore a simpler alternative: floating lock servers. When using static
lock servers, every request executes a spin loop for each server interaction in order to wait
for a response. When using floating lock servers, the processor time wasted during these spin
loops is reclaimed to execute lock-server code. This approach is tantamount to employing a
helping mechanism [39], but unlike the traditional sense of helping, where one request may
help another to complete a critical section, a request here performs only lock logic on behalf
of another request. We describe the floating lock-server paradigm more fully below by first
considering global servers and then local ones.

C.E. Nemitz, T. Amert, and J. H. Anderson

Algorithm 4 Floating Global/Local Lock Server

1: global var Server__exists: boolean initially FALSE

2: procedure FLOATING-LOCK(c: ptr to core_data, D: set of resources)
3 var i_am,_ server: boolean initially FALSE
4: c—requested := D
5: c—service := LOCK_SERVICE
6 i_am__server := WAIT-UNTIL(" (c—service), NULL)
7 if (i_am_server = FALSE):
8 i_am__server := WAIT-UNTIL(" (¢~ spin__location), TRUE)
if (¢_am_server = TRUE):
while (c—service # NULL) or (c—spin__location # TRUE): > Until satisfied, be server
Perform lock server functionality
Server _exists := FALSE

—
WO YXAG

13: procedure FLOATING-UNLOCK(c: ptr to core_data, D: set of resources)
14: var i_am_ server: boolean initially FALSE

15: c—requested :== D

16: c—service := UNLOCK_SERVICE

17: i_am__server := WAIT-UNTIL(" (c—service), NULL)

18: if (i_am__server = TRUE):

19: if c¢—service # NULL: > This request has not been serviced
20: Perform unlock for this request

21: Server__exists := FALSE

22: procedure WAIT-UNTIL(location: ptr, value)
23: var t: unsigned int

24: t := TestAndSet (& Server_exists)

25: while (¢t = TRUE) and (*location # value):

26: if (Server__ewxists = FALSE):
27: t := TestAndSet(&Server_exists) > TestAndSet return value of FALSE means ...
28: return (¢ = FALSE) > ... Server_exists was FALSE so I am now server

4.1 A Floating Global Lock Server

In this section, we more carefully describe the notion of a floating global lock server. Unlike
static lock servers, in floating ones, request code and lock-server code are inextricably linked.
Thus, we specify how a floating global lock server works via one code listing in Alg. 4.

In Alg. 4, a request in its lock call performs the same logic as it would using a static
server (marking itself as requiring service, waiting for a location on which to spin, and
then spinning), with intermediate checks to ensure that some request is acting as the lock
server. The existence of a lock server is maintained in the global variable Server__ezists. The
helper method WAIT-UNTIL waits until a designated location holds a desired value, with the
waiting terminated if the caller becomes the server (as determined in a test-and-test-and-set
manner). The return value of this method indicates whether the caller is now the server.

Examining the FLOATING-LOCK routine in a bit more detail, a request first marks that
it is ready to be serviced (Line 5). Then it waits to be serviced (Line 6). If it is not the
lock server, then it spins on spin_location (Line 8). If it becomes the lock server, then it
performs the lock server functionality until it is satisfied (Lines 10-11). Notice that whenever
a request functions as the lock server here it would have been spinning in the global static
lock server paradigm waiting for a server response.

The FLOATING-UNLOCK routine is similar, except that a request that becomes the lock
server only services itself (Line 20). This is because an unlock does not involve blocking, so
servicing other requests would not replace useless spinning, but would just slow the unlock.

25:11

ECRTS 2018

25:12

Using Lock Servers to Scale Real-Time Locking Protocols

4.2 Floating Local Lock Servers

While a floating global lock server has the benefit over static lock server(s) of not requiring
dedicated core(s), it also would be expected to suffer higher overhead due to eroded cache
affinity when lock state moves between sockets. Fortunately, there is a quick fix to keep
lock state in cache: implement a floating local lock server. In this paradigm, a request can
only perform the functions of the lock server for the socket from which it was issued. By
restricting to a single socket, L3 cache affinity can be maintained. A floating local lock
server uses the structure found in Alg. 4, but with the server logic in Lines 11 and 20 being
that of a local lock server (with phase arbitration).

5 Handling Non-Uniform Requests

Recall from Sec. 3 that the C-RNLP is defined in an abstract rule-based way and that the
U-C-RNLP is just one implementation of it [43]. The U-C-RNLP can be used to handle
non-uniform requests by pessimistically viewing all critical sections as L., However, this
changes the worst-case blocking bound of the general version from min(mZILaz, ¢i(Lmasz +
L;)) to min(m, (¢; + 1)) Limas [43]. In this section, we discuss an alternate non-uniform
implementation, denoted as the G-C-RNLP, that maintains the original bound.

The G-C-RNLP uses |D;| nodes to represent a request R;, one corresponding to each
resource in D;. A separate queue is maintained for each resource in the system. When R;
is processed, a satisfaction time is recorded for it by considering the satisfaction times for
other requests and the critical-section length of each. Then, the queue for each resource in
D; is updated by inserting a node for R; at a position that ensures that R; will be at the
head of its respective queues by its recorded satisfaction time. This protocol would likely
give rise to prohibitively high overhead if the tasks themselves were to execute the queuing
logic concurrently. In particular, when enqueuing a request R;, | D;| queues must be checked
for the satisfaction times of existing requests and |D;| nodes must be inserted (sometimes
in the middle of queues). However, if this protocol is implemented using lock servers,® then
the overhead becomes quite reasonable, as we show in Sec. 6.

Using global lock servers (Secs. 3.1 and 4.1) to implement the G-C-RNLP is straight-
forward: we merely use the G-C-RNLP instead of the uniform C-RNLP in the LS-Lock
and LS-UNLOCK routines. On the other hand, using local lock servers (Secs. 3.2 and 4.2)
is more problematic due to the phase management such servers require. We show why by
considering two examples. For the time being, we assume that a basic phase-management
protocol called Greedy Satisfaction is used that allows only requests that can be satisfied at
the start of a phase to be satisfied during that phase.

» Example 3. Counsider the requests shown in Fig. 10(a), all issued on Socket 1. Ro, Ri1,
and Rio are “short” requests for resource ¢, and most of the other requests (for various
resources) are longer. Under Greedy Satisfaction, requests would be satisfied in phases as
shown in the right half of Fig. 10(a), with dashed lines indicating phase boundaries. Observe
that, under this policy, only R1, Re, and R3 are satisfied in the first phase. Ri; and Rqs
are satisfied later. Notice that all of the phases have odd indicies. This is because Socket 2
executes during even-indexed phases.

3 Although not reflected in the pseudocode given in this paper, our lock-server implementations have
been carefully honed using bit-vector operations and other techniques to improve efficiency. All of our
code is publicly available online [56].

C.E. Nemitz, T. Amert, and J. H. Anderson

Socket 1 Socket 1
Phase 9 —
,,,,,,,
Phase 7 739 Phase 7
,,,,,,,
Ry -
Phase 5 CR Phase 5
8
R G D S
(=]
Phase 3 — R, Phase 3
R7
- N
Phase 1 R, R, L R, R, Phase 1
7eS RS
L6 Lo

Figure 10 Scenarios with complicated phase management.

Ex. 3 shows that Greedy Satisfaction can unnecessarily delay requests: Ri; and Rio
both could have completed by the time R3 completed. Instead, they are moved to two later
phases. We call this the Long-Short Problem: when requests vary in length, shorter requests
can be delayed, further delaying other requests. In this example, R13 in particular is delayed
substantially by requests with which it does not conflict.

Ex. 3 highlights the fact that, for some protocols, Greedy Satisfaction is inadequate. A
better solution is a policy we call Timed Satisfaction, which allows requests that can finish
within L,,., time units to be satisfied in the same phase.

» Example 4. In Fig. 10(b), we apply Timed Satisfaction to a different set of requests on
Socket 1. On the left, the requests are shown as they are ordered by the G-C-RNLP. On
the right, the requests are shifted to occupy the phases the lock server would enforce. R4
and R 5 are satisfied at the start of Phase 1. After R5 completes, R is also satisfied in this
phase. However, after Rg completes, R7 cannot be satisfied, as it cannot be guaranteed to
complete within L, 4, time units from the start of the phase. Therefore, R7 must wait until
Socket 2 is allowed another phase, namely, Phase 3.

Ex. 4 illustrates another source of added blocking: R, is forced to delay until the start
of the next phase to be satisfied. Even if we were to increase the time window, the problem
could arise again: another request could be issued that cannot complete within the window.
We call this difficulty the Overlap Problem. A phase must end at some point to prevent the
starvation of requests on the other socket. Whatever value we choose, we may have requests
that would overlap a phase boundary and need to be delayed. The Overlap Problem can
force a request that could otherwise be satisfied to be delayed until the current phase of its
lock server completes followed by a full phase of the other lock server before being satisfied.

When considering the effect of local lock servers on blocking with the G-C-RNLP, we
assume Timed Satisfaction is the phase-management policy used. (Again, the issues just
discussed are unique to local servers.) As seen in Ex. 4, Timed Satisfaction is susceptible to
the Overlap Problem. This is the reason why the worst-case blocking bounds presented in
App. A for the G-C-RNLP are worse than those for the U-C-RNLP.

25:13

ECRTS 2018

25:14

Using Lock Servers to Scale Real-Time Locking Protocols

6 Evaluation

Our primary reason for exploring lock servers is to minimize overhead by keeping all lock
state cache hot. For static global and static local servers, cache hot means the lock state
should maintain L1 cache affinity on our platform, whereas a floating local server should
tend to execute out of its socket’s L3 cache. On the other hand, a floating global server will
likely not be able to maintain much cache affinity if tasks execute on more than one socket.

Given these expectations, a number of questions arise. How do the different lock-server
paradigms presented previously differ with respect to overhead, and do these differences
match the above expectations? To what extent do lock servers lower overhead compared to
not using lock servers? Are the overhead improvements enough to make contention-sensitive
locking practical? How do lock servers scale with increasing core counts?

To answer these questions, we conducted an experimental study. Before covering the
results revealed by our study, we first describe our experimental setup.

Experimental setup. Recall from Sec. 3 that our test platform is a dual-socket, 18-cores-
per-socket platform. We used this platform to evaluate the lock-server paradigms discussed
previously by conducting experiments involving tasks that repeatedly issue lock and unlock
calls for random resources. We varied the number of tasks, n, number of resources, n,,
nesting depth (which defines the number of resources required for request R;), D = |D;],
and critical-section length, L;, to evaluate each parameter’s effect on overhead and blocking.
We define a scenario as an assignment of values to three of these parameters while varying the
fourth. We considered the following parameter ranges: n € {2,4,...,36}, n, € {16,32,64},
D e {1,2,4,...,10}, and L; € {1us, 20us,40us, ...,100us}. In our experiments, all requests
in a scenario have the same nesting depth. Unless stated otherwise, they also all have the
same critical-section length L;.

We recorded overhead and blocking times at user level, with one task pinned to each
core. This setup ensures that requests execute non-preemptively. For a given scenario, we
configured each task to perform 10,000 lock and unlock calls, with critical sections simulated
by spinning for a duration of L;. For task systems running on at most 18 cores, we used
only the cores on one socket. When using more than 18 cores, all cores on Socket 1 were
used with the remainder on Socket 2. Our workload is comprised solely of tasks making lock
and unlock calls as described above. Thus, our evaluation focuses on cache affinity losses
inherent to running a protocol and ignores potential evictions from other tasks; there exist
techniques to keep cache affinity in some systems [5, 22, 25, 40, 46, 47, 66, 69, 70, 72].

In the graphs that follow, we plot 99" percentile measurements as worst-case values to
filter out any spurious measurements caused by performing measurements at user level.
Across over 150 scenarios, we generated approximately 1,000 graphs. The graphs shown in
this section were chosen as examples of trends seen across the entire collection of graphs.
The full set can be found in an online appendix [56].

Overhead and blocking without lock servers. Before delving into results pertaining to
lock-server paradigms, we examine a range of server-less implementation options. To gauge
the tradeoffs involved in supporting lock nesting, we experimentally evaluated two con-
tention-sensitive options, the U-C-RNLP and the G-C-RNLP, both implemented without
lock servers, and the RNLP, which supports nesting but is not contention sensitive. As a

4 This filtering does not guarantee smoothness of all curves.

C.E. Nemitz, T. Amert, and J. H. Anderson

+t MCS %% RNLP a8 U-C-RNLP =—s G-C-RNLP

1600 10 10
1400 K _ P
- 8 °

@ 1200 - g ® s 8
k=] & o 1
=4 [v
g 8 5

8 1000 e £ S 6
8 . £ £
L - >
E H] g

2 g4 57
= @ >
8 3 S
& M N
g o
3 5

o e bbb o b ol b
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of Tasks Number of Tasks Number of Tasks

(a) (b) (c)

Figure 11 Blocking and lock/unlock overhead when no lock servers are used. For this scenario,
n, =64,D =4, and L; = 40us for all i.

baseline, we evaluated coalescing all resources under one MCS queue lock [52]. We conducted
experiments in which these options were compared on the basis of blocking and overhead.

We now state several observations that follow from the full range of scenarios considered
in these experiments. We illustrate these observations using the graphs in Fig. 11.% In this
figure, we present lock and unlock overhead separately to demonstrate their relative scale:
enqueuing takes slightly longer than dequeuing, but both operations require manipulating
lock state, and thus both contribute to overhead. In later figures, we will combine lock and
unlock overhead to yield one overhead graph.

» Obs. 1. Without using lock servers, both C-RNLP wariants have dramatically higher
overhead than MCS.

This is expected behavior, as MCS implements just a single spin queue. As shown in
insets (b) and (c) of Fig. 11, the U-C-RNLP has lock and unlock overhead up to 27.4 and
23.9 times that of MCS, respectively. For the G-C-RNLP, these values are similarly high:
up to 31.1 and 22.9 times, respectively.

» Obs. 2. Compared to MCS, contention-sensitive protocols demonstrate significantly better
blocking bounds as the number of requests increases.

The low overhead of MCS (Obs. 1) comes at the expense of unscalable blocking. As
shown in Fig. 11(a), worst-case blocking under MCS grows up to 5.3 and 2.9 times faster
than that under the U-C-RNLP and G-C-RNLP, respectively.

Considering the RNLP is instructive because it provides some insights into the extra cost
of providing contention sensitivity in addition to handling lock nesting. As shown in insets
(b) and (c) of Fig. 11, lock and unlock overhead under the U-C-RNLP (resp., G-C-RNLP)
are up to 1.8 and 2.1 (resp., 1.5 and 1.4) times that under the RNLP, respectively.

Applying lock servers. In Secs. 3 and 4, we presented four lock-server paradigms, each
of which can be applied to any locking protocol. We conducted experiments to explore
how these paradigms differ when used to implement the U-C-RNLP and the G-C-RNLP.

5 In every such figure that we consider, the applicable scenario is stated in the figure’s caption. Note
that not all curves extend to n = 36. This is because up to two cores are reserved for lock servers and
this number is scheme-dependent.

25:15

ECRTS 2018

25:16

Using Lock Servers to Scale Real-Time Locking Protocols

16

0 5 10 15 20

25

Number of Tasks

(a) U-C-RNLP overhead

30

35 40

o-a U-C-RNLP R =—a G-C-RNLP
141 4= U-C-RNLP + SGLS . n—a 141 - G-C-RNLP + SGLS
"
12| = U-CRNLP+SLLS - 12| ®° G-CRNLP +SLLS
8 & -a U-C-RNLP + FGLS o 8 -4 G-C-RNLP + FGLS
S 10l|®® U-CRNLP +FLLS o S 10| G-C-RNLP + FLLS
8 *: 4 RNLP * 8 % 4 RNLP
2 . B2 2 e
£ 8[|+ MCs N e * £ 8|+ MCs 4_-.,—:-'##“"*‘
! = e < o b e
g | A - A BB 4 g _ir v T <
o 4 PRI 3 a e
o
2 o 2 r'
[
o e forresbnskgebens R e SREERE + oL Pyt B R ARt

5 10 15 20 25
Number of Tasks

(b) G-C-RNLP overhead

Figure 12 For this scenario, n, = 64,D = 4, and L; = 40us for all i.

1600

1400 -

o
o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS

30

35

40

= 1200

g & - U-C-RNLP + FGLS e

2 .

S 1000} @ © U-C-RNLP + FLLS B

b4 %% RNLP o

S 800f| s+ MCS =

2 600 - woower®
o] - RS

acj 400 & g_g»‘ﬂ"g o _o—0—C-@

B 1
_ g B-B-F

g
%
9%
*
*
*
0
I

o

[5 10 15 20 25 30 35 40
Number of Tasks

Figure 13 Worst-case blocking for the scenario in Fig. 12(a).

We now state several observations that follow from the full range of scenarios considered
in these experiments. We illustrate these observations using the graphs in Figs. 12 and 13.
In Fig. 12(a), we compare the four possible lock-server variants of the U-C-RNLP against
the baselines of MCS, the RNLP, and the U-C-RNLP without lock servers. Fig. 12(b) is
similar, but is directed at the G-C-RNLP instead of the U-C-RNLP. (We abbreviate lock-
server paradigms in figure captions, e.g., static global lock server is SGLS.)

» Obs. 3. Using lock server(s) results in significantly lower overhead.

This can be seen both in Fig. 12(a) for the U-C-RNLP and in Fig. 12(b) for the G-C-
RNLP. Observe that using lock server(s) usually resulted in overhead even lower than that
of the RNLP. In fact, using local lock servers in this scenario reduced the overhead of the
U-C-RNLP and the G-C-RNLP by up to 86% and 77%, respectively.

» Obs. 4. When there are requests on only one socket, static lock servers result in the
largest overhead reduction.

This trend appears consistently in our results, and matches our intuition, as a static lock
server can maintain L1 cache affinity. In Fig. 12, only one socket is used when n < 18 (it is
strictly less because the lock server uses one core).

» Obs. 5. When considering requests on two sockets, as the number of tasks increases, the
overhead of local lock servers scales better than that of a global lock server.

For example, in Fig. 12, the overhead of the U-C-RNLP (resp., G-C-RNLP) with floating
local lock servers is up to 61% (resp., 43%) lower than with a floating global lock server.

C.E. Nemitz, T. Amert, and J. H. Anderson 25:17

++ MCS * -« RNLP o8 U-C-RNLP +— U-C-RNLP + SGLS e—e U-C-RNLP + SLLS
25 T T T T T T T 90

N
[

=
Fx

N
o
T
N
=]
n
a
n
cont
~
o
el
#

-
[
-
%

=
o

Overhead (microseconds)
-
o
2
n
t Tim

Overhead (microseconds)

wn

w
o

*
R
N
=]

L . e b 0 . .)))))
20 40 60 80 100 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Critical-Section Length Number of Tasks Number of Tasks

(a) (b) (c)

o
°rF

Figure 14 (a) Overhead as a function of critical-section length, for n = 34,n, = 64, and D = 4.
(b) Overhead and (c) blocking as a function of n, for n, = 64,D =4, and L; = 1us for all 4.

» Obs. 6. Floating global lock servers scale the poorest of the four lock-server paradigms.

This observation is entirely expected and clearly evident in Fig. 12. Note that a floating
global lock server still reduces overhead to be comparable to or better than the RNLP.

In Fig. 13, worst-case blocking under the U-C-RNLP is plotted for each lock-server
paradigm for the same scenario presented in Fig. 12.

» Obs. 7. Mowving from one socket to two can negatively impact blocking of local lock servers.

This observation is evident in Fig. 13. Two local lock servers are required if n > 18. The
extra blocking is due to phase management and request imbalances between the two sockets.
For example, for n = 18 there are 17 requests on Socket 1 and one request on Socket 2. The
request on Socket 2 will have very low blocking, but requests on Socket 1 can experience
twice as much blocking as when only one socket is in use. Without the mitigation in App. A,
blocking scales poorly with increasing socket counts (e.g., a four-socket platform [56]).

Requests with short critical sections. Inset (a) of Fig. 14 plots overhead as a function
of critical-section length, while insets (b) and (c¢) provide data for a scenario with a short
critical section of 1us. (The G-C-RNLP variants are omitted from this figure for clarity;
overhead for them is higher than their U-C-RNLP counterparts but follows similar trends.)
Such short critical sections result in overhead being a higher proportion of total request time
(overhead plus blocking). Note that the blocking time of a request includes the overhead of
any request upon which it must wait, so reducing overhead additionally reduces blocking.

» Obs. 8. Overhead is (mostly) constant for all U-C-RNLP variants with respect to L;.

This is demonstrated in Fig. 14(a). Note that, when static lock servers are used, overhead
remains low even for small L;.

» Obs. 9. When critical sections are short, lock servers greatly reduce the impact of overhead
on total request time.

The data in insets (b) and (c¢) of Fig. 14 indicates that, under the U-C-RNLP, requests
with 1us critical sections can experience worst-case overhead that is up to 23.4% of the total
request time. When using a static local lock server, this is reduced to 9.6%.

ECRTS 2018

25:18

Using Lock Servers to Scale Real-Time Locking Protocols

2500 14

== G-C-RNLP - == G-C-RNLP
s—a G-C-RNLP + SGLS B 12||4—a G-C-RNLP + SGLS
2000 o U-C-RNLP ot o-a U-C-RNLP
4 U-C-RNLP + SGLS = 10f{{#—4 U-C-RNLP + SGLS
».« RNLP o ».« RNLP
1500 sl| v Mcs

+o MCS E

1000

Blocking (microseconds)
%,
Overhead (microseconds)

500

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of Tasks Number of Tasks

(a) Blocking (b) Overhead

Figure 15 For this scenario, n, = 64,1D = 4, and L; = 40us for 75% of requests and L; = 100us
for the remaining 25% of requests.

U-C-RNLP | U-C-RNLP | U-C-RNLP | U-C-RNLP | G-C-RNLP
+ SGLS + SLLS + FGLS + SGLS

Total Firsts 0 92 0 23 12
Total Seconds 1 26 18 70 4
Total Thirds 68 2 17 20 8
[Total | 6 [120 | 35 | 113 [24 |

Figure 16 Results of total request time comparison.

A case where the G-C-RNLP wins. From the results presented thus far, it is tempting
to discount the G-C-RNLP entirely. In cases where all critical sections are of the same
duration, the G-C-RNLP suffers worse overhead and blocking than the U-C-RNLP. We now
explore scenarios in which the G-C-RNLP has very competitive worst-case blocking; this
occurs when a large fraction of requests have critical-section lengths much less than L.
Such a scenario is depicted in Fig. 15.

» Obs. 10. When most requests have critical sections much shorter than L., the G-C-
RNLP and U-C-RNLP have similar performance when both use a static global lock server.

In Fig. 15, the G-C-RNLP with a static global lock server has lower blocking and only
slightly higher overhead than the U-C-RNLP with the same lock-server setup.

Overall winner. Judging the lock-server paradigms should be done with a specific workload,
but to make a general summary, we determined the “best” paradigm to the extent possible
in our experimental framework as follows. For each considered scenario,® we calculated
a single “total request time” score (blocking plus overhead) for each protocol variant by
approximating the area under its curve using a midpoint Riemann sum. We then ranked
the protocol variants for that scenario. Fig. 16 gives the total number of first-, second-,
and third-place finishes for each protocol variant. The U-C-RNLP with a static global lock
server was the overall winner. However, our experimental setup mostly generates scenarios
in which critical sections are uniform, which tends to make the G-C-RNLP variants less
competitive. Still, these results show there is value in using lock servers.

5 We filtered out scenarios with D € {8, 10}, as they require nearly coalescing all resources under a single
lock, which has non-contention-sensitive blocking.

C.E. Nemitz, T. Amert, and J. H. Anderson

7 Conclusion

In this paper, we have considered for the first time the use of lock servers on large multicore
platforms to lessen overhead associated with contention-sensitive real-time locking protocols,
without modifying the associated pi-blocking bounds. We proposed four specific lock-server
paradigms and presented an experimental study in which the overhead reductions enabled
by these paradigms was assessed. This study showed that such reductions can be dramatic.
For example, the paradigm that generally performed best, static global lock servers, typically
exhibited overhead reductions in the range 25%-75% compared to not using lock servers.
This paper is certainly not the last word on lock servers. Indeed, we hope that our
work sparks further interest by others in this topic and more broadly raises an appreciation
for investigating scalability issues affecting real-time resource-allocation methods as core
counts continue to climb. With respect to lock servers themselves, a number of avenues
for further research come to mind. First, while we have limited attention to spin-based
locking protocols, the very notion of a lock server lends itself to an operating-system-based
implementation. In that setting, suspension-based protocols warrant detailed consideration.
Second, we have focused on one particular large multicore platform as an exemplar. Other
platforms, including manycore platforms with different interconnects, warrant further study.
Third, it would be interesting to apply the ideas in this paper to support transactions in a
real-time database. In fact, a contention-sensitive real-time locking protocol together with
lock server(s) can be thought of as a lock-based variant of software transactional memory that
targets real-time applications. Fourth, we have focused herein on the extent to which lock
servers can lower overhead. In the future, we will assess the schedulability-related impacts
of different lock-server deployments, which will require investigating lock server behavior in
the context of more complex workloads and exploring task balancing among lock servers.
Finally, in a hard real-time system, it might be necessary to provably ensure that lock servers
always execute in cache. Such assurances could be provided by integrating lock servers with
cache-isolation techniques explored elsewhere [5, 22, 25, 40, 46, 47, 66, 69, 70, 72].

A Local Lock Server Phase Management and Blocking Bounds

In this appendix, we provide additional details concerning the phase-management protocol
needed for the local lock servers described in Secs. 3.2 and 4.2. Such a server must determine
which requests will execute in each of its phases in addition to managing phase changes.

Request selection. We restrict phases on Socket s to execute for at most the maximum
critical-section length on that socket, denoted Ly, qz,s. For the U-C-RNLP, the requests in a
phase are determined by selecting the row in Table pointed to by Head. For the G-C-RNLP,
Timed Satisfaction (recall Sec. 4.2) is used instead.

Phase coordination. Because all requests that can be satisfied simultaneously under C-
RNLP rules can run concurrently relative to each other, they may be processed like read
requests. With this in mind, the synchronization mechanism we need can be obtained
by building on the idea of a phase-fair reader/writer lock [18]. Such a lock supports two
kinds of requests, reads and writes, which execute in phases that alternate if both kinds of
requests are present, where any number of reads can occur during a read phase but only
one write during a write phase. The synchronization mechanism we desire similarly needs
to support two kinds of requests that execute in alternating phases, but in our case, any

25:19

ECRTS 2018

25:20

Using Lock Servers to Scale Real-Time Locking Protocols

number of requests can execute in a given phase. That is, we need a reader/reader lock.
To our knowledge, such locks have not been studied in the context of real-time systems, so
we present a new phase-fair reader/reader locking algorithm with corresponding blocking
bounds in an online appendix [56]. (The phase-fair reader/reader problem is similar to the
group mutual exclusion problem [44, 45] except that we require O(1) pi-blocking bounds.)

Using this reader/reader lock, it is straightforward to support phase management in a
way that satisfies the following general properties.

Each lock server is either active or passive and at most one lock server is active at any
time. A maximal interval of time when a lock server is active is called a phase.

A request can be satisfied only if its lock server is active and if it can be satisfied under
the variant of the C-RNLP being used by that server.

A passive lock server with unsatisfied requests becomes active within L,,,, time units.
All requests satisfied in a phase finish by the end of that phase.

Based on these properties, we prove the worst-case acquisition-delay bounds stated below
in an online appendix [56]. In stating these bounds, recall that £S, denotes the local lock
server on Socket s. Also, we denote the contention a request R; experiences on Socket s as
ci,s- We call such a request entitled if it could be satisfied under the C-RNLP.

» Theorem 5. A request R; on socket s that is serviced by a local lock server running the
U-C-RNLP will be satisfied within (¢; s + 1)(Lmaz,1 + Lmaxz,2) time units.

» Theorem 6. A request R; on Socket 1 (resp., Socket 2) that is serviced by a local lock
server running the G-C-RNLP will be satisfied within ¢;1(3Lmaz,1 + 2Lmag,2 + L;) (resp.,
¢i,2(2Lmag,1 + 3Lmaz,2 + Li)) time units.

These bounds have implications regarding how to partition a workload under schedulers
that assign tasks to execute on specific cores or clusters of cores. We illustrate this point in
the context of the U-C-RNLP.

To begin, suppose that the requests for each resource can be evenly split between sockets
such that Lyaz1 = Lmaz,2 = Lmaz- Then, ¢;1 = ¢;2 = %c,;, and the blocking bound in
Theorem 5 reduces to (%cl + 1)(2Lmaz) = (¢;i + 2)Lypgs, which is only one critical-section
length longer than that for the original protocol.

While splitting contention evenly like this may be desirable, a system designer could
instead choose to assign tasks so as to decrease c;; at the expense of ¢; 2, which may be a
more effective strategy if critical sections of different lengths exist. To see this, suppose that a
fraction « of all requests have critical sections of at most 3+ L, time units, where 0 < 5 < 1.
If tasks can be assigned so that these shorter requests are all issued from Socket 1 and all
others from Socket 2, then the bound from Theorem 5 becomes (ac¢; + 1)(8Lmaz + Limaz) =
(ac; + 1)(B + 1)Lypar when applied to Socket 1, and ((1 — «)¢; + 1)(BLmas + Limaz) =
((1 = a)e; + 1)(B 4 1) Lipas for Socket 2. Depending on the system, such a task assignment
could lower the bounds applicable to all requests, as seen in the following example.

» Example 7. Suppose ¢; = 10, L0, = 100us, a = %, and 8 = %. With the partitioning of
requests described above, the bound on Socket 1 is (£ -10+1) (15 -100+100) s = 330us, and
the bound on Socket 2 is 990us, both of which are lower than the bound of (¢; + 1)Lias =
(10 + 1)100 = 1100us for a server-less system (recall the U-C-RNLP discussion in Sec. 3).

Note that the improvement in the above example holds for both sockets, not just the
one with lower critical-section lengths.

C.E. Nemitz, T. Amert, and J. H. Anderson

60 60
o-a U-C-RNLP =—a G-C-RNLP

sol| = U-C-RNLP + SGLS " sol|#* G-C-RNLP + SGLS
_[|e—= U-CRNLP + SLLS = _ " ||e—e G-C-RNLP +sLLS
€ ||~ U-C-RNLP + FGLS . € ||x+ G-CRNLP +FGLS
g 4f|e - U-CRNLP + FLLS g %[|e- G-C-RNLP +FLLS
g * 4 RNLP o 8 * 4 RNLP
£ 30p|+r MCS — £ 30f| o+ MCS
3 o = La--a--a

ek IR 4
% 20 — K %; 20 B i
s - ek s 3 X
n -
10 o ‘*__.*.‘.f a--a--1h 10 ¥
x o -
00 <g=—0—0
0 Qﬂ‘—ki ¥ e 0
5 10 15 20 25 0
Number of Tasks Number of Tasks
(a) U-C-RNLP overhead (b) G-C-RNLP overhead

Figure 17 Same scenario as in Fig. 12: n, = 64,D = 4, and L; = 40us for all 4.

1000

o-a U-C-RNLP ot
4+— U-C-RNLP + SGLS T
8001 e—e U-C-RNLP + SLLS =
& -4 U-C-RNLP + FGLS =
cool|® @ UCRNLP + FLLS = oo
* % RNLP -
+o4 MCS o L

400

Blocking (microseconds)

[5 10 15 20 25
Number of Tasks

Figure 18 Worst-case blocking for the scenario in Fig. 17.

B Performance on Increasing Socket Counts

Alternate platform description. Recall from Sec. 3 that our original test platform is a
dual-socket, 18-cores-per-socket platform. In order to examine how our approach scales
with increasing socket count, we repeated the experiments in Figs. 12 and 13 on an alternate
experimental platform.

This alternate test platform is a four-socket, 6-cores-per-socket Intel Xeon 1.7455. On this
machine, each core has a 32KB L1 data cache and a 32KB L1 instruction cache. Additionally,
there is a 3MB L2 cache, and all cores on a socket share a 12MB L3 cache.

Results on four sockets. In Sec. 6, we presented the results of using lock servers on up to
two sockets. The experiments depicted in Figs. 12 and 13 were repeated on the alternate
platform; these results are shown in Figs. 17 and 18 for up to four sockets.

These figures validate Obs. 3-6 on up to four sockets. Additionally, we can extend Obs. 7
to increasing socket counts, given by the following observation.

» Obs. 11. Blocking of local lock servers scales poorly with increasing socket counts.

This observation is supported by Fig. 18. In this case, for n € [6,12), two sockets are
required. Similarly for n € [12,18) and n > 18, three and four sockets are used, respectively.
In this scenario, the requests are not balanced between the four sockets, so for n = 6,
Socket 1 has 5 requests and Socket 2 has the last one. As before, the mitigation in App. A is
not used here, so the blocking scales poorly as the number of sockets continues to increase,
to the point of being worse than that of the RNLP.

25:21

ECRTS 2018

25:22

Using Lock Servers to Scale Real-Time Locking Protocols

C Phase-Fair Reader/Reader Locks

As described in App. A, the reader/reader protocol coordinates the phases of requests from
LS, and LS,. Recall that we say a request on Socket s is entitled if it could be satisfied
under the C-RNLP variant used by LSs. In the U-C-RNLP, a request is entitled when it is
in the row pointed to by Head. Exactly one row is satisfied in each phase, as discussed above.
For the G-C-RNLP, a request is entitled if it is the head of the queue for all of its required
resources. We assume the G-C-RNLP uses Timed Satisfaction as its phase management
policy.

We now present a more descriptive version of the rules governing the reader/reader
protocol along with rule numbering, which allows us to clearly reference individual rules in
the following proofs.

R1 Each lock server is either active or passive and at most one lock server is active
at any time. A maximal interval of time when a lock server is active is called a
phase.

R2 A request can be satisfied only if its lock server is active and if it can be satisfied
under the variant of the C-RNLP being used by that server.

R3 A passive lock server LS; (resp., £Ss) with unsatisfied requests becomes active
within L,z 2 (resp., Liqs,1) time units.

R4 All requests satisfied in a phase finish before the end of that phase.

R5 When the last request of a phase finishes, the completion of that request and
the transition to a new active phase happens atomically.

» Lemma 12. Under the U-C-RNLP, a request R; handled by server LSy (resp., LS2)
becomes satisfied within Luyaz.2 (T€SP., Lmaz,1) time units after becoming entitled.

Proof. We begin by showing the bounds for request R; on Socket 1. Consider the time
instance ¢ when R; becomes entitled. At ¢, £LS; is either active or passive (Rule R1). If
LS, is passive, it will become active within Ly, 2 time units, at which point R; would be
satisfied (Rules R2 and R4). If instead L£S; is active, then it must have become active at t.
(Under the U-C-RNLP requests are never added to the row pointed to by Head when other
requests are active [43]. Also, the row does not change in the middle of a phase when there
are requests on the other socket (Rule R5).) Thus, ¢ is the start of a phase, and R; can
complete within L,,,, time units because L; < L;,q, by definition.

The proof for R; on LS, follows the same pattern. |

» Example 13. Consider a request Ry on Socket 2 for D; = {{,} that is satisfied at time
t. Request Ry on Socket 1 for Dy = {{,} issued at time ¢ + € is entitled; is the only active
request on Socket 1 and is in the row pointed to by Head. It will be satisfied when R
completes, which will occur at time ¢ 4 Ly,4.,2 at the latest.

» Theorem 14. A request R; on Socket s that is serviced by a local lock server running the
U-C-RNLP will be satisfied within (¢; s + 1)(Lmaz,1 + Lmaz,2) time units.

Proof. As in the proof of the original U-C-RNLP bound, there can be at most ¢; ; rows with
requests that conflict with R; ahead of R;. In the worst case, the first such request may have
entered Table at row Head+ 1 (instead of row Head, see [43]). Therefore, in the worst case,
¢i,s + 1 rows of requests must complete before R; is satisfied. If R, is on Socket 1 (resp.,
Socket 2), each request in the row pointed to by Head is entitled and becomes satisfied
within Ly,qz2 (resp., Lmqeg,1) time units (Lemma 12) and then completes within Ly,qq.1

C.E. Nemitz, T. Amert, and J. H. Anderson

(resp., Limqg,2) times units. Thus, from the time the requests are entitled until they have
completed is (Ligz,1 + Limas,2) time units. Once all requests in that row have completed,
Head is moved to point to the next row, and all those requests are entitled. Because ¢; ¢ + 1
rows of requests may be entitled and then satisfied before R;’s row, R; will be satisfied
within (¢; s + 1)(Limag,1 + Limaz,2) time units in the worst case. <

To reason about the G-C-RNLP, we use capacity as defined in [43]; the capacity of a
position is essentially the longest critical section length a request could have to be inserted
in that position in the queue without delaying previously issued requests (required by all
C-RNLP variants).

» Lemma 15. Under the G-C-RNLP, a request R; on Socket s becomes satisfied within
Limaz,1 + Limag,2 time units after becoming entitled.

Proof. In the worst case, Socket s is active and an entitled request R; on that socket cannot
finish before the end of the phase (based on the phase and dictated by Rule R3). Instead, it
must wait for this phase to complete (at most Ly,qy,s) and for a phase from the other socket
to complete (Rules R3 and R4). It total, this is at most Li,ae,1 + Limae,2 time units. <

We consider a group of requests with ordered indices R1 to R, to be consecutive if they
would be satisfied immediately after one another by following the rules of the chosen C-RNLP
variant (that is, for ¢ € [1,p], R; is entitled at the time instance when R;_;1 completes).

» Lemma 16. A group of requests on Socket s with critical section lengths summing to
L < Liaz,s and being satisfied consecutively will complete within Lz + Limasz,2 + £ time
units.

Proof. Consider a group of p consecutive requests, indexed in the order in which they are
enqueued. Thus, R, is the first request to be satisfied. We consider an arbitrary request in
the group R; that is not the first request.

Suppose that Ri was satisfied at time ¢’ in the phase that started at time ¢. The phase
in which R; was satisfied started at time ¢”. If all requests ran in the phase starting at time
t, they would clearly complete within L,,qz,1 + Lmaz,2 + £ time units by Lemma 15.

Suppose instead R; is the first request that cannot execute in the same phase as R;.
There are two potential causes for this. (1) R; is not entitled because another request is
blocking R;, and this request delays it beyond when it ought to be satisfied. This situation
cannot occur; the requests considered are consecutive, and neither C-RNLP variant would
allow a request to be inserted that delayed R;. (2) R; is entitled but would not complete
before the end of the phase that R; was in that started at time ¢. Given that there are
a series of requests to be satisfied, the phase that started at ¢ will be active until time
t + Lpaz. The length of time of that requests R1 through R; will execute is \; = Z;Zl L,.
Thus, if R; cannot execute in the same phase as R1, t + Lyaz,s < t' + A;. Therefore, we
can conclude that R; did not wait for any time after becoming entitled before becoming
satisfied (A\; — Lynaz,s < 0=t </, so R; was satisfied sometime in the middle of the phase
and did not have to wait after becoming entitled to become satisfied). Thus, when R; could
be satisfied under the C-RNLP variant, but is delayed because of the restrictions on phases,
R is entitled and will be satisfied within L4451 + Limag,2 time units (Lemma 15).

Given that R; was delayed into a later phase, such a delay (time between becoming
entitled and satisfied) cannot occur for any R, such that j > ¢. No request can delay it
enough to force it into a later phase (as we argued in (1)), and it will certainly be able to

25:23

ECRTS 2018

25:24

Using Lock Servers to Scale Real-Time Locking Protocols

complete in the same phase as R;, which started at ¢”; the phase ends at ¢’ + L4 5, and
t 4+ Zgzj L, <t"+ L <t"+ Lyaz,s, so this request will complete in this phase.

Since R; was the first request to experience delay and no later request experiences delay,
a group of consecutive requests on Socket s with critical section lengths summing to £ <
Lynaz,s will complete within Ly,qz,1 + Limaee,2 + £ time units. |

» Theorem 17. A request R; on Socket 1 (resp., Socket 2) that is serviced by a local lock
server running the G-C-RNLP will be satisfied within ¢;1(3Lmaz,1 + 2Lmag,2 + L;) (resp.,
¢i,1(2Lmag,1 + 3Lmaz,2 + Li)) time units.

Proof. The bound on the G-C-RNLP was established in [43] by considering that a request R;
may block behind at most ¢; conflicting requests with at most ¢; positions that would allow
satisfaction between those conflicting requests into which R; could not be inserted without
increasing the blocking. Thus, these positions have a capacity less than L;. (This yielded
the original bound of ¢;(Las + L;.) We now reason about those same two components: the
conflicting requests and the positions that are too small.

Consider R; on Socket 1 (resp., Socket 2). The conflicting requests each execute for up
t0 Linaz,1 (resp., Liag,2) time units after becoming satisfied. Additionally, each may block
for up to Limae,1 + Limaz,2 time units while entitled before becoming satisfied. In total, these
requests can cause R; to block for ¢; 1(2Lmaz,1 + Limaz,2) (xesp., ¢i1(Lmaz1 + 2Lmaz2))
time units.

Next we consider the positions with capacities too small. These positions are created by
groups of requests that do not conflict with R; but prevent the requests that conflict with
R; from being satisfied earlier. In the worst case, there is a group of consecutive requests
with lengths summing to at most L; for each such position. Each of these groups contribute
up t0 ¢;1(Lmaz,1 + Lmaz,2 + L;) time units of blocking.

Thus, in total, the blocking of R; is upper bounded by ¢; 1(3Laz,1 +2Lmaz,2 + L;) when
R; is on Socket 1. Similarly, if R; were on Socket 2, its worst-case blocking would be upper
bounded by ¢;.1(2Lmaz,1 + 3Lmaz,2 + Li) <

—— References

1 S. Afshar, M. Behnam, R. Bril, and T. Nolte. Flexible spin-lock model for resource sharing
in multiprocessor real-time systems. In SIES ’14.

2 S. Afshar, M. Behnam, R. Bril, and T. Nolte. An optimal spin-lock priority assignment
algorithm for real-time multi-core systems. In RTCSA ’17.

3 S. Afshar, M. Behnam, R. Bril, and T. Nolte. Per processor spin-based protocols for
multiprocessor real-time systems. Leibniz Transactions on Embedded Systems, 4(2), 2017.

4 S. Afshar, F. Nemati, and T. Nolte. Towards resource sharing under multiprocessor semi-
partitioned scheduling. In STES ’12.

5 S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. Evaluation of cache partitioning for
hard real-time systems. In ECRTS ’14.

6 B. Andersson and A. Easwaran. Provably good multiprocessor scheduling with resource
sharing. Real-Time Systems, 46(2):153-159, 2010.

7 D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight synchroniz-
ation for java. In PLDI 98.

8 A. Biondi and B. Brandenburg. Lightweight real-time synchronization under P-EDF on
symmetric and asymmetric multiprocessors. In ECRTS ’16.

9 A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking
protocol for multiprocessors. In RTCSA '07.

C.E. Nemitz, T. Amert, and J. H. Anderson

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

B. Brandenburg. The FMLP+: An asymptotically optimal real-time locking protocol for
suspension-aware analysis. In ECRTS ’14.

B. Brandenburg. Improved analysis and evaluation of real-time semaphore protocols for
P-FP scheduling. In RTAS ’13.

B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, University of North Carolina, Chapel Hill, NC, 2011.

B. Brandenburg and J. Anderson. A comparison of the M-PCP, D-PCP, and FMLP on
LITMUSET. In OPODIS "08.

B. Brandenburg and J. Anderson. Feather-trace: A lightweight event tracing toolkit. In
OSPERT '07.

B. Brandenburg and J. Anderson. An implementation of the PCP, SRP, D-PCP, M-PCP,
and FMLP real-time synchronization protocols in LITMUSRT. In RTCSA 08.

B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking.
In RTSS ’10.

B. Brandenburg and J. Anderson. Real-time resource-sharing under clustered scheduling:
Mutex, reader-writer, and k-exclusion locks. In EMSOFT ’11.

B. Brandenburg and J. Anderson. Spin-based reader-writer synchronization for multipro-
cessor real-time systems. Real-Time Systems, 46(1), 2010.

B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time
locking protocols. Design Automation for Embedded Systems, 17(2):277-342, 2013.

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson. Real-time syn-
chronization on multiprocessors: To block or not to block, to suspend or spin? In RTAS
"08.

A. Burns and A. Wellings. A schedulability compatible multiprocessor resource sharing
protocol - MrsP. In ECRTS ’13.

M. Campoy, A.P. Ivars, and J.V. Busquets-Mataix. Static use of locking caches in multitask
preemptive real-time systems. In IEEE/IEE Real-Time Embedded Systems Workshop “01.

Y. Chang, R. Davis, and A. Wellings. Reducing queue lock pessimism in multiprocessor
schedulability analysis. In RTNS ’10.

C. Chen and S. Tripathi. Multiprocessor priority ceiling based protocols. Dept. of Computer
Science, Univ. of Maryland. Technical report, CS-TR-3252, April, 1994.

M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and isolation tradeoffs in
multicore mixed-criticality systems. In RTSS ’15.

T. Craig. Queuing spin lock algorithms to support timing predictability. In RTSS ’93.

R. Davis and A. Burns. Resource sharing in hierarchical fixed priority pre-emptive systems.
In RTSS °06.

U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization under global EDF schedul-
ing on multiprocessors. In ECRTS ’06.

E. Dijkstra. Two starvation free solutions to a general exclusion problem. EWD 625,
Plataanstraat 5, 5671 Al Nuenen, The Netherlands.

A. Easwaran and B. Andersson. Resource sharing in global fixed-priority preemptive mul-
tiprocessor scheduling. In RTSS ’09.

G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated
by multi-GPU systems. Real-Time Systems, 49(2):140-170, 2013.

D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor bandwidth inheritance pro-
tocol. In ECRTS ’10.

D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of the multiprocessor
bandwidth inheritance protocol. Real-Time Systems, 48(6), 2012.

25:25

ECRTS 2018

25:26

Using Lock Servers to Scale Real-Time Locking Protocols

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca. A comparison
of MPCP and MSRP when sharing resources in the Janus multiple-processor on a chip
platform. In RTAS 03.

P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of real-time task sets
in single and multi-processor systems-on-a-chip. In RTSS “01.

J. Garrido, S. Zhao, A. Burns, and A. Wellings. Supporting nested resources in MrsP. In
Ada-FEurope International Conference on Reliable Software Technologies '17.

J. Han, D. Zhu, X. Wu, L. Yang, and H. Jin. Multiprocessor real-time systems with shared
resources: Utilization bound and mapping. IEEE Transactions on Parallel and Distributed
Systems, 2014.

J. Havender. Avoiding deadlock in multitasking systems. IBM systems journal, 7(2):74-84,
1968.

M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 13(1):124-149, 1991.

J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A predictable cache-aware
memory allocator. In ECRTS ’11.

P. Hsiu, D. Lee, and T. Kuo. Task synchronization and allocation for many-core real-time
systems. In EMSOFT ’11.

W. Huang, M. Yang, and J. Chen. Resource-oriented partitioned scheduling in multipro-
cessor systems: How to partition and how to share? In RTSS ’16.

C. Jarrett, B. Ward, and J. Anderson. A contention-sensitive fine-grained locking protocol
for multiprocessor real-time systems. In RTNS ’15.

Y. Joung. Asynchronous group mutual exclusion. Distributed Computing, 13(4):189-206,
2000.

P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm. In PODC
’99.

H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical OS-level
cache management in multi-core real-time systems. In ECRTS ’13.

D. Kirk and J. Strosnider. SMART (strategic memory allocation for real-time) cache design
using the MIPS R3000. In RT'SS ’90.

L. Kontothanassis, R. Wisniewski, and M. Scott. Scheduler-conscious synchronization.
ACM Transactions on Computer Systems (TOCS), 15(1):3-40, 1997.

K. Lakshmanan, D. Niz, and R. Rajkumar. Coordinated task scheduling, allocation and
synchronization on multiprocessors. In RTSS ’09.

J. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote core locking: migrating
critical-section execution to improve the performance of multithreaded applications. In
USENIX ATC’12.

G. Macariu and V. Cretu. Limited blocking resource sharing for global multiprocessor
scheduling. In ECRTS ’11.

J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization of shared-
memory multiprocessors. Transactions on Computer Systems, 9(1), 1991.

F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time systems on multi-
cores with shared resources. In ECRTS ’11.

F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems on multiprocessors
with shared resources. In OPODIS ’10.

C. Nemitz, T. Amert, and J. Anderson. Real-time multiprocessor locks with nesting:
Optimizing the common case. In RTNS ’17.

C. Nemitz, T. Amert, and J. Anderson. Using lock servers to scale real-time locking
protocols: Chasing ever-increasing core counts (extended version), 2018. URL: http:
//www.cs.unc.edu/~anderson/papers.html.

http://www.cs.unc.edu/~anderson/papers.html
http://www.cs.unc.edu/~anderson/papers.html

C.E. Nemitz, T. Amert, and J. H. Anderson

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In
ICDCS ’90.

R. Rajkumar. Synchronization in real-time systems: A priority inheritance approach. 1991.

R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for multipro-
cessors. In RTSS ’88.

H. Takada and K. Sakamura. Real-time scalability of nested spin locks. In RTCSA ’95.

C. Wang, H. Takada, and K. Sakamura. Priority inheritance spin locks for multiprocessor
real-time systems. In ISPAN ’96.

B. Ward. Sharing Non-Processor Resources in Multiprocessor Real-Time Systems. PhD
thesis, University of North Carolina, Chapel Hill, NC, 2016.

B. Ward and J. Anderson. Fine-grained multiprocessor real-time locking with improved
blocking. In RTNS ’15.

B. Ward and J. Anderson. Multi-resource real-time reader /writer locks for multiprocessors.
In IPDPS ’14.

B. Ward and J. Anderson. Supporting nested locking in multiprocessor real-time systems.
In ECRTS ’12.

B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches more predictable
on multicore platforms. In ECRTS ’13.

A. Wieder and B. Brandenburg. On spin locks in AUTOSAR: Blocking analysis of FIFO,
unordered, and priority-ordered spin locks. In RTSS ’13.

A. Wieder and B. Brandenburg. On the complexity of worst-case blocking analysis of nested
critical sections. In RTSS ’'14.

M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and implementation of global
preemptive fixed-priority scheduling with dynamic cache allocation. In RTAS ’16.

M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. vCAT: Dynamic cache management using
CAT virtualization. In RTAS ’17.

M. Yang, A. Wieder, and B. Brandenburg. Global real-time semaphore protocols: A survey,
unified analysis, and comparison. In RTSS ’15.

H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In RTAS ’14.

S. Zhao, J. Garrido, A. Burns, and A. Wellings. New schedulability analysis for MrsP. In
RTCSA '17.

25:27

ECRTS 2018

25:28

Using Lock Servers to Scale Real-Time Locking Protocols

D Additional Graphs

3

N
S

o-o U-C-RNLP
&—4 U-C-RNLP + SGLS .
e—e U-C-RNLP + SLLS K

<

a

U-C-RNLP + FGLS g
U-C-RNLP + FLLS e

®

~

o-a U-C-RNLP
a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS

ot

| Lg
-

& -a U-C-RNLP + FGLS

e

@ U-C-RNLP + FLLS

&

-+ RNLP B
.+ MCS P .oron

+ + 0

Lock Overheads (microseconds)
=
S
a
o

w

15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

* =+ RNLP
+oot MCS

w

Lock Overheads (microseconds)
IS o

Number of Tasks

(a) Lock overhead.

0 5 10 15 20 25

30

35 40

o-a U-C-RNLP

©

a—a U-C-RNLP + SGLS

&

o
+ + 0

e—s U-C-RNLP + SLLS

4 U-C-RNLP + FGLS PN

@ U-C-RNLP + FLLS

++ RNLP
-+ MCS

o @ U-CRNLP N
= ||== u-crnLP +sGLS s
£ 20f/e—e U-C-RNLP + SLLS o
§ ||+ ucrnr+FoLs et
£ Ile-e U-C-RNLP + FLLS e et
2 15 * "
E #.+ RNLP s
g ||+e+ MCS v m
£ 10 o
s é
25 e
s .
o . JU PPN
2] R &
N o _WM—GM\:::O

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

120
o U-C-RNLP N
10| & U-C-RNLP + SGLS s
e—e U-C-RNLP + SLLS o
3 & -4 U-C-RNLP + FGLS e
2 ;
S 806 ¢ U-CRNLP + FLLS W
2 * =+ RNLP
2 eo| - MCS
g
3 40
°
2
20!
et E R
e s aa
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 19 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 1 for each request R;.

Unlock Overheads (microseconds)
IS
n

N

20 40

Number of Tasks

(b) Unlock overhead.

o
S

U-C-RNLP n
U-C-RNLP + SGLS o
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

N @

s 3

IID
o

LY
S 3
+ + 0
46

N
S

w
=3

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 20 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 2 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

o
o

U-C-RNLP n
U-C-RNLP + SGLS F
U-CRNLP +SLLS | =
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP A
Mcs A

w IS
(93
=¥
P
s

+ + 0
P46

~

Lock Overheads (microseconds)
+

-

SRR

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

U-C-RNLP e "
U-C-RNLP + SGLS —"

U-C-RNLP + SLLS =

U-C-RNLP + FGLS F >
U-C-RNLP + FLLS e
RNLP e L

Mcs ok

o
o

1l

w

+ + 0
46

~

Unlock Overheads (microseconds)
5

0 40
Number of Tasks
(b) Unlock overhead.
7 L
o8 U-C-RNLP
60/| 4— U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
g s0f{a -4 U-C-RNLP + FGLS
g
8 @ - U-C-RNLP + FLLS
£ a0+ + RNLP
g ||+ Mcs
E\30
g 20
10
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 21 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 4 for each request R;.

45
o0 U-C-RNLP R N

_ *%1la—s U-C-RNLP + SGLS n
8 3s5||e—e UCRNLP+SLLS| 7

§ & -4 U-C-RNLP + FGLS

& 3% e e U-C-RNLP +FLLS | ¢
£ 55|/ * + RNLP ar B A
g, | mes »
g
g 15
o
<10
k]

0.5

0.

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

35 = -
oo U-CRNLP o

5 30[[4= U-C-RNLP + SGLS o

g e—e U-CRNLP + SLLS v

© 2.5t & -4 U-C-RNLP + FGLS

§ e e U-C-RNLP + FLLS | € .

E20{+ + RNLP e

E ++ MCS : N

21s B n a-n

§ P

<10 s "'/ﬁ/‘_._/-—-/"‘

E P

Sos n é e °
0.4 b e 6 e i}

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

3

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

N
S
-

1l

@
S

o

S
+ + 0
A6 B

w
S

Blocking (microseconds)
5
8

N
S

-
)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 22 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 6 for each request R;.

25:29

ECRTS

2018

25:30

Lock Overheads (microseconds)
N W At o~

-

oo U-C-RNLP
4— U-C-RNLP + SGLS 2 "
e—e U-C-RNLP + SLLS l

& -a U-C-RNLP + FGLS
e ¢ U-C-RNLP + FLLS n
«:+ RNLP e

+o+ MCS

o =

5 10 15 20 25 30 35

Number of Tasks

(a) Lock overhead.

w
n

20

w
o

oo U-C-RNLP n
4+—a U-C-RNLP + SGLS Ea

e—e U-C-RNLP + SLLS e
& & U-C-RNLP + FGLS
¢ U-C-RNLP + FLLS .
-+ RNLP LT
-+ MCS :

~
0

~
o
+ + 0

-
n

Unlock Overheads (microseconds)
o

bud
o

RN

g ek

o
>

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

20

o
o

U-C-RNLP I3

S
S

1l

U-C-RNLP + SGLS "
U-C-RNLP + SLLS

Using Lock Servers to Scale Real-Time Locking Protocols

12

10

Lock Overheads (microseconds)

o-a U-C-RNLP
4— U-C-RNLP + SGLS o B S8
e—e U-C-RNLP + SLLS g

4 U-C-RNLP + FGLS
e U-C-RNLP + FLLS
+ RNLP

+ MCS

+ + 0

n—B—E—E—F—0—f—0—&

-0 8. .0- 8-0-80

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

o8 U-C-RNLP
ee B
& 5|/ U-C-RNLP + SGLS R
g ||+ U-C-RNLP +sLLS "
g ||+ 2 U-C-RNLP + FGLS
€ 4|e e U-C-RNLP + FLLS
E ||+ RNLP
g 3(| ++ MCS
-
£
@
3 B n A—E ¥
S2 = o A e
] * K
2 & A
ER! .
2 -0 °
1 & e e

ey R e
5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

o

[l

U-C-RNLP
U-C-RNLP + SGLS IS
U-C-RNLP + SLLS

U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

®

3
+ + 0
46

Blocking (microseconds)
@
3

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 23 (a) Lock and (b) unlock over-
heads and (c¢) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 8 for each request R;.

U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS E

PRI
P46 B

Blocking (microseconds)
=
2
8

0 5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 24 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 10 for each request

Ri.

C.E

Nemitz, T. Amert, and J. H. Anderson

=)

Lock Overheads (microseconds)

o-a U-C-RNLP n

a—a U-C-RNLP + SGLS e "

e—s U-C-RNLP + SLLS n

& o U-C-RNLP + FGLS
@ U-C-RNLP + FLLS

++ RNLP [

-+ MCS

+ + 0

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

Unlock Overheads (microseconds)

o-a U-C-RNLP T
a—a U-C-RNLP + SGLS o

e—e U-C-RNLP + SLLS m

4 U-C-RNLP + FGLS x

@ U-C-RNLP + FLLS [

-+ RNLP
~+ MCS

+ + 0

b b
5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

20

1400

1200

1000

@
3
3

o
3
3

IS
S
3

200

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

1l

+ + 0
o4 6B

15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 25 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 1 for each request

Ri.

40

~

25:31

113

IS

+ + 0
N

U-C-RNLP
U-C-RNLP + SGLS n-a
U-C-RNLP + SLLS -
U-C-RNLP + FGLS F
U-C-RNLP + FLLS
RNLP £
MCS

w

~N

Lock Overheads (microseconds)

-

5 10 15 20 25
Number of Tasks

(a) Lock overhead.

35 40

113

IS

+ + 0
oA 6B

U-C-RNLP
U-C-RNLP + SGLS a
U-C-RNLP + SLLS p—
U-C-RNLP + FGLS £
U-C-RNLP + FLLS
RNLP -

~N

Unlock Overheads (microseconds)
w

-

bbb

5 10 15 20 2!
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

1600

35 40

o
o

1400

!

1200

1000

+ + 0
A6 B

®
S
S

a— U-C-RNLP + SGLS

U-C-RNLP

U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

@
2
3

IS
S
3

N
=1
S

5 10 15 20 25
Number of Tasks

(c) Blocking.

35 40

Figure 26 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, nr = 16, and D = 2 for each request
Ri.

ECRTS 2018

25:32

Using Lock Servers to Scale Real-Time Locking Protocols

4.5
oo U-C-RNLP -
4.0 -
I = U-C-RNLP + SGLS s
8 35| e—e U-C-RNLP + SLLS s
§ & -4 U-C-RNLP + FGLS a
£ 3% e U-C-RNLP + FLLS | & A,
g 25+ + RNLP L oL
e +ot MCS N
® 2.0
g
£
9 1.5]
o
< 10
S
0.5
0.0
0 5 10 15 20 25 30 35 40

Number of Tasks

(a) Lock overhead.

oo
—a

U-C-RNLP nEe-e "

~
0

U-C-RNLP + SGLS e P

e—e U-C-RNLP + SLLS B e
& - U-C-RNLP + FGLS
e ¢ U-C-RNLP + FLLS
«:+ RNLP ;
+ MCS N

|4
o

o

Unlock Overheads (microseconds)
.
n

Lad
[

0.0 -
0 5 10 15 20 25 30 35 20
Number of Tasks

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

1400

1l

1200

,_.
o
3
S

+ *+ 0 >
P4 oa B

o
3
3

Blocking (microseconds)
®
2
S

IS
S
3

~
>
3

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 27 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 4 for each request
Ri.

4.0
g "

35 g .

2 |a e O .

¢ >°[os uCRNLP

& ,5||#= U-C-RNLP + SGLS s Ay

£ e—a U-C-RNLP + SLLS A »

5 20{[& & U-C-RNLP + FGLS S

g o ¢ U-C-RNLP + FLLS

€ 1.5

§ +.+ RNLP R T

S pof 7t MCS

g —t—0 "o

g & %

e
0

0.0
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

U-C-RNLP
U-C-RNLP + SGLS [&
U-C-RNLP + SLLS ALY
U-C-RNLP + FGLS & o

U-C-RNLP + FLLS

N
°
11
o
wn
ns

-
n

RNLP

+ + 0
oA B

Unlock Overheads (microseconds)
I
o

Fad
@

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

0.0
0

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

o
o

1400

[l

1200

H
5
8
8
+ * 0 B
P46 B

@
3
3

Blocking (microseconds)
®
2
S

IS
S
3

N
8
\

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 28 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 6 for each request
Ri.

C.E

3.5 AT T
=3 € .
3.0 e-nfa
3 ° T "
2
2
§25 o-a U-C-RNLP
g a—4 U-CRNLP + SGLS Aon aac®
£ 2.0 e—e U-C-RNLP + SLLS A B
2 & -4 U-C-RNLP + FGLS ;
g 1.5{/ e - U-C-RNLP + FLLS
5 + =+ RNLP
S 1.0l ++ MCS A
3
¥
s °
0.5
-
0.0
0 5 10 15 20 25 30 35 40

Number of Tasks

(a) Lock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS T

U-C-RNLP + FGLS H T

U-C-RNLP + FLLS | R S
RNLP !

MCS

1l

+ + 0
46

a4
o

Unlock Overheads (microseconds)

IR, SRR

B T e T
5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

0.0
0

1400 c-0-0 -0 o0-a-c-o. 8

1200

,_.
o
1]
3

‘ U-C-RNLP
/n“f 4— U-C-RNLP + SGLS
ea

U-C-RNLP + SLLS

o
3
3

Blocking (microseconds)
®
2
S

s & -4 U-CRNLP + FGLS
400 /
e - U-C-RNLP + FLLS
200 e +:+ RNLP
+o+ MCS

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 29 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 8 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

>
>

w
n
[:]
2
n
I
.
a

w
°

0o
o-a U-C-RNLP

a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS A &
4 U-C-RNLP + FGLS
¢ U-C-RNLP + FLLS A
-

+

~
n
3

g
o

0

RNLP

=
o

Lock Overheads (microseconds)

et
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP : R

1l

+ + 0
oA 6B

Unlock Overheads (microseconds)

Frien e obes et

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1600

1400 6 -0 -0-0-0-c-G-0 4

1200

-
°
3
3

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

\
T

Blocking (microseconds)
®
8
8
»
>

IS
S
3
o
6

200 * =+ RNLP
+o MCS
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 30 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, nr = 16, and D = 10 for each request
Ri.

25:33

ECRTS

2018

25:34

oo U-C-RNLP
4— U-C-RNLP + SGLS e F
e—e U-C-RNLP + SLLS n
4 U-C-RNLP + FGLS
e U-C-RNLP + FLLS
‘+ RNLP

-+ MCS

-
=)

®
[
n

o
+ + 0

Lock Overheads (microseconds)
>

~

0 5 10 15 20 25 30

35 40
Number of Tasks
(a) Lock overhead.
1
55 U-CRNLP
= 10/| ~* U-C-RNLP + SGLS o
£ e ucrNLP +sLLS —
g & - U-C-RNLP + FGLS g
€ 8[le ¢ U-CRNLP + FLLS "
E ||+ RNLP =
2 6+ MCS e
g
&
g,
H -
S - R SE
2 L o
52 e T asioton e
_ o .y o
o ikt
0 5 10 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
400
55 U-CRNLP
35001 4—a U-C-RNLP + SGLS o
e—e U-C-RNLP + SLLS
— 3000
5 & - U-C-RNLP + FGLS
£
€ 2500/ © ¢ U-C-RNLP + FLLS
i +.+ RNLP
£ 2000f +++ MCS
E
-
£ 1500
]
8
@ 1000
e <@
DAk NP 7%
500 PSS I
e R
-
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 31 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 16, and D = 1 for each request

Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

~

o
o

U-C-RNLP
U-C-RNLP + SGLS n
U-C-RNLP + SLLS
U-C-RNLP + FGLS F
U-C-RNLP + FLLS
RNLP e
MCs

1l

Iy

+ + 0
46

w

~

Lock Overheads (microseconds)

b

L
&

b

0 5 10 15 20 25 30
Number of Tasks

(a) Lock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS "
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

1l

IS

+ + 0
46

MCS r

Unlock Overheads (microseconds)
~ w
%

-

RNLP s v

Lt 4
0 5 10 15 20 25
Number of Tasks

(b) Unlock overhead.

4000

o
o

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

3500

[l

3000

2500

PP
P46 B

2000

1500

Blocking (microseconds)

1000

500

15 20 25 30
Number of Tasks

(c) Blocking.

Figure 32 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 16, and D = 2 for each request

Ri.

C.E

oo U-C-RNLP n
a—a U-C-RNLP + SGLS n
3.5[|e—e U-C-RNLP + SLLS -

& -4 U-C-RNLP + FGLS
306 «¢ U-C-RNLP + FLLS .
2.5H[*+ RNLP bt
++ MCS

H
>
>
>

Lock Overheads (microseconds)

e TR ORI

5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

3.0
o8 U-C-RNLP o

& 2.5/| #2 U-CRNLP + SGLS o P
2 e—e U-C-RNLP + SLLS T e
§ & A U-C-RNLP + FGLS !
8 2% ¢ U-C-RNLP +FLLS
E #:+ RNLP ;
ﬁ 1.50 +++ MCS &
2 v i .

o g A=A p Y a A
3 10 :
3
£ A e
<
505

RS S

e b b
5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

0.0
0

4000
oo U-C-RNLP
3500F| 4—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& 3000
35 & -4 U-C-RNLP + FGLS
2
S 55001/ @ @ U-C-RNLP + FLLS
2 *.+ RNLP o
2 2000 #+
= st
£ 1500
$
E
@ 1000
500
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 33 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 16, and D = 4 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

4.0
o @A _rEn
-35 o =3
2 n P
§>[e= ucRNLP R
& ,5|| &= U-C-RNLP + SGLS A .
£ e—e U-C-RNLP + SLLS 2 o
5 20{{a & U-C-RNLP + FGLS N
g o -¢ U-C-RNLP + FLLS ¥
5 5[+ RNLP et
$ ol [Mos '
K P g2 % o
ost ¢ 3 -
bbb b
0.4

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

25
oo U-C-RNLP
a—4 UCRNLP+SGLS| g ;o o &
20/le—e U-C-RNLP+SLLS | !/ “wow

4 U-C-RNLP + FGLS F
@ U-C-RNLP + FLLS
-+ RNLP
+ MCS

+ + 0

Unlock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

U-C-RNLP

35001 4—a U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

!

3000

+ + 0
A6 B

Blocking (microseconds)
hooNoN
z 8 &
g 8 &
g8 8 8

1000 /

500 e

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 34 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 16, and D = 6 for each request
Ri.

25:35

ECRTS

2018

25:36

Lock Overheads (microseconds)

(a)

(b)

Blocking (microseconds)

(c)

Unlock Overheads (microseconds)

w
n
Bl

E—g—8 o FEn
n
3.0 N
o
2.5t @@ U-C-RNLP
a— U-C-RNLP + SGLS PRt
2.0 e—e U-C-RNLP + SLLS N ”
& -a U-C-RNLP + FGLS R
15 e - U-C-RNLP + FLLS
=+ RNLP
1.0+t
°
0.5 .
ST D 20T i
0.0
5 10 15 20 25 30 35 40
Number of Tasks
Lock overhead.
2.5
o U-C-RNLP
a—a U-CRNLP + SGLS| #.
N
2.0r|e—s U-C-RNLP + SLLS CoT ek
& -a U-C-RNLP + FGLS H
e e U-C-RNLP +FLLS | PP
1.5] B feae
=+ RNLP
+ot MCS
1.0|
£ H =<4
0.5 é -@ -0~ 0- - 0-@-a -6 -0
FURTRREI I S "
et
0.0
0 5 10 15 20 25 30 35 40

Number of Tasks

Unlock overhead.

3500 e 0-0-0-0-0-0 -0 &
3000
2500 /
2000 " [58 UCRNLP
e a—a U-C-RNLP + SGLS
1500 a—a U-C-RNLP + SLLS
1000 s & -a U-C-RNLP + FGLS
e o e U-C-RNLP + FLLS
500 = + % RNLP
_/ ++ MCS
o
0 5 10 15 20 25 30 35
Number of Tasks
Blocking.

Figure 35 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 16, and D = 8 for each request

Ri.

20

Using Lock Servers to Scale Real-Time Locking Protocols

4.0
35 E

2

g >°[e= ucRNLP

& ,5||#= U-C-RNLP + SGLS

£ e—e U-C-RNLP + SLLS ~t

5 20f| & & U-C-RNLP + FGLS P N

g e e U-C-RNLP + FLLS

2

§ 197+ + RNLP “

o ot

x 1.0

g

0.5

B R SR T,

PEE
DRRTRPORS. Jols i

e

5 10 15 20 25
Number of Tasks

(a) Lock overhead.

30 35 40

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS .
U-C-RNLP + FGLS H .
U-C-RNLP + FLLS |

RNLP
MCS

111

-
n
+ + 0

46

Unlock Overheads (microseconds)
I
o

Fad
@

0.0
0 5 10 15 20 25
Number of Tasks

(b) Unlock overhead.

4000
3500 e o 0-0-0-c-a -0 &
g 3000
2
g 2500 r/
8
2 2000 / oo U-C-RNLP
= e 4— U-C-RNLP + SGLS
5 1300 e—a U-C-RNLP + SLLS
2 1000 e & -4 U-C-RNLP + FGLS
/./" o e U-C-RNLP + FLLS
500 e +.+ RNLP
/ ++ MCS
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 36 (a) Lock and (
heads and (c) blocking fo

Ri.

b) unlock over-
r requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 16, and D = 10 for each request

C.E

30

= " N ~
=) & S &

Lock Overheads (microseconds)

w

o

o U-C-RNLP

a—a U-C-RNLP + SGLS .

e—s U-C-RNLP + SLLS

&

+ + 0

4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS

-+ RNLP Fow a

& . A
e - P
- &
Py -0---c-C 0

+ MCS . e

e - a- b

5 10 15 20 25 30 35

40

Nemitz, T. Amert, and J. H. Anderson

25:37

oo U-C-RNLP At
12{{#—4 U-C-RNLP + SGLS Rt

e—s U-C-RNLP + SLLS a e e
10f{& -4 U-C-RNLP + FGLS e

e ¢ U-C-RNLP + FLLS o
8f| # -+ RNLP

++ MCS

Lock Overheads (microseconds)

Number of Tasks

(a) Lock overhead.

30

o-a U-C-RNLP

~
&

N
S

=)

+— U-C-RNLP + SGLS -

e—e U-C-RNLP + SLLS

&

+ + 0

A U-C-RNLP + FGLS S et
@ U-C-RNLP + FLLS S

=+ RNLP Feam
4+ MCS .

Unlock Overheads (microseconds)
.
&

w

15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o

60

o
3

IS
S

+ + 0
o4 6B

o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 37 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 1 for each request R;.

20
Number of Tasks
(a) Lock overhead.
1
58 U-CRNLP n
& 14| & U-C-RNLP + SGLS P
€ ,l|e—e UCRNLP+sLLS e
ﬁ 4 -a U-C-RNLP + FGLS *
€ 10/|® © U-C-RNLP + FLLS "
E ||+~ RNLP
g 8|+ MCS
2
2
o
g
<
5
o 5 10 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
8
o-a U-C-RNLP ”
70H 4= U-C-RNLP + SGLS E
sol| == U-C-RNLP + 5LLS 27
Z°[|a - U-c-RNLP + FGLS o .
g .
S sol|e ¢ U-CRNLP + FLLS
g
g ||+~ RrLP
g aof| +-+ MCS
=
£ 30
3
a 20, o
10 -
S
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 38 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 2 for each request R;.

ECRTS

2018

25:38

Using Lock Servers to Scale Real-Time Locking Protocols

Lock Overheads (microseconds)

1l

w

~

o

o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS

& -4 U-C-RNLP + FGLS & *
e e U-C-RNLP + FLLS PRI
* =+ RNLP T
<
+t MCS * P
T A A »

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

1l

n

o
o

U-C-RNLP
U-C-RNLP + SGLS B
U-C-RNLP + SLLS n
U-C-RNLP + FGLS e
U-C-RNLP + FLLS F e
RNLP BT

+ + 0

46

MCS c

w

IS

~

Lock Overheads (microseconds)
w

-

o-a U-C-RNLP

a—4 U-CRNLP + SGLS o F e g
e—e U-CRNLP + SLLS a8

& -o U-C-RNLP + FGLS e

e ¢ U-C-RNLP + FLLS

+ + RNLP y N
4t MCS X a-AEla
o T

w
El

~
*
[
3
3
>

Unlock Overheads (microseconds)
IS

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS et
U-C-RNLP + SLLS =
U-C-RNLP + FGLS
U-C-RNLP + FLLS ol
RNLP
MCS

1l

+ *+ 0 >
P4 oa B

Blocking (microseconds)

15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 39 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 4 for each request R;.

b
o
0 5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
5
" " a
o-a U-C-RNLP m e
& ||+ U-C-RNLP + SGLS oo
€ 4[| e—e U-C-RNLP +SLLS _
é & -o U-C-RNLP + FGLS U
€ ||e e U-C-RNLP + FLLS e
5, .
E |+ = RNLP < .
g ||+ Mcs Pk
H
g
£2
g
g
o
3
¥
21
5
N iy
0 5 10 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
7 n
o-a U-C-RNLP g
60}| &= U-C-RNLP + SGLS e
e—e U-C-RNLP + SLLS
3 s0f| & -4 U-C-RNLP + FGLS
2
] @ - U-C-RNLP + FLLS
£ a0+ + RNLP
g |[#+ mcs
E,BO
% 20
10
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 40 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 6 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

(C))

Unlock Overheads (microseconds)

(b)

(c)

Lock Overheads (microseconds)

Blocking (microseconds)
N
8

o
o

U-C-RNLP
U-C-RNLP + SGLS 0@
U-C-RNLP + SLLS =
U-C-RNLP + FGLS
U-C-RNLP + FLLS .
RNLP € A

MCs a

1l

w

+ + 0
N

~

=

0 5 10 15 20 25 30 35
Number of Tasks

Lock overhead.

20

o
o

U-C-RNLP "
35f|a—a U-C-RNLP + SGLS o ?
U-C-RNLP + SLLS
U-C-RNLP + FGLS ¥
U-C-RNLP + FLLS
RNLP .. -
Mcs DT e e

!

N

3

e

0.0l b

5 10 15 20 25 30 35
Number of Tasks

Unlock overhead.

0
S

20

o
o

U-C-RNLP a
U-C-RNLP + SGLS I
U-C-RNLP + SLLS E

U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

-
S

1l

o
3

o

=)
+ + 0
P46

w
=)

N
S

0 5 10 15 20 25 30 35
Number of Tasks

Blocking.

Figure 41 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 8 for each request R;.

40

45
o8 U-C-RNLP

_ 0| = U-C-RNLP + SGLS I
€ 3.5/ e—e U-C-RNLP + SLLS "
§ & -4 U-C-RNLP + FGLS
& 3% e e U-C-RNLP +FLLS | o A
EZS +.+ RNLP al, ot R
g, | mes . a
o 7 r
2
3 15
o
<10
k]

0.5

O e

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

35
o-a U-C-RNLP

& 30}/ &= U-C-RNLP + SGLS o ="
g e—e U-CRNLP + SLLS o
g 2.5 & 4 U-C-RNLP + FGLS E
g e ¢ U-C-RNLP + FLLS .
E 20f + + RNLP - ; V"'..tv N
H +t MCS ; *7
215 8
g aal W
S 10
E
=
> 0.5]

0.4

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o

oo U-C-RNLP o
80| a—a U-C-RNLP + SGLS &
70}| = U-C-RNLP + SLLS o

§ & -4 U-C-RNLP + FGLS A x

8 %06 e U-C-RNLP + FLLS .

g .

2 ol -+ RNLP

L Hot

E 4

g

% 30

-

2
20
10|

0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 42 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
lus, n, = 32, and D = 10 for each request
Ri.

25:39

ECRTS 2018

25:40

-
o

-
=

-
Y]

o

®

o-a@ U-C-RNLP
a—a U-C-RNLP + SGLS c
e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS a
e U-C-RNLP + FLLS
+ RNLP -
-+ MCS e

+ + 0

=

IS

Lock Overheads (microseconds)

4
5%

5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=
IS

-
N

=)

©

oo U-C-RNLP
a—4 U-C-RNLP + SGLS "
e—e U-C-RNLP + SLLS r

4 U-C-RNLP + FGLS o

e U-C-RNLP + FLLS o

+ RNLP =

~+ MCS

+ + 0

o

IS

Unlock Overheads (microseconds)

~

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1400

1200

1000

o
3
3

Blocking (microseconds)
®
2
S

IS
S
3

~
>
3

>

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

1l

+ *+ 0 >
P4 oa B

c-0-0 -0 0 a_ma-0
- e—e—o—0 o0 oo .
eI ErEe

S L

5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 43 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 1 for each request

Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

o
o

1l

o

+ + 0
46

U-C-RNLP "
U-C-RNLP + SGLS "
U-C-RNLP + SLLS o

U-C-RNLP + FGLS
U-C-RNLP + FLLS I3
RNLP
MCS =

IS

Lock Overheads (microseconds)

N

ol—F- t t o
0 5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
9
o-a@ U-C-RNLP -
8 -
= [|# U-CRNLP + SGLS et
2 7}{{e— U-CRNLP + SLLS
g ||& & U-C-RNLP + FGLS e
€ 6[|e e U-C-RNLP + FLLS [
E sl|* =+ RNLP
-
2 ||+ MCS et
$a e
£ ’
g5 "o
o o
M
82 - a
T e a Aappbp
S e W
1 WM‘#—G—O—O—WC\M o
. B
0 5 10 15 20 25 35 40
Number of Tasks
(b) Unlock overhead.
1600,
oo U-C-RNLP
1400 4—a U-C-RNLP + SGLS -
e—e U-CRNLP + SLLS
< 1200
K & -4 U-C-RNLP + FGLS
2
S 1000l © ¢ U-C-RNLP + FLLS
g ++ RNLP
£ soor| s MCS
>
5 600
S e
400 ~grgre—e Bt
T
B A=
200 = . .‘D_/ B-B-R
PP R
o .,;.I‘-
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 44 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 2 for each request

Ri.

C.E. Nemitz, T. Amert, and J. H. Anderson

1l

Lock Overheads (microseconds)

-

o
o

+ + 0
P46

U-C-RNLP R
U-C-RNLP + SGLS oo
U-C-RNLP + SLLS o

U-C-RNLP + FGLS X

U-C-RNLP + FLLS
RNLP

MCS

"

S
P>
+

v
s

R TRR S

B e
0 5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
45
o
o oo U-C-RNLP e
2 *[|a— U-C-RNLP + SGLS noa-g
€ 35|/ == U-C-RNLP + SLLS F N
5 .
§ & A U-C-RNLP + FGLS . ="
£ 30| © U-CRNLP + FLLS B g
E 25f[*+ RNLP S
g ||+ MCS d:
g 2.0 = :
B =
315
§ 1.0
2
5
0.5
0.0l b T - N
. 5 10 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
1600
5o U-C-RNLP
1400 4—a U-C-RNLP + SGLS
1200l| = U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
H
S 1000/ @ * U-C-RNLP + FLLS
g
g «+ RNLP
g 8o0f|
=
5 600
K
@ 400
200
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 45 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 4 for each request

Ri.

25:41

~N w Iy

Lock Overheads (microseconds)

-

o
o

1l

+ + 0
N

U-C-RNLP
U-C-RNLP + SGLS oo
U-C-RNLP + SLLS e
U-C-RNLP + FGLS
U-C-RNLP + FLLS .
RNLP el

I

e bbb

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

3.0

40

1l

N
°

=
o

o
n

Unlock Overheads (microseconds)
-
n

o
o

+ + 0

U-C-RNLP -
U-C-RNLP + SGLS| = o™ " K
U-CRNLP +SLLS | & " . ="

i *oe *

U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

PO

Frrgsidensober et

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

1600

40

1400

1200

-
°
3
3

Blocking (microseconds)
a ®
3 8
8 8

IS
S
3

N
=1
S

o
o

a— U-C-RNLP + SGLS

!

+ + 0
A6 B

U-C-RNLP

U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

20

Figure 46 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, nr = 32, and D = 6 for each request

Ri.

ECRTS

2018

25:42

>
>

w
n

o

[ot g N w
o . o wn o

Lock Overheads (microseconds)

o
@

o

S

s

o0 U-C-RNLP s
a— U-C-RNLP + SGLS Ao A
e—e U-C-RNLP + SLLS A .

4 U-C-RNLP + FGLS o

@ U-C-RNLP + FLLS .
+ RNLP A e

-+ MCS .

+ + 0 B

0.0
0

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

o-a U-C-RNLP
a—a U-C-RNLP + SGLS
2.0r| e—e U-C-RNLP + SLLS

my

o e

&
[

4 U-C-RNLP + FGLS

-

@ U-C-RNLP + FLLS
-+ RNLP

+ot MCS

é

’
bk gt
/,.AAAAA

a -o- -0- ©-0-8

o
o

Unlock Overheads (microseconds)

BRI
B R St

P

0.0
0

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

20

1400

1200

111

,_.
o
3
S

+ *+ 0 >

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

o

P4 oa B

o
3
3

Blocking (microseconds)
®
2
S

IS
S
3

~
>
3

5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 47 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 8 for each request

Ri.

20

Using Lock Servers to Scale Real-Time Locking Protocols

4.0
o
35 . ga T TTE
= e
g no-n o
g >°[e= ucRNLP
8 ,5|| &4 U-C-RNLP + SGLS » N
£ e—e U-C-RNLP + SLLS Aa-a’ "a
g 20}/ & -4 U-C-RNLP + FGLS "
§ ||e-e U-C-RNLP +FLLS
E 15H .
3 Lol
M
3
0.5
0.0
0 5 10 15 20 25 30 35 40

Number of Tasks

(a) Lock overhead.

25
oo U-C-RNLP
a— U-C-RNLP + SGLS . 5
20f{e—e U-C-RNLP + SLLS - B
& -4 U-C-RNLP + FGLS & ae ok et
e ¢ U-C-RNLP + FLLS | A
B30 w4 RNLP

Unlock Overheads (microseconds)
I
o

Fad
@

(RSSO

0.0
0

5 10 15 20 25
Number of Tasks

(b) Unlock overhead.

1400

1200

,_.
o
3
3

Blocking (microseconds)
®
2
S

U-C-RNLP

a—4 U-C-RNLP + SGLS
600 e—a U-C-RNLP + SLLS
s & -4 U-C-RNLP + FGLS
400
_/" o e U-C-RNLP + FLLS
200 e +.+ RNLP
/ ++ MCS
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 48 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, nr = 32, and D = 10 for each request
Ri.

C.E

o-a U-C-RNLP

141 &= U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS =
4 U-C-RNLP + FGLS g

@ U-C-RNLP + FLLS o

Lock Overheads (microseconds)
®

o
+ + 0

+ RNLP a
-+ MCS I

e
5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

Unlock Overheads (microseconds)

oo U-C-RNLP "
a—4 U-CRNLP + SGLS "

e—e U-C-RNLP + SLLS .

4 U-C-RNLP + FGLS =

e U-C-RNLP + FLLS
+ RNLP

-+ MCS ¥

+ + 0

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

4000

20

3500

3000

2500

2000

1500

Blocking (microseconds)

1000

500

o
o

U-C-RNLP
U-C-RNLP + SGLS -t
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

+ + 0
o4 6B

6 o-0-c_8—0 o
P T S
—g-a—na?

5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 49 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 32, and D = 1 for each request

Ri.

40

Nemitz, T. Amert, and J. H. Anderson

25:43

oo
—a
8| e—a
a

U-C-RNLP -
U-C-RNLP + SGLS nen

U-C-RNLP + SLLS
U-C-RNLP + FGLS

Lock Overheads (microseconds)

&
@ e U-C-RNLP + FLLS [
-
+

+ RNLP
e
<ot MCS

5O -

" L.~ *
" P a A

I =4 y A A

o P

t
5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

Unlock Overheads (microseconds)
N oW s w e N

-

o-a U-C-RNLP R |
4— U-C-RNLP + SGLS nt

e—e U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS =
e ¢ U-C-RNLP + FLLS o
+.+ RNLP
++ MCS e

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

40

3500

3000

2500

2000

1500

Blocking (microseconds)

1000

500

U-C-RNLP
U-C-RNLP + SGLS -
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

o
o

1l

+ + 0
A6 B

FETES S
-o-o-re-0-E-8-c o
peng o

B -5 -5 &*

5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

20

Figure 50 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 32, and D = 2 for each request

Ri.

ECRTS 2018

25:44

1l

IS

~

Lock Overheads (microseconds)
w

o

o

U-C-RNLP

+ + 0
46

U-C-RNLP + SGLS s
U-C-RNLP + SLLS e €
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS A

Yy
b
* b

Using Lock Servers to Scale Real-Time Locking Protocols

oo U-C-RNLP -
o g o= n

_ ||+ ucRNLP + sGLS n

g 4f|e—e U-CRNLP+SLLS |

$ ||& 2 U-CRNLP +FGLS

& ||e < U-C-RNLP +FLLS N

S3 »

27|+ = RNLP A,

3 ||+ Mcs 4 2

2 x

g -

§2 "A'f-.-_,_.."'

g

o

3

s1 °

e

b b +

(a) Lock

5 10 15 20 25 30 35 40
Number of Tasks

overhead.

~
n

~N
o

oo
—
e
a

&
e -e
-

-

U-C-RNLP o
U-C-RNLP + SGLS o .
U-C-RNLP + SLLS fore Y
U-C-RNLP + FGLS [
U-C-RNLP + FLLS
RNLP

+o MCS

-
o

Unlock Overheads (microseconds)
-
n

o
[

0.0
0

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

0 5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
4.5
oo U-C-RNLP —"
4.0 ne-a
& “O[|a— U-CRNLP + SGLS .
2 3.5[[e—e U-C-RNLP +SLLS - -
8 & -4 U-C-RNLP + FGLS E Rt
£ 30| © U-CRNLP + FLLS Ut
E 25l|* + RNLP o
8 +ot MCS d:
g 2.0 h
£ :
H 1.5]
o
810
:
5
0.5
0.0 » 0
5 10 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
400!
oo U-C-RNLP
3500f 4—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
< 3000
3 & -a U-C-RNLP + FGLS
2
$ 2500}|® ¢ U-C-RNLP + FLLS
g * =+ RNLP
;2000 ++ MCS
2 1500
£
8
@ 1000
500
o
0 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 51 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 32, and D = 4 for each request
Ri.

oo U-C-RNLP
35001 4—a U-C-RNLP + SGLS o+
e—e U-C-RNLP + SLLS *
— 3000
35 & -o U-C-RNLP + FGLS
g
S 2500l © ¢ U-C-RNLP + FLLS
b
2 ».+ RNLP
£ 2000f| +++ MCS
g 1500
8
o -
@ 1000 L
s
500 P o
0 /
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 52 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 32, and D = 6 for each request
Ri.

C.E

40
n- n T E—g n
35
% e
2 - -
2
gm o-a U-C-RNLP A
8 55| &= U-C-RNLP + SGLS o
£ e—e U-C-RNLP + SLLS -
g 20f| & -4 U-C-RNLP + FGLS
H e ¢ U-C-RNLP + FLLS # .
€ 151 4.+ RNLP PSR
g Y e
gl.o wr MES
3 g 22 o
os| 8% e
bbb -
0.0
5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
25
o0 U-C-RNLP o gt
a— U-CRNLP +SGLS| *+, .aiy. 5.0 w8
20fle—e U-C-RNLP + SLLS ror
& -a U-CRNLP + FGLS| T
e ¢ U-C-RNLP + FLLS
L57le.+ RNLP
+o+ MCS P

a4
o

Unlock Overheads (microseconds)

b

0.0
0

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

o8 U-C-RNLP
3500f 4—a U-C-RNLP + SGLS -+
e—e U-C-RNLP + SLLS
- 3000
35 & -4 U-C-RNLP + FGLS
2
S 2500l © ¢ U-C-RNLP + FLLS
M
2 +.+ RNLP
2 2000f| ++ MCS
=
£ 1500]
3
8
@ 1000 /,;ﬁ’
500 e
0 -/
(] 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 53 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n,. = 32, and D = 8 for each request

Ri.

Nemitz, T. Amert, and J. H. Anderson

Lock Overheads (microseconds)

&

o-a U-C-RNLP A
a—4 U-C-RNLP + SGLS S

e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS pa—
¢ U-C-RNLP + FLLS
-+ RNLP

~+ MCS A

+ + 0 b

ereperebrs bbb

bbb e

5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

Unlock Overheads (microseconds)

I
o

-
o

=
o

oo U-C-RNLP
a— U-C-RNLP + SGLS -
e—s U-C-RNLP + SLLS .
& -4 U-C-RNLP + FGLS : T

e U-C-RNLP + FLLS |

<o MCS

—

o
++ RNLP P
. /
o
= TJMA
e
o

o 5 10 15 20 25 30 35 40

Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

3500 e 0-0-0-0-0-c -0 @
3000
2500 /./ /
2000 / oo U-C-RNLP
a—4 U-C-RNLP + SGLS
1500 e—a U-C-RNLP + SLLS
s & - U-C-RNLP + FGLS
1000
/ e e U-C-RNLP + FLLS
00 e +.+ RNLP
o +t MCS
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 54 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 32, and D = 10 for each request

Ri.

25:45

ECRTS 2018

25:46

= - N
=) & S

Lock Overheads (microseconds)

«

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS
4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
++ RNLP

-+ MCS

[

+ + 0

-
0 5 10 15 20 25 30
Number of Tasks

(a) Lock overhead.

40

o-a U-C-RNLP

N
5

e—e U-C-RNLP + SLLS e
& - U-C-RNLP + FGLS
e ¢ U-C-RNLP + FLLS coe "
+:+ RNLP P F

+ot MCS >

-
&

=)

«

Unlock Overheads (microseconds)

A A A
A

a—a U-C-RNLP + SGLS P

]

a- A=A

0 5 10 15 20 25 30
Number of Tasks

(b) Unlock overhead.

20

o

+ *+ 0 >

o

1l

P4 oa B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Blocking (microseconds)
w
g

5 10 15

20

25 30

Number of Tasks

(c) Blocking.

Figure 55 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 1 for each request R;.

20

Using Lock Servers to Scale Real-Time Locking Protocols

= - N
S & S

Lock Overheads (microseconds)

w

oo

—a
e

+ + 0

a
<
-
+

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS .

0 5 10 15 20 25 30 35 40

Number of Tasks

(a) Lock overhead.

oo U-C-RNLP
~ ||+ v-crNLP +sGLS "
£ 20/ e—e U-CRNLP +SLLS et
§ & -o U-C-RNLP + FGLS R
g ||e e U-C-RNLP + FLLS R
E [+~ RNLP S
o
g |[= Mcs e
£10 "
g o
F ;
M .
25
= N A-A-A-b s A
N
o -—¢—0- -0
0 20 25 30 35 40

Number of Tasks

(b) Unlock overhead.

o
o

@
3

0
)

+ + 0 P

[l

P46 B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Blocking (microseconds)

e
aet mE »
e gl A
5 10 1

3 20

L}
25 30 35 40

Number of Tasks

(c) Blocking.

Figure 56 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 2 for each request R;.

C.E

oo U-C-RNLP .
||~ U-CRNLP + SGLS T
8 8[| e—e U-C-RNLP + SLLS P
g ||~ U-CRNLP + FGLS A
% ||e e U-C-RNLP +FLLS H
2 [+ + RNLP A
° +o+ MCS g
8 ;

g ” :
£ 4 P— : PN
3 " vt A A N
S | e" T e
g2
o
e . .
o 5 10 15 20 25 35 20
Number of Tasks
(a) Lock overhead.
1

oo U-C-RNLP Lo
2 101/ U-C-RNLP + SGLS I
B ||*—s U-CRNLP +SLLS ..
2 & -a U-C-RNLP + FGLS g RS
8 8 coc Eo
£ 8|e e U-C-RNLP + FLLS .

S P
E ||+~ RNLP -
& 6+ MCS d:
3 J
g u
2
H o
3 4 i K
¥ c P
5
o
0 +

ey .
0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o-a@ U-C-RNLP =¥
60f| 4 U-C-RNLP + SGLS .
e—e U-C-RNLP + SLLS
& 50f| & -4 U-C-RNLP + FGLS
g
S @ - U-C-RNLP + FLLS
b
& 4of| -+ RNLP
g +o+ MCS
E\ao
220
10
0
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 57 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

~

o

o

U-C-RNLP Fr—n
4— U-C-RNLP + SGLS n

e—e U-C-RNLP + SLLS

& -4 U-C-RNLP + FGLS [L
e ¢ U-C-RNLP + FLLS APt
+.+ RNLP -

++ MCS ; At

T N 2
o " N A-n-&

o

w

IS

w

a

~N

-

Lock Overheads (microseconds)
>

-

-...41"
P S =

40

Number of Tasks

(a) Lock overhead.

3

o
o

U-C-RNLP -
U-C-RNLP + SGLS -
U-C-RNLP + SLLS T

U-C-RNLP + FGLS
U-C-RNLP + FLLS v L
RNLP P

1l

w
+ + 0
oA 6B

w
™
|

Unlock Overheads (microseconds)
~ IS
El
.
>

-
®
"
k

4o
o 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

70
oo U-C-RNLP -~
60}| &—4 U-C-RNLP + SGLS e
e—e U-C-RNLP + SLLS e
Z so{a -4 U-CRNLP + FGLS g
g
& |[|e-e U-CRNLP + FLLS o
g 4
2 40f| -+ RNLP
E et
530
n—°) 20
10
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 58 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 6 for each request R;.

25:47

ECRTS

2018

25:48

Using Lock Servers to Scale Real-Time Locking Protocols

o
o

U-C-RNLP
U-C-RNLP + SGLS "
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP y et
MCs

1l

IS

FEPEEEN
o4 6B

~

Lock Overheads (microseconds)
w

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS n
U-C-RNLP + SLLS n

U-C-RNLP + FGLS "

U-C-RNLP + FLLS " o
RNLP o

Mcs e e

w

1l

IS

+ + 0

46

Unlock Overheads (microseconds)
~ w
>
3

e
0 5 10 15 20

o
25

40
Number of Tasks
(b) Unlock overhead.
0
o-a U-C-RNLP e
60f| #—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 50f|a -4 U-C-RNLP + FGLS
2
S ||e e U-CRNLP + FLLS
& aof|+-+ RNLP
2 ||+ MCs
530
3
E? 20
10
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 59 (a) Lock and (b) unlock over-
heads and (c¢) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 8 for each request R;.

o-a U-C-RNLP

4—a U-C-RNLP + SGLS

e—e U-C-RNLP + SLLS o f-e

& -4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP
"

w

IS

Y

~

Lock Overheads (microseconds)
w

-

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

45 -
55 U-CRNLP ne

- Ol === U-C-RNLP + SGLS S

€ 35||e—e U-CRNLP+SLLS|

g & -4 U-C-RNLP + FGLS

30 e U-C-RNLP +FLLS | _ o

Eosl|++ RNLP . o

8 ||+ Mcs T

§20 ! 2

@ n .

¥ S n

810 PR M

=l ke

05| o-b3 o o 0-0-0-g-g g -0
e MRS

B
RN
all oo

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS "
U-C-RNLP + SLLS i
4 U-C-RNLP + FGLS " e

e U-C-RNLP + FLLS o B :
" i
.

[l

RNLP
MCS

o
3
+ + 0 P

Blocking (microseconds)
N
8

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 60 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 10 for each request
Ri.

C.E

Nemitz, T. Amert, and J. H. Anderson

14]

Lock Overheads (microseconds)

o-a U-C-RNLP

&—4 U-C-RNLP + SGLS

e—e U-C-RNLP + SLLS =

& o U-C-RNLP + FGLS "
@ U-C-RNLP + FLLS o

-+ RNLP

«+ MCS I

+ + 0

-0 —0—-0-c—0—C ©
eyt

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

Unlock Overheads (microseconds)
®

o-a U-C-RNLP
a—4 U-CRNLP + SGLS "
e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS "
e U-C-RNLP + FLLS o

+ RNLP
-+ MCS

+ + 0

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

20

1400

1200

1000

@
3
3

o
3
3

IS
S
3

~
S
3

>

o
o

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

1l

+ + 0
o4 6B

—0-m0-0=—0=-C=C—C O

el
g-g-o-r g A Sr————- e e L

o
STRTET

10 15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 61 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 1 for each request

Ri.

40

25:49

Lock Overheads (microseconds)

oo
oy
e
aa
e
.
+

-

U-C-RNLP
U-C-RNLP + SGLS —E
U-C-RNLP + SLLS E

U-C-RNLP + FGLS o
U-C-RNLP + FLLS
RNLP o

Number of Tasks

(a) Lock overhead.

40

Unlock Overheads (microseconds)
o

oo
oy
e
aa
e
.o
+

-

U-C-RNLP
U-C-RNLP + SGLS o
U-C-RNLP + SLLS o

U-C-RNLP + FGLS o
U-C-RNLP + FLLS
RNLP [

MCs "

crigsaagerebe

e
5 10 15 20 25
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

1600

40

1400

1200

1000

®
S
S

@
2
3

IS
S
3

N
=1
S

113

+ + 0
A6 B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

20

Figure 62 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 2 for each request
Ri.

ECRTS 2018

25:50

Using Lock Servers

1l

w

w

~

Lock Overheads (microseconds)
IS

U-C-RNLP &
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS I
U-C-RNLP + FLLS
RNLP c

MCS g

o
o

+ + 0
46

m S

t
5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

~

40

1l

Unlock Overheads (microseconds)

>

o
o

U-C-RNLP "
U-C-RNLP + SGLS J—
U-C-RNLP + SLLS B
U-C-RNLP + FGLS [=4
U-C-RNLP + FLLS .
RNLP i e
MCs e

+ + 0
46

o

Number of Tasks

(b) Unlock overhead.

20

1400

1200

1000

o
3
3

Blocking (microseconds)
®
2
S

IS
S
3

o
o

U-C-RNLP

a—a U-C-RNLP + SGLS
e—es U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

+ *+ 0 >
P4 oa B

5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 63 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 4 for each request

Ri.

20

~

to Scale Real-Time Locking Protocols

1l

w

~

Lock Overheads (microseconds)

o
o

46

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS "
U-C-RNLP + FLLS
RNLP "
MCS

oft * e ®

*5
>
">

5 10 15 20 25

0 30 35 40
Number of Tasks
(a) Lock overhead.
45 ——
ol[e8 UCRNLP e
5 *[|a—+ U-C-RNLP + SGLS
€ 3.5[[e—e U-C-RNLP +SLLS " .
g & -4 U-CRNLP + FGLS R e
30 © U-C-RNLP + FLLS S e
E2s||* = RNLP F
g ||+ mcs d:
gZ.O PR :
g 15 " e b
< ae P
210 *eex
5 ! o
0.5
00 e +
. 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
1600
oo U-C-RNLP
1400 4—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
< 1200
E & - U-C-RNLP + FGLS
g
S 1000/ © * U-C-RNLP + FLLS
g + % RNLP
g soof[++ MCS
>
5 600
H
@ 400
200
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 64 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 6 for each request

Ri.

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS ™
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS A A

o
o

1l

IS

w
o
o
)
+ + 0
P46

~

Lock Overheads (microseconds)
3
5

-

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

35
o0 U-C-RNLP n mEa

& 3.0[| & U-C-RNLP + SGLS o .
2 ||e— UCRNLP4+sLS| @ -
§25(aa UCRNLP+FGLS| = »
g ||e< UCRNLP+FLLS|
E 20f +# +« RNLP ;
g |[++ MCS e
gas ce " N
o B e T
. T /’é
5 0.5 e,'; o s °

P B Y S -

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1600,
oo U-C-RNLP
1400F| a—a U-C-RNLP + SGLS
 1oool| & U-CRNLP +5LLS
3 & -4 U-C-RNLP + FGLS
S 1000l ® € U-C-RNLP + FLLS
2 *.+ RNLP
E 800} +++ MCS
g 600
3
@ 400
200 e
oL
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 65 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 8 for each request
Ri.

C.E. Nemitz, T. Amert, and J. H. Anderson

45
o-ao U-C-RNLP haEe
_*Ofas ucRNP+SGLS| _ ®
€ 35| e—e U-C-RNLP +SLLS
g & -4 U-C-RNLP + FGLS | © N
§30e e U-C-RNLP + FLLS p b a
£ 25}[* * RNLP A
- 44 MCS &
B 20 »
2
g 1.5
o
<10
k]
0.5
0.

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

3.0

o
o

U-C-RNLP a
U-C-RNLP + SGLS e
U-C-RNLP + SLLS -
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

g N
° n
tDDDII
oA 6B
%

=
o

Unlock Overheads (microseconds)
-
n

o
n

SRR
T —

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1600

o
o

U-C-RNLP

1400F| 4—a U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

!

1200

-
°
3
3

+ + 0
A6 B

Blocking (microseconds)
®
8
8

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 66 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
40us, nr = 64, and D = 10 for each request
Ri.

25:51

ECRTS

2018

25:52

o

12

o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

+ + 0
46

MCS

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

o
o

U-C-RNLP n
U-C-RNLP + SGLS
U-C-RNLP + SLLS "
U-C-RNLP + FGLS Il
U-C-RNLP + FLLS o

RNLP o

MCS e

1l

o
+ + 0
46

Unlock Overheads (microseconds)
®

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o8 U-C-RNLP
3500f| 4— U-C-RNLP + SGLS ot
30001 = U-C-RNLP + SLLS
3 & -a U-C-RNLP + FGLS
2
S 2500l & ©© U-C-RNLP + FLLS
3
a #.+ RNLP
2 2000 +++ MCS
=
£ 1500
£
K
@ 1000
500 -0--0--0-0-c-c-Cc 0o
-g-o -0 :gg‘-[-?:-»iv-n--w--w%".f'-@-‘w
0

10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 67 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 64, and D = 1 for each request
Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

oo U-C-RNLP .
_12}| & U-C-RNLP + SGLS -
g ||e—e U-CRNLP+5LLS e

glo & -a U-C-RNLP + FGLS o

2 ||e e U-CRNLP + FLLS

£ 8f[+ + RNLP s

3 |[r Mcs

g 6 o

2

H

g

o 4

3

3

b
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

o-@ U-C-RNLP £
4— U-C-RNLP + SGLS —
e—e U-C-RNLP + SLLS "

4 U-C-RNLP + FGLS o

e U-C-RNLP + FLLS I

+ RNLP
<+ MCS

=)

®

+ + 0

IS
\.
.,

N
=]
\
*
A
+
*
A
> S
R .
H 3
6

Unlock Overheads (microseconds)
o

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

3500

[l

3000

2500

PP
P46 B

2000

1500

Blocking (microseconds)

1000

500

Number of Tasks

(c) Blocking.

Figure 68 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 64, and D = 2 for each request
Ri.

C.E.

Nemitz, T. Amert, and J. H. Anderson

Lock Overheads (microseconds)

o
o

1l

+ + 0
P46

U-C-RNLP
U-C-RNLP + SGLS R
U-C-RNLP + SLLS .
U-C-RNLP + FGLS E
U-C-RNLP + FLLS | ¢

RNLP
Mcs e -

5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

~

40

1l

w

o
o

U-C-RNLP rr
U-C-RNLP + SGLS -
U-C-RNLP + SLLS m
U-C-RNLP + FGLS E
U-C-RNLP + FLLS F -

~

25:53

~ w IS w o

Lock Overheads (microseconds)

-

o

o

oy
e
aa
e

ey

o

U-C-RNLP
U-C-RNLP + SGLS J—
U-C-RNLP + SLLS noa
U-C-RNLP + FGLS "
U-C-RNLP + FLLS | F

RNLP >

MCS N

& A

B

b
L4
*

Number of Tasks

(a) Lock overhead.

40

IS

RNLP e
MCS e

+ + 0
46

w

~

Unlock Overheads (microseconds)

-

)

20

Number of Tasks

(b) Unlock overhead.

4000

o
o

U-C-RNLP
U-C-RNLP + SGLS -t
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

3500

1l

3000

2500

+ + 0
o4 6B

2000

1500

Blocking (microseconds)

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 69 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 64, and D = 4 for each request
Ri.

45 —
o0 U-C-RNLP T
- 40| = U-C-RNLP + SGLS i
2 35{[e—e U-C-RNLP +5LLS e -
g & -4 U-C-RNLP + FGLS e
§3%e c ucRNP+FLS | K. .ot
E 25|+ * RNLP Dx
§2 +o+ MCS J: a
220 e ;
§
315 i Lt X .
ig’lo - - /’/g_‘/m‘w"
> o
0.5
0.0L e

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o
o

U-C-RNLP
35001 4—a U-C-RNLP + SGLS -
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

!

3000

+ + 0
A6 B

Blocking (microseconds)
hooNoN
z 8 &
g 8 &
g8 8 8

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 70 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, n, = 64, and D = 6 for each request
Ri.

ECRTS 2018

25:54

oo U-C-RNLP poteeE
_ ||#= uvcRNP+saLs| cow
g 4[| e—e U-C-RNLP + SLLS
S ||+ U-C-RNLP +FGLS |.©
& ||e e U-CRNLP + FLLS PN
23|+ = RNLP PR
e o
g |l Mcs L
g St
g Ja
o .
% v -0 (\n/./"‘
R PEUE 3 ——c -0
g8
o
e SR
0 5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
3.5
o8 U-CRNLP R
& 3.0[| &= U-C-RNLP + SGLS e Lo
2 ||e— U-C-RNLP+sLLS . o
§ 2.5 & & U-C-RNLP + FGLS RTURRROT
g |[|e e U-CRNLP +FLLS
E 20+ + RNLP f
4 +t MCS ;
g 15 ™ G
£ e o
é - Py o SN
10 Lo /’/
g 1l

bud
o

o
>

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

Using Lock Servers to Scale Real-Time Locking Protocols

45
oo U-C-RNLP - L n
_ Ol == U-C-RNLP + SGLS S
€ 3.5{|e—e U-C-RNLP + SLLS a
S & -4 U-C-RNLP + FGLS [7
& 3% e e U-C-RNLP + FLLS JUR T
£ 25}/ *+ RNLP s _a-®
%20 v MG 2 :
£ S
2 1.5 A
s ;
E oo 822277 o

R =

-
o

0.5
st s b
0
% 5 10 15 20 25 30 35 20
Number of Tasks
(a) Lock overhead.
3.4
o8 U-CRNLP .

2 25|/ & U-C-RNLP + SGLS B oo o
2 e—e U-CRNLP + SLLS e
g & -a U-C-RNLP + FGLS f -
8 201e ¢ U-CRNLP + FLLS | |
E #.+ RNLP i
& 15H ++ MCS f
3 =3
H R R
g 7 " * A i & N A
o
g
2
5

o
[

0.0
0

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

oo U-C-RNLP
35001 4—a U-C-RNLP + SGLS o
e—e U-C-RNLP + SLLS
< 3000 -
5 & - U-C-RNLP + FGLS
2
§ 2500} @ © U-C-RNLP + FLLS
g #.+ RNLP
; 2000f| +++ MCS
=
£ 1500
£
K
@ 1000
.J".‘.
500 L
0 -/'-
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 71 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 64, and D = 8 for each request
Ri.

oo U-C-RNLP
3500 »—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
- 3000
35 & -o U-C-RNLP + FGLS
2
g 2500} | ® "¢ U-C-RNLP + FLLS "
g * -+ RNLP
2 2000f| +-+ MCS
=
£ 1500
K
@ 1000]
¢’..‘
500 il
0 /
(] 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 72 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, L; =
100us, nr = 64, and D = 10 for each request
Ri.

C.E.

3

®

~

o

w

Lock Overheads (microseconds)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS

Nemitz, T. Amert, and J. H. Anderson

o

25:55

~

o

n
Lo

U-C-RNLP

g
g
$ - oo
g5 * a—a U-C-RNLP + SGLS
£ o e—e U-C-RNLP + SLLS
g4 & -4 U-C-RNLP + FGLS
3 . o ¢ U-C-RNLP + FLLS
53 +.+ RNLP
S +o MCS
32 =
3 o o

1 —

10 20 30 40 50 60 70

Number of Resources
(a) Lock overhead.
9
o
8|
7| =
o-a U-C-RNLP

o

v

&

-|a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& -a U-C-RNLP + FGLS
e -¢ U-C-RNLP + FLLS

&2 U-CRNLP + FGLS
4 o ¢ U-C-RNLP + FLLS
3 ++ RNLP
ot MCS
2 o & g
1]
o
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
10 -
e
w
e 8 eepe
£ T
§ a-a U-CRNLP -
g +—4 U-C-RNLP + SGLS
£ e—e U-C-RNLP + SLLS
2 & -2 U-C-RNLP + FGLS
‘QE) 4 e ¢ U-C-RNLP + FLLS
g ++ RNLP
M ot MCS
g
< 2
s
= ===
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
2
a U-CRNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

17

-
&

Blocking (microseconds)
m s

/
/.

+ + 0
46

10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 73 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 1 for each request R;.

Unlock Overheads (microseconds)

R g + 4 RNLP
4o MCS

2

1 e o e]

10 20 30 20 50 60 70

Number of Resources

(b) Unlock overhead.

o-a U-C-RNLP

-| &= U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& -a U-C-RNLP + FGLS
e -¢ U-C-RNLP + FLLS
#-+ RNLP

+o+ MCS

Blocking (microseconds)
-
]

10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 74 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 2 for each request R;.

ECRTS

2018

25:56

Lock Overheads (microseconds)

N

w

~

o

o

1l

+ + 0

+ + a6 B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Using Lock Servers to Scale Real-Time Locking Protocols

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

4.0
oo U-C-RNLP n
35 a—4 U-CRNLP + SGLS
2.0 e—e U-C-RNLP + SLLS
g o & - U-C-RNLP + FGLS
g 2s o e U-C-RNLP + FLLS
£ * =+ RNLP
220 +ot MCS
8 L.
g Lt
£ 1.5 e
g S Q
%10 S
8 ‘;>-<§—/—'
0.5
0.0
10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

w

IS
El
o

°

~

s113

+ 6

*

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)
w
El
S

-

10 20 30 40 50

Number of Resources

(b) Unlock overhead.

N
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Blocking (microseconds)
~
S

-
&

10

10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

45
o8 U-C-RNLP

40 s U-C-RNLP + SGLS
E3s e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g 30 e e e U-C-RNLP + FLLS
Es +.+ RNLP
2 o +ot MCS
E 2.0 T
g
315
2 s
810 *
5 — 2

05 g---- -

0.0

10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
85
o8 U-C-RNLP

50 a— U-C-RNLP + SGLS

45 e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
2
g 40 e e U-C-RNLP + FLLS
%35 *:+ RNLP
o n ot MCS
= 30 a
g
g 25 5\ -
o *
2| e TR s .

~N
5
>/ |

10

|

10 20 30 40 50

Number of Resources

(c) Blocking.

Figure 75 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 4 for each request R;.

Figure 76 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 6 for each request R;.

C.E

3.5
o8 U-C-RNLP
30 . a—a U-C-RNLP + SGLS
H e e—e U-C-RNLP + SLLS
g 25 & -4 U-C-RNLP + FGLS
3 ¢ e U-C-RNLP + FLLS
£ 20 *.+ RNLP
“ +ot MCS
2
3 1.5
£
§
310 a Piriritanates E
§ ° v e
k] &
0.5
0.0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
3.5
o-a U-C-RNLP
5 3.0 a—4 U-C-RNLP + SGLS
2 e—e U-C-RNLP + SLLS
g 25 - & -4 U-C-RNLP + FGLS
g ¢ e U-C-RNLP + FLLS
E20 " * =+ RNLP
4 +ot MCS
3
2 15 N
- U
210 e
g -
S5 P o 3
ettt el
0.0
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
0
o-a U-C-RNLP
55 a—a U-C-RNLP + SGLS
50 e—e U-C-RNLP + SLLS
3 a & -a U-C-RNLP + FGLS
g
i ¢ e U-C-RNLP + FLLS
%40 *+ RNLP
g i
E 35
°
< 30
2
3
25
20
15
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 77 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 8 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

35
o-a U-C-RNLP
3.0 a—4 U-C-RNLP + SGLS
o - e—e U-C-RNLP + SLLS
25 & -a U-C-RNLP + FGLS
@ -¢ U-C-RNLP + FLLS
2.0 #:+ RNLP
+o+ MCS

-
o

=
)
5o

Lock Overheads (microseconds)

o
]

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

o-a U-C-RNLP

4— U-C-RNLP + SGLS

e—e U-C-RNLP + SLLS
U-C-RNLP + FGLS

N
n

v
2
g
5
g A a
3 n
g 20 e U-C-RNLP + FLLS
E ++ RNLP
815 4o MCS
3
g
2 e
s
310 e
Sos L s :
—
0.4
10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

oo U-C-RNLP
53] a— U-C-RNLP + SGLS
50, a e—s U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
2
545 e ¢ U-C-RNLP + FLLS
%40 *:+ RNLP
3 +o MCS
E35 -
g
$ 30
-
2

~
&

20

15
10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 78 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 10 for each request
Ri.

25:57

ECRTS 2018

Using Lock Servers to Scale Real-Time Locking Protocols

~

~

= o8 U-CRNLP
6 a—a U-C-RNLP + SGLS
- B e—e U-C-RNLP + SLLS
$s & - U-C-RNLP + FGLS
3 e e U-C-RNLP + FLLS
24 #:+ RNLP
% +o+ MCS
4
3
g
g
S2
¥ [s 8
k] —
1
0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
w5 n
3
§
g - o8 U-CRNLP
g4 ° a—a U-C-RNLP + SGLS
€ e—a U-C-RNLP + SLLS
83 & -2 U-C-RNLP + FGLS
£ e ¢ U-C-RNLP + FLLS
g, + =+ RNLP
le]
S __'_ +ot MCS
g * : —
51 ———F — 8
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
700
o8 U-CRNLP
600 a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
g s00 & o U-C-RNLP + FGLS
S
S @ - U-C-RNLP + FLLS
2 a00 *.+ RNLP
£ +o+ MCS
%’ 200 -
100
o
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 79 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 1 for each request
Ri.

o8 U-C-RNLP
6 a— U-C-RNLP + SGLS
E e—e U-C-RNLP + SLLS
$s " & -4 U-C-RNLP + FGLS
3 e e U-C-RNLP + FLLS
£4 e + .+ RNLP
2 ++ MCS
33
g
g
g
S2 -
x .
i 3 :
1 — -
o
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
a5
o8 U-CRNLP
40 s U-C-RNLP + SGLS
E3s e e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g30 o ¢ U-C-RNLP + FLLS
Easl 7 ++ RNLP
4 ++ MCS
E 2.0 P
g 15 >
3
g 1.0 - =
5 e
0.5
0.0
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
7
o8 U-C-RNLP
600 a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
S 500
S @ - U-C-RNLP + FLLS
2 +-+ RNLP
EAOD 4+ MCS
B
% 300
E-
z
200 .
______________ .
100
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 80 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 2 for each request
Ri.

C.E

Nemitz, T. Amert,

and J. H. Anderson

4.0
o-a U-C-RNLP
35 . a—4 U-C-RNLP + SGLS
10 n e—e U-C-RNLP + SLLS
: & -a U-C-RNLP + FGLS
25 o ¢ U-C-RNLP + FLLS
#:-+ RNLP
2.0 +o+ MCS

Lock Overheads (microseconds)

1.0
0.5
0.4
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
25
o-a U-C-RNLP

!

-
o
Y
+ + 0P
Por 6B

4— U-C-RNLP + SGLS

U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

a5
oo U-C-RNLP
40 a—4 U-C-RNLP + SGLS
€35 & e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g 3.0 o @ -e U-C-RNLP + FLLS
£ 25 #.+ RNLP
s +o+ MCS
E’ 2.0 -k
sl e
6 1.5] - %
< 10 [& ——
3 —
0.5
0.0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
3.0
oo U-C-RNLP
525 a—a U-C-RNLP + SGLS
K e—e U-CRNLP + SLLS
§ r & A U-C-RNLP + FGLS
g20 e @ U-C-RNLP + FLLS
£ +:+ RNLP
ﬁ 1.5 m awe +o+ MCS
£ -
5
310
g
= &
Sos
0.0
10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

700

Blocking (microseconds)
"
3
S

70
Number of Resources

(c) Blocking.

Figure 81 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 4 for each request
Ri.

=
o

°
@
3
@

Unlock Overheads (microseconds)
*

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

1400

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

200 \\“\\

10 20 30 40 50 60 70
Number of Resources

o
o

1200

1l

1000

+ + 0
Poh 6B

Blocking (microseconds)
P ®
3 8
8 8
/
/

(c) Blocking.

Figure 82 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 6 for each request
Ri.

25:59

ECRTS 2018

25:60

3.5
. - oo U-C-RNLP
30 a—a U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
g 25 & - U-C-RNLP + FGLS
g ¢ e U-C-RNLP + FLLS
220 * =+ RNLP
w +ot MCS
2
815
£
N %
g 1.0 2 FIIT A
3 = —
05 — -
i
0.0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
18
oo U-C-RNLP
16 a—a U-C-RNLP + SGLS
14 e—e U-C-RNLP + SLLS
) .| & - U-C-RNLP + FGLS
12 R @ ¢ U-C-RNLP + FLLS
10 * .+ RNLP
+ot MCS

o
®

o o
s o

oos

o

Unlock Overheads (microseconds)

o
N

o
>

20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

1
1)

140
oo U-C-RNLP
1200 a—4 U-CRNLP + SGLS
e—e U-C-RNLP + SLLS
) & -a U-C-RNLP + FGLS
£ 1000|
s e ¢ U-C-RNLP + FLLS
2 * 4 RNLP
2 800 +ot MCS
< - —
< . SN
§ 600 ‘~_°_~~
s | T
400 T— -
00
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 83 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 8 for each request
Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

35
oo U-C-RNLP

NI c a—4 U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
§ 25 & -4 U-C-RNLP + FGLS
2 ¢ ¢ U-C-RNLP + FLLS
Za0 +.% RNLP
3 +ot MCS
S 15
g

1.0 4
H goozzz=c=cf e eagacni .
3 -

0.5 —_

*
0.0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
14
oo U-C-RNLP

512 s U-C-RNLP + SGLS
g &|e—e UCRNLP +5LLS
g 1.0 L & & U-C-RNLP + FGLS
4 o ¢ ¢ U-C-RNLP + FLLS
Eos e %+ RNLP
K +ot MCS
H .
So06 o N 5
S o4
E
<
202

0.0

10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

1400
oo U-C-RNLP
a— U-C-RNLP + SGLS
1200 e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
s e e U-C-RNLP + FLLS
§ 1009 + % RNLP
H +ot MCS
2 800
@ —
600 T
T
400
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 84 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 10 for each request
Ri.

C.E.

~

U-C-RNLP
U-C-RNLP + SGLS
e U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

111

Iy

w
+ + 0
46

Lock Overheads (microseconds)
~
5

-

o

i
1)
N
S
w
3

40 50 60 70
Number of Resources

(a) Lock overhead.

w
o

o o-a U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS

1l

w
S
3

Unlock Overheads (microseconds)

e ¢ U-C-RNLP + FLLS
, +.+ RNLP
.. . |+ Mes
e
1 o §of =3
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
1800
- @ U-C-RNLP
1600 s U-C-RNLP + SGLS
1400) e—e U-C-RNLP + SLLS
) & -a U-C-RNLP + FGLS
£ 1200
S @ - U-C-RNLP + FLLS
g
$ 1000 # + RNLP
g ot MCS
= 800
2
% 600 \
o
5
400 [T
T e
200 g
o
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 85 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

~

o o U-C-RNLP
6 a4 U-C-RNLP + SGLS
3 e—e U-C-RNLP + SLLS
gs c & -4 U-C-RNLP + FGLS
2 o ¢ U-C-RNLP + FLLS
24 ® + RNLP
3 4ot MCS
g3
H]

g
o2 Lk *
¥ . 2
k) 2 g —2

1 —

10 20 30 40 50 60 70

Number of Resources
(a) Lock overhead.
45
o o U-C-RNLP

40 a—4 U-C-RNLP + SGLS
35 c e—e U-C-RNLP + SLLS

& -4 U-C-RNLP + FGLS
@ e U-C-RNLP + FLLS
ey
o

w
°

RNLP

~
n
El

~
o
.

B

-
n

Unlock Overheads (microseconds)

i

o
o

o

30 40 50 60 70
Number of Resources

(b) Unlock overhead.

._.
)
N
S

1800
FR— - oo U-C-RNLP
1600 4— U-C-RNLP + SGLS
1400 e—e U-C-RNLP + SLLS
o & -4 U-C-RNLP + FGLS
§ 1200 e e U-C-RNLP + FLLS
$ + % RNLP
glooo +o+ MCS
£ 800
E
@ 600F B e
N
400p e
---- -a
20
10 20 30 20 50 60 70

Number of Resources

(c) Blocking.

Figure 86 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and ID = 2 for each request
Ri.

25:61

ECRTS 2018

s
oo U-C-RNLP
_ +— U-C-RNLP + SGLS
g4 e—e U-C-RNLP + SLLS
g € & -4 U-C-RNLP + FGLS
g e ¢ U-C-RNLP + FLLS
g3 " ».+ RNLP
3z #ot MCS
®
bR .
g -
S s 2
31 gz ——
—
0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
35
5o U-C-RNLP

& 3.0t 4= U-C-RNLP + SGLS °
2 || U-C-RNLP +5LLS
§ 2.5 & -4 U-C-RNLP + FGLS
g ||e - ucRNLP+FLLS
E 20+ + RNLP .
8 ||+ Mcs
H
215 o
2 .
£ 10
3 h—g/—‘
Sos 2/‘//4

o
>

20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

1
1)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

1800

1l

1600] ..

+ + 0 »
P4 oa B

Blocking (microseconds)
PR

x 5 & =

g 8 8 3

8 8 8 8

o
3
3

s
3

20 30 40 50 60 70
Number of Resources

1
1)

(c) Blocking.

Figure 87 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 4 for each request
Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

4.0 5
@@ U-C-RNLP

_ 35 - &—4 U-C-RNLP + SGLS
§ 10 " e—e U-C-RNLP + SLLS
§ . & -4 U-C-RNLP + FGLS
8,5 o ¢ U-C-RNLP + FLLS
g #:+ RNLP
20 +o+ MCS
8
5
£ 15 *
g
o
%10
s

05

0.0

10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

o
o

U-C-RNLP
a—a U-C-RNLP + SGLS

20 e—s U-CRNLP + SLLS
& A U-C-RNLP + FGLS
e U-C-RNLP + FLLS
3 i |+ RNLP
e +ot MCS

-
o

|

Unlock Overheads (microseconds)
L]

“10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

oo U-C-RNLP
3000 &—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
£ 2500
§ ¢ ¢ U-C-RNLP + FLLS
i + % RNLP
£ 2000 +o+ MCS
g R '
¥ 1500] D \
8 N ST
2 ~
1000) N
-------- a
5
10 20 30 20 50 60 70

Number of Resources

(c) Blocking.

Figure 88 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 6 for each request
Ri.

C.E

40
oo U-C-RNLP
35 a—4 U-CRNLP + SGLS
2., o e e—e U-C-RNLP + SLLS
g . & o U-C-RNLP + FGLS
8,5 e ¢ U-C-RNLP + FLLS
£ *:+ RNLP
720 +o+ MCS
2
5
€ 1.5
H
-:3
108 0000 @ =======I38=I3f
g o : .
0.5 .
0.0 *
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
1.8
oo U-C-RNLP
16 a—a U-C-RNLP + SGLS
14 e—e U-CRNLP + SLLS
e U-C-RNLP + FGLS
12 e e ¢ U-C-RNLP + FLLS
1.0 +.+ RNLP
++ MCS
0.8 ———
B

Unlock Overheads (microseconds)

0.6 o
:/_f//'
0.4

)

Number of Resources

(b) Unlock overhead.

“10 20 30 40 50 60 70

3500
oo U-C-RNLP
3000 42— U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
35 & -4 U-C-RNLP + FGLS
5 2500
s e e U-C-RNLP + FLLS
b +.+ RNLP
£ 2000 +o+ MCS
2 = e
< 1500 T —
o e
@ T
e
~a
500,
10 20 30 20 50 60 70

Number of Resources

(c) Blocking.

Nemitz, T. Amert, and J. H. Anderson

35
. o8 U-C-RNLP

30 B a— U-C-RNLP + SGLS
8 e—e U-C-RNLP + SLLS
$ 25 & -a U-C-RNLP + FGLS
g e e U-C-RNLP + FLLS
220 +.+ RNLP
2 ++ MCS
g 15
2
2
S 10 - 3
<
g 2 & e 3
- 0.5]

0. *

10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
14
o8 U-C-RNLP

512 a—a U-C-RNLP + SGLS
2 " _...---7|®—e U-C-RNLP +SLLS
§ 1.0 L o & -a U-C-RNLP + FGLS
g / @ ¢ U-C-RNLP + FLLS
Eosf a— ot s RNLP
8 . ++ MCS
206 a (3
Coa
B
<
202

0.

10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

50
oo U-C-RNLP
a— U-C-RNLP + SGLS
3000 e—s U-C-RNLP + SLLS
2 & -4 U-C-RNLP + FGLS
s e e U-C-RNLP + FLLS
§ 2500 .+ RNLP
H +o MCS .
22000
g
@ .
1500, TT—
B ~a
1000
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 89 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 8 for each request

Figure 90 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 10 for each request

Ri.

Ri.

25:63

ECRTS 2018

Using Lock Servers to Scale Real-Time Locking Protocols

N
S
.

o

o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS

Lock Overheads (microseconds)

n & -2 U-C-RNLP + FGLS
10| e - U-C-RNLP + FLLS
+ + RNLP
ot MCS
5 » A
.
N
—
.
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
5
e
.
20 -
oo U-C-RNLP

-
&

S

=)

ci 1l

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

N
S

o
o

1l

U-C-RNLP
U-C-RNLP + SGLS

U-C-RNLP + SLLS
U-C-RNLP + FGLS

U-C-RNLP + FLLS e
RNLP e o
MCS

-
&

+ + 0
46

=
S

Lock Overheads (microseconds)

w
&

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

+ 0
+

RNLP
MCS

Unlock Overheads (microseconds)

«
>

&
————
o
10 20

30 40 50 60 70
Number of Resources

(b) Unlock overhead.

10
N 5o U-C-RNLP
a a4 U-C-RNLP + SGLS
80 e—e U-C-RNLP + SLLS
) A U-C-RNLP + FGLS
]
5 e U-C-RNLP + FLLS
g e + RNLP
g -+ MCS
° 40
= w
8
3
* 6\%
o
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 91 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 1 for each request R;.

) -
€20 e
¢ 55 U-CRNLP
4 a4 U-C-RNLP + SGLS
€1 - e—a U-C-RNLP + SLLS
E : & - U-C-RNLP + FGLS
£ 10 e -e U-C-RNLP + FLLS
g H +-+ RNLP
S et MCS
g
< 5
> A
el
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
20
= =
70| 2
_ .
2 60 o8 U-C-RNLP o
2
s a—4 U-C-RNLP + SGLS
- .
£ 50 e—a U-C-RNLP + SLLS
o & -a U-C-RNLP + FGLS
=40 e - U-C-RNLP + FLLS
-] «.+ RNLP
% 30 et
20
10
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 92 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 2 for each request R;.

C.E

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

o

IS
+ + 0
46

Lock Overheads (microseconds)

N

Number of Resources

(a) Lock overhead.

5 8 U-CRNLP a
& 10l| & U-CRNLP + sGLS
2 [|e—e u-c-RNLP + LS
é & - U-C-RNLP + FGLS L
g 8fle e U-CRNLP +FLLS
E ||+~ RNLP
4 6+t MCS
2
£
£ n
S 4
¥ *
o
52 & A N
—
— 8
o
10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

o n

o
3

.|B-@ U-C-RNLP
a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS

w
3

a U-C-RNLP + FGLS
¢ U-C-RNLP + FLLS
-+ RNLP
+ MCS

w
S

Blocking (microseconds)
N
&

/l

10
10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 93 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

~

o
o

U-C-RNLP n
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS -
U-C-RNLP + FLLS o

RNLP L
MCS e A

1l

IS

+ + 0
N

w
‘o

~N

Lock Overheads (microseconds)

-

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

3

o-a U-C-RNLP .

& '[| & U-C-RNLP + SGLS
£ ||e—e U-CRNLP +sLLS
§ 4 -a U-C-RNLP + FGLS N
£ sl|e e U-C-RNLP + FLLS
E ||+~ RNLP
g 4| +-+ MCS
g
£ [.
33
g
S . .
3 2 * &
E x
5

1

——
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
8
o-a U-C-RNLP

4— U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

70

!

+ + 0
Poh 6B

Blocking (microseconds)
"
g

\A

10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 94 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 6 for each request R;.

25:65

ECRTS

2018

25:66

Using Lock Servers to Scale Real-Time Locking Protocols

- o8 U-C-RNLP
8 a—4 U-C-RNLP + SGLS
§ 7 e—e U-C-RNLP + SLLS
S & -4 U-C-RNLP + FGLS
g6 ¢ e U-C-RNLP + FLLS
£s *:+ RNLP
E & 4ot MCS
g 4
g3 o
<] ammmm T T
S .
PRI B
1 ———————— —
o
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
5@ U-C-RNLP .
& 5| & U-C-RNLP + SGLS
2 ||e—e U-C-RNLP + SLLS
§ ||s & u-cRNLP + FGLS
€4 e e U-C-RNLP + FLLS "
E ||*+ RNLP -
4 3f| +4 MCS
3
g
£ -
g2 S
3 * P
°
51 A
oo Y
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
120
a
5@ U-C-RNLP
110 4 U-C-RNLP + SGLS
100 e—e U-C-RNLP + SLLS
3 & -4 U-C-RNLP + FGLS
g
g %0 e e U-C-RNLP + FLLS
g w0 #+ RNLP
g +ot MCS
E’ 70
< 60
°
3
50
40
0
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 95 (a) Lock and (b) unlock over-
heads and (c¢) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 8 for each request R;.

oo U-C-RNLP
1 a a— U-C-RNLP + SGLS
K e—e U-C-RNLP + SLLS
$ 10 & -4 U-C-RNLP + FGLS
3 o ¢ U-C-RNLP + FLLS
£ ® *-+ RNLP
I +ot MCS
Z 6
2
§ o
- .

g A
~ & PP *
ey oo
o= 0
o
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
oo U-C-RNLP
=5 a a— U-C-RNLP + SGLS
2 e—s U-C-RNLP + SLLS
3 & -a U-C-RNLP + FGLS
g4 ¢ - U-C-RNLP + FLLS
E ++ RNLP
43 " +ot MCS
2
g
32 .-
51
e g
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
180,
L oo U-C-RNLP
160 4—a U-C-RNLP + SGLS
140 e—e U-C-RNLP + SLLS
& o U-C-RNLP + FGLS
120! e ¢ U-C-RNLP + FLLS
+ =+ RNLP
+ot MCS

@
3

Blocking (microseconds)
-
2
8

@
3

&
S

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure

paradigm

Ri.

96 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 10 for each request

C.E

o
o

U-C-RNLP
14 c a—a U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

!

o
+ + 0
46

Lock Overheads (microseconds)
®

Number of Resources

(a) Lock overhead.

- o0 U-C-RNLP
512 a—4 U-CRNLP + SGLS
ki e—e U-CRNLP + SLLS
3 10 " & - U-C-RNLP + FGLS
g e ¢ U-C-RNLP + FLLS
E 8 *:+ RNLP
4 +o+ MCS
2 6
3 o
-
<4
3 *
= —
22 ———————
o)
o .
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
1400,
1200
3 1000 oo U-C-RNLP
2
g a—4 U-CRNLP + SGLS
£ s00 e—a U-C-RNLP + SLLS
2 & -4 U-C-RNLP + FGLS
o 600 e -e U-C-RNLP + FLLS
- +.+ RNLP
2 400 o +ot MCS
200
o
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 97 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

@@ U-C-RNLP
12 a— U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
g 10 & o U-C-RNLP + FGLS
g 8 e U-C-RNLP + FLLS
2 8 +.+ RNLP
2 o ++ MCS
§ s
g -
S| e
S a4l LT S
% r » A
S /‘

2

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

®

%
+ + 0P
Por 6B

IS

Unlock Overheads (microseconds)
o

\

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

1400

oo U-C-RNLP
1200 a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 1000 & -o U-C-RNLP + FGLS
2
s @ e U-C-RNLP + FLLS
2 800, * -+ RNLP
o +ot MCS
é 600
% 400
200
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 98 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 2 for each request
Ri.

25:67

ECRTS 2018

25:68

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

w
+ + 0
46

w
>

~
*

Lock Overheads (microseconds)
IS
L}

-

)

Number of Resources

(a) Lock overhead.

~

o

w
o
o

sl

w

oo

3

-

~

o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)

\

>

10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
140
o U-C-RNLP
1200k 4 U-C-RNLP + SGLS

1l

1000

+ *+ 0 »

lisas

U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

o
3
3

Blocking (microseconds)
®
2
S

400

00

MCS

10 20 30 40 50
Number of Resources

(c) Blocking.

Figure 99 (a) Lock and (b) unlock over-
heads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-

RNLP without any lock serve

ers. Here, m =

34, L; = 40us, and D = 4 for each request

Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

~

o
o
o

w

Iy

&

" e
*
o

P46

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS

U-C-RNLP

U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

w

~

Lock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
4.5
55 U-CRNLP
40 +— U-C-RNLP + SGLS
E3s e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g 30 = @ e U-C-RNLP + FLLS
Eas - *:+ RNLP
8 wot MCS
g 20 &
2
2
313 .
810 3 B
E oo
0.5
0.0
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
1400,
+ [a-a U-CRNLP
4 U-CRNLP + SGLS
-

1200 i e—e U-C-RNLP + SLLS
z & - U-C-RNLP + FGLS
g
S @ -¢ U-C-RNLP + FLLS
§ 1009 . + % RNLP
o #ot MCS
E“ 800
8
a

600
200
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 100 (a) Lock a

Ri.

nd (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 6 for each request

C.E.

Nemitz, T. Amert, and J. H. Anderson

~ w IS

Lock Overheads (microseconds)
>

-

o
o

1l

+ + 0
P46

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

25:69

45
oo U-C-RNLP
40 a—a U-C-RNLP + SGLS
- e—e U-C-RNLP + SLLS

B

B
2
§ & o U-C-RNLP + FGLS
g 39 @ -e U-C-RNLP + FLLS
£ 25 N #.+ RNLP
s & +o+ MCS
7 2.0,
3
£ .
g 15
o
= —
g1o o—-""_;—_- —-—

0.5 L

0.

10 20 30 20 50 60 70

Number of Resources

(a) Lock overhead.

3.0

N
n

N
°

o
o

_‘
+ + 0
Por 6B

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
3.5
o @ U-CRNLP
30 +—4 U-C-RNLP + SGLS
£ e—e U-C-RNLP + SLLS
§ 2.5 & -4 U-C-RNLP + FGLS
¢ 2 @ U-C-RNLP + FLLS
E20 *+ RNLP
8 ot MCS
] .
215
2
2

< 19 /
E
<
Sos M

0.0

i
1)

20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

1500
o oo U-C-RNLP
1400 U-C-RNLP + SGLS
1300 U-C-RNLP + SLLS
g U-C-RNLP + FGLS
£ 1200
s U-C-RNLP + FLLS
g
% 1100 RNLP
s mcs
£ 1000
2
% 900
o
5
800
700
00

1
1)

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 101 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 8 for each request
Ri.

-
o
)\
>

Unlock Overheads (microseconds)
-
n

o
n
\o

“10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

1500

1400

1300, R

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS N
U-C-RNLP + FGLS N\
U-C-RNLP + FLLS N
RNLP N
MCS

Blocking (microseconds)
[P
o B8 2 R
g 8 35 8
8 8 8 8
I I I
o

+ % 0 b

ioh o6 B

700
10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 102 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 10 for each request
Ri.

ECRTS 2018

25:70

-
o

o0 U-C-RNLP
1 " a—a U-C-RNLP + SGLS
M e—e U-C-RNLP + SLLS
$ & & U-C-RNLP + FGLS
21 ° e ¢ U-C-RNLP + FLLS
£ #:+ RNLP
o 8 4ot MCS
4
g
£ 6
s
L =X
N P — 3
e
S
2
—_ B —]
0 .
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
16
o0 U-C-RNLP
P a—a U-C-RNLP + SGLS
2 ™ a e—e U-C-RNLP + SLLS
§ & & U-C-RNLP + FGLS
€10 e ¢ U-C-RNLP + FLLS
S o
E +:+ RNLP
48 +o+ MCS
2
£
T 6
3
é al e - .-
= >
5
2 A———
e 0
0
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
3500
3000
3 2500 o-a@ U-C-RNLP
2
8 a—4 U-CRNLP + SGLS
2000 e—e U-C-RNLP + SLLS
: & -4 U-CRNLP + FGLS
' 1500] e -e U-C-RNLP + FLLS
H +.+ RNLP
g 1000 .
500
0
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 103 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 1 for each request
Ri.

Using Lock Servers to Scale Real-Time Locking Protocols

o
o

U-C-RNLP
a—a U-C-RNLP + SGLS

-
N

g e—s U-CRNLP + SLLS
$ 10 & -a U-C-RNLP + FGLS
8 8 e - U-C-RNLP + FLLS
28 +:+ RNLP
3 o +ot MCS
g6
£ *
g 4 B
H ol » &
3 b—.—///‘

2

— T
o
10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

U-C-RNLP o
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

1l

®
+ + 0
46

IS

Unlock Overheads (microseconds)
o

|

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

3000
3 2500 DHD -CANLP
2
: U-C-RNLP + SGLS
2
2 2000 e—e U-C-RNLP + SLLS
: & - U-C-RNLP + FGLS
Sisoof e ¢ ¢ UCRNPHRLS
: . +.+ RNLP
% o 4ot MCS
_______ =
-3
S)
o
L < % 20 50 60 70

Number of Resources

(c) Blocking.

Figure 104 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 2 for each request
Ri.

C.E.

3

~

o

o

U-C-RNLP
U-C-RNLP + SGLS

1l

o

a
e
-

n
+ + 0

IS

U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

et MCS

w

~

Lock Overheads (microseconds)

-

Number of Resources

(a) Lock overhead.

~

60 70

o

w

IS

Unlock Overheads (microseconds)
+

o
o

sl

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS

Nemitz, T. Amert, and J. H. Anderson

25:71

w

o
o

1l

&

+ + 0
Por 6

w

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

3t ¢ ¢ U-C-RNLP + FLLS
B ++ RNLP
2 it MCS
- S—— 3
0
10 20 30 0 50 60 70
Number of Resources
(b) Unlock overhead.
3500
- o U-C-RNLP
s000f +— U-C-RNLP + SGLS
E e—s U-C-RNLP + SLLS
] & -4 U-C-RNLP + FGLS
S
§ 2500 ¢ e U-C-RNLP + FLLS
-
g 2000 L
= =
< 1500
3
a
1000
500
10 20 30 0 50 60 70

Number of Resources

(c) Blocking.

Figure 105 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 4 for each request
Ri.

~N

Lock Overheads (microseconds)

-

70

70

10 20 30 40 50 60
Number of Resources
(a) Lock overhead.
45
58 U-CRNLP
40 a— U-C-RNLP + SGLS
£ 35 e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
§39 c & ¢ U-CRNLP + FLLS
Ess e +.+ RNLP
E y o+ MCS
§ 2.0 @
2
2
315 /2/
E 1.0 &
5 S
0.5, Qs
0.
10 20 30 40 50 60
Number of Resources
(b) Unlock overhead.
s0
58 U-CRNLP
. U-CRNLP + SGLS
3000 e—e U-C-RNLP +SLLS
B & -2 U-CRNLP + FGLS
g
S @ -¢ U-C-RNLP + FLLS
§ 200 +.+ RNLP
g o+ MCS
é 2000
F ~—
a ~
1500 - ~o
—~
1000
10 20 30 40 50 60

Number of Resources

(c) Blocking.

70

Figure 106 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 6 for each request

Ri.

ECRTS 2018

25:72

Using Lock Servers to Scale Real-Time Locking Protocols

oo U-C-RNLP
a—4 U-C-RNLP + SGLS
4 e—e U-C-RNLP + SLLS
& - U-C-RNLP + FGLS
e e e U-C-RNLP + FLLS A
3 +.+ RNLP
+o+ MCS .

~

|

Lock Overheads (microseconds)

—
3
.
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
3.5
oo U-C-RNLP
3.0 &—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
2.5 & & U-C-RNLP + FGLS
- e e U-C-RNLP + FLLS
2.0 #: =+ RNLP
+o+ MCS

-
i

o

Unlock Overheads (microseconds)

bud
o

r//
PEEEREREES

a5
o-a U-C-RNLP

40 a—4 U-C-RNLP + SGLS
€35 v e—e U-C-RNLP + SLLS
g " & -4 U-C-RNLP + FGLS
g 30 o ¢ U-C-RNLP + FLLS
=2
£25 . + =+ RNLP
" A +ot MCS
B 20
2 -
2 1.5
o
<10
3

0.5

0.0

10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
3.4
o8 U-C-RNLP

s e—e U-CRNLP + SLLS
& -o U-C-RNLP + FGLS
20 ~ ¢ - U-C-RNLP + FLLS
+ =+ RNLP
* +o4 MCS

a—a U-C-RNLP + SGLS

,..
o
)\

Unlock Overheads (microseconds)
-
n

&
05 g- - - -
0.0
10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

0
o 10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
400
o8 U-C-RNLP
a—a U-C-RNLP + SGLS
3500 ° e—e U-C-RNLP + SLLS
3 ‘| & -a U-C-RNLP + FGLS
2
8 “|e - U-C-RNLP + FLLS
%3000 S v s RNLP
£ +o+ MCS
@ 2500
=
3
3
2000
o
150 =0l
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 107 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 8 for each request
Ri.

° a
3400
3200 x
3
K
5 3000
3
S 2800
; oo U-C-RNLP
< 26001 4—a U-C-RNLP + SGLS
2
£ Ja00|| == U-C-RNLP + SLLS
2 & -4 U-C-RNLP + FGLS
2200f| ¢ ¢ U-C-RNLP + FLLS
2000 *:+ RNLP
+o+ MCS
1800
20 30 20 50 60 70

Number of Resources

(c) Blocking.

Figure 108 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 10 for each request
Ri.

C.E.

Nemitz, T. Amert, and J. H. Anderson

e
HR
2 b o
56
g " - o0 U-C-RNLP
g s—a U-C-RNLP + SGLS
B e—e U-C-RNLP + SLLS
g4 & -4 U-C-RNLP + FGLS
8 ¢ -¢ U-C-RNLP + FLLS
53 ++ RNLP
S +t MCS
X2
o § @ @ 5
1
o t
0 20 40 60 80 100
CS Length
(a) Lock overhead.
s
R o0 U-C-RNLP
57 s—a U-C-RNLP + SGLS
- e—e U-C-RNLP + SLLS
2 & -4 U-C-RNLP + FGLS
g e e U-C-RNLP + FLLS
E *+ RNLP
K & n +t MCS
£
g3 B
© .
s - S . .
1 ——— romm vor &
0 20 40 60 80 100
CS Length

(b) Unlock overhead.

Blocking (microseconds)

1800
oo U-C-RNLP

1600 4—s U-C-RNLP + SGLS

1400}| e—e U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS

12001 ¢ .6 U-C-RNLP + FLLS

1000l * * RNLP
+oot MCS

800

600

400 B

.——".__
200 -

S Length

(c) Blocking.

Figure 109 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 1 for each request R;.

o
I a oo U-C-RNLP
4.0 -
- a4 U-C-RNLP + SGLS
€35 e—e U-C-RNLP + SLLS
S & -4 U-C-RNLP + FGLS
g3 o U-C-RNLP + FLLS
€25 +.+ RNLP
s +o+ MCS
B 20
S15 . ™ * *
SR g 2 2 %
10—
k:
0.5
0.
0 20 40 60 80 100
CS Length
(a) Lock overhead.
6
o-a U-C-RNLP
258 a—4 U-C-RNLP + SGLS
-]
2 e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g o U-C-RNLP + FLLS
E | +.+ RNLP
23} 4ot MCS
H " n -
§
32
3 . e W DU
3
51
.
0 20 40 60 80 100
CS Length

(b) Unlock overhead.

1800
oo U-C-RNLP

160011 44 U-C-RNLP + SGLS

1400} e—e U-C-RNLP + SLLS
35 & -o U-C-RNLP + FGLS
£ 1200]
§ o ¢ U-C-RNLP + FLLS
g
8 1000 *'* RNLP
g +o MCS
= 800
g
2 600 -
-
2

400

200

0 100

Cs Length

(c) Blocking.

Figure 110 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 2 for each request R;.

25:73

ECRTS

2018

25:74

35
5o U-C-RNLP

3.0f - a a—a U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS

B
2
g 25 & - U-C-RNLP + FGLS
4 ¢ e U-C-RNLP + FLLS
£ 20 +.+ RNLP
I +o+ MCS
g 15
g
g
O 1.0
3
s

0.5

0.0

0 20 40 60 80 100
CS Length
(a) Lock overhead.
3.0
R
o8 U-C-RNLP

225 a—a U-C-RNLP + SGLS
2 e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
g e -« U-C-RNLP + FLLS
E * =+ RNLP
§ 1.5] B A +o+ MCS
L DU - e P
§
3 10
Y e, —
2 b & & o ¢
505

0.0

20 40 60 80 100
CS Length

(b) Unlock overhead.

Using Lock Servers to Scale Real-Time Locking Protocols

111

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS

1500

U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

+ *+ 0 >
P4 oa B

1000

Blocking (microseconds)

w
S
S

s Length

(c) Blocking.

Figure 111 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 4 for each request R;.

35
o oo U-C-RNLP
30 a— U-C-RNLP + SGLS
¢ P e e—e U-C-RNLP + SLLS
g 25 & -4 U-C-RNLP + FGLS
8 e ¢ U-C-RNLP + FLLS
E 2.0 «.+ RNLP
2 +ot MCS
g 15
2
< 1.0| e =
8 e g e -
0.5
0.0
0 20 40 60 80 100
CS Length
(a) Lock overhead.
25
oo U-CRNLP
5 ||# U-C-RNLP + sGLS
€ 2.0[| e—e U-C-RNLP + SLLS
§ & -o U-C-RNLP + FGLS
g e ¢ U-C-RNLP + FLLS
€ 15[+ RNLP
E +o+ MCS -
z e - o LI Lon
£ 1.0]
g
o
S
¥
_2 0‘5[) o 3 & ¢
5
0.0
0 20 40 60 80 100
CS Length
(b) Unlock overhead.
5
oo U-C-RNLP
3000} 44 U-C-RNLP + SGLS
e—e U-CRNLP + SLLS
3 2500f| & -4 U-C-RNLP + FGLS
2
8 @ - U-C-RNLP + FLLS
gzooo #.+ RNLP
g +o+ MCS -
‘g’ 1500 ./a"
2 o
2 1000 -
T
500 /,/—’
f/’
o
0 20 40 60 80 100
CS Length

(c) Blocking.

Figure 112 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 6 for each request R;.

C.E. Nemitz, T. Amert,

and J. H. Anderson

25:75

35
. oo U-C-RNLP

30 a4 U-C-RNLP + SGLS
Il € e—e U-C-RNLP + SLLS
g 25 & -4 U-C-RNLP + FGLS
4 e e U-C-RNLP + FLLS
£20 #.+ RNLP
5 ot MCS
215
]
g
O 1.0
£ : 2 o 5

0.5

ey .
0.0
20 40 60 80 100
CS Length
(a) Lock overhead.
25
oo U-C-RNLP

3. b s U-C-RNLP + SGLS
£20 e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
g e e U-C-RNLP + FLLS
£ #:+ RNLP
H +ot MCS
g
§
£ 1.0]
g
S T T
- "R IRIRERER (ICICIEICIE EICIETRIEre: - SEFRENE It PEITITIE
< 050 e ° o e
5

0.0
0

20 20 60 80 100
CS Length

(b) Unlock overhead.

3500
oo U-C-RNLP
3000f| & U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 2500 & -4 U-C-RNLP + FGLS
g
S e -e U-C-RNLP + FLLS
ﬁzooo #.+ RNLP
g +o4 MCS
= 1500 //
£
x o
S o
2 1000] ’“_‘_/
il
500 P
4"
0 ”-‘
0 20 40 60 80 100
CS Length

(c) Blocking.

Figure 113 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 8 for each request R;.

35
30 " e = B
K3 =]
g
gzs o-a U-C-RNLP
& ||a—a U-CRNLP +SGLS
£ 2.0/ e—e U-C-RNLP + SLLS
5 ||« UcRNLP+FGLS
§ 1.5t[e - U-C-RNLP + FLLS
g + =+ RNLP
S vof| +-+ MCS
o
£ Q.—i—j/—t\‘
0.5
dvarvr A O P—
0.4
0 20 40 60 80 100
CS Length
(a) Lock overhead.
25
o-@ U-C-RNLP
= a4 U-C-RNLP + SGLS
g 20f, e—e U-C-RNLP + SLLS
§ & -o U-C-RNLP + FGLS
g e ¢ U-C-RNLP + FLLS
2 1.5
E #-+ RNLP
g +ot MCS
g
£ 1.0
g
o —_
x - I - -9 e
g R # % i
2 osp ® o o H
5
0.4
0 20 40 60 80 100
CS Length
(b) Unlock overhead.
S0
o-@ U-C-RNLP
3000} 4—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 2500}| & -4 U-C-RNLP + FGLS
g
8 @ - U-C-RNLP + FLLS
§zooo #.+ RNLP
g 4ot MCS
2 1500 //
<
- o
% 1000 /”/
-—/’
500 o
/”."
0 20 40 60 80 100
€S Length
(c) Blocking.
Figure 114 (a) Lock and (b) unlock

overheads and (c) blocking for

requests un-

der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and D = 10 for each request R;.

ECRTS

2018

25:76

Using Lock Servers to Scale Real-Time Locking Protocols

~
o
a

o
o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

w
P4 6B

Lock Overheads (microseconds)
IS

X R

~
-
»

-

S Length

(a) Lock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

+ + 0
46

Unlock Overheads (microseconds)
n
a

(] 20 40 60 80 100
s Length

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

1600

1l

1400

1200

1000

+ *+ 0 >
P4 oa B

@
3
3

o
3
3

Blocking (microseconds)

IS
S
S

200

s Length

(c) Blocking.

Figure 115 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and ID = 1 for each request R;.

r o-a U-C-RNLP
sl e n +— U-CRNLP + SGLS
e e—e U-C-RNLP + SLLS
$ & -a U-C-RNLP + FGLS
g4 o e U-C-RNLP + FLLS
H * =+ RNLP
w3 ++ MCS
8
H
£
22 PORPIN - . . 4
¥ g % * f a
] Bt
= 1

0

0 20 40 60 80 100

CS Length
(a) Lock overhead.
7
oo U-C-RNLP

56 a—4 U-CRNLP + SGLS
N e—e U-C-RNLP + SLLS
g5t & -4 U-CRNLP + FGLS
4 e ¢ U-C-RNLP + FLLS
Ea +.+ RNLP
8 & n +ot MCS
3
23
H
3
22 DU s - s
g
c
! -y om fo3

0 20 40 60 80 100

CS Length

(b) Unlock overhead.

1800,

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

1600

[l

1400

1200

1000

PEPEPI
P46 B

@
3
3

@
3
3

Blocking (microseconds)

5
S
S

200

Cs Length

(c) Blocking.

Figure 116 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and D = 2 for each request R;.

C.E

Nemitz, T. Amert,

45
oo U-C-RNLP
0 s U-C-RNLP + SGLS
8 3sf & s e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
g 30 © e U-C-RNLP + FLLS
£ 25 +:+ RNLP
2 ++ MCS
8 20k
£ .
215 e e "
s : . .
g1 og_/g\¥ » R
8
0.5
0.0
20 40 60 80 100
CS Length
(a) Lock overhead.
a5
oo U-C-RNLP
4.0R
= s U-C-RNLP + SGLS
E3s e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
g 30 ¢ ¢ U-C-RNLP + FLLS
Es * =+ RNLP
g . o ot MCS
g 2.0/
£ o
21s W - N ke
§ 1.0
g VO ——
=l LT TN $ g =
0.5
00 ; ;) ;
20 40 60 80 100

CS Length

(b) Unlock overhead.

1800
=@ U-C-RNLP
1600 4—s U-C-RNLP + SGLS
1400} e—e U-C-RNLP + SLLS
3 & -a U-C-RNLP + FGLS
< 1200|
s e e U-C-RNLP + FLLS
g
£ Jo00}|+ = RNLP o
2 +et MCS :
= 800
g A
§ o0 -
® 400 T
200
o
0 60 80 100
CS Length

(c) Blocking.

Figure 117 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and D = 4 for each request R;.

and J. H. Anderson

= o-a U-C-RNLP

a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS
@ e U-C-RNLP + FLLS
ey
Aot

w
°
o

~
n

RNLP
MCS

Ind
o

-
o

=
)

Lock Overheads (microseconds)

o
]

0 20 40 60 80 100
Cs Length

(a) Lock overhead.

3.05
oo U-C-RNLP

525 a— U-C-RNLP + SGLS
E e—s U-C-RNLP + SLLS
3 & -a U-C-RNLP + FGLS
g2 e ¢ U-C-RNLP + FLLS
E +.+ RNLP
815 S o ++ MCS
E
g PO .- - e
g
310
g *
= o & ® &
5 0.5

0.4

0 20 40 60 80 100
CS Length

(b) Unlock overhead.

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

o
o

1l

1500

+ + 0
A6 B

1000

Blocking (microseconds)

o
S
=3

Cs Length

(c) Blocking.

Figure 118 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and ID = 6 for each request R;.

25:77

ECRTS

2018

Using Lock Servers to Scale Real-Time Locking Protocols

3.5
. a 5 8 U-CRNLP
_30h s—4 U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
g 25 & - U-C-RNLP + FGLS
g e e U-C-RNLP + FLLS
220 +.+ RNLP
w +ot MCS
2
S 1.5
g
g
M S 2 2 8
g opoins . N s
0.5
0.0
0 20 40 60 80 100
CS Length
(a) Lock overhead.
250
5 8 U-CRNLP
a4 U-C-RNLP + SGLS
20 e—e U-C-RNLP + SLLS
& & U-C-RNLP + FGLS
e e U-C-RNLP + FLLS
) ».+ RNLP
B S |+ MCS

=)

o
o

Unlock Overheads (microseconds)

0.0
0

60
s Length

(b) Unlock overhead.

80 100

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

2500

1l

2000

+ *+ 0 >
P4 oa B

1500

1000

Blocking (microseconds)

500

(c) Blocking.

Figure 119 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and ID = 8 for each request R;.

s Length

80 100

35
o-a U-C-RNLP
30 . e a— U-C-RNLP + SGLS
g r e—e U-C-RNLP + SLLS
g 25 & -4 U-C-RNLP + FGLS
3 e ¢ U-C-RNLP + FLLS
£ 20 +.+ RNLP
2 +ot MCS
g 15
2
1.0 -
< R 2 o
E 2 2
0.5 W
0.0
0 20 40 60 80 100
CS Length
(a) Lock overhead.
25
oo U-C-RNLP
5 H4&4 U-C-RNLP + SGLS
g 20[| e—e U-C-RNLP + SLLS
§ & -4 U-C-RNLP + FGLS
g e ¢ U-C-RNLP + FLLS
E V5[++ RNLP
8 +ot MCS
? o o =
£ L0 LR
g
o bvﬁ—“.__‘____
E o o o o
5 058 :
0.0
0 20 40 60 80 100
CS Length
(b) Unlock overhead.
5
oo U-C-RNLP
3000} 44 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 2500f| & -4 U-C-RNLP + FGLS
2
8 @ - U-C-RNLP + FLLS
ﬁzooo #.+ RNLP
g +ot MCS -
‘2’ 1500 ./r
3 T
2 1000 /’/r
-
500 e
i
"
0
0 20 40 60 80 100
CS Length

(c) Blocking.

Figure 120 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and D = 10 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

3

®

~
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS

111

w

Lock Overheads (microseconds)

& -4 U-C-RNLP + FGLS

4 e e U-C-RNLP + FLLS
3 +:+ RNLP

5 +o+ MCS
2g ‘g - 2 Py ==g=
1
o + t + ¢
0 20 40 60 80 100

CS Length

(a) Lock overhead.

oo U-C-RNLP
- a4 U-C-RNLP + SGLS
R e—s U-C-RNLP + SLLS
é I & -a U-C-RNLP + FGLS
4 e e U-C-RNLP + FLLS
£ +.+ RNLP
2 \ o ot MCS
§
£ 4
§
g
o
M
3
< 2
5 "
0 20 40 60 80 100

CS Length

(b) Unlock overhead.

1800
oo U-C-RNLP

16001 4 4 U-C-RNLP + SGLS

1400}| e—e U-C-RNLP + SLLS
5 & -4 U-C-RNLP + FGLS
£ 1200]
§ e -« U-C-RNLP + FLLS
g
% 1000} * * RNLP
g +oot MCS
= 800
2
% 600
-
2

400

200 |

G
I S
e il
0 20 40 60 80 100

S Length

(c) Blocking.

Figure 121 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and D = 1 for each request R;.

o

o-a U-C-RNLP
_ 7? a—4 U-C-RNLP + SGLS
g . o e—e U-C-RNLP + SLLS
g & o U-C-RNLP + FGLS
8 s @ - U-C-RNLP + FLLS
£ *-+ RNLP
o4 +ot MCS
i
< 3
g
o
x 2| * e * .
BN IS 2 g g
—
1
0 20 40 60 80 100

Cs Length

(a) Lock overhead.

o

ol oo U-C-RNLP
% a— U-C-RNLP + SGLS
g7 e—e U-C-RNLP + SLLS
g [& -a U-C-RNLP + FGLS
ge o U-C-RNLP + FLLS
E +.+ RNLP
3 4t MCS
34 L o
2
g
3 3]
g2 e e DU e
<
5

bl — t == + t

0 20 40 60 80 100

Cs Length

(b) Unlock overhead.

1800

o
o

U-C-RNLP
a— U-C-RNLP + SGLS
1400} =& U-C-RNLP + SLLS

1600

32 & -4 U-C-RNLP + FGLS
$ 1200

s e ¢ U-C-RNLP + FLLS
2

8 1000 *'* RNLP

g ++ MCS

= 800

g

% 600

-

@

IS
S
3

N
=1
S

Cs Length

(c) Blocking.

Figure 122 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and ID = 2 for each request R;.

25:79

ECRTS

2018

Using Lock Servers to Scale Real-Time Locking Protocols

N

w

N
¢
+

1l

+ + 0
46

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Lock Overheads (microseconds)

-

(] 20 20
S Length

(a) Lock overhead.

60

80 100

Unlock Overheads (microseconds)

111

+ + 0
46

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

s Length

(b) Unlock overhead.

80 100

o
o

U-C-RNLP

1600

1400

1200

1000

1l

+ *+ 0 >
P4 oa B

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

@
3
3

o
3
3

Blocking (microseconds)

4.0 .
r c oo U-C-RNLP
S® a—4 U-CRNLP + SGLS
£ 3.0 e—e U-C-RNLP + SLLS
g & & U-C-RNLP + FGLS
g2s o U-C-RNLP + FLLS
£ *.+ RNLP
w20 bt MCS
T [
g
519 - N N .
3 e
C 1ok 2 s $
e —
g D
0.5
0.0
0 B a0 60 80 100
CS Length
(a) Lock overhead.
45
o oo U-C-RNLP
s s U-C-RNLP + SGLS
£3s e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g3 o ¢ U-C-RNLP + FLLS
Es +.+ RNLP
H e s st MCS
E 2.0k
g1s e PURTRU M .
810
5 . . o .
0.5
0.0 t t 1 f
B 40 60 80 100
S Length

(b) Unlock overhead.

IS
S
S

200

(c) Blocking.

Figure 123 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and ID = 4 for each request R;.

20 60
s Length

80 100

1800,
o-a U-C-RNLP
16001 4o U-C-RNLP + SGLS
__ 1400}/ e U-C-RNLP + SLLS
§ & -4 U-C-RNLP + FGLS
§ 12001 ¢ ¢ U-C-RNLP + FLLS
3
& 1000 *'* RNLP
g +o+ MCS
= 800
2 _ A
§ 600 —
E -
400
200
o
0 80 100

Cs Length

(c) Blocking.

Figure 124 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and D = 6 for each request R;.

C.E

40
oo U-C-RNLP
_ 3 " n a— U-C-RNLP + SGLS
2.0 e—e U-C-RNLP + SLLS
g & & U-C-RNLP + FGLS
8,5 e e U-C-RNLP + FLLS
£ *:+ RNLP
7 20 +ot MCS
3
5
€ 1.5
s
S 1ot : srsaveg
g =
0.5
0.0
20 40 60 80 100
CS Length
(a) Lock overhead.
3.5
oo U-C-RNLP
5 30f a—4 U-C-RNLP + SGLS
K e—e U-C-RNLP + SLLS
g 25 & - U-C-RNLP + FGLS
e e ¢ U-C-RNLP + FLLS
E20 *+ RNLP
H . o +ot MCS
£ 155 . - PO .-
g
S 10
e
< 3 & Q o @
B —
00 t ¢ t t
20 40 60 80 100
CS Length
(b) Unlock overhead.
1800
oo U-C-RNLP
1690r a—a U-C-RNLP + SGLS
1400} e—¢ U-C-RNLP + SLLS
2 & -a U-C-RNLP + FGLS 5
S 1200
S e -¢ U-C-RNLP + FLLS
% 1o00f|*+ RNLP -
2 +ot MCS : -
< 800 _—
g e
€ 600 "
° A
a -
400 g ”n,—
200 e
0 —
0 20 40 60 80 100

S Length

(c) Blocking.

Figure 125 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and ID = 8 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

35
b = @ oo U-C-RNLP
30 a—a U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
$ 25 & -4 U-C-RNLP + FGLS
g o ¢ U-C-RNLP + FLLS
£ 20 * -+ RNLP
3 ++ MCS
815
2
g
Q1op £ 3 3 S
S e od D SEEERE R L |
= -=
0.5
0.4
0 20 40 60 80 100
CS Length
(a) Lock overhead.
3.0
n oo U-C-RNLP
3 25 a—a U-C-RNLP + SGLS
E e—s U-C-RNLP + SLLS
3 & -a U-C-RNLP + FGLS
£20 e ¢ U-C-RNLP + FLLS
E +.+ RNLP
15 ++ MCS
g | o
£ b PUDUR e PR .-
g
310
P e
= @
Z0sP & ° 9
0.4
0 20 40 60 80 100
CS Length

(b) Unlock overhead.

oo U-C-RNLP
a—4 U-CRNLP + SGLS
2000 e—e U-C-RNLP + SLLS
bl & -4 U-C-RNLP + FGLS
2
S e ¢ U-C-RNLP + FLLS
§ 1500 4 RNLP
£ ++ MCS _
é 1000 —
K
2
500
0 20 40 60 80 100
CS Length

(c) Blocking.

Figure 126 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and D = 10 for each request R;.

25:81

ECRTS

2018

25:82

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

-
=)

+ + 0
46

w

Lock Overheads (microseconds)

(7 20 20 60 80 100
S Length

(a) Lock overhead.

oo U-C-RNLP
s h &—4 U-C-RNLP + SGLS
% 15 e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
e @ - U-C-RNLP + FLLS
E * =+ RNLP
810 % - +ot MCS
5
o <
g s B
5 b L
e -
=== =g = O————— = 0= — — ———— o
0 20 40 60 80 100

s Length

(b) Unlock overhead.

3500

oo U-C-RNLP
3000 | &~ U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 2500 & -4 U-C-RNLP + FGLS
g
] @ - U-C-RNLP + FLLS
§2000 #.+ RNLP
o +o4 MCS
‘éwoo
<
2 1000]

(] 20 20 60 80 100
s Length

(c) Blocking.

Figure 127 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 1 for each request R;.

Using Lock Servers to Scale Real-Time Locking Protocols

o
o

U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP

+ MCS

8@
B gL -
5 " -
]
26
4
S
£S5
B4 .
£ m * X
g3
o
“32‘/
S
0

0 20 40

(a) Lock overhead.

Cs Length

IS o ©

Unlock Overheads (microseconds)
N

o
o

U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

+ + 0P
46

0 20 40

Cs Length

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

3000

[l

2500

2000

PPN
P46 B

1500

Blocking (microseconds)

1000

500

(c) Blocking.

Figure 128 (a)

paradigm and the
RNLP without any
34, n, = 16, and D

Cs Length

Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
MCS, RNLP, and U-C-
lock servers. Here, m =
= 2 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

oo U-C-RNLP
~ . . a4 U-C-RNLP + SGLS
g4 e—e U-C-RNLP + SLLS
g & - U-C-RNLP + FGLS
g N e e U-C-RNLP + FLLS
g3
23 N *.+ RNLP
A ot MCS
5
£2 e - . sermineaia E|
g
o
M
g1

———— ——e oo

L e . [s

o

0 20 40 60 80 100

CS Length
(a) Lock overhead.

5

b oo U-C-RNLP
> a4 U-C-RNLP + SGLS
R e—e U-C-RNLP + SLLS
§ & A U-C-RNLP + FGLS
¢l e e U-C-RNLP + FLLS
€3 . o +.+ RNLP
3 " O s MCS
3
g
FPIN
g
o
<
¥
K » * —t %
21
S e T

-

o

0 20 40 60 80 100

CS Length

(b) Unlock overhead.

oo U-C-RNLP
3000 ~— U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 2500}| & -4 U-C-RNLP + FGLS
S e e U-C-RNLP + FLLS
ﬁzooo #.+ RNLP
- +et MCS
= 1500
% 1000
500
0
0 20 40 60 80 100

S Length

(c) Blocking.

Figure 129 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 4 for each request R;.

45
o-a U-C-RNLP
4.0p
_ o a—4 U-C-RNLP + SGLS
g s e—e U-C-RNLP + SLLS
§ © & - U-C-RNLP + FGLS
g 30 e e U-C-RNLP + FLLS
2.5 R . +.+ RNLP
< ++ MCS
B 20
g
£
§
e [P
N e e
3 - 8
0.5] dorn
L . . . S
0.
5 35 20) 80 100
CS Length
(a) Lock overhead.
35
R
o-a U-C-RNLP
30 a—4 U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
§ 25 & - U-C-RNLP + FGLS
g e -¢ U-C-RNLP + FLLS
£ 20k S Aoeeinind +.+ RNLP
3 +-+ MCS
RN
9 15
g
<10 * 3 d *
K
<. ; o s e
0.
5 T 70) 80 100
CS Length

(b) Unlock overhead.

o
o

U-C-RNLP /

3000 4= U-C-RNLP + SGLS -
U-C-RNLP + SLLS // e

U-C-RNLP + FGLS e

U-C-RNLP + FLLS ol

RNLP

(e

!

2500

2000

+ + 0
A6 B

1500

Blocking (microseconds)

1000

==
&

0 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 130 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 6 for each request R;.

25:83

ECRTS

2018

Using Lock Servers to Scale Real-Time Locking Protocols

3

ok o U-C-RNLP
_ s—a U-C-RNLP + SGLS
g7 e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
g6 e e U-C-RNLP + FLLS
£s #:+ RNLP
2 ++ MCS
Ba
£ - =
g3 e o
S . N . -
87
e
R e S N SENPIERPREE TReTy =
nO 20 40 60 80 100
CS Length
(a) Lock overhead.
35
o U-C-RNLP
3.0f! a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
2.5 & -a U-C-RNLP + FGLS
e e U-C-RNLP + FLLS
2.0 #: =+ RNLP
+t MCS
........ > B T

Unlock Overheads (microseconds)

s Length

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

3500

1l

w
S
3
S

2500

+ *+ 0 >
P4 oa B

2000

Blocking (microseconds)
"
&
2
8

1000

s Length

(c) Blocking.

Figure 131 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 8 for each request R;.

60

80 100

oo U-C-RNLP
_ 1R a—a U-C-RNLP + SGLS
] e—e U-C-RNLP + SLLS
$ 10 & -a U-C-RNLP + FGLS
g e - U-C-RNLP + FLLS
g s *:+ RNLP
3 ++ MCS
g 6
2
g
g
O 4
3 & o n =
8
LI » " » N

‘f ¥.'.'.'.".'.'.

40 60 80 100
CS Length
(a) Lock overhead.
oo U-C-RNLP
P a—a U-C-RNLP + SGLS
h: e—e U-C-RNLP + SLLS
3 & -a U-C-RNLP + FGLS
g4 e ¢ U-C-RNLP + FLLS
E -+ RNLP
g3 ++ MCS
£
3
32
g oo .- RRIRIEIEIINS e -
S # * *
g g g s
o
0 20 40 60 80 100
CS Length

(b) Unlock overhead.

4000

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

3500

[l

3000

&
2500 ©
N
+

P46 B

2000

1500

Blocking (microseconds)

1000

Cs Length

(c) Blocking.

Figure 132 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 10 for each request R;.

60

80 100

C.E.

25

Nemitz, T. Amert,

N
S

=)

Lock Overheads (microseconds)

«

.4
&
T

o
o

1l

+ + 0

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

(] 20 20 60 80 100
CS Length
(a) Lock overhead.
25
o-a U-C-RNLP

s h 42— U-C-RNLP + SGLS
g 20 e—e U-C-RNLP + SLLS
g & - U-C-RNLP + FGLS
g @ - U-C-RNLP + FLLS
£ 15 *.+ RNLP
8 = o +o+ MCS
3
3
£ 10] P
H *
g
3
=
3
€ 5 e e -

—_ —

b ——O———— - - 0= ===

(] 20 20 60 80 100

CS Length

(b) Unlock overhead.

oo U-C-RNLP
3000f| & U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 2500 & -4 U-C-RNLP + FGLS
g
S @ - U-C-RNLP + FLLS
ﬁzooo #.+ RNLP
; +o+ MCS
‘élSDO
E
2 1000]
500

and J. H. Anderson

Lock Overheads (microseconds)

113

+ + 0
Por 6B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

0 20 40 60 80 100
CS Length
(a) Lock overhead.
1

o

8 oo U-CRNLP
512 s U-C-RNLP + SGLS
£ e—e U-C-RNLP + SLLS
§ 10 & -4 U-C-RNLP + FGLS
g e -¢ U-C-RNLP + FLLS
E 3§ B n +.+ RNLP
g +t MCS
g
2 6
g .

ecreeee o aarare et D

S a *
]
=
S z\ —

S —

Cs Length

(b) Unlock overhead.

o-a U-C-RNLP
3000 4= U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 2500}| & -4 U-C-RNLP + FGLS
2
s e ¢ U-C-RNLP + FLLS
§zooo #.+ RNLP
£ +o+ MCS
= 1500
2
% 1000
500

S Length

(c) Blocking.

Figure 133 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 1 for each request R;.

100

Cs Length

(c) Blocking.

Figure 134 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 2 for each request R;.

25:85

ECRTS

2018

25:86

~

L 58 U-C-RNLP
_6 a—4 U-C-RNLP + SGLS .
H " e—e U-C-RNLP + SLLS
S sh & -4 U-C-RNLP + FGLS
g e e U-C-RNLP + FLLS
24 *+ RNLP
3 +t MCS
F s N
33 .-
H
g
S 2
I
g
1 -
i -
0 20 40 60 80 100
CS Length
(a) Lock overhead.
58 U-C-RNLP
5T a—4 U-C-RNLP + SGLS
2, e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
84 e e U-C-RNLP + FLLS
£ *+ RNLP
< = B
g4 ot MCS
3
] .- . - -
53
o
T p—
5 # *

T——t o o

0

0 20 40 60

80 100

s Length

(b) Unlock overhead.

3500

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

3000

1l

2500

2000

+ *+ 0 >
P4 oa B

1500

Blocking (microseconds)

1000

500

s Length

(c) Blocking.

Figure 135 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 4 for each request R;.

Using Lock Servers to Scale Real-Time Locking Protocols

> w

Lock Overheads (microseconds)
w
¥
>

H

o
o

U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

+ + 0
P46

MCS

~
*
H

0 20 40 60 80 100
CS Length
(a) Lock overhead.
5
55 U-CRNLP

- +—4 U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
§ Lo & -4 U-C-RNLP + FGLS
g o U-C-RNLP + FLLS
£3 . n .+ RNLP
8 wonee Tl MCS
]
g
£k
5
g
o
S
I - * 5
< 1
5

0

0 20 40 60 80 100

CS Length

(b) Unlock overhead.

oo U-C-RNLP
3000f| #—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
2500r| & -4 U-C-RNLP + FGLS
@ - U-C-RNLP + FLLS
2000f| *-+ RNLP
+o4 MCS

1500

Blocking (microseconds)

1000

500

0 20 40

Cs Length

(c) Blocking.

Figure 136 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 6 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

h oo U-C-RNLP
_ a4 U-C-RNLP + SGLS
g4 . n e—e U-C-RNLP + SLLS
$ & -a U-C-RNLP + FGLS
g o U-C-RNLP + FLLS
g2 » N * .+ RNLP
g P +ot MCS
g2
5
5 T R EE TR PR PO
M
3 Y,
o————t— & & &
R . N
o
0 20 40 60 80 100
CS Length
(a) Lock overhead.
40
P oo U-C-RNLP
5> a—a U-C-RNLP + SGLS
- e—s U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
525 o U-C-RNLP + FLLS
g2
E * # A%+ RNLP
%20 ot MCS
g
E 1.5p
(<}
g 10 & X i &
<
=l 0.5 & 8 Ios oy
0.0
20 40 60 80 100

CS Length

(b) Unlock overhead.

oo U-C-RNLP
3000 ~— U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 2500}| & -4 U-C-RNLP + FGLS
S e e U-C-RNLP + FLLS
ﬁzooo #.+ RNLP
- +et MCS
= 1500
% 1000
500
0
0 20 40 60 80 100

S Length

(c) Blocking.

Figure 137 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 8 for each request R;.

4.0
P . s o8 U-C-RNLP

35 a—a U-C-RNLP + SGLS

30 e—e U-C-RNLP + SLLS

: & -a U-C-RNLP + FGLS

25 R e e U-C-RNLP + FLLS
" ++ RNLP

2.0 +o+ MCS

Lock Overheads (microseconds)

0.5]
et
0.
L = m 0 30 100
CS Length
(a) Lock overhead.
35
o-a U-C-RNLP

_30f a—4 U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
%25 & -4 U-C-RNLP + FGLS
g e e U-C-RNLP + FLLS
E 20 - o +-+ RNLP
5 b s .- 4t MCS
g 1sh
g
o —
10 L ¥ . ‘
8
$
Sosg < o ¢

0.

L =5 m) 80 100
CS Length

(b) Unlock overhead.

o
o

U-C-RNLP

35001 4—a U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

!

3000

+ + 0
A6 B

Blocking (microseconds)
hooNoN
z 8 &
g 8 &
g8 8 8

1000

500

0 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 138 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 10 for each request R;.

25:87

ECRTS

2018

25:88

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

.4
&
o

+ + 0
46

=)

Lock Overheads (microseconds)

«
¥
+

(7 20 40 60 80 100
S Length

(a) Lock overhead.

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

H
&
+ + 0

46

=)

Unlock Overheads (microseconds)
»

w
¥
+
.

s Length

(b) Unlock overhead.

3500

o
o

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

3000

1l

2500

2000

+ *+ 0 >
P4 oa B

1500

Blocking (microseconds)

1000

500

2
0 20 40

s Length

(c) Blocking.

Figure 139 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 1 for each request R;.

Using Lock Servers to Scale Real-Time Locking Protocols

o @ U-C-RNLP
R a4 U-C-RNLP + SGLS
g 20p e—e U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
§ o e U-C-RNLP + FLLS
g1 ++ RNLP
£ . ot MCS
2 n
2 10
g
o
o]
S Sp
3 a ~ s
: = e 60 80 100
CS Length
(a) Lock overhead.
25
o8 U-C-RNLP
- a4 U-C-RNLP + SGLS
'g 20 ; e—e U-C-RNLP + SLLS
§ & -o U-C-RNLP + FGLS
¢ e e U-C-RNLP + FLLS
£ ++ RNLP
r et MCS
2 C n ™ ©
£ 10
g
o .
g TR T, .
2 s -
RN
— e -
—G— ST
: = o 60 80 100
CS Length

(b) Unlock overhead.

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

o
o

3000

[l

2500

2000

PPN
P46 B

1500

Blocking (microseconds)

Cs Length

(c) Blocking.

Figure 140 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 2 for each request R;.

C.E.

Nemitz, T. Amert,

and J. H. Anderson

o ©
o

Lock Overheads (microseconds)
IS
+

i

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS
4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP

+ MCS

0 20 40 60 80 100
CS Length
(a) Lock overhead.
1
B o-a U-C-RNLP
10 a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS

®

IS
3

fa.

Unlock Overheads (microseconds)
o

~

& -4 U-C-RNLP + FGLS
e e U-C-RNLP + FLLS
+ =+ RNLP

+oot MCS

.- .

o

0 t +

+ t

0 20 40

CS Length

(b) Unlock overhead.

60 80 100

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

3000

1l

2500

2000

+ + 0
o4 6B

1500

Blocking (microseconds)

1000

S Length

(c) Blocking.

Figure 141 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 4 for each request R;.

~

25:89

100

P oo U-C-RNLP
6 a— U-C-RNLP + SGLS
2 " e—e U-C-RNLP + SLLS "
S Sk & -4 U-C-RNLP + FGLS
g e ¢ U-C-RNLP + FLLS
g4 *.+ RNLP
2 N +o+ MCS N
$ 3| £ o T Alintaas
2
]
o2
3
3

1——— —q

™ e * -+ e

0 20 40 60 80

CS Length
(a) Lock overhead.

8

h oo U-C-RNLP
. 4—4 U-C-RNLP + SGLS
£ e—e U-C-RNLP + SLLS
g |, & -a U-C-RNLP + FGLS
Sl e ¢ U-C-RNLP + FLLS
E o +.+ RNLP

&

g4 +o MCS
g
2 * .- - PP
3 3
g
SN
] 2
5 s o

1

0 20 40 60 80

CS Length

(b) Unlock overhead.

100

o
o

U-C-RNLP
3000

1l

U-C-RNLP + SLLS
2500
U-C-RNLP + FLLS
RNLP
MCS

2000

+ + 0
A6 B

U-C-RNLP + SGLS

U-C-RNLP + FGLS

1500

Blocking (microseconds)

1000

(c) Blocking.

Cs Length

100

Figure 142 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 6 for each request R;.

ECRTS

2018

25:90 Using Lock Servers to Scale Real-Time Locking Protocols

b oo U-C-RNLP
_s . . s U-C-RNLP + SGLS
H e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g o U-C-RNLP + FLLS
£ L +.+ RNLP
g3 R N ot MCS
g “a - PR IR
g2
o
M
58—

S T
-
o
0 20 40 60 80 100
CS Length
(a) Lock overhead.

|[e—a U-CRNLP
5 5|]#* U-C-RNLP + SGLS
£ 7[|e—e u-cRNLP+SLLS
§ & - U-C-RNLP + FGLS
8 4l U-C-RNLP + FLLS
E ||+~ RNLP .

o r
8 3| MCS e
g -
§
32
M
E
51 X * *
o
o
0 20 40 60 80 100

s Length

(b) Unlock overhead.

3500

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

o
o

3000

1l

2500

2000

+ *+ 0 >
P4 oa B

1500

Blocking (microseconds)

1000

500

s Length

(c) Blocking.

Figure 143 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 8 for each request R;.

.
oo U-C-RNLP
z " o s U-C-RNLP + SGLS
gt e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g o U-C-RNLP + FLLS
£ 3,; - +.+ RNLP
2) +ot MCS
B
22
g - . RUTRP ORI
o
g
8 1 —_—
! . X —]
. " . . N
o
0 2 40 60 80 100
CS Length
(a) Lock overhead.
45
oo U-C-RNLP
3" a4 U-C-RNLP + SGLS
£3s e—s U-C-RNLP + SLLS
g & -4 U-C-RNLP + FGLS
£ ¢ ¢ U-C-RNLP + FLLS
Easf] a |+ RNLP
g o T +ot MCS
g 20
£
S 1sf
E 1.0 z 2 *
£
5 p .
0.5
.
0.0
2 40 60 80 100
CS Length

(b) Unlock overhead.

oo U-C-RNLP
3000f| #—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
2500r| & -4 U-C-RNLP + FGLS
@ - U-C-RNLP + FLLS
2000f| *-+ RNLP
+o4 MCS _—

1500

Blocking (microseconds)

1000

Cs Length

(c) Blocking.

Figure 144 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 10 for each request R;.

C.E.

Nemitz, T. Amert,

Lock Overheads (microseconds)

o-a U-C-RNLP
a—a U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS

& -4 U-C-RNLP + FGLS

s e ¢ U-C-RNLP + FLLS
+:+ RNLP

4 +o+ MCS

3 B L3 =

2

— 1 —a o

o t t w

1 3 4 5 6 7 8 9

Level of Nestedness

(a) Lock overhead.

10

Unlock Overheads (microseconds)
IS

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP

~+ MCS

+ + 0

3 4 5 6 7 8 9
Level of Nestedness

(b) Unlock overhead.

10

1l

Blocking (microseconds)
w
g

o
o

+ + 0
o4 6B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS r
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

N
S

10} _

2 3 4 5 6 7 8 9

Level of Nestedness

(c) Blocking.

Figure 145 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, n, = 16 for each request R;.

10

and J. H. Anderson

~ w & w

Lock Overheads (microseconds)

-

o-a U-C-RNLP

a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS
@ e U-C-RNLP + FLLS
*:+ RNLP

+o+ MCS

2 3 4 5 6 7 8 9 10

Level of Nestedness

(a) Lock overhead.

Unlock Overheads (microseconds)
~
°

oo U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS
a e -e U-C-RNLP + FLLS
*.+ RNLP

+o+ MCS

&

Level of Nestedness

(b) Unlock overhead.

1400

1200

=
1)
3
S

Blocking (microseconds)

+ + 0
A6 B

o
o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 146 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, n, = 16 for each request R;.

25:91

ECRTS

2018

25:92

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

IS

+ + 0
46

~

Lock Overheads (microseconds)
w
n

;

Level of Nestedness

(a) Lock overhead.

>
>

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

~
n
46

Unlock Overheads (microseconds)
~
o

0.0 + + + t

Level of Nestedness

(b) Unlock overhead.

3500

oo U-C-RNLP
3000} #— U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
3 2500}| & -4 U-C-RNLP + FGLS
S e e U-C-RNLP + FLLS
§2000 #.+ RNLP
E |++ MCS .
= 1500 _~
g -
% 1000
500¢,
0

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 147 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, n, = 16 for each request R;.

Using Lock Servers to Scale Real-Time Locking Protocols

o-a U-C-RNLP

T a—a U-C-RNLP + SGLS
R e—e U-C-RNLP + SLLS
$ “n & -a U-C-RNLP + FGLS
. . e e U-C-RNLP + FLLS
H *-+ RNLP
e ++ MCS
K T
£3 . " -
2 B
o .
32 L
k] a .

1\'\i\ = SETEEEY g

0 t

1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(a) Lock overhead.

o

. oo U-C-RNLP
= a— U-C-RNLP + SGLS
27w e—e U-CRNLP + SLLS
3 & -a U-C-RNLP + FGLS
gor e ¢ U-C-RNLP + FLLS
Es * +.+ RNLP
8 - +o+ MCS
$a . E
2
H
g3 " e
M . -

82 .
< .
1p—— . LR R R
— * ~a
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(b) Unlock overhead.

o-a U-C-RNLP
sol|# U-C-RNLP +SGLS
e—e U-CRNLP + SLLS
& -a U-C-RNLP + FGLS
40 ¢ -e U-C-RNLP + FLLS
+ =+ RNLP
+o+ MCS

Blocking (microseconds)
w
3

Level of Nestedness

(c) Blocking.

Figure 148 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =

18, L; = 1us, n, = 32 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

~

w IS w o

~

Lock Overheads (microseconds)

oo U-C-RNLP
a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& - U-C-RNLP + FGLS
¢ e U-C-RNLP + FLLS
+.+ RNLP

" o |+ MCS

3 4 5 6 7 8 9 10
Level of Nestedness

(a) Lock overhead.

2.0

Unlock Overheads (microseconds)

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& A U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP

~+ MCS

+ + 0

Level of Nestedness

(b) Unlock overhead.

1400

1200

=
)
3
=3

o
o

1l

+ + 0

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

~

~ w IS w o

Lock Overheads (microseconds)

-

o-a U-C-RNLP
a—4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
4 U-C-RNLP + FGLS
e ¢ U-C-RNLP + FLLS
+ -+ RNLP

" e | ++ MCS

>

Level of Nestedness

(a) Lock overhead.

45
o @ U-C-RNLP
40 a—4 U-C-RNLP + SGLS
35 n e—e U-C-RNLP + SLLS
& -o U-C-RNLP + FGLS
30 e < U-C-RNLP + FLLS
25 +.+ RNLP
+ot MCS

Unlock Overheads (microseconds)

Level of Nestedness

(b) Unlock overhead.

o
o

3000

1l

2500

2000

o4 6B

MCS

+ + 0
A6 B

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

RNLP

Blocking (microseconds)

Level of Nestedness

(c) Blocking.

Figure 149 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, n, = 32 for each request R;.

1500

Blocking (microseconds)

1000

Level of Nestedness

(c) Blocking.

Figure 150 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, n, = 32 for each request R;.

25:93

ECRTS

2018

25:94

Lock Overheads (microseconds)

o
o

1l

+ + 0
46

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Using Lock Servers to Scale Real-Time Locking Protocols

~

w » w o
a

Lock Overheads (microseconds)
~
*
-

_‘
+ + 0

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP

~+ MCS

5

6 7 8 9 10

Level of Nestedness

Level of Nestedness

(a) Lock overhead.

IS o ©
ki

Unlock Overheads (microseconds)

N

o

+ + 0
46

o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

(a) Lock overhead.

o-a U-C-RNLP
25 #—4 U-C-RNLP + SGLS
g e—e U-C-RNLP + SLLS
§ - & A U-C-RNLP + FGLS
g4 e ¢ U-C-RNLP + FLLS
E + RNLP
L3 c ++ MCS
g
i
g, . -
3 SR . -
P e .
Lt T e
5 “:QK:@;\G-:‘

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(b) Unlock overhead.

6 7 8 9 10
Level of Nestedness

(b) Unlock overhead.

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

1l

w
S

N

&
+ *+ 0 »
P4 oa B

MCS

o
=3
S

©
3
3

<
S
=]

@
3
3

0
=}
3

o
o

11

PEPEPI
P46 B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Blocking (microseconds)
N
G S

-
=)

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 151 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, n, = 64 for each request R;.

&
S
3

w
=3
3

Blocking (microseconds)

N
151
5]

100} .+

Level of Nestedness

(c) Blocking.

Figure 152 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, n, = 64 for each request R;.

C.E.

~

w IS w o

~

Lock Overheads (microseconds)

o ¥

o
o

1l

+ + 0
46

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Nemitz, T. Amert, and J. H. Anderson

20,

= =
S &

w

Lock Overheads (microseconds)

o
o

1l

+ + 0
Por 6

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

2 3 4 5 6 7 8 9 10
Level of Nestedness

(a) Lock overhead.

w

IS

~

Unlock Overheads (microseconds)
w

-

o

+ + 0
P46

o

1l

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

5 6 7 8

a o 3 "
LB -

*\\ a

___________ — N ol

1 2 3 4 6 7 8 10

Level of Nestedness
(a) Lock overhead.
2
o-a U-C-RNLP

- a— U-C-RNLP + SGLS
2. e—s U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g @ - U-C-RNLP + FLLS
E \ +.+ RNLP
£ 10 .n +o+ MCS
£ *
§)
o
5 * © e

—— n iy

n E foioser o
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(b) Unlock overhead.

2500

2000

1500

1000

Blocking (microseconds)

500

+ + 0

o
o

1l

o4 6B

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

5 6

Level of Nestedness

(c) Blocking.

Figure 153 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, n, = 64 for each request R;.

Level of Nestedness

(b) Unlock overhead.

0
S

oo U-C-RNLP
160 a— U-C-RNLP + SGLS
140 e—e U-C-RNLP + SLLS
32 & -4 U-C-RNLP + FGLS
2
s 120 e ¢ U-C-RNLP + FLLS =
3
£ 100 « .+ RNLP
5 ++ MCS
E 80
g
$ 60
k-
a
40
20

(c) Blocking.

Figure 154 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, n, = 16 for each request R;.

4

5 6 7 8 9 10

Level of Nestedness

25:95

ECRTS

2018

25:96

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS
& A U-C-RNLP + FGLS

-
=)

)

2

s

2 8

g e ¢ U-C-RNLP + FLLS
£ \ #.+ RNLP
76 +o+ MCS
3

g

£

T 4 -

3 X " -
=

¥

3

gt

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(a) Lock overhead.

o-a U-C-RNLP
a—a U-C-RNLP + SGLS
8 e—s U-C-RNLP + SLLS
& & U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
++ RNLP
+ MCS

+ + 0

Unlock Overheads (microseconds)

Level of Nestedness

(b) Unlock overhead.

1400

1200

1000

U-C-RNLP

Using Lock Servers to Scale Real-Time Locking Protocols

oo U-C-RNLP
a— U-C-RNLP + SGLS
e—s U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS
o e U-C-RNLP + FLLS
" + =+ RNLP

+ot MCS

=)

®

o

IS

Lock Overheads (microseconds)

~

Level of Nestedness

(a) Lock overhead.

o-a U-C-RNLP

a—a U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& A U-C-RNLP + FGLS
@ U-C-RNLP + FLLS
-+ RNLP

~+ MCS

©

o
+ + 0

IS

Unlock Overheads (microseconds)

N

3 4 5 6 7 8 9 10
Level of Nestedness

(b) Unlock overhead.

4000

3500 @

3000 o

2500

U-C-RNLP

Blocking (microseconds)

&—a U-C-RNLP + SGLS

U-C-RNLP + SLLS
U-C-RNLP + FGLS

Blocking (microseconds)

2000

1500

1]

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS

U-C-RNLP + FLLS
RNLP
2 ot MCS

IS
S
3

\,
*
+

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 155 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, n, = 16 for each request R;.

U-C-RNLP + FLLS
RNLP
MCS

\
PPN
P4 6B

10000* 7

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 156 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, n, = 16 for each request R;.

C.E

25

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

+ot MCS

N
S

anI

a B

.4
&

*

*

Lock Overheads (microseconds)
S

«
.
)
.

Level of Nestedness

(a) Lock overhead.

25

o0 U-C-RNLP
= a—4 U-CRNLP + SGLS
220 e—e U-C-RNLP + SLLS
§ & -4 U-C-RNLP + FGLS
8 e ¢ U-C-RNLP + FLLS
S 15 Y
£ % #.+ RNLP
E +o+ MCS
g
£ 10 .
¢
o .

3 e
g .
5 el "
5 e c
N\ A - Z -
— #
1 2 3 4 5 6 7 8 9 10
Level of Nestedness
(b) Unlock overhead.
80
70 N E
. C
g . - ;/l
g
5 50
E o-a U-C-RNLP
240 a—4 U-CRNLP + SGLS
£ a—a U-CRNLP + SLLS
s 30 e & -a U-C-RNLP + FGLS
e - U-C-RNLP + FLLS
20 *.+ RNLP
+o+ MCS
10 r——
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(c) Blocking.

Figure 157 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, n, = 32 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

o
o

U-C-RNLP

12 a—4 U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

!

+ + 0
Por 6B

Lock Overheads (microseconds)

1 2 3 4 5 6 7 8 9 10
Level of Nestedness
(a) Lock overhead.
14
o-a U-C-RNLP
512 a—4 U-C-RNLP + SGLS
E e—e U-C-RNLP + SLLS
§ 10| & -4 U-C-RNLP + FGLS
g e -¢ U-C-RNLP + FLLS
E 3§ n +.+ RNLP
B ++ MCS
]
2 6
S af T B
8 el
5 P [S
P
- 4

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(b) Unlock overhead.

1600

1400

1200 L o

1000 -

o
o

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS

Blocking (microseconds)
s o o

8 3 8

8 8 8

H I I

>

e - U-C-RNLP + FLLS
200 * =+ RNLP
+o MCS
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(c) Blocking.

Figure 158 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, n, = 32 for each request R;.

25:97

ECRTS

2018

25:98 Using Lock Servers to Scale Real-Time Locking Protocols

-
IS

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

©

+ + 0
46

o

Lock Overheads (microseconds)
>
a

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(a) Lock overhead.

=
IS

o
o

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

1l

©
+ + 0

46

o

IS

Unlock Overheads (microseconds)

~N
]
|

3

Level of Nestedness

(b) Unlock overhead.

3500

& 3000
2

2

% 2500

4

2 2000 U-C-RNLP

= - U-C-RNLP + SGLS
£ 1500 - U-C-RNLP + SLLS
g M U-C-RNLP + FGLS

1000
U-C-RNLP + FLLS

RNLP
MCS

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 159 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, n, = 32 for each request R;.

o8 U-C-RNLP
R a—a U-C-RNLP + SGLS
$20 * e—e U-C-RNLP + SLLS
g & -a U-C-RNLP + FGLS
g . e e U-C-RNLP + FLLS
£ R +.+ RNLP
3 ++ MCS
3
210 e
2 EN
o
2 e
g s a T B
A > ‘-~.,!___h_
R —
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(a) Lock overhead.

oo U-C-RNLP

= . a— U-C-RNLP + SGLS

g2 - e—s U-C-RNLP + SLLS

g & -a U-C-RNLP + FGLS

g o ¢ U-C-RNLP + FLLS

£ 15

£ *-+ RNLP

3 +ot MCS

? E

£ 10

E .

g —— "

> a Tttt
— . . .

——

1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(b) Unlock overhead.

0
S

Fy
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS & €
U-C-RNLP + FGLS | 77777 i g

U-C-RNLP + FLLS [rrmessmbsmeisiiinns

RNLP

MCS

111

@
3
*

n

2
PRI
P46 B

w
3

Blocking (microseconds)
N
8

N
S

Level of Nestedness

(c) Blocking.

Figure 160 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, n, = 64 for each request R;.

C.E

Nemitz, T. Amert,

oo
14 A
§12
o
g PSEN
£ 10 ee
g .
£
2 8 © o
K]
H
3
<
]
g
o
=
¥
g
S

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

Level of Nestedness

(a) Lock overhead.

e
© 5 8
Y
,‘ODIIE
N o

o

Unlock Overheads (microseconds)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP

MCS

4 -
e =
Trhe T
Z\"’““---—b
e eem—
PE— 1
0 : ; : ; "
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(b) Unlock overhead.

1400,
a8 U-CRNLP
1200/| &= U-C-RNLP + SGLS P
e—e U-C-RNLP + SLLS
& 1000f| & -4 U-C-RNLP + FGLS
E .
s e e U-C-RNLP + FLLS i /
8 .-
£ soof|+ = RNLP 1
s e MCS . /‘///‘4‘ =
5 o0 o e ///
S / 5
S 400 S =
=
o
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(c) Blocking.

Figure 161 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, n, = 64 for each request R;.

and J. H. Anderson

25:99

o
o

1l

+ + 0
Por 6B

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

RNLP
MCS

Lock Overheads (microseconds)

1 2 3 4 5 6 7

Level of Nestedness

(a) Lock overhead.

113

+ + 0P
Por 6B

U-C-RNLP

U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

RNLP
MCS

Unlock Overheads (microseconds)
®

4 » ©
.. -
AR
e
T |
—o o
1 2 3) 5 6 9 10

Level of Nestedness

(b) Unlock overhead.

{e-a U-c-RNLP

3000}| a4 U-C-RNLP + SGLS
e—e U-C-RNLP + SLLS
& -4 U-C-RNLP + FGLS B
e -e¢ U-C-RNLP + FLLS o

.

+

2500

-+ RNLP

2000

1500

Blocking (microseconds)

1000

Level of Nestedness

(c) Blocking.

Figure 162 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the U-C-RNLP with each lock server
paradigm and the MCS, RNLP, and U-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, n, = 64 for each request R;.

ECRTS

2018

25:100 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

G S
il

=)

Lock Overheads (microseconds)

«

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

G S
il

=)

Unlock Overheads (microseconds)

«

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP N
a—a G-C-RNLP + SGLS s
e—e G-C-RNLP + SLLS R

& - G-C-RNLP + FGLS y

S
S

w
3
S 80
§ e G-C-RNLP + FLLS
g
g * =+ RNLP
S Gol|++ MCS
E -
>
=
3 40
-
2

20

s
0 < T
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 163 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 1 for each request R;.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

=)

®

o
+
H

ok
u
e
#
$

A
-4
koA A

la
/

Lock Overheads (microseconds)

~

oo b e

gt
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

=)

®

IS

Unlock Overheads (microseconds)
o
¥
H

~

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS -

Il

0
)
+ o
Y

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 164 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 2 for each request R;.

C.E

== G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

* =+ RNLP

+oot MCS

©

o

-
)\
L

»
&
)
!
®
\
X
\
S
.

Lock Overheads (microseconds)

N

b i
15 20 25
Number of Tasks

(a) Lock overhead.

40

== G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

sl|* = RNLP

+oot MCS

Unlock Overheads (microseconds)

20
Number of Tasks

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

5 5 &
§ 5 %
il

o
3

Blocking (microseconds)
®
3

IS
S

20

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 165 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson 25:101

=—a G-C-RNLP

12f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
10t(&+ -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#:+ RNLP

++ MCS

©

Lock Overheads (microseconds)

T T Rl sk
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP
s~ G-C-RNLP + SGLS
7l| e~ G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e« G-C-RNLP + FLLS
sl[+ = RNLP

+o MCS

Unlock Overheads (microseconds)

40

Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#-+ RNLP

++ MCS

N
153
S

-
&
3

Blocking (microseconds)
"
1
8

o
3

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 166 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 6 for each request R;.

ECRTS

2018

25:102 Using Lock Servers to Scale Real-Time Locking Protocols

-
3

[Tl

LN 4
& ¥

-

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCs

Lock Overheads (microseconds)
®
¥
i

= -
=) &

w

Lock Overheads (microseconds)

—a
a—a
e—a

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS
+ % RNLP
+ot MCS

0 5 10 15
Number of Tasks

20

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

(a) Lock overhead.

—a

G-C-RNLP

a—a

=)

=

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS

—a
a—a G-C-RNLP + SGLS
o—a

G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Unlock Overheads (microseconds)

®

IS

Unlock Overheads (microseconds)
o

~

& -4 G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS
+ =+ RNLP
+o MCS

Number of Tasks

(b) Unlock overhead.

20

5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

—
250 44
P
ra
.
.o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

111

N
151
3

B
Pk

+

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

+ot MCS

Blocking (microseconds)
&
g

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 167 (a) Lock and (b) unlock
overheads and (c¢) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 16, and D = 8 for each request R;.

Blocking (microseconds)
-
]
3

.4
)
3

w
3

>

o
«
)

15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 168 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
lus, nr = 16, and D = 10 for each request
Ri.

C.E

a5
=—a G-C-RNLP

_*O1la—a G-C-RNLP + SGLS

€ 3.5{|e—e G-C-RNLP + SLLS N

g & -4 G-C-RNLP + FGLS T *

8 3% e« G-CRNLP+FLLS | a- 4 , _ e

2 2.5H[* =+ RNLP [e -2 TRg g e

Iy +et MCS :

E’ 2.0 -

e

o

3

3

5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

40
== G-C-RNLP
351 a— G-C-RNLP + SGLS
Sol|®—® GC-RNLP +5LLS
: - G-C-RNLP + FGLS
25l|® - G-CRNLP + FLLS
« =+ RNLP
+ot MCS

Unlock Overheads (microseconds)
N
o

VTR

TR

0.0l Pt bbb
5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

1400

111

1200

e
& B

H
© B
g 8
g8 8
P
o

o
3
3

Blocking (microseconds)

IS
S
3

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 169 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

~

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
RNLP

o Mes e -+
a-®-pent

RS

IS
*
*

oy

1

- - o

~N

Lock Overheads (microseconds)

-

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

== G-C-RNLP
s—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
30 e« G-C-RNLP + FLLS
25|+ + RNLP

Unlock Overheads (microseconds)

R

b
[
o vk bbb

o 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1600

=—a G-C-RNLP

1400F| s4—a G-C-RNLP + SGLS
e
A

G-C-RNLP + SLLS
1200

2 G-C-RNLP + FGLS
g
S 1oool| ¢ ® G-C-RNLP + FLLS
g
g ++ RNLP
g 800| ++ MCS -e
=
5 600
8
@ 400

200

0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 170 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 2 for each request
Ri.

25:103

ECRTS 2018

25:104 Using Lock Servers to Scale Real-Time Locking Protocols

== G-C-RNLP
a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
& -« G-C-RNLP + FLLS
* =+ RNLP a

+ot MCS ke A am

-
./'/./ °- %" 2-%<% -
o 22 e

e e
vy
50

~

o

w

w

Lock Overheads (microseconds)
~ >

-

1
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

w
n

== G-C-RNLP
a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
& -« G-C-RNLP + FLLS
* =+ RNLP

+ot MCS

w
o

~
n

N
o

-
i

o

Unlock Overheads (microseconds)

bud
o

+. i
T ST NN LTS STe et ot

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o
>

== G-C-RNLP
14001 s~ G-C-RNLP + SGLS o-0 -0 -a g
e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS
* =+ RNLP
et MCS

1200

,_.
® 5
8 8
S 8

o
3
3

Blocking (microseconds)

IS
S
3

~
>
3

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 171 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 4 for each request
Ri.

o

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

RNLP

~ @

o

w
-
*

N oW s

Lock Overheads (microseconds)

-

Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

Unlock Overheads (microseconds)
-
n

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1400

1200

,_.
°
3
3

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
* -+ RNLP

+o+ MCS

111

Blocking (microseconds)
®
2
S

e n
é b

IS
S
3

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 172 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 6 for each request
Ri.

C.E.

Lock Overheads (microseconds)

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

ey

g g o e AR

5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

Unlock Overheads (microseconds)

a4
o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

IR

.
&

P
o

TR

0.0
0

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

1600,
1400
1200
1000
800 == G-C-RNLP
a—a G-C-RNLP + SGLS
600 e—a G-C-RNLP + SLLS
200 - G-C-RNLP + FGLS
- G-C-RNLP + FLLS
200 +:+ RNLP
+o+ MCS
N |
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 173 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 16, and D = 8 for each request

Ri.

Nemitz, T. Amert, and J. H. Anderson

Lock Overheads (microseconds)

(a)

Unlock Overheads (microseconds)

(b)

1

25:105

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

i e e e

0 5 10 15 20
Number of Tasks

Lock overhead.

40

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

—
aa
L
ra

.-

.

o

-0 -o- o-
e

oo

0 5 10 15 20 25 30 35
Number of Tasks

Unlock overhead.

600

40

1

Blocking (microseconds)

(c)

Ri.

1200

-
°
3
3

400 e-0-o -0 o o a-o]

800 == G-C-RNLP
s~ G-C-RNLP + SGLS
600 o—a G-C-RNLP + SLLS
200 & -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
200 + -+ RNLP
+o+ MCS
0 5 10 15 20 25 30 35

Number of Tasks

Blocking.

40

Figure 174 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, nr = 16, and D = 10 for each request

ECRTS 2018

>

>
o

il

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
E *

G-C-RNLP + FGLS o NP
30 G-C-RNLP + FLLS | - 42y oq
25 RNLP s B
MCS ~

)
o A
‘a

-
n

Lock Overheads (microseconds)
N
o

=)

[RTT

v bbb

5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

>
>

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FSE
*-e
ey
et

w
n

w
o

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

~
n

Unlock Overheads (microseconds)
~
o

0.5

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP
35001| o—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
2500/| & ® G-C-RNLP + FLLS
+.+ RNLP
+o4 MCS

w
S
3
S

Blocking (microseconds)
e
5 08
g 8
s 8

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 175 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr, = 16, and D = 1 for each request
Ri.

25:106 Using Lock Servers to Scale Real-Time Locking Protocols

~

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

+o+ MCS

cia

Iy

w

~

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

Iy

w

~

Unlock Overheads (microseconds)
-

0

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

3500

111

3000

e n
é ¥

2500

T e
o

2000

1500

Blocking (microseconds)

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 176 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 16, and D = 2 for each request
Ri.

s G-C-RNLP
7| a— G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
s|| e G-CRNLP + FLLS
+:+ RNLP a
MCs o

Lock Overheads (microseconds)
IS

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

3.5
== G-C-RNLP
3.0f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS .
2.5\ & -4 G-C-RNLP + FGLS . e *
e e G-C-RNLP + FLLS e
2.0t #-+ RNLP AEELN
+et MCS 3

Unlock Overheads (microseconds)

s F R T S
5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

3500

111

3000

e
& B

P
o

Blocking (microseconds)
eooN N
2 8 ¥
g 8 8
8 8 8

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 177 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n,. = 16, and D = 4 for each request
Ri.

C.E. Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
E=

ey

G-C-RNLP + SLLS
G-C-RNLP + FGLS
Sf|e s G-C-RNLP + FLLS
sl|+ =+ RNLP

Lock Overheads (microseconds)

Lo
P
-
PRSP
i

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

3.0

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
E=

A

N
n

G-C-RNLP + SLLS
G-C-RNLP + FGLS
e« G-C-RNLP + FLLS
+ =+ RNLP
+o MCS

N
°

=
o

Unlock Overheads (microseconds)
-
n

o
n

* bt
USRS

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

3500 e - o-e-a0-8-8 -0

3000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

I

Blocking (microseconds)
hooNoN
z 8 &
g 8 &
g8 8 8
3
3

1000

L]
é

500

+ o
S

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 178 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 16, and D = 6 for each request
Ri.

25:107

ECRTS

2018

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FoE
*-e
-
ot

~

o

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

w

w

~

Lock Overheads (microseconds)
IS

-

v s e s e TR KT kb, M 3844
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP
a—a G-C-RNLP + SGLS *

2.0r|e—e G-C-RNLP + SLLS :
FSE
*-e
ey
et

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Unlock Overheads (microseconds)

o
o

TR

e g
5 10 15 20 25 30 35 40
Number of Tasks

0.0
0

(b) Unlock overhead.

3500 e -0 o-a-0-8-a-0
4 3000
2
s
g 2500
4
; 2000 =—a G-C-RNLP
< s~ G-C-RNLP + SGLS
5 130 o—e G-C-RNLP + SLLS
2 1000 & - G-C-RNLP + FGLS
o o G-C-RNLP + FLLS
500 + -+ RNLP
+ot MCS
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 179 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr, = 16, and D = 8 for each request
Ri.

25:108 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

©

o

IS

Lock Overheads (microseconds)

N

PO TR ARt TAT

15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

25
=—a G-C-RNLP

= a—4 G-C-RNLP + SGLS -

g 2.0r| e—e G-C-RNLP + SLLS .

g & -4 G-C-RNLP + FGLS

I e - G-C-RNLP + FLLS

€ 15[+ RNLP

B +o+ MCS

H

3

£ 1.0]

2

o

éos " e o

s -\,/."___.,._4———\._._._.__._._.,./«
i e ho
bt

0.0
0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

3500 & -0 0-a-0-8 -8 -0
< 3000
3
§
$ 2500
¢
E 2000 =—a G-C-RNLP
£ s~ G-C-RNLP + SGLS
5 1300 o—a G-C-RNLP + SLLS
3 C-
2 1000 & -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
500 *. -+ RNLP
+o+ MCS
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 180 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr = 16, and D = 10 for each request
Ri.

C.E

30

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

111

N

S
e
&

-
&

=)

Lock Overheads (microseconds)

0 B 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

30

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

~
&

N
S

=)

Unlock Overheads (microseconds)
.
&

w

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

G-C-RNLP .
G-C-RNLP + SGLS .
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

111

o

3
e
& B

IS
S
+ %
oA

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 181 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 1 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e« G-C-RNLP + FLLS
0L/ * + RNLP

+o MCS

RS

.
Y A a-A-a-a

S ~a-h

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS L
& -4 G-C-RNLP + FGLS e

e« G-C-RNLP + FLLS
0L/ * + RNLP
+o MCS

Unlock Overheads (microseconds)

o 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#-+ RNLP

++ MCS

®
=3

=
S

@
S

w
S

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 182 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 2 for each request R;.

25:109

ECRTS

2018

25:110 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FoE
*-e
-
ot

-
=)

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

Lock Overheads (microseconds)

erenbees e b

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS .

5
il

.t

PN

Unlock Overheads (microseconds)
o

P
0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

120f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

100| & -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

80| * -+ RNLP

+o+ MCS

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 183 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 4 for each request R;.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

=)

®

o
+
H

T RN

IS

- ~e

b b A A

Lock Overheads (microseconds)
>

Ja-

~

Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

=)

®

IS

Unlock Overheads (microseconds)
o
¥
H

~

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
* -+ RNLP

MCS

o

Blocking (microseconds)
=
2
8

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 184 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 6 for each request R;.

C.E

== G-C-RNLP
12}| 4—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS
10| # 4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
8+ RNLP N

+ot MCS i

Lock Overheads (microseconds)

S Tt S S et ir STt S ettt
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

=)

®

IS

Unlock Overheads (microseconds)
o
¥
i

~

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

50

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Il

._.
&
g

P

o

,..
S
3

Blocking (microseconds)

50

15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 185 (a) Lock and (b) unlock
overheads and (c¢) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 32, and D = 8 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e« G-C-RNLP + FLLS
0L/ * + RNLP

+o MCS

RS

Lock Overheads (microseconds)

D AE T A
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#-+ RNLP

6f| ++ MCS

Unlock Overheads (microseconds)

o 5 10 15 20 25 40

Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#-+ RNLP

150f| +++ MCS

100 Ta-®

Blocking (microseconds)

50

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 186 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, n, = 32, and D = 10 for each request
Ri.

25:111

ECRTS 2018

25:112 Using Lock Servers to Scale Real-Time Locking Protocols

«

IS

~

Lock Overheads (microseconds)
w

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

S
EEET T

A e’ Al
T PYSRSPEN
o8- a-0-e-®-a_q o 0
I

bbb

0 5 10 15 20 25 30 35 40
Number of Tasks
(a) Lock overhead.
=—a G-C-RNLP
5 sl|&—4 G-C-RNLP + SGLS
£ |[e—e G-C-RNLP +SLLS o
3 & - G-C-RNLP + FGLS A
€4 e e G-CRNLP + FLLS »
S 5 - e
E ||+~ RNLP # KRN
g 3(++ MCS AL ,,0\‘ Y
2 s Sa-atesd
g2
le]
M
E
51
¥
1* b e
0 5 10 15 20 25 30 35 40
Number of Tasks
(b) Unlock overhead.
160
=—a G-C-RNLP
1400F| a—a G-C-RNLP + SGLS
1200|| ¢ G-C-RNLP +SLLS
3 & - G-C-RNLP + FGLS
2
$ 1000/ & ® G-C-RNLP + FLLS
g «:+ RNLP
2 800f| ++ MCS
>
5 600
2
@ 400
200
o
0 5 10 15 20 25 30 35 40

~

o

w

Iy

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

w

~

Lock Overheads (microseconds)

-

0

5 10 15

25

Number of Tasks

(a) Lock overhead.

w

IS

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

~

Unlock Overheads (microseconds)
w

-

ke

“o -0 o-e-0-90

(b) Unlock overhead.

5 10 15

20

25

Number of Tasks

30

35

1400

111

1200

e n
é ¥

1000

T e
o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

@
3
3

Blocking (microseconds)
®
2
S

IS
S
3

200

5 10 15

20

25

30

Number of Tasks

(c) Blocking.

Figure 187 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 1 for each request
Ri.

Number of Tasks

(c) Blocking.

Figure 188 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 2 for each request
Ri.

C.E.

Nemitz, T. Amert, and J. H. Anderson

3

== G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

RNLP

+oot MCS -

~ @

o

w
*
*

e g p-a-tm
g 2472
A .

a” o .

w s
.

o
)

Lock Overheads (microseconds)

~

-

0 5 10 15 20 25 30 35
Number of Tasks

(a) Lock overhead.

40

== G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

* =+ RNLP

+oot MCS

4
b a A A
R 4
L
.-

/ - 0-0-0-8 -6 -0 o

Iy

w

~

e-e-a-o-o

Unlock Overheads (microseconds)

-

[RPIRRRNL S TS +

0 5 10 15 20 25 30 35
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

20

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

1400

111

1200

e
& B

1000

©
8
8
P
o

o
3
3

IS
S
3

200

0 5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

Figure 189 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 4 for each request

Ri.

20

25:113

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#:+ RNLP a
+o+ MCS

Lock Overheads (microseconds)

Number of Tasks

(a) Lock overhead.

Unlock Overheads (microseconds)

40

=—a G-C-RNLP

35| a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

e e G-C-RNLP + FLLS

#-+ RNLP

2.0f| +-+ MCS

@ -6 o 0-0-0-a-a-06-0

05 ./,:‘—4—0—04—‘\‘—.—.—.—0—-—-—0—*

IR

20 25 30 35
Number of Tasks

(b) Unlock overhead.

Blocking (microseconds)

1600

40

=—a G-C-RNLP

14001 -4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
&4 G-C-RNLP + FGLS

1000/ ¢ @ G-C-RNLP + FLLS

+.+ RNLP

++ MCS

1200

®
S
S

@
2
3

0 5 10 15 20 25 30 35
Number of Tasks

(c) Blocking.

40

Figure 190 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 6 for each request
Ri.

ECRTS 2018

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FoE
*-e
-
ot

-
=)

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

®

Lock Overheads (microseconds)

40

Number of Tasks

(a) Lock overhead.

w
n

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
*-e
ey
et
"

w
o

~
n

G-C-RNLP + FLLS
RNLP
MCS

N
o

Unlock Overheads (microseconds)

g
5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

1400

1200

,_.
o
3
S

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS

I

Blocking (microseconds)
®
2
S

200 & - G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
200 +:+ RNLP
+ot MCS
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 191 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 32, and D = 8 for each request
Ri.

25:114 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

Lock Overheads (microseconds)

B
R

e
I TR ST S ch: S-S SR
0 5 10 15 20 25 30 35 40

Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

~
n

~N
o

-
o

Unlock Overheads (microseconds)
-
n

o
[

0.0
0 5 10 15 20 25 30 35 40

Number of Tasks

(b) Unlock overhead.

¢-0-0-0 o o a-o-4

1400

1200

,_.
°
3
3

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS

111

Blocking (microseconds)
®
2
S

200 & - G-C-RNLP + FGLS
o o G-C-RNLP + FLLS
200 *. -+ RNLP
+ot MCS
o
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 192 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, nr = 32, and D = 10 for each request
Ri.

C.E.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

«

IS

w

~

Lock Overheads (microseconds)

-

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

. 'A .
Vs

P I

* =+ RNLP

+ot MCS gl
: 7

Unlock Overheads (microseconds)

T
20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

G-C-RNLP
G-C-RNLP + SGLS =
G-C-RNLP + SLLS :

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
e

3500

111

3000

L g
s

*
&

2500

P
o

2000

1500

Blocking (microseconds)

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 193 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 32, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

~

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
RNLP

+o+ MCS

RS

IS
*
*

w

~N

Lock Overheads (microseconds)

-

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
A
.-
.
o

w

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Unlock Overheads (microseconds)
w

o 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

3500f| 4—a G-C-RNLP + SGLS -
e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS
#-+ RNLP

2000 ++ MCS

3000

2500

1500

Blocking (microseconds)

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 194 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 32, and D = 2 for each request
Ri.

25:115

ECRTS 2018

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
74| e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS
-
ot

5 RNLP
ot MCS UL
4 e N
._.// r’.-' *"“x’ Te.a
3 -’ ae AT T 2t
e : .

Lock Overheads (microseconds)

t
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

r
;
o — ke =k A A
- -
& .

Vs 4 a6 o-8-8 -0 -0 0-0-a-8-0-0

wb
il

~

Unlock Overheads (microseconds)
5

o—o—o

= —e—c—o

ek

[P L et

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

3500r| s—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
&4 G-C-RNLP + FGLS

25000 @ ¢ G-C-RNLP + FLLS

+ + RNLP

2000} +-+ MCS

3000

1500

Blocking (microseconds)

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 195 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr = 32, and D = 4 for each request
Ri.

25:116 Using Lock Servers to Scale Real-Time Locking Protocols

== G-C-RNLP
s~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

- G-C-RNLP + FLLS
+ % RNLP ;

©

o
>

IS

Lock Overheads (microseconds)

N

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
25l|® e G-C-RNLP + FLLS

111

Unlock Overheads (microseconds)
N
o

5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

3500

Il

2500

T e
o

Blocking (microseconds)
.o
5 8
g 8
g 8

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 196 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 32, and D = 6 for each request
Ri.

C.E.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
-

=)

« - G-CRNLP + FLLS
+.+ RNLP A x
6f|+-+ MCs AN
’ r's

o -0~ 0-@- 8-
e A A A
ox

e-g.d
$oet e o o

Lock Overheads (microseconds)

t t
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

w
n

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS

IR

N
o

Unlock Overheads (microseconds)

15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

3500 & -0~ 0-0-0-8 -0 -0

3000

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—a G-C-RNLP + SLLS
-4 G-C-RNLP + FGLS
-

-

et

Blocking (microseconds)
eooN N
2 8 ¥
g 8 8
8 8 8

1000
G-C-RNLP + FLLS
500 RNLP
MCS
o L=]
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 197 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n,. = 32, and D = 8 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP
s~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS S
e« G-C-RNLP + FLLS TN

+ =+ RNLP / PR
6| ++ MCS 4

Lock Overheads (microseconds)
>

R

J L otk i e

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

3.0

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
.
o
-/'

N
n

N
°

=
o

Unlock Overheads (microseconds)
-
n

o
n

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

3500 o -0 o-90-a-a-6 -0 -

3000

v

3

2

$ 2500

¢

2 2000 == G-C-RNLP

< s~ G-C-RNLP + SGLS

5 1500 o—a G-C-RNLP + SLLS

2 1000 & -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS

500 + -+ RNLP
+o+ MCS
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 198 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr = 32, and D = 10 for each request
Ri.

25:117

ECRTS 2018

25:118 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

~
&

S
il

-
&

-
=)

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FSE
*-e
ey
et

N
&

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

N
S

-
=)

Unlock Overheads (microseconds)
.
&

w

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
+.+ RNLP

+ot MCS e’

Blocking (microseconds)
w
g

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 199 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 1 for each request R;.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS K3
G-C-RNLP + FLLS W e g W
RNLP

IR

-

&
.
&

T e
Y

=
S

Lock Overheads (microseconds)

w

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Il

T e
o

Unlock Overheads (microseconds)
=
S

w

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
70}| @& G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
* -+ RNLP

+o+ MCS

0
)

Blocking (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 200 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, n, = 64, and D = 2 for each request R;.

C.E

== G-C-RNLP
14f 4—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
1ol|# -« G-C-RNLP + FLLS
* % RNLP .
+ot MCS [N S i
Pl

T

Lock Overheads (microseconds)
®

b b
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

== G-C-RNLP
147 a—a G-C-RNLP + SGLS
s—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
1ol|# -« G-C-RNLP + FLLS
« =+ RNLP

+ot MCS

L

b Y
A A Ak —a i A A
;

Unlock Overheads (microseconds)
®

0 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

120,
=—a G-C-RNLP

100/| 42 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

L g
s

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

@
3

*

&

P
o

»
S

Blocking (microseconds)
>
3

20

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 201 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
8 # -+ RNLP

+o+ MCS N

RS

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

12f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

e e G-C-RNLP + FLLS

8+ + RNLP

+o+ MCS

X
P
-t ek e AT
s

Unlock Overheads (microseconds)

0 5 10 15 20 25 30
Number of Tasks

(b) Unlock overhead.

40

o
S

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#-+ RNLP

++ MCS

-
5
S

-
I~
S

-
°
3

@
S

Blocking (microseconds)
®
3

I
S

N
=]

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 202 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 6 for each request R;.

25:119

ECRTS

2018

25:120 Using Lock Servers to Scale Real-Time Locking Protocols

14 == GCRNLP
s GCRNLP 14{ 4—a G-C-RNLP + SGLS
12l[4—a G-C-RNLP + SGLS o—e G-C-RNLP + SLLS
e—e G-C-RNLP + SLLS 14 4 G-C-RNLP + FGLS

10| & 4 G-C-RNLP + FGLS 10l| ® ® G-C-RNLP + FLLS

e ¢ G-C-RNLP + FLLS # -+ RNLP
8f[*# =+ RNLP 4+ MCS A
4t MCS a-a’
6 6 —-—-.-a--—‘—-.,_"‘_,_,
a-d-a® ~e

Lock Overheads (microseconds)
Lock Overheads (microseconds)
®

o Seiie O e AT R SO S S e
. 0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40 Number of Tasks

Number of Tasks
(a) Lock overhead. (a) Lock overhead.

14 == G-C-RNLP
=== G-C-RNLP & 12H{ 4= G-C-RNLP + SGLS
& 12| &= G-C-RNLP + SGLS 2 ||e—e G-C-RNLP +SLLS
5
2 ||e—e G-C-RNLP +SLLS § 10t & 4 G-C-RNLP + FGLS
§ 10r(& -4 G-C-RNLP + FGLS e e -« G-C-RNLP + FLLS
S ||e - G-CRNLP +FLLS £ 8f[++ RNLP
E 8f|+ + RNLP 3 +ot MCS A
g +o+ MCS g 6
£ §
o <]
2 < 4
S e H]
g 5
2 2
22
o .
ol ayo 0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40 Number of Tasks

Number of Tasks

(b) Unlock overhead. (b) Unlock overhead.

250

00 =—a G-C-RNLP
=—a G-C-RNLP s—a G-C-RNLP + SGLS
a4 G-C-RNLP + SGLS 200(e—e G-C-RNLP + SLLS
150l ¢ G-C-RNLP +SLLS 3 - G-C-RNLP + FGLS
8 & - G-C-RNLP + FGLS s - G-C-RNLP + FLLS
s e G-C-RNLP + FLLS 8150w w RNLP
g * =+ RNLP S st MCS
S -
2 =
E 100} +++ MCS 2 100)
2 - =
£ 3
£ H
H] -1 ®
@ 50 - 50
o
o 0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40 Number of Tasks

Number of Tasks

(c) Blocking. (c) Blocking.

Figure 204 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 10 for each request
Ri.

Figure 203 (a) Lock and (b) unlock
overheads and (c¢) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
1us, nr = 64, and D = 8 for each request R;.

C.E.

~

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
ba
.-
-

o

w

G-C-RNLP + FGLS
G-C-RNLP + FLLS

Iy

w

~

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

~

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Il

IS
P
*

w

~

Unlock Overheads (microseconds)

-

)

20
Number of Tasks

(b) Unlock overhead.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

1400

111

1200

e
& B

1000

P
o

o
3
3

Blocking (microseconds)
®
2
S

IS
S
3

200 Ao,

0 s—a—8%
0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 205 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
ey
.-
ey
Aot

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Lock Overheads (microseconds)

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

~

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS .
A

.-

.

o

o

v

G-C-RNLP + FGLS (e ™
G-C-RNLP + FLLS <

IS

w

~N

Unlock Overheads (microseconds)

-

40
Number of Tasks

(b) Unlock overhead.

1600

=—a G-C-RNLP

14001 -4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

&4 G-C-RNLP + FGLS

1000/ ¢ @ G-C-RNLP + FLLS

+.+ RNLP

++ MCS

1200

@
2
3

Blocking (microseconds)
®
8
8

IS
S
3

N
=1
S

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 206 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 2 for each request
Ri.

25:121

ECRTS 2018

25:122 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP
G-C-RNLP + SGLS

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
e—a

=)

—
P At P
B 8f|e—e G-CRNLP +5LLS 3 G-C-RNLP + SLLS
$ & -4 G-C-RNLP + FGLS g & -4 G-C-RNLP + FGLS
& ||e< G-CRNLP+FLLS £ %o« G-CRNLP +FLLS
2 [+ RNLP g ||+~ RNLP
5 ||+ mcs [e-ee 3 8[|+ MCs
E B b E’ T g g
g g 4 _a-a-t’
s i~ o e
i, 3 e
2
0 ‘ ‘ I e O e e
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of Tasks Number of Tasks
(a) Lock overhead. (a) Lock overhead.

~

G-C-RNLP
G-C-RNLP + SGLS

—a G-C-RNLP
A

e—e G-C-RNLP + SLLS

FSE

*-e

ey

et

—a

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

MCS

K
i -a- A- AL
. -

o
w

w

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

IS
IS

w

~
~

~@-6-0-0-0-8-8-8-0-0

Unlock Overheads (microseconds)
Unlock Overheads (microseconds)
w
¥
H

-

.
nU 40 nO 5 10 15 20 25 30 35 40
Number of Tasks Number of Tasks
(b) Unlock overhead. (b) Unlock overhead.
160 1600
== G-C-RNLP == G-C-RNLP
1400 4—a G-C-RNLP + SGLS 1400 4—a G-C-RNLP + SGLS
1200l &= G-CRNLP +5LLS 1200l 5= G-CRNLP + SLLS
3 & - G-C-RNLP + FGLS 2 & -4 G-C-RNLP + FGLS
] g
S 1000l ® @ G-C-RNLP + FLLS S 1000l ¢ ® G-C-RNLP + FLLS
2 * =+ RNLP £ + % RNLP
S goof| +-+ MCS -e g 80Ot ++ MCS
E E
> >
£ 600 £ 600
8 8
@ 400 @ 400

(c) Blocking. (c) Blocking.
Figure 207 (a) Lock and (b) unlock Figure 208 (a) Lock and (b) unlock

overheads and (c) blocking for requests un- overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C- paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; = RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 4 for each request 40us, n, = 64, and D = 6 for each request

C.E.

== G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

* =+ RNLP

6|+ MCS ..

=)

®

Lock Overheads (microseconds)

e
R

L.
[P EPY
e

b e bk

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS
-+ RNLP o
+o+ MCS

Iy

w

. +
DuE TR S SN

~
v
.
'
»
1
L3
\
L4
vé\

Unlock Overheads (microseconds)

_:.,+‘<'l.-.-.-o-o—+4-1-c-o—o

-

e S

10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS =
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

1400

111

1200

e
& B

1000

P
o

o
3
3

Blocking (microseconds)
®
2
S

IS
S
3

~
S
3

>

o
«
-
)

15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 209 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, n, = 64, and D = 8 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
E=

ey

-
S

G-C-RNLP + SLLS

G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#:+ RNLP

®

Lock Overheads (microseconds)

-
B S T

[

ek t e
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

35| a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

e e G-C-RNLP + FLLS

#-+ RNLP

MCS

Unlock Overheads (microseconds)
~
°
¥
H

40
Number of Tasks

(b) Unlock overhead.

1600

_e-o-0 - a-a-o
1400 L

1200

-
°
3
3

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS

Blocking (microseconds)
®
8
8

L4
3

e - G-C-RNLP + FLLS
200! #-+ RNLP
+ot MCS
0 5 10 15 20 25 30 35 40

Number of Tasks

(c) Blocking.

Figure 210 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
40us, nr = 64, and D = 10 for each request
Ri.

25:123

ECRTS 2018

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FoE
*-e
-
ot

«

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

IS

~

Lock Overheads (microseconds)
w

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

~

== G-C-RNLP
a—a G-C-RNLP + SGLS o-a"
e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
& -« G-C-RNLP + FLLS
* =+ RNLP

+ot MCS

o

w

IS

w

~

Unlock Overheads (microseconds)

>

15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

o
«
-
S

=—a G-C-RNLP

35001| o—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

#+ RNLP

2000} +-+ MCS

3000

2500

1500

Blocking (microseconds)

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 211 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr, = 64, and D = 1 for each request
Ri.

25:124 Using Lock Servers to Scale Real-Time Locking Protocols

3

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
kA
.-
.

<

o

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

+ot MCS

w

w

~

Lock Overheads (microseconds)
N

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

~

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Il

IS
-
*

w

~

Unlock Overheads (microseconds)

-

bbb
(] 5 10 15 20 25 30 3 20
Number of Tasks

(b) Unlock overhead.

>
,

4000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

3500

111

3000

e n
é ¥

2500

T e
o

2000

1500

Blocking (microseconds)

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 212 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 64, and D = 2 for each request
Ri.

C.E

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

+ot MCS

Il

o
*
*

IS

Lock Overheads (microseconds)

N

t
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

~

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

Il

IS
P
*

w

~

Unlock Overheads (microseconds)

-

)

20
Number of Tasks

(b) Unlock overhead.

4000

G-C-RNLP
G-C-RNLP + SGLS =
G-C-RNLP + SLLS :
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

e

3500

111

3000

e
& B

2500

P
o

2000

1500

Blocking (microseconds)

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 213 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 64, and D = 4 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#:+ RNLP

6f| ++ MCS

RS

®

Lock Overheads (microseconds)

. - +
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
E=

A

w

G-C-RNLP + SLLS

G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#.+ RNLP P
++ MCS 4

TeanhTe e
J

Unlock Overheads (microseconds)
w

40

Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

3500 a—a G-C-RNLP + SGLS ot
e—e G-C-RNLP + SLLS

&4 G-C-RNLP + FGLS

25000 & ¢ G-C-RNLP + FLLS
+.+ RNLP

2000 ++ MCS

3000

1500

Blocking (microseconds)

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 214 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, n, = 64, and D = 6 for each request
Ri.

25:125

ECRTS 2018

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
FoE
*-e
-
ot

-
=)

G-C-RNLP + FGLS
G-C-RNLP + FLLS

®

RNLP

Lock Overheads (microseconds)
o

t +
0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

wb
il

~

Unlock Overheads (microseconds)
5

AL g o
(] 5 10 15 20 25 30 35 20
Number of Tasks

(b) Unlock overhead.

=—a G-C-RNLP

35001| o—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

#+ RNLP

2000} +-+ MCS

3000

2500

1500

Blocking (microseconds)

1000

500

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 215 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr, = 64, and D = 8 for each request
Ri.

25:126 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

=)

®

o
+
H

IS

Lock Overheads (microseconds)

~

R r ST T TR LLL b

ke

0 5 10 15 20 25 30 35 40
Number of Tasks

(a) Lock overhead.

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
35| e—e G-C-RNLP + SLLS
kA
.-
.

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Unlock Overheads (microseconds)

+

e
bbb

0.0 g by
. 5 10 15 20 25 30 35 40
Number of Tasks

(b) Unlock overhead.

4000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

3500

Il

2500

T e
o

Blocking (microseconds)
.o
5 8
g 8
g 8

1000

0 5 10 15 20 25 30 35 40
Number of Tasks

(c) Blocking.

Figure 216 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, L; =
100us, nr = 64, and D = 10 for each request
Ri.

C.E

G-C-RNLP
G-C-RNLP + SGLS

—
P 12 A—A
g o—o G-C-RNLP + SLLS
g 10 & -4 G-C-RNLP + FGLS
g oo G-C-RNLP + FLLS
€8, ..soe-nczannftt RNLP
3 e ot MCS
g 6
]
§
3 4
S eccameen-- e -
3 e
2
o
10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

- 12
8
g
£
§ 10|
4 a4 G-C-RNLP + SGLS
Esr - o—o G-C-RNLP + SLLS
] mmmmmmm & -a G-C-RNLP + FGLS
£ 6 T o - G-C-RNLP + FLLS
g b +.+ RNLP
S 4 +ot MCS
g
s e geeeoeoooooooo -
22
JR—
o
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
25
G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

20

Blocking (microseconds)

10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 217 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 1 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

Lock Overheads (microseconds)

25:127

-
S

®

o

>

~N

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS

G-C-RNLP + FGLS
G-C-RNLP + FLLS

RNLP
MCS

10

40 50 60
Number of Resources

(a) Lock overhead.

Unlock Overheads (microseconds)

70

-
S

®

o

IS

~N

—
aa
L
ra

.-
.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS

G-C-RNLP + FGLS
G-C-RNLP + FLLS

RNLP

10

40 50 60
Number of Resources

(b) Unlock overhead.

Blocking (microseconds)

70

w
S

N
&

N
S

-
&

"
S

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

(c) Blocking.

40 50 60
Number of Resources

70

Figure 218 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 2 for each request R;.

ECRTS

2018

25:128 Using Lock Servers to Scale Real-Time Locking Protocols

—x
G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Il

P
o

Lock Overheads (microseconds)
IS

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® - G-C-RNLP + FLLS
RNLP

[Tl

n

IS
P
-

MCS

w

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
#--+ RNLP

MCS

Blocking (microseconds)

Number of Resources

(c) Blocking.

Figure 219 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 4 for each request R;.

=—a G-C-RNLP
7| a—a G-C-RNLP + SGLS
ol G-C-RNLP + SLLS -

& -4 G-C-RNLP + FGLS -

- G-C-RNLP + FLLS -

*.+ RNLP - L
MCs -7

Lock Overheads (microseconds)
N
¥
H

Number of Resources

(a) Lock overhead.

~

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
A
°-e
o

o

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

w

IS

MCS

w

~

Unlock Overheads (microseconds)

-

Number of Resources

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
SN
°-e

@
3

G-C-RNLP + FGLS

G-C-RNLP + FLLS
+ .+ RNLP
S +ot MCS

w
3

w
8

Blocking (microseconds)
N
8

N
S
*

10
10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 220 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 6 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

3

=—a G-C-RNLP
&—4 G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS | —=
& -o G-C-RNLP + FGLS _-e
® - G-C-RNLP + FLLS | .-
* -+ RNLP

}

o
\
\
\

w

N

w

Lock Overheads (microseconds)

~

70
Number of Resources

(a) Lock overhead.

~

= G-C-RNLP
s G-C-RNLP + SGLS L —
o—o G-C-RNLP + SLLS
k-4 G-C-RNLP + FGLS

o— |o - G-CRNLP +FLLS

* -+ RNLP

o

w

IS

Unlock Overheads (microseconds)
w

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

80

70

G-C-RNLP

G-C-RNLP + FLLS
RNLP
MCS

Blocking (microseconds)
@
2

30

Number of Resources

(c) Blocking.

Figure 221 (a) Lock and (b) unlock
overheads and (c¢) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 8 for each request R;.

=—a G-C-RNLP
&—4 G-C-RNLP + SGLS
oo

19 — G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS —
8 o - G-C-RNLP + FLLS

« =+ RNLP
6 +t MCS --e

Lock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

~

G-C-RNLP .

—
&—4 G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
kA
* -0
*k
P
L]

o

|

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS - -

IS
*

w

~N

Unlock Overheads (microseconds)
u
n

-

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS

—
—

oo G-C-RNLP + SLLS

r4 GCRNLP + FOLS| ———u
.-

-

st

®
S

<
S

G-C-RNLP + FLLS
RNLP

a
=]

Blocking (microseconds)

10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 222 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, and D = 10 for each request
Ri.

25:129

ECRTS 2018

4.0
== G-CRNLP

35 o — |4 G-C-RNLP + SGLS
g oo G-C-RNLP + SLLS
<30 [¢ --mmmm-
] & G-C-RNLP + FGLS
2,5 o G-C-RNLP + FLLS
£ # .-+ RNLP
2 20 -1 +s MCS
3
g
E 1.5 * .
g
o
%10
35

0.5

0.0

10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

3.0
./‘\ =—a G-C-RNLP
225 a—a G-C-RNLP + SGLS
2 o—o G-C-RNLP + SLLS
§ & -4 G-C-RNLP + FGLS
g20 oo G-C-RNLP + FLLS
E # -+ RNLP
2 15 +ot MCS
3
g
g
3 10
3
2
Sos
0.0
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
700
=—a G-C-RNLP
600 a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
g s00 x4 G-C-RNLP + FGLS
2
8 ® - G-C-RNLP + FLLS
2 a00 *.-+ RNLP
£ +t MCS
E\ 300
%’ 200
100
0
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 223 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 1 for each request
Ri.

25:130 Using Lock Servers to Scale Real-Time Locking Protocols

45
s a GCRNLP .
40 s—4 G-C-RNLP + SGLS
35 o0 G-C-RNLP +SLLS [~~~ "7~ °
_.-"7|® -4 G-C-RNLP + FGLS
30 e-" e o G-C-RNLP + FLLS
25 *o RNLP | "
-1 ot MCS

|

Il
n

Lock Overheads (microseconds)
I
o

o
o

0.0
10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

35
== G-C-RNLP
530 s~ G-C-RNLP + SGLS
g o—o G-C-RNLP + SLLS
g 25 & -4 G-C-RNLP + FGLS
e o e G-C-RNLP + FLLS
E20 iz *.+ RNLP
E cmreT +o+ MCS
21s £ == s
£ DU
g 1.0 o--""
°
=
205
0.0
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
7
== G-C-RNLP
600 s~ G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
g & G-CRNLP + FGLS
2
§ 500 o - G-C-RNLP + FLLS
2 + -+ RNLP
EAOD 4+ MCS
£ -
g
% 300
E-
a
200
100
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 224 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 2 for each request
Ri.

C.E. Nemitz, T. Amert, and J. H. Anderson

o

w

IS

w

Y

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

== G.CRNLP
5 s—4 G-C-RNLP + SGLS "‘:
E / o—0 G-C-RNLP + SLLS | - ===~
8 & -4 G-C-RNLP + FGLS
g4 __.|e- GCRNLP +FLLS
B e Re _
E e T
@3 i s
K R
§ /
- R -
5 JEPTTETEIEEL
E
£
o
10 20 30 20 <o - I}
Number of Resources
(a) Lock overhead.
40
== G.CRNLP
& >°[| & G-C-RNLP + SGLS
% 3.0 e—e G-C-RNLP + SLLS
§°%| x4 GCRNLP +FGLS
€ ,sl|e = G-CRNLP +FLLS
E ||+~ RNLP .
saollen mes | et
g -l P
-4 B
515 /__—:‘.'.....‘..
o * s
g 10 — -
5
0.5
0.0
10 20 30 20 £ - I}

Number of Resources

(b) Unlock overhead.

1200
== G-C-RNLP
a—a G-C-RNLP + SGLS
1000 o—o G-C-RNLP + SLLS
) x4 G-C-RNLP + FGLS
s e - G-C-RNLP + FLLS
§ 800 +.+ RNLP
g o -+ MCS
° 600 .
3
2
400
200
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 225 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 4 for each request
Ri.

RNLP
MCS

~N

Lock Overheads (microseconds)

-
.

40 50 60 70
Number of Resources

10 20 30

(a) Lock overhead.

=—a G-C-RNLP
3.0 44 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
2.0t #-+ RNLP -
++ MCS -

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

1400

== G-C-RNLP
a—a G-C-RNLP + SGLS
1200 o—o G-C-RNLP + SLLS
8 & -4 G-C-RNLP + FGLS
e
& o G-C-RNLP + FLLS
§ 109 +.+ RNLP
H ++ MCS
E’ 800
2
2
600
400
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 226 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 6 for each request
Ri.

25:131

ECRTS 2018

~

o

w

Iy

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

]

Lock Overheads (microseconds)
~
L3
3

+
&

)

20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

1
1)

3.0
== G-C-RNLP
25|/ &4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
20f| e G-C-RNLP + FLLS
#.+ RNLP _a
o

1.0

Unlock Overheads (microseconds)
.
n

Number of Resources

(b) Unlock overhead.

140
1300
3 1200 aa G.C-RNLP
g
S 1100/| & G-C-RNLP + SGLS
g
2 e—e G-C-RNLP + SLLS
2 1000/ # 4 G-C-RNLP + FGLS
> e -« G-C-RNLP + FLLS
S %00r|« .« RNLP
2 ool Mcs
700 —
00
10 20 30 70

Number of Resources

(c) Blocking.

Figure 227 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 8 for each request
Ri.

~

25:132 Using Lock Servers to Scale Real-Time Locking Protocols

~ w » w o

Lock Overheads (microseconds)

-

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

"
°

T
s L MCS
5¢

Number of Resources

(a) Lock overhead.

25
=—a G-C-RNLP

= &—4 G-C-RNLP + SGLS
g 2.0r| e—e G-C-RNLP + SLLS
g & -4 G-C-RNLP + FGLS
g e - G-C-RNLP + FLLS
€ 15[+ RNLP -t
4 et
3
g
£ 1.0]
g
o
g
205
E

0.9

10 20 30 20 50 60 70

Number of Resources

(b) Unlock overhead.

1400
1300 ’/—.\.
g =—a G-C-RNLP
2
S 1100 4~ G-C-RNLP + SGLS
g
¢ oo G-C-RNLP + SLLS
£ 1000 & -2 G-C-RNLP + FGLS
= oo G-C-RNLP + FLLS
5 9 +.+ RNLP
Z s00 +t MCS
700 - el o o o ——m e — = = = =~ -~ — —o
600
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 228 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, and D = 10 for each request
Ri.

C.E

4.0
35 —_—
E 3.0 P & =
g =—a G-C-RNLP
g, s—a G-C-RNLP + SGLS
£ o~ G-C-RNLP + SLLS
520 - G-C-RNLP + FGLS
g - G-C-RNLP + FLLS
g
§ 17 ++ RNLP
S 10 ror MCS
3
0.5
0.0
10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

3.0
=—a G-C-RNLP

=25 s—a G-C-RNLP + SGLS
H o—e G-C-RNLP + SLLS
g & -4 G-C-RNLP + FGLS
g 20 e o G-C-RNLP + FLLS
E * =+ RNLP
& 15 ++ MCS
H
£
g
3 1.0
2
B
Sos

0.0

10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

1800
- G-C-RNLP
1600 s~ G-C-RNLP + SGLS
1400 oo G-C-RNLP + SLLS
) x4 G-C-RNLP + FGLS
£ 1200]
] o - G-C-RNLP + FLLS
g
£ 1000 * % RNLP
o +ot MCS
= 800 -
g
% 600
3
3
400 .\c.;g,
200]
o
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 229 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

-—
== G-C-RNLP —
40 »—4 G-C-RNLP + SGLS
£3s o—o G-C-RNLP +SLLS [~~~ """ ¢
g _.-~"7| &4 G-C-RNLP + FGLS
g 3.0 L3 ® -e G-C-RNLP + FLLS
£ 25 *o« RNLP | N
a | e----71 +t MCS
820 T e *
2 T
g 1.5
[e) —_ .
<10
g
0.5
0.4
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
35
=—a G-C-RNLP
530 a—a G-C-RNLP + SGLS
E o—o G-C-RNLP + SLLS
§ 25 & 4 G-C-RNLP + FGLS
g o e G-C-RNLP + FLLS
E20 g iz ** RNLP
8 --”““. ot MCS
st T g
§ BT
< 10 -7
g
2
205
0.4
10 20 30 40 50 60 70
Number of Resources
(b) Unlock overhead.
1800,
s s =—a G-C-RNLP
1600 a—a G-C-RNLP + SGLS
oo G-C-RNLP + SLLS
1400
& -4 G-C-RNLP + FGLS
o e G-C-RNLP + FLLS
++ RNLP
++ MCS

Blocking (microseconds)
O
© B R
g 8 8
8 8 8

@
3
=3

10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 230 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and ID = 2 for each request
Ri.

25:133

ECRTS 2018

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Mcs |[ooom=b

IS

m
ruilll
:
.
.
1Y

\\

Lock Overheads (microseconds)
w

*

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

I

4.0
=—a G-C-RNLP

= 3.5r a—a G-C-RNLP + SGLS
US 30 e—e G-C-RNLP + SLLS
g ||# G-C-RNLP + FGLS
g osl|e < G-C-RNLP +FLLS
E ||+~ RNLP BN
B 2.0H ++ MCS
8 - ox
£ - _oan Il
$ =
8
g
<
5

\

o
>

1
1)
N
S
w
3

Number of Resources

(b) Unlock overhead.

=—a G-C-RNLP
a—4 G-C-RNLP + SGLS
2500 o—e G-C-RNLP + SLLS
35 & -4 G-C-RNLP + FGLS
g
] ® - G-C-RNLP + FLLS
3
§ 2000 v+ RNLP
E ot
2 1500
=
2
B
1000
500
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 231 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 4 for each request
Ri.

25:134 Using Lock Servers to Scale Real-Time Locking Protocols

6
B)
2
§ 5 _| == G-C-RNLP
g - s~ G-C-RNLP + SGLS
24 Pt o—o G-C-RNLP + SLLS
2 PP & -2 G-C-RNLP + FGLS
g3 - e - G-C-RNLP + FLLS
5 +.+ RNLP
ol e/ | mos
=
3 IR
S
i .
e
0
10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
35
== G-C-RNLP
3.0}{4—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
2.5t &# 4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
2.0t #-+ RNLP _a
+o+ MCS T

Unlock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

== G-C-RNLP
a4 G-C-RNLP + SGLS

3000 oo G-C-RNLP + SLLS
g » - G-C-RNLP + FGLS
s o -e G-C-RNLP + FLLS
§ 20 + % RNLP
2 ot MCS
2 2000
3
=

1500

1000

Number of Resources

(c) Blocking.

Figure 232 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 6 for each request
Ri.

C.E.

~

o

w

Iy

R T > =—a G-C-RNLP

]

G-C-RNLP + SGLS
e—a G-C-RNLP + SLLS
G-C-RNLP + FGLS
o - G-C-RNLP + FLLS
s RNLP
IIPTEE o ++ MCS

Lock Overheads (microseconds)
~
L4
3

,4
*
&

o

i
1)
[N1ES
S
w
3

40 50 60 70
Number of Resources

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP -

1.0

Unlock Overheads (microseconds)
-
n

10 20 30 40
Number of Resources

50 60 70

(b) Unlock overhead.

3000

== G-C-RNLP
a—a G-C-RNLP + SGLS
e—a G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
+ % RNLP

+oot MCS

2500} &

Blocking (microseconds)
°
6 ¥

N
S
3
S

1500

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 233 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 8 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

~

,‘6
§° --="" |m—a G-CRNLP
$ __.]as G-CRNLP + SGLS
e TranoTT o—o G-C-RNLP + SLLS
8 » -4 G-C-RNLP + FGLS
g3 oo G-C-RNLP + FLLS
f +.+ RNLP
3’ -t MCS
¥
L

1

10 20 30 20 <5 & %

Number of Resources

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
2.0r|e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

e e G-C-RNLP + FLLS

Unlock Overheads (microseconds)

“10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

3200 ._—_\

__3000]
3 =—a G-C-RNLP
£ 2800 a—a G-C-RNLP + SGLS
S
8
£ 2600 o—o G-C-RNLP + SLLS
; & -a G-C-RNLP + FGLS
< 2400 ® - G-C-RNLP + FLLS
§ 2200 *v RNLP
g ++ MCS

2000

1800

______ 2
1600
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 234 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, and D = 10 for each request
Ri.

25:135

ECRTS 2018

25:136 Using Lock Servers to Scale Real-Time Locking Protocols

~
&

G-C-RNLP

20 " JUPPEEL s—a G-C-RNLP + SGLS
w7 o—o G-C-RNLP + SLLS
15 & -4 G-C-RNLP + FGLS

& -0 G-C-RNLP + FLLS

Lock Overheads (microseconds)

10 ». RNLP
+t MCS
5
____________ o
g m === g ---==-==
0
10 20 30 40 50 5 20

Number of Resources

(a) Lock overhead.

w25
° R
5 HATEIEIEY
g G-C-RNLP
g 20 JUBSESELL a—a G-C-RNLP + SGLS
£ T o—o G-C-RNLP + SLLS
g 15 w7 -4 G-C-RNLP + FGLS
2 & - G-C-RNLP + FLLS
3T +:+ RNLP
3 +ot MCS
B
Ssf o= -2
& =--=====" e--"""
0
10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

. == G-C-RNLP
. s~ G-C-RNLP + SGLS
80 o—o G-C-RNLP + SLLS
3 & -4 G-C-RNLP + FGLS
2
S o o G-C-RNLP + FLLS
g e » 4 RNLP
S .
£ _Mes
2 40
3
a
20
0
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 235 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 1 for each request R;.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
-+ RNLP

+o+ MCS

N
S

-
&

Lock Overheads (microseconds)
=
S
k

w

Number of Resources

(a) Lock overhead.

== G-C-RNLP
a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
».+ RNLP - .-
+o+ MCS .-

N
S

-

&

\
3

,..
S
\
\
\

Unlock Overheads (microseconds)
w
\
\
\
\

Number of Resources

(b) Unlock overhead.

80 — P
370 cenn =—a G-C-RNLP
2
5 . a—a G-C-RNLP + SGLS
8
g 60 o—o G-C-RNLP + SLLS
2 . -2 G-C-RNLP + FGLS
= 50 * “| ® - G-C-RNLP + FLLS
-] - ++ RNLP
240 ot

30

2

10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 236 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 2 for each request R;.

C.E

—= GCRNLP
o +— G-C-RNLP + SGLS /
g, o—o G-C-RNLP + SLLS
g & -o G-C-RNLP + FGLS
g1l —*= GCRNLP+FLS
B *:+ RNLP
3z 8 4 MCS ek
2 .
3
£ 6
§
g
o
x4
3
2
0

Number of Resources

(a) Lock overhead.

=—a G-C-RNLP
14F a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
- G-C-RNLP + FGLS
- G-C-RNLP + FLLS
-+ RNLP
8f| ++ MCS

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

160
=—a G-C-RNLP
140 a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
3 120] & -4 G-C-RNLP + FGLS
2
] ® - G-C-RNLP + FLLS
5100 #.+ RNLP
g +o+ MCS
E\ 80
% 60
40
0
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 237 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

G-C-RNLP

—
12 — L —{s4 GCRNLP+SGLS
oo

G-C-RNLP + SLLS

10| & -4 G-C-RNLP + FGLS
® o G-C-RNLP + FLLS
8| #:-+ RNLP
ok

Lock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

I

H
® 5
Tt e
s oé B

o

&

Unlock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

I

L 2
é B

+
S

Blocking (microseconds)
-
9
S

40
10 20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 238 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 6 for each request R;.

25:137

ECRTS

2018

25:138 Using Lock Servers to Scale Real-Time Locking Protocols

== G-C-RNLP

u \‘— a—a G-C-RNLP + SGLS

o—e G-C-RNLP + SLLS

x4 G-C-RNLP + FGLS

- G-C-RNLP + FLLS
#:» RNLP
MCS

Lock Overheads (microseconds)
®
¥
i

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

=—a G-C-RNLP
12 a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
10 & -4 G-C-RNLP + FGLS
® -® G-C-RNLP + FLLS
8 # -+ RNLP
+ot MCS

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
200 o—e G-C-RNLP + SLLS

G-C-RNLP + FGLS
G-C-RNLP + FLLS
-+ RNLP
MCS

Blocking (microseconds)
&
g
"
H

Number of Resources

(c) Blocking.

Figure 239 (a) Lock and (b) unlock
overheads and (c¢) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 8 for each request R;.

Bos e e
®» 5 5 & o

o

Lock Overheads (microseconds)

__\ == G-C-RNLP
a—4 G-C-RNLP + SGLS
oo

G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
+ =+ RNLP
+ot MCS

20 30 40 50 60
Number of Resources

(a) Lock overhead.

= =
o S N

o

Unlock Overheads (microseconds)

G-C-RNLP

G-C-RNLP + SLLS
/ &4 G-CRNLP + FGLS

- G-C-RNLP + FLLS
RNLP

—a
a—a G-C-RNLP + SGLS
oo

Number of Resources

(b) Unlock overhead.

250

150|

Blocking (microseconds)

100

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

&4 G-C-RNLP + FGLS
o - G-C-RNLP + FLLS
+ .+ RNLP
+ot MCS

Number of Resources

(c) Blocking.

Figure 240 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, and D = 10 for each request

Ri.

C.E.

~

—s GCRNLP
_6 -4 GCRNLP + SGLS|—
g o—s G-C-RNLP + SLLS
gs k-4 G-C-RNLP + FGLS |----== " *
8 _/ oo G-C-RNLP + FLLS
£4 | %+ RNLP Y |
s B +ot MCS -
8
g3 et cem T
£ z2z2=--
§ o-s
g
o2 o °
M .
s
1
o
10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

~

=—a G-C-RNLP

&—4 G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
koA
> -0
o
bt

o

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

w

\

w
\
\

~
o

Unlock Overheads (microseconds)

-

)

1
1)
N
S
w
3

40 50 60 70
Number of Resources

(b) Unlock overhead.

1400,
1200
3 1000 =—a G-C-RNLP
2
s s~ G-C-RNLP + SGLS
£ s00 o—o G-C-RNLP + SLLS
g & -+ G-C-RNLP + FGLS
o 600 e - G-C-RNLP + FLLS
- +-+ RNLP
g 400 \ ++ MCS
200 \\
o
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 241 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 1 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

~

/ == G-C-RNLP

6 s~ G-C-RNLP + SGLS
- o—o G-C-RNLP + SLLS
gs & -4 G-C-RNLP + FGLS
g G-C-RNLP + FLLS
24 RNLP
Y MCS
2
g3 aaa-- °
£ B il
5 Ce--
o2 -~
3
k)

1

10 20 30 40 50 60 70

Number of Resources

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

1400

1200
3 == G-C-RNLP
£ 1000]
g a—a G-C-RNLP + SGLS
4 o—o G-C-RNLP + SLLS
< 800 x4 G-C-RNLP + FGLS
< o G-C-RNLP + FLLS
= 600 e *-=+ RNLP
s o ++ MCS

400

20

10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 242 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 2 for each request
Ri.

25:139

ECRTS 2018

——u
G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

I

L g
s
Lock Overheads (microseconds)

*
é

P
o

MCS

Lock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

~

G-C-RNLP

—a
a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

*-e

ey

et

o

w

G-C-RNLP + FLLS
RNLP e

IS

[[e PR

w

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
1200 G-C-RNLP + SLLS
g G-C-RNLP + FGLS
g
8 G-C-RNLP + FLLS
g 1009 RNLP
5
2 mcs
g‘ 800
8
5
600
40
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 243 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 4 for each request
Ri.

25:140 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
oo

G-C-RNLP + SLLS
_/./ &4 G-CRNLP + FGLS
- G-C-RNLP + FLLS

-+ RNLP

=)

®

o
¥
H
=
0
%

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

=—a G-C-RNLP
s—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

< G-C-RNLP + FLLS
-+ RNLP e
MCs UTUTETIE ST A

w

IS

Unlock Overheads (microseconds)
w
¥
H

Number of Resources

(b) Unlock overhead.

1500

1400

1300

1200

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

@—a G-C-RNLP + SLLS

& -2 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

* + RNLP

+o+ MCS

1100

1000

Blocking (microseconds)

©
S
3

@
3
3

~

1
)

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 244 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 6 for each request
Ri.

C.E.

G-C-RNLP
G-C-RNLP + SGLS

—
—a
o—s G-C-RNLP + SLLS
/ &4 G-C-RNLP + FGLS
oo G-C-RNLP + FLLS
Nk
i

=)

®

RNLP
MCS

Lock Overheads (microseconds)
o
'
'
'
'

Number of Resources

(a) Lock overhead.

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS

- G-C-RNLP + FLLS
* =+ RNLP e
+o4 MCS s

Iy

w

~

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

1500,

1450 e----""""" s
1400| s

1350 T Q e s

1300

Nemitz, T. Amert, and J. H. Anderson

25:141

1

—= G-CRNLP

0 4 G-C-RNLP + SGLS

E // oo G-C-RNLP + SLLS

g T &4 G-CRNLP + FGLS

g A oo G-C-RNLP + FLLS

£ Rl PO ».+ RNLP

56 o MCS

3

g

£

g4

o

$

g

= 2

10 20 30 40 50 60 70
Number of Resources
(a) Lock overhead.
4.0
—= G-CRNLP
35 4 G-C-RNLP + SGLS

oo G-C-RNLP + SLLS

N oW

o o
Tt e
s oé B

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

Unlock Overheads (microseconds)
~
°

Number of Resources

(b) Unlock overhead.

70

1250

1200

—a
A
a—a

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS

Blocking (microseconds)

1150

& -a G-C-RNLP + FGLS
e e G-C-RNLP + FLLS

* =+ RNLP
+oet MCS

1100

1050

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 245 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 8 for each request
Ri.

1500
=—a G-C-RNLP
B a4 G-C-RNLP + SGLS
1450 o--""" o—o G-C-RNLP + SLLS
g » - G-C-RNLP + FGLS
s e - G-C-RNLP + FLLS
§ 1400 v+ RNLP
¢ i |+ MCS
21350
3
2
1300
1250
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 246 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, and D = 10 for each request
Ri.

ECRTS 2018

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
-+ RNLP

+et MCS

Lock Overheads (microseconds)
w

Number of Resources

(a) Lock overhead.

~

=—1 G-C-RNLP
56 a—a G-C-RNLP + SGLS Lo
H o—o G-C-RNLP + SLLS
g5 x -4 G-C-RNLP + FGLS |-~
g o - G-C-RNLP + FLLS ——*
Ea / *: - RNLP
3 il st MCS
g3 * § N
2 e
5 o ssee-®TTT
<2 &£--"
3 :// =
5 1

0

10 20 30 40 50 60 70

Number of Resources

(b) Unlock overhead.

3500

3000
3 2500 =—a G-C-RNLP
E
§ a—a G-C-RNLP + SGLS
2000 o—o G-C-RNLP + SLLS
g & G-C-RNLP + FGLS
o 1500 ® - G-C-RNLP + FLLS
H #:+ RNLP
2 1000] \ +ot MCS
500 \\
0
10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 247 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 1 for each request
Ri.

25:142 Using Lock Servers to Scale Real-Time Locking Protocols

= GCRNLP
s—a G-C-RNLP + SGLS
""" |o—o G-CRNLP+5LLS
& -4 G-C-RNLP + FGLS
o - G-C-RNLP + FLLS
+.+ RNLP
ot MCS

Lock Overheads (microseconds)
N

Number of Resources

(a) Lock overhead.

~

—= G-C-RNLP
56 a4 G-C-RNLP + SGLS
i /-/ oo G-C-RNLP + SLLS
35|#- G-C-RNLP + FGLS
g w7 e e G-CRNLP + FLLS
Ea .4 RNLP

8 - O ot MCS

£s3 w7

S2 —_—

8 a--e T

51 :;;—a//.

Number of Resources

(b) Unlock overhead.

3000
) =—a G-C-RNLP
£ 2500
g a—a G-C-RNLP + SGLS
g o—o G-C-RNLP + SLLS
£ 2000 x4 G-C-RNLP + FGLS
= o - G-C-RNLP + FLLS
< 1500 *'+ RNLP
E e

1000

5

10 20 30 40 50 60 70

Number of Resources

(c) Blocking.

Figure 248 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 2 for each request
Ri.

C.E

== G-CRNLP
s GCRNLP4SGLS|
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
« - G-CRNLP + FLLS
+.+ RNLP

©

o

IS

Lock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

~

== G-C-RNLP
s~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
4| »-+ RNLP IUTPIRIEEL)
+ot MCS)

o

w

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
& - G-C-RNLP + FGLS
oo G-C-RNLP + FLLS
*.+ RNLP

+oet MCS

3000 oo

2500

2000

Blocking (microseconds)

1500

1000

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 249 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 4 for each request
Ri.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

./'/ & -4 G-C-RNLP + FGLS

® -® G-C-RNLP + FLLS
#:+ RNLP
Aot

Lock Overheads (microseconds)

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
E=

A

w

G-C-RNLP + SLLS
G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#-+ RNLP o

+o MCS s et e

IS

~N

Unlock Overheads (microseconds)
w

-

10 20 30 40 50 60 70
Number of Resources

(b) Unlock overhead.

601

3400

3200

3000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
2200|e- - G-C-RNLP + FLLS
#:+ RNLP

+-+ MCS

NN
a2 @
s 3
s 3

Ld

lIII

2400

Blocking (microseconds)

2000

1800
20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 250 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 6 for each request
Ri.

25:143

ECRTS 2018

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
FoE
°-e
-
ot

-
=)

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

Lock Overheads (microseconds)
o

10 20 30 40 50 60 70
Number of Resources

(a) Lock overhead.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

wb
il

RNLP TP

MCS

~

Unlock Overheads (microseconds)

Number of Resources

(b) Unlock overhead.

3400 S

3200

== G-C-RNLP
s~ G-C-RNLP + SGLS
a—a G-C-RNLP + SLLS
& - G-C-RNLP + FGLS
2800/ & - G-C-RNLP + FLLS
«:+ RNLP

4ot MCS

3000

Blocking (microseconds)

2600

20 30 40 50 60 70
Number of Resources

(c) Blocking.

Figure 251 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 8 for each request
Ri.

25:144 Using Lock Servers to Scale Real-Time Locking Protocols

®
I
'

il

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Lock Overheads (microseconds)

Number of Resources

(a) Lock overhead.

4.0 o
=—a G-C-RNLP

35 &—4 G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

Noow

L o
t ot e
P e

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

Unlock Overheads (microseconds)
N
o

\

=4
3

i
)
N
S
w
S

Number of Resources

(b) Unlock overhead.

36

40 50 60 70

3500 oo
PN
>
3400 .

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

w
W
=3
3

Blocking (microseconds)

3200

31

10 20 30 40 50

Number of Resources

(c) Blocking.

Figure 252 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, and D = 10 for each request
Ri.

C.E

== G-C-RNLP
a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
*.+ RNLP

+oot MCS

Lock Overheads (microseconds)

(] 20 20 60 80 100
CS Length

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
-+ RNLP

MCS

Unlock Overheads (microseconds)

(] 20 20 60 80 100
CS Length

(b) Unlock overhead.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

1600

111

1400

L g
s

1200

*
&

1000

-
Ea

@
3
3

o
S
S

Blocking (microseconds)

IS
S
3

N
S
3

>

o

20 20 60 80 100
S Length

(c) Blocking.

Figure 253 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 1 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

~

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
A
° e
ey
Aot

o

G-C-RNLP + FGLS
G-C-RNLP + FLLS |4
RNLP

w

IS

MCS

w

~N

Lock Overheads (microseconds)

-

Cs Length

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

R

L]
é

IS
+ o
+ %

Unlock Overheads (microseconds)

0 20 40 60 80 100
Cs Length

(b) Unlock overhead.

1800

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

1600

1400

b & -4 G-C-RNLP + FGLS
£ 1200
s e - G-C-RNLP + FLLS
2
8 1000/ * '+ RNLP
g ++ MCS
£ &0
2 =
g e00 -
@ -

400 . ===

200

(] 20 40 60 80 100

Cs Length

(c) Blocking.

Figure 254 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 2 for each request R;.

25:145

ECRTS

2018

25:146 Using Lock Servers to Scale Real-Time Locking Protocols

e |~ GCRWP l
~ s—a G-C-RNLP + SGLS
N oo G-C-RNLP + SLLS
g & -4 G-C-RNLP + FGLS
g lo-----" CEEEEE .- o - G-C-RNLP + FLLS
£’ SO N +:+ RNLP
g w777 +ot MCS
H
g2
g //

o
3
g1 R DU e s
o
0 20 40 60 80 100
CS Length

(a) Lock overhead.

4.0
=—a G-C-RNLP

35 a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

w
1=
L g
s

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
+oet MCS

~
n
*
P é

*
&

Unlock Overheads (microseconds)
~
o

20 20 60 80 100
s Length

(b) Unlock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#+ RNLP

1500f| ++ MCS

2500

N
S
3
S

1000

Blocking (microseconds)

500

0 20 20 60 80 100
s Length

(c) Blocking.

Figure 255 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 4 for each request R;.

G-C-RNLP i
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

mb
L]
il

\‘

Lock Overheads (microseconds)

-

Cs Length

(a) Lock overhead.

4.0
=—a G-C-RNLP

535 a—a G-C-RNLP + SGLS
2.0 o—o G-C-RNLP + SLLS
g &4 G-C-RNLP + FGLS
g,s o - G-C-RNLP + FLLS
£ + =+ RNLP
5 208 +ot MCS
g
§1s
o
g 10
<
5

0.5

0.0 ; ¢ t ;

20 40 60 80 100
€S Length

(b) Unlock overhead.

35

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

3000

111

2500}

®
é ¥

2000

T e
o

1500

Blocking (microseconds)

1000

(] 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 256 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 6 for each request R;.

C.E.

3

Nemitz, T. Amert,

N W s 0 e N @

Lock Overheads (microseconds)

-

Il

+ o
b B

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

0 + v + ¥
0 20 40 60 80 100
CS Length
(a) Lock overhead.
=—a G-C-RNLP
= a—a G-C-RNLP + SGLS
g o—e G-C-RNLP + SLLS
§ & -4 G-C-RNLP + FGLS
g e G-C-RNLP + FLLS
E *:% RNLP
8 +ot MCS
3
g
g
o
2
:
5
00 ! :
20 40 60 80 100
CS Length
(b) Unlock overhead.
3500
=—a G-C-RNLP
3000}/ 4~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
3 2500f| & 4 G-C-RNLP + FGLS
g
S e -« G-C-RNLP + FLLS
ﬁ 2000}| # -+ RNLP
£ +o+ MCS
é 1500
3
% 1000
500
0
0 20 40 60 80 100
CS Length

and J. H. Anderson

Lock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

20 40

(a) Lock overhead.

60
Cs Length

~ w

Unlock Overheads (microseconds)
-

s
£

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Cs Length

(b) Unlock overhead.

80 100

3000

2500

N
153
13
S

1500

Blocking (microseconds)

1000

—
a—a
e
ra
-

ey

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

20 40

60
Cs Length

(c) Blocking.

Figure 257 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and ID = 8 for each request R;.

(c) Blocking.

Figure 258 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 16, and D = 10 for each request R;.

25:147

ECRTS

2018

25:148 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
i e - G-C-RNLP + FLLS

#.+ RNLP
TN +o+ MCS

-
=)

Lock Overheads (microseconds)

0 20 40 60 80 100
CS Length
(a) Lock overhead.
=—a G-C-RNLP

- a—4 G-C-RNLP + SGLS
g e—e G-C-RNLP + SLLS
§ & -4 G-C-RNLP + FGLS
g oo G-C-RNLP + FLLS
£ *:% RNLP

2 +ot MCS

2

3

7

2

o

H

E

g

5

e e g g e e e
0 20 40 60 80 100

s Length

(b) Unlock overhead.

=—a G-C-RNLP

a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
1000| *** RNLP

++ MCS

1600

1400

1200

Blocking (microseconds)
2 o
2 3
s 8

IS
S
S

N
>
3

s Length

(c) Blocking.

Figure 259 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and ID = 1 for each request R;.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

Lock Overheads (microseconds)

Cs Length

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

o—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

#:-+ RNLP

MCS

e i e e e i o et e]

Unlock Overheads (microseconds)

(] 20 40 60 80 100
Cs Length

(b) Unlock overhead.

1800,

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
-

1600

1400

120071 ¢ 4 G-C-RNLP + FLLS

1000l * -+ RNLP
+ot MCS

@
3
3

@
3
3

Blocking (microseconds)

5
S
S

200

0 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 260 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and D = 2 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson 25:149

~

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

w

il

g
g
5
g
g
gap---aan [PR—— RNLP
T o ot MCS
53 Teeameeo-- Am e m Foe=== =
]
g b
o2 -
S
§ RERER e -

1

o

0 20 40 60 80 100

CS Length
(a) Lock overhead.
== G-C-RNLP
o5 a4 G-C-RNLP + SGLS
H o—o G-C-RNLP + SLLS
§ & -4 G-C-RNLP + FGLS
g4 e - G-C-RNLP + FLLS
£ #:+ RNLP
23 +ot MCS
3 Ao
F R
32k, S
DN

51 e - - 0---=--= .- LR P

‘\

0 20 40 60 80 100

CS Length

(b) Unlock overhead.

2500

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

111

2000

L g
s

e
&

1500

1000

Blocking (microseconds)
P
FY

500

(] 20 20 60 80 100
S Length

(c) Blocking.

Figure 261 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and D = 4 for each request R;.

G-C-RNLP h
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS ¥

w

&

il

w

\

-
13
.
+
+

Lock Overheads (microseconds)

Cs Length

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)

Cs Length

(b) Unlock overhead.

001

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
#-+ RNLP

1500¢| +++ MCS

2500

2000

1000

Blocking (microseconds)

0 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 262 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and ID = 6 for each request R;.

ECRTS

2018

25:150 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS |}
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

il

Lock Overheads (microseconds)

Lock Overheads (microseconds)

(] 20 20 60 80 100
S Length

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

+oet MCS

can Il

~

Unlock Overheads (microseconds)
w

-

(] 20 20 60 80 100
s Length

(b) Unlock overhead.

3500

=—a G-C-RNLP

3000f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

2500r| & -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

2000f| #-+ RNLP

4t MCS

1500

Blocking (microseconds)

1000

500

o
N
S

20 60 80 100
s Length

(c) Blocking.

Figure 263 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and ID = 8 for each request R;.

=—a G-C-RNLP
a—4 G-C-RNLP + SGLS
8f|e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
+ + RNLP L .
++ MCS

o

IS

N

Cs Length

(a) Lock overhead.

=—a G-C-RNLP
= s~ G-C-RNLP + SGLS
2 o—o G-C-RNLP + SLLS
3 & -4 G-C-RNLP + FGLS
4 oo G-C-RNLP + FLLS
E ++ RNLP
8 +ot MCS
]
£
H
g
o
S
K
g
5
0 20 40 60 80 100
CS Length
(b) Unlock overhead.
35
=—a G-C-RNLP
3000} 44 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
3 2500} # -4 G-C-RNLP + FGLS
E
8 -6 G-C-RNLP + FLLS
% 2000} # -+ RNLP
g +ot MCS
g 1500
3
g 1000
500
o
0 20 40 60 80 100
CS Length

(c) Blocking.

Figure 264 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 32, and D = 10 for each request R;.

C.E

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
-+ RNLP

MCS

12

Lock Overheads (microseconds)

(] 20 20 60 80 100
CS Length

(a) Lock overhead.

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

[+o4 MCS

-
Y]

=
=)
L g

©
*
&

o

IS

Unlock Overheads (microseconds)

~

CS Length

(b) Unlock overhead.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

1600

111

1400

L g
s

1200

*
&

1000

-
Ea

@
3
3

o
S
S

Blocking (microseconds)

IS
S
3

N
S
3

M

0 20 20 60 80 100
S Length

(c) Blocking.

Figure 265 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and D = 1 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® -® G-C-RNLP + FLLS
#:+ RNLP
+ot MCS

Lock Overheads (microseconds)

Cs Length

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® -® G-C-RNLP + FLLS
#:+ RNLP
+ot MCS

Unlock Overheads (microseconds)

0 20 40 60 80 100
Cs Length

(b) Unlock overhead.

1800

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS

1600

1400

1200

1000 *-+ RNLP
+o MCS

@
=1
S

@
3
=3

Blocking (microseconds)

IS
S
3

N
=1
S

Cs Length

(c) Blocking.

Figure 266 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and ID = 2 for each request R;.

25:151

ECRTS

2018

25:152 Using Lock Servers to Scale Real-Time Locking Protocols

Lock Overheads (microseconds)
IS

=—a G-C-RNLP
7 a—4 G-C-RNLP + SGLS
6 o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS |
® -~
LT P [® - G-C-RNLP + FLLS
o # -+ RNLP
N +o+ MCS
' B [y === === oy o m oo
z‘\'i‘ e + H BE B
1
0 20 40 60 80 100
CS Length
(a) Lock overhead.
=—a G-C-RNLP
7 a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

Unlock Overheads (microseconds)
IS

L%

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

20 40

s Length

(b) Unlock overhead.

1600

1400

1200

1000

—
ra
e
e
.-
P

ot

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

=—a G-C-RNLP

_ 7Ma—a G-C-RNLP + SGLS
€ 4o G-CRNLP +SLLS %
S '[|#- G-C-RNLP + FGLS
g [|F GCRNLPATGLS) PRI -—men--
% 5||e < G-CRNLP + FLLS
£ W+~ RNLP
gafre Mes P e
§ b
€3
3
g
o
¥ 2%
3 * R e -

1

0

0 20 40 6 80 100

(a) Lock overhead.

<

Cs Length

o

G-C-RNLP
G-C-RNLP + SGLS

w

2 G-C-RNLP + SLLS

g5 G-C-RNLP + FGLS

1 G-C-RNLP + FLLS

Es RNLP

8 MCS

H

23

g

3

B Ry S S dmm e

E BN

5 1\: - e--o--- [
0 20 40 60 80 100

€S Length

(b) Unlock overhead.

2500

2000

1500

—
s
-
PN
-
.

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

@
3
3

o
3
3

Blocking (microseconds)

IS
S
S

N
>
3
N

>

o
N
S

20 60 80
s Length

(c) Blocking.

Figure 267 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and ID = 4 for each request R;.

1000

Blocking (microseconds)

500

(] 20 40 60 80
Cs Length

(c) Blocking.

Figure 268 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and D = 6 for each request R;.

C.E.

== G-C-RNLP

P~ . |&a GCRNLP+SGLS|
] 6‘~.‘ e—e G-C-RNLP + SLLS
$ B LEEEEEE & -4 G-C-RNLP + FGLS
. o e G-C-RNLP + FLLS
£ [FU ——— *+ RNLP
gof TTIIIEEEEEEEREEE T e es i
3
£3
S e
o
X2
s

S PP .-

o t t t

0 20 40 60 80 100

CS Length
(a) Lock overhead.
7
== G-C-RNLP

56 s~ G-C-RNLP + SGLS
ki o—o G-C-RNLP + SLLS
§ 5 & -4 G-C-RNLP + FGLS
g o e G-C-RNLP + FLLS
Ea *:% RNLP
N ++ MCS
S~
8 X A= m---- -, -———— = = ————— B
T peoee®
S l\r @====== .- *---=-== 4

0 20 40 60 80 100

CS Length

(b) Unlock overhead.

G-C-RNLP

Nemitz, T. Amert, and J. H. Anderson

25:153

N ™
(
)

100

s
g
H
S | pe——
g
s
E 5 B P PO de o
S == G-C-RNLP]
8 p— s G-C-RNLP + SGLS
EE o~ G-C-RNLP + SLLS |
M /’4.— » - G-C-RNLP + FGLS
g2 e - G-C-RNLP + FLLS
1 +.+ RNLP
N e * 1+ MCS
0 20 20 60 20
S Length
(a) Lock overhead.
7
== G-CRNLP
N a4 G-C-RNLP + SGLS
oo G-C-RNLP + SLLS
5 & -4 G-C-RNLP + FGLS
o G-CRNLP + FLLS
L + 4 RNLP
NN +ot MCS

w

~N

Unlock Overheads (microseconds)
®

N
NS
\
_______ .
'\\‘fﬁ. e T

-

0 20 40 60
Cs Length

(b) Unlock overhead.

100

G-C-RNLP

2500

2000

1500

IR

*
&

P
o

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

—a
3000} | a—a
e
2500(| & -
.-
ey

N
153
13
S

o

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

1000

Blocking (microseconds)

500

(] 20 40 60 80 100
S Length

(c) Blocking.

Figure 269 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and ID = 8 for each request R;.

1500

Blocking (microseconds)

1000

0 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 270 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, n, = 64, and D = 10 for each request R;.

ECRTS

2018

S

.4

&
*
é

P
o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

=)

Lock Overheads (microseconds)

«

(7 20 40
S Length

@
3

(a) Lock overhead.

o] S
can Il

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

=)

Unlock Overheads (microseconds)

«

==

40 60
s Length

(b) Unlock overhead.

3500

=—a G-C-RNLP
3000f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
2500r| & -4 G-C-RNLP + FGLS
e - G-C-RNLP + FLLS
2000f| #-+ RNLP
4t MCS

1500

Blocking (microseconds)

1000

500

0 20 20 60
s Length

(c) Blocking.

Figure 271 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 1 for each request R;.

80 100

25:154 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS i

Lock Overheads (microseconds)

2l == —e------ 9------- ¢------ g-------
|
0
(] 20 40 60 80 100
Cs Length

(a) Lock overhead.

== G-C-RNLP
= s~ G-C-RNLP + SGLS
g o—o G-C-RNLP + SLLS
g & -4 G-C-RNLP + FGLS
g e o G-C-RNLP + FLLS
E ++ RNLP
4 +o+ MCS
2
2
]
S e .
F R T R E Ty e PR .
°
<
5
_______ oG-
o t t
0 20 40 60 80 100
CS Length

(b) Unlock overhead.

35

=—a G-C-RNLP
3000f| &4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
2500r| & -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS
2000f| *-+ RNLP
+o4 MCS

1500

Blocking (microseconds)

1000

500

(] 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 272 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 2 for each request R;.

C.E

=—a G-C-RNLP
||~ G-C-RNLP + SGLS
g 8fle—e G-C-RNLP +SLLS
e |
$ & - G-C-RNLP + FGLS
g e - G-C-RNLP + FLLS
2 °[|++ RNLP
o |[#+ Mcs
® R R
2 alp------ hmmmm - --- O
g
o
*
g2
0

(] 20 20 60 80 100
CS Length

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

R

*
é

P
P

Unlock Overheads (microseconds)
IS

(] 20 20 60 80 100
CS Length

(b) Unlock overhead.

== G-C-RNLP o

3000 &~ G-C-RNLP + SGLS)
e—e G-C-RNLP + SLLS

G-C-RNLP + FGLS

G-C-RNLP + FLLS

2000f| #-+ RNLP

e

2500} &

1500

Blocking (microseconds)
¥
H

1000

500

(] 20 20 60 80 100
S Length

(c) Blocking.

Figure 273 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson 25:155

=—a G-C-RNLP

12) a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS

10 & -4 G-C-RNLP + FGLS

® - G-C-RNLP + FLLS

8 #-+ RNLP k
+o+ MCS

Lock Overheads (microseconds)

Cs Length

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
#:+ RNLP

o

Il

Unlock Overheads (microseconds)

Cs Length

(b) Unlock overhead.

=—a G-C-RNLP
3500(| 44 G-C-RNLP + SGLS -
e—e G-C-RNLP + SLLS

&4 G-C-RNLP + FGLS

e« G-C-RNLP + FLLS
+ % RNLP

Mcs

3000

2500

2000

1500

Blocking (microseconds)

1000

Cs Length

(c) Blocking.

Figure 274 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 6 for each request R;.

ECRTS

2018

25:156 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP

1 a—4 G-C-RNLP + SGLS
M o—o G-C-RNLP + SLLS
$ & -4 G-C-RNLP + FGLS
$ 10 e - G-C-RNLP + FLLS
£ +:+ RNLP
ﬁ 8 +.+ MCS l
[P — R JU—— U
é
¥ 4
8 le------ PE—— B PO —— P

h

0) bl hd

0 20 40 60 80 100

CS Length

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® - G-C-RNLP + FLLS
RNLP

Unlock Overheads (microseconds)

s Length

(b) Unlock overhead.

=—a G-C-RNLP
3500r| s—a G-C-RNLP + SGLS -
e—e G-C-RNLP + SLLS

&4 G-C-RNLP + FGLS
25000 @ ¢ G-C-RNLP + FLLS .
+ + RNLP
2000} +-+ MCS

w
S
3
S

1500

Blocking (microseconds)

1000

(] 20 20 60 80 100
s Length

(c) Blocking.

Figure 275 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 8 for each request R;.

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
oo

=
o

B G-C-RNLP + SLLS
$ & -4 G-C-RNLP + FGLS
212 o - G-C-RNLP + FLLS
£ 10 #:+ RNLP
5 |l —] ++ MCS L
FI EEEEES S -
g
g 6
3
3

2

R g i

40 6 80 100

Cs Length

(a) Lock overhead.

== G-C-RNLP

s~ G-C-RNLP + SGLS

o—o G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

+ =+ RNLP

+ot MCS

Unlock Overheads (microseconds)

Cs Length

(b) Unlock overhead.

4000

=—a G-C-RNLP

3500r| s—a G-C-RNLP + SGLS -
e—e G-C-RNLP + SLLS

&4 G-C-RNLP + FGLS
2500 @ ¢ G-C-RNLP + FLLS
+.+ RNLP

MCS

3000

2000

1500

Blocking (microseconds)

1000

(] 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 276 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 16, and D = 10 for each request R;.

C.E.

30

Nemitz, T. Amert, and J. H. Anderson

" N ~N
& S &

=)

Lock Overheads (microseconds)

== G-C-RNLP
a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
*.+ RNLP

w

(] 20 40
CS Length

(a) Lock overhead.

25

= — N
=) & S

Unlock Overheads (microseconds)

«

== G-C-RNLP
a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
*.-+ RNLP

+oot MCS

0 20 40

60 80 100
CS Length

(b) Unlock overhead.

=—a G-C-RNLP
3000f| &4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
2500r(& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS
2000f| #-+ RNLP
MCs

1500

Blocking (microseconds)
T
H

1000

500

(c) Blocking.

Figure 277 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 1 for each request R;.

S Length

25:157

=—a G-C-RNLP
14 a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® -® G-C-RNLP + FLLS

Lock Overheads (microseconds)

Cs Length

(a) Lock overhead.

G-C-RNLP

—

4L s—a G-C-RNLP + SGLS
: o—o G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

oo G-C-RNLP + FLLS

+ =+ RNLP

+o MCS

Unlock Overheads (microseconds)
®

Cs Length

(b) Unlock overhead.

=—a G-C-RNLP
3000+(&~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

3 2500 & 4 G-C-RNLP + FGLS

s e - G-C-RNLP + FLLS

§zooo #.+ RNLP

2 ot MCS

= 1500

<

£ 1000] -

Cs Length

(c) Blocking.

Figure 278 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 2 for each request R;.

ECRTS

2018

25:158 Using Lock Servers to Scale Real-Time Locking Protocols

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

o—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS i

® -® G-C-RNLP + FLLS
-+ RNLP

6 +et MCS

-
=)

Lock Overheads (microseconds)

S Length

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)

s Length

(b) Unlock overhead.

3500

=—a G-C-RNLP

3000f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

2500r| & -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

2000f| #-+ RNLP

4t MCS

1500

Blocking (microseconds)

1000

500

0 20 20 60 80 100
s Length

(c) Blocking.

Figure 279 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 4 for each request R;.

G-C-RNLP
G-C-RNLP + SGLS

—

10 —a
2 ©—o G-C-RNLP + SLLS 4
g + 4 G-C-RNLP + FGLS
¢’ oo G-C-RNLP + FLLS
£ +.+ RNLP
g 6 +ot MCS
3
[e ——— hommm—= dmmmmm= - o= L
£
§ 4
[e]
f fonmoee—te s g
g =
=2 = T

0 1

0 20 40 60 80 100

Cs Length

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS

o—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS

#:-+ RNLP

©

o

+ot MCS

IS

Unlock Overheads (microseconds)

N

(] 20 40 60 80 100
Cs Length

(b) Unlock overhead.

35

=—a G-C-RNLP !
3000f| &4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
2500r| & -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS
2000f| *-+ RNLP
MCs

1500

Blocking (microseconds)

1000

500

(] 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 280 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 6 for each request R;.

C.E

=—a G-C-RNLP
a—a G-C-RNLP + SGLS

-
)

3 || G-CRNLP +5LLS

$ 10 & 4 G-C-RNLP + FGLS

g ||e- G-CRNLP +FLLS

£ 8f{* = RNLP

5 ||¥ mcs -

] .-

g

S a

$ [P [PO i

8 p--=

£

* Wreraiaiaia he e - -
o : ;
0 20 40 60 80 100
CS Length
(a) Lock overhead.
1

== G-C-RNLP
s—4 G-C-RNLP + SGLS
oo G-C-RNLP + SLLS

L g
s

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

*
é

P
P

Unlock Overheads (microseconds)

(] 20 20 60 80 100
CS Length

(b) Unlock overhead.

4000

G-C-RNLP
G-C-RNLP + SGLS -
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

3500

111

3000

e
& B

2500

P
Ea

2000

1500

Blocking (microseconds)

1000

(] 20 20 60 80 100
S Length

(c) Blocking.

Figure 281 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 8 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP
a—a G-C-RNLP + SGLS
o o

214 G-C-RNLP + SLLS

g & -4 G-C-RNLP + FGLS

g 12 e - G-C-RNLP + FLLS

£ 10 +.+ RNLP !

2 +o+ MCS

58

- e N P I

o

2

g 4

S o------ ¢------ 9------- ¢ - g--=----

2 %
LTI P, e deeieieiae -
0 2'0 4'0 5'0 80 100
CS Length
(a) Lock overhead.
2

== G-CRNLP
4—4 G-CRNLP + SGLS
oo G-CRNLP +SLLS
& -4 G-C-RNLP + FGLS
e G-CRNLP + FLLS
+ o+ RNLP
vt MCS

Unlock Overheads (microseconds)

Cs Length

(b) Unlock overhead.

== G-C-RNLP
3500(s—a G-C-RNLP + SGLS -
s000l| = G-CRNLP + SLLS

2 &4 G-C-RNLP + FGLS

g

€ 2500 G-C-RRNLP + FLLS

g ++ RNLP

L2

E 2000 MCS

>

5 1500

H

@ 1000
500

Cs Length

(c) Blocking.

Figure 282 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 32, and D = 10 for each request R;.

25:159

ECRTS

2018

25:160 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

S

N
S

*

é

P
o

Lock Overheads (microseconds)
= =
=) &

w

S Length

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

Unlock Overheads (microseconds)

(] 20 20 60 80
s Length

(b) Unlock overhead.

3500

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

3000

2500 & -
.-
2000f| * -+

ot

1500

Blocking (microseconds)

1000

500

s Length

(c) Blocking.

Figure 283 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 1 for each request R;.

N
S

-
&

=
S

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Lock Overheads (microseconds)

w

0 20 40 6 80 100
CS Length
(a) Lock overhead.
25
=—a G-C-RNLP
= s~ G-C-RNLP + SGLS
2 2017 o—o G-C-RNLP + SLLS
g & -4 G-C-RNLP + FGLS
g e o G-C-RNLP + FLLS
EW ++ RNLP
3 ++ MCS
]
§
£ 10
g
o
M
8 .-
25 e
N e s e -————— A== -
0 20 40 60 80 100
CS Length

(b) Unlock overhead.

35

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

3000
2500} | & -
-

2000

1500

Blocking (microseconds)
T
H

1000

500

(c) Blocking.

Figure 284 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 2 for each request R;.

Cs Length

60 80

C.E

=—a G-C-RNLP

14 a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

® -® G-C-RNLP + FLLS

-+ RNLP H

+ot MCS

Lock Overheads (microseconds)
®
b

(] 20 20 60 80 100
CS Length

(a) Lock overhead.

== G-C-RNLP
a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
*.-+ RNLP

+oot MCS

Unlock Overheads (microseconds)

(] 20 20
CS Length

(b) Unlock overhead.

=—a G-C-RNLP
3000f| &4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
2500r(& -4 G-C-RNLP + FGLS
- G-C-RNLP + FLLS
2000f| #-+ RNLP
MCs

1500

Blocking (microseconds)
T
H

1000

500

(] 20 40 60 80 100
S Length

(c) Blocking.

Figure 285 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 4 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

=—a G-C-RNLP
12) a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
10, & -4 G-C-RNLP + FGLS [}

® -® G-C-RNLP + FLLS

Lock Overheads (microseconds)

Cs Length

(a) Lock overhead.

=—a G-C-RNLP
12| a—4 G-C-RNLP + SGLS

©—e G-C-RNLP + SLLS
10| & 4 G-C-RNLP + FGLS
® o G-C-RNLP + FLLS
8 #--+ RNLP

++ MCS

Unlock Overheads (microseconds)

Cs Length

(b) Unlock overhead.

=—a G-C-RNLP
3000+(&~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

3 2500} & -4 G-C-RNLP + FGLS

2

s e - G-C-RNLP + FLLS

§zooo #.+ RNLP R
2 ot MCS -
E‘ 1500 Tt

% 1000

0 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 286 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 6 for each request R;.

25:161

ECRTS

2018

25:162 Using Lock Servers to Scale Real-Time Locking Protocols

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

== G-C-RNLP
12*’*; a—a G-C-RNLP + SGLS

o—o G-C-RNLP + SLLS [}

ra

.-

P

"

Lock Overheads (microseconds)

S Length

(a) Lock overhead.

=—a G-C-RNLP

12| a—4 G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

10| & -4 G-C-RNLP + FGLS

® - G-C-RNLP + FLLS

#* -+ RNLP

+o4 MCS

Unlock Overheads (microseconds)

s Length

(b) Unlock overhead.

3500

=—a G-C-RNLP

3000f| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

2500r| & -4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

2000f| #-+ RNLP

4t MCS

1500

Blocking (microseconds)

1000

500

(] 20 20 60 80 100
s Length

(c) Blocking.

Figure 287 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 8 for each request R;.

=—a G-C-RNLP

14Fl a—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

&4 GCRNLP+FGLS | o — 88—

- G-C-RNLP + FLLS

#:+ RNLP

MCs

12

10

Lock Overheads (microseconds)
®
¥
H

...... : DT
0 20 40 60 80 100
CS Length
(a) Lock overhead.
y

=—a G-C-RNLP
a—4 G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

G-C-RNLP + FGLS
G-C-RNLP + FLLS
+ =+ RNLP
+ot MCS

e x
é ¥

Unlock Overheads (microseconds)

(] 20 40 60 80 100
Cs Length

(b) Unlock overhead.

4000

=—a G-C-RNLP
3500r| s—a G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS
&4 G-C-RNLP + FGLS
2500 @ ¢ G-C-RNLP + FLLS
+.+ RNLP
++ MCS

3000

2000

1500

Blocking (microseconds)

1000

(] 20 40 60 80 100
Cs Length

(c) Blocking.

Figure 288 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, n, = 64, and D = 10 for each request R;.

C.E.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
w % RNLP

il

Lock Overheads (microseconds)

Level of Nestedness

(a) Lock overhead.

=—a G-C-RNLP
&—4 G-C-RNLP + SGLS
8 o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
@ -0 G-C-RNLP + FLLS
o
bt

Unlock Overheads (microseconds)

Level of Nestedness

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS 4

IR

*
&

-
Ea

Blocking (microseconds)

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 289 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, n, = 16 for each request R;.

Nemitz, T. Amert, and J. H. Anderson

25:163

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

I

ke
4 *-e
.o
-
ot

3
g
]
S
8
e
S
£
3
]
]
£
]
:
S
<
g
3
S

3 4 5 6 7 8 9 10
Level of Nestedness

(a) Lock overhead.

3.0

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

N
5
Il

+ o
S

=
o

Unlock Overheads (microseconds)
-
n

o
n

Level of Nestedness

(b) Unlock overhead.

1400

=—a G-C-RNLP

1200}| &~ G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

1000f| &# 4 G-C-RNLP + FGLS

e - G-C-RNLP + FLLS

#:+ RNLP

A ++ MCS

/—.—

©
S
S

Blocking (microseconds)

» @
S 2
3 S
:\

N
S
S

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 290 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, n, = 16 for each request R;.

ECRTS

2018

25:164 Using Lock Servers to Scale Real-Time Locking Protocols

== G-C-RNLP N
s—a G-C-RNLP + SGLS ||

o—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS

® -® G-C-RNLP + FLLS
- - -e|* -+ RNLP

«

IS

———— 2+t MCS

w
v
'
'
'
°

N

Lock Overheads (microseconds)

Level of Nestedness

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® - G-C-RNLP + FLLS

~
0

|4
o

o

Unlock Overheads (microseconds)
.
n

Lad
[

Level of Nestedness

(b) Unlock overhead.

3500

G-C-RNLP _—* e

—a
3000 &—a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS

% 2500f| & 4 G-C-RNLP + FGLS
2
s e -« G-C-RNLP + FLLS
ﬁzooo #.+ RNLP
2
g |++ MCS —
= 1500/
= oy
£ 1000 >
50015
0
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(c) Blocking.

Figure 291 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, n, = 16 for each request R;.

== G-C-RNLP
s~ G-C-RNLP + SGLS
oo G-C-RNLP + SLLS]
G-C-RNLP + FGLS
G-C-RNLP + FLLS
N + =+ RNLP
u +ot MCS
*

=)

®
°

o

IS

Lock Overheads (microseconds)

~

Level of Nestedness

(a) Lock overhead.

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® - G-C-RNLP + FLLS

Unlock Overheads (microseconds)

Level of Nestedness

(b) Unlock overhead.

== G-C-RNLP
70 44 G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS
&4 G-C-RNLP + FGLS
e -« G-C-RNLP + FLLS
+ % RNLP

Blocking (microseconds)

Level of Nestedness

(c) Blocking.

Figure 292 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 1us, n, = 32 for each request R;.

C.E.

Nemitz, T. Amert,

«

IS

~

Lock Overheads (microseconds)
w

-

il

P
RS

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

and J. H. Anderson

25:165

Lock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

R

*
é

+ o
S

5 6 7 8 9

Level of Nestedness

(a) Lock overhead.

1 3 4 6 7 8 9 10
Level of Nestedness
(a) Lock overhead.

3.5
=—a G-C-RNLP

3.0 a—4 G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

2.5 & -4 G-C-RNLP + FGLS
® - G-C-RNLP + FLLS

N
o

Unlock Overheads (microseconds)

-

RNLP

(b) Unlock overhead.

1400

Level of Nestedness

10

1200

=
)
3
=3

IR

*
&

P
Ea

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

5 6 7 8 9

Level of Nestedness

(b) Unlock overhead.

10

3000

2500

N
153
13
S

—
a—a
e
ra

.-
ey

|+

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Blocking (microseconds)

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 293 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, n, = 32 for each request R;.

1500

Blocking (microseconds)

1000

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 294 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, n, = 32 for each request R;.

ECRTS

2018

25:166 Using Lock Servers to Scale Real-Time Locking Protocols

Lock Overheads (microseconds)

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP !

Level of Nestedness

(a) Lock overhead.

Unlock Overheads (microseconds)

(b)

(c)

18,

Blocking (microseconds)

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

Level of Nestedness

Unlock overhead.

=—a G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
s0l|® - G-C-RNLP + FLLS
+.+ RNLP

40t ++ MCS

70
e

Level of Nestedness

Blocking.

Figure 295 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =

L; = 1us, n, = 64 for each request R;.

~

» w o

w

Lock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS |}
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS 4

>
>

W
n

RNLP

2 MCs

. ..

o

1 3 a4 5 6 7 8 9 10
Level of Nestedness
(a) Lock overhead.

=—a G-C-RNLP
a—4 G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS

Unlock Overheads (microseconds)
N
o

w
°

N
n

& -4 G-C-RNLP + FGLS
o - G-C-RNLP + FLLS
+ =+ RNLP !
Tse |+t MCS

0.0
1

Level of Nestedness

(b) Unlock overhead.

Blocking (microseconds)

1400

1200

o
1)
3
=3

IR

.
é&

P
o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

2 3 4 5 6 7 8 9 10

Level of Nestedness

(c) Blocking.

Figure 296 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 40us, n, = 64 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

~

w IS w o

~

Lock Overheads (microseconds)

G-C-RNLP K
G-C-RNLP + SGLS ||
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS [1
RNLP
MCS

2 3 4 5 6 10

Level of Nestedness

~
®
©

(a) Lock overhead.

Unlock Overheads (microseconds)
N
o

== G-C-RNLP
a—a G-C-RNLP + SGLS
o—o G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS

L *.-+ RNLP n
Tl ~a|++ MCS

Level of Nestedness

(b) Unlock overhead.

3000

2500

2000

=—a G-C-RNLP

a—4a G-C-RNLP + SGLS
e—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
e e G-C-RNLP + FLLS
#.+ RNLP

|+ MCS

Lock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS {4
G-C-RNLP + FLLS
RNLP

MCS

4 5 6 7 8 9 10

Level of Nestedness

(a) Lock overhead.

20|

Unlock Overheads (microseconds)

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& -4 G-C-RNLP + FGLS
® -® G-C-RNLP + FLLS
#:+ RNLP

00,

&=
4 5 6 7
Level of Nestedness

(b) Unlock overhead.

150

=—a G-C-RNLP

&—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
& 4 G-C-RNLP + FGLS
® - G-C-RNLP + FLLS
#-+ RNLP

+ot MCS

1500

Blocking (microseconds)

1000

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 297 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
18, L; = 100us, n, = 64 for each request R;.

Blocking (microseconds)

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 298 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, n, = 16 for each request R;.

25:167

ECRTS

2018

25:168 Using Lock Servers to Scale Real-Time Locking Protocols

3

®

<

—a
A
oo

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS

o

®

~

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
o - G-C-RNLP + FLLS
#.% RNLP
+oot MCS

o

w

N W s

Lock Overheads (microseconds)

.

Level of Nestedness

(a) Lock overhead.

4.5
= G-C-RNLP

240 s G-C-RNLP + SGLS
E3s o—o G-C-RNLP + SLLS
2 & -4 G-C-RNLP + FGLS
g 30 e o G-C-RNLP + FLLS
Eas .. #.-+ RNLP
8 .. e[+ MCS la
3 20 N e —
g E
g
315
210
<
5

0.5

0.0,

Level of Nestedness

(b) Unlock overhead.

160
00t 0 _e--TeTTmmmn oo
2 1200
2
s
3
é 1000
g G-C-RNLP
< 800 G-C-RNLP + SGLS
] G-C-RNLP + SLLS
g 600 G-C-RNLP + FGLS
G-C-RNLP + FLLS
400 RNLP
MCs
00,
1 2 3 4 5 6 7 8 9 10

Level of Nestedness

(c) Blocking.

Figure 299 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, n, = 16 for each request R;.

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

o

w

N W s

Lock Overheads (microseconds)

-

Level of Nestedness

(a) Lock overhead.

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS

4.0

w
o

3.0 G-C-RNLP + FLLS
25 RNLP
MCS s

Unlock Overheads (microseconds)
2o
o b o

o
o

14
3

Level of Nestedness

(b) Unlock overhead.

4000

o0l 0 _-ee—----n P 4

3000

2500

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

2000

Blocking (microseconds)

1500

1000}/

~
©
©
-
5

1 2 3 4 5 6
Level of Nestedness

(c) Blocking.

Figure 300 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, n, = 16 for each request R;.

C.E. Nemitz, T. Amert, and J. H. Anderson

30

~
&

N
S

-
&

=)

Lock Overheads (microseconds)

w

il

o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

(a) Lock overhead.

25

4

Level of Nestedness

20

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Lock Overheads (microseconds)

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS [
& -4 G-C-RNLP + FGLS
® -® G-C-RNLP + FLLS
#:+ RNLP

Aot

5 6 7 8 9 10

Level of Nestedness

(a) Lock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Unlock Overheads (microseconds)

Level of Nestedness

(b) Unlock overhead.

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

111

L g
s

N

S

S
e
&

S
3

Blocking (microseconds)
5
P
FY

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 301 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, n, = 32 for each request R;.

Unlock Overheads (microseconds)

Level of Nestedness

(b) Unlock overhead.

1600

1400 _---

1200

1000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

@
2
3

Blocking (microseconds)
®
8
8

IS
S
3

N
=1
S

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 302 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, n, = 32 for each request R;.

25:169

ECRTS

2018

25:170 Using Lock Servers to Scale Real-Time Locking Protocols

-
=)

Lock Overheads (microseconds)

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS /\
G-C-RNLP + FGLS

G-C-RNLP + FLLS

RNLP Lot P
MCs L

skl
a-=

N
-

Level of Nestedness

(a) Lock overhead.

Unlock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

Level of Nestedness

(b) Unlock overhead.

4000

3500

3000

2500

2000

1500

Blocking (microseconds)

1000

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

2 3 4 5 6 7 8 9 10
Level of Nestedness

Lock Overheads (microseconds)

~
&

N
S

-
&

=)

w

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCs L

3 a4 5 6 7 8 9 10
Level of Nestedness

(a) Lock overhead.

Unlock Overheads (microseconds)
-
&

~
&

N
S

=)

w

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Level of Nestedness

(b) Unlock overhead.

Blocking (microseconds)

250

N
151
3

.4
&
S

=
1)
=3

IR

.
é&

T e
o

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP

MCS

Level of Nestedness

(c) Blocking.

Figure 303 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, n, = 32 for each request R;.

(c) Blocking.

Figure 304 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 1us, n, = 64 for each request R;.

C.E.

Nemitz, T. Amert, and J. H. Anderson

=)

®

Lock Overheads (microseconds)

G-C-RNLP
G-C-RNLP + SGLS /./'—_"
G-C-RNLP + SLLS

G-C-RNLP + FGLS
G-C-RNLP + FLLS

Level of Nestedness

(a) Lock overhead.

~

w

)

IS

=—a G-C-RNLP

a—a G-C-RNLP + SGLS
o—e G-C-RNLP + SLLS
G-C-RNLP + FGLS

G-C-RNLP + FLLS
RNLP W

== G-C-RNLP

s—4 G-C-RNLP + SGLS

e—e G-C-RNLP + SLLS

& -4 G-C-RNLP + FGLS
8f|e s G-C-RNLP + FLLS

+ + RNLP -
61| ++ MCS --T

Lock Overheads (microseconds)

Level of Nestedness

(a) Lock overhead.

~

o

v

G-C-RNLP

G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS

G-C-RNLP + FLLS

IS

w

~

Unlock Overheads (microseconds)
\

-

|++ mes

)

"
~
w

4

Level of Nestedness

(b) Unlock overhead.

1400

1200

1000

w

~N

Unlock Overheads (microseconds)

-

Level of Nestedness

(b) Unlock overhead.

3500 -

3000

2500

G-C-RNLP
G-C-RNLP + SGLS

111

G-C-RNLP + SLLS

2000

1500

G-C-RNLP
G-C-RNLP + SGLS

I

G-C-RNLP + SLLS

Blocking (microseconds)

L4
3

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

L]
é

F
E

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 305 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 40us, n, = 64 for each request R;.

Blocking (microseconds)

L4
3

G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

1000

L]
é

+ o
S

1 2 3 4 5 6 7 8 9 10
Level of Nestedness

(c) Blocking.

Figure 306 (a) Lock and (b) unlock
overheads and (c) blocking for requests un-
der the G-C-RNLP with each lock server
paradigm and the MCS, RNLP, and G-C-
RNLP without any lock servers. Here, m =
34, L; = 100us, n, = 64 for each request R;.

25:171

ECRTS

2018

	Introduction
	Background
	Static Lock Servers
	A Static Global Lock Server
	Static Local Lock Servers

	Floating Lock Servers
	A Floating Global Lock Server
	Floating Local Lock Servers

	Handling Non-Uniform Requests
	Evaluation
	Conclusion
	Local Lock Server Phase Management and Blocking Bounds
	Performance on Increasing Socket Counts
	Phase-Fair Reader/Reader Locks
	Additional Graphs

