
Erratum to
“Tardiness Bounds under Global EDF Scheduling on a

Multiprocessor”

UmaMaheswari C. Devi
IBM Research – India
Bangalore, KA, India

James H. Anderson
Department of Computer Science
The University of North Carolina

Chapel Hill, NC, U.S.A.

Abstract

In [2] and [3], we derived closed-form expressions for upper bounds on tardiness that can be incurred by tasks of a
sporadic task system under the preemptive and non-preemptive global earliest-deadline-first (EDF) scheduling algorithms
on a multiprocessor. In those papers, we also outlined an iterative procedure for improving the bounds provided by the
closed-form expressions. It has come to our attention that the iterative improvement outlined by us suffers from an error. In
this note, we point out the error and offer a correction.

1 Error
In [2], we proved that under global preemptive EDF, on an m-processor system, each task Tk of a sporadic task system
τ = {T1, T2, · · · , Tn} incurs a tardiness not exceeding

(
∑

Ti∈Emax(Λ−1) ei)− emin

m−
∑

Ti∈Umax(Λ−1) ui
+ ek, (1)

where Λ = dUsume and Emax(`) denotes a subset of ` tasks of τ with the highest execution costs (with ties resolved
arbitrarily).1 (Umax(`) is defined analogously with respect to task utilizations.)2 In [2], we also claimed that an optimized
bound of

(
∑

Ti∈Emax(Λ−1) ei)− emin

m−
∑

Ti∈Umax(Λ−2) ui
+ ek, (2)

can be shown to hold for Tk, a proof of which was provided later in the expanded version [3]. (Note that the number of task
utilizations that (2) is dependent upon is lowered by one to Λ− 2 from Λ− 1 in (4).)

In both [2] (pp. 336, second paragraph) and [3] (pp. 164, second paragraph), we outlined a procedure for further
optimizing the bound in (2). This optimization is motivated by the fact that while |Emax(Λ− 1) ∪Umax(Λ− 2)| could be
up to 2Λ− 3, by the tardiness bound derivation, only exactly Λ− 1 tasks contribute to both the execution-cost summation
involving Λ− 1 tasks and the utilization summation involving Λ− 2 tasks, in the numerator and denominator, respectively,

1In this note, we assume that all ties in task selections are resolved using task indices.
2[2] actually assumed a fully-utilized system and derived bounds with m−1 tasks (as opposed to Λ−1 tasks) in both the summations. The assumption

was relaxed later in [3], leading to an improvement for systems that are not fully utilized.

1

of (2). In other words, the summations in (2) over the highest execution costs as well as the highest utilizations are upper
bounds, specified so for convenience, in order to arrive at a closed-form expression. However, by the tardiness bound
derivation, it is sufficient to consider exactly Λ− 1 tasks with the highest possible cumulative lag (see [3, Sec. 3.1]) at the
end of a non-busy interval of interest for contribution to the two summations (regardless of whether the execution costs and
utilizations of those tasks are among the highest). It is known that at most Λ− 1 tasks can be executing and have a positive
lag at the end of a non-busy interval, and at least one of those Λ− 1 tasks is not tardy ([3, Lemma 4]). Further, it is known
that if Θk denotes a tardiness bound of Tk, then lag(Tk, t) is at most (Θk − ek) · uk + ek, at all relevant t, if Tk is tardy,
and at most ek, otherwise ([3, Lemma 5]). Finally, by the tardiness bound derivation, the tardy tasks contribute to both the
utilization and execution-cost sums, while the non-tardy task to just the execution-cost sum.

Based on the above facts, we proposed an iterative improvement to the bound in (2), with the objective of choosing Λ−1
tasks with the highest cumulative lag bounds such that Λ−2 of those are tardy, while one task is not. In what follows, we let
τtardy denote a set of Λ− 2 tasks that contribute to both the utilization and execution-cost sums, and τntrdy, a singleton set
containing a single task, contributing to just the execution-cost sum. Our iterative algorithm is as follows: Letting x denote

the first term,
(
∑

Ti∈Emax(Λ−1) ei)−emin

m−
∑

Ti∈Umax(Λ−2) ui
, of (2), choose Λ− 2 tasks with the highest value for x · uk + ek for inclusion in

τtardy
3 for contribution to both the utilization and execution-cost sums and an additional task with the highest execution

cost of the remaining n− Λ + 2 tasks for inclusion in τntrdy to contribute additionally to the execution-cost sum, and use
the resultant sums in (2) to improve x. Repeat the procedure successively until two consecutive iterations yield the same
set of tasks.

While the above algorithm may look correct superficially, its task-selection method may not always pick the highest
Λ−1 task lag bounds, subject to the constraints specified above, and hence, the correct tasks, to contribute to the two sums.
This is illustrated by the following example.

Example. Consider a task set composed of the following tasks with Usum = 4.0 scheduled under EDF on four pro-
cessors: T1(15, 150), T2(15, 150), T3(9, 18), . . . , T8(9, 18), T9(1, 10), . . . , T16(1, 10). For this task set, to start with,
x = 15+15+9−1

4−2∗0.5
= 12.67, x · uk + ek for T1 and T2 are 16.267, while it is 15.33̄ for T3 to T8, and 2.267 for T9

to T16. The algorithm described above will therefore add T1 and T2 to τtardy to contribute to both the execution-cost
as well as the utilization sums. Since T3 to T8 have the highest execution costs of the remaining tasks, the algorithm
chooses T3 as the additional task for the execution-cost sum, for a revised x = 15+15+9−1

4−(0.1+0.1)
= 10.0. The set of tasks

contributing to the two sums is not altered in the next iteration, and so the algorithm terminates with tardiness bounds of
x+ e1(= e2) = 10.0 + 15.0 = 25.0 for T1 and T2, 19.0 for T3, . . . , T8, and 11.0 for T9, . . . , T16.

In the above example, note that though x · u3 + e3 < x · u2 + e2, we have x · u3 + e3 + e2, i.e., 15.33̄ + 15 = 30.33̄
larger than x · u2 + e2 + e3, which is 25.267. Therefore, assuming T1 and T2 to be the tardy tasks, and T3 as the non-tardy
task does not yield the highest Λ− 1 task lag bounds, and hence, does not correctly bound x. On the other hand, a correct
upper bound is obtained by letting T1 and T3 contribute to both the utilization and execution cost sums, and T2 to just the
execution-cost sum, for an x of 11.176. Each task’s correct tardiness bound is thus larger by 1.176 time units.

2 Correction
The problem with the above algorithm is that it ignores the possibility that though x · ui + ei is smaller than x · uj + ej ,
x · ui + ei + ej could be larger than x · uj + ej + ei. In other words, by deciding on the membership to τtardy based on
the highest task lags under tardy conditions, not all possible combinations of task lags are considered in determining the
maximum possible lag due to any subset of Λ− 1 tasks (such that one of them is not tardy) and hence, the membership to
the two task sets. In the above example, by including T2 in τtardy based on task lag bounds under tardy conditions alone,
the possibility of including T3 to τtardy and T2 to τntrdy, which has a higher cumulative task lag is precluded. This error
can be corrected by choosing the tasks not in two steps but in a single step in each iteration by modifying the task-selection

3Follows from the lag bound of (Θk−ek) ·uk +ek for a task Tk with a tardiness bound of Θk , specified above, and the fact that letting the expression
in (2), which is a tardiness bound for Tk , denote Θk , Θk − ek is given by the first term of (2).

2

rule to choose Λ− 1 tasks that maximize

ei +
∑

Tj ∈ subset of Λ− 2
tasks in τ \ {Ti}

(x · uj + ej), (3)

and letting the maximizing set’s Tj’s (Λ − 2 such tasks) contribute to both the execution-cost and utilization sums (by
including them in τtardy), and its lone Ti to contribute to just the execution-cost sum (be added to τntrdy). As proof of
correctness of the above selection rule, we claim the following.

Claim 1 Let x + ei denote a tardiness bound of task Ti in τ . Then, at all relevant t, an upper bound to the maximum
cumulative lag of any subset of Λ − 1 tasks of τ such that one of them is non-tardy is given by the maximum value of (3)
taken over all Ti ∈ τ .

Proof: Let τtardy and τntrdy denote the set of Λ − 2 Tj’s and the lone Ti, respectively, in a set of tasks maximizing (3).
Since the tardiness of Tk is at most x+ek, by ([3, Lemma 5]), lag(Tk, t) is at most x·uk +ek, at all relevant t, if Tk is tardy,
and at most ek, otherwise. Suppose the claim is not true. Then, there exist task sets τ ′tardy and τ ′ntrdy such that |τ ′ntrdy| = 1
and |τ ′tardy| = Λ− 2 and

∑
Ti∈τ

′
ntrdy

ei +
∑

Tj∈τ
′
tardy

x ·uj + ej >
∑

Ti∈τntrdy
ei +

∑
Tj∈τtardy

x ·uj + ej . But then,

(3) cannot be maximized with the lone task in τntrdy for Ti and the tasks in τtardy for Tj’s, a contradiction. �

In the above example, starting with x = 12.67 given by (2), we have (3) maximized with τntrdy = {T2} and τtardy =
{T1, T3}. x is therefore revised to 15+15+9−1

4−(0.1+0.5)
= 38

3.4
= 11.176. The two sets are unaltered in the next iteration and the

algorithm terminates.
In [2] and [3], we also proved a tardiness bound of

(
∑

Ti∈Emax(Λ) ei)− emin

m−
∑

Ti∈Umax(Λ−1) ui
+ ek, (4)

for task Tk under non-preemptive global EDF. We also mentioned that an iterative procedure as specified for preemptive
EDF can be applied to improve the bounds under non-preemptive EDF also. It should be noted that a corrected version of
the iterative algorithm should be applied in the context of non-preemptive EDF also.

Experimental evaluations of the iterative algorithm presented in [2] and [3] are with the incorrect version and hence
should be slightly under-estimating the bounds.

The same error has been carried over to and occurs in the description of the iterative improvement in [1] also.
However, a corrected version has been used in the experimental evaluation in [4] that compares the iterative improve-

ment to (2) with another iterative algorithm proposed in [4] to further improve the tardiness bounds under global EDF.

Acknowledgement. We are thankful to Jeremy Erickson and Sanjoy Baruah for bringing this error to our attention.

References
[1] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis, University of North Carolina at Chapel Hill,

December 2006. Under Preparation.

[2] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor. In Proceedings of the
26th IEEE Real-Time Systems Symposium, pages 330–341, December 2005.

[3] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor. Real-Time Systems,
38(3):133–189, February 2008.

[4] J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for global EDF. In Submission, Jan 2010.

3

