
Local-spin Mutual Exclusion Using Fetch-and-�

Primitives�

James H. Anderson and Yong-Jik Kim

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

Email: fanderson, kimyg@cs.unc.edu

Abstract

We present a generic fetch-and-�-based local-spin mutual exclusion algorithm, with O(1) time complexity

under the remote-memory-references time measure. This algorithm is \generic" in the sense that it can be

implemented using any fetch-and-� primitive of rank 2N , where N is the number of processes. The rank of

a fetch-and-� primitive is a notion introduced herein; informally, it expresses the extent to which processes

may \order themselves" using that primitive. This algorithm breaks new ground because it shows that O(1)

time complexity is possible using a wide range of primitives. In addition, previously published fetch-and-�-

based algorithms either use multiple primitives or require an underlying cache-coherence mechanism for

spins to be local, while ours does not. By applying our generic algorithm within an arbitration tree, one can

easily construct a �(log
r
N) algorithm using any primitive of rank r, where 2 � r < N . For primitives that

meet a certain additional condition, we present a �(logN= log logN) algorithm, which gives an asymptotic

improvement in time complexity for primitives of rank o(logN). It follows from a previously-presented lower

bound proof that this algorithm is asymptotically time-optimal for certain primitives of constant rank.

Keywords: Fetch-and-� primitives, local spinning, shared-memory mutual exclusion, theory of concurrent

algorithms, time complexity.

�Work supported by NSF grants CCR 9972211, CCR 9988327, ITR 0082866, and CCR 0208289.

1 Introduction

Recent work on shared-memory mutual exclusion has focused on the design of algorithms that minimize con-

tention for the processors-to-memory interconnection network through the use of local spinning . In local-spin

algorithms, all busy waiting is by means of read-only loops in which one or more \spin variables" are repeatedly

tested. Such spin variables must be either locally cacheable or stored in a local memory module that can be

accessed without an interconnection network traversal. The former is possible on cache-coherent (CC) machines,

while the latter is possible on distributed shared-memory (DSM) machines.1 As explained later, it is generally

more diÆcult to design local-spin algorithms for DSM machines than for CC machines.

In this paper, several results concerning the time complexity of local-spin mutual exclusion algorithms are

presented. The notion of time complexity assumed is that given by the remote-memory-references (RMR)

measure [2]. Under this measure, an algorithm's time complexity is de�ned as the total number of remote

memory references required in the worst case by one process to enter and then exit its critical section once.

An algorithm may have di�erent RMR time complexities on CC and DSM machines, because on CC machines,

variable locality is dynamically determined, while on DSM machines, it is statically determined.

The main focus of this paper is mutual exclusion algorithms implemented using fetch-and-� primitives. A

fetch-and-� primitive is characterized by a particular function � (which we assume to be deterministic), accesses

a single variable atomically, and has the e�ect of the following pseudo-code, where var is the variable accessed.

fetch-and-�(var , input)

old := var ;

var := �(old ; input);

return(old)

In this paper, we distinguish between fetch-and-� primitives that are comparison primitives and those that

are not. A comparison primitive conditionally updates a shared variable after �rst testing that its value meets

some condition; examples include compare-and-swap and test-and-set .2 Non-comparison primitives update

variables unconditionally; examples include fetch-and-increment and fetch-and-store.

In recent work [1], we established a time-complexity lower bound of
(logN= log logN) remote memory

references for any N -process mutual exclusion algorithm based on reads, writes, or comparison primitives. In

contrast, several constant-time algorithms are known that are based on noncomparison fetch-and-� primitives

1If a DSM machine has a cache-coherence mechanism, then we consider it to be a CC machine.
2
compare-and-swap and test-and-set are ordinarily de�ned to return a boolean condition indicating if the comparison succeeded.

In this paper, we instead assume that each returns the accessed variable's original value, as in [5]. It is straightforward to modify

any algorithm that uses the boolean versions of these primitives to instead use the versions considered in this paper.

1

[3, 4, 9]. This suggests that noncomparison primitives may be the best choice to provide in hardware, if one is

interested in implementing eÆcient blocking synchronization mechanisms.

Constant-time local-spin mutual algorithms that use noncomparison primitives have been proposed by T. An-

derson [3], Graunke and Thakkar [4], and Mellor-Crummey and Scott [9]. In each of these algorithms, blocked

processes wait within a \spin queue." A process enqueues itself by using a fetch-and-� primitive to update a

shared \tail" pointer; a process's predecessor (if any) in the queue is indicated by the primitive's return value.

A process in the spin queue waits (if necessary) until released by its predecessor. Although these algorithms

follow a common strategy, they vary in the primitives used and the progress properties ensured. Some important

attributes of each algorithm are listed below.

� T. Anderson's algorithm uses fetch-and-increment and requires an underlying cache-coherence mechanism

for spins to be local. Thus, it has O(1) RMR time complexity only on CC machines.

� Graunke and Thakkar's algorithm uses fetch-and-store. This algorithm also requires an underlying cache-

coherence mechanism and thus has O(1) RMR time complexity only on CC machines.

� Mellor-Crummey and Scott actually presented two variants of their algorithm, one that uses fetch-and-

store, and a second that uses both fetch-and-store and compare-and-swap. In both, spins are local on both

CC and DSM machines. However, the fetch-and-store variant is not starvation-free, and hence actually

has unbounded RMR time complexity. The variant that also uses compare-and-swap is starvation-free

and has O(1) RMR time complexity on both CC and DSM machines.

The existence of these algorithms gives rise to a number of intriguing questions regarding mutual exclusion

algorithms. Is it possible to devise an O(1) algorithm for DSM machines that uses a single fetch-and-� primitive?

Can such an algorithm be devised using primitives other than fetch-and-increment and fetch-and-store? Is it

possible to automatically transform a local-spin algorithm for CC machines so that it has the same RMR

time complexity on DSM machines? Given that the
(logN= log logN) lower bound mentioned above applies

to algorithms that use comparison primitives, we know that there exist fetch-and-� primitives that are not

suÆcient for constructing O(1) algorithms. For such primitives, what is the most eÆcient algorithm that can

be devised? Can we devise a ranking of synchronization primitives that indicates the singular characteristic

of a primitive that enables a certain RMR time complexity (for mutual exclusion) to be achieved? Such a

ranking would provide information relevant to the implementation of blocking synchronization mechanisms that

2

is similar to that provided by Herlihy's wait-free hierarchy [5], which is relevant to nonblocking mechanisms.3

The only prior work known to us that seeks to address (some of) these questions is a paper presented at

ICDCS '99 by Huang [6]. Huang presented an algorithm that uses only fetch-and-store and that has constant

amortized RMR time complexity in DSM systems; that is, in any execution of the algorithm in such a system,

the number of remote memory references divided by the number of critical-section entries is constant. The

results of this paper, which are outlined below, extend those of Huang in two important ways. First, our results

pertain to a wide class of primitives. Second, we do not rely on amortization in calculating time complexities.

Contributions of this paper. Our main contribution is a generic N -process fetch-and-�-based local-spin

mutual exclusion algorithm that hasO(1) RMR time complexity on both CC and DSM machines. This algorithm

is \generic" in the sense that it can be implemented using any fetch-and-� primitive of rank 2N . Informally, a

primitive of rank r has suÆcient symmetry-breaking power to linearly order up to r invocations of that primitive.

Our generic algorithm breaks new ground because it shows that O(1) RMR time complexity is possible using

a wide range of primitives, on both CC and DSM machines. Thus, introducing additional primitives to ensure

local spinning on DSM machines, as Mellor-Crummey and Scott did, is not necessary.

We present our generic algorithm by �rst giving a variant that is designed for CC machines. We then

present a very general transformation that can be used to convert algorithms that locally spin on CC machines

to ones that locally spin on DSM machines. This transformation is then applied to our algorithm. (This same

transformation can also be applied to the algorithms of T. Anderson and Graunke and Thakkar.)

By applying our generic algorithm within an arbitration tree, one can easily construct a �(log
r
N) algorithm

using any primitive of rank r, where 2� r < N . For the case r = �(N), this algorithm is clearly asymptotically

time-optimal. However, we show that there exists a class of primitives with constant rank for which �(log
r
N)

is not optimal. We show this by presenting a �(logN= log logN) algorithm that can be implemented using any

primitive that meets an additional condition, which is described next.

In designing a generic algorithm, the key issue to be faced is that of resetting a variable that is repeatedly

updated by fetch-and-� primitive invocations. In our generic algorithm, variables are reset using simple writes.

In our �(logN= log logN) algorithm, such a reset is performed using the fetch-and-� primitive itself. That is,

3Herlihy's hierarchy is concerned with computability: a primitive (or object) X is stronger than a primitive (or object) Y if X

can be used to implement Y (in a non-blocking manner) but not vice versa. The ranking suggested here is not concerned with

computability, but rather time complexity. Nonetheless, both rankings provide information concerning the usefulness of primitives.

Herlihy's hierarchy indicates which primitives should be supported in hardware if one is interested in implementing nonblocking

algorithms; the proposed ranking indicates which primitives should be supported in hardware if one is interested in implementing

scalable spin locks.

3

this algorithm requires that a self-resettable primitive (of rank at least three) be used. If a fetch-and-� primitive

is self-resettable, then the primitive itself can be used to reset a variable that has been updated using that

primitive, i.e., it is not necessary to perform resets using write operations. Using a self-resettable primitive, a

variable can be reset by an operation that returns the variable's old value. In our �(logN= log logN) algorithm,

this fact is exploited, with a resulting asymptotic improvement in time complexity for primitives of rank o(logN).

It follows from the
(logN= log logN) lower bound mentioned above that this algorithm is time-optimal for

certain self-resettable primitives of constant rank.

Organization. The rest of this paper is organized as follows. In Sec. 2, we present needed de�nitions. Then, in

Sec. 3, we present our generic algorithm. The �(logN= log logN) algorithm mentioned above is then presented

in Sec. 4. We end the paper with concluding remarks in Sec. 5.

2 De�nitions

Due to space constraints, we refrain from giving a de�nition of the mutual exclusion problem; such a de�nition

can be found in any concurrent algorithms textbook (e.g., [8]). We hereafter let N denote the number of

processes in the system, and assume that each process has a unique process identi�er in the range 0; : : : ; N � 1.

We assume the existence of a generic fetch-and-� primitive, as de�ned in Sec. 1. We will use \Vartype" to

denote the type of the accessed variable var . (The accessed variable's type is part of the de�nition of such a

primitive.) For example, for a fetch-and-increment primitive, Vartype would be integer, and for a test-and-set

primitive, it would be boolean. In our algorithms, we use ? to denote the initial value of a variable accessed

by a fetch-and-� primitive (e.g., if Vartype is boolean, then ? would denote either true or false). We now

de�ne the notion of a \rank," mentioned earlier.

De�nition: The rank of a fetch-and-� primitive is the largest integer r satisfying the following.

For each process p, there exists a constant array �[p][0::kp � 1] of input values (for some kp), such

that if p performs a sequence of fetch-and-� invocations as speci�ed below on a variable v (of type

Vartype) that is initially ? (for some choice of ?),

for i := ap to 1 do fetch-and-�(v; �[p][i mod kp]) od

where ap is some integer value, then in any interleaving of these invocations by the N di�erent

4

processes, (i) any two invocations among the �rst r � 1 by di�erent processes write di�erent values

to v, (ii) any two successive invocations among the �rst r � 1 by the same process write di�erent

values to v, and (iii) of the �rst r invocations, only the �rst invocation returns ?.

A fetch-and-� primitive has in�nite rank if the condition above is satis�ed for arbitrarily large values of r. �

As our generic algorithm shows, a fetch-and-� primitive with rank r has enough power to linearly order r

invocations by possibly di�erent processes unambiguously. Note that it is not necessary for the primitive to

fully order invocations by the same process, since each process can keep its own execution history.

Examples. An r-bounded fetch-and-increment primitive on a variable v with range 0; : : : ; r� 1 is de�ned by

�(old ; input) = min(r�1; old+1): (In this primitive, the input parameter is not used, and hence we may simply

assume �[p][j] = ? for all p and j.) If v is initially 0, then any r consecutive invocations on v return distinct

values, 0; 1; : : : ; r � 1. Moreover, any further invocation (after the rth) returns r � 1, which is the same as the

return value of the rth invocation. Therefore, an r-bounded fetch-and-increment primitive has rank r, and an

unbounded fetch-and-increment primitive has in�nite rank.

For fetch-and-increment primitives, the input parameter � is extraneous. However, this is not the case for

other primitives. As a second example, consider a fetch-and-store primitive on a variable that is large enough

to hold 2N + 1 distinct values (2N pairs (p; 0) and (p; 1), where p is a process, and an additional initial value

?). It is easily shown that fetch-and-store has in�nite rank. This follows by de�ning �[p][j] = (p; j mod 2).

(Informally, each process may write the information \this is an (even/odd)-indexed invocation by process p"

each time.) It also follows that an unbounded fetch-and-store primitive has in�nite rank.

3 A Constant-time Generic Algorithm

In this section, we present an O(1) mutual exclusion algorithm that uses a generic fetch-and-� primitive, which

is assumed to have rank at least 2N . Two variants of the algorithm are presented, one for CC machines and

one for DSM machines. In local-spin algorithms for DSM machines, each process must have its own dedicated

spin variables (which must be stored in its local memory module). In contrast, in algorithms for CC machines,

processes may share spin variables, because each process can read a di�erent cached copy. Because of this

exibility, algorithms for CC machines tend to be a bit simpler than those for DSM machines. This is why we

present separate algorithms. Our CC algorithm, denoted G-CC, is presented �rst, and then its DSM counterpart,

5

shared variables

CurrentQueue : 0; 1;

Tail : array[0; 1] of Vartype initially ?;

Position: array[0; 1] of 0::2N � 1 initially 0;

Signal : array[0; 1][Vartype] of boolean initially false;

Active : array[0::N � 1] of boolean initially false;

QueueIdx : array[0::N � 1] of (?; 0; 1);

Waiter1: array[0::N � 1] of (?; 0::N � 1);

Waiter2: array[0; 1][Vartype] of (?;0::N � 1);

Spin: array[0::N � 1] of boolean initially false

private variables

idx : 0; 1;

counter : integer;

prev ; self ; old : Vartype ;

pos : 0::2N � 1;

q: 0::N � 1;

next : (?; 0::N � 1);

ag : boolean

Figure 1: Variables used in Algorithms G-CC and G-DSM.

denoted G-DSM, is obtained by means of a fairly simple transformation.

The two algorithms and associated variable declarations are shown in Figs. 1{3. Each algorithm is speci�ed

by giving Acquire and Release procedures, which are invoked by a process to perform its entry and exit sections,

respectively. In both algorithms, \await B," where B is a boolean expression, is used as a shorthand for the

busy-waiting loop \while :B do =� null �= od."

Reset mechanism. When trying to implement a mutual exclusion algorithm using a generic fetch-and-�

primitive | of which only its rank r is known | the primary problem that arises is the following.

If the primitive is invoked more than r times to access a variable, then it may not be able to provide

enough information for processes to order themselves. Therefore, the algorithm must provide a means

of resetting such a variable before it is accessed r times .

Because we are using a primitive of rank 2N , we need a mechanism for resetting a variable accessed by the

primitive before it is accessed 2N times. We do this in Algorithm G-CC by using two \waiting queues," indexed

0 and 1. Associated with each queue j is a \tail pointer," Tail [j]. In its entry section, a process enqueues

itself onto one of these two queues by using the fetch-and-� primitive to update its tail pointer, and waits on

its predecessor, if necessary. At any time, one of the queues is designated as the \current" queue, which is

indicated by the shared variable CurrentQueue. The other queue is called the \old" queue. The algorithm

switches between the two queues over time in a way that ensures that each tail pointer is reset before being

accessed 2N times. We now describe the reset mechanism in detail.

When a process invokes the Acquire routine, it determines which queue is the current queue by reading

the variable CurrentQueue (line 3 of Fig. 2), and then enqueues itself onto that queue using the fetch-and-�

primitive (lines 5{7). If p is not at the head of its queue (p:prev 6= ?), then it waits until its predecessor in the

queue updates the spin variable Signal [p:idx][p:prev] (line 9), which p then resets (line 10).

6

process p :: =� 0 � p < N �=

procedure Acquire()

1: QueueIdx [p] := ?;

2: Active [p] := true ;

3: idx := CurrentQueue ;

4: QueueIdx [p] := idx ;

5: prev := fetch-and-�(Tail [idx]; �[p][counter]);

6: self := �(prev ; �[p][counter]);

7: counter := counter + 1 mod kp;

8: if prev 6= ? then

9: await Signal [idx][prev];

10: Signal [idx][prev] := false

�;

11: Acquire
2
(idx)

procedure Release()

12: pos := Position[idx];

13: Position[idx] := pos + 1;

14: Release2(idx);

15: if (pos < N) ^ (pos 6= p) ^ (Active[pos]) then

16: q := pos ;

17: await :Active [q] _

18: (QueueIdx [q] = idx)

19: elseif pos = N then

20: Tail [1� idx] := ?;

21: Position[1� idx] := 0;

22: CurrentQueue := 1� idx

�;

23: Signal [idx][self] := true ;

24: Active [p] := false

Figure 2: Algorithm G-CC: Generic mutual exclusion algorithm for CC machines.

process p :: =� 0 � p < N �=

procedure Acquire()

1: QueueIdx [p] := ?;

2: Active [p] := true ;

3: idx := CurrentQueue ;

4: Acquire
2
(p; 1);

5: QueueIdx [p] := idx ;

6: q := Waiter [p];

7: Release2(p; 1);

8: if q 6= ? then Spin[q] := true �;

9: prev := fetch-and-�(Tail [idx]; �[p][counter]);

10: self := �(prev ; �[p][counter]);

11: counter := counter + 1 mod kp;

12: if prev 6= ? then

13: Acquire
2
((idx ; prev); 0);

14:
ag := Signal [idx][prev];

15: Waiter [idx][prev] := if
ag then ? else p;

16: Spin[p] := false;

17: Release2((idx ; prev); 0);

18: if :
ag then

19: await Spin[p];

20: Waiter [idx][prev] := ?

�;

21: Signal [idx][prev] := false

�;

22: Acquire
2
(idx)

procedure Release()

23: pos := Position[idx];

24: Position[idx] := pos + 1;

25: Release2(idx);

26: if (pos < N) ^ (pos 6= p) ^ (Active[pos]) then

27: q := pos ;

28: Acquire
2
(q; 0);

29:
ag :=:Active[q] _

30: (QueueIdx [q] = idx);

31: Waiter [q] := if
ag then ? else p;

32: Spin[p] := false;

33: Release2(q; 0);

34: if :
ag then

35: await Spin[p];

36: Waiter [q] := ?

�

37: elseif pos = N then

38: Tail [1� idx] := ?;

39: Position[1� idx] := 0;

40: CurrentQueue := 1� idx

�;

41: Acquire
2
((idx ; self); 1);

42: Signal [idx][self] := true ;

43: next := Waiter [idx][self];

44: Release2((idx ; self); 1);

45: if next 6= ? then Spin[next] := true �;

46: Acquire
2
(p; 1);

47: Active [p] := false;

48: next := Waiter [p];

49: Release2(p; 1);

50: if next 6= ? then Spin[next] := true �

Figure 3: Algorithm G-DSM: Generic algorithm for DSM machines. Lines di�erent from Fig. 2 are shown with

boldface line numbers.

7

Tail [0]

Tail [1]

Queue 0 : the current queue

Queue 1 : the old queue

headprocesses that have finished execution waiting processes

New processes may enter the
current queue

2-process

ME algorithm

(a)

Queue 0 : the current queue

0 1 N-1 N N+1

Queue 1 : the old queue (contains no active process)

(b)

Queue 0 : the old queue

0 1 N-1 N N+1

Queue 1 : the current queue (empty)

Tail [1]

(c)

Queue 0 : the current queue

0 1 Position q

Queue 1 : the old queue

q + 1

Process q

(d)

Figure 4: The structure of Algorithm G-CC. (a) The overall structure. This �gure shows a possible state of execution

when the current queue is queue 0. (The \�nished" processes may be duplicated, because a process may execute its

critical section multiple times.) (b) A state just before CurrentQueue is updated. (c) A state just after CurrentQueue

is updated. (d) A process (in its exit section) in the current queue waiting for another in the old queue.

Note that it is possible for a process q to read CurrentQueue before another process updates CurrentQueue

to switch to the other queue. Such a process q will then enqueue itself onto the old queue. Thus, both queues

may possibly hold waiting processes. To arbitrate between processes in the two queues, an extra two-process

mutual exclusion algorithm is used. A process competes in this two-process algorithm after reaching the head of

its waiting queue using the routines Acquire2 and Release2, with the index of its queue as a \process identi�er"

(lines 11 and 14). This is illustrated in Fig. 4(a), where the current queue is queue 0. Note that this extra

two-process algorithm can be implemented from reads and writes in O(1) time [10].

8

As explained above, some process must reset the current queue before it is accessed 2N times. To facilitate

this, each queue j has an associated shared variable Position [j]. This variable indicates the relative position of

the current head of the queue, starting from 0. For example, in Fig. 4(a), the head of queue 0 is at position 2,

and hence Position [0] = 2. A process in queue j updates Position [j] while still e�ectively in its critical section

(lines 12 and 13). Thus, Position [j] cannot be concurrently updated by di�erent processes.

A process exchanges the role of the two queues after completing its critical section if it is at position N in

the current queue (lines 20{22). Insets (b) and (c) of Fig. 4 show the state of the two queues before and after

such an exchange. In order to exchange the queues, we must ensure the following invariant.

Invariant If a process executes its critical section after having acquired position N of the current queue, then

no process is in the old queue. (I1)

(A process is considered to be \in" the old queue if it read the index of that queue from CurrentQueue.

In particular, that process may be yet to update the queue's tail pointer.) Given this invariant, a process at

position N may safely reset the old queue and exchange the queues. Invariant (I1) is a direct consequence of

the following invariant. (Recall that process identi�ers range from 0 to N � 1.)

Invariant If a process executes its critical section after having acquired position pos of the current queue, and

if pos > q, then process q is not in the old queue. (I2)

To maintain (I2), each process p has two associated variables, Active [p] and QueueIdx [p], which indicate

(respectively) whether process p is active, and if so, which queue it is executing in (lines 1, 2, 4, and 24). If a

process p executes at position q (< N) in the current queue, then in its exit section, p checks QueueIdx [q] in

order to see if process q is in the old queue (line 15); if that is the case, then p waits until q �nishes its critical

section (lines 17 and 18) before signaling a possible successor (i.e., a process at position q + 1 in the current

queue) that it is now at the head of that queue (line 23). This situation is depicted in Fig. 4(d).

Although p waits for q, starvation freedom is guaranteed, because q is in the old queue, and hence makes

progress independent of the current queue. Only the current queue is stalled until q �nishes execution. (The

fact that p may have to wait for a signi�cant duration in its exit section may be a cause for concern. However,

with a slightly more complicated handshake, such waiting can be eliminated. The idea is to require process p

to instruct process q to signal p's successor after q �nishes its critical section. Therefore, p may �nish execution

without waiting for q. For simplicity, this handshake has not been added to Algorithm G-CC.)

9

We still must show that using a fetch-and-� primitive of rank 2N is suÆcient. Suppose that process p

acquires position N of queue 0 when it is the current queue. We claim that at most N � 1 processes may be

enqueued onto queue 0 after p and before the queues are exchanged again. For a process q to enqueue itself onto

queue 0 after p, it must have read the value of CurrentQueue before it was updated by p. For q to enqueue itself

a second time onto queue 0, it must read CurrentQueue = 0 again, after CurrentQueue = 1 was established by

p. This implies that the two queues have been exchanged again. (We remind the reader that, by the explanation

above, the queues will not be exchanged again until there are no processes in queue 0.) Thus, after p establishes

that queue 1 is current, and while queue 0 continues to be the old queue, at most N � 1 processes may be

enqueued (after p) onto queue 0. Thus, a rank of 2N is suÆcient.

Time complexity. The busy-waiting loops at lines 9, 17, and 18 in Fig. 2 are read-only loops in which variables

are read that may be updated by a unique process. On a CC machine, the �rst read of such a variable generates

a cached copy, and hence subsequent reads until the variable is updated are handled in-cache. In all cases,

such a variable can be updated a constant number of times before the waiting condition is established. Thus,

each busy-waiting loop generates a constant number of remote memory references. (This analysis ignores any

invalidations or displacements of cached variables due to cache associativity or capacity constraints.) Because

there are no loops in the algorithm aside from busy-waiting loops, it follows that the RMR time complexity of

Algorithm G-CC is O(1) on CC machines. Thus, we have the following lemma.

Lemma 1 If the underlying fetch-and-� primitive has rank at least 2N , then Algorithm G-CC is a correct,

starvation-free mutual exclusion algorithm with O(1) RMR time complexity in CC machines. �

Algorithm G-DSM. We now explain how to convert Algorithm G-CC into Algorithm G-DSM. The key idea

of this conversion is a simple transformation of each busy-waiting loop, which we examine here in isolation. This

transformation generalizes one presented earlier by us [7]. In Algorithm G-CC, all busy waiting is by means of

statements of the form \await B," where B is some boolean condition. Moreover, if a process p is waiting for

condition B to hold, then there is a unique process that can establish B, and once B is established, it remains

true, until p's \await B" statement terminates.

In Algorithm G-DSM, each statement of the form \await B" has been replaced by the code fragment on

the left below (see lines 13{20 and 28{36 in Fig. 3), and each statement of the form \B := true" by the code

fragment on the right (see lines 4{8, 41{45, and 46{50).

10

a: Acquire2(J ; 0);
b:
ag := B;

c: Waiter [J] := if
ag then ? else p;

d: Spin [p] := false ;

e: Release2(J ; 0);
f: if :
ag then
g: await Spin [p];

h: Waiter [J] := ?
�

i: Acquire2(J ; 1);
j: B := true;

k: next :=Waiter [J];
l: Release2(J ; 1);
m: if next 6= ? then Spin[next] := true �

The variable Waiter [J] is assumed to be initially ?, and Spin[p] is a spin variable used exclusively by process

p (and, hence, it can be stored in memory local to p). Acquire2 and Release2 represent an instance of a

two-process mutual exclusion algorithm, indexed by J . To see that this transformation is correct, assume that

a process p executes lines a{h while another process q executes lines i{m. Since lines b{d and j{k execute within

a critical section, lines b{d precede lines j{k, or vice versa. If b{d precede j{k, and if B = false holds before the

execution of b{d, then p assigns Waiter [J] := p at line c, and initializes its spin variable at line d. Process q

subsequently readsWaiter [J] = p at line k, and establishes Spin[p] = true at line m, which ensures that p is not

blocked. On the other hand, if lines j{k precede lines b{d, then process q readsWaiter [J] =? (the initial value)

at line k, and does not update any spin variable at line m. Since process p executes line b after q executes line j,

p preserves Waiter [J] = ?, and does not execute lines g and h. Given the correctness of this transformation,

we have the following.

Lemma 2 If the underlying fetch-and-� primitive has rank at least 2N , then Algorithm G-DSM is a correct,

starvation-free mutual exclusion algorithm with O(1) RMR time complexity in DSM machines. �

The transformation above also can be applied to the algorithms of T. Anderson [3] and Graunke and

Thakkar [4]. In each case, the two-process mutual algorithm actually can be avoided by utilizing the speci�c

fetch-and-� primitive used (fetch-and-increment and fetch-and-store, respectively).

If we have a fetch-and-� primitive with rank r (4 � r < 2N), then we can arrange instances of Algorithm G-

DSM in an arbitration tree, where each process is statically assigned a leaf node and each non-leaf node consists

of an br=2c-process mutual exclusion algorithm, implemented using Algorithm G-DSM. Because this arbitration

tree is of �(log
r
N) height, we have the following theorem. (Note that for r = 2 or 3, a �(log

r
N) algorithm is

possible without even using the fetch-and-� primitive [10].)

Theorem 1 Using any fetch-and-� primitive of rank r� 2, starvation-free mutual exclusion can be implemented

with �(logmin (r;N)N) RMR time complexity on either CC or DSM machines. �

11

4 �(log = log logN) Algorithm

The time-complexity bound in Theorem 1 is clearly tight for r = �(N). In this section, we show that for some

primitives of rank r = o(logN), it is not tight, provided that r is at least three. This follows from Algorithm T,

shown in Fig. 10, which has �(log = log logN) RMR time complexity on both DSM and CC machines. In this

algorithm, it is assumed that the fetch-and-� primitive used has a rank of at least three, and is \self-resettable,"

as de�ned below.

De�nition: A fetch-and-� primitive with rank r is self-resettable if the following hold:

� Let �[p][0::kp�1] be de�ned as in the de�nition of rank, and let each process execute the for loop shown in

that de�nition. Then, in any interleaving of an arbitrary number of these fetch-and-� primitive invocations

by the N di�erent processes, only the �rst invocation returns ?.

� For each �[p][i], there is an associated value �[p][i] such that �(�(?; �[p][i]); �[p][i]) = ?. That is, if the

invocation of the fetch-and-� primitive on v by process p returns ?, and if no other process accesses v,

then p may reset the variable by invoking the primitive again with a \reset" parameter. �

Recall that in the generic algorithms of the previous section, devising a way of resetting the Tail variables

was the key problem to be addressed. Because we could assume so little of the semantics of the fetch-and-�

primitive being used, simple write operations were used to reset these variables. If a self-resettable fetch-and-�

primitive is available, then that primitive itself can be used to perform such a reset.

In order to hide certain low-level details in Algorithm T we will assume the availability of two operations,

fetch-and-update and fetch-and-reset. A fetch-and-update operation on a variable v invokes the fetch-and-�

primitive being used with the parameter �[p][iv] (where iv is a private counter variable associated with v),

increments iv, and returns the old value of v (i.e., the return value of the fetch-and-� primitive) and the new

value of v (which can be determined by �(v; �[p][iv])). A fetch-and-reset operation on a variable v invokes the

fetch-and-� primitive with the parameter �[p][iv], and also returns the old and new values of v.

As a stepping stone toward Algorithm T, we present a simpler algorithm, Algorithm T0, with a similar

structure. Algorithm T0, which is shown in Fig. 6, uses an arbitration tree, each node n of which is represented

by a \local variable" Lock [n] of type NodeType . Such a variable can hold up to two process identi�ers and is

accessible ty two atomic operations, AcquireNode and ReleaseNode , as shown in Fig. 5, in addition to ordinary

read and write operations. Informally, a value of (?;?) represents an available node; (p;?), where p 6= ?,

12

type NodeType = record winner ;waiter : (0::N � 1;?) end;

=� if winner = ?, then waiter = ? also holds. �=

process p :: =� 0 � p < N �=

function AcquireNode(t : NodeType):

(WINNER; PRIMARY WAITER; SECONDARY WAITER)

=� atomically do the following �=

if t = (?;?) then

t := (p;?); return WINNER

elseif t:waiter = ? then

t:waiter := p; return PRIMARY WAITER

else

return SECONDARY WAITER

�

function ReleaseNode(t : NodeType): (SUCCESS; FAIL)

=� atomically do the following �=

if t:winner 6= p then

=� error: should not happen �=

elseif t = (p;?) then

t := (?;?); return SUCCESS

else

return FAIL

�

Figure 5: De�nitions of NodeType , AcquireNode , and ReleaseNode . Note that AcquireNode and ReleaseNode are assumed

to execute atomically.

represents a situation in which process p has acquired the node and no other process has since accessed that

node; (p; q), where p 6=? and q 6=?, represents a situation in which p has acquired the node and another process

q is waiting at that node (perhaps along with some other processes).

Arbitration tree and waiting queue. The structure of the arbitration tree is illustrated in Fig. 7. The

tree is of degree m =
p
logN . Each process is statically assigned to a leaf node, which is at level MAX LEVEL.

(The root is at level 1.) Since the tree has N leaf nodes, MAX LEVEL = �(log
m
N) = �(logN= log logN).

To enter its critical section, a process p traverses the path from its leaf up to the root and attempts to

acquire each node on this path. If p acquires the root node, then it may enter its critical section. As explained

shortly, p may also be \promoted" to its critical section while still executing within the tree. (In that case,

p may have acquired only some of the nodes on its path.) In either case, upon exiting its critical section, p

traverses its path in reverse, releasing each node it has acquired.

In addition to the arbitration tree, a serial waiting queue, WaitingQueue , is used. This queue is accessed

by a process only within its exit section. A \barrier" mechanism is used that ensures that multiple processes

do not execute their exit sections concurrently. As a result, the waiting queue can be implemented as a

sequential data structure. It is accessible by the usual Enqueue and Dequeue operations, and also an operation

Remove(WaitingQueue; p), which removes process p from inside the queue, if present; it is straightforward to

implement each of these operations in O(1) time. When a process p, inside its exit section, discovers another

waiting process q, p adds q to the waiting queue. In addition, p dequeues a process r from the queue (if the

queue is nonempty), and \promotes" r to its critical section. (This mechanism is rather similar to helping

mechanisms used in wait-free algorithms [5].)

13

shared variables

Lock : array[1::MAX NODE] of NodeType

initially (?;?);

Spin: array[0::N � 1] of boolean;

InTree : array[0::N � 1] of boolean initially false;

WaitingQueue: (serial waiting queue)

initially empty;

Promoted : (?; 0::N � 1) initially ?

private variables

lev ; break level : 1::MAX LEVEL;

n; child : 1::MAX NODE;

q : ?; 0::N � 1

process p :: =� 0 � p < N �=

procedure Acquire()

1: Spin[p] := false;

2: InTree [p] := true ;

3: AcquireNode(Lock [Node(p; MAX LEVEL)]);

4: for lev := MAX LEVEL � 1 downto 1 do

5: n := Node(p; lev);

6: if AcquireNode(Lock [n]) 6= WINNER then

7: InTree[p] := false;

8: await Spin[p]; =� wait until promoted �=

9: break level := lev ;

10: Acquire
2
(1); =� promoted entry �=

return

�

od;

11: InTree [p] := false;

12: break level := 0;

13: Acquire
2
(0) =� normal entry �=

procedure Release()

14: Wait(); =� wait at the barrier �=

15: if break level = 0 then

16: Release2(0)

else

17: Release2(1);

18: n := Node(p; break level);

19: if Lock [n]:waiter = p then

20: q := Lock [n]:winner ;

21: await :InTree[q];

22: Lock [n] := (?;?);

23: Enqueue(WaitingQueue; q)

�;

24: for each child := (a child of n) do

25: q := Lock [child]:winner ;

26: if (q 6= ?) then

27: Enqueue(WaitingQueue; q) �

od

�;

28: for lev := break level + 1 to MAX LEVEL � 1 do

=� reopen each node p has acquired �=

29: n := Node(p; lev);

30: if Lock [n]:winner = p then

31: if ReleaseNode(Lock [n]) = FAIL then

32: Enqueue(WaitingQueue;Lock [n]:waiter);

33: Lock [n] := (?;?)

� �

od;

34: ReleaseNode(Lock [Node(p; MAX LEVEL)]);

35: Remove(WaitingQueue; p);

36: q := Promoted ;

37: if (q = p) _ (q = ?) then

38: q := Dequeue(WaitingQueue);

39: Promoted := q;

40: if q 6= ? then Spin[q] := true �

�;

41: Signal() =� open the barrier �=

Figure 6: Algorithm T0: A tree-structured algorithm using a NodeType object.

Arbitration at a node. As mentioned above, associated with each (non-leaf) node n is a \lock variable"

Lock [n], which represents the state of that node. The structure of such a node is illustrated in Fig. 8. In its

entry section, a process p may try to acquire node n only if it has already acquired some child of n. In order

to acquire node n, p executes AcquireNode(Lock [n]). Assume that the old value of Lock [n] is (q; r). There are

three possibilities to consider.

� If q = ? holds, then p has established Lock [n] = (p;?) and has acquired node n. In this case, p becomes

the winner of node n, and proceeds to the next level of the tree.

� If q 6= ? and r = ? hold, then p has established Lock [n] = (q; p), in which case it becomes the primary

14

Processes (0..N-1)

Critical Section

Each node has degree

m = sqrt(log N)

level 1

level MAX_LEVEL

Figure 7: Arbitration tree of Algorithm T0 and Algorithm T.

m child nodes.

Lock [n]

Node is open. Node has a winner (p).

p

p

Node has a winner (p), and a

primary waiter (q).

p

p q

q

secondary

waiters

Figure 8: Structure of a node used in Algorithm T0.

waiter at node n. In this case, p stops at node n and waits until it is \promoted" to its critical section by

some other process.

� Otherwise, the value of Lock [n] is not changed, in which case p is a secondary waiter at node n. In this

case, p also waits at node n until it is promoted.

Next, consider the behavior of a process p in its exit section. There are two possibilities to consider, depending

on p's execution history in its entry section.

� If p acquired node n in its entry section, then p has established Lock [n] = (p;?). In this case, p tries to

release node n by executing ReleaseNode(Lock [n]). If no other process has updated Lock [n] between p's

executions of AcquireNode(Lock [n]) and ReleaseNode(Lock [n]), then node n is successfully released (i.e.,

Lock [n] transits to (?;?)). In this case, p descends the tree and continues to release other nodes it has

acquired.

On the other hand, if some other process has updated Lock [n] between p's two invocations, then let q

be the �rst such process. As explained above, q must have changed Lock [n] from (p;?) to (p; q), thus

15

designating itself as the primary waiter at node n. In this case, p adds q to the waiting queue. (Note that

p does not enqueue any secondary waiters, i.e., processes that accessed Lock [n] after q.) Process p then

releases node n by writing (not via calling ReleaseNode) Lock [n] := (?;?), and descends the tree.

� If p was promoted at node n, then p has not acquired node n, and hence is not responsible for releasing

node n. Instead, p examines every child of node n (speci�cally, Lock [child], where child is a child of n) to

determine if any \secondary waiters" at node n exist. p adds such processes to the waiting queue.

The algorithm uses an additional mechanism that ensures the following invariant, as explained shortly.

Invariant If a process p acquires node n, and if another process q later becomes the primary waiter of node

n, then q examines every child of node n after node n is released by p or by some other process on behalf of p

(see below). (I3)

Assuming this invariant, we can easily show that each process eventually either acquires the root, or is added

to the waiting queue by some other process. In particular, at node n, the winner always proceeds to the next

level, and the primary waiter q is eventually enqueued by the winner or by some other process (the latter could

happen if waiting processes on q's path lower in the tree are promoted). Thus, we only have to show that a

secondary waiter is eventually enqueued. In order for a process r to become a secondary waiter at node n, it

must �rst acquire a child node n0 of n, and then execute AcquireNode(Lock [n]) while Lock = (p; q) holds, for

some winner p and primary waiter q. Invariant (I3) guarantees that q has yet to examine the child nodes of n.

Therefore, q eventually examines node n0, and adds r to the waiting queue (if it has not already been added by

some other process).

Finally, since the waiting queue is checked every time a process executes its exit section, it follows that the

algorithm is starvation-free.

As explained above, processes exiting the arbitration tree form two groups: the promoted processes and the

non-promoted processes (i.e., those that successfully acquire the root). To arbitrate between these two groups,

an additional two-process mutual exclusion algorithm is used. The manner in which this algorithm and the

barrier mentioned previously are used is illustrated in Fig. 9.

Further details. Having explained the basic structure of the algorithm, we now present a more detailed

overview. We begin by considering the shared variables used in the algorithm, which are listed in Fig. 6. Lock

and WaitingQueue have already been explained. Spin[p] is a dedicated spin variable for process p. Promoted is

16

Critical Section

arbitration

tree

processes

Enter 2-proc.

ME algorithm

regular entry

promoted entry

Enter the barrier

Open the barrier

Exit 2-proc. ME algorithm

Reopen acquired nodes.

If promoted at node n,

examine child nodes of n,

enqueue found processes.

Dequeue and promote a waiting

process (if any).

waiting

queue

Figure 9: The exit sections of Algorithm T0 and Algorithm T. Dashed and dotted lines represent information/signal

ow.

used to hold the identity of any promoted process. This variable is used to ensure that multiple processes are not

promoted concurrently, which is required in order to ensure that the additional two-process mutual exclusion

algorithm is accessed by only one promoted process at a time. InTree[p] indicates whether p is accessing the

arbitration tree in its entry section, and may be checked by another process (in its exit section) in order to

maintain (I3).

We now consider the Acquire and Release procedures in Fig. 6 in some detail. A process p in its entry

section �rst initializes its spin variable (line 1), begins accessing the arbitration tree (line 2), and automatically

acquires its leaf node (line 3). It then ascends the arbitration tree (lines 4{10). Function Node(p; lev) is used

to return the index of the node at level lev in p's path (line 5). Process p tries to acquire each node it visits by

executing line 6. If it succeeds, then it ascends to the next level; otherwise, it �nishes accessing the arbitration

tree (line 7), and spins at line 8 until it is promoted by some other process. If p acquires the root node, then

it executes the two-process entry section using \0" as a process identi�er (line 13). Otherwise, it executes the

two-process entry section using \1" as a process identi�er (line 10). The private variable break level stores the

level at which p exited the for loop (lines 9 and 12).

In its exit section, p waits until the barrier is opened (line 14) and then executes the two-process exit section

(lines 16 and 17). The barrier is speci�ed by two procedures Wait and Signal, which ensure that p waits at

line 14 if another process is executing within lines 15{40. Because Wait is invoked within a critical section, it is

straightforward to implement these procedures in O(1) time. In CC machines, Wait can be de�ned as \await

17

Flag ; Flag := false" and Signal as \Flag := true," where Flag is a shared boolean variable. In DSM machines,

a slightly more complicated implementation is required, which we omit due to space limitations.

If p was promoted at node n (i.e., break level > 0), then it examines Lock [n] (line 19). If p �nds Lock [n]:waiter

= p at line 19, then p is the primary waiter at n, and was promoted before the winner of node n (given by

Lock [n]:winner) entered its critical section. This can happen because p may actually have been promoted by

a primary waiter at a lower level. In this case, p waits until the winner �nishes accessing the arbitration tree

(line 21). (Note that this will not be a local-spin loop in a DSM machine. We will return to this issue shortly.)

It then resets node n in place of the winner, and adds the winner to the waiting queue (lines 22 and 23). After

that, p adds any process that has acquired a child node of n to the waiting queue (lines 24{27). Note that

lines 19{23 ensure that Lock [n] is released at least once before lines 24{27 are executed, thus ensuring that (I3)

holds.

Regardless of whether p was promoted, it tries to reopen each node that it acquired in its entry section

(lines 28{33). For each such node n, p checks if it is still the winner (line 30); this may not be the case, if the

primary waiter at node n executed lines 20{23 before p entered its critical section. If p is indeed the winner

at node n, then it tries to reopen node n (line 31). p may fail to reopen node n only if node n has a primary

waiter, in which case p enqueues the waiter and reopens the node using an ordinary write (lines 32 and 33).

Finally, p resets its leaf node (line 34), makes sure that it is not contained in the waiting queue (line 35), and

checks if there is any un�nished promoted process (lines 36 and 37). If not, then p dequeues and promotes a

process from the waiting queue (if one exists) (lines 38{40). As a last step, p opens the barrier (line 41).

In order to compute the time complexity of the algorithm, note that MAX LEVEL = �(logN= log logN)

holds. Therefore, the for loop in lines 4{10 iterates O(logN= log logN) times and that in lines 28{33 iter-

ates �(logN= log logN) times. Since the arbitration tree has degree �(
p
logN), the for loop in lines 24{27

iterates �(
p
logN) times, which is asymptotically dominated by �(logN= log logN). It follows that the worst-

case time complexity of the algorithm is �(logN= log logN) provided all busy-waiting is by local spinning. The

busy-waiting loop in line 8 spins on a local spin variable. The loop in line 21 does not, but it can be easily trans-

formed so that all spinning is local (on DSM machines) using the technique in Sec. 3. Thus, Algorithm T0 (with

the transformation of line 21) has �(logN= log logN) RMR time complexity on both DSM and CC machines.

Algorithm T. We now explain the di�erences between Algorithm T0 and Algorithm T, which is shown in

Fig. 10. In Algorithm T, each lock variable is accessed by the fetch-and-update and fetch-and-reset operations

18

de�ned earlier, instead of the AcquireNode and ReleaseNode operations in Fig. 5. Each such variable is assumed

to have a type (Vartype) that is consistent with the given fetch-and-� primitive being used, and is initially ?.

The main problem associated with the use of a generic fetch-and-� primitive is that we cannot use the same

variable as both a lock variable and as a variable for storing process identi�ers. In particular, even if a process p

performs a successful fetch-and-update(v) operation, the value written to v may be completely arbitrary; another

process q may not be able to discover the winning process (that is, p) by reading v. Therefore, we need a pair

of variables, one for each purpose.

Another problem is that, in its exit section, a winner p (at node n) may fail to discover the primary waiter.

To see why this is so, consider the following scenario: Lock [n] is initially ?; p acquires node n, and writes v1 to

Lock [n]; another process q accesses Lock [n], writes v2, and becomes the primary waiter; yet another process r

accesses Lock [n], and writes v1. (This is allowed because the primitive may have rank three.) Thus, process p

cannot detect q and r by reading Lock [n].

In order to solve this problem, note that such a situation may arise only if there are multiple waiters (q and

r in this case). Therefore, we can design the entry section of each node as follows.

� First, a process executes fetch-and-update(Lock [n][0]) in order to become the primary winner at node n.

� If it fails, then it executes fetch-and-update(WaiterLock [n]) in order to become the primary waiter.

� If it still fails, then it executes fetch-and-update(Lock [n][1]) in order to become the secondary winner at

node n.

� If it fails all three, then it becomes a secondary waiter.

A process ascends the tree if it becomes either the primary winner or the secondary winner. Thus, now two

processes can ascend the tree at each node. Note that a process may become the secondary winner only if it

fails to become the primary waiter, i.e., only if there already exists a primary waiter. Also note that, if the

primary winner fails to detect the primary waiter, then some process must become a secondary winner that

knows that there exists a primary waiter.

We now explain the structure of Algorithm T in detail.

Each node n is represented by the following variables: Lock [n][0; 1], Winner [n][0; 1], WaiterLock [n], and

Waiter [n]. Initially, all variables are?, representing an available node. Variables Lock [n][0; 1] andWaiterLock [n]

are used as lock variables, and are accessed by fetch-and-update and fetch-and-reset operations. If a process p

19

shared variables

Lock : array[1::MAX NODE][0; 1] of Vartype ;

WaiterLock : array[1::MAX NODE] of Vartype ;

Winner : array[1::MAX NODE][0; 1] of (?; 0::N � 1);

Waiter : array[1::MAX NODE] of (?;0::N � 1)

private variables

result : (PRIMARY WINNER; PRIMARY WAITER;

SECONDARY WINNER; SECONDARY WAITER);

prev ; new : Vartype ;

lock : array[1::MAX LEVEL] of Vartype ;

i: 0; 1

process p :: =� 0 � p < N �=

procedure Acquire()

1: Spin[p] := false;

2: InTree [p] := true ;

3: Winner [Node(p; MAX LEVEL)][0] := p;

4: for lev := MAX LEVEL � 1 downto 1 do

5: result := AcquireNode(lev);

6: if result = PRIMARY WINNER _

result = SECONDARY WINNER then

7: InTree [p] := false;

8: await Spin[p]; =� wait until promoted �=

9: break level := lev ;

10: Acquire
2
(1); =� promoted entry �=

return

� od;

11: InTree [p] := false;

12: break level := 0;

13: Acquire
2
(0) =� normal entry �=

procedure AcquireNode(lev : 1::MAX LEVEL)

14: n := Node(p; lev);

15: (prev ; new) := fetch-and-update(Lock [n][0]);

if prev = ? then

16: Winner [n][0] := p;

17: lock [lev] := new ;

18: return PRIMARY WINNER

else

19: (prev ; new) := fetch-and-update(WaiterLock [n]);

if prev = ? then

20: Waiter [n] := p;

21: return PRIMARY WAITER

else

22: (prev ; new) := fetch-and-update(Lock [n][1]);

if prev = ? then

23: Winner [n][1] := p;

24: return SECONDARY WINNER

else

25: return SECONDARY WAITER

� � �

procedure Release()

26: Wait(); =� wait at the barrier �=

27: if break level = 0 then

28: Release2(0)

else

29: Release2(1);

30: n := Node(p; break level);

31: if Lock [n][0] 6= ? then

32: repeat q := Winner [n][0] until q 6= ?;

33: await :InTree[q];

34: Winner [n][0] := ?;

35: Lock [n][0] := ?;

36: Enqueue(WaitingQueue; q)

�;

37: if Waiter [n] = p then =� primary waiter �=

38: Waiter [n] := ?;

39: WaiterLock [n] := ?

�;

40: for each child := (a child of n) do

41: for i := 0 to 1 do

42: q := Winner [child][i];

43: if q 6= ? then Enqueue(WaitingQueue; q) �

od od

�;

44: for lev := break level + 1 to MAX LEVEL� 1 do

=� reopen each node p has acquired �=

45: n := Node(p; lev);

46: if Winner [n][0] = p then =� primary winner �=

47: Winner [n][0] := ?;

48: (prev ; new) := fetch-and-reset(Lock [n]);

if prev 6= lock [lev] then

49: repeat q := Waiter [n] until q 6= ?;

50: Enqueue(WaitingQueue; q);

51: if new 6= ? then

52: Lock [n][0] := ?

� �

53: elseif Winner [n][1] = p then

=� secondary winner �=

54: Winner [n][1] := ?;

55: Lock [n][1] := ?;

56: if WaiterLock [n] 6= ? then

57: repeat q := Waiter [n] until q 6= ?;

58: Enqueue(WaitingQueue; q)

� �

od;

59: Winner [Node(p; MAX LEVEL)][0] := ?;

60: Remove(WaitingQueue; p);

61: q := Promoted ;

62: if (q = p) _ (q = ?) then

63: r := Dequeue(WaitingQueue);

64: Promoted := r;

65: if r 6= ? then Spin[r] := true �

�;

66: Signal() =� open the barrier �=

Figure 10: Algorithm T: A tree-structured algorithm using a generic self-resettable fetch-and-� primitive of rank at

least three. Variables not de�ned here are the same as in Fig. 6.

20

invokes fetch-and-update on a lock variable while it has a value of ?, then p \acquires" that variable. A process

that acquires Lock [n][0] (respectively, WaiterLock [n], Lock [n][1]) becomes the primary winner (respectively, pri-

mary waiter, secondary winner), and writes its identity to Winner [n][0] (respectively, Waiter [n], Winner [n][1]).

At each node n (at level lev), process p tries to acquire some variable of that node by invoking AcquireNode

(line 5, 14{25 in Fig. 10). If p becomes either the primary winner or the secondary winner, then it proceeds to

the next level of the tree, as mentioned above. Otherwise, p stops at node n and waits until it is promoted, as

in Algorithm T0. If p becomes the primary winner, then it also stores the new value of Lock [n][0] into a private

variable lock [lev] (where lev is the level of node n), to be used in its exit section.

The following counterpart of (I3) holds in Algorithm T.

Invariant If a process p acquires Lock [n][0] at node n, and if another process q later becomes the primary

waiter at node n, then q examines every child of node n after Lock [n][0] is released by p or by some other process

on behalf of p. (I4)

We now consider the behavior of a process p in its exit section, at a given node n. The behavior is slightly

more complicated than that in Algorithm T0. (For brevity, we do not restate properties that are common to

both Algorithm T0 and T.)

Case 1: p is the primary winner (lines 47{52). Process p tries to release Lock [n][0] by invoking

fetch-and-reset (line 48). If the old value of Lock [n][0] (returned by fetch-and-reset) is di�erent from lock [lev],

then there has been at least one other process, say q1, that invoked fetch-and-update on Lock [n][0] and failed to

acquire that variable. Therefore, q1 must have tried (or is about to try) to acquire WaiterLock [n].

If q1 succeeds in acquiring WaiterLock [n], then it becomes the primary waiter; otherwise, there must be

another primary waiter q2. It follows that eventually there exists a primary waiter q (either q1 or q2).

Therefore, p waits until Waiter [n] 6= ? is established (line 49), at which point Waiter [n] = q must hold.

It then adds q to the waiting queue (line 50). Process p then checks if the fetch-and-reset operation has

established Lock [n] = ? (line 51), and if not, establishes this condition by a simple write (line 52). (Note that

the fetch-and-reset operation is guaranteed to write ? only if Lock [n][0] has the same value as written by p's

last fetch-and-update operation, which is not the case here.)

On the other hand, if the old value of Lock [n][0] equals lock [lev], then there are two possibilities: either (i)

no other process accessed Lock [n][0] after p acquired it, or (ii) at least two processes have done so. In either

21

case, the fetch-and-reset operation has successfully released Lock [n][0]. As explained before, in Case (ii), the

primary waiter of node n will be eventually detected by the secondary winner (if no other process elsewhere in

the tree detects it). Thus, p can safely descend the tree without taking further action.

Case 2: p is a primary/secondary waiter (lines 31{43). First, p checks if the primary winner still exists

(line 31), and if so, releases Lock [n][0] (lines 32{35) and adds the primary winner to the waiting queue (line 36).

This is done in order to maintain (I4), in the same way lines 20{23 of Algorithm T0 maintain (I3).

After that, p releases WaiterLock [n] if it is a primary waiter (line 37{39), and then examines every child of

node n (speci�cally, Lock [child][0; 1], where child is a child of n) to determine if any secondary waiters at node

n exist (lines 40{43). p adds such processes to WaitingQueue.

Case 3: p is the secondary winner (lines 54{58). If p is the secondary winner, then it releases Lock [n][0]

by a simple write (lines 54 and 55). Then, p checks if there exists a primary waiter by examining WaiterLock [n]

(line 56), and if so, adds the primary waiter to WaitingQueue (lines 57 and 58). �

In order to show that the algorithm is starvation-free, we only have to show that each primary or secondary

waiter is eventually enqueued onto the global waiting queue.

First, consider a secondary waiter r. In order for r to become a secondary waiter, at the time when r invokes

fetch-and-update(WaiterLock [n]) (line 19), there must be a primary waiter q of n. As shown below, q eventually

executes its exit section, where it examines every child of n and adds r to the waiting queue.

Second, consider a primary waiter q at a node n. In order for q to become the primary waiter, at the time

when q invokes fetch-and-update(Lock [n][0]) (line 15), there must be a primary winner p of n. We consider three

cases.

� First, if p detects q in its exit section, then p clearly adds q to the waiting queue.

� Second, if p detects another primary waiter r, which enters and then exits its critical section before q

acquires WaiterLock [n], then r examines every child of n in its exit section. Since q must be a primary or

secondary winner of some child of n, r discovers q and adds it to the waiting queue.

� Third, Assume that p does not detect the existence of the primary waiter in its exit section. That is, p

�nds prev = lock [lev] at line 48, and skips lines 49{52. In this case, there exists another process r that fails

to acquire Lock [n][0]. If r becomes a primary waiter and then exits before q acquiresWaiterLock [n], then r

22

detects q as in the second case. Thus, assume that r fails to acquireWaiterLock [n]. If r fails because some

other process s has acquired WaiterLock [n], then s has exited before q acquired WaiterLock [n], and the

reasoning is again similar to the second case. On the other hand, if r fails because q acquiresWaiterLock [n]

before r, then either r eventually becomes the secondary winner, or r fails yet again because there exists

another process s that is the secondary winner. In either case, there eventually exists a secondary winner

(r or s) that detects q in its exit section.

Finally, note that every busy-waiting loop in Algorithm T is either a local-spin loop (line 8) or is executed

inside a mutually exclusive region (lines 32, 33, 49, and 57). We can apply the technique in Sec. 3 and transform

each of these non-local-spin loops into a local-spin loop (on DSM machines). Thus, we have the following

theorem.

Theorem 2 Using any self-resettable fetch-and-� primitive of rank r � 3, starvation-free mutual exclusion can

be implemented with �(logN= log logN) time complexity on either CC or DSM machines. �

It can be shown that our previous
(logN= log logN) lower-bound proof [1] applies to certain systems that

use fetch-and-� primitives of constant rank. The proof inductively extends computations so that information

ow among processes is limited. If, at some induction step, a variable v is accessed by many processes, then

information
ow is kept low by ensuring that v may be assigned O(1) di�erent values during this induction

step. Therefore, our lower bound applies to any fetch-and-� primitive satisfying the following: any consecutive

invocations of the primitive by di�erent processes can be ordered so that only O(1) di�erent values are returned.

It follows that, for self-resettable fetch-and-� primitives with a constant rank of at least three that satisfy

this condition, Algorithm T is asymptotically time-optimal. Examples of such primitives include a fetch-and-

increment/decrement primitive with bounded range 0::2, a variant of compare-and-swap that allows two di�erent

compare values to be speci�ed, and the simultaneous execution of a test-and-set and a write operation on di�erent

bits of a variable.

5 Concluding Remarks

We have shown that any fetch-and-� primitive of rank r can be used to implement a �(logmin (r;N)N)) mutual

exclusion algorithm, on either DSM or CC machines. �(logmin (r;N)N)) is clearly optimal for r =
(N). For

primitives of rank at least three that are self-resettable, we have presented a �(logN= log logN) algorithm, which

23

gives an asymptotic improvement in RMR time complexity for primitives of rank o(logN). This algorithm is

time-optimal for certain self-resettable primitives of constant rank. In designing these algorithms, our main

goal was to achieve certain asymptotic time complexities. In particular, we have not concerned ourselves with

designing algorithms that can be practically applied. Indeed, it is diÆcult to design practical algorithms when

assuming so little of the fetch-and-� primitives being used. It is likely that by exploiting the semantics of a

particular primitive, our algorithms could be optimized considerably.

We believe that the notion of rank de�ned in this paper may be a suitable way of characterizing the \power"

of primitives from the standpoint of blocking synchronization, much like the notion of a consensus number ,

which is used in Herlihy's wait-free hierarchy [5], re
ects the \power" of primitives from the standpoint of

nonblocking synchronization. Interestingly, primitives like compare-and-swap that are considered to be powerful

according to Herlihy's hierarchy are weak from a blocking synchronization standpoint (since they are subject

to our
(logN= log logN) lower bound [1]). Also, primitives like fetch-and-increment and fetch-and-store that

are considered to be powerful from a blocking synchronization standpoint are considered quite weak according

to Herlihy's hierarchy. (They have consensus number two.) This di�erence arises because in nonblocking

algorithms, the need to reach consensus is fundamental (as shown by Herlihy), while in blocking algorithms, the

need to order competing processes is important.

The �(logN= log logN) algorithm in Sec. 4 shows that
(logN= log logN) is a tight lower bound for some

class of synchronization primitives. Unfortunately, we have been unable to adapt the algorithm to work with

only reads, writes, and comparison primitives. Currently, we still believe that
(logN) is a tight lower bound

for algorithms based on such operations, as conjectured by us earlier [1]. Our �(logN= log logN) algorithm

may shed some light on this issue. In particular, it shows that a better bound must necessarily be based on

proof techniques that exclude some of the primitives allowed by the current proof.

References

[1] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion. In

Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing, pages 90{99,

August 2001.

[2] J. Anderson and J.-H. Yang. Time/contention tradeo�s for multiprocessor synchronization. Information

and Computation, 124(1):68{84, January 1996.

24

[3] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE Trans-

actions on Parallel and Distributed Systems, 1(1):6{16, January 1990.

[4] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors. IEEE Com-

puter, 23:60{69, June 1990.

[5] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,

13(1):124{149, 1991.

[6] T.-L. Huang. Fast and fair mutual exclusion for shared memory systems. In Proceedings of the 19th IEEE

International Conference on Distributed Computing Systems, pages 224{231, June 1999.

[7] Y.-J. Kim and J. Anderson. A space- and time-eÆcient local-spin spin lock. Information Processing Letters,

84(1):47{55, September 2002.

[8] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo, CA, March 1996.

[9] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multiproces-

sors. ACM Transactions on Computer Systems, 9(1):21{65, February 1991.

[10] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Computing, 9(1):51{

60, August 1995.

25

