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Abstract of share changes). This focus is justified by the wide-spusad

We consider schemes for enacting task share changesiffUCh approaches on multiprocessor pIatforms._The kepiss
process called reweighting—on real-time multiprocesdat-p "€ seek to address is whether the lower migration overheads

forms. Our particular focus is reweighting schemes that arH;] Igsls migration-prone schemes is sufficient to comperieate
deployed in environments in which tasks may frequently rEneir lower accuracy.

quest significant share changes. Prior work has shown thet fa\Nhis er. To motivate the need for this work, we consider two
scheduling algorithms are capable of reweighting task wit per. o . . ! .
xample applications. (Each is considered in greaterldates

minimal allocation error. However, in such schemes preemp- . . . .
P pe the paper.) The first of these is the Whisper tracking sgste

tion and migration overheads can be high. In this paper, Wg1hich was designed at the University of North Carolina to- per

consider the question of whether the lower migration co$ts <‘|5V full-bodv tracking in virtual : ts 191, Whi
partitioning-based schemes can provide improved avecage- orm Tull-body fracking In virtua' environments [9]. 'Sp
tracks users via an array of wall- and ceiling-mounted micro

performance relative to fair-scheduled systems. Our amich h that detect whit : itted f kers atiach
is that partitioning-based schemes are capable of progdig- phones tha ) elect white hoise emitted rom Speaxers atiac
to each user’s hands, feet, and head. Like many tracking sys-

nificantly lower overall error (including “error” due to premp- ¢ Whi dictive techniques track obiects. Th
tion and migration costs) than fair schemes in the averageca ems, ISper usgsredictive techniques track objects. The
workload on Whisper is intensive enough to necessitate a mul

However, partitioning-based schemes are incapable ofigrov . . . .
P g P o tiprocessor design. Furthermore, adaptation is requieedlse

ing strong fairess and real-time guarantees. the computational cost of making the “next” prediction imak-

. ing an object depends on the accuracy of the previous one, as
1 Introduction an inaccurate prediction requires a larger space to betssrc
_ . . Thus, the processor shares of the tasks that are deployed to i
Real-time systems that aselaptivein nature have received plement these tracking functions will vary with time. In fac

considerable recent attention [3, 7, 8]. In additiomyltipro- the variance can be as muchta® orders of magnitudeand

cessorplatforms are of growing importance, due to both hard(:hanges must be enacted withime scales as short as 10 ms.

ware trends such as the emergence of multicore technologies
anq also to the_ preyalence of computat_ionally-intensi\pjigp ASTA. Another application with similar requirements under
cations for which single-processor designs are not suficie eevelopment at the University of North Carolina is the ASTA

!n a prio_r paper [3], we co_nsidered the use OT fair schedu ideo-enhancement system [2]. ASTA can improve the qual-
ing algorithms to schedule highly-adaptive real-time vioakls ity of an underexposed video feed so that objects that are in-

on (tightly-coupled) multiprocessor platforms. Such wodds distinguishable from the background become clear and in ful

are characterized by the neegl t(_)_change the progessqrjsha ‘olor. In ASTA, darker objects require more computation to
of tas!<s frequently and to a significant e_xtent. Fair schegu_l correct. Thus, as dark objects move in the video, the proces-
techniques have the advantage of ensuring good accuraty in &or shares of the tasks assigned to process different afeas o

acting shire (;hanges, butdo so at the expe_r|1_f]e of p%tehtfgy%he video will change. ASTA will eventually be deployed in a
quent task migrations among processors. Thus, other sehe ilitary-grade full-color night vision system, so taskdlweed

ing approaches that may be less accurate, but migrate ks lto change shares as fast as a soldier’s head can turn. In the

frequently, may still be of interest. In t_h|s paper, we cdesi lanned configuration, a 10-processor multicore platforith w
the use of such approaches and consider the tradeoff betw: Nsed

accuracy and migration costs in detail. Our specific focpais

titioning approaches that forbid task migrations (in theaaite Summary of results. While the terms “share,” “weight,” and
*Work supported by NSF grants CCR 0204312, CNS 0309825, ard CN'Utilization” are often used interchangeably, we wgeightto
0408996. The first author was also supported by an NSF fefipws denote a task’s desired utilization, asttareto denote its actual

1In this paper, we consider systems comprised of sequerg@lrrent tasks. T : :
Each invocation of such a task is calledob. A task’s processor shargor guaranteed utilization. In each SChedu“ng scheme we densi

utilization) is the fraction of a single processor's capacity the taskires in & task’s share is determined by its Welght; in some of these
order to meet its timing constraints. schemes, the two are always equal, while in others, they may



Scheme | Drift | Overload Migrations the weight of the heaviest task. Table 1 shows that algogthm
PAS REQ w weight-change events that allow more frequent migrations, like the Pfair-bas@¥-P
PD?-OF 2 0 every quantum OF algorithm, produce little drift and no overload errordan
algorithms that restrict the frequency of migrations casdpice
substantial amounts of drift and overload error.

Table 1. Summary of worst-case factorREQis the maxi-
mum request size WV is the weight of the(M - [ & | 4+ 1) Contributions. Our theoretical contributions include devis-
“heaviest” task in the system, whefle is the number of pro- ing the PAS algorithm and associated reweighting rules, and
cessors and is the weight of the heaviest task. The PAS en- establishing the error bounds for PAS in Table 1. The questio
tries are tight in the sense that in any partitioned schehezet that then remains is: for PAS and PIOF, how do drift and
exists a system that can cause a processor to be overdtiyze  overload error compare to any error due to migration costs? W
W, and in any EEVDF-based algorithm where deadlines can be attempt to answer this question via extensive simulatiad-st
missed by at most one quantum, drift can be as higREQ ies of Whisper and ASTA. In these studies, real migrationsos
were assumed based on actual measured values. These studies

differ.2 We refer to the process of enacting task weight/sha@nfirm the expectation that, if migration costs are higlenth
changes aseweighting Two reweighting-capable scheduling PAS performs well in the average case; however%JeI_P; pro-
algorithms are considered: a previous fair algorithm devedi  Vides stronger real-time and fairness guarantees. Givebeu
by us called called PBOF [3], which is a derivative of the li€f that PAS is a good candidate partitioned scheme, we con-
PD? Pfair scheduling algorithm [1]; and a new algorithm calledF!ude from this that, in applications where migration casts
partitioned-adaptive schedulif@AS), which is a derivative of 0w or high allocation accuracy is required, Pfair-basétesees
Stoicaet al’s earliest-eligible-virtual-deadline-first (EEVDF) @re superior to other less migration-prone approachesexAs
scheduling algorithm [8]. PAS is proposed herein as a godifained later, Whisper is such an application.) Howeveremwh
candidate partitioned scheduling algorithm. average-case performance is more important or migratiets co
Our results are summarized in Table 1, which lists the acc@/® high, a partitioned scheme may be the best choice. (As we
racy and migration cost of both schemes. Accuracy is asses§Plain later, ASTA is such an application.) o
per reweighting event in terms of two quantities, “drift’can  1he rest of th|§ paper Is organlged as follows. We pegm in
“overload error,” which are measured in terms of the syssemS€C- 2 by discussing the PAS algorithm in greater detail gnd
scheduling quantum sizéxrift is the error, in comparison to an €stablishing the properties mentioned above. Our expetahe
ideal allocation, that results due to a reweighting eveht(3n- evaluation is then presented in Sec. 3. We conclude in Sec. 4.
der an ideal allocation, tasks are reweighted instantastgou
which is not possible in practice.verload erroris the er- 2  Partitioning-Based Reweighting
ror that results from a scheduler’s inability to give a tashare
equal to its desired weight. This may happen under pariition |, s section, we examine the issue of reweighting in par-

ing due to processor overloads. For example, it is iMpassibyiioneq systems. Because there cannot exist an optipaati-

to assign a share of 2/3 to each of three tasks executing on tyg,oq scheduling algorithm, we focus our attention onediff
processors. One possibility is to assign two of the taskBeo ton heyristic tradeoffs that can minimize different sosroé

same processor, giving each a share of 1/2. In this caseifthe d, .. (Due to page limitations, we present only a sampling
ference between the weight and share of these tasks would B&1a heuristics we have developed. Additional heuristis

2/3 —1/2 = 1/6. (The method by which we “distribute” any pe tound in the full version of this paper, bt t p: / / ww
overload among tasks is a non-trivial issue, which we discus

, - ' ; > cSs. unc. edu/ ~ander son/ paper s. ht ml .) Before we
in detail in Sec. 2.) _NF)te that overload error is potentialigre  jisc\,ss these tradeoffs in detail, we first consider a furetda
detnmen@al than drift: while drift is a one-time error assed. limitation of all partitioning algorithms.
per reweighting event, overload error accumulates ovee.tim
As the example above suggests, under partitioned scherses,
cannot guarantee nonzero overload error, because ofaiéit
connections to bin-packing that arise. Another conseqeiehc
these connections is that, even under partitioning, mimrat
can happen. This is because some reweighting events may
cessitate reassigning tasks to processors.

In Table 1,REQdenotes the maximum amount of computa:
tion requested at one time by any task, aiddenotes the de-

H t o : »

sired processor share of th&/ - [1/X | 4 1)™ “heaviest” task 3A reweighting algorithm isoptimal if each task can always be granted a
(by weight), whereM is the number of processors afidis  share equal to its weight, provided the sum of all weight ie@st the number
of available processors.
2In the proportional-share algorithm [8] that is basis of tleev scheme we 4In the periodic task model, each task is characterized by a peridf.p

propose, weights are allowed to be arbitrary rational \&lueor consistency, and a per-job execution coSte: everyT.p time units, T releases a new job
we will always require them to range ovié, 1]. that requiredl".e time units to complete.

#'1 A Limitation of Partitioning Schemes

Under any partitioning scheme, there exist feasible task sy
jems that are not schedulable, even in the absence of weight
changes. A commonly-cited example of this, mentioned ear-
lier, is a two-processor system with three identical pedbd
tasks with an execution cost of 2.0 and a period of 3.0. Two




of the initial jobs must execute on the same processor, thus Under PAS, a tas’ requests processing time of an arbitrary
over-utilizing it. There are two approaches for handling th size. The size of thé" request of tasK’ is denotedreq (T, 7).
problem. First, we could cap the total utilization of allkasn A task is consideredctiveif it has an unsatisfied request, and is
the system. Unfortunately, under ahg-processor partitioning passive otherwise.A(t) denotes the set of active tasks at time
scheme, a cap of approximately/2 is required in the worst ¢. PAS schedules the tasks on each processor on an earliest-
case [4], which means that as much as half the system’s prbeadline-first basis. When a task is scheduled under PAS, it i
cessing capacity could be lost. Such caps are due to conngaaranteed at leagunits of computation time, whergedenotes
tions to bin-packing. The other approach is to assign sosksta the scheduling quantum size; however, a task may relinquish
shares that are less than their desired weights so that wesro its processor within a quantum thus allowing another task to
sor is over-utilized. Although this approach may not be ablexecute.wt(T, ¢) denotes the weight of a tagk at timet¢. A
to guarantee each task its weight, the system’s overalloitgpa task T’ reweightsat time¢ if wt(7,¢ —e) # wit(7T,t), where
does not have to be restricted, which is a significant adgantac — 0. We use the notatiof:[z, y] to denote thaf s weight
in computationally-intensive systems like Whisper and AST ranges ovefz, y], andT":z to denoteT": |z, z].
Moreover, allowing task shares to be somewhat malleable cir Any partitioned-based reweighting scheme must address fou
cumvents any bin-packing-like intractabilities that ntigther-  concerns{i) assigning tasks to processa(i§; determining the
wise arise—with frequent weight changes, such intradtasil processor share of each tagki) determining the conditions
would have to be dealt witfrequentlyat run-time Note that that necessitate a repartitioning; aing scheduling tasks in ac-
we are still able to offer some service guarantees (albeikee cordance with their assigned shares. We consider eachnin tur
than P¥-OF) with this approach, as discussed later in Sec. 2.2.
(In particular, for applications wher@” in Table 1 is low, the Assigning tasks to processors. The problem of assigning
resulting share guarantees may be acceptable.) For these tasks to processors is equivalent to the NP-hard bin-pgckin
sons, we use this approach in the schemes we propose. To pheblem. Given that reweighting events may be frequent, an
best of our knowledge, we are the first to suggest using sudptimal assignment of tasks to processors is not realistic t
an approach to schedule dynamically-changing multipmmes maintain. In PAS, we partitiodV tasks onta)M processors in
workloads. The fundamental limitation of partitioned sties O(M + Nlog N) time by first sorting them by weight from
noted above is formalized below. heaviest to lightest, and by then placing each on the process
Theorem 1. For any partitioned scheduling algorithm, real ihat is thg “best fit” (this partitioning method. is calld_ds_cend—
valuee, where0 < ¢ < 0.5, and any integers/ and k such ing pest—fi)..We choge_this method because it fall; within a class
K of bin-packing heuristics calle@asonable allocation decreas-

that M > 2 andk > M + 1, there exists ad/-processor task . hich has b h b I q b
systemr with % tasks such that at least one processor must B89 Which has been shown by Lopet al. to produce better

initially assigned tasks with total weight at least- W — e, fhacif(ijngs th‘;r_] otgertt)f/%est oftheuristics [6]. li[/los;chin:poﬂ;ant
whereW is the weight of the(M - |+ | + 1)“ heaviest task - ¢  JesSceNding bestiit: strategy can guarantee that neesro

. . oo LX sor is over-utilized by more thai’, wherel is the weight of
and.X is the weight of the heaviest ta3k. 1 st , ) .

_ _ the (M - |+] +1)" “heaviest” task andX is the weight of the

Proof. Let the]\t/[ heaviest tasks have weight = 1 — ¢, and  “heaviest” task, which is the same limit stated in Thm. 1.0Als
let the(M + 1)*" heaviest task have weight = min(M -~ under this strategy, no processor is over-utilized by moae t
6,1 — €), whered < e. Let the total weight of the remaining the weight of the lightest task assigned to it.
k — (M + 1) tasks be). (For example, it = 1/3, k = 3, and
M = 2, then the system consists of three tasks of welgBt)  petermining task shares. We now consider the problem of
At least one processor is initially assigned two tasks wothlt  determining task shares on over-utilized processors. As-me
weight atleast — ¢+ I, and thus is over-utilized bif’ — ¢.  tioned earlier, we have chosen to restrict the shares oftaskh
Sincee < 0.5, M - | ] +1 = M +1. Hence W is the weight  rather than rejecting tasks from the system. However, ibis n

of the(M - |+ + 1)*! heaviest task, as required. O  immediately obvious how to best assess the overall errorgha
sults from overload. (Note that the notion of “overload €tio
2.2 Elements of Repartitioning the same as defined earlier. The issue here is how to assess the

overall impact of the various overload errors experiengedit

We now develop the PAS algorithm. PAS is a derivative oferent tasks.) We consider two different metrics for doinig,t
the earliest-eligibIe-virtuaI-deadIine-first (EEVDFgahthm of and for each, we define a method for determining task shares
Stoicaet al. [8], with three major differences. First, PAS is based on that metric. As a shorthand, we ﬂq@"’ t) to denote
designed for multiprocessor systems. Second, PAS can eng@k7s share at time. A summary of the two metrics is given
weight changes with constant drift. (EEVDF can do so only bh Table 2. In describing these metrics, we assume Fhistan
severely limiting the situations under which tasks may igie)  over-utilized processor at tinteT is a task assigned to it at time
Third, PAS can be employed with any of several approaches fprandn is the number of such tasks. Many of the claims that
minimizing overall overload error. are stated below are true onlyffis not over-utilized by more

5This theorem can be easily extended to the case wherd).5; however, than the weight of its lightest assigned task, so we assuisie th
due to space constraints we omit this extension and its proof as well. (Such claims can be easily adjusted to accommdtiate




Metric Name Metric Formula Optimal Share Assignment

 WA(T.t)_sh(T. ) _ WY
MROE max {T on P : WA(T, D) sh(T',t) = S reep W, 1)

wt(T, t)-sh(T,t w(P,t) if T isthe heaviest task oR att
AROE YT onp < ( wt)(T, t)( )> /n | sh(T,t) = { WE(T, t)) otherwise

Table 2. Two metrics for assessing overall overload-based exr@P, t) denotes(}" ;. o » Wt(T', t)) — 1, andn is the number of tasks
assigned taP at timet. The optimal share assignments only apply i w(P,t) < T, whereT is the lightest task o att.

being over-utilized by more than the weight of its lightestt.) discourages assigning these tasks to over-utilized psocgs

The metrics we consider are based on the relative diffesence
between weights and shares. Thaximal relative overall er- 2.3 Scheduling and Reweighting
ror (MROB), given bymax{(wWt(T,t) — sh(T,t))/wWt(T,t)}, is
minimized when all task shares are scaled by the same value.!n this section, we describe how PAS schedules and reweights
For example, if a set of tasks over-utilizes a processor By 0.tasks on a single processor. To simplify the discussion, sve a
then each task’s share would be 1/1.2 times its weight. Thiime that task shares are determined by the MROE metric. (In
scaling is the same as tfpeoportional-sharescaling used in the full version of the paper we explain the adjustments siece
EEVDF [8]. Theaverage relative overall errofAROE), given ~ Sary to determine task shares by any metric, and we also show
by [Y2,(W(T', t) — sh(T, t))/Wt(T\ t)]/n, is minimized when thaF under any pon—MROE scheme., tasks that do not change
the heaviest task’s share is less than its weight by the amodfeir weight can incur drift, and for this reason, MROE sckem
by which P is over-utilized, and the share of every other tasiVill likely be preferable in most circumstances.) Recaditthn-
equals its weight. For example, if four tasks B, C, and D der the MROE metric the share of a taBkon a over-utilized
with weights 0.5, 0.2, 0.2, and 0.2, respectively, are assigo Processoi” at timet is given by
a processor, theA’s share i9).5 — 0.1 (the processor is over-
utilized by 0.1), andB, C, andD each have a share of 0.2. sh(T,t) = WH(T ) ’ 1)

In the share-calculation methods described above, thédoss ZKeA(t,P) WK, t)

system utility is measured solely based on the relativedifice

between a task’s weight and share. However, in some applicilereA(t, P) is the set of tasks that are activelain P. PAS
tions, such a value may not truly capture the loss of utifiyr schedules tasks in accordance with ¢Un whenP is under-

example, suppose that Whisper were implemented so that whdi{ized Thus, PAS fully utilizes any processor to which a task
hand and feet positions cannot be precisely calculatedria,ti N2S Peen assigned. Such a property is advantageous in system

these positions can be estimated based on the position of {{& Whisper and ASTA, which can use more processor time to
user's head. Then, there could be a great loss of utilityef threfine computations. To assess allocation accuracy, wedsns

mahm thetrue ideal allocation of a tasi up to timet, given by

tasks monitoring the head receive insufficient shares,
less loss if the tasks monitoring the hands and feet do. |h suc .
a case, it may be desirable for the application developesrto f trueideal(T’, t) = / sh(T, u)du. 2)
malize the utility loss as a function of the weight and shdre o 0
each task. This formalization could potentially be usedee d ) ) )
termine shares by solving an optimization problem. As wé wilAs @ shorthand, we denote the true_ldeal allogatlon_ofzthe
see shortly, PAS is flexible enough to be able to use such sh&fguest of task’ up to time? as true-ideal(’, ¢, ¢), which is
values (though a few subtle issues do arise in this case). ~ formally defined agf, . , sh(T, u)du, wherer(T' i) is the re-
lease time of thé'" request of task’, formally defined below.
Repartitioning. As tasks are reweighted, the likelihood of We denote the actual allocation ®fup to timet by S(T,t),
processors becomirgubstantiallyover-utilized increases dra- and useS(7,t,i) to represent the amount @f's i request
matically, creating significant overall error (howeveressed) completed by time.
on these processors. The extent of overall error can be con-We now introduce an additional notion of weight that is use-
trolled by repartitioning the system. In order to give thers ful when reweighting tasks. When a task changes weightgether
control over migration overhead, we introduegoartitioning.  can be a difference between when it initiates the change and
if a reweighting event causes any processor to be overetili when the change is enacted. The time at which a weight change
by at leasty, the system is reset. A reset causes the set of taskdnitiated is a user-defined time; the time at which the change
to be repartitioned (using the descending best-fit methed dis enactedis dictated by a set of conditions discussed shortly.
scribed earlier) and all active tasks to issue a new requést. If these points in time differ, the old weight is used in betwe
some tasks accumulate too much overall error over time, th&¥e define thescheduling weight of a task at timet¢, denoted
it may be desirable to trigger a reset, and when the systemswt(T,t), aswt(T, u), whereu is the last time at or beforegthat
repartitioned, use a modified descending best-fit algorithah  a weight change was enacted forWe define thescheduling-



weight-basetlideal allocation of a task” up to timet as at timet, from weightw to v, otherwise. BecausE initiates its

weight change &t., wt(T', t.) = v holds; however]’s schedul-

du. ing weight does not change until the weight change has been
enacted as specified in the rules below. Note that.ifoccurs
between the initiation and enaction of a previous reweighti

As a shorthand, we denote theheduling ideal allocation of the event of T, then the previous event is skippéa., treated as

i*" request of taslil’ up to timet asschedideal(T', ¢, i), whichis if it had not occurred. As discussed below, any “error” assoc

formally defined aschedideal(T, t) — schedideal(T, r(7,4)).  ated with skipping a reweighting event like this is accodrite

. L . when determining drift.
Releases and deadlines.Under PAS, it is possible for the

deadline of a request to vary with time. Hence, we denotRule P: If T is positive-changeable at timgfrom w to v, then

SwWi(T', u)
A(u,P)SWH K, 1)

t
schedideal(T', t) :/
0 ZKG

the deadline of thé'" request of task at timet asd(T,1,t),
and as a shorthand, we uggT’, i) to denote the time: such
thatu = d(T,4,u). Thereleaser(T,i) anddeadlined(T,1,t)
(at timet) of the i’ request of task” are derived as follows,
where ar(T) is the arrival time of the first request @f and
id_rem(T', ¢, 1) is the remaining computation of th&" request

one of the two actions is takefi) if acrem(T, t.,i)/v <
id_rem(T', t.,1)/w, thenT’s current requestis halted, its
weight change is enacted, and a new request is issued with
a release time of. and a size oac.rem(T, t., i); (ii) oth-
erwise, no action is taken until tim&T', ), at which point

the weight change is enacteide( the scheduling weight

of taskT at timet in the scheduling ideal system, defined as
id_rem(T,t,i) = req(T,i) — schedideal(T t, 7).

does not change until the end of the current request).

Rule N: If T' is negative-changeable at timg from w to v,

r(T,1) = ar(T) 3 then one of two actions is take) if v > w, thenT"s cur-
rent request is halted, its weight change is enacted, and a
d(T,it) =t + ZKGA(t,P) SWH K, 1) idrem(T, t,7) (4) new request of siz_ac_rem(T,_ te,1)is issqed with a rele__ase
SWH(T, t) time equal to the timeat whichlag(7', ¢, ) = 0 holds;(ii)
F(T,i +1) = d(T, 1) 5) otherwise, the weight change is enacted at tif{iE, ).

In the expression added toto determined(T,,t), the first Intuitively, Rule_ P c_hangesatask’s Weight_by halting its-cu
term is a scaling factor, which is the reciprocal®® share, €Nt requestand issuing a new request of sizeem(T’ ¢, i)
computed using scheduling weights. For example, consid@fth the new weight, if doing so would improve its schedul-
Fig. 1(b). TaskV’ in this figure has an initial weight of 1/6 that g priority. Note that, by (4), at timethei"" request of tasi’
changes to 1/2 attime 3. (This figure is considered in grelter has a higher scheduling priority than tffé request of task if

tail later.) Observe that(V, 1) = 0, d(V,1,0) = 0+ 1/(1/6) . 9LeMTt0)  ATeMK, L)) oneg ACTEMT berd)
1= 6, d(V.1,1) = 1+1/(1/6)-5/6 = 6, d(V.1.2) = f‘e”r:%tg N SWIK, 1)
2+1/(4/6)-4/6 = 3,andd(V,1,3) = 3+1/(4/6)-0 = 3. Be- ———y—=—, then haltingT"s current request and issuing
causel(V,1,3) = 3, we also havé(V, 1) = 3andr(V,2) = 3. a new request of sizacrem(T\t.,i) will either improve or

o , _ . maintainT’s scheduling priority. A (one-processor) example
Reweighting. We now introduce two new PAS reweighting ot 5 nositive-changeable task is given in Fig. 1(a). The de-

rules that are PAS ext(_ensions of thePOF reweighting rules picted example consists of four taskg:1/2, K:1/6, W:1/6,
presented by us previously [3]. These rules work by modhngy  Task T leaves the system at time 2 and tdgkhas

fying future release times and deadlines and are quiterdiffe;y jnitial weight of 1/6 that increases to 4/6 at time 2. Note
ent from reweighting rules considered perviously for EEVDFih4t sincek’. . and V' have the same initial deadline. we

based §chemes._ (The rules below are applied on a single pRye arbitrarily chosef’ to have the lowest priority. In inset
cessor; reweighting events that trigger a repartitioniregdealt (a),V is positive-changeable since at time 2 it has not yet been

with as discussed earlier.) _ ~ scheduled. Note that haltirg’s current request and issuing a
Suppose that task initiates a weight change from weight ey, request of size one improvés scheduling priorityj.e.,
w to weightv at timet.. Leti be the request of’ satisfying  acremVv,2,1) 4 id_rem(V,2,1)

r(T,i) <t < d(Tyi). If req(T,i) — S(T,t,i) > 0, then — 475 — 44— /6
letacrem(T,t,i) = req(T,i) — S(T,t,1); elseacremT,t,i) ond request oV isissued 6/4 quanta after time 2. This spacing

= req(T,i + 1). Note thatacrem(T\t,4) denotes the actual is in keeping with a new request of weight 4/6 issued at time 2.
remaining computation iff”’s current request or the size bfs Rule N changes the weight of a task by one of two approaches:
next request if the current request has been completedlaghe (i) if a taskincreasests weight, then Rule N adjusts the release
of thei'" request of task” at timet is defined asag(7,¢,i) = time of its next request so that it is commensurate with tive ne
schedideal(T, t,i) — S(T\,t,4). T's lag is positive (negative) if weight; (i) if a taskdecreaseits weight, then Rule N waits un-

its actual allocation is behind (ahead) its schedulinglidéa- til the end of its current request and then issues the nexestq
cation. The choice of which rule to apply dependsiGslag with a deadline that is commensurate with the new weight. A
at timet.. We say that tasl{’ is positive changeable at timg  (one-processor) example of a negative-changeable tasktha
from weightw to v if lag(T, t., i) > 0, andnegative changeable creases its weight is given in Fig. 1(b). The depicted exampl

. Note that the sec-
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Figure 1. A one-processor system consisting of four tasks(, 1/2], K:1/6, W:1/6, andV:[1/6,4/6]. Scheduling is as indicated;
for example, in inset (a)]"s first request is released at tirdighas a deadline at tim& and executed within the intervil, 1). The dotted
lines represent the interval up ¥ds next deadline, which due to reweighting has been charagithdicated by the solid arrow). The drift
and true ideal allocation fov” are labeled as a function of time across the ). The PAS schedule for the scenario whérés in the
system initially and leaves at time 2, has an initial weight of 1/6 and increases to 4/6 at time 2,1drths a lower priority initially than
both K andWW. SinceV is not scheduled by time 2, it has positive lag and changegsiight via Rule P, causing the deadline of its current
task to become 9/2 and its drift to become ). The same scenario as in (a) except fiidtas higher priority initially than botlk” and

W. SinceV has been scheduled by time 2, it has negative lag and chasgesight via Rule N, causing its next request to have a releas
time of 3 while maintaining a drift of zero(c) T joins the system at time 6/4 and has an initial weight of 4/6 that decreases to 1/6 at
time 1. SinceV has negative lag at time 1, it is changed via Rule N, cauBilsgnext request to have a deadline of 15/2 &ntb have a
drift of —3/12. Note that all requests are of size one.

consists of the same tasks as in (a), except that we have chca et al. [8] used to show that thé” request of task in a

senV to have priority over’’ and W initially. Note that the PAS-scheduled system is fulfilled gyt d(7', 4). O

second request df is issued at time 3, which is the time such

thatlag(V,3,1) = f03 swilV, U)K du — S(v,3,1) = Drift.  We now turn our attention to the issue of measuring
S iceatup) SWIUE, U “drift” under PAS. For most real-time scheduling algorithm

1-1=0 NOte.3|SO'that, tzy (4) and (5), the de_adl_me ("the difference between the true ideal and actual allocattaisk
lease time) of the™ ((i + 1)**) request of a task’ is given

. _ . ) receives lies within some bounded range centered at zero. Fo
by r(Z7) + req(T’.0)/(SWIT', 1(T'7))), assuming all schedul- o, o 010 " nder PAS (without reweighting), the differenee b
ing weights sum to 1.0. Hence, if a task of weightvere to

. L . t true_ideal(T ¢ ds(T,t) li ithin(—REQ, REQ).
issue a request of siad_rem(T,t.,4) at timet., then the re- weentrue.ideal(T, ) and S(T ¢) lies within ( Q. REQ)

. . . When a weight change occurs, the same bounds are maintained,
lease time of its next request would he+ id_rem(T', t.,i)/v. d g

(If the scheduling weights do not sum to 1.0, then the dea xcept that they may be centered at a different value. Fanexa

i t be adiusted dinalv) A le, consider again Fig. 1. In inset (&),s releases and dead-
IN€ MUSL be acjusted according y) (one-pro_cesso_r) ept_am lines are commensurate with its new weight starting at tifde 7
.Of a.negat|ve-change§1b le task that decrea_lses its weigiveis g Its actual allocation up to this time is 1.0, while its truead
in Fig. 1(c). The dep|cteq .e-xamp_le consists of the same f.oﬂilocation is8/6. Thus,2/6 of its true ideal allocation has
tasks except thdt has an initial weight of 4/6 and decreases it

iaht at time 1. and” ioins th " s weight een permanently “lost.” This lost allocation is calleddtst.
weight atime 2, ahdJoins the system as soon Welg Given this loss, barring further reweighting events, thiéedi
change is enacted.

ence betweef”’s true ideal and actual allocations will hence-
Theorem 2. Let d(T, i) be the deadline of the” request of forth be maintained between4,/6 and8/6 (assuming a maxi-

a taskT in a PAS-scheduled system with a quantum size of UM request size of one). In general, a task’s drift per rghtei

where tasks are reweighted by Rules P and N. Then, this requiftd event will be nonnegative (nonpositive) if it increages-
is fulfilled by timed(T', ) + ¢.5 creases) its weight. Under PAS, the drift of a tdskt timet is

formally defined as
Proof Sketch.Barring reweighting events that force migration, ‘ _ .
PAS is used independently on each processor. When migsation drift(T’ ) = trueidealT, u) — S(T; u), ©6)
do occur, the system introduces tasks onto each processoiyjRerey is the earliest time at which may issue a new request
a manner in keeping with a valid uniprocessor PAS schedulgt or after its most recent weight change.
Hence, we can reduce the correctness of multiprocessor PAS )
to that of uniprocessor PAS. Since PAS is an EEVDF-deriveEIheorem 3. The absolute value of per-event drift under PAS

algorithm, we can thus use the same proof techniques that St®'€SS than REQ, where system regess, repartitionings are
considered reweighting events.

5Deadline tardiness is acceptable, as long as tardinesslbana reasonably . ey -
small in comparison to the expected interval length betweemighting events. Proof Sketch.We first show that the absolute value of drift is

Fortunately, in most systems, the quantum size is a seftainineter. less tharREQon a uniprocessor (where obviously no system



resets occur). If a tasit’ changes its weight at tim&. via  Whisper. As noted earlier, Whisper tracks users via speakers
Rule P, then when this weight change is enacted at time that emit white noise attached to each user’s hands, fedt, an
(i.e, att. under case (i), or &(7T,:) under case (ii)), it is as head. Microphones located on the wall or ceiling receive¢he
though an amount of computation equalriee ideal(T, t.,i)—  signals and a tracking computer calculates each speaksr’s d
S(T,t.,1) is “lost,” resulting in drift. (For example, in Fig. 1(a), tance from each microphone by measuring the associated sig-
true.ideal(T,2,1) — S(T,2,1) = 2/6, thus that computation is nal delay. Whisper is able to compute the time-shift between
“lost” causingV to drift by 2/6.) Since this value (per reweight- the transmitted and received versions of the sound by parfor
ing event) is always less th&EQ the absolute value of driftis ing acorrelationcalculation on the most recent set of samples.
less tharREQ By varying the number of samples, Whisper can trade mea-

If a taskT", during itsi*” request, changes its weight at timesurement accuracy for computation—with more samples, the
t. via Rule N andI’ decreases its weight (case (ii)), then it ismore accurate and more computationally intensive the talcu
as thougHhl’ leaves the system with its old weight and rejoingion. As a signal becomes weaker, the number of samples is
with its new weight at timel(T',i). (Stoica,et al. proved that increased to maintain the same level of accuracy. As the dis-
a task can leave at a timtdf it has equal scheduling ideal and tance between a speaker and microphone increases, thé signa
actual allocations.) Iff" increases its weight (case (i)), then itstrength decreases. This behavior (along with the use digre
incurs zero drift since immediatel\changes the eligibility time tive techniques mentioned in the introduction) can causk ta
of its next request in a manner that is consistent with its neghare changes of up to two orders of magnitude every 10 ms.
weight. Either way, the absolute value of the drift incurbgd Since Whisper continuously performs calculations on inicgm
this reweighting event is less th&¥£ Q. (Note thatin Fig. 1(b), data, at any point in time, it does not have a significant arhoun
V's driftis 0, while in (c), itis—3/12.) of “useful” data stored in cache. Hence, migration costs in

On amultiprocessor, the key is to show that each system red¥hisper are fairly small (at least, on a tightly-coupledteys,
induces per-task drift in the rande- REQ, REQ). If the first as assumed here, where the main cost of a migration is mainly
reweighting event is a reset, then each task’s drift is bednd a loss of cache affinity). Also, fairness and real-time gotres
by its lag at that time, which lies in the range REQ, REQ). ~ are important due to the inherent “tight coupling” amongsas
The drift due to resets that follow other reweighting eversts ~ that is required to accurately perform triangulation ckdtians.
be calculated similarly, after first accounting for driftimduced
by those prior events. O ASTA system. Before describing ASTA in detail, we review

some basics of videography. All video is a collection of gtil-
ages calledrames Associated with each frame is arposure

Time complexity. As noted earlier, the time complexity for time, which denotes the amount of time the camera’s shutter
PAS to partitionV tasks ontd\/ processorsi®(M+Nlog N). was open while taking that frame. Frames with faster exposur
If we were to implement PAS using binomial heaps, then thémes capture moving objects with more detail, while frames
time complexity to make a scheduling decision on a procesvith slower exposure times are brighter. If a frameiglerex-
sor P is O(logn), wheren is the number of tasks assignedposed(i.e., the exposure time is too fast), then the image can
to P. Recall that when a task changes its weight using eithée too dark to discern any object. The ASTA system can cor-
rule P or N, it is reinserted into its processor’s priorityege. rect underexposed video while maintaining the detail aaotu
Thus, O(log n) time is required to change a task’s weight viaby faster exposure times by combining the information of-mul
rule P or N using the MROE metric. Under non-MROE mettiple frames. To intuitively understand how ASTA achieueis t
rics, O(nlogn) time is required, due to the potential need tdbehavior, consider the following example. If a camekahas
re-enqueue non-reweighted tasks. an exposure time af /30" of a second, and a second camera,
i : . B, has an exposure time @f 15" of a second, then for ever
As a final comment regarding PAS, we dot claim that two frames sﬁot by cameVZthe shutter is open for the samye

it is the final word regarding partitioned reweighting sclesm time as one frame shot B, ASTA is capable of exploiting this
However, we have tried hard to devise reasonable approacrb

: . L ) . BServation in order to allow camesato shoot frames with
for_deallng with the fundamer_nal limitation d|scgssed lealto the detail of al /30" of a second exposure time but the bright-
which SUCh. schemeg are subject. Thus, we b_eheve tha_lt PAS | &s of al /15" of a second exposure time. As noted earlier,
good candidate partitioning approach, as claimed earlier. darker objects require more computation than lighter dbjec

correct. Thus, as dark objects move in the video, the process
3 Experimental Results shares of tasks assigned to process different areas ofdbe vi
will change. Hence, tasks will need to adjust their weiglsts a

The results of this paper are part of a longer-term project o%wckly as an object can move across the screen. Since ASTA

adaptive real-time allocation in which both the humantiag continuously performs calculations based on previous ésm

system, Whisper, and the video-enhancement system, AST;%per(fjo.r mt?] best \;]vherllia substa_mtla:! amou?t .Of :SS_?;UI data};
described in the introduction, will be used as test appboast stored in the cache. Hence, migration costs in areyfair

In this section, we provide extensive simulations of Whispeh'gh' Also, while strong real-time and fairness guarantges

and ASTA as scheduled by both PIDF and PAS. desirable in ASTA, they are not as important as in Whisper, be



cause tasks can function somewhat independently in ASTA. is not behind its ideal, this value is zero), the maximum antou
any task in atask set is behind its ideal, and each task $ait's “

Experimental system set up. Unfortunately, at this point in ness factor.” Théairness facto(FF) of a task set is the largest

time, it is not feasible to produce experiments involvingalr deviance from the ideal between any two taskg(if a system

implementation of either Whisper or ASTA, for several reaso has three tasks, one that deviates from its ideal bg, another

First, both the existing Whisper and ASTA systems are singldy 20, and the third by 50, then th& is 50 — (—10) = 60).

threaded (and non-adaptive) and consist of several thdasdn The FF is a good indication of how fairly a scheme allocates

lines of code. All of this code has to be re-implemented as processing capacity. A low&F means the system is more fair.

multi-threaded system, which is a nontrivial task. Inddest, For applications like Whisper, where the output generated b

cause of this, it iessentiathat we first understand the schedul-multiple tasks is periodically combined, a Id%F is important,

ing and resource-allocation trade-offs involved. The tgye since if any one task is “behind,” then the performance of the

ment of PB-OF and PAS can be seen as an attempt to aentire system is impacted; however, for applications lilgTA,

ticulate these tradeoffs. Additionally, the focus of thippr where tasks are more independent, a Highdoes not affect

is on scheduling methods that facilitate adaptation—weehathe system’s performance nearly as much. These metricéshou

not addressed the issue of devising mechanisms for determprovide us with a reasonable impression of how well the teste

ing howandwhenthe system should adapt. Such mechanismschemes will perform when Whisper and ASTA are fully re-

will be based on issues involving virtually-reality and miul implemented.

media systems that are well beyond the scope of this paper.

For these reasons, we have chosen to evaluate the schemespiisfiling the system. PAS can be competitive with PEOF

cussed in this paper via simulations of Whisper and ASTAf an appropriaten-value and request size are chosen. To do

While just simulations, most of the parameters used here wethis, the system must be profiled. We profiled each system by

obtained by implementing and timing the scheduling alpong  running PAS (for both MROE and AROE) and varying the

discussed in this paper and some of the signal-processihg aralue, request size, and migration cost. For brevity, we wil

video-enhancement code in Whisper and ASTA, respectivelsimply state thex-value and request size determined to be the

on a real multiprocessor testbed. Thus, the behaviors Bethe'best” for each simulation.

simulations should fairly accurately reflect what one weade

in a real Whisper or ASTA implementation. Whisper experiments. In our Whisper experiments, we sim-
For both Whisper and ASTA, the simulated platform was asdlated three speakers (one per object) revolving arountksipo

sumed to be a shared-memory multiprocessor, with four 2.3 1m x 1m room

GHz processors and a 1-ms quantum. All simulations were rumith a microphone -~ im

61 times. Both systems were simulated for 10 secs. We inm each corner, as * ®

plemented and timed each scheduling scheme considered in shown in Fig. 2. The . < _

simulations on an actual testbed that is the same as thahadsu pole creates poten- 1im &Q \ ety onoc

e e

in our simulations, and found that all scheduling and reWeig tial occlusions. For ® Speaker
ing computations could be completed withinus. We consid- each speaker/ micro-
ered this value to be negligible in comparison to a 1-ms quaphone pair, one task
tum and thus did not consider scheduling overheads in our sins required for a to-
ulations. We assumed that all preemption and migratiorscogtal of 12 tasks. In
were the same and corresponded to a loss of cache affinity. \&&ch simulation, the
assume that bus contention costs for PAS and-PPB are the speakers were evenly distributed around the pole at an equal
same, since in prior work, Holman and Anderson have showgistance from the pole, and rotated around the pole at the sam
that any additional bus contention incurred unde?fIF can speed. The starting position for each speaker was set rdpdom
be virtually eliminated bystaggeringquantum allocations on As mentioned above, as the distance between a speaker and mi-
different processors [5]. Based on measurements takenmon auophone changes, so does the amount of computation neces-
testbed system, we estimated Whisper’s migration cosi@s-2 sary to correctly track the speaker. This distance is (aishg
10 us, and ASTA's as 5@s—60us. While we believe that these impacted by a speaker's movement, but is also lengthened whe
costs may be typical for a wide range of systems, in our expedn occlusion is caused by the pole. The range of weights of
ments we varied the migration cost over a slightly largegean each task was determined (as a function of a tracked object’s
While the ultimate metric for determining the efficacy ofposition) by implementing and timing the basic computation
both systems would be user perception, this metric is net cuhe correlation algorithm (an accumulate-and-multiplei@p
rently available, for reasons discussed earlier. Theeefawe tion) on our testbed system.
compared each of the tested schemes by comparing against thén the Whisper simulations, we made several simplifying as-
trueideal allocation—all references to the “ideal” system iisth sumptions. First, all objects are moving in only two dimen-
section refer to this notion of ideal allocation. In partamuywe sions. Second, there is no ambient noise in the room. Third,
measured the average amount each task is behind its ideal aho speaker can interfere with any other speaker. Fourtbpall
cation (this value is defined to be nonnegativee, for atask that jects move at a constant rate. Fifth, the weight of each task

Figure 2. The Whisper system.
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Figure 3. The(a) average angb) maximum amount a task is behind its ideal allocation and¢h&F for Whisper as scheduled by
PAS (using MROE and AROE), and PEDF. For PAS, the request size is 7 ms anddhealue is 0.1. 98% confidence intervals are shown.

changes only once for every 5 cm of distance between its assm a white background. 640 il

ciated speaker and microphone. Sixth, all speakers andmiciThisis illustrated in Fig. 4.

phones are omnidirectional. Finally, all tasks have a mimm The grey square makes 5 oy seume
weight based on measurements from our testbed system andn@ complete rotation ev- / O Square's Pa

640 pixel

maximum weight of 1.0. A task’s currentweight at any timslie ery ten seconds. The po-
between these two extremes and depends on the correspondiitign of the grey square
speaker’s current position. Even with theses assumptfo:s, on the circle is random.
guent share adaptations are required. Each frame is divided into
We conducted Whisper experiments in which the tracked olsixteen 160 x 160-pixel Figure 4. The ASTA system.
jects were sampled at a rate of 1,000 Hz, the distance of eadygions; each of these re-
object from the room’s center was set at 50 cm, the speed gibns is corrected by a different task. A task’s weight isedet
each object was set at 5 m/sec. (such a speed is within thé spegned by whether the grey square covers its region. By ana-
of human motion), and the migration cost were varied. Thlyzing ASTAs code, we determined that the grey square takes
graphs below give a representative sampling our colleca¢al d three times more processing time to correct than the whitk-ba
The graphs in Fig. 3 show the results of the Whisper simground. Hence, if the grey square completely covers a task’s
ulations conducted to compare PAS using AROE, PAS usinggion, then its weight is three times larger than that ofs& ta
MROE, and PI3-OF. For both versions of PAS, we used@n with an all-white region. The video is shot at a rate of 25 feam
value of 0.1 and a request size of 7 ms. In these experiment&r second. Hence, each frame has an exposure time of 40 ms.

the migration cost was varied from 0 to 108. Insets (a), (b),  The graphs for this set of experiments are shown in Fig. 5.
and (c) depict, respectively, the average and maximum amoufhe same information is shown here as for Whisper, with the ex
by which tasks trail behind their ideal allocations, and ffe ception then-value for PAS using MROE and AROE is 0.075.
for each scheme, as a function of migration cost. There afi\ere are three things worth noting here. First, as befonéew
four things worth noting here. First, while the performanée tne accuracy of each scheme degrades with an increase in mi-
each scheme degrades with an increase in migration cost, P ration cost, PB-OF degrades much faster. Second, for mi-
OF degrades much faster. Second, for migrat_ions costs in thestions costs in the range [58, 60us], the expected range
range [2:s, 10.s], the expected range for Whisper, PAS andor ASTA, both versions of PAS perforsubstantiallybetter
PD?-OF exhibit similar average-case performance, bitRF  than P[3-OF with respect to the average and maximum metrics.
is superior in terms of maximum error. In addition, thR&  However, PB3-OF still has asubstantiallybetterFF. Third, as

of PD?-OF is substantiallybetter. Third, the confidence inter- ith whisper, the confidence intervals for the PAS variants i
vals for the PAS variants in insets (b) and (c) are substntia jsets (b) and (c) are substantially larger than fo? ®IF. This

larger than those for POF. This indicates that PBOF's re-  jmplies that PB-OF's results vary over a much smaller range

sultfs vary O|\'/er: ? n;)uch sn;]allerpfgge._ FOng](,)EA?'#SiEg rl:/IR_Oll]Ewm those of PAS.
erforms slightly better than usin . This behavior . .
gtems from ?he%‘act that, under non—M??OE metrics, tasks can _Note that t_hese tW.O experlment_al studies .SqueSt that PAS
incur drift even when they do not change their weight and thg>"9 MROE IS Superior to PASTLrJ]smg AROIfE mt:]e_.\rn;s r?f b.Oth.

system is not reset. Hence, under PAS using AROE, more tas erage and maximum error. € reason for Inis behavior 1
incur drift than in PAS under MROE. that, as we mentioned before, under non-MROE algorithms,

tasks that do not change their weight can incur drift.
ASTA experiments. In our ASTA experiments, we simulated  Also note that these experiments suggest that there exist ma

a640 x 640-pixel video feed where a grey square that68 x different scenarios under which PAS andPOF are each of
160 pixels moves around in a circle with a radiuslébh pixels  value. PAS is of value in systems where migration costs are

\
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Figure 5. The(a) average an¢b) maximum amount a task is behind its ideal allocation and¢hEF for ASTA as scheduled by PAS
(using MROE and AROE), and PBEOF. For PAS the request size is 7 ms anddhealue is 0.075. 98% confidence intervals are shown.

high or where strong real-time and fairness guaranteesare fiurther study, especially in the domain of multiprocessiat-p
strictly required. However, it has two major drawbacks.sgir forms.

PAS requires the system to be “profiled” before use. Indeed,
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