
Accuracy versus Migration Overhead in Real-Time Multiprocessor Reweighting
Algorithms ∗

Aaron Block and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
We consider schemes for enacting task share changes—a

process called reweighting—on real-time multiprocessor plat-
forms. Our particular focus is reweighting schemes that are
deployed in environments in which tasks may frequently re-
quest significant share changes. Prior work has shown that fair
scheduling algorithms are capable of reweighting tasks with
minimal allocation error. However, in such schemes preemp-
tion and migration overheads can be high. In this paper, we
consider the question of whether the lower migration costs of
partitioning-based schemes can provide improved average-case
performance relative to fair-scheduled systems. Our conclusion
is that partitioning-based schemes are capable of providing sig-
nificantly lower overall error (including “error” due to preemp-
tion and migration costs) than fair schemes in the average case.
However, partitioning-based schemes are incapable of provid-
ing strong fairness and real-time guarantees.

1 Introduction

Real-time systems that areadaptivein nature have received
considerable recent attention [3, 7, 8]. In addition,multipro-
cessorplatforms are of growing importance, due to both hard-
ware trends such as the emergence of multicore technologies,
and also to the prevalence of computationally-intensive appli-
cations for which single-processor designs are not sufficient.
In a prior paper [3], we considered the use of fair schedul-
ing algorithms to schedule highly-adaptive real-time workloads
on (tightly-coupled) multiprocessor platforms. Such workloads
are characterized by the need to change the processor shares1

of tasks frequently and to a significant extent. Fair scheduling
techniques have the advantage of ensuring good accuracy in en-
acting share changes, but do so at the expense of potentiallyfre-
quent task migrations among processors. Thus, other schedul-
ing approaches that may be less accurate, but migrate tasks less
frequently, may still be of interest. In this paper, we consider
the use of such approaches and consider the tradeoff between
accuracy and migration costs in detail. Our specific focus ispar-
titioning approaches that forbid task migrations (in the absence

∗Work supported by NSF grants CCR 0204312, CNS 0309825, and CNS
0408996. The first author was also supported by an NSF fellowship.

1In this paper, we consider systems comprised of sequential,recurrent tasks.
Each invocation of such a task is called ajob. A task’s processor share(or
utilization) is the fraction of a single processor’s capacity the task requires in
order to meet its timing constraints.

of share changes). This focus is justified by the wide-spreaduse
of such approaches on multiprocessor platforms. The key issue
we seek to address is whether the lower migration overheads
in less migration-prone schemes is sufficient to compensatefor
their lower accuracy.

Whisper. To motivate the need for this work, we consider two
example applications. (Each is considered in greater detail later
in the paper.) The first of these is the Whisper tracking system,
which was designed at the University of North Carolina to per-
form full-body tracking in virtual environments [9]. Whisper
tracks users via an array of wall- and ceiling-mounted micro-
phones that detect white noise emitted from speakers attached
to each user’s hands, feet, and head. Like many tracking sys-
tems, Whisper usespredictive techniquesto track objects. The
workload on Whisper is intensive enough to necessitate a mul-
tiprocessor design. Furthermore, adaptation is required because
the computational cost of making the “next” prediction in track-
ing an object depends on the accuracy of the previous one, as
an inaccurate prediction requires a larger space to be searched.
Thus, the processor shares of the tasks that are deployed to im-
plement these tracking functions will vary with time. In fact,
the variance can be as much astwo orders of magnitude, and
changes must be enacted withintime scales as short as 10 ms.

ASTA. Another application with similar requirements under
development at the University of North Carolina is the ASTA
video-enhancement system [2]. ASTA can improve the qual-
ity of an underexposed video feed so that objects that are in-
distinguishable from the background become clear and in full
color. In ASTA, darker objects require more computation to
correct. Thus, as dark objects move in the video, the proces-
sor shares of the tasks assigned to process different areas of
the video will change. ASTA will eventually be deployed in a
military-grade full-color night vision system, so tasks will need
to change shares as fast as a soldier’s head can turn. In the
planned configuration, a 10-processor multicore platform will
be used.

Summary of results. While the terms “share,” “weight,” and
“utilization” are often used interchangeably, we useweight to
denote a task’s desired utilization, andshareto denote its actual
guaranteed utilization. In each scheduling scheme we consider,
a task’s share is determined by its weight; in some of these
schemes, the two are always equal, while in others, they may

Scheme Drift Overload Migrations
PAS REQ W weight-change events

PD2-OF 2 0 every quantum

Table 1. Summary of worst-case factors.REQ is the maxi-
mum request size.W is the weight of the

`

M ·
¨

1

X

˝

+ 1
´

st

“heaviest” task in the system, whereM is the number of pro-
cessors andX is the weight of the heaviest task. The PAS en-
tries are tight in the sense that in any partitioned scheme, there
exists a system that can cause a processor to be over-utilized by
W , and in any EEVDF-based algorithm where deadlines can be
missed by at most one quantum, drift can be as high asREQ.

differ.2 We refer to the process of enacting task weight/share
changes asreweighting. Two reweighting-capable scheduling
algorithms are considered: a previous fair algorithm developed
by us called called PD2-OF [3], which is a derivative of the
PD2 Pfair scheduling algorithm [1]; and a new algorithm called
partitioned-adaptive scheduling(PAS), which is a derivative of
Stoica et al.’s earliest-eligible-virtual-deadline-first (EEVDF)
scheduling algorithm [8]. PAS is proposed herein as a good
candidate partitioned scheduling algorithm.

Our results are summarized in Table 1, which lists the accu-
racy and migration cost of both schemes. Accuracy is assessed
per reweighting event in terms of two quantities, “drift” and
“overload error,” which are measured in terms of the system’s
scheduling quantum size.Drift is the error, in comparison to an
ideal allocation, that results due to a reweighting event [3]. (Un-
der an ideal allocation, tasks are reweighted instantaneously,
which is not possible in practice.)Overload error is the er-
ror that results from a scheduler’s inability to give a task ashare
equal to its desired weight. This may happen under partition-
ing due to processor overloads. For example, it is impossible
to assign a share of 2/3 to each of three tasks executing on two
processors. One possibility is to assign two of the tasks to the
same processor, giving each a share of 1/2. In this case, the dif-
ference between the weight and share of these tasks would be
2/3 − 1/2 = 1/6. (The method by which we “distribute” any
overload among tasks is a non-trivial issue, which we discuss
in detail in Sec. 2.) Note that overload error is potentiallymore
detrimental than drift: while drift is a one-time error assessed
per reweighting event, overload error accumulates over time.
As the example above suggests, under partitioned schemes, we
cannot guarantee nonzero overload error, because of inevitable
connections to bin-packing that arise. Another consequence of
these connections is that, even under partitioning, migrations
can happen. This is because some reweighting events may ne-
cessitate reassigning tasks to processors.

In Table 1,REQdenotes the maximum amount of computa-
tion requested at one time by any task, andW denotes the de-
sired processor share of the(M · ⌊1/X⌋+ 1)

st “heaviest” task
(by weight), whereM is the number of processors andX is

2In the proportional-share algorithm [8] that is basis of thenew scheme we
propose, weights are allowed to be arbitrary rational values. For consistency,
we will always require them to range over[0, 1].

the weight of the heaviest task. Table 1 shows that algorithms
that allow more frequent migrations, like the Pfair-based PD2-
OF algorithm, produce little drift and no overload error, and
algorithms that restrict the frequency of migrations can produce
substantial amounts of drift and overload error.

Contributions. Our theoretical contributions include devis-
ing the PAS algorithm and associated reweighting rules, and
establishing the error bounds for PAS in Table 1. The question
that then remains is: for PAS and PD2-OF, how do drift and
overload error compare to any error due to migration costs? We
attempt to answer this question via extensive simulation stud-
ies of Whisper and ASTA. In these studies, real migration costs
were assumed based on actual measured values. These studies
confirm the expectation that, if migration costs are high, then
PAS performs well in the average case; however, PD2-OF pro-
vides stronger real-time and fairness guarantees. Given our be-
lief that PAS is a good candidate partitioned scheme, we con-
clude from this that, in applications where migration costsare
low or high allocation accuracy is required, Pfair-based schemes
are superior to other less migration-prone approaches. (Asex-
plained later, Whisper is such an application.) However, when
average-case performance is more important or migration costs
are high, a partitioned scheme may be the best choice. (As we
explain later, ASTA is such an application.)

The rest of this paper is organized as follows. We begin in
Sec. 2 by discussing the PAS algorithm in greater detail, andby
establishing the properties mentioned above. Our experimental
evaluation is then presented in Sec. 3. We conclude in Sec. 4.

2 Partitioning-Based Reweighting

In this section, we examine the issue of reweighting in par-
titioned systems. Because there cannot exist an optimal3 parti-
tioned scheduling algorithm, we focus our attention on differ-
ent heuristic tradeoffs that can minimize different sources of
error. (Due to page limitations, we present only a sampling
of the heuristics we have developed. Additional heuristicscan
be found in the full version of this paper, athttp://www
.cs.unc.edu/∼anderson/papers.html.) Before we
discuss these tradeoffs in detail, we first consider a fundamental
limitation of all partitioning algorithms.

2.1 A Limitation of Partitioning Schemes

Under any partitioning scheme, there exist feasible task sys-
tems that are not schedulable, even in the absence of weight
changes. A commonly-cited example of this, mentioned ear-
lier, is a two-processor system with three identical periodic4

tasks with an execution cost of 2.0 and a period of 3.0. Two

3A reweighting algorithm isoptimal if each task can always be granted a
share equal to its weight, provided the sum of all weights is at most the number
of available processors.

4In the periodic task model, each taskT is characterized by a periodT.p

and a per-job execution costT.e: everyT.p time units,T releases a new job
that requiresT.e time units to complete.

of the initial jobs must execute on the same processor, thus
over-utilizing it. There are two approaches for handling this
problem. First, we could cap the total utilization of all tasks in
the system. Unfortunately, under anyM -processor partitioning
scheme, a cap of approximatelyM/2 is required in the worst
case [4], which means that as much as half the system’s pro-
cessing capacity could be lost. Such caps are due to connec-
tions to bin-packing. The other approach is to assign some tasks
shares that are less than their desired weights so that no proces-
sor is over-utilized. Although this approach may not be able
to guarantee each task its weight, the system’s overall capacity
does not have to be restricted, which is a significant advantage
in computationally-intensive systems like Whisper and ASTA.
Moreover, allowing task shares to be somewhat malleable cir-
cumvents any bin-packing-like intractabilities that might other-
wise arise—with frequent weight changes, such intractabilities
would have to be dealt withfrequentlyat run-time. Note that
we are still able to offer some service guarantees (albeit weaker
than PD2-OF) with this approach, as discussed later in Sec. 2.2.
(In particular, for applications whereW in Table 1 is low, the
resulting share guarantees may be acceptable.) For these rea-
sons, we use this approach in the schemes we propose. To the
best of our knowledge, we are the first to suggest using such
an approach to schedule dynamically-changing multiprocessor
workloads. The fundamental limitation of partitioned schemes
noted above is formalized below.

Theorem 1. For any partitioned scheduling algorithm, real
valueǫ, where0 < ǫ < 0.5, and any integersM andk such
thatM ≥ 2 andk ≥ M + 1, there exists anM -processor task
systemτ with k tasks such that at least one processor must be
initially assigned tasks with total weight at least1 + W − ǫ,
whereW is the weight of the

(

M ·
⌊

1
X

⌋

+ 1
)st

heaviest task
andX is the weight of the heaviest task.5

Proof. Let theM heaviest tasks have weightX = 1 − ǫ, and
let the(M + 1)st heaviest task have weightW = min(M · ǫ−
δ, 1 − ǫ), whereδ < ǫ. Let the total weight of the remaining
k − (M + 1) tasks beδ. (For example, ifǫ = 1/3, k = 3, and
M = 2, then the system consists of three tasks of weight2/3.)
At least one processor is initially assigned two tasks with total
weight at least1 − ǫ + W , and thus is over-utilized byW − ǫ.
Sinceǫ < 0.5, M ·

⌊

1
X

⌋

+ 1 = M + 1. Hence,W is the weight
of the(M ·

⌊

1
X

⌋

+ 1)st heaviest task, as required.

2.2 Elements of Repartitioning

We now develop the PAS algorithm. PAS is a derivative of
the earliest-eligible-virtual-deadline-first (EEVDF) algorithm of
Stoicaet al. [8], with three major differences. First, PAS is
designed for multiprocessor systems. Second, PAS can enact
weight changes with constant drift. (EEVDF can do so only by
severely limiting the situations under which tasks may reweight.)
Third, PAS can be employed with any of several approaches for
minimizing overall overload error.

5This theorem can be easily extended to the case whereǫ ≥ 0.5; however,
due to space constraints we omit this extension and its proof.

Under PAS, a taskT requests processing time of an arbitrary
size. The size of theith request of taskT is denotedreq(T, i).
A task is consideredactiveif it has an unsatisfied request, and is
passive, otherwise.A(t) denotes the set of active tasks at time
t. PAS schedules the tasks on each processor on an earliest-
deadline-first basis. When a task is scheduled under PAS, it is
guaranteed at leastq units of computation time, whereq denotes
the scheduling quantum size; however, a task may relinquish
its processor within a quantum thus allowing another task to
execute.wt(T, t) denotes the weight of a taskT at timet. A
task T reweightsat time t if wt(T, t − ǫ) 6= wt(T, t), where
ǫ → 0+. We use the notationT :[x, y] to denote thatT ’s weight
ranges over[x, y], andT :z to denoteT :[z, z].

Any partitioned-based reweighting scheme must address four
concerns:(i) assigning tasks to processors;(ii) determining the
processor share of each task;(iii) determining the conditions
that necessitate a repartitioning; and(iv) scheduling tasks in ac-
cordance with their assigned shares. We consider each in turn.

Assigning tasks to processors. The problem of assigning
tasks to processors is equivalent to the NP-hard bin-packing
problem. Given that reweighting events may be frequent, an
optimal assignment of tasks to processors is not realistic to
maintain. In PAS, we partitionN tasks ontoM processors in
O(M + N log N) time by first sorting them by weight from
heaviest to lightest, and by then placing each on the processor
that is the “best fit” (this partitioning method is calleddescend-
ing best-fit). We chose this method because it falls within a class
of bin-packing heuristics calledreasonable allocation decreas-
ing, which has been shown by Lopezet al. to produce better
packings than other types of heuristics [6]. Most importantly,
the “descending best-fit” strategy can guarantee that no proces-
sor is over-utilized by more thanW , whereW is the weight of
the

(

M ·
⌊

1
X

⌋

+ 1
)st

“heaviest” task andX is the weight of the
“heaviest” task, which is the same limit stated in Thm. 1. Also,
under this strategy, no processor is over-utilized by more than
the weight of the lightest task assigned to it.

Determining task shares. We now consider the problem of
determining task shares on over-utilized processors. As men-
tioned earlier, we have chosen to restrict the shares of suchtasks
rather than rejecting tasks from the system. However, it is not
immediately obvious how to best assess the overall error that re-
sults from overload. (Note that the notion of “overload error” is
the same as defined earlier. The issue here is how to assess the
overall impact of the various overload errors experienced by dif-
ferent tasks.) We consider two different metrics for doing this,
and for each, we define a method for determining task shares
based on that metric. As a shorthand, we usesh(T, t) to denote
taskT ’s share at timet. A summary of the two metrics is given
in Table 2. In describing these metrics, we assume thatP is an
over-utilized processor at timet, T is a task assigned to it at time
t, andn is the number of such tasks. Many of the claims that
are stated below are true only ifP is not over-utilized by more
than the weight of its lightest assigned task, so we assume this
as well. (Such claims can be easily adjusted to accommodateP

Metric Name Metric Formula Optimal Share Assignment

MROE max

{

T on P :
wt(T, t)−sh(T, t)

wt(T, t)

}

sh(T, t) =
wt(T, t)

P

K∈P wt(K, t)

AROE
∑

T on P

(

wt(T, t)−sh(T, t)
wt(T, t)

)

/n sh(T, t) =

{

ω(P, t) if T is the heaviest task onP at t
wt(T, t) otherwise

Table 2. Two metrics for assessing overall overload-based error.ω(P, t) denotes
`
P

T on P
wt(T, t)

´

− 1, andn is the number of tasks
assigned toP at timet. The optimal share assignments only apply if0 < ω(P, t) ≤ T , whereT is the lightest task onP at t.

being over-utilized by more than the weight of its lightest task.)
The metrics we consider are based on the relative differences

between weights and shares. Themaximal relative overall er-
ror (MROE), given bymax{(wt(T, t)− sh(T, t))/wt(T, t)}, is
minimized when all task shares are scaled by the same value.
For example, if a set of tasks over-utilizes a processor by 0.2,
then each task’s share would be 1/1.2 times its weight. This
scaling is the same as theproportional-sharescaling used in
EEVDF [8]. Theaverage relative overall error(AROE), given
by [

∑

T (wt(T, t) − sh(T, t))/wt(T, t)]/n, is minimized when
the heaviest task’s share is less than its weight by the amount
by which P is over-utilized, and the share of every other task
equals its weight. For example, if four tasksA, B, C, andD
with weights 0.5, 0.2, 0.2, and 0.2, respectively, are assigned to
a processor, thenA’s share is0.5 − 0.1 (the processor is over-
utilized by 0.1), andB, C, andD each have a share of 0.2.

In the share-calculation methods described above, the lossto
system utility is measured solely based on the relative difference
between a task’s weight and share. However, in some applica-
tions, such a value may not truly capture the loss of utility.For
example, suppose that Whisper were implemented so that when
hand and feet positions cannot be precisely calculated in time,
these positions can be estimated based on the position of the
user’s head. Then, there could be a great loss of utility if the
tasks monitoring the head receive insufficient shares, but much
less loss if the tasks monitoring the hands and feet do. In such
a case, it may be desirable for the application developer to for-
malize the utility loss as a function of the weight and share of
each task. This formalization could potentially be used to de-
termine shares by solving an optimization problem. As we will
see shortly, PAS is flexible enough to be able to use such share
values (though a few subtle issues do arise in this case).

Repartitioning. As tasks are reweighted, the likelihood of
processors becomingsubstantiallyover-utilized increases dra-
matically, creating significant overall error (however assessed)
on these processors. The extent of overall error can be con-
trolled by repartitioning the system. In order to give the user
control over migration overhead, we introduceα-partitioning:
if a reweighting event causes any processor to be over-utilized
by at leastα, the system is reset. A reset causes the set of tasks
to be repartitioned (using the descending best-fit method de-
scribed earlier) and all active tasks to issue a new request.If
some tasks accumulate too much overall error over time, then
it may be desirable to trigger a reset, and when the system is
repartitioned, use a modified descending best-fit algorithmthat

discourages assigning these tasks to over-utilized processors.

2.3 Scheduling and Reweighting

In this section, we describe how PAS schedules and reweights
tasks on a single processor. To simplify the discussion, we as-
sume that task shares are determined by the MROE metric. (In
the full version of the paper we explain the adjustments neces-
sary to determine task shares by any metric, and we also show
that under any non-MROE scheme, tasks that do not change
their weight can incur drift, and for this reason, MROE schemes
will likely be preferable in most circumstances.) Recall that un-
der the MROE metric the share of a taskT on a over-utilized
processorP at timet is given by

sh(T, t) =
wt(T, t)

∑

K∈A(t,P) wt(K, t)
, (1)

whereA(t, P) is the set of tasks that are active att onP . PAS
schedules tasks in accordance with (1)even whenP is under-
utilized. Thus, PAS fully utilizes any processor to which a task
has been assigned. Such a property is advantageous in systems
like Whisper and ASTA, which can use more processor time to
refine computations. To assess allocation accuracy, we consider
thetrue ideal allocation of a taskT up to timet, given by

true ideal(T, t) =

∫ t

0

sh(T, u)du. (2)

As a shorthand, we denote the true ideal allocation of theith

request of taskT up to timet as true ideal(T, t, i), which is
formally defined as

∫ t

r(T,i)
sh(T, u)du, wherer(T, i) is the re-

lease time of theith request of taskT , formally defined below.
We denote the actual allocation ofT up to timet by S(T, t),
and useS(T, t, i) to represent the amount ofT ’s ith request
completed by timet.

We now introduce an additional notion of weight that is use-
ful when reweighting tasks. When a task changes weight, there
can be a difference between when it initiates the change and
when the change is enacted. The time at which a weight change
is initiated is a user-defined time; the time at which the change
is enactedis dictated by a set of conditions discussed shortly.
If these points in time differ, the old weight is used in between.
We define thescheduling weight of a taskT at timet, denoted
swt(T, t), aswt(T, u), whereu is the last time at or beforet that
a weight change was enacted forT . We define thescheduling(-

weight-based) ideal allocation of a taskT up to timet as

schedideal(T, t) =

∫ t

0

swt(T, u)
∑

K∈A(u,P)swt(K, u)
du.

As a shorthand, we denote thescheduling ideal allocation of the
ith request of taskT up to timet asschedideal(T, t, i), which is
formally defined asschedideal(T, t)−schedideal(T, r(T, i)).

Releases and deadlines.Under PAS, it is possible for the
deadline of a request to vary with time. Hence, we denote
the deadline of theith request of taskT at timet asd(T, i, t),
and as a shorthand, we used(T, i) to denote the timeu such
thatu = d(T, i, u). Thereleaser(T, i) anddeadlined(T, i, t)
(at timet) of the ith request of taskT are derived as follows,
wherear(T) is the arrival time of the first request ofT and
id rem(T, t, i) is the remaining computation of theith request
of taskT at time t in the scheduling ideal system, defined as
id rem(T, t, i) = req(T, i) − schedideal(T, t, i).

r(T, 1) = ar(T) (3)

d(T, i, t) = t +

∑

K∈A(t,P) swt(K, t)

swt(T, t)
· id rem(T, t, i) (4)

r(T, i + 1) = d(T, i) (5)

In the expression added tot to determined(T, i, t), the first
term is a scaling factor, which is the reciprocal ofT ’s share,
computed using scheduling weights. For example, consider
Fig. 1(b). TaskV in this figure has an initial weight of 1/6 that
changes to 1/2 at time 3. (This figure is considered in greaterde-
tail later.) Observe thatr(V, 1) = 0, d(V, 1, 0) = 0 + 1/(1/6) ·
1 = 6, d(V, 1, 1) = 1 + 1/(1/6) · 5/6 = 6, d(V, 1, 2) =
2+1/(4/6)·4/6 = 3, andd(V, 1, 3) = 3+1/(4/6)·0 = 3. Be-
caused(V, 1, 3) = 3, we also haved(V, 1) = 3 andr(V, 2) = 3.

Reweighting. We now introduce two new PAS reweighting
rules that are PAS extensions of the PD2-OF reweighting rules
presented by us previously [3]. These rules work by modi-
fying future release times and deadlines and are quite differ-
ent from reweighting rules considered perviously for EEVDF-
based schemes. (The rules below are applied on a single pro-
cessor; reweighting events that trigger a repartitioning are dealt
with as discussed earlier.)

Suppose that taskT initiates a weight change from weight
w to weightv at timetc. Let i be the request ofT satisfying
r(T, i) ≤ tc < d(T, i). If req(T, i) − S(T, t, i) > 0, then
let ac rem(T, t, i) = req(T, i)− S(T, t, i); else,ac rem(T, t, i)
= req(T, i + 1). Note thatac rem(T, t, i) denotes the actual
remaining computation inT ’s current request or the size ofT ’s
next request if the current request has been completed. Thelag
of theith request of taskT at timet is defined aslag(T, t, i) =
schedideal(T, t, i)− S(T, t, i). T ’s lag is positive (negative) if
its actual allocation is behind (ahead) its scheduling ideal allo-
cation. The choice of which rule to apply depends onT ’s lag
at timetc. We say that taskT is positive changeable at timetc
from weightw to v if lag(T, tc, i) ≥ 0, andnegative changeable

at timetc from weightw to v, otherwise. BecauseT initiates its
weight change attc, wt(T, tc) = v holds; however,T ’s schedul-
ing weight does not change until the weight change has been
enacted, as specified in the rules below. Note that iftc occurs
between the initiation and enaction of a previous reweighting
event ofT , then the previous event is skipped,i.e., treated as
if it had not occurred. As discussed below, any “error” associ-
ated with skipping a reweighting event like this is accounted for
when determining drift.

Rule P: If T is positive-changeable at timetc fromw to v, then
one of the two actions is taken:(i) if ac rem(T, tc, i)/v ≤
id rem(T, tc, i)/w, thenT ’s current requesti is halted, its
weight change is enacted, and a new request is issued with
a release time oftc and a size ofac rem(T, tc, i); (ii) oth-
erwise, no action is taken until timed(T, i), at which point
the weight change is enacted (i.e., the scheduling weight
does not change until the end of the current request).

Rule N: If T is negative-changeable at timetc from w to v,
then one of two actions is taken:(i) if v > w, thenT ’s cur-
rent request is halted, its weight change is enacted, and a
new request of sizeac rem(T, tc, i) is issued with a release
time equal to the timet at whichlag(T, t, i) = 0 holds;(ii)
otherwise, the weight change is enacted at timed(T, i).

Intuitively, Rule P changes a task’s weight by halting its cur-
rent request and issuing a new request of sizeac rem(T, tc, i)
with the new weight, if doing so would improve its schedul-
ing priority. Note that, by (4), at timet theith request of taskT
has a higher scheduling priority than thejth request of taskK if
id rem(T, t, i)

swt(T, t)
≤

id rem(K, t, j)
swt(K, t)

. Hence, if
ac rem(T, tc, i)

v ≤

id rem(T, tc, i)
w , then haltingT ’s current request and issuing

a new request of sizeac rem(T, tc, i) will either improve or
maintainT ’s scheduling priority. A (one-processor) example
of a positive-changeable task is given in Fig. 1(a). The de-
picted example consists of four tasks:T :1/2, K:1/6, W :1/6,
and V . TaskT leaves the system at time 2 and taskV has
an initial weight of 1/6 that increases to 4/6 at time 2. Note
that, sinceK, W , andV have the same initial deadline, we
have arbitrarily chosenV to have the lowest priority. In inset
(a),V is positive-changeable since at time 2 it has not yet been
scheduled. Note that haltingV ’s current request and issuing a
new request of size one improvesV ’s scheduling priority,i.e.,
ac rem(V, 2, 1)

4/6
= 6

4 < 4 =
id rem(V, 2, 1)

1/6
. Note that the sec-

ond request ofV is issued 6/4 quanta after time 2. This spacing
is in keeping with a new request of weight 4/6 issued at time 2.

Rule N changes the weight of a task by one of two approaches:
(i) if a taskincreasesits weight, then Rule N adjusts the release
time of its next request so that it is commensurate with the new
weight;(ii) if a taskdecreasesits weight, then Rule N waits un-
til the end of its current request and then issues the next request
with a deadline that is commensurate with the new weight. A
(one-processor) example of a negative-changeable task that in-
creases its weight is given in Fig. 1(b). The depicted example

00drift(V,t)
drift(V,t)

0
00

2/6 2/6 2/6 2/6 2/6

6/6 10/6 14/6 18/6 1/6 2/6 6/6

4/6
5/6

6/6
7/6

8/6
9/6

10/6
11/6

14/6 18/61/6 2/6 10/6true_ideal(V,t) true_ideal(V,t)
true_ideal(V,t)

00 0drift(V,t)

0 1 2 3 4 5

0 0

0 1 2 3 4 5 5

0 0 00

0 1 2 3 4

−3/12
−3/12

−3/12−3/12
−3/12−3/12 −3/12

Real time

(c)(a)

Real time

6

...

...

(b)

6

...

7

...

Real time

6

...

...K: 1/6

W: 1/6

V: [1/6,4/6]

K: 1/6

W: 1/6

K: 1/6

W: 1/6

V: [1/6, 4/6]

8

V: [1/6, 4/6]

...

...

...

...

T: [0,1/2] T: [0,1/2] T: [0,1/2]

Figure 1. A one-processor system consisting of four tasks,T :[0, 1/2], K:1/6, W :1/6, andV :[1/6, 4/6]. Scheduling is as indicated;
for example, in inset (a),T ’s first request is released at time0, has a deadline at time2, and executed within the interval[0, 1). The dotted
lines represent the interval up toV ’s next deadline, which due to reweighting has been changed (as indicated by the solid arrow). The drift
and true ideal allocation forV are labeled as a function of time across the top.(a) The PAS schedule for the scenario whereT is in the
system initially and leaves at time 2,V has an initial weight of 1/6 and increases to 4/6 at time 2, andV has a lower priority initially than
bothK andW . SinceV is not scheduled by time 2, it has positive lag and changes itsweight via Rule P, causing the deadline of its current
task to become 9/2 and its drift to become 2/6.(b) The same scenario as in (a) except thatV has higher priority initially than bothK and
W . SinceV has been scheduled by time 2, it has negative lag and changes its weight via Rule N, causing its next request to have a release
time of 3 while maintaining a drift of zero.(c) T joins the system at time 6/4 andV has an initial weight of 4/6 that decreases to 1/6 at
time 1. SinceV has negative lag at time 1, it is changed via Rule N, causingV ’s next request to have a deadline of 15/2 andV to have a
drift of −3/12. Note that all requests are of size one.

consists of the same tasks as in (a), except that we have cho-
senV to have priority overK andW initially. Note that the
second request ofV is issued at time 3, which is the time such

that lag(V, 3, 1) =
∫ 3

0

swt(V, u)
P

K∈A(u,p) swt(K, u)
du − S(V, 3, 1) =

1 − 1 = 0. Note also that, by (4) and (5), the deadline (re-
lease time) of theith ((i + 1)st) request of a taskT is given
by r(T, i) + req(T, i)/(swt(T, r(T, i))), assuming all schedul-
ing weights sum to 1.0. Hence, if a task of weightv were to
issue a request of sizeid rem(T, tc, i) at time tc, then the re-
lease time of its next request would betc + id rem(T, tc, i)/v.
(If the scheduling weights do not sum to 1.0, then the dead-
line must be adjusted accordingly.) A (one-processor) example
of a negative-changeable task that decreases its weight is given
in Fig. 1(c). The depicted example consists of the same four
tasks except thatV has an initial weight of 4/6 and decreases its
weight at time 1, andT joins the system as soon asV ’s weight
change is enacted.

Theorem 2. Let d(T, i) be the deadline of theith request of
a taskT in a PAS-scheduled system with a quantum size ofq
where tasks are reweighted by Rules P and N. Then, this request
is fulfilled by timed(T, i) + q.6

Proof Sketch.Barring reweighting events that force migration,
PAS is used independently on each processor. When migrations
do occur, the system introduces tasks onto each processor in
a manner in keeping with a valid uniprocessor PAS schedule.
Hence, we can reduce the correctness of multiprocessor PAS
to that of uniprocessor PAS. Since PAS is an EEVDF-derived
algorithm, we can thus use the same proof techniques that Sto-

6Deadline tardiness is acceptable, as long as tardiness bounds are reasonably
small in comparison to the expected interval length betweenreweighting events.
Fortunately, in most systems, the quantum size is a settableparameter.

ica et al. [8] used to show that theith request of taskT in a
PAS-scheduled system is fulfilled byq + d(T, i).

Drift. We now turn our attention to the issue of measuring
“drift” under PAS. For most real-time scheduling algorithms,
the difference between the true ideal and actual allocationa task
receives lies within some bounded range centered at zero. For
example, under PAS (without reweighting), the difference be-
tweentrue ideal(T, t) andS(T, t) lies within (−REQ ,REQ).
When a weight change occurs, the same bounds are maintained,
except that they may be centered at a different value. For exam-
ple, consider again Fig. 1. In inset (a),V ’s releases and dead-
lines are commensurate with its new weight starting at time 7/2.
Its actual allocation up to this time is 1.0, while its true ideal
allocation is8/6. Thus, 2/6 of its true ideal allocation has
been permanently “lost.” This lost allocation is called itsdrift.
Given this loss, barring further reweighting events, the differ-
ence betweenT ’s true ideal and actual allocations will hence-
forth be maintained between−4/6 and8/6 (assuming a maxi-
mum request size of one). In general, a task’s drift per reweight-
ing event will be nonnegative (nonpositive) if it increases(de-
creases) its weight. Under PAS, the drift of a taskT at timet is
formally defined as

drift(T, t) = true ideal(T, u)− S(T, u), (6)

whereu is the earliest time at whichT may issue a new request
at or after its most recent weight change.

Theorem 3. The absolute value of per-event drift under PAS
is less than REQ, where system resets(i.e., repartitionings) are
considered reweighting events.

Proof Sketch.We first show that the absolute value of drift is
less thanREQon a uniprocessor (where obviously no system

resets occur). If a taskT changes its weight at timetc via
Rule P, then when this weight change is enacted at timete
(i.e., at tc under case (i), or atd(T, i) under case (ii)), it is as
though an amount of computation equal totrue ideal(T, te, i)−
S(T, te, i) is “lost,” resulting in drift. (For example, in Fig. 1(a),
true ideal(T, 2, 1)−S(T, 2, 1) = 2/6, thus that computation is
“lost” causingV to drift by 2/6.) Since this value (per reweight-
ing event) is always less thanREQ, the absolute value of drift is
less thanREQ.

If a taskT , during itsith request, changes its weight at time
tc via Rule N andT decreases its weight (case (ii)), then it is
as thoughT leaves the system with its old weight and rejoins
with its new weight at timed(T, i). (Stoica,et al. proved that
a task can leave at a timet if it has equal scheduling ideal and
actual allocations.) IfT increases its weight (case (i)), then it
incurs zero drift since itimmediatelychanges the eligibility time
of its next request in a manner that is consistent with its new
weight. Either way, the absolute value of the drift incurredby
this reweighting event is less thanREQ . (Note that in Fig. 1(b),
V ’s drift is 0, while in (c), it is−3/12.)

On a multiprocessor, the key is to show that each system reset
induces per-task drift in the range(−REQ ,REQ). If the first
reweighting event is a reset, then each task’s drift is bounded
by its lag at that time, which lies in the range(−REQ ,REQ).
The drift due to resets that follow other reweighting eventscan
be calculated similarly, after first accounting for drift introduced
by those prior events.

Time complexity. As noted earlier, the time complexity for
PAS to partitionN tasks ontoM processors isO(M+N log N).
If we were to implement PAS using binomial heaps, then the
time complexity to make a scheduling decision on a proces-
sor P is O(log n), wheren is the number of tasks assigned
to P . Recall that when a task changes its weight using either
rule P or N, it is reinserted into its processor’s priority queue.
Thus,O(log n) time is required to change a task’s weight via
rule P or N using the MROE metric. Under non-MROE met-
rics, O(n log n) time is required, due to the potential need to
re-enqueue non-reweighted tasks.

As a final comment regarding PAS, we donot claim that
it is the final word regarding partitioned reweighting schemes.
However, we have tried hard to devise reasonable approaches
for dealing with the fundamental limitation discussed earlier to
which such schemes are subject. Thus, we believe that PAS is a
good candidate partitioning approach, as claimed earlier.

3 Experimental Results

The results of this paper are part of a longer-term project on
adaptive real-time allocation in which both the human-tracking
system, Whisper, and the video-enhancement system, ASTA,
described in the introduction, will be used as test applications.
In this section, we provide extensive simulations of Whisper
and ASTA as scheduled by both PD2-OF and PAS.

Whisper. As noted earlier, Whisper tracks users via speakers
that emit white noise attached to each user’s hands, feet, and
head. Microphones located on the wall or ceiling receive these
signals and a tracking computer calculates each speaker’s dis-
tance from each microphone by measuring the associated sig-
nal delay. Whisper is able to compute the time-shift between
the transmitted and received versions of the sound by perform-
ing acorrelationcalculation on the most recent set of samples.
By varying the number of samples, Whisper can trade mea-
surement accuracy for computation—with more samples, the
more accurate and more computationally intensive the calcula-
tion. As a signal becomes weaker, the number of samples is
increased to maintain the same level of accuracy. As the dis-
tance between a speaker and microphone increases, the signal
strength decreases. This behavior (along with the use of predic-
tive techniques mentioned in the introduction) can cause task
share changes of up to two orders of magnitude every 10 ms.
Since Whisper continuously performs calculations on incoming
data, at any point in time, it does not have a significant amount
of “useful” data stored in cache. Hence, migration costs in
Whisper are fairly small (at least, on a tightly-coupled system,
as assumed here, where the main cost of a migration is mainly
a loss of cache affinity). Also, fairness and real-time guarantees
are important due to the inherent “tight coupling” among tasks
that is required to accurately perform triangulation calculations.

ASTA system. Before describing ASTA in detail, we review
some basics of videography. All video is a collection of still im-
ages calledframes. Associated with each frame is anexposure
time, which denotes the amount of time the camera’s shutter
was open while taking that frame. Frames with faster exposure
times capture moving objects with more detail, while frames
with slower exposure times are brighter. If a frame isunderex-
posed(i.e., the exposure time is too fast), then the image can
be too dark to discern any object. The ASTA system can cor-
rect underexposed video while maintaining the detail captured
by faster exposure times by combining the information of mul-
tiple frames. To intuitively understand how ASTA achieves this
behavior, consider the following example. If a camera,A, has
an exposure time of1/30th of a second, and a second camera,
B, has an exposure time of1/15th of a second, then for every
two frames shot by cameraA the shutter is open for the same
time as one frame shot byB. ASTA is capable of exploiting this
observation in order to allow cameraA to shoot frames with
the detail of a1/30th of a second exposure time but the bright-
ness of a1/15th of a second exposure time. As noted earlier,
darker objects require more computation than lighter objects to
correct. Thus, as dark objects move in the video, the processor
shares of tasks assigned to process different areas of the video
will change. Hence, tasks will need to adjust their weights as
quickly as an object can move across the screen. Since ASTA
continuously performs calculations based on previous frames,
it performs best when a substantial amount of “useful” data is
stored in the cache. Hence, migration costs in ASTA are fairly
high. Also, while strong real-time and fairness guaranteesare
desirable in ASTA, they are not as important as in Whisper, be-

cause tasks can function somewhat independently in ASTA.

Experimental system set up. Unfortunately, at this point in
time, it is not feasible to produce experiments involving a real
implementation of either Whisper or ASTA, for several reasons.
First, both the existing Whisper and ASTA systems are single-
threaded (and non-adaptive) and consist of several thousands of
lines of code. All of this code has to be re-implemented as a
multi-threaded system, which is a nontrivial task. Indeed,be-
cause of this, it isessentialthat we first understand the schedul-
ing and resource-allocation trade-offs involved. The develop-
ment of PD2-OF and PAS can be seen as an attempt to ar-
ticulate these tradeoffs. Additionally, the focus of this paper
is on scheduling methods that facilitate adaptation—we have
not addressed the issue of devising mechanisms for determin-
ing howandwhenthe system should adapt. Such mechanisms
will be based on issues involving virtually-reality and multi-
media systems that are well beyond the scope of this paper.
For these reasons, we have chosen to evaluate the schemes dis-
cussed in this paper via simulations of Whisper and ASTA.
While just simulations, most of the parameters used here were
obtained by implementing and timing the scheduling algorithms
discussed in this paper and some of the signal-processing and
video-enhancement code in Whisper and ASTA, respectively,
on a real multiprocessor testbed. Thus, the behaviors in these
simulations should fairly accurately reflect what one wouldsee
in a real Whisper or ASTA implementation.

For both Whisper and ASTA, the simulated platform was as-
sumed to be a shared-memory multiprocessor, with four 2.7-
GHz processors and a 1-ms quantum. All simulations were run
61 times. Both systems were simulated for 10 secs. We im-
plemented and timed each scheduling scheme considered in our
simulations on an actual testbed that is the same as that assumed
in our simulations, and found that all scheduling and reweight-
ing computations could be completed within 5µs. We consid-
ered this value to be negligible in comparison to a 1-ms quan-
tum and thus did not consider scheduling overheads in our sim-
ulations. We assumed that all preemption and migration costs
were the same and corresponded to a loss of cache affinity. We
assume that bus contention costs for PAS and PD2-OF are the
same, since in prior work, Holman and Anderson have shown
that any additional bus contention incurred under PD2-OF can
be virtually eliminated bystaggeringquantum allocations on
different processors [5]. Based on measurements taken on our
testbed system, we estimated Whisper’s migration cost as 2µs–
10µs, and ASTA’s as 50µs–60µs. While we believe that these
costs may be typical for a wide range of systems, in our experi-
ments we varied the migration cost over a slightly larger range.

While the ultimate metric for determining the efficacy of
both systems would be user perception, this metric is not cur-
rently available, for reasons discussed earlier. Therefore, we
compared each of the tested schemes by comparing against the
true ideal allocation—all references to the “ideal” system in this
section refer to this notion of ideal allocation. In particular, we
measured the average amount each task is behind its ideal allo-
cation (this value is defined to be nonnegative,i.e., for a task that

is not behind its ideal, this value is zero), the maximum amount
any task in a task set is behind its ideal, and each task set’s “fair-
ness factor.” Thefairness factor(FF) of a task set is the largest
deviance from the ideal between any two tasks (e.g., if a system
has three tasks, one that deviates from its ideal by−10, another
by 20, and the third by 50, then theFF is 50 − (−10) = 60).
The FF is a good indication of how fairly a scheme allocates
processing capacity. A lowerFF means the system is more fair.
For applications like Whisper, where the output generated by
multiple tasks is periodically combined, a lowFF is important,
since if any one task is “behind,” then the performance of the
entire system is impacted; however, for applications like ASTA,
where tasks are more independent, a highFF does not affect
the system’s performance nearly as much. These metrics should
provide us with a reasonable impression of how well the tested
schemes will perform when Whisper and ASTA are fully re-
implemented.

Profiling the system. PAS can be competitive with PD2-OF
if an appropriateα-value and request size are chosen. To do
this, the system must be profiled. We profiled each system by
running PAS (for both MROE and AROE) and varying theα-
value, request size, and migration cost. For brevity, we will
simply state theα-value and request size determined to be the
“best” for each simulation.

Whisper experiments. In our Whisper experiments, we sim-
ulated three speakers (one per object) revolving around a pole in

1 m

�
�
�
� Speaker

Occluding Object

Microphone�
�
�
�

�
�
�
�

��
��
��
��

1 m

Figure 2. The Whisper system.

a 1m × 1m room
with a microphone
in each corner, as
shown in Fig. 2. The
pole creates poten-
tial occlusions. For
each speaker/ micro-
phone pair, one task
is required for a to-
tal of 12 tasks. In
each simulation, the
speakers were evenly distributed around the pole at an equal
distance from the pole, and rotated around the pole at the same
speed. The starting position for each speaker was set randomly.
As mentioned above, as the distance between a speaker and mi-
crophone changes, so does the amount of computation neces-
sary to correctly track the speaker. This distance is (obviously)
impacted by a speaker’s movement, but is also lengthened when
an occlusion is caused by the pole. The range of weights of
each task was determined (as a function of a tracked object’s
position) by implementing and timing the basic computationof
the correlation algorithm (an accumulate-and-multiply opera-
tion) on our testbed system.

In the Whisper simulations, we made several simplifying as-
sumptions. First, all objects are moving in only two dimen-
sions. Second, there is no ambient noise in the room. Third,
no speaker can interfere with any other speaker. Fourth, allob-
jects move at a constant rate. Fifth, the weight of each task

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

A
v
e

ra
g

e
 B

e
h

in
d

 I
d

e
a

l
in

 m
ill

is
e

c
o

n
d

s

Migration Cost in microseconds

Average Behind Ideal for Whisper

PAS-AROE
PAS-MROE

PD2-OF

Whisper
(a)

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

M
a

x
im

u
m

 B
e

h
in

d
 I

d
e

a
l
in

 m
ill

is
e

c
o

n
d

s

Migration Cost in microseconds

Maximum Behind Ideal for Whisper

PAS-AROE
PAS-MROE

PD2-OF

Whisper
(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

F
a

ir
n

e
s
s
 F

a
c
to

r
in

 m
ill

is
e

c
o

n
d

s

Migration Cost in microseconds

Fairness Factor for Whisper

PAS-AROE
PAS-MROE

PD2-OF

Whisper
(c)

Figure 3. The (a) average and(b) maximum amount a task is behind its ideal allocation and the(c) FF for Whisper as scheduled by
PAS (using MROE and AROE), and PD2-OF. For PAS, the request size is 7 ms and theα-value is 0.1. 98% confidence intervals are shown.

changes only once for every 5 cm of distance between its asso-
ciated speaker and microphone. Sixth, all speakers and micro-
phones are omnidirectional. Finally, all tasks have a minimum
weight based on measurements from our testbed system and a
maximum weight of 1.0. A task’s current weight at any time lies
between these two extremes and depends on the corresponding
speaker’s current position. Even with theses assumptions,fre-
quent share adaptations are required.

We conducted Whisper experiments in which the tracked ob-
jects were sampled at a rate of 1,000 Hz, the distance of each
object from the room’s center was set at 50 cm, the speed of
each object was set at 5 m/sec. (such a speed is within the speed
of human motion), and the migration cost were varied. The
graphs below give a representative sampling our collected data.

The graphs in Fig. 3 show the results of the Whisper sim-
ulations conducted to compare PAS using AROE, PAS using
MROE, and PD2-OF. For both versions of PAS, we used anα-
value of 0.1 and a request size of 7 ms. In these experiments,
the migration cost was varied from 0 to 100µs. Insets (a), (b),
and (c) depict, respectively, the average and maximum amount
by which tasks trail behind their ideal allocations, and theFF,
for each scheme, as a function of migration cost. There are
four things worth noting here. First, while the performanceof
each scheme degrades with an increase in migration cost, PD2-
OF degrades much faster. Second, for migrations costs in the
range [2µs, 10µs], the expected range for Whisper, PAS and
PD2-OF exhibit similar average-case performance, but PD2-OF
is superior in terms of maximum error. In addition, theFF
of PD2-OF is substantiallybetter. Third, the confidence inter-
vals for the PAS variants in insets (b) and (c) are substantially
larger than those for PD2-OF. This indicates that PD2-OF’s re-
sults vary over a much smaller range. Fourth, PAS using MROE
performs slightly better than PAS using AROE. This behavior
stems from the fact that, under non-MROE metrics, tasks can
incur drift even when they do not change their weight and the
system is not reset. Hence, under PAS using AROE, more tasks
incur drift than in PAS under MROE.

ASTA experiments. In our ASTA experiments, we simulated
a640 × 640-pixel video feed where a grey square that is160×
160 pixels moves around in a circle with a radius of160 pixels

Square’s Path

640 pixel

64
0

pi
xe

l

Grey Square

Figure 4. The ASTA system.

on a white background.
This is illustrated in Fig. 4.
The grey square makes
one complete rotation ev-
ery ten seconds. The po-
sition of the grey square
on the circle is random.
Each frame is divided into
sixteen 160 × 160-pixel
regions; each of these re-
gions is corrected by a different task. A task’s weight is deter-
mined by whether the grey square covers its region. By ana-
lyzing ASTA’s code, we determined that the grey square takes
three times more processing time to correct than the white back-
ground. Hence, if the grey square completely covers a task’s
region, then its weight is three times larger than that of a task
with an all-white region. The video is shot at a rate of 25 frames
per second. Hence, each frame has an exposure time of 40 ms.

The graphs for this set of experiments are shown in Fig. 5.
The same information is shown here as for Whisper, with the ex-
ception theα-value for PAS using MROE and AROE is 0.075.
There are three things worth noting here. First, as before, while
the accuracy of each scheme degrades with an increase in mi-
gration cost, PD2-OF degrades much faster. Second, for mi-
grations costs in the range [50µs, 60µs], the expected range
for ASTA, both versions of PAS performsubstantiallybetter
than PD2-OF with respect to the average and maximum metrics.
However, PD2-OF still has asubstantiallybetterFF. Third, as
with Whisper, the confidence intervals for the PAS variants in
insets (b) and (c) are substantially larger than for PD2-OF. This
implies that PD2-OF’s results vary over a much smaller range
than those of PAS.

Note that these two experimental studies suggest that PAS
using MROE is superior to PAS using AROE in terms of both
average and maximum error. The reason for this behavior is
that, as we mentioned before, under non-MROE algorithms,
tasks that do not change their weight can incur drift.

Also note that these experiments suggest that there exist many
different scenarios under which PAS and PD2-OF are each of
value. PAS is of value in systems where migration costs are

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

A
v
e

ra
g

e
 B

e
h

in
d

 I
d

e
a

l
in

 m
ill

is
e

c
o

n
d

s

Migration Cost in microseconds

Average Behind Ideal for ASTA

PAS-AROE
PAS-MROE

PD2-OF

ASTA

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

M
a

x
im

u
m

 B
e

h
in

d
 I

d
e

a
l
in

 m
ill

is
e

c
o

n
d

s

Migration Cost in microseconds

Maximum Behind Ideal for ASTA

PAS-AROE
PAS-MROE

PD2-OF

(b)

ASTA

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

F
a

ir
n

e
s
s

F
a

c
to

r
in

 m
ill

is
e

c
o

n
d

s

Migration Cost in microseconds

Fairness Factor for ASTA

PAS-AROE
PAS-MROE

PD2-OF

(c)

ASTA

Figure 5. The(a) average and(b) maximum amount a task is behind its ideal allocation and the(c) FF for ASTA as scheduled by PAS
(using MROE and AROE), and PD2-OF. For PAS the request size is 7 ms and theα-value is 0.075. 98% confidence intervals are shown.

high or where strong real-time and fairness guarantees are not
strictly required. However, it has two major drawbacks. First,
PAS requires the system to be “profiled” before use. Indeed,
if we had chosen an “incorrect”α-value or request size, it is
possible that PD2-OF would have outperformed PAS for any
reasonable migration cost. Thus, if the system cannot be pro-
filed beforehand, it is difficult to make any guarantees under
PAS. The other drawback of PAS is that, even if both schemes
perform well in the average case, the amount by which any one
task can deviate from its desired allocation is much harder to
predict. On the other hand, in the case of ASTA, PD2-OF’s per-
formance is so poor, it simply is not a viable option, despite
its superior real-time and fairness properties. ASTA is a good
example of a system for which it is reasonable to trade weaker
guarantees for superior performance.

4 Concluding Remarks

We have presented a new multiprocessor reweighting scheme,
PAS, which reduces migration costs at the expense of greater
allocation error. We have also presented both analytical and ex-
perimental comparisons of this scheme with a more accurate but
more migration-prone scheme, PD2-OF. These results suggest
that when migration and preemption costs are high, PAS may
be the best choice. However, strong real-time and fairness guar-
antees are not possible under any partitioning-based scheme.
Thus, for systems like Whisper, where fairness and timeliness
are important and migration costs are low, PD2-OF is the best
choice. However, for systems like ASTA, where migration costs
are high and fairness and timeliness are less important, PASis
the best choice. Thus,both algorithms are of valueand will be
the best choice in certain application scenarios.

While our focus in this paper has been on scheduling tech-
niques thatfacilitate fine-grained adaptations, techniques for
determininghowandwhento adapt are equally important. Such
techniques can either be application-specific (e.g., adaptation
policies unique to a tracking system like Whisper) or more
generic (e.g., feedback-control mechanisms incorporated within
scheduling algorithms [7]). Both kinds of techniques warrant

further study, especially in the domain of multiprocessor plat-
forms.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks.Journal of Computer and System
Sciences, 68(1):157–204, February, 2004.

[2] E. Bennett and L. McMillan. Video enhancement using per-pixel
virtual exposures. ACM Transactions on Graphics, 24(3):845–
852, 2005.

[3] A. Block, J. Anderson, and G. Bishop. Fine-grained task reweight-
ing on multiprocessors. InProceedings of the 11th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 329–435. IEEE, August 2005.

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor schedul-
ing problems and algorithms. In Joseph Y. Leung, editor,Hand-
book on Scheduling Algorithms, Methods, and Models, pages
30.1–30.19. Chapman Hall/CRC, Boca Raton, Florida, 2004.

[5] P. Holman and J. Anderson. Implementing Pfairness on a symmet-
ric multiprocessor. InProceedings of the 10th IEEE Real-time and
Embedded Technology and Applications Symposium, pages 544–
553. IEEE, May 2004.

[6] J. Lopez, J. Diaz, and D. Garcia. Utilization bounds for edf
scheduling on real-time multiprocessor systems.Real-Time Sys-
tems, 28(1):39–68, October 2004.

[7] C. Lu, J. Stankovic, G. Tao, and S. Son. Design and evaluation of
a feedback control EDF scheduling algorithm. InProceedings of
the 20th IEEE Real-time Systems Symposium, pages 44–53. IEEE,
December 1999.

[8] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
C.G. Plaxton. A proportional share resource allocation algorithm
for real-time, time-shared systems. InProceedings of the 17th
IEEE Real-time Systems Symposium, pages 288–299. IEEE, 1996.

[9] N. Vallidis. WHISPER: A Spread Spectrum Approach to Occlusion
in Acoustic Tracking. PhD thesis, University of North Carolina,
Chapel Hill, North Carolina, 2002.

