Noname manuscript No.
(will be inserted by the editor)

Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems

James H. Anderson - Jeremy P. Erickson - UmaMaheswari C. Devi - Benjamin N.

Casses

Received: date / Accepted: date

Abstract Semi-partitioned real-time scheduling algorithms
extend partitioned ones by allowing a (usually small) subset
of tasks to migrate. The first such algorithm to be proposed
was directed at soft real-time (SRT) sporadic task systems
where bounded deadline tardiness is acceptable. That algo-
rithm, called EDF-fm, has the desirable property that migra-
tions are boundary-limited, i.e., they can only occur at job
boundaries. However, it is not optimal because per-task uti-
lization restrictions are required. In this paper, a new optimal
semi-partitioned scheduling algorithm for SRT sporadic task
systems is proposed that eliminates such restrictions. This
algorithm, called EDF-os, preserves the boundary-limited
property. In overhead-aware schedulability experiments pre-
sented herein, EDF-os proved to be better than all other tested
alternatives in terms of schedulability in almost all consid-
ered scenarios. It also proved capable of ensuring very low
tardiness bounds, which were near zero in most considered
scenarios.

Keywords Semi-Partitioned - Soft Real-Time - Real-Time
Scheduling - EDF

Work supported by NSF grants CNS 1016954, CNS 1115284, CNS
1218693, and CNS 1239135; and ARO grant W911NF-09-1-0535.

J. Anderson - J. Erickson - B. Casses
Department of Computer Science

The University of North Carolina at Chapel Hill
E-mail: anderson@cs.unc.edu

B. Casses
E-mail: bcasses@cs.unc.edu

J. Erickson
E-mail: jerickso@cs.unc.edu
(Now at Google, Inc.)

U. Devi
IBM Research - India

1 Introduction

Multiprocessor real-time scheduling algorithms may follow
a partitioned or global approach or some hybrid of the two.
Under partitioned scheduling, tasks are statically assigned to
processors, while under global scheduling, they are sched-
uled from a single run queue and hence may migrate. When
comparing different scheduling approaches, one criterion
is optimality, i.e., the ability to correctly schedule (without
timing-constraint violations) any task system for which a
correct schedule exists. In the case of implicit-deadline (see
Section 2) sporadic task systems, optimality can be achieved
via global scheduling, but not partitioning; however, global
scheduling entails higher runtime overheads. When design-
ing a hybrid approach, the goal is usually to attain optimal
or near-optimal behavior but with less overhead than a truly
global approach.

One such hybrid approach is semi-partitioned schedul-
ing, which extends partitioned scheduling by allowing those
tasks that cannot be feasibly assigned to processors to mi-
grate. Semi-partitioned scheduling was first proposed for
supporting implicit-deadline soft real-time (SRT) sporadic
task systems under the “bounded deadline tardiness” defini-
tion of SRT (which is the definition of SRT we assume here-
after) [3]. Subsequently, several semi-partitioned algorithms
were proposed for hard real-time (HRT) systems where no
deadline misses are tolerable [5,6,11-13,16,18,22-29,33,
34]. In these prior efforts, various migration strategies for
migrating tasks were proposed. Given the stated goal of “less
overhead,” it is desirable for such a strategy to be boundary-
limited, i.e., to allow a migrating task to migrate only between
job boundaries (i.e., between successive invocations). Non-
boundary-limited schedulers allow jobs to migrate, which
can be expensive in practice if jobs maintain much cached
state.

James H. Anderson et al.

Of the algorithms cited in the prior paragraph, only one,
namely EKG [6], meets the stated goal of optimality for the
class of systems for which it was designed, and only in a
very restricted sense: it is optimal only for periodic (not spo-
radic) task systems, and only when a configurable parameter
k becomes equal to the number of processors, which unreal-
istically increases preemption frequency. Moreover, EKG is
not boundary-limited. In fact, it can be easily shown that no
boundary-limited scheduler can be optimal for HRT sporadic
task systems.

In this paper, we show that a semi-partitioned scheduling
algorithm that is both optimal and boundary-limited does
exist in the SRT case. We use the usual definition of the term
“optimal,” as given earlier; however, for SRT schedulers as
considered here, the phrase “correctly schedule” means that
bounded tardiness can be guaranteed for each task. Under
this definition, prior work shows that correct scheduling is
possible via global scheduling if no task over-utilizes a single
processor and the entire system of processors is not over-
utilized [17]. No further utilization restriction is necessary. In
the context of global scheduling, the boundary-limited prop-
erty can be achieved by executing jobs non-preemptively,
which increases tardiness bounds. This property can be sac-
rificed, yielding smaller bounds, by executing jobs preemp-
tively. However, overheads then become a problem. In this
regard, semi-partitioned schedulers have a key advantage
over global ones as the former use push migrations, which
are pre-planned, while the latter use pull migrations, which
are reactive in nature and thus more difficult to account for
and implement efficiently [10].

The original SRT algorithm from [3], called EDF-fm,
is boundary-limited and able to fully utilize the underlying
hardware platform’s available capacity. However, it requires
per-task utilization restrictions that render it non-optimal.
In their simplest form, these restrictions preclude any task
utilization from exceeding half the capacity of a processor,
though they can be relaxed somewhat, as discussed below.

Contributions. In this paper, we close a problem that has
stood open since the initial publication of EDF-fm in 2005 [2]
by presenting the first optimal semi-partitioned scheduling
algorithm for SRT sporadic task systems. This algorithm,
called EDF-os (earliest-deadline-first-based optimal semi-
partitioned scheduling), is boundary-limited, like EDF-fm.
However, it eliminates the need for EDF-fm’s per-task utiliza-
tion restriction through the use of several novel techniques.
Like any semi-partitioned algorithm, EDF-fm functions
in two phases: an offline assignment phase, where tasks are
assigned to processors and fixed tasks (which do not migrate)
are distinguished from migrating ones (which do); and an on-
line execution phase. In EDF-fm’s execution phase, rules that
extend earliest-deadline-first (EDF) scheduling are used to
execute fixed and migrating tasks. Specifically, each migrat-

ing task executes on two processors, and for each processor,
at most two specific migrating tasks may execute upon it.
The tardiness-bound proof for EDF-fm relies crucially on the
fact that migrating tasks never miss deadlines. To ensure this,
migrating tasks are statically prioritized over fixed ones, jobs
of migrating tasks are prioritized against each other on a EDF
basis, and two migrating tasks that may execute on the same
processor are limited to have a combined utilization of at
most one. This last requirement restricts per-task utilizations.

In EDF-o0s, we eliminate unnecessary utilization restric-
tions by altering both phases. The assignment phase of EDF-
os differs from that of EDF-fm in that we consider tasks in
a specific order and allow a migrating task to execute on
any number of processors (instead of just two). The execu-
tion phase of EDF-os differs from that of EDF-fm in that
we statically prioritize jobs of certain migrating tasks over
those of others, instead of prioritizing them against each
other on an EDF basis. As a result of our different strategies,
migrating tasks can miss deadlines. However, we show that
tardiness bounds can be derived by leveraging certain proper-
ties pertaining to our EDF-os assignment phase and the more
predictable nature of the static prioritizations we introduce.
These properties allow us to apply a novel reduction method
that enables a given system to be converted to a simpler form
that can be more easily analyzed. This analysis shows that
EDF-os is optimal, regardless of whether deadlines are im-
plicit, constrained, or unrestricted (see Section 2). In contrast,
the analysis for EDF-fm is restricted to implicit-deadline
systems.

To evaluate EDF-os, we conducted an experimental evalu-
ation in which it was compared to other algorithms, including
EDF-fm. In this evaluation, the effects of measured overheads
from actual operating-system-based scheduler implementa-
tions were factored into schedulability and tardiness analysis.
From a schedulability standpoint, i.e., the ability to guarantee
bounded tardiness, EDF-o0s proved to be the best algorithm
in almost all considered scenarios. The magnitude of such
bounds is important as well. In this regard also, EDF-os ex-
celled, ensuring very low bounds generally, and near-zero
bounds in most considered scenarios.

Organization. We present our optimality proof (Section 4)
after first providing needed background (Section 2) and de-
scribing EDF-os in detail (Section 3). We then present our ex-
perimental evaluation (Section 5) and conclude (Section 7).

2 Background

We consider the scheduling of a sporadic task system 7 =
{71,72,...,Tv} on M identical processors, Pj,..., Py (we as-
sume familiarity with the sporadic and periodic task models).

Optimal Semi-Partitioned Scheduling

Task 7; is specified by (C;, T;), where C; is its maximum' per-
job execution requirement and 7} is its period. The j' job of
T;, denoted 7; j, has release time r; ; and deadline d; ;. We ini-
tially restrict attention to implicit deadlines (d; ; = r; ; +T;)
but in Section 6 we consider both constrained deadlines
(di,j < r;j+T;) and unrestricted deadlines (no relationship
between d; ; and 7; j + T; assumed). We denote the utilization
of 7; by U; = C;/T;, and the p'" processor as P,. We assume
that time is discrete.

In the scheduling algorithms we consider, each task is
allocated a non-zero fraction, or share, of the available utiliza-
tion of 1.0 on certain processors. Task 7;’s share (potentially
zero) on P, is denoted s; ,. The total share allocation on
P, is denoted 6, £ Y. 5i,p. We require that 6, < 1.0 and
that each task’s total share allocation matches its utilization:
U, = Zkle s; k- If 7; has non-zero shares on multiple (only
one) processot, then it is a migrating (fixed) task.

The scheduling algorithms we consider have the addi-
tional property that each job of each task 7; executes on a
specific processor. The fraction of T;’s jobs (potentially zero)
that execute on processor P, is denoted f; ,. Such fractions
are commensurate with 7;’s share allocations:

Si,
fip= 7” ¢))

The lowest-indexed processor to which migrating task 7;
assigns jobs is called its first processor.

If a job 7; ; completes at time ¢, then its lateness is t — d; ;
and its tardiness is max(0,t — d; j). Observe that if a job’s
lateness is negative, then its tardiness is zero; otherwise,
its lateness and tardiness are identical. We seek scheduling
algorithms that ensure bounded tardiness: for each task, there
is an upper bound on the tardiness of any of its jobs. We
consider only feasible task systems that satisfy the following
conditions.

Vet Ui<land) Ui <M. (2)

TET

Note that if a job is tardy, then the release time of the next
job of the same task is unaltered; in such a case, consecutive
jobs of the same task must execute in sequence (no paral-
lelism). It follows that, if a task’s tardiness is bounded, then
its long-term processor share will be commensurate with its
utilization. Also, per-job response times are bounded. (These
are desirable properties of the SRT notion of correctness we
employ.)

' Mills and Anderson [32] have shown that the worst-case execu-
tion times pertaining to our model can be viewed as operating-system-
enforced budgets that can be provisioned on an average-case (or near-
average-case) basis. Stochastic analysis pertaining to such a provision-
ing is layered “on top of”’ tardiness analysis pertaining to (deterministic)
budget allocations.

EDF-fm. The EDF-os algorithm presented herein was ob-
tained through key design changes to EDF-fm [3] that enable
new analysis techniques. EDF-fm consists of assignment and
execution phases. During the assignment phase, tasks are
allocated shares offline. The employed procedure allocates
processor utilization (as shares) to tasks by considering each
processor and task in turn. If the currently considered proces-
sor P, has sufficient unallocated utilization, then the currently
considered task 7; is assigned to it as a fixed task; otherwise,
7; exhausts the remaining unallocated utilization of P, and
receives the rest of its needed allocation from Py 1.

In the execution phase, released jobs are scheduled on-
line without migration (i.e., each job executes on only one
processor). The following prioritizations are used on each
processor: migrating tasks are prioritized over fixed ones,
and jobs of a given type (fixed or migrating) are prioritized
against each other on an EDF basis. By the assignment pro-
cedure just described, at most two migrating tasks can have
non-zero shares on a given processor. It is required that for
any two such tasks, their combined utilization is at most 1.0.
This ensures that such tasks do not miss deadlines (which is
a crucial property in the tardiness analysis of EDF-fm).

To ensure that fixed tasks have bounded tardiness, it is
important that no processor be overloaded in the long run.
This can be ensured by employing a mechanism that ensures
that, in the long run, each migrating task 7; submits an ap-
propriate fraction of its jobs to each of the two processors
on which it executes. Such fractions are given by (1) and are
maintained by leveraging results from Pfair scheduling [7].
Under Pfair scheduling, scheduling decisions are made for
each time slot of length one quantum. Further, for any fea-
sible implicit-deadline, synchronous, periodic task system,
a task with utilization u receives between |u-t] and [u -]
quanta by the integral time instant z.

The above Pfair guarantee is used to assign the jobs of a
migrating task 7; that executes on processors P, and P, as
follows. A schedule of two Pfair tasks 7; and T, of total
utilization 1.0 is conceptually maintained, where T, (p = ¢
or p = g+ 1) corresponds to execution on processor P, and
has a utilization of f; ,. If, in a uniprocessor schedule of these
two Pfair tasks, 7}, is allocated time slot ¢, then the tth job of
the migrating task 7; is assigned to processor P,. Using this
idea, the guarantee provided by Pfair scheduling ensures that
the following property holds under EDF-fm.

Property I In any schedule, out of the first z jobs of a migrat-
ing task 7;, the number of jobs assigned to some processor
P, is between Lf,-_y,, . nJ and [fl;p . n]

In EDF-fm, the Pfair schedule is maintained only implic-
itly, via a formula provided in [3].

Example 1 'We now give an example task system that shows
that if the task utilization restriction of EDF-fm is violated,

James H. Anderson et al.

PI PZ P} P4
100% — ,
= 1’2 =
=230 w0l
©,=(5.6)|p] =23}
=23}
1,=(4.6)|);
T=(2,3) |t T=(1,2) |4+
2 3 73:(5, 6) }% 5 3
0% ——

Fig. 1 EDF-fm task assignment for Example 1.

D Execution (On-time job) TJob release

D Execution (Late job)

T Job completion

‘Job deadiine
4/ Deadline miss
Fig. 2 Key for Figures 3 and 6.

RJTERE — EPEE — K3NE —ESRE— X
R T

T ai

3] 1

0 5 10 15 20 25
Time

Fig. 3 An EDF-fm schedule for the task system in Example 1 showing
execution on P,. Jobs from 73 = (5,6) complete late.

then migrating tasks may miss deadlines. Such misses inval-
idate the tardiness analysis given in [3]. Consider the sys-
tem T = {(4,6),(2,3),(5,6),(2,3), (1,2),(2,3)}. Because
Y rec Ui =4, 7 is feasible on four processors. Because all
task utilizations but one exceed % and the other utilization
is exactly % EDF-fm’s utilization restriction will be vio-
lated regardless of the order in which tasks are considered
for assignment on a four-processor system. For the listed
order, with the assignment of tasks depicted in Figure 1, we
show that deadlines may be missed by migrating tasks on Ps.
The Pfair-based mapping formula will assign odd-indexed
jobs of 7, to P; and even-indexed jobs of 7, to . For 13,
f32= % . g = %. The mapping formula will assign the first
four jobs in each consecutive group of five jobs of 73 to P».
Figure 3 (with a key in Figure 2) shows the first 25 time units
of execution on P, assuming deadline ties are broken in favor
of 7. Note that each of the first three jobs of 73 misses its
deadline.

3 EDF-os

In designing EDF-os, our goal was to eliminate EDF-fm’s
per-task utilization restrictions without altering the boundary-
limited property or the fact that the underlying platform can
be fully utilized. Because migrating tasks in EDF-fm can-
not miss deadlines, tardiness under it can be analyzed on a
per-processor basis. If such tasks can miss deadlines, then
complex “couplings” of processors that are difficult to ana-
lyze arise: a miss by a migrating task on one processor can

delay the processing of work due to it on another proces-
sor. Here, we show that such couplings can be dealt with by
utilizing these key ideas:

— We use a worst-fit decreasing scheme to assign tasks to
processors, rather than using an arbitrary ordering.

— Instead of prioritizing jobs of migrating tasks against
each other using EDF, we statically give such a task the
highest possible priority on any processor that is not its
first processor (recall Section 2).

— By exploiting both modifications, we show that a reduc-
tion method can be used to analyze tardiness bounds
in a simpler system in which complex “couplings™ are
eliminated.

EDF-os’s assignment phase is described by the procedure
in Figure 4. An assignment is produced in two steps: first, as
many tasks as possible are assigned as fixed tasks, using a
worst-fit decreasing bin-packing heuristic. Then, all remain-
ing tasks are assigned (in decreasing utilization order) by
considering each processor and remaining task in turn. Each
task considered in this step is allocated non-zero shares from
a succession of processors until the sum of its shares equals
its utilization. Because the remaining tasks are considered
in decreasing-utilization order, it is possible that such a task
receives a non-zero share on only one processor, in which
case it is a fixed task; otherwise, it is migrating. Like the as-
signment procedure for EDF-fm, this procedure ensures that
there are at most two migrating tasks with non-zero shares on
any processor. However, a migrating task under EDF-os can
have non-zero shares on more than two processors. In this re-
spect, EDF-os is similar to the C=D algorithm [16]. Note that
EDF-os does not impose any restrictions on task utilizations
(other than (2)), so it is now possible that migrating tasks
may be tardy. Note also that, because tasks are considered
in decreasing utilization order, each processor must contain
at least one fixed task with a utilization at least that of any
migrating task.

In the execution phase, EDF-o0s works as follows. As
in EDF-fm, each job executes on only one processor. The
prioritization rules used are as follows.

— On any processor, migrating tasks are statically priori-
tized over fixed ones (like in EDF-fm).

— Fixed tasks are prioritized against each other using EDF
(like in EDF-fm).

— If a processor has two migrating tasks 7; and 7;y, as-
signed in this order, then 7; is statically prioritized over
T;11 (this differs from EDF-fm). That is, a migrating task
executes with highest priority on any processor that is not
its first processor.

Informally, the last rule ensures that tardiness is “created”
for a migrating task only on its first processor; on its other
processors, one of its jobs will be tardy only if its predecessor

Optimal Semi-Partitioned Scheduling

initially 5; , = 0 and 6, = 0 for all i and p
/* assign fixed tasks via a worst-fit decreasing packing */
Index tasks in the order of heaviest utilization to lightest;
fori:=1toN do
Select p such that 6, is minimal;
if U; > 1— o), then
break /« this task must be migrating */

fi;

Sips Op, last :=U;, 6,4+ U, i
od;
/* assign migrating and low-utilization fixed tasks */
p=1

for i := last+ 1 to N do
remaining = Uj
repeat
Si p := min(remaining, (1 —0,));
Op, remaining := Oy + i p, reMaining — s; p;
if 6, =1then p:=p+1fi
until remaining =0
od

Fig. 4 EDF-os assignment phase.

Jjob was also tardy. In fact, any such job assigned to a non-
first processor will be scheduled as soon as it is eligible (i.e.,
released and its predecessor finished). As we shall see in
the tardiness-bound proof in Section 4, this very predictable
execution behavior for “non-first-processor” jobs can be
leveraged to derive a lateness bound for all migrating tasks,
and in turn a tardiness bound for all fixed tasks.

Because a migrating task may execute on more than two
processors under EDF-os, the Pfair-based job-assignment for-
mula used by EDF-fm cannot directly be applied to EDF-os.
However, the same idea of using Pfair concepts to determine
job assignments can continue to be used. In particular, if
a migrating task 7; executes on n processors, then we can
conceptually manage n Pfair tasks with total utilization 1.0,
where each Pfair task corresponds to execution on a proces-
sor P, and has utilization f; ,, as before. If, in a uniprocessor
schedule of these n Pfair tasks, the p”’ task is allocated time
slot ¢, then the " job of the migrating task is assigned to
processor P,. Because Property 1 is based solely on the guar-
anteed behavior of any Pfair scheduler, it holds for EDF-os
with this generalized assignment policy.

Example 1 (revisited). We now discuss how EDF-os would
schedule the task system from Example 1 in Section 2. For
convenience, we list here the tasks in decreasing utilization
order: T = {(5,6),(4,6),(2,3),(2,3),(2,3),(1,2)}. In Fig-
ures 56, we also re-index the tasks to match this new order-
ing.

The task assignment EDF-os produces is shown in Fig-
ure 5. Note that there are two migrating tasks, and one of
them, 75 = (2, 3), executes on three processors, Pj, P>, and P3.
Figure 6 (with a key in Figure 2) shows an example EDF-os
schedule for this task system. In this case, due to the im-

Pl PZ P3 P4
100%
% 1,=(2,3) },g C=e | 1
T=(2,3) |+ =) [
T=(1,2) [
T =(5,6) |3 2 > >
=46 [t=@) |- 3)|p:
0% L

Fig. 5 EDF-os task assignment for Example 1.

p T+ =13

b) T X . 3
Y == RNy FRpysE FRRpEE Fany
T2 [-{ [-5 [-5 -5

i
i
I

d/
H¢
m]

E ¢

o oY Y U
"It =k —thd

10 15 20 25
Time

il

-— L
- L
-—

1
T

(=}
w

Fig. 6 EDF-os schedule for Example 1. f5; = %, fso= % and f53 = %.
fo3=7%and fo4=3.

proved assignment scheme, only fixed tasks actually have
deadline misses within the example schedule.

4 Tardiness Bounds

In this section, we derive tardiness bounds under EDF-o0s. We
consider migrating and fixed tasks separately, in Sections 4.1
and 4.2, respectively. For migrating tasks, we actually con-
sider lateness bounds rather than tardiness bounds. Recall
from Section 2 that if tardiness is positive, then lateness is
identical to tardiness, but lateness can be negative while tar-
diness cannot. Allowing the lateness bounds for migrating
tasks to be negative can result in tighter tardiness bounds for
fixed tasks. In the rest of this section, we assume that the task
system 7 being analyzed is feasible (refer to (2)). We denote
the set of all fixed tasks on processor P, as ’L",f , and the sum
of the shares of all fixed tasks on P, as pr .

We begin by establishing several properties that follow
from the assignment procedure in Figure 4. Recall that, as
discussed in Section 3, Property 1 holds for EDF-os.

Property 2 For each migrating task 7;, U; < 1.

This property follows from the worst-fit decreasing heuristic
used by our assignment procedure. Because 7 is feasible, if
U; < 1 fails to hold, then U; = 1 holds. Moreover, i < M,

James H. Anderson et al.

for otherwise, total utilization would exceed M. These facts
imply that 7; would have been assigned as a fixed task to a
dedicated processor.

Property 3 There are no more than two migrating tasks that
assign jobs to processor P,. If there are two migrating tasks
that assign jobs to Py, then P, is the first processor for exactly
one of them.

It can be shown by induction that when our assignment pro-
cedure first considers a migrating task 7;, there can be at most
one migrating task already assigned to the currently consid-
ered processor (which will be 7;’s first processor). From this,
Property 3 follows.

Property 4 For processor P, with one or more migrating
tasks 7; (and possibly 1) that have shares s;, (and sy),

o) +5ip+sip <l

Our assignment procedure does not allow 6, to exceed 1.0
(i.e., P, cannot be over-allocated).

Property 5 1f processor P, contains migrating tasks 7; and
T and P, is the first processor of Ty, then s; , + Uy < 1.

Because tasks are assigned in decreasing-utilization order,
there must be a fixed task 7y on P, such that Uy > Uy. There-
fore, by Property 4 and because s; , > 0, Property 5 holds.

Property 6 Out of any ¢ consecutive jobs of some migrating
task 7;, the number of jobs released on P, is at most f; ,-c+2.

By Property 1, if 7; executes jobs on Py, then out of its first
n jobs, the number assigned to P, is between | f;,-n| and
| fi.p-n]. Thus, out of any ¢ consecutive jobs of 7;, where the
index of the first such job is j, the number of jobs assigned
to P, is at most

(fip-Gite=D]=[fip-G—1)]
< {Since [x+y] < [x]+[y]}
[fipG=D]+fip-el = Lfip-(i=1)]
< {Since [x] —|x] <1}
[fip-c]+1
< {Since [x] <x+1}
fip-ct+2.

4.1 Lateness Bounds for Migrating Tasks

We now derive a lateness bound for migrating tasks. Since
such tasks are statically prioritized over fixed ones, we need
not consider fixed tasks in this derivation. Thus, all referenced
tasks in this subsection are assumed to be migrating.

First, we provide a bound on the work from a migrating
task that competes with an arbitrary task. This result will be
used both here and in the next subsection.

Lemma 1 Consider a migrating task 7; that releases jobs on
processor Py. Let tg > 0 and t. > ty. If no job of 7; has lateness
exceeding A; (which may be negative), then the demand from
T; in the interval [ty,t.) on P, is less than

(si,p) (1

Proof Since we assume that the maximum lateness of 7; is
at most A;, we know that any job released by 7; will take
no more than 7; + A; time units to complete, so jobs of T;
released before fo — (A; + T;) cannot create demand in [f, 7,).
Thus, competing demand for execution from jobs of 7; in the
interval [fo,f.) comes from jobs of 7; released in [tfp — A; —
T;,t.). Since the minimum inter-release time between jobs of

. —(to—A~T;
7; is T;, there are at most [w
1

- lo) + (Si,p)(Ai + 27}) +2C;.

—‘ such jobs released
in this interval. Since 7; is a migrating task, the number of
jobs executed on P, out of any number of consecutive jobs
of 7; is limited by Property 6. Thus, the demand from 7; in
the interval [f9,.) on P, is at most

< {Since [x] <x+1}

(fi,p' (tc_(to;A’_T’)_i_l) +2> Ci

< {Rewriting}

to —to+ A+ 2T}
(ﬁAp'<CO+T,l+'>+2>Ci

= {By (D}
(sip)(te — t0) + (5i.p) (Ai +2T;) 4 2C;.

We now show that we can upper-bound the lateness of a
migrating task 7, by using a reduction argument that consid-
ers an alternate job allocation in which all of its jobs execute
on its first processor, P,. (For ease of understanding, we use
the indices “¢” and “h” in the rest of this subsection to reflect
lower and higher static priorities, respectively.) Note that
Property 5 ensures that, when ignoring fixed tasks (as we do
in this subsection), P, has sufficient capacity to accommodate
any jobs of 7, we may move to it from other processors. This
is because there must exist a fixed task on P, with utiliza-
tion at least that of 7,. (Our usage of a worst-fit decreasing
assignment strategy is crucially exploited here.)

Lemma 2 [f every job of migrating task T, that executes on
a non-first processor of T, is moved to its first processor P,
no job of T, will complete earlier. Also, if another migrating
task T, executes on Py, such moves do not affect it.

Proof If 1y shares P, with another migrating task 1, then
by the prioritization rules of EDF-os, 7, is not impacted by
moving jobs of 7, to P,, since 7, has higher priority than 7,
(we are not changing the static prioritization of these tasks).

Optimal Semi-Partitioned Scheduling

We now show that moving a single job 7, of 1y to P, can-
not lessen the completion time of any job of 7,. By inducting
over all such moves, the lemma follows.

Because job 7y is being moved, it was originally ex-
ecuting on a non-first processor of 7,. Hence, 7 was of
highest priority on that processor and executed immediately
to completion as soon as it was eligible (i.e., by the later of
its release time and the completion time of its predecessor
Ty x—1, if any). After the move, its execution may be delayed
by jobs of 7, which have higher priority than those of 7, on
P,. Thus, after the move, 7, cannot complete earlier, and
may complete later. If it completes later, then this cannot
cause subsequent jobs of 7, to complete earlier (earlier jobs
of 1, are clearly not impacted).

Theorem 1 below provides lateness bounds for migrating
tasks. If a migrating task 7, shares its first processor with
another migrating task 7, then the bound for 7; depends on
that of 7;,. Such bounds can be computed inductively, with
the following lemma providing the base case.

Lemma 3 The migrating task T, with the lowest-indexed
first processor P, does not share P, with another migrating
task.

Proof By the assignment procedure of EDF-o0s, no migrating
task other than 7, executes on P,.

Theorem 1 Let P, be the first processor of 7. If Ty is not the
only migrating task that executes on Py, then let T, denote
the unique (by Property 3) other migrating task that does so,
and let Ay, denote an upper bound on its lateness. Then, Ty
has lateness no larger than

if Ty, exists
lfsh"p 4 (3)
otherwise.

R (AYh"p)(AthzTh)‘FzCh‘FC[_ D
A
C—T,

Proof By Lemma 2, we can establish the desired lateness
bound by assuming that all jobs of 7, run on P,. We make
this assumption in the remainder of the proof.

If 7, is the only migrating task on P,, then its jobs will be
of highest priority on P,. Thus, by Property 2 and Lemma 2,
every job of 7, will have a response time of at most Cy, and
therefore a lateness of at most Cp — Tj.

In the rest of the proof, we assume that 7, shares P, with
another migrating task. By Property 3, there is a unique such
task 7, as stated in the theorem. By the prioritization rules
used by EDF-os, 1), has higher priority than 7.

Consider job 7, ; with release time ry ; and deadline dy ;.
For purposes of contradiction, assume that 7, ;’s lateness
exceeds Ay. According to the prioritization rules used by
EDF-os, 17y ;’s execution may be impacted only by jobs from
7, and by jobs from 7; with deadlines before d; ;. We now
upper bound the processor demand impacting 7, ; by consid-
ering a certain time interval, as defined next.

Interval [1,t.). Let ty be the latest point in time at or before
r¢ j such that no jobs of 7, or 7y released on P, before ¢ are
pending; a released job is pending if it has not yet completed
execution. (ty is well-defined because the stated condition
holds at time 0.) Define 7, £ dy j+ A¢. The assumption we
seek to contradict is that 7, ; does not complete by 7. Since
Ty,; fails to complete by ., there are more than #. — #o units
of demand in the interval [to,7.) for the execution of jobs on
P, with priority at least that of 7y ;.

Demand from t,. By Lemma 1, the competing demand in
[to,1.) due to T; on P, is at most

(snp)(te —10) + (s1,p) (An +2T}) +2G,. 4)

Demand from ty. Additional demand can come from jobs
of 7, with deadlines earlier than dy ;. By the definition of
19, all such jobs are released in [fo, 7, ;). Thus, there are at
(re, ,'T*to)

most { J such jobs. Including job 7 ; itself, there

(rej—to)

are at most L T J + 1 jobs of 1y released in [tg,) with

deadlines at most dy ;. The total demand due to such jobs is

(VW%IO)J + 1) Cy, which by the definition of Uy is at most

U(re,j—10) +Cy. (5)

Total demand. For notational convenience, let
K £ (spp)(Ay+2T3) +2C, + Cy. (6)

Then, by (4) and (5), the total demand on P, due to jobs of
equal or higher priority than 7, ; in [fo,?.) is at most

K+ (tc —to)sp,p + (r,j —t0)Up. (7

Because 7y ; completed after time 7. (by assumption), the
considered demand exceeds the length of [fo,7.), so

(te —10) <{By (N}
K+ (t. — to)ShJ, + (r/jd‘ — lo)Uy
= {Rearranging }
K+ (te —re,j)snp+ (rej—10) (snp +Us)
< {By Property 5}
KJr(tcfrgyj)sthr(}’g’j*to). (8)

Subtracting (r;,; — tp) from both sides of (8) gives (f. —
re,j) < K+ (tc — 1o, j)sp,p, which implies

K>(tc—rg,j)(l—sh’p).)

James H. Anderson et al.

By Property 2, U, < 1, and hence sj,, < 1. Thus, by (9),

(tc —rgj) < {since 1 — sy, , is positive}

K
1 —Sh,p
= {By (6)}
(snp) (A +2T) +2C, +C;
1 —Sh,p
= {By 3)}
A+ Ty.

Because ry ; = dy j — Ty, this implies f. — dy ; < Ay, which
contradicts the definition of #, and thus violates our assump-
tion that 7, ; completes after time dy ; + Ay.

4.2 Tardiness Bounds for Fixed Tasks

Although we provided bounds on lateness in Section 4.1, in
this subsection we instead provide bounds on tardiness, be-
cause it is not possible for the bounds in this subsection to be
negative. If no migrating tasks execute on a given processor,
then the fixed tasks on that processor have zero tardiness,
by the optimality of EDF on one processor. The following
theorem establishes tardiness bounds for fixed tasks that must
execute together with migrating tasks.

Theorem 2 Suppose that at least one migrating task exe-
cutes on processor P, and let T; be a fixed task on Py. If P,
has two migrating tasks (refer to Property 3), denote them
as T, and Ty, where T, has higher priority; otherwise, de-
note its single migrating task as T, and consider T to be a
“null” task with Ty = 1, s¢ , = 0, and C; = 0. Then, T; has a
maximum tardiness of at most

(1>

(Sh,p)(Ah + 2Th) +2C, + (ngp)(Ag + 2T4) +2C,

A.
l (L =snp—s0,p)

(10)
Proof The proof is similar to that of Theorem 1. We will
upper bound demand over the following interval.

Interval [to,1.). For purposes of contradiction, suppose that
there exists a job 7; ; of 7; that has tardiness exceeding A;, i.e.,
7;, i has not completed by f., where 7, = d; j+A;. Define a job
as a competing job if it is released on P, and it is a job of 7,
or Ty, or a job of a fixed task that has a deadline at or before
d; j. Let 1y be the latest point in time at or before r; ; such
that no competing jobs released before # are pending. (¢ is
well-defined because the stated condition holds at time 0.)
We now bound demand over [f,f.) due to competing jobs
(including 7; ; itself) by considering migrating and fixed tasks
separately.

Demand from migrating tasks. By Lemma 1, demand over
[f0,.) due to jobs of T, and 7, is at most

(Sh,p)(tc - [0) + (Sh,p)(Ah + 2Th) +2C,+
(se.p)(te = t0) + (s2.,p) (A¢ +2T7) 4 2C. an
Demand from fixed tasks. A fixed task 7, can release at most
V”T—ZIOJ competing jobs within [fy,z.). Thus, demand from

all competing jobs of fixed tasks is at most

G

T, 12)

d; j—1
) {”OJ Ci < (dij—to)
v Tk

TkETp S

TETp
By the definition of G,J; , the bound in (12) can be written as

(di *to)(G,{) < {By Property 4}
(di,j—10)(1 —spp—S0,p) (13)

Total demand. For notational convenience, let
K £ (snp)(An+2Th) +2Ch + (se.p) (Ac+2T1) +2C;. - (14)

Then, by (11) and (13), total competing demand is at most

K+Sh,p(tc _tO) +S1f,p(tc - tO) + (dl@j - tO)(‘ —Sh,p — S&P)'
(15)

Because 7; ; completed after time 7. (by assumption), the
considered demand exceeds the length of the interval [r,?.),
)

(t. —19) < {By (15)}
K+ spp(te —t0) +50,p(te —10)+
(di,j—1t0) = (dij—t0)(Sn,p+Sep)
= {Rearranging }
K+ (snp+s0p)(te —10)+

(di,j—t0) — (di,j —t0)(Sh,p + St,p)- (16)

Subtracting (d; j — to) from both sides of (16), we have (f, —
di j) <K+ (snp+sep)(te—t0) = (dij—to)(snp+sep) =K+
(Sn,p +5¢.p)(tc —d; j). This implies
K> (te = di,j)(1 = hp = Stp). (17)

By Property 4 and because at least one fixed task 7; is as-
signed to P,, we have (1 —s;,, —s¢,) > 0. Thus, by (17),

Optimal Semi-Partitioned Scheduling

Kk

(1 =shp—s0p)

= {By (10) and (14)}
A;.

tc—dw‘ <

This contradicts our definition of #. = d; ; + A;, so it cannot
be the case that 7; ; has more than A; units of tardiness.

In Section 6, we discuss some possible improvements
and extensions to EDF-os.

5 Experimental Comparison

Several scheduling algorithms have been previously evalu-
ated for use in SRT systems. Bastoni et al. [10] compared
several semi-partitioned algorithms, including EDF-fm and
also EDF-WM [27], although the latter was originally de-
signed for HRT systems. In that study, EDF-WM was shown
to be effective for SRT systems due to its low overheads.
Although not a semi-partitioned algorithm, the global algo-
rithm G-FL has been proposed by Erickson et al. [19,21]
as a promising scheduler for SRT systems. G-FL has prov-
ably better tardiness bounds than the better known G-EDF
algorithm.

EDF-WM is semi-partitioned because it assigns most
tasks to processors, but allows some tasks to migrate between
processors. However, unlike EDF-fm and EDF-os, EDF-WM
is not boundary limited. It works by splitting jobs. If a task 7;
is split across s processors, then its effective period becomes
T;/s. Its execution is not necessarily split evenly across pro-
cessors, but its execution on each processor is selected in a
way to guarantee that no task (fixed or migrating) on that
processor will have any job miss a deadline, when all jobs
are scheduled using EDF.

G-FL is a global algorithm because all processors share
a single run queue. Rather than prioritizing a job 7; ; by its
deadline d; j (as in EDF), G-FL prioritizes each job based on a
time that is earlier than its deadline, specifically d; ; — mT_lCi.
The variant C-FL [20], which partitions tasks onto clusters
of processors and runs G-FL within each cluster, is often
preferable in the presence of overheads.

We conducted overhead-aware experiments in which each
of EDF-os, EDF-fm, EDF-WM, and C-FL were compared
on the basis of schedulability and the tardiness bounds they
ensure. In order to determine the effect of overheads, we
implemented EDF-os in LITMUSRT [1] and measured the
same scheduler-specific overheads considered by Bastoni et
al. [10]. Our modifications to LITMUSRT are available at [1].
We used an Intel Xeon L7455 system, which has 24 cores
on four physical sockets. The cores in each socket share a
12 MB L3 cache, and pairs of cores share an 3MB L2 cache.
Each core also has two separate 32 KB data and instruction
caches. Overheads on the same machine were available for

EDF-fm and EDF-WM from the study in [10] and for C-
FL from the study in [20]. Cache-related preemption and
migration delays were also measured on this machine in a
prior study [8]. All of those prior measurements were reused
in the study here. We used these overheads in an overhead-
aware schedulability study involving randomly generated task
sets following the methodology in [10]. The code used for
schedulability tests is included with the online appendix [4].
These experiments were conducted in order to augment the
study of Bastoni et al. by including EDF-os (and also C-FL).
It is beyond the scope of this paper to conduct a thorough
evaluation of all relevant semi-partitioned algorithms that
have been proposed. (We note that the experiments herein
are not merely simulations; each tested algorithm requires
an actual kernel implementation so that overheads can be
measured.)

In our experiments, we randomly generated implicit-
deadline task sets, inflated the task system parameters to
account for average-case” observed overheads, and computed
the resulting schedulability—defined as the fraction of gener-
ated systems for which bounded tardiness can be guaranteed—
and maximum tardiness bounds under each tested algorithm.
Task utilizations were generated using uniform, bimodal, and
exponential distributions as in [10]. For uniform distributions,
we considered a light distribution where values were drawn
from [0.001,0.1], a medium distribution where values were
drawn from [0.1,0.4], and a heavy distribution where values
were drawn from [0.5,0.9]. For bimodal distributions, we
drew values uniformly in the range of either [0.001,0.05] or
[0.5,0.9] with respective probabilities of either % and %, g
and %, or % and g, for light, medium, and heavy distributions,
respectively. For exponential distributions, we used a respec-
tive mean of 0.1, 0.25, and 0.5 for light, medium, and heavy
distributions, respectively, and discarded any values that ex-
ceeded one. We generated periods uniformly from either a
short (3 ms to 33 ms), moderate (10 ms to 100 ms), or long
(50 ms to 250 ms) distribution.

We also considered utilization caps in the set {1, 1.25,
1.5,...,24}, and working set sizes (WSSs) from 16 KB to
3072KB. WSSs from [0,256) KB were considered in incre-
ments of 16KB, from [256,1024)KB in increments of 64KB,
and from [1024,3072] KB in increments of 256KB.

We generated 100 task sets for each combination of pe-
riod distribution, utilization distribution, utilization cap, and
WSS. When generating each task set, we added tasks until
the total utilization exceeded the utilization cap, and then
removed the last task. We considered several variants of the
four tested schedulers, EDF-os, EDF-fm, EDF-WM, and C-
FL, yielding ten possibilities in total. We used clustering
based on L3 cache boundaries for C-FL, resulting in clusters

2 In prior studies, e.g., [9, 10], average-case overheads were consid-
ered when evaluating SRT schedulers, and worst-case overheads when
evaluating HRT schedulers.

10

James H. Anderson et al.

of size six; this choice was made because C-FL has over-
heads similar to clustered EDF (C-EDF), and the previous
study in [10] used C-EDF with L3 cache boundaries as its
standard of comparison. (C-FL, which was developed af-
ter the publication of [10], has better tardiness bounds than
C-EDF.) Because EDF-WM was designed as a HRT sched-
uler, it may not behave correctly if overheads cause jobs to
miss deadlines (specifically, such misses may cause a task
to run in parallel with itself). Therefore, for EDF-WM, we
also considered behavior in the presence of worst-case ob-
served overheads (denoted with wc), as doing so is probably
necessary in practice.

We use the cache-releated preemption and migration de-
lay analysis from Bastoni et al. [8], who considered two
system variants. To generate data for an idle system, a single
task was run in isolation to determine cache effects resulting
from lost cache affinity due to migrations and operating sys-
tem work running on the same CPU. In a system under load,
cache polluter tasks were run during the experiments. Be-
cause other real-time tasks may cause loss of cache affinity,
the numbers under load are likely to be more representa-
tive of actual behavior in systems where multiple tasks have
a significant memory footprint. However, like the previous
study [10], we considered both configurations. Considering
both possibilities allows conclusions to be drawn for systems
with light and heavy cache contention, respectively. Under
the experimental process followed in the previous studies [8,
10], “idle” and “load” curves need to be displayed separately
because they cannot be directly compared. For example, for
certain WSSs, it is possible that under load, cache-related
overheads are lower (because the baseline cache affinity is
lower), leading to improved schedulability compared to the
idle case, because no affinity with the cache is established.
For this reason, each upcoming figure includes as part (a) the
results with “idle” overheads and as part (b) the results with
“load” overheads.

Schedulability depends on both WSS and the assumed
utilization cap. To avoid having to create three-dimensional
graphs, we use the metric of weighted schedulability from
[9]. Let S(U,W) € [0,1] denote the schedulability of an algo-
rithm (after accounting for overheads) with utilization cap
(before overheads) U and WSS W, and let Q denote the set of
considered utilization caps. Weighted schedulability, S(W), is

defined as S(W) = %Z(;]]W). A conventional utilization-
based schedulability plot for a fixed WSS collapses to a single
point in a weight schedulability graph that gives the total area
under the conventional plot [9].

Our experiments resulted in over one hundred graphs.
Therefore, we present only a subset of our results here—other
results can be found in an online appendix [4]. A typical re-
sult for weighted schedulability is depicted in Figure 7, which
shows weighted schedulability, with respect to WSS, for each
algorithm under uniform medium utilizations and uniform

C-FL-L3[1] —o—
EDF-WM [2] —&—
EDF-WM (wc) [3] —e—

EDF-fm [4] —&—
EDF-o0s [5] —e—

Uniform Medium Utilizations, Uniform Moderate Periods

04 1

Weighted Schedulability (idle)

02]

0 Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000

WSS (KB)
(a) Using “idle” overheads.

C-FL-L3[1] —o—
EDF-WM[2] —&—
EDF-WM (wc) [3] —o—

EDF-fm [4] —&—
EDF-o0s [5] —e—

Uniform Medium Utilizations, Uniform Moderate Periods

114, 5]
[2]

[1]

Weighted Schedulability (load)

[3]

0 500 1000 1500 2000 2500 3000
WSS (KB)

(b) Using “load” overheads.

Fig. 7 Weighted schedulability using uniform medium utilizations and
uniform moderate periods.

moderate periods. Because all utilizations considered are no
greater than 0.5, EDF-fm has 100% schedulability before
accounting for overheads. EDF-os and EDF-fm have similar
overheads, so they are nearly indistinguishable from a schedu-
lability perspective, but both have higher schedulability than
EDF-WM or C-FL.

We now show several additional graphs to illustrate the
effects of different choices of parameter distributions. Fig-
ure 8 has the same axes as Figure 7, but depicts a uniform
heavy utilization distribution rather than a uniform medium
distribution. Because the utilization constraint for EDF-fm is
no longer guaranteed to be satisfied, EDF-fm schedules very
few task systems in this case. However, EDF-o0s continues
to exhibit the best weighted schedulability of any consid-
ered algorithm. Overall, EDF-os usually provided the best
weighted schedulability of any algorithm, although EDF-fm
and EDF-WM sometimes provided small advantages for task
systems with light utilizations.

Optimal Semi-Partitioned Scheduling

C-FL-L3[1] ——
EDF-WM [2] —=—
EDF-WM (wc) [3] —e—

EDF-fm [4] ——
EDF-o0s [5] —e—

Uniform Heavy Utilizations, Uniform Moderate Periods

[5]
[2]
3 [3]
=
8 (1]
=}
el
Q
ey
[&]
@D 04 B
el
2
ey
=
(7] - .
= 0.2
O n L | | | | [4]
0 500 1000 1500 2000 2500 3000
WSS (KB)
(a) Using “idle” overheads.
C-FL-L3[1] —— EDF-fm [4] —e—
EDF-WM [2] —8— EDF-o0s [5] —e—
EDF-WM (wc) [3] —e—
Uniform Heavy Utilizations, Uniform Moderate Periods
[5]
< (3]
g 0.8
z
g o6
>
el
2
B 04
el
2
<
3 02
2 .

0 500 1000 1500 2000 2500 3000
WSS (KB)

(b) Using “load” overheads.

Fig. 8 Weighted schedulability using uniform heavy utilizations and
uniform moderate periods.

When task systems are generated using bimodal medium
utilizations with uniform moderate periods, as depicted in
Figure 9 (which has the same axes as Figure 7), the behavior
is in between that with uniform medium utilizations and
that with uniform heavy utilizations. This is because, under
this utilization distribution, one third of the tasks have a
utilization exceeding 0.5. It is still reasonably likely that
no two migrating tasks on the same CPU will have total
utilization exceeding 1, so EDF-fm can schedule quite a few
task systems. However, it is also possible that there will be
two migrating tasks assigned to the same CPU with total
utilization exceeding 1, so EDF-fm is outperformed by EDF-
0s.

If a different period distribution is used, then overheads
may have a larger relative impact (for shorter periods) or
a smaller relative impact (for longer periods). This is illus-
trated in Figure 10, which has the same axes and utilization
distribution as Figure 7, but uses a uniform short period distri-

C-FL-L3[1] —o—
EDF-WM [2] —e—
EDF-WM (wc) [3] —o—

EDF-fm [4] —&—
EDF-os [5] —e—

Bimodal Medium Utilizations, Uniform Moderate Periods

o
2
z
3
©
=}
e
2
[53
@04 R
el
2
<
g
([- m
2 0.2
0 Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000
WSS (KB)
(a) Using “idle” overheads.
C-FL-L3[1] —— EDF-fm [4] —&—
EDF-WM [2] —&— EDF-os [5] —e—
EDF-WM (wc) [3] —e—
Bimodal Medium Utilizations, Uniform Moderate Periods
=)
©
o
=
3
©
=}
hel
2
(5}
%]
el
2
<
E=
@
=

0 500 1000 1500 2000 2500 3000
WSS (KB)

(b) Using “load” overheads.

Fig. 9 Weighted schedulability using bimodal medium utilizations and
uniform moderate periods.

bution. This results in lower weighted schedulability across
all configurations.

In addition to the fraction of systems scheduled, the re-
sulting tardiness bounds are also significant. Perhaps surpris-
ingly, our tardiness bound statistics are not heavily dependent
on WSS. For example, Figure 11 depicts average tardiness
bounds for schedulable systems with uniform medium utiliza-
tions, uniform moderate periods, and a utilization cap of 20.
The reason for the small dependence is that for larger WSSs,
a smaller fraction of the systems are schedulable. There is a
bias in which generated task systems are schedulable, and this
bias counteracts the additional overheads that affect systems
with larger WSSs.

Tardiness bounds are more significantly dependent on uti-
lization cap. When considering tardiness bounds with respect
to utilization cap, we used a fixed WSS of 128 KB. Figure 12
depicts average tardiness bounds for schedulable systems
with respect to utilization cap, under uniform medium uti-
lizations and uniform moderate periods. For small utilization

12 James H. Anderson et al.
C-FL-L3[1] —— EDF-fm [4] —&— C-FL-L3[1] —— EDF-fm [4] —&—
EDF-WM [2] —&— EDF-0s [5] —e— EDF-WM [2] —&— EDF-o0s [5] —e—
EDF-WM (wc) [3] —e— EDF-WM (wc) [3] —e—
Uniform Medium Utilizations, Uniform Short Periods Uniform Medium Utilizations, Uniform Moderate Periods, Util. Cap = 20
2 100000
4,51 =
- 2] g 90000 [4]
=} ° 80000 |- B
> >
£ & 70000 |- E
Qo
g 31 @ 60000 |- -
9 c
2 TS 50000 b
» ©
5 = 40000 g
3 g
£ E 30000 |- b
[T <
E il & 20000 |- g
S 10000 | g
0 1 1 1 1 1 1 g ‘ ‘ [2' 3, 5]
0 500 1000 1500 2000 2500 3000 2 0 . ‘ ‘ ‘
WSS (KB) 0 500 1000 w; ZO(OKB) 2000 2500 3000
(a) Using “idle” overheads. (a) Using “idle” overheads
C-FL-L3[1]] —o— EDF-fm [4] —&—
EDF-WM [2] —&— EDF-os [5] —e— C-FL-L3[1] —— EDF-fm [4] —a—
EDF-WM (wc) [3] —e— EDFI\E/\II)l\lllz-(WN; % —a— EDF-os [5] —e—
- WC, ——
(1l Uniform Medium Utilizations, Uniform Short Periods
: : : . Uniform Medium Utilizations, Uniform Moderate Periods, Util. Cap = 20
E 100000
g | 7 90000
2 S 80000 141
2 5
% — [51] 8 70000 7
3 =241 2 eo000 | 1
[0 c
5 S 50000
3 111 E
3 = 40000 f
2 £
% 2 30000 |- g
= | 3 L .
£ 20000
S 10000 | g
‘ ‘ ‘ L3[3] & (3] .
0 500 1000 1500 2000 2500 3000 g 0 [2, 5]
< 0 500 1000 1500 2000 2500 3000

WSS (KB)
(b) Using “load” overheads.

Fig. 10 Weighted schedulability using uniform medium utilizations
and uniform short periods.

caps, C-FL can guarantee negative lateness, which leads to a
tardiness bound of zero. Usually, fewer tasks are migratory
under EDF-os than under EDF-fm; as a result, tardiness was
usually drastically lower under EDF-os than under EDF-fm,
often very close to zero. Therefore, even for task systems
where EDF-fm and EDF-os yielded comparable schedulabil-
ity, EDF-os was superior.

Figure 13 has the same axes and period distribution as
Figure 12, but uses a bimodal medium utilization. While the
magnitude of the tardiness bounds was heavily dependent
on chosen parameter distributions, the relative performance
of the different algorithms remained relatively consistent
across distributions. Overall, C-FL typically provided tardi-
ness bounds between those of EDF-fm and EDF-os, while
EDF-WM provided zero tardiness (as it is a HRT scheduler),
at the cost of the inability to schedule many task sets. C-FL
sometimes provided smaller tardiness bounds than EDF-os
for some task systems with small WSSs where migration

WSS (KB)
(b) Using “load” overheads.

Fig. 11 Tardiness using uniform medium utilizations and uniform mod-
erate periods, with a utilization cap of 20 and with respect to WSS.

overheads are relatively small, but typically only EDF-WM
yielded smaller tardiness bounds than EDF-os.

Because EDF-WM is not boundary-limited, it might not
always interact well with synchronization protocols in the
presence of critical sections [15]. Therefore, in addition to its
typically better schedulability, EDF-os provides a significant
practical advantage over EDF-WM when synchronization is
needed. Moreover, as noted previously, the behavior of EDF-
WM is not well-defined if systems are provisioned assuming
deadline misses are tolerable. Compared to C-FL, EDF-os
provides better schedulability and typically provides lower
tardiness bounds, and compared to EDF-fm, EDF-os pro-
vides both better schedulability and lower tardiness bounds.
Therefore, EDF-o0s represents a significant improvement to
the state-of-the-art for SRT scheduling.

Optimal Semi-Partitioned Scheduling

C-FL-L3[1] —o—
EDF-WM [2] —&—
EDF-WM (wc) [3] —o—

EDF-fm [4] —=—
EDF-o0s [5] —e—

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 128KB
100000

90000
80000
70000
60000
50000
40000
30000
20000
10000 ||

0

[2,3]

Average Maximum Tardiness Bound (us) (idle)

5 10 15 20
System Utilization
(a) Using “idle” overheads.
C-FL-L3[1] —o—

EDF-WM [2] —=—
EDF-WM (wc) [3] —e—

EDF-fm [4] —&—
EDF-os [5] —o—

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 128KB

5

§ 100000 ‘ w w ‘
& 90000 -
2

5 80000

=

§ 70000

@ 60000

2

S 50000

©

= 40000

€

_g 30000

s /

©

& 20000 [

S 10000

©

g 0 ‘ ‘ ‘
< 5 10 15 20

System Utilization

(b) Using “load” overheads.

Fig. 12 Tardiness using uniform medium utilizations and uniform mod-
erate periods, with a WSS of 128 KB and with respect to utilization
cap.

6 Potential Extensions to EDF-os

We will now discuss some extensions to our work. We first
demonstrate that our method does not retain optimality in the
presence of non-preemptive sections.

Non-preemptive sections. After designing EDF-os, we ini-
tially thought it retained its optimality if job execution is
non-preemptive. However, this turns out not to be the case.
In particular, with non-preemptivity, a job of a migrating
task executing on a non-first processor for that task may be
non-preemptively blocked when it is released. This block-
ing negates an important property exploited in our analysis,
namely that such jobs execute immediately upon release.
Here we give a counterexample consisting of five tasks exe-
cuting on three processors where such non-preemptive block-
ing causes a migrating task to have unbounded tardiness.

C-FL-L3[1] —o—
EDF-WM [2] —5—
EDF-WM (wc) [3] —o—

EDF-fm [4] —&—
EDF-os [5] —e—

Bimodal Medium Utilizations, Uniform Moderate Periods, WSS = 128KB

3 200000 ‘ ‘ ‘ T

@ 180000 [:
2

T 160000 [g
2 140000 |- [4] f
% 120000 g
S 100000 [g
=

e 80000 [g
E 60000

x

< 40000 R
% 20000 E
g 0 it ‘ - : [2,3]
< 5 10 15 20

System Utilization
(a) Using “idle” overheads.
C-FL-L3[1] —o—

EDF-WM [2] —&—
EDF-WM (wc) [3] —o—

EDF-fm [4] —&—
EDF-os [5] —e—

Bimodal Medium Utilizations, Uniform Moderate Periods, WSS = 128KB
200000 T T T T

180000
160000
140000
120000
100000
80000
60000
40000

1[2, 3]

Average Maximum Tardiness Bound (us) (load)

5 10 15 20
System Utilization

(b) Using “load” overheads.

Fig. 13 Tardiness using bimodal medium utilizations and uniform mod-
erate periods, with a WSS of 128 KB and with respect to utilization
cap.

Let 7 = {11 = (4,5),7» = (20,30), 73 = (24,36),74 =
(9,20),75s = (5,12)} and M = 3. Since U(7) = 3.0, 7 could
be scheduled by non-preemptive G-EDF, so 7 is feasible on
three processors. The assignment phase of EDF-os would
assign the five tasks as shown in Figure 14. In this example,
tardiness can be unbounded for 75 if jobs are released as
follows. Let the first job of 75 be released at time 1 and
periodically once every 12 time units thereafter. Since f53 =
4/5 and fs, = 1/5, consider a job assignment in which the
first four of every group of five jobs 5Sn+1...52+5 (i.e.,
jobs Sn+1...5n+4) of 75 are assigned to P; and the last
job (job 5n+5) to P, for all n > 0. Let 73 (1) release a job
one time unit before the first of the four jobs (fifth job) of
every five jobs of 75 assigned to P; (P») becomes eligible. Let
T4’s jobs assigned to P> be released at exactly the same time
that a job of 75 assigned to P> become eligible. (f41 =4/9
and f12 =5/9, and hence, jobs 1, 3, 5, 7, and 8 of every
group of nine jobs 9n+1...9n+9, n > 0, can be assigned

James H. Anderson et al.

PI PZ P3
100% ——
T=09,20) v+ | . _ 1
. B R TR |
=0, 12 |}
t=@4,5 |\ .
! & 1=0.30) [} 2 |1=24.36)|} 2
0% L

Fig. 14 Counterexample to show that EDF-os is not optimal for non-
preemptive task systems.

to P, and the remaining jobs to Pj. Since pq = 20, it is
sufficient if the separation between two consecutive jobs of
T4 assigned to P, is 40 time units. With only every fifth job
of 75 assigned to P», the eligibility times of two consecutive
jobs of 75 assigned to P, is at least 60. Thus, 74’s jobs can be
released such that releases on P, coincide with the eligibility
times of jobs of 75 assigned to P».) With such a job release
pattern, the first of every group of four jobs of 75 assigned
to P; is blocked by 73 for 23 time units after it becomes
eligible. (The remaining three jobs are eligible when their
predecessors complete executing and hence do not incur
additional blocking.) Similarly, every fifth job is blocked for
19 time units due to 7, and waits for an additional 9 time
units due to 74, for a total waiting time of 28 time units. Thus,
51 time units in every 60 time units within which every five
jobs of 75 need to execute are spent waiting on other jobs.
Hence, since the total execution requirement for five jobs
is 25, tardiness for jobs in each group increases by 16 and
grows unboundedly.

Although extending our work to handle non-preemptive
sections while retaining optimality did not prove possible,
other extensions are possible. We now discuss three such
extensions.

Bounds with non-implicit deadlines. We have so far assumed
that all job deadlines are implicit. However, if we maintain
the prioritizations that EDF-os uses, then bounded tardiness
can be easily ensured for systems with non-implicit deadlines,
i.e., ones where each task 7; has a specified relative D; that
may be less than, equal to, or greater than 7;. Maintaining
the existing prioritizations for migrating tasks is straight-
forward, as these tasks are not scheduled by deadline (that
are statically prioritized). For each job 7; ; of a fixed task
T;, we merely need to define a “scheduling deadline” equal
to r; j + T; and prioritize such jobs on an EDF basis using
scheduling deadlines instead of real ones. With this change,
EDF-os will behave as before, but our analysis then bounds
lateness/tardiness (for both migrating and fixed tasks) with

respect to scheduling deadlines. However, such bounds can
be easily corrected to be expressed with respect to real dead-
lines: if D; > T;, then simply subtract D; — T; from the bound,
if D; < T;, then simply add 7; — D; to the bound.

Window constrained second-level schedulers In defining EDF-
os, we used EDF as a secondary scheduler for fixed tasks.
(For migrating tasks, our prioritization rules and the sporadic
task model fully characterize the behavior.)

Optimal variants of EDF-os can be constructed in which
other algorithms are used as the secondary scheduler. All that
we require is that a window-constrained [31] scheduler be
used. Such a scheduler employs a per-task priority function
Xi(7i j,t) such that for some constants ¢; and ;, r; j — ¢; <
xi(7ij,t) < d; j+ y; for each job 7; ;. The priority of job
T;,j is at least that of 7y j at time ¢ if x;(7;;,¢) < xv (77 j,1)
(priority functions can potentially change with time).

Our analysis can be modified to deal with this more gen-
eral priority specification as follows. The bounds for migrat-
ing tasks continue to hold without modification; the proof
of Theorem 1 is unchanged. By the definition of EDF-os
priorities, all jobs of 7, always have a higher priority than
Ty,j» and by the sporadic task model, no job of 7, released
after ry ; is eligible for execution before 7, ; completes.

However, in our analysis of the tardiness of fixed tasks in

the proof of Theorem 2, the number of competing jobs due to
di‘jT*tO but di,j+1l’iT+¢k*lo In

k
effect, this change causes “d; ;” to be replaced by “d; ; +
;" throughout the proof and K to be inflated by an ad-

ditional ZTkE‘L_f Urdr. As a result, A; must be increased by
P

Y rUrd

: TkETp
Vi + lfsh'pfsg?p
known about the prioritization function (as was the case with

EDF).

a fixed task 7 is no longer L

. Tighter analysis may be possible if more is

Refined assignment procedures. Our analysis suggests that,
by refining EDF-o0s’s assignment procedure, it may possible
to obtain lower lateness/tardiness bounds. First, note that the
inductive nature of the lateness bound calculation for migrat-
ing tasks may cause migrating tasks assigned to later pro-
cessors to have higher bounds because lateness can cascade
(though it will remain bounded). It may be possible to reduce
such cascades by adjusting the assignment of migrating tasks,
particularly on systems that are not fully utilized. Second,
note that reducing the shares of migrating tasks executing
on P, reduces the bounds in (3) and (10). However, such a
reduction would entail increasing the shares of these tasks
on other processors, which could lead to lateness/tardiness
bound increases on those processors. It may be possible to
take such linkages among processors into account and obtain
an assignment of tasks to processors that lessens the largest
tardiness bound in the system. Finally, note that (3) includes

Optimal Semi-Partitioned Scheduling

—Ty as part of 7,’s lateness bound. By biasing the task assign-
ment procedure to prefer larger periods for migrating tasks, it
might be possible to lessen the lateness/tardiness bounds that
result. We leave refinements to our assignment procedure
motivated by these observations as future work.

7 Conclusion

We have closed a long-standing open problem by presenting
EDF-os, the first boundary-limited semi-partitioned schedul-
ing algorithm that is optimal under the “bounded tardiness”
definition of SRT correctness. We have also discussed opti-
mal variants of EDF-os in which implicit deadlines are not
assumed and in which algorithms other than EDF are used
as the secondary scheduler. EDF-os and its analysis improve
upon prior work on EDF-fm by introducing two new key
ideas: using some static prioritizations to make the execution
of migrating tasks more predictable; and exploiting prop-
erties of worst-fit decreasing task assignments to enable a
migrating task to be analyzed by “pretending” that all of its
jobs execute on its first processor. In experiments that we
conducted, EDF-os proved to be the best overall alternative
from a schedulability perspective while providing very low
tardiness bounds. Moreover, it has practical advantages over
algorithms that are not boundary-limited.

The only other optimal boundary-limited scheduling al-
gorithms for SRT systems known to us are non-preemptive
global EDF (NP-G-EDF) [17] and global FIFO (G-FIFO) [30]
(which is also non-preemptive). For static systems, EDF-os
is likely to be preferable in practice, because the tardiness
bounds we have established are much lower than those known
for NP-G-EDF and G-FIFO, and because semi-partitioned al-
gorithms have lower runtime overheads than global ones [10].
On the other hand, for dynamic systems, where task tim-
ing parameters (such as execution budgets and periods) may
change at runtime, NP-G-EDF is likely to be preferable, as
EDF-based global scheduling tends to more amenable to run-
time changes [14]. In contrast, the correctness of EDF-os
relies crucially on how tasks are assigned to processors, and
redefining such assignments on-the-fly does not seem easy.

As discussed in Section 6, the conditions we present here
for bounded tardiness are not sufficient if non-preemptive
code regions exist. We would like to determine tight condi-
tions that guarantee bounded tardiness in such circumstances.
Furthermore, a job splitting technique as in [20] might be
useful to reduce tardiness bounds, even after accounting for
the increased overheads resulting from such a technique. For
example, a task with C; = 300 and 7; = 1000 could have each
job split into ten subjobs, resulting in a task with C; = 30
and 7; = 100. We would like to examine the effects of job
splitting under EDF-os.

—

References

LITMUSRT home page. Http://www.litmus-rt.org/

2. Anderson, J., Bud, V., Devi, U.: An EDF-based scheduling algo-

rithm for multiprocessor soft real-time systems. In: Proceedings of
the 17th Euromicro Conference on Real-Time Systems, pp. 199—
208 (2005)

Anderson, J., Bud, V., Devi, U.: An EDF-based restricted-migration
scheduling algorithm for multiprocessor soft real-time systems.
Real-Time Systems 38(2), 85-131 (2008)

Anderson, J., Erickson, J., Devi, U., Casses, B.: Appendix to
optimal semi-partitioned scheduling in soft real-time systems.
http://cs.unc.edu/~anderson/papers.html (2014)

5. Andersson, B., Bletsas, K., Baruah, S.: Scheduling arbitrary-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

deadline sporadic task systems on multiprocessors. In: Proceedings
of the 29th IEEE Real-Time Systems Symposium, pp. 385-394
(2008)

Andersson, B., Tovar, E.: Multiprocessor scheduling with few pre-
emptions. In: Proceedings of the 12th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and
Applications, pp. 322-334 (2006)

Baruah, S., Cohen, N., Plaxton, C., Varvel, D.: Proportionate
progress: A notion of fairness in resource allocation. Algorith-
mica 15(6), 600-625 (1996)

Bastoni, A., Brandenburg, B., Anderson, J.: Cache-related preemp-
tion and migration delays: Empirical approximation and impact
on schedulability. In: Proceedings of the 6th International Work-
shop on Operating Systems Platforms for Embedded Real-Time
Applications, pp. 33—44 (2010)

Bastoni, A., Brandenburg, B., Anderson, J.: An empirical com-
parison of global, partitioned, and clustered multiprocessor EDF
schedulers. In: Proceedings of the 31st IEEE Real-Time Systems
Symposium, pp. 14-24 (2010)

Bastoni, A., Brandenburg, B., Anderson, J.: Is semi-partitioned
scheduling practical? In: Proceedings of the 23rd Euromicro Con-
ference on Real-Time Systems, pp. 125-135 (2011)

Bhatti, M., Belleudy, C., Auguin, M.: A semi-partitioned real-time
scheduling approach for periodic task systems on multicore plat-
forms. In: Proceedings of the 27th ACM Symposium on Applied
Computing, pp. 1594-1601 (2012)

Bletsas, K., Andersson, B.: Notional processors: an approach for
multiprocessor scheduling. In: Proceedings of the 15th IEEE Real-
Time and Embedded Technology and Applications Symposium, pp.
3-12 (2009)

Bletsas, K., Andersson, B.: Preemption-light multiprocessor
scheduling of sporadic tasks with high utilisation bound. Real-
Time Systems 47(4), 319-355 (2011)

Block, A.: Multiprocessor adaptive real-time systems. Ph.D. thesis,
University of North Carolina, Chapel Hill, NC (2008)
Brandenburg, B.: Scheduling and locking in multiprocessor real-
time operating systems. Ph.D. thesis, The University of North
Carolina, Chapel Hill, NC (2011)

Burns, A., Davis, R., Wang, P., Zhang, F.: Partitioned EDF schedul-
ing for multiprocessors using a C=D task splitting scheme. Real-
Time Systems 48(1), 3-33 (2012)

Devi, U., Anderson, J.: Tardiness bounds for global EDF scheduling
on a multiprocessor. Real-Time Systems 38(2), 133—189 (2008)
Dorin, E., Yomsi, P., Goossens, J., Richard, P.: Semi-partitioned
hard real-time scheduling with restricted migrations upon identical
multiprocessor platforms. Cornell University Library Archives
arXiv:1006.2637 [cs.O0S] (2010)

Erickson, J., Anderson, J.: Fair lateness scheduling: Reducing
maximum lateness in G-EDF-like scheduling. In: Proceedings
of the 24th Euromicro Conference on Real-Time Systems, pp. 3—
12 (2012)

James H. Anderson et al.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

Erickson, J., Anderson, J.: Reducing tardiness under global schedul-
ing by splitting jobs. In: Proceedings of the 25th Euromicro Con-
ference on Real-Time Systems, pp. 14-24 (2013)

Erickson, J., Anderson, J., Ward, B.: Fair lateness scheduling: re-
ducing maximum lateness in G-EDF-like scheduling. Real-Time
Systems 50(1), 5-47 (2014)

Fan, M., Quan, G.: Harmonic semi-partitioned scheduling for fixed-
priority real-time tasks on multi-core platform. In: Proceedings
of the Design, Automation, and Test in Europe Conference and
Exhibition, pp. 503-508 (2012)

Goossens, J., Richard, P., Lindstrom, M., Lupu, I., Ridouard, F.:
Job partitioning strategies for multiprocessor scheduling of real-
time periodic tasks with restricted migrations. In: Proceedings
of the 20th International Conference on Real-Time Networks and
Systems, pp. 141-150 (2012)

Guan, N., Stigge, M., Yi, W., Yu, G.: Fixed-priority multiprocessor
scheduling: Beyond Liu & Layland utilization bound. In: 31st
IEEE Real-Time Systems Symposium WiP, pp. 1594-1601 (2010)
Guan, N., Stigge, M., Yi, W., Yu, G.: Fixed-priority multiprocessor
scheduling with Liu and Layland’s utilization bound. In: Proceed-
ings of the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 165-174 (2010)

Kato, S., Yamasaki, N.: Real-time scheduling with task splitting on
multiprocessors. In: Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 441-450 (2007)

Kato, S., Yamasaki, N.: Portioned EDF-based scheduling on multi-
processors. In: Proceedings of the 8th ACM International Confer-
ence on Embedded Software, pp. 139-148 (2008)

Kato, S., Yamasaki, N.: Semi-partitioning technique for multipro-
cessor real-time scheduling. In: Proceedings of the 29th IEEE
Real-Time Systems Symposium Work in Progress Session (2008)
Kato, S., Yamasaki, N.: Semi-partitioned fixed-priority scheduling
on multiprocessors. In: Proceedings of the 15th IEEE Real-Time
and Embedded Technology and Applications Symposium, pp. 23—
32 (2009)

Leontyev, H., Anderson, J.: Tardiness bounds for FIFO schedul-
ing on multiprocessors. In: Proceedings of the 19th Euromicro
Conference on Real-Time Systems, pp. 71-80 (2007)

Leontyev, H., Anderson, J.: Generalized tardiness bounds for
global multiprocessor scheduling. Real-Time Systems 44(1), 26-71
(2010)

Mills, A., Anderson, J.: A multiprocessor server-based scheduler
for soft real-time tasks with stochastic execution demand. In: Pro-
ceedings of the 17th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pp. 207-217
(2011)

Shekhar, M., Sarkar, A., Ramaprasad, H., Mueller, F.: Semi-
partitioned hard real-time scheduling under locked cache migration
in multicore systems. In: Proceedings of the 24th Euromicro Con-
ference on Real-Time Systems, pp. 331-340 (2012)

Sousa, P., Souto, P., Tovar, E., Bletsas, K.: The carousel-EDF
scheduling algorithm for multiprocessor systems. In: Proceed-
ings of the 19th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 12-21 (2013)

