Lamport on Mutual Exclusion: 27 Years of Planting Seeds

James H. Anderson
Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

Mutual exclusion is a topic that Leslie Lamport has returned
to many times throughout his career. This article, which is
being written in celebration of Lamport’s sixtieth birthday,
is an attempt to survey some of his many contributions to
research on this topic.

1 Introduction

Leslie Lamport is certainly responsible for more ground-
breaking results on the mutual exclusion problem than any
other single researcher. In this survey article, I describe
some of his major contributions to research on mutual ex-
clusion. Looking back on these contributions now, one is
struck by the many “seeds” that Lamport ended up plant-
ing along the way — seeds that have grown into research
topics of independent interest that many other researchers
have actively pursued.

For example, Lamport was the first to notice the circu-
lar reasoning inherent in shared-memory mutual exclusion
algorithms that require atomic instructions [22, 31, 32]. He
showed that this circularity can be eliminated, not only in
mutual exclusion algorithms, but in general [34]. He estab-
lished the latter by showing that atomic reads and writes can
be implemented from nonatomic reads and writes without
mutual exclusion. This work sparked 15 years of subsequent
research within the distributed algorithms community on
wait-free and lock-free synchronization.

Lamport also initiated the study of mutual exclusion al-
gorithms that are “fast” in the absence of contention [35].
This work led to a flurry of research by others on fast and
adaptive algorithms for both mutual exclusion and other
problems, such as renaming. Lamport’s fast-path code se-
quence is used directly in many of these other algorithms.

Lamport is also responsible for the first fully distributed
solution to the mutual exclusion problem. This algorithm is
presented in a paper that also introduces logical clocks and
state machines [25]. Logical clocks and state machines are
among the most fundamental of all principles in distributed
computing. This partially explains why this paper was se-
lected last year as the first recipient of the PODC Influential
Paper Award.

In the rest of this article, these and other contributions
arising from Lamport’s work on mutual exclusion are ex-
plained in greater detail.

2 In the Beginning

Mutual exclusion algorithms are used to resolve conflicting
accesses to shared resources by asynchronous, concurrent
processes. The problem of designing such an algorithm is
widely regarded as the preeminent “classic” problem in con-
current programming. In the mutual exclusion problem, a
process accesses the resource to be managed by executing
a “critical section” of code. Activities not involving the re-
source occur within a corresponding “noncritical section.”
Before and after executing its critical section, a process ex-
ecutes two other code fragments, called “entry” and “exit”
sections, respectively. A process may halt within its noncrit-
ical section but not within its critical section. Furthermore,
no variables (other than program counters) accessed within
a process’s entry or exit section may be accessed within its
critical or noncritical section. The objective (at a minimum)
is to design the entry and exit sections so that the following
requirements hold.

e Exclusion: At most one process executes its critical
section at any time.

e Livelock-freedom: If some process is in its entry sec-
tion, then some process eventually executes its critical
section.

Often, Livelock-freedom is replaced by the following stronger
property.

e Starvation-freedom: If some process is in its entry
section, then that process eventually executes its crit-
ical section.

Most of Lamport’s work on mutual exclusion has focused on
“user-level” algorithms for shared-memory systems, based
on either atomic or nonatomic reads and writes. For this
reason, attention is limited in most of this article to shared-
memory algorithms that do not use strong synchronization
primitives or operating-system services. Message-passing
systems are considered as well, but only in Sec. 7.

The mutual exclusion problem has been studied for many
years. The first N-process algorithm was due to Dijkstra
[15]. Dijkstra’s algorithm, which is based on an earlier
two-process algorithm by Dekker, is livelock-free but not
starvation-free. A related algorithm by Knuth was the first
starvation-free solution [19]. Dijkstra’s and Knuth’s algo-
rithms are both quite difficult to understand. In each al-
gorithm, contention is resolved by means of a complicated
busy-waiting loop in which many shared variables are read
and written. To be convinced that contention is properly
resolved, numerous cases must be considered. In two inde-
pendent papers, Lamport [22] and Peterson [45] proposed
simpler solutions, each of which is based upon a more struc-
tured approach. Lamport’s “more structured” solution is his
famous bakery algorithm. As we shall see, the bakery algo-
rithm has implications that stretch well beyond the mutual
exclusion problem.

shared variable

Choosing: array[l..N] of 0..1 initially 0;
Number: array[l..N] of 0..co initially 0

process p:

private variable
q 1.N

while true do

/¥ 1<p<Nx/

/* busy wait */

await Number[g] =0 V (Number[p],p) < (Number[q],q) /* busy wait x/

0: Noncritical Section;
1 1: Choosinglp] =1,
Doorway 2: Number[p] := 1+ max{Number[l], ..., Number[N]};
1 3: Choosing[p] := 0;
T 4: for q:=1 to N skip p do
5 await Choosing[q] = 0;
Bakery 6
od;
4 7: Critical Section;
8: Number[p] := 0
od

Figure 1: The bakery algorithm. (In line 6, the notation (a,b) < (c,d) is a shorthand for (a <c¢) V (a=c A b<d).)

3 Mutual Exclusion Made Simple

The bakery algorithm, which is shown in Fig. 1, is based
upon a simple scheme often used in bakeries: a customer
entering the bakery chooses a number; within the bakery,
customers are served in order by their chosen numbers.

3.1 Algorithm Description and Basic Correctness

In the bakery algorithm, process p’s number is given by
Number[p]. The shared variable Choosing[p] is updated be-
fore and after p chooses its number (lines 1 and 3), to allow
other processes to detect when p is in the process of choos-
ing. p chooses its number (line 2) by reading each process’s
number, taking the maximum value, and adding one. Before
p can enter its critical section, it must check the status of
each other process ¢ (lines 5 and 6). If p detects that ¢ is in
the process of choosing its number, then p busy-waits until ¢
has finished choosing (line 5). p then busy-waits by repeat-
edly reading Number[q] until if finds either Number[qg] = 0
or (Number[p], p) < (Number[q], q). In the former case, pro-
cess q is either in its noncritical section or about to choose a
new number (which must be larger than p’s, since p blocked
until Choosing[q] = 0 held). In the latter case, p’s number
is at most ¢’s. A tie here is broken in favor of the process
with the smaller process identifier.

To establish the Exclusion property for this program, we
define a process to be “in the doorway” if executing within
lines 1-3, and “in the bakery” if executing within lines 4-7.
Exclusion follows from the following property.

If process p is in its critical section, and if another
process ¢ is in the bakery, then (Number|[p],p) <
(Numberlq], q).

This property is easily established. Prior to entering its
critical section, process p waits until Number[qg] = 0 V
(Number[p],p) < (Number[q],q) holds. If, at this point, ¢
has already chosen its number, then Number[q] # 0 holds,
and hence (Number[p],p) < (Number[q],q). If ¢ chooses its
number later, then it chooses a larger number than p.

The algorithm also satisfies Starvation-freedom. Infor-
mally, no process can wait forever, because it will eventually
have the smallest (nonzero) number.

3.2 Other Interesting Properties

The bakery algorithm has several other interesting proper-
ties, which were the basis of a number of important themes
that Lamport revisited many times in subsequent publica-
tions. One interesting property of the bakery algorithm is
that it remains correct even if reads and writes are nonatomic.
Requiring atomic statement execution is tantamount to as-
suming mutual exclusion in hardware. Thus, mutual exclu-
sion algorithms requiring this are in some sense circular.

With atomic variable accesses, reads and writes can be
viewed as taking place instantaneously. With nonatomic
accesses, reads and writes take place over intervals of time,
and hence may overlap one another. In the bakery algo-
rithm, each shared variable is written by only one process,
so overlapping writes of the same variable are not a concern.
However, it is possible for a process to read a variable while
it is being written. We assume that such a read may return
any value from the value domain of the variable in question.

Consider the busy-waiting statements at lines 5 and 6.
If process p reads Choosing[g] at line 5 while it is being
assigned the value 1 by process ¢ at line 1, then p’s read
returns either 0 or 1. If it returns 0 (respectively, 1), then
it’s as if p reads Choosing[q] atomically before (respectively,
after) it is written. A similar argument applies if p reads
Choosing[q] while it is being assigned the value 0 by ¢ at
line 3. Thus, allowing reads and writes of Choosing[q] to be
nonatomic causes no problems.

In [22], line 6 is dealt with by an argument similar to the
following. Because Choosing[q] = 1 holds while g is execut-
ing line 2, when p transits from line 5 to line 6, g cannot be
executing line 2. Thus, if p reads Number[q] at line 6 while
it is being written by ¢ at line 2, then g must be writing
a number that is larger than p’s. If p’s read of Number[q]
returns a value that is either equal to or larger than that
concurrently being written, then p’s busy-waiting loop at

line 6 terminates, as it should. If p reads a smaller value,
then it may continue to busy-wait, but p cannot busy-wait
here forever, because eventually ¢ must finish writing its
number, establishing (Number[p],p) < (Number[q],q). Al-
though the argument given here ostensibly seems correct, as
Lamport discovered some years later, it is actually somewhat
flawed, because it is based on some implicit (though mild)
assumptions regarding how nonatomic writes of Number|q]
are implemented; see [37] for details.

Another interesting property of the bakery algorithm is
that it is resilient to the premature termination of processes.
When a process p terminates prematurely, it is required to
set both Choosing[p] and Number[p] to 0 and then return
to its noncritical section and halt. It is straightforward to
see that the Exclusion and Starvation-freedom properties
continue to hold if processes are allowed to terminate pre-
maturely in this way.

The bakery algorithm is also of interest because it satis-
fies the following rather strong progress property.

e First-come, First-served (FCFS) Priority: If pro-
cess p enters the bakery before ¢ enters the doorway,
then p executes its critical section before q.

To see why this property holds, note that if p enters the
bakery before g enters the doorway, then ¢ must choose a
larger number than p.

In a later paper, Lamport reconsidered the issue of pri-
ority [30]. He argued that, in the context of synchroniza-
tion problems, priority is impossible to specify using known
methodologies. He illustrated the point by considering FCFS
priority in detail.

Lamport argued that FCFS priorities implicitly require
a request action, which may be nonatomic (i.e., it may be
comprised of a sequence of atomic actions). For the bak-
ery algorithm, the request action consists of the statements
comprising the doorway. Under FCFS priority ordering, if
process p executes its request action before process g exe-
cutes its request action, then p executes its critical section
before q. The problem with this specification is that there
is great leeway in defining what constitutes the request ac-
tion. If request is defined to comsist of the atomic action
performed by a process to transit from its noncritical sec-
tion to its entry section, then it is impossible for different
processes to determine the order in which their request ac-
tions are executed. Thus, request surely must be defined to
consist of a sequence of atomic actions. But then an im-
plementor is free to define a process’s entire entry section
to be the request action. With this, the FCFS requirement
becomes vacuous. Of course, it is possible to define the re-
quest action for a particular algorithm, as we did above with
the bakery algorithm. The point being made here is that is
difficult to specify FCFS priority in a way that is generally
meaningful.

The bakery algorithm was the impetus for much subse-
quent work by Lamport on verification issues. At the time
of the bakery algorithm’s publication, he felt that he did not
have adequate formal tools to establish its correctness [46].
As Lamport writes in [24], “[I] have written several mul-
tiprocessor algorithms to solve synchronization problems,
and given informal proofs of their correctness. Although
the proofs were simple and convincing, they were ultimately
based on the method of considering all possible execution
sequences. This is not well-suited for formal proofs.”

Because of this dissatisfaction, Lamport become an early
and continuing advocate for assertional proof techniques
based on temporal logic. In the first of his many papers

on this topic, he independently proposed the well-known
Owicki-Gries method [44] and introduced the terms safety
and liveness [24]. Much of his recent work has focused on
the development and application of a formalism called TLA
(the temporal logic of actions) [38]. Along the way, he wrote
many other important and widely read papers on verifica-
tion and specification issues (there are too many such papers
to mention them all here). Of particular relevance to this
survey article is the work he did on verifying programs with
nonatomic statements [27, 28, 31, 33, 37]. Some of this work
is considered in the next section.

4 Atomicity Questioned

The bakery algorithm showed that the circularity caused by
assuming that statements execute atomically can be elimi-
nated, at the price of using unbounded memory. This gives
rise to several questions. Is it possible to solve the mu-
tual exclusion problem with nonatomic statements and with
bounded memory? Is it possible to do this for other synchro-
nization problems as well? How does one formally reason
about programs with nonatomic instructions?

These questions were answered in two two-part papers,
[31, 32] and [33, 34], published by Lamport in 1986. In the
first pair of papers, a formal model of concurrent systems
is presented in which no underlying atomicity is assumed
(Part I), and several mutual exclusion algorithms are pre-
sented and proved correct based on this model (Part II).
In the second pair of papers, the formalism is extended by
defining what it means for a low-level system to correctly
implement a high-level one (Part I). Several constructions
of atomic variables from nonatomic variables are then pre-
sented and proved correct using this extended formalism
(Part II). In this case, reads and writes of the atomic vari-
able being constructed are operations of the high-level sys-
tem, and reads and writes of the nonatomic variables used in
the construction are operations of the low-level system. As
explained below, these constructions are “wait-free.” Thus,
they can be applied to eliminate the need for hardware-based
mutual exclusion mechanisms, not only in solutions to the
mutual exclusion problem, but other problems as well.

4.1 A New Formalism

In the formalism of [31, 33], a process is defined to consist of
a set of operation executions. Informally, an operation ex-
ecution is a single instance of some action, such as sending
a message or reading a shared variable. Formally, an oper-
ation execution consists of a set of events. Thus, operation
executions have duration. Two relations are of fundamental
importance in the formalism: A — B means that operation
execution A precedes operation execution B; A --+ B means
that A can causally affect B. These relations actually come
from an earlier paper of Lamport’s, where a similar formal-
ism is used to prove the correctness of a nonatomic variant
of the bakery algorithm [27]. The arrow relations are used
in [31, 33] to state general axioms that define the effects of
concurrent read and write operations, and to define what it
means for a low-level system to correctly implement a high-
level one. (Some similar axioms are stated in [27] in the
context of the bakery algorithm.)

4.2 Mutual Exclusion without Atomicity, Revisited

Four mutual exclusion algorithms are presented in [32]. Due
to space limitations, these algorithms are not considered in

detail here. The four algorithms differ in the progress and
fault-tolerance properties they satisfy. Each algorithm is
constructed using communication variables, which are sim-
ply single-writer, multi-reader nonatomic boolean variables.
(The shared variable Choosing[p] in the bakery algorithm
is an example of a communication variable.) The following
fault-tolerance properties are considered.

¢ Shutdown Safety: An algorithm is shutdown safe if
it remains correct in the face of process shutdowns.
When a process is shut down, it sets all of its commu-
nication variables to defaults values and halts.

e Abortion Safety: An algorithm is abortion safe if
it is resilient to process abortions. When a process
aborts, it sets some of its communication variables to
default values, and returns to its noncritical section.

e Fail Safety: An algorithm is fail safe if it is resilient to
process failures. When a process fails, it may arbitrar-
ily change the values of its communication variables
for some time; however, it eventually aborts, setting
all of its communication variables to default values.

e Self-stabilization: An algorithm is self-stabilizing [16]
if it is resilient to transient failures, i.e., if the algo-
rithm enters some illegitimate state due to transient
failures, and if such failures stop happening, then the
algorithm eventually converges to a legitimate state.

The simplest algorithm presented in [32] requires only one
communication variable per process, and is shutdown safe
and fail safe. The most sophisticated algorithm requires
N! communication variables per process, and is shutdown
safe, abortion safe, fail safe, and self-stabilizing. The main
lesson to be drawn from these algorithms is that virtually
any variant of the mutual exclusion problem is solvable in
systems without hardware support for mutual exclusion.

4.3 Wait-free Register Constructions

As stated above, the problem of implementing atomic vari-
ables from nonatomic variables in a wait-free manner is con-
sidered in [34]. These variables are formalized as shared ob-
jects called registers. Only single-writer registers are con-
sidered in [34]. Three classes of such registers are defined:
safe, regular, and atomic.

o Safe Registers: Reads and writes of a safe register
must satisfy the following: if a read does not overlap a
write, then the read returns the most-recently written
value (or the register’s initial value if it has not been
written). A read that does overlap a write may return
any arbitrary value from the value domain of the reg-
ister. (This is the same notion of nonatomic statement
execution considered in [22, 32].)

¢ Regular Registers: A regular register is a safe reg-
ister that also satisfies the following: if a read overlaps
some sequence of writes, then it must return the value
written by one of these writes, or the value of the reg-
ister before the first such write.

e Atomic Registers: An atomic register is a regular
register that satisfies the following additional property:
if a read operation R precedes another read operation
S, then S cannot return an “older” value than R. This
implies that a valid linearization order can be defined

for concurrent reads and writes. (The notion of lin-
earizability was formally defined a few years later by
Herlihy and Wing [17].) Intuitively, each read and
write operation must “appear” as if it occurs instan-
taneously at a single instant of time.

The main contribution of [34] was to show that a single-
writer, single-reader, multi-bit atomic register can be con-
structed in a wait-free manner from a collection of single-
writer, single-reader, single-bit safe registers; registers of the
latter type essentially correspond to nonatomic flip-flops.
This result was established by means of a sequence of reg-
ister constructions, each showing that some “more power-
ful” register can be implemented from “less powerful” ones.
The wait-freedom requirement means that operations of the
constructed register are implemented without busy-waiting
loops or blocking synchronization constructs. A similar re-
quirement called lock-freedom has also been considered in
the literature. The difference between the two is that wait-
freedom requires starvation freedom for individual processes,
while lock-freedom does not.

Lamport’s work on atomic registers left two interesting
open problems: constructing a multi-reader atomic register,
and constructing a multi-writer atomic register. These open
problems were just too tempting for some of us to resist.
As a result, in the years following the publication of [34], a
number of papers on atomic-register constructions appeared
[9, 11,12, 18, 43, 48, 52, 53]. These papers were just the first
of a great many papers to be published on wait-free and lock-
free synchronization (a complete list of such papers simply
can’t be included here, because the bibliography alone would
exceed the space limitations of this article). In retrospect,
the publication of Lamport’s work on atomic registers can
be seen as a watershed event, because it was the catalyst
that led to the explosive interest in wait-free and lock-free
synchronization in recent years.

4.4 Earlier Roots

Having said that, it is important to note that the notions
of wait-free and lock-free synchronization were actually first
introduced in earlier papers. The first lock-free algorithm
was a concurrent read/write buffer algorithm presented by
Lamport in 1977 [23]. The first wait-free algorithms were a
collection of read/write buffer algorithms presented by Pe-
terson in 1983 [45].

Interestingly, Sorensen and Hemacher began investigat-
ing nonblocking buffering mechanisms for real-time systems
even before Lamport’s lock-free buffer algorithm was pub-
lished [49, 50]. Nonblocking algorithms are of interest in
real-time systems because they are not susceptible to pri-
ority inversions. (A priority inversion occurs when a high-
priority process is forced to wait on a lower-priority process.
Priority inversions are a problem because, under most real-
time scheduling disciplines, higher-priority processes have
more stringent deadline constraints.) However, Sorensen
and Hemacher’s buffering mechanisms are not true lock-free
or wait-free algorithms because they are implemented within
the operating system.

In Lamport’s lock-free read/write buffer, the buffer con-
sists of a sequence of “digits,” which are read and written
atomically. Only one writer is assumed, so there is no need
to consider concurrent write operations. The writer is wait-
free, but it may interfere with concurrent read operations. If
a read operation is interfered with, then it must be retried.
Repeated retries may be needed before a read can success-
fully complete. This is why the algorithm is lock-free but

not wait-free.

The algorithm’s correctness depends on several results
that are proved in the paper concerning read and write op-
erations of multi-digit buffers. It is shown that if such digits
are read and written in opposite directions, then certain
conclusions can be drawn that relate the value returned by
a read operation and values written to the buffer by write
operations.

In Lamport’s buffer algorithm, two version numbers V1
and V2 are associated with the buffer. These version num-
bers allow readers to detect when they have been interfered
with. Each version number is a multi-digit value. To per-
form a write operation, the writer increments V1, writes the
buffer, and then increments V2. To perform a read opera-
tion, a reader reads V2, reads the buffer, and then reads
V1. If the values read from V2 and V1 are the same, then
a consistent value was read from the buffer. Note that the
order in which the sequence numbers and the buffer are read
is the opposite of the order in which they are written. In
addition, the digits comprising each version number are read
and written in opposite directions. These read- and write-
ordering properties are fundamental in showing that read
operations always return consistent values.

Related work includes a later paper by Lamport on the
concurrent reading and writing of clocks [36]. A clock is de-
fined by a set of regular registers. The algorithms presented
in [36] for reading and writing a clock are based on the ideas
of [23]. The following interesting comment appears in [36]:
“The version of [reference [23] of this article] submitted for
publication assumed only regular registers, but the editor
was afraid that the concept of nonatomic operations on in-
dividual digits might be considered heretical and insisted
that it be removed from the paper.”

In 1993, Kopetz and Reisinger applied Lamport’s lock-
free buffer algorithm in a real-time control system [20]. They
were apparently unaware that Lamport had invented this
algorithm 16 years earlier, because they did not credit him
for it. However, their main focus was not the algorithm
itself, but scheduling analysis techniques for accounting for
synchronization overheads when the algorithm is used.

4.5 Hardware Connections

A concept quite similar to “non-wait-freedom” arises in the
study of asynchronous arbiter circuits. I refer to the well-
known glitch phenomenon, which is captured by the follow-
ing principle.

For any device making a decision among a finite
number of possible outcomes, based upon a con-
tinuum of possible inputs, there will be inputs for
which the device takes arbitrarily long to reach
its decision. [39]

The connection between the glitch phenomenon and mutual
exclusion is explained quite well by Lamport in [21].

When I wrote [reference [22] of this article], a
colleague at Massachusetts Computer Associates
pointed out that the concurrent reading and writ-
ing of a single register, assumed in the bakery al-
gorithm, requires an arbiter — a device for mak-
ing a binary decision based on inputs that may
be changing. In the early 70s, computer design-
ers rediscovered that it’s impossible to build an
arbiter that is guaranteed to reach a decision in
a bounded length of time. (This had been re-
alized in the 50s but had been forgotten.) My

colleague’s observation led to my interest in the
arbiter problem — or “glitch” problem, as it was
sometimes called.

Lamport wrote two papers on the glitch phenomenon.
The first of these presents a proof of the glitch principle
[39]. The second paper considers several (rather amusing)
examples of “glitches” from everyday life. For example, the
concept is motivated by considering the “problem of Buri-
dan’s Ass” [29]. In this problem, the ass starves to death
after being placed equidistant between two sources of food
that are both equally preferable.

5 Fast Mutual Exclusion

In 1987, Lamport devised a novel mutual exclusion algo-
rithm that requires only seven memory accesses in the ab-
sence of contention [35]. This work was driven by the widely
accepted belief that “contention for a critical section is rare
in well-designed systems” [35]. Through the years, algo-
rithms such as this, in which a process executes a constant-
time “fast path” in the absence of contention, have come to
be known simply as “fast” mutual exclusion algorithms.

Lamport’s fast mutual exclusion algorithm is shown in
Fig. 2(a). In this algorithm, the fast path consists of lines
1, 2, 3, 7, 8 16, and 17. Of these, lines 2, 3, 7, and 8
are of special significance. These lines are shown separately
in Fig. 2(c), where they are used to define a “black box”
element called a splitter, which is illustrated in Fig. 2(b).
(The term “splitter” is not due to Lamport; it was first
abstracted as a “black box” by Moir and Anderson [41],
and first called a “splitter” by Attiya and Fouren [7].) In
the following subsection, we consider some properties of the
splitter that make it so useful, and then show how these
properties ensure the correctness of Lamport’s fast mutual
exclusion algorithm.

5.1 The Ever-useful Splitter Element

Each process that invokes the splitter code either stops,
moves down, or moves right (the move is defined by the
value assigned to the private variable dir). One of the key
properties of the splitter that makes it so useful is the fol-
lowing: if several processes invoke a splitter, then at most
one of them can stop at that splitter. To see why this prop-
erty holds, suppose to the contrary that two processes p and
q stop. Let p be the process that executed line 3 last. Be-
cause p found that X = p held at line 3, X is not written
by any process between p’s execution of line 0 and p’s exe-
cution of line 3. Thus, ¢ executed line 3 before p executed
line 0. This implies that ¢ executed line 2 before p executed
line 1. Thus, p must have read Y = false at line 1 and then
assigned “dir := right,” which is a contradiction. Similar
arguments can be applied to show that if n processes invoke
a splitter, then at most n — 1 can move right, and at most
n — 1 can move down.

Because of these properties, the splitter element and re-
lated mechanisms have proven to be immensely useful in
wait-free algorithms for renaming [1, 2, 8, 7, 10, 41, 42].
Renaming algorithms are used to “shrink” the name space
from which process identifiers are taken. Such algorithms
can be used to speed up concurrent computations with loops
that iterate over process identifiers. Because of the splitter’s
properties, it is possible to solve the renaming problem by
interconnecting a collection of splitters in a grid as shown in
Fig. 3 [42]. A name is associated with each splitter. If the
grid has IV rows and NV columns, where N is the number of

shared variable
B: array[l..N] of boolean initially false;
X: 1..N;
Y: 0..N initially 0

process p:

private variable

7: 1.N

while true do
Noncritical Section;
Blp] := true;

: X i=p;

if Y # 0 then
Blp] := false;
await Y = 0;
goto 1

SAAR R v

fi;
Y :=p;

if X # p then

: Blp] := false;

0: for j:=1to N do
1 await - BJ[j]

i]

od;
12: if Y # p then
13: await Y = 0;
14: goto 1
fi
fi;
15: Critical Section;
16:Y :=0;
17: Blp] := false
od

()

[¥1<p<N %/

/* busy wait */

/* busy wait */

/* busy wait */

n
1 n-1
——
stop | right
n-1 | down

/* X and Y are as in part (a) */
process p:

private variable
dir: {stop, right, down}

0: X :=p;

1. if Y # 0 then dir := right
else

2: Y :=p;

3: if X # p then dir := down

else dir := stop
fi
fi

(c)

Figure 2: (a) Lamport’s fast mutual exclusion algorithm. (b) The splitter element and (c) its implementation.

processes, then by induction, every process eventually stops
at some splitter. (The original name space is assumed to be
much larger than N.) When a process stops at a splitter, it
acquires the name associated with that splitter.

The splitter’s properties also ensure that the algorithm in
Fig. 2(a) is correct. In particular, because at most one pro-
cess can stop at a splitter, at most one process at a time
can “take the fast path.” Moreover, if no process takes
the fast path during a period of contention, then some pro-
cess must reach lines 9-14. The algorithm ensures that, of
these processes, the last to update the variable Y eventually
gets to its critical section and then reopens the fast path
by assigning Y := 0 at line 16. Thus, the algorithm sat-
isfies Exclusion and Livelock-freedom. On the other hand,
Starvation-freedom is not satisfied, because an unlucky pro-
cess may repeatedly find either Y # 0 at line 3 or Y # p at
line 12, and hence wait forever.

5.2 Research on Fast and Adaptive Mutual Exclusion
(Or, Other Applications of the Splitter and Related
Mechanisms)

Lamport’s fast mutual exclusion algorithm sparked a wave
of research on fast and adaptive mutual exclusion algorithms
that has continued to this day. Much of this work has

focused on algorithms that are fast both in the absence
and presence of contention. In 1993, Yang and Anderson
presented an N-process “local-spin” mutual exclusion algo-
rithm that has ©(log N) time complexity, regardless of con-
tention, where “time” is measured by counting only remote
memory references that cause a traversal of the interconnect
between processors and memory [54]. They also presented a
fast-path variant that has O(1) time complexity in the ab-
sence of contention. This variant directly uses the splitter
code sequence. Unfortunately, Yang and Anderson’s fast-
path variant has ©(NN) worst-case time complexity under
contention. This is because of a “polling loop” that is ex-
ecuted to determine if the fast-path can be reopened after
a period of contention ends. Recently, Anderson and Kim
presented a new fast mechanism, which also directly incorpo-
rates the splitter code, that results in O(1) time complexity
in the absence of contention and O(log N) time complexity
under contention.

In all of the fast-path algorithms considered until now,
there is a sudden jump in time complexity between the
contention-free and contention-present cases. Other research-
ers have considered algorithms where the rise in time com-
plexity as contention increases is more gradual. Such algo-
rithms are called adaptive. Research on adaptive algorithms
has also been heavily influenced by Lamport’s fast mutual

1 3 6 10 15
2 5 9 14
4 8 13

11

Figure 3: Renaming grid (depicted for N = 5).

exclusion algorithm.

In work on adaptive algorithms, two notions of contention
have been considered: “interval contention” and “point con-
tention” [1]. These two notions are defined with respect to
a history H. The interval contention over H is the number
of processes that are active in H, i.e., that execute outside
of their noncritical sections in H. The point contention over
H is the maximum number of processes that are active at
the same state in H. Note that point contention is always
at most interval contention.

Two time complexity measures have been considered in
work on adaptive algorithms in addition to the remote-mem-
ory-references measure considered above: “remote step com-
plexity” and “system response time.” The remote step com-
plezity of an algorithm is the maximum number of shared-
memory operations required by a process to enter and then
exit its critical section, assuming that each “await” state-
ment is counted as one operation [51]. The system response
time is the length of time between critical section entries,
assuming each enabled read or write operation is executed
within some constant time bound [13]. Several algorithms
have been presented that are adaptive to some degree under
these time complexity measures [51, 13, 6, 3]. In each of
the papers cited here, either Lamport’s splitter element or
a closely related mechanism is used.

Lamport’s fast-path code sequence also has implications
for research on time complexity lower bounds [4, 5, 14]. In
particular, for many synchronization problems, this code se-
quence implies that one cannot simply focus on contention-
free program executions when trying to establish a nontrivial
(i.e., nonconstant) lower bound on time.

6 Sequential Consistency and True vs. Virtual Mutual Ex-
clusion

Lamport was the first to observe that the assumptions re-
garding memory accesses implicit within most proof frame-
works may be violated in actual multiprocessor systems. He
proposed a condition called sequential consistency that en-
sures that multiprocessor programs are executed correctly

[26]. Sequential consistency is defined as follows.

[T]he result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in
the order specified by its program. [26]

The main contribution of [26] was to formally articulate
the memory model that most people had previously as-
sumed implicitly. Sequential consistency has since become
the “benchmark” against which all other memory consis-
tency policies are compared.

In recent joint work with Perl and Weihl, Lamport showed
that mutual exclusion algorithms designed assuming sequen-
tially consistent memory may not guarantee true mutual
exclusion in practice [40]. To see why this is so, note that
sequential consistency does not require the actual execution
order of operations to be consistent with any particular se-
quential order. In particular, operations of the same proces-
sor may be performed in an order that differs from program
order as long as both orders give the same result. For ex-
ample, some operations within a process’s exit section may
actually be performed before certain operations within its
critical section. Also, operations of different processors that
commute can be ordered quite arbitrarily.

The following motivating example is given in [40].

[Clconsider the following basic mutual exclusion
algorithm that is used by several standard algo-
rithms.

Processor A:
a:=1;
if b = 0 then critical section; a := 0 fi

Processor B:
b:=1;
if a = 0 then critical section; b := 0 fi

Suppose neither of the critical sections accesses a,
b, or any variable accessed by the other. A mul-
tiprocessor could execute A’s assignment a :=
1, its if test, and its assignment a := 0, and
then arbitrarily interleave the execution of its
critical section with the execution of processor
B’s protocol. Because the memory operations of
processor A’s critical section commute with all
the memory operations of processor B’s proto-
col, the resulting execution is equivalent to ex-
ecuting the two protocols sequentially (in either
order). Thus, the definition of sequential con-
sistency, which says nothing about the order in
which operations are actually executed, is satis-
fied. Hence virtual but not real mutual exclusion
is satisfied.

With wvirtual mutual exclusion, operations are executed
in a way that makes it appear as if one critical section pre-
cedes another. If only memory accesses are performed dur-
ing critical sections, then virtual mutual exclusion is suffi-
cient. However, if I/O operations are performed, then true
mutual exclusion is needed.

Perl et al. posit a special statement called Lull that pre-
vents lookahead. Specifically, if a process performs a Lull
statement, then none of its instructions after the Lull can
be performed until all of its instructions prior to the Lull
have completed. The main contribution of [40] is the follow-
ing result.

If two processors execute critical sections each
containing a Lull statement, then critical-section
instructions that precede the Lull statements can-
not be concurrently executed by the two proces-
sors.

Thus, the Lull statement provides a simple means for en-
suring true mutual exclusion.

7 Last But Definitely Not Least

The last of Lamport’s papers on mutual exclusion covered
in this article is his seminal paper “Time, Clocks, and the
Ordering of Events in a Distributed System” [25]. This is
the only paper surveyed in this article in which a message-
passing model is explicitly assumed. Although this paper
is being covered last, it is probably Lamport’s most-cited
paper. In fact, it is among the most frequently-cited papers
in all of distributed computing.

There is a common misconception that the “Time, Clocks”
paper is primarily a paper about mutual exclusion. This is
incorrect. The main contribution of this paper is a new
method for synchronizing distributed processes, based on
two concepts: logical clocks and state machines. A mu-
tual exclusion algorithm is presented merely to illustrate the
method. This algorithm just happened to be the first fully
distributed solution to the mutual exclusion problem.

7.1 Logical Clocks and “Happens Before”

The most fundamental contribution of [25] is the notion of
a logical clock, which is an inexpensive mechanism that can
be used order events in an asynchronous distributed sys-
tem in a meaningful way. In the model of this paper, each
process is defined to be a linear sequence of events. Each
event is either an internal event, a message-send event, or
a message-receive event. In any distributed system, there is
an implicit ordering of events. This ordering is captured by
a fundamental partial-order relation introduced in this pa-
per called the “happens-before” relation, which is denoted
“—.” This relation is defined as follows.

e If ¢ and b are events of the same process and a occurs
before b, then a — b.

e If a is the sending of a message by one process and b
is the receipt of that message by another process, then
a —b.

e Ifa—b A b— cthena—c.

The happens-before relation is among the most fundamental
of all notions in distributed computing. Indeed, it is so ubiqg-
uitous, it would simply be impossible to compile a complete
list of papers in which it is used.

For an ordering of events in a distributed system to be
“meaningful,” it should be consistent with the happens-
before relation. Logical clocks provide a means for con-
structing such an ordering. Using the notation of [25], a
logical clock of a process P; is a function C; that assigns an
integer value to each event in P;. The logical clock for an
entire system of processes is a function C that assigns to
any event b of process P; the number C;(b). Logical clocks
are required to satisfy the following.

Clock Condition: For any events a and b, if
a — b, then C(a) < C(b).

Logical clocks are easy to implement. A single counter
K; is assigned to each process P;. This counter is updated
as follows.

e Each internal event b is replaced by the single event
(b; K, = K; +].).

e Each message-send event send(m) is replaced by the
single event (send(m, K; +1); K; := K; + 1).

e Each message-receive event receive(m, K) is replaced
by the single event (receive(m, K); K; := max(K, K;)+
1).

Process P;’s logical clock is defined by requiring C;(b) to
equal the value of K; immediately after the occurrence of
the event b. A useful total ordering on events = can now
be defined as follows.

a = b if and only if

e C(a) < C(b), or
e C(a) =C(b) and a is in P; and b is in P;
and ¢ < j.

7.2 State Machines and Mutual Exclusion

The synchronization method of [25] couples logical clocks
with the concept of a state machine. A state machine is
defined by a set of states and a set of commands. Each
command causes a deterministic state transition. State ma-
chines are fundamental to the study of active replication
techniques for ensuring fault tolerance [47]. Each replica
can be defined by a state machine that responds to client
requests.

In [25], Lamport illustrated the utility of state machines
and logical clocks by presenting a new distributed mutual ex-
clusion algorithm that incorporates these concepts. This al-
gorithm is sketched in Fig. 4. The main idea behind the algo-
rithm is that of distributing a queue. Each process is defined
by a state machine that responds to timestamped request
and release commands. Each process’s state is defined by a
local queue of timestamped request messages (commands),
which it has received from processes that are waiting to en-
ter their critical sections. The condition for critical-section
entry easily implies that the Exclusion property is satisfied
by this algorithm. It is also easy to see that each process’s
request eventually must have the lowest timestamp. Hence,
the algorithm satisfies Starvation-freedom.

8 Concluding Remarks

It is difficult to fully describe the impact of Leslie Lam-
port’s work on the mutual exclusion problem in a limited
amount of space. Nonetheless, I hope this article has done
an adequate job of it. In assessing Lamport’s track record
on the mutual exclusion problem, it is quite evident that he
has been the foremost figure for many years in defining the
course of research on this problem.

At the time this article was written, a complete listing of
Lamport’s papers was available on-line at [21]. Electronic
copies of many of his papers can be obtained there.

Acknowledgements: Iam grateful to Cynthia Dwork, Yong-
Jik Kim, Keith Marzullo, and Fred Schneider for their com-
ments on an earlier draft of this paper.

Protocol for P;:
To request critical section:

e Send a timestamped request message to every
other process.

e Put that message on a local request queue.
When request message is received:

e Put it on local request queue.

e Send back a timestamped acknowledgement.
To exit critical section:

e Remove P;’s request message from local request
queue.

e Send a release message to all other processes.

When release message is received:

P; enters its critical section if both of the fol-
lowing hold:

e Remove corresponding request message from lo-
cal request queue.

e Its own request has the lowest timestamp (ac-
cording to =) among all requests in its queue.

e P; has received a message from every other pro-
cess timestamped later than its own request.

Figure 4: Timestamp algorithm. Note: FIFO message delivery is assumed.

References

[1]

[2]

(3]

[4]

[5]

[7]

(8]

Y. Afek, H. Attiya, A. Fouren, G. Stupp, and
D. Touitou. Long-lived renaming made adaptive. In
Proceedings of the 18" Annual ACM Symposium on
Principles of Distributed Computing, pp. 91-103. May
1999.

Y. Afek and M. Merritt. Fast, wait-free (2k — 1)-
renaming. In Proceedings of the 18" Annual ACM

Symposium on Principles of Distributed Computing, pp.
105-112. May 1999.

J. Anderson and Y.-J. Kim. Adaptive mutual exclusion
with local spinning. In Proceedings of the 14" Interna-
tional Symposium on Distributed Computing, pp. 29-43,
October 2000.

J. Anderson and Y.-J. Kim. An improved lower bound
for the time complexity of mutual exclusion. In Pro-
ceedings of the 20" Annual ACM Symposium on Prin-
ciples of Distributed Computing (this proceedings), Au-
gust 2001.

J. Anderson and J.-H. Yang. Time/contention tradeoffs
for multiprocessor synchronization. Information and
Computation, 124(1):68-84, January 1996.

H. Attiya and V. Bortnikov. Adaptive and efficient mu-
tual exclusion. In Proceedings of the 19 Annual ACM

Symposium on Principles of Distributed Computing, pp.
91-100. July 2000.

H. Attiya and A. Fouren. Adaptive wait-free algorithms
for lattice agreement and renaming. In Proceedings of
the 17" Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 277-286. July 1998.

H. Attiya and A. Fouren. Adaptive long-lived renam-
ing with read and write operations. Technical Report
(CS0956, Faculty of Computer Science, Technion, Haifa,
1999.

[9]

[10]

[11]

[12]

[13]

[14]

B. Bloom. Constructing two-writer atomic regis-
ters. IEEE Transactions on Computer Systems,
37(12):1506-1514, December 1988.

H. Buhrman, J. Garay, J. Hoepman, and M. Moir.
Long-lived renaming made fast. In Proceedings of the
14" Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 194-203. August 1995.

J. Burns and G. Peterson. Constructing multi-reader
atomic values from non-atomic values. In Proceedings
of the Eighth Annual ACM Symposium on Principles of
Distributed Computing, pp. 222-231, August 1987.

J. Burns and G. Peterson. Pure buffers for concur-
rent reading while writing. Technical Report GIT-ICS-
87/17, School of Information and Computer Science,
Georgia Institute of Technology, 1987.

M. Choy and A. Singh. Adaptive solutions to the mu-
tual exclusion problem. Distributed Computing, 8(1):1-
17, 1994.

R. Cypher. The communication requirements of mu-
tual exclusion. In Proceedings of the 17" Annual Sym-

posium on Parallel Algorithms and Architectures, pp.
147-156, 1995.

E. Dijkstra.
programming control.
8(9):569, 1965.

E. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control, EWD 391. In Selected Writings
on Computing: A Personal Perspective, pp. 41-46.
Springer-Verlag, Berlin, 1982.

Solution of a problem in concurrent
Communications of the ACM,

M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463-492,
1990.

L. Kirousis, E. Kranakis, and P. Vitanyi. Atomic mul-
tireader register. In Proceedings of the Second Interna-
tional Workshop on Distributed Algorithms, pp. 278—
296, October 1987.

[19]

[20]

[27]

D. Knuth. Additional comments on a problem in con-
current programming control. Communications of the
ACM, 9(5):321-322, 1966.

H. Kopetz and J. Reisinger. The non-blocking write
protocol nbw: A solution to a real-time synchronization
problem. In Proceedings of the 14** IEEE Symposium
on Real-Time Systems, pp. 131-137. December 1993.

L. Lamport. My writings. http://www.research.
compagq. com/SRC/personal/lamport/pubs/pubs.html.

L. Lamport. A new solution of Dijkstra’s concurrent
programming problem. Communications of the ACM,
17(8):453-455, August 1974.

L. Lamport. Concurrent reading and writing. Commu-
nications of the ACM, 20(11):806-811, November 1977.

L. Lamport. Proving the correctness of multiprocess
programs. IEEFE Transactions on Software Engineering,
SE-3(2):125-143, March 1977.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, July 1978.

L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. [EEE
Transactions on Computers, C-28(9):690-691, Septem-
ber 1979.

L. Lamport. A new approach to proving the correct-
ness of multiprocess programs. ACM Transactions on
Programming Languages and Systems, 1(1):84-97, July
1979.

L. Lamport. Reasoning about nonatomic operations. In
Proceedings of the Tenth Annual ACM Symposium on
Principles of Programming Languages, pp. 28—-37. 1983.

L. Lamport. Buridan’s principle. Technical report, SRI
Technical Report, October 1984.

L. Lamport. What it means for a concurrent program
to satisfy a specification: Why no one has specified pri-
ority. In Proceedings of the 128" Annual ACM Sym-
posium on Principles of Programming Languages, pp-
78-83. January 1985.

L. Lamport. The mutual exclusion problem: Part I - A
theory of interprocess communication. Journal of the
ACM, 33(2):313-326, 1986.

L. Lamport.
II - Statement and solutions.
33(2):327-348, 1986.

The mutual exclusion problem: Part
Journal of the ACM,

L. Lamport. On interprocess communication: Part I -
Basic formalism. Distributed Computing, 1:77-85, 1986.

L. Lamport. On interprocess communication: Part IT -
Algorithms. Distributed Computing, 1:86-101, 1986.

L. Lamport. A fast mutual exclusion algorithm. ACM
Transactions on Computer Systems, 5(1):1-11, Febru-
ary 1987.

L. Lamport. Concurrent reading and writing of clocks.
ACM Transactions on Computer Systems, 8(4):305—
310, November 1990.

37]

[53]

L. Lamport. win and sin: Predicate transformers for
concurrency. ACM Transactions on Programming Lan-
guages and Systems, 12(3):396-428, July 1990.

L. Lamport. Introduction to TLA. Technical Report
1994-001, Digital Systems Research Center, Palo Alto,
CA, 1994.

L. Lamport and R. Palais. On the glitch phenomenon.
Technical Report CA-7611-0811, Massachusetts Com-
puter Associates, Wakefield, Massachusetts, November
1976.

L. Lamport, S. Perl, and W. Weihl. When does a cor-
rect mutual exclusion algorithm guarantee mutual ex-
clusion? Information Processing Letters, 76(3):131—
134, 2000.

M. Moir and J. Anderson. Fast, long-lived renaming.
In Proceedings of the Eighth International Workshop on
Distributed Algorithms, pp. 141-155, September 1994.

M. Moir and J. Anderson. Wait-free algorithms for
fast, long-lived renaming. Science of Computer Pro-
gramming, 25(1):1-39, October 1995.

R. Newman-Wolfe. A protocol for wait-free, atomic,
multi-reader shared variables. In Proceedings of the
Sizth Annual Symposium on Principles of Distributed
Computing, pp. 232-248, 1987.

S. Owicki and D. Gries. An axiomatic proof technique
for parallel programs. Acta Informatica, 6:319-340,
1976.

G. Peterson. Concurrent reading while writing. ACM
Transactions on Programming Languages and Systems,
5(1):46-55, 1983.

F. Schneider. Private communication.

F. Schneider. Implementing fault-tolerant services us-
ing the state-machine approach. ACM Computing Sur-
veys, 22, December 1990.

A. Singh, J. Anderson, and M. Gouda. The elusive
atomic register. Journal of the ACM, 41(2):311-339,
1994.

P. Sorensen. A Methodology for Real-Time System De-
velopment. PhD thesis, University of Toronto, Toronto,
Canada, 1974.

P. Sorensen and V. Hemachar. A real-time system de-
sign methodology. INFOR, 13(1):1-18, 1975.

E. Styer. Improving fast mutual exclusion. In Proceed-

ings of the 11*" Annual ACM Symposium on Principles
of Distributed Computing, pp. 159-168. August 1992.

J. Tromp. How to construct an atomic variable. In
Proceedings of the Third International Workshop on
Distributed Algorithms, pp. 292-302. Lecture Notes in
Computer Science 392, Springer-Verlag, 1989.

P. Vitanyi and B. Awerbuch. Atomic shared register
access by asynchronous hardware. In Proceedings of the
27" IEEE Symposium on the Foundations of Computer
Science, pp. 233-243, 1986.

J.-H. Yang and J. Anderson. Fast, scalable synchroniza-
tion with minimal hardware support. In Proceedings of
the 12" Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 171-182. August 1993.

