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Abstract

Ongoing research is discussed on the development of
operating-system support for enabling mixed-criticality
workloads to be supported on multicore platforms. This
work is motivated by avionics systems in which such work-
loads occur. In the mixed-criticality workload model that is
considered, task execution costs may be determined using
more-stringent methods at high criticality levels, and less-
stringent methods at low criticality levels. The main focus
of this research effort is devising mechanisms for providing
“temporal isolation” across criticality levels: lower levels
should not adversely “interfere” with higher levels.

1 Introduction

The evolution of computational frameworks for avionics
systems is being impacted by two trends. First, such frame-
works are becoming increasingly complex. While this is
generally true, a particularly good case in point is next-
generation unmanned systems, where complex decision-
making software must be used to perform pilot functions.
Second, there is increasing pressure to host such complex
systems using hardware platforms that require less weight
and volume.

These trends are occurring at a time when multicore
chip designs have replaced single-core designs in the prod-
uct lines of most chip manufacturers. This development
is profound, as it means that multiprocessors are now a
“common-case” platform that will be used across a wide
range of application domains. In the avionics domain,
multicore platforms offer the potential of enabling greater
computational capabilities in less space. Unfortunately,
currently-used avionics operating systems do not provide
sufficient functionality to allow applications of varying crit-
icalities to be co-hosted on a multicore platform. In this
paper, we discuss ongoing research that is being conducted
to address this issue.
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Different criticality levels provide different levels of
assurance against failure. In current avionics designs,
highly-critical software is kept physically separate from
less-critical software. Moreover, no currently deployed air-
craft uses multicore processors to host highly-critical tasks
(more precisely, if multicore processors are used, and if
such a processor hosts highly-critical applications, then all
but one of its cores are turned off). These design decisions
are largely driven by certification issues. For example, cer-
tifying highly-critical components becomes easier if poten-
tially adverse interactions among components executing on
different cores through shared hardware such as caches are
simply “defined” not to occur. Unfortunately, hosting an
overall workload as described here clearly wastes process-
ing resources.

In this paper, we propose operating-system infrastruc-
ture that allows applications of different criticalities to be
co-hosted on a multicore platform. Our specific focus is
ensuring real-time correctness. We assume that criticalities
are defined as in the RTCA DO-178B software standard,
which specifies five criticality levels, as listed in Table 1 (a
more thorough discussion of criticalities is given later). We
further assume that the workload to be supported is speci-
fied as a collection of periodic tasks with harmonic periods.

The OS development platform used in our work is
a UNC-produced open-source system called LITMUSRT

(LInux Testbed for MUltiprocessor Scheduling in Real-
Time systems) [7, 9, 12, 14, 15, 26]. LITMUSRTis an
extension of Linux (currently, version 2.6.24) that allows
different (multiprocessor) real-time scheduling algorithms
to be linked at runtime as plug-in components. Relevant
details regarding LITMUSRT, as well as our rationale in
choosing it as a development platform, are given later. The
main focus of this paper is to report on the status of our im-
plementation efforts in extending LITMUSRT to support
multi-criticality workloads on multicore platforms. We
also more broadly discuss some of the challenges inherent
in supporting such workloads.

The rest of this paper is organized as follows. In Sec. 2,
we provide relevant background material and discuss re-
lated work. In Sec. 3, we describe the LITMUSRT-based
implementation efforts mentioned above. In Sec. 4, we



Level Failure Condition Interpretation
A Catastrophic Failure may cause a crash.
B Hazardous Failure has a large negative impact on safety or performance, or reduces the abil-

ity of the crew to operate the plane due to physical distress or a higher workload,
or causes serious or fatal injuries among the passengers.

C Major Failure is significant, but has a lesser impact than a Hazardous failure (for exam-
ple, leads to passenger discomfort rather than injuries).

D Minor Failure is noticeable, but has a lesser impact than a Major failure (for example,
causing passenger inconvenience or a routine flight plan change).

E No Effect Failure has no impact on safety, aircraft operation, or crew workload.

Table 1: DO-178B is a software development process standard, Software Considerations in Airborne Systems and Equipment Certifica-
tion, published by RTCA, Inc. The United States Federal Aviation Authority (FAA) accepts the use of DO-178B as a means of certifying
software in avionics applications. RTCA DO-178B assigns criticality levels to tasks categorized by effects on commercial aircraft.

discuss a number of future extensions to the system being
built. We conclude in Sec. 5.

2 Background
In the following subsections, we present relevant back-
ground information on multiprocessor real-time schedul-
ing, multi-criticality scheduling, and scheduling ap-
proaches for ensuring temporal isolation. We also present a
brief overview of the LITMUSRTsystem being used in our
research.

2.1 Multiprocessor Real-Time Scheduling
When designing a real-time application, the goal is to pro-
duce a schedulable system, i.e., one whose timing con-
straints can be guaranteed. Timing constraints are usu-
ally expressed using deadlines. In this paper, we con-
sider a well-studied task model in which such notions arise,
namely the periodic task model [20]. In this model, the
scheduled system is comprised of a collection of recurring
sequential tasks. Each such task T releases a succession of
jobs and is defined by specifying a period T.p and an ex-
ecution cost T.e. Successive jobs of T are released every
T.p time units, starting at time 0, and one that is released
at time t has a deadline at time t + T.p. Also, each such
job executes for at most T.e time units and its required pro-
cessing time should be allocated between its release and
deadline. In this paper, we make the simplifying assump-
tion that task periods are harmonic. This means that, for
any two tasks T and U , if T.p < U.p, then U.p is an integer
multiple of T.p. In avionics systems, task periods are often
harmonic.

Real-time schedulability. In the periodic model, the def-
inition of the term “schedulable” depends on whether dead-
lines are hard or soft. In a hard real-time (HRT) system,

deadlines can never be missed, while in a soft real-time
(SRT) system, some misses are tolerable. SRT schedula-
bility can be defined in different ways; we assume here
that a SRT system is schedulable if deadline tardiness is
bounded (by a reasonably small constant). In determining
schedulability (hard or soft), the processor share required
by each task T is of importance. The share required by T
is given by the quantity T.u = T.e/T.p, which is called its
utilization.

With regard to scheduling, two kinds of algorithms ac-
tually are of interest: algorithms used within an OS to
make scheduling decisions (of course) and algorithms used
to test schedulability (i.e., timing correctness). The lat-
ter algorithm is necessarily dependent on the former. In
the multiprocessor case, a scheduling algorithm may fol-
low a partitioning or global scheduling approach (or some
combination of the two): under partitioning, tasks are stat-
ically assigned to processors, while under global schedul-
ing, they are scheduled from a single run queue and may
migrate among processors. An example of a partition-
ing algorithm is partitioned EDF (P-EDF), which uses
the uniprocessor earliest-deadline-first (EDF) algorithm as
the per-processor scheduler. An example of a global algo-
rithm is global EDF (G-EDF), under which tasks are EDF-
scheduled using a single priority queue. In this paper, P-
EDF and EDF are considered extensively. In addition, we
consider the cyclic executive approach, wherein scheduling
decisions are statically pre-determined offline and specified
in a dispatching table [2]. If task periods are harmonic, then
the required dispatching table requires pseudo-polynomial
space. In avionics and other safety-critical domains, the
cyclic executive approach is often preferred, because dis-
patching tables (once constructed) are relatively easy to
certify as correct. In the case of cyclic executives, we as-
sume partitioned scheduling (one dispatching table per pro-
cessor).



Global vs. partitioned scheduling. Generally speaking,
partitioning algorithms are preferable for HRT workloads,
and global algorithms are preferable for SRT workloads. If
all deadlines are hard, or if partitioning or static-priority
scheduling is used, then restrictive caps on overall uti-
lization (of up to half the system’s processing capacity)
must be enforced to ensure that real-time constraints are
met [16].1 Because such caps are unavoidable in the
HRT case, partitioning approaches tend to be better be-
cause they have lower run-time overheads than global ap-
proaches [13, 15]. In contrast, a wide variety of dynamic-
priority, global algorithms, including G-EDF, are capable
of ensuring bounded deadline tardiness on an m-processor
platform for any periodic task system with total utilization
at most m [17, 19].

2.2 Multi-Criticality Scheduling
In this paper, we consider the problem of scheduling tasks
of different criticalities (in our case, as specified by the
RTCA DO-178B standard summarized in Table 1) on a
multicore platform. This problem has been considered be-
fore in the context of uniprocessor systems. The conven-
tional approach to implementing such a system has been
to assign greater priority to higher-criticality tasks. How-
ever, Vestal observed that such an approach results in se-
vere resource under-utilization, and in fact showed that ex-
isting scheduling theory cannot adequately address multi-
ple criticality requirements [27]. He proposed the multi-
criticality task model, under which multiple worst-case ex-
ecution time (WCET) estimates, each made at a different
level of assurance (i.e., with a different degree of confi-
dence), may be specified for each task. Since higher crit-
icality levels require greater levels of assurance and hence
more over-provisioning of computing capacity, the WCET
estimate at higher criticality levels is typically far more
pessimistic (i.e., greater) than the WCET estimate for the
same task at lower criticality levels (and this is even more
likely on a multicore platform, where interactions among
cores through shared hardware are difficult to predict). In
determining whether tasks of a particular criticality meet
their timing constraints under a specified scheduling dis-
cipline, the WCET estimates of all tasks that are used are
those determined at the level of assurance corresponding to
this given criticality level. Since such validation is done
at system design time, this implies that the excess capacity
that must be over-provisioned for high-criticality tasks gets

1A category of global algorithms exists called Pfair algorithms [3, 25]
for which this statement is not true. Pfair algorithms are capable of
scheduling any m-processor HRT system if total utilization is at most
m. However, under Pfair algorithms, tasks are preempted and potentially
migrated frequently, so runtime overheads can be high.

“reclaimed” at system design time itself, and can be used
for guaranteeing deadline compliance of lower-criticality
tasks. The multi-criticality task model is remarkably pow-
erful and expressive. For instance, in order to obtain a
WCET bound for a task at a higher level of assurance (i.e.,
at a degree of confidence corresponding to a higher critical-
ity), it is typically necessary to limit the kinds of program-
ming constructs that may be used in that task (loops, for
example, may be required to have static bounds). However,
low-criticality tasks should not be subject to these same
stringent programming restrictions. By allowing the corre-
sponding (high-assurance) WCETs for these low-criticality
tasks to be set to infinity, the model does not forbid low-
criticality tasks from using these “unsafe” constructs.

In other work on this topic, Baruah and Vestal proposed
new algorithms for scheduling systems of multi-criticality
tasks on preemptive uniprocessors [6]. These algorithms
exploit knowledge of WCET estimates at different assur-
ance levels to maximize processor utilization. Baruah and
Vestal proved that their algorithms are capable of success-
fully scheduling a larger class of task systems than is the
case with prior algorithms.

2.3 Ensuring Temporal Isolation

A key requirement in multi-criticality scheduling is that
tasks of lower criticality should not adversely affect tasks
of higher criticality. This requirement is very related to a
concept called temporal isolation. In a system that pro-
vides temporal isolation, the timing requirements of differ-
ent components or sub-systems can be validated indepen-
dently. Temporal isolation can be ensured by supporting
within the OS a container abstraction. For the purposes
of this paper, a container is a task group that is managed
in a way that isolates the grouped tasks from the rest of
the system. In the real-time-systems community, this no-
tion of a “container” is more commonly called a “server.”
Server-based abstractions were first considered in the con-
text of uniprocessor systems to allow the timing correctness
of subsystems to be validated independently. Each such
subsystem (a set of tasks) is assigned to a “server task.” A
two-level scheduling approach is then used, where at the
top level, server tasks are scheduled, and at the next level,
the servers themselves schedule their constituent tasks. A
server is provisioned by assigning it a designated utiliza-
tion, or resource budget. Some of the more well-known
server schemes that function in this way include constant
bandwidth servers [1], total bandwidth servers [24], and
resource kernels [22].

Uniprocessor systems have been the main focus of
server-related research. However, resource kernels have



been implemented on multiprocessor platforms, and a
few other multiprocessor schemes have been proposed as
well [4, 5, 21, 24]. To the best of our knowledge, multi-
criticality scheduling (our focus) has not been considered
before in work on server-based approaches.

2.4 LITMUSRT

As noted earlier, the LITMUSRT system being used in our
research is an extension of Linux 2.6.24 that allows dif-
ferent (multiprocessor) real-time scheduling algorithms to
be linked at runtime as plug-in components. Several such
algorithms have been implemented, including the P-EDF
and G-EDF algorithms considered earlier. To the best of
our knowledge, LITMUSRT is the only published system
wherein global real-time scheduling algorithms (a major
focus our work) are implemented in a real OS.

As its name suggests, LITMUSRTwas developed as a
testbed for experimentally evaluating real-time resource-
allocation policies. In this capacity, LITMUSRT has proved
to be very valuable: it has been used to explore fundamen-
tal implementation-oriented tradeoffs involving multipro-
cessor real-time scheduling algorithms [13, 15] and syn-
chronization methods [8, 11, 10, 14], to evaluate scheduling
policies that can adapt to workload changes [7] or support
systems with mixed HRT, SRT, and non-real-time compo-
nents [9], and to examine scalability issues on large (by
today’s standards) multicore platforms [13].

Due to various sources of unpredictability within Linux
(such as interrupt handlers and priority inversions within
the kernel), it is not possible to support true HRT execu-
tion in Linux,2 and hence in LITMUSRT. Given these
limitations, LITMUSRTwould not be a viable OS for do-
mains like avionics, where safety-critical components ex-
ist. However, the primary goal of our current research
is to explore various implementation-related tradeoffs that
arise when supporting multi-criticality workloads, and
LITMUSRTis more than adequate for this purpose. Ad-
ditionally, LITMUSRTprovides several scheduling-related
debugging and tracing tools that greatly aid development
efforts. Once we have developed a good understanding
of implementation-oriented tradeoffs that impact multi-
criticality scheduling, we hope to port the scheduling meth-
ods we produce to an avionics-suitable real-time operating
system.

2By “Linux,” we mean modified versions of the stock Linux ker-
nel with improved real-time capability, not paravirtualized variants such
as RTLinux[28] or L4Linux[18], where real-time tasks are not actually
Linux tasks. Stronger notions of HRT can be provided in such systems,
at the expense of a more restricted and less familiar development environ-
ment.

3 Proposed Architecture
We plan to support harmonic multi-criticality workloads
with a two-level hierarchical scheduling framework. The
key idea is to encapsulate, on each core, each of the five
criticality classes in separate containers (CA–CE), and to
use intra-container schedulers appropriate for each level
(e.g., cyclic executives are a likely choice for CA and CB ,
whereas G-EDF may be a favorable choice for CD). Tem-
poral isolation is achieved by statically assigning higher
scheduling priority to higher criticality classes (i.e., CA

has the highest priority). While simple in concept, some
complications (discussed next) arise, which differentiate
the proposed architecture from prior work on hierarchical
scheduling in real-time systems.

Container parameters. For each container C (five per
core), we need to specify an allocation window C.p and a
budget C.b: the budget is consumed when client tasks ex-
ecute and is replenished at time zero and every C.p time
units thereafter. A major complication in most container
schemes is the need to retain budget when tasks are in-
active in order to handle job arrivals between replenish-
ment points. However, since task periods are harmonic,
this problem can be avoided by choosing C.p = min{T.p}
for all containers—by definition, jobs only arrive at times
that are multiples of C.p and budget retention becomes un-
necessary.

Choosing a budget is more complicated. Obviously,
C.b must match or exceed the execution requirement of all
clients during C.p. However, recall that in a multi-critically
workload, each task T has an execution requirement and
utilization at every criticality level (T.eA–T.eE and T.uA–
T.uE). Hence, we specify for each container five budgets
C.bA–C.bE that are consumed in parallel, where each bud-
get corresponds to the execution requirements of its clients
at the respective criticality level. Separate per-level budgets
are required for analysis purposes, but it may be beneficial
to track them at runtime, too, as discussed below.

Example. Consider the periodic, harmonic multi-
criticality workload specified in Table 2 consisting of ten
tasks (two per criticality level). For the sake of simplicity,
we consider only one partition (i.e., one processor) in
this example and assume that P-EDF is used as the
intra-container scheduler for each level. The minimum
period (and hence the allocation window C.p) is ten time
units. Based on the execution requirements of the tasks at
each level, container budgets have been derived as given in
Table 3.

Note that T1 and T2 alone fully utilize the processor as-
suming level-A execution time requirements. Hence, with-
out the proposed architecture, only those two tasks could be



Crit. T.p T.eA T.uA T.eB T.uB T.eC T.uC T.eD T.uD T.eE T.uE

T1 A 10 5 0.5 3 0.3 2 0.2 1 0.1 1 0.1
T2 A 20 10 0.5 6 0.3 4 0.2 3 0.15 2 0.1
T3 B 40 – – 8 0.2 2 0.05 2 0.05 2 0.05
T4 B 20 – – 4 0.2 3 0.15 2 0.1 2 0.1
T5 C 10 – – – – 2 0.2 1 0.1 1 0.1
T6 C 20 – – – – 4 0.2 2 0.1 1 0.05
T7 D 20 – – – – – – 4 0.2 2 0.1
T8 D 10 – – – – – – 2 0.2 1 0.1
T9 E 20 – – – – – – – – 4 0.2
T10 E 40 – – – – – – – – 4 0.1
Σ 1.0 1.0 1.0 1.0 1.0

Table 2: Parameters of the task set shown in Fig. 1. Note that each task has a maximum execution time specified for its own and lesser
criticality levels. Execution time parameters for higher criticality levels are not required due to temporal isolation. Note also that the
processor is fully utilized at each criticality level—capacity lost due to pessimistic worst-case execution time estimates at high criticality
levels has been reclaimed at lower criticality levels.

provisioned on the processor. However, if temporal isola-
tion is guaranteed, then each criticality level’s schedulabil-
ity can be tested individually. In this case, all ten tasks can
be provisioned since the total utilization is less than one for
each criticality level, as explained in detail below. Intra-
container schedules illustrating that all deadlines are met at
each criticality level if no overruns occur at higher levels
are shown in Fig. 1. Note that, even though all deadlines
are met in the depicted schedules, schedulability is actually
a rather deep issue, as discussed in detail below.

In inset (a), level-A temporal correctness is shown:
since CA has the highest (static) priority, lower-criticality
work cannot interfere with T1 and T2, which fully utilize
the processor and meet all of their deadlines.

Level-B correctness is shown in inset (b). As can be
seen in Table 3, CA is expected to require at most six time
units in every allocation window assuming level-B execu-
tion requirements. This leaves four time units every ten
time units for level-B work to complete, which suffices for
T3 and T4 to meet all their deadlines. However, if CA ex-
ceeds its level-B estimate in any window (i.e., CA requires
more than CA.bB time units of service), then T3 and T4

may (of course) incur deadline misses.
The level-C intra-container schedule is shown in in-

set (c). Assuming level-C estimates, CA and CB re-
quire are total of six time units per allocation window (see
Tabel 3), which, similarly to CB’s schedule, leaves four
time units per allocation window for level-C work. Note
that T5.p = 10, hence a job of T5 has a deadline at every
allocation window boundary. In order for T5 to meet all
of its deadlines, each job of T6 has to execute in two allo-
cation windows—as it does, assuming P-EDF scheduling
and the absence of higher-level overruns.

CD’s and CE’s intra-container schedules are similar to
those just discussed: assuming level-D (level-E) execution

requirements for higher-criticality containers in each win-
dow, there is enough left-over capacity such that all level-
D (level-E) tasks meet all of their deadlines. Note that the
intra-container schedules depicted in insets (a)–(e) cannot
occur simultaneously—none of the schedules leaves suffi-
cient capacity to accommodate all lower-criticality work.
This corresponds to the multi-criticality notion of correct-
ness: each schedule depicts the expected worst case ac-
cording to the corresponding level’s execution time anal-
ysis method (assuming higher-criticality containers do not
overrun).

Schedulability. Since all deadlines were met in the above
example, it is tempting to assume that the described sys-
tem is indeed HRT schedulable, i.e., that each level-X task
always meets all of its deadlines if each task T of equal
or higher criticality executes for at most T.eX time units.
However, this is unfortunately not the case. In fact, in our
example, HRT correctness can only be guaranteed for lev-
els A and B, and only SRT correctness at lower criticalities.

This is shown in Fig. 2, which depicts a schedule of all
tasks of criticality C and higher (T1–T6) across four allo-
cation windows. Since, in the depicted schedule, each task
T ’s jobs require exactly T.eC execution time, each level-C
job should meet all of its deadlines (corresponding to in-
set (c) in Fig. 1). This, however, is not the case: T5 misses
a deadline both at times 10 and 30, and T6 misses a dead-
line at time 20.

Why are deadlines met in Fig. 1(c), and yet some missed
in Fig. 2? The reason is that, in Fig. 2, both CA (i.e., T1 and
T2) and CB (i.e., T3 and T4) overran their level-C budget
in the first and third allocation windows, hence level-C jobs
were starved in these windows. In contrast, in Fig. 1(c), it is
assumed that the higher-criticality containers never overrun
their level-C budget. Unfortunately, this requires “clairvoy-



C.bA C.uA C.bB C.uB C.bC C.uC C.bD C.uD C.bE C.uE

CA 10 1.0 6 0.6 4 0.4 2.5 0.25 2 0.2
CB – – 4 0.4 2 0.2 1.5 0.15 1.5 0.15
CC – – – – 4 0.4 2 0.2 1.5 0.15
CD – – – – – – 4 0.4 2 0.2
CE – – – – – – – – 3 0.3

Table 3: Container parameters for the example shown in Fig. 1. The window size C.p of the task set is min{T.p} = 10.

ant” scheduling: in order to (safely) restrict CA and CB to
their level-C budgets in the first window, it must be known
that all the jobs of T1–T4 do not exceed their level-C exe-
cution time estimate before they complete.

The fundamental problem exposed by this example
is that a level-X job Th can excessively delay a lower-
criticality level-Y job Tl with Tl.p < Th.p even if Th

executes for at most Th.eY time units because higher-
criticality work is “shifted” from allocation windows past
Tl’s deadline to allocation windows prior to Tl’s deadline—
in effect, Th uses a share of the processor greater than
Th.uY while Tl must complete.

Note that the problem does not occur if periods are non-
decreasing across criticality levels: if P-EDF is used as the
intra-container scheduler for level X, then all level-X tasks
will meet their deadlines if, on each processor P , the sum
of the level-X utilizations of all tasks of criticality X and
all higher-criticality containers does not exceed one and the
shortest period of any level-X task assigned to P is at least
as long as the longest period of any higher-criticality task
assigned to P . Hence, in our example, all deadlines will be
met in CB because

T3.ub + T4.ub + CA.uB ≤ 1

and
min(T3.p, T4.p) ≥ max(T1.p, T2.p).

The classic EDF utilization bound [20] applies in the case
of non-decreasing deadlines (across criticality levels) even
though higher-criticality containers have a statically higher
priority because the resulting schedule is always a valid
EDF schedule, too. This is because, by assumption, any
higher-criticality job that causes delays has a deadline no
later than the earliest deadline of any job in the container
under analysis, and EDF allows for arbitrary tie breaking
(in the resulting schedule, ties are broken in favor of the
containers in order of decreasing criticality). This analy-
sis method was used before—and is explained in detail—
in [9].

If periods increase across criticality levels (e.g., levels
C–E in Table 2), then there two options to transform the
task set. Either lower-criticality work with short periods
can be promoted to a sufficiently high criticality, or higher-
criticality jobs with long periods can be split into multiple

sub-jobs with short periods. The former may be not a viable
option for verification reasons—e.g., if unsafe constructs
such as unbounded loops are used in a level-E task, then
it likely cannot be promoted to level-A criticality, even if it
has the minimum period in the task set. The latter approach
has the downside that it requires tasks to be modified, and
that analyzing sub-jobs may yield more pessimistic execu-
tion time requirements than analyzing complete jobs would
have. However, we note that loss of cache affinity between
sub-jobs is likely not a problem at high criticality levels
since caches are assumed to be ineffective in most exist-
ing timing-analysis approaches appropriate for such levels.
We are currently investigating these schedulability issues
in greater depth.

If G-EDF is used as an intra-container scheduler,
then timing correctness can be established using exist-
ing reduced-supply schedulability tests. Due to space
constraints, we omit further details, and refer the reader
to [19, 23] instead.

Overruns. Budget overruns, by design, may occur in
multi-criticality systems since execution requirements are
estimated using less-pessimistic methods at lower critical-
ity levels, and may even be empirically-determined average
execution costs at level-E criticality.

For example, in a schedulable multi-criticality system,
all level-D tasks are guaranteed to meet their deadlines if
no task (of any criticality) overruns its level-D execution
time estimate. However, it is reasonable to expect that
tasks of criticality C and higher will (occasionally) over-
run their level-D estimate. In fact, if tasks are provisioned
on an average-case basis at lower criticality levels, then
such tasks may often overrun. Hence, multi-criticality sys-
tems are likely to benefit from the use of slack scheduling
methods, which attempt to ameliorate the negative impact
of overruns by re-distributing any unused capacity at run-
time. In our setting, slack is generated at a given critical-
ity level X when containers of higher criticality than X re-
quire less than their level-X execution time estimate, i.e.,
level-X slack is available if the processing of level-X jobs
can be safely postponed because higher-criticality work re-
quired less capacity than expected. Reassigning slack to
lower-criticality work, however, requires accurate tracking
of budgets at all criticality levels, as the following example
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Figure 1: Schedules showing four allocation windows for (a) level A, (b) level B, (c) level C, (d) level D, and (e) level E criticality
assuming that higher-criticality containers do not overrun their respective budgets. For example, inset (b) depicts the schedule of both
level-B tasks (T3, T4) that results when each such task T requires only T.eB execution time and the level-A container executes for CA.bB

time units per allocation window. Higher-priority containers (if any) execute at the beginning of each allocation window. The schedule
repeats after four windows since max{T.p} = 40. (Up-arrows indicate job releases, down-arrows indicate deadlines, and T-shaped
arrows indicate job completions.)
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Figure 2: An example schedule corresponding to inset (c) of Fig. 1 that demonstrates that both level-C tasks (of the task system given in
Tabel 2) can incur deadline misses even if each task T of criticality C and higher requires at most T.eC time units. Note that maximum
tardiness is bounded since the schedule repeats after four windows. Hence, SRT correctness can be guaranteed for level C.

illustrates.

Example. Fig. 3 depicts three examples of slack schedul-
ing corresponding to inset (c) of Fig. 1. Inset (a) shows how
slack scheduling can be used to reduce the negative impact
of budget overruns. In this case, CA required six time units
in each of the first two allocation windows, which exceeds
the level-C estimate of CA.bC = 4, but not the level-B es-
timate of CA.bB = 6. Consequently, the level-B container
executes as expected, but T6, a level-C task, misses a dead-
line at time 20. However, CA underruns its level-B budget
at time 21 by finishing five time units early. This under-
run creates dynamic slack that is reassigned to T6, which
causes it to finish earlier than it would have otherwise. T6’s
deadline miss does not imply that the system behaved in-
correctly because CA exceeded its level-C estimate.

Inset (b) shows how slack scheduling can undermine
temporal isolation if budgets are not tracked carefully. In
this case, CA and CB never exceed their level-C budgets—
hence, all level-C tasks should meet their deadlines. Un-
fortunately, T6 misses a deadline again at time 20. This is
because three units of slack were assigned to a level-D job
at time three. While there were indeed three units of level-
B slack available, there was only one unit of level-C slack
available. This example shows that multiple budgets must
be maintained at runtime.

Finally, inset (c) shows the same scenario as in inset (b)
with correct budget tracking. In this case, only one time
unit can be reassigned to level-D work at time three. Fur-
ther allocations are made at times 23 and 33 as more level-
C slack becomes available.

Implementation considerations. There are three major
implementation questions that will have to be addressed: (i)
how to realize containers; (ii) how to implement cyclic ex-
ecutives; and (iii) how (and if) to implement slack schedul-
ing. We discuss these issues from a LITMUSRT-centric

perspective next and consider supporting avionics-capable
RTOSs in Sec. 4.

Regarding (i), current versions of Linux provide a full-
fledged container abstraction called cgroups. With cgroups,
tasks can be organized into an arbitrarily-deep hierarchy of
containers. However, cgroups lack support for several fea-
tures vital to multi-criticality systems. First, Linux only
supports static-priority intra-container schedulers for real-
time tasks3 and has only rudimentary support for tracking
container budgets. Neither tracking budgets at multiple
criticality levels nor redistributing unused capacity at run-
time is supported. Hence, we have two avenues for realiz-
ing containers: either we establish a notion of a container
besides cgroups that is specific to LITMUSRTand real-time
tasks (as done previously to a limited exent in [9]), or we
extend cgroups to support pluggable intra-container sched-
ulers and accurate budget tracking and slack redistribu-
tion. While extending cgroups is certainly the much more
general solution, it remains to be seen whether cgroups
can be used for multi-criticality workloads with accept-
able overheads—since our proposed architecture has only
modest requirements in terms of container features (e.g., no
nesting, no migrations of containers), it may be preferable
to use a special-purpose implementation in practice. Also,
when ported to an avionics RTOS, Linux capabilities may
be irrelevant.

Concerning (ii), cyclic executives are commonly used
in embedded systems with a single, shared address space.
In such systems, a cyclic executive can be trivially im-
plemented as a “master loop” that repeatedly selects and
executes procedures that represent jobs based on a pre-
determined and hard-coded dispatch table. This approach,
however, does not work without modification in an OS with
address space protection such as LITMUSRT. The tradi-

3A second scheduler called CFS is available to non-real-time tasks.
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Figure 3: Three illustrations of slack scheduling corresponding to inset (c) of Fig. 1. (a) Example of correct slack scheduling: CA

exceeds the level-C execution time estimate CA.bC = 4 twice, which causes T6 to miss a deadline at time 20. Dynamic slack is
reassigned to complete the tardy job at times 21–24 to expedite its completion. (b) Example of incorrect slack scheduling: T6 misses a
deadline even though neither CA.bC nor CB .bC is exceeded. The deadline is missed because there was only one time unit of level-C slack
available at time three, but three time units were reassigned to level-D work. Consequently, temporal isolation was violated as level-D
work interfered with the level-C task T6. (c) Example of correct slack scheduling: The same scenario as in (b), but only one time unit
(the amount of level-C slack available) is reassigned at time three. Hence, temporal isolation is maintained and no deadline is missed.

tional way of implementing cyclic executives could be em-
ployed in LITMUSRT(and other systems with separate ad-
dress spaces) by realizing all real-time tasks of the same
criticality in one binary, i.e., the problem is trivial if only
one task is presented to the OS. However, it is very desir-
able to make use of separate address spaces if available be-
cause the verification of logical correctness becomes much
easier in this case (due to a reduction in size of the state

space that must be considered), and any run-time errors are
likely less catastrophic (e.g., the chances of aircraft survival
are probably gravely worse if all level-A tasks fail simulta-
neously than if only a single level-A task were to fail). Fur-
ther, if cyclic executive activity is hidden from the OS, then
slack scheduling becomes much more difficult. Hence, we
would like to support cross-address-space cyclic executives
at the OS level in LITMUSRT.



We already have gathered some experience with (iii). In
prior work, slack scheduling has been shown to greatly re-
duce response times of best-effort jobs in practice [9]. For
the reasons outlined above, we believe that slack schedul-
ing could also have a great impact in multi-criticality sys-
tems. However, several complications arise. Due to the
requirement to track multiple budgets, slack scheduling
is likely to become much more difficult and hence time
consuming. Runtime overheads will thus likely be non-
negligible and could even negate possible performance
gains. Further, it is unclear at which granularity slack
should be tracked—if the granularity is too low, then up-
dating budget-tracking data structures could likely become
a bottleneck in global schedulers due to contention. These
issues can only be investigated by benchmarking an actual
(prototype) implementation on real hardware.

4 Research Directions

While the proposed architecture is simple in structure, it
raises a number of interesting research questions.

For example, while cyclic executives are likely the only
viable choice for scheduling level-A (and maybe even
level-B) tasks due to verification reasons, more flexible
choices are likely preferable for less-critical levels. At the
same time, overhead considerations (e.g., kernel instruc-
tion and data cache footprints, kernel size, etc.) may place
strict limits on scheduler implementations. Which schedul-
ing algorithms are the “best” candidates, both in terms of
overheads and the ease of verification, for typical avion-
ics workloads? Is it feasible to support pluggable intra-
container schedulers in a real-world system, and are the
gains worth the added implementation complexity?

While multiprocessor real-time scheduling algorithms
have received much attention in isolation, an impor-
tant question raised by multi-criticality workloads is how
scheduling algorithms at each level affect each other. For
example, if G-EDF is employed for both levels C and D
on all cores, then it is not clear how to optimally allocate
container budgets. Should capacity requirements be spread
out among cores (e.g., to improve parallelism), or should
some cores be allocated exclusively to level-D processing
and others to level-C processing (e.g., to reduce tardiness)?

Obviously, another major open question is how to ad-
dress overruns at each level. For example, if a level-A task
overruns such that neither all level-B nor all level-C tasks
can complete by their respective deadlines, is it preferable
to abort level-C tasks and have level-B tasks finish on time
or is it better to accept tardiness for both level-B and level-
C tasks? How can slack scheduling be used to reduce the
impact of overruns?

Future extensions. Once we have a working prototype
implementation based on LITMUSRT, we plan to extend
our research into multi-criticality systems in three direc-
tions.

First, we would like to investigate the feasibility of
integrating our approach with an ARINC-653-compliant4

RTOS in joint work with industry colleagues. We expect
this study both to serve as a “reality check” for the pro-
posed architecture and our implementation techniques and
to yield recommendations for the development of future
standards for the implementation of avionics software on
multicore platforms.

Second, we intend to relax some of the requirements im-
posed on real-time tasks. Specifically, we plan to support
synchronization to enable resource-sharing among tasks.
Some of the questions that will arise in this context are how
critical sections can be integrated with the multi-criticality
model (sharing resources across criticality boundaries is es-
pecially troublesome) and how blocking analysis impacts
temporal isolation guarantees. Further, if critical sections
are long or allocation windows short, then the issue of
cross-allocation-window critical sections arises. This will
likely require the development of a more refined method of
choosing allocation windows.

Finally, we would like to extend the proposed archi-
tecture to support non-harmonic, sporadic, and aperiodic
workloads. This will require the development of new
budget-retaining techniques and will impact the choice of
allocation windows.

5 Concluding Remarks

We have illustrated the importance of supporting multi-
criticality workloads on multicore platforms in the context
of avionics and the RTCA DO-178B software standard. As
a first step, we have proposed an architecture to support the
special case of periodic task systems with harmonic peri-
ods and outlined some of the development challenges in-
herent in the proposed container-based system in the con-
text of LITMUSRT, a UNC-produced real-time extension
of Linux. Finally, we have illustrated numerous avenues
for future research based on the proposed architecture and
future exentensions.
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