
Quantum Support for Multiprocessor Pfair Scheduling in Linux

John M. Calandrino and James H. Anderson
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

This paper discusses several modifications to the Linux
operating system in order to support aligned, staggered,
and desynchronized quanta across multiple processors,
where a quantum is a unit of processor allocation. We
also evaluate one approach for supporting aligned quanta.
These types of quanta are required for global multipro-
cessor real-time scheduling algorithms such as PD2 (a
Pfair algorithm). Additionally, we consider the issue of
increasing the frequency of timer interrupts to allow for
the smallest quantum possible, and discuss impediments
to higher timer interrupt frequencies. Smaller quanta
are important, as they can increase the efficiency of
quantum-based scheduling algorithms; however, they are
more sensitive to quantum alignment error.

1 Introduction

In multiprocessor real-time systems, global scheduling al-
gorithms are often believed to be inefficient when com-
pared with partitioned approaches, primarily due to in-
creased scheduling, preemption, and migration costs. Pfair
scheduling algorithms [2, 1, 7] are the only known opti-
mal multiprocessor scheduling approach. However, they
are also global scheduling algorithms. Their optimality is
based on the assumption, common in theoretical work in
real-time systems, that the costs noted above are negligible.
While the emergence of multicore architectures is making
this a more reasonable assumption than before, quantum-
based algorithms such as Pfair algorithms also suffer from
other less-discussed issues in practice.

First, it is often hard to achieve the types of quanta re-
quired for such algorithms. Optimal Pfair scheduling algo-
rithms require perfectly aligned quanta. In addition, sub-
optimal Pfair algorithms have been proposed that ensure
bounded deadline tardiness and that require quanta that are
either staggered [6] or desynchronized [4]. These types of
quanta, which are defined and discussed more thoroughly
in Section 4, are unsupported, or difficult to support, espe-
cially in general-purpose operating systems.

Second, requiring that all scheduling decisions be made
only on quantum boundaries can create scenarios where a
substantial amount of processor utilization is wasted. For
example, a task that has an execution cost equal to 1.01
quanta will have to be allocated two quanta for every job. If
we use an optimal Pfair algorithm for scheduling, then the

second quantum allocated to a job will be 99% unutilized,
and as a result, the job will waste nearly half of its total pro-
cessor allocation. In the worst case, where quantum sizes
are very large relative to the execution costs (or execution
costs modulo the quantum size) of tasks, this could result in
a highly inefficient scheduling algorithm that underutilizes
the system.

This paper describes an effort to alleviate these issues
in the Linux operating system. Specifically, we explore
strategies for supporting quanta that are perfectly aligned
across processors, staggered, or desynchronized, primar-
ily to provide support for efficient implementations of
quantum-based, global, multiprocessor real-time schedul-
ing algorithms such as PD2, a Pfair algorithm. Addition-
ally, we investigate the issue of increasing the frequency of
timer interrupts as much as possible, thereby minimizing
the duration of a quantum and the potential inefficiency of
quantum-based scheduling approaches.

This paper is organized as follows. Section 2 briefly in-
troduces Pfair scheduling algorithms. Section 3 provides
an introduction to the timer facilities provided in hardware,
and how they are used in Linux, specifically in the con-
text of when and how the scheduler is called. Section 4
describes how we might modify Linux to achieve various
types of quanta, and discusses the pros and cons of sev-
eral approaches. Section 5 demonstrates the benefit of our
approach for generating aligned quanta. Finally, Section 6
concludes.

2 Pfair Scheduling Algorithms

We now provide a brief introduction to Pfair scheduling
algorithms, which can be used to schedule periodic task
systems. Each task in such a system is invoked repeatedly;
each such invocation is called a job of the task. A periodic
task is specified by a period, which denotes the (exact) sep-
aration between its successive job releases, and by an exe-
cution cost, which denotes the maximum execution time of
any of its jobs. Each job of a task has a deadline corre-
sponding to the release time of the next job of that task.
Task periods and execution costs are assumed to be inte-
gral with respect to the length of the system’s scheduling
quantum, and therefore non-integral execution costs must
be rounded up to the next integer value. The utilization or
weight of a task is given by the ratio of its execution cost
and period.

In Pfair scheduling algorithms [2, 7], a task T of weight
T.wt is scheduled one quantum at a time in a way that ap-



proximates an ideal allocation in which it receives L ·T.wt

time over any interval of length L. This is accomplished
by sub-dividing each task into a sequence of quantum-
length subtasks, each of which must execute within a cer-
tain time window, the end of which is its deadline. Sub-
tasks are scheduled on an earliest-deadline-first basis, and
tie-breaking rules are used in case of a deadline tie. A task’s
subtasks may execute on any processor, but not at the same
time (i.e., tasks must execute sequentially). The most effi-
cient known optimal Pfair algorithm is PD2 [1, 7], which
uses two tie-breaking rules. The performance of PD2 de-
pends substantially on the type of scheduling quanta used,
as we will discuss further in Section 4. Additionally, if a
task is allocated a quantum when it requires less execution
time, the unused portion of that quantum is “wasted.” This
is in contrast to other global multiprocessor scheduling
approaches, such as global earliest-deadline-first (EDF),
where such a task would relinquish its assigned quantum
“early,” allowing another task to be scheduled.

3 Introduction to Timers in Linux

We begin our discussion of timers by describing the plat-
form we assume in this paper. Our platform is a symmetric
multiprocessor (SMP) architecture consisting of four 32-bit
Intel(R) Xeon(TM) processors running at 2.70GHz. Each
processor has private 8K instruction and data caches, and
a private, unified, 512K L2 cache. The machine has 2GB
of main memory. Our platform uses the Linux 2.6.9 kernel
configured to run on an SMP architecture, and most aspects
of what is discussed in this paper should remain the same
for (at least) any release version of Linux 2.6. The timer
interrupt hardware and its operation in Linux are shown in
Figure 1. Note that the following overview of timer inter-
rupts in Linux is based heavily on the material in [3].

3.1 Local Timer Interrupts

In the configuration described above, each processor con-
tains an Advanced Programmable Interrupt Controller, or
APIC, which is on the same chip as the processor itself. A
local APIC timer is capable of generating local timer in-
terrupts at each processor, without the need for an external
timer interrupt source. In Linux, scheduling decisions are
made in the local timer interrupt handlers, thus supporting
the notion of a scheduling quantum. As each APIC is pro-
grammed to generate these interrupts at the same frequency
on all processors, and all local APIC timers are driven by
the same external clock signal, the size of a quantum is
identical across all processors. However, this does not im-
ply that such quanta are aligned across all processors—for
this to be the case, all local APIC timers would have to be
programmed and enabled at the same time (within some
level of precision). In Linux, this is unlikely, since proces-
sor 0 enables its APIC timer with a different routine from
all other processors in the system, and the time at which
each processor in the system will come online and begin
its boot sequence with respect to every other processor is

Local A
PIC

Local A
PIC

Local A
PIC

Local A
PIC

0

1

M−1

interrupts
distribute

APIC
I/O

generate local interrupts
at each local APIC

P

P

P

P

2

External Timer

generate global
interrupts

(PIT/HPET)

Figure 1: Timer interrupt hardware. The external timer chip gen-
erates global timer interrupts, which are passed to the IO-APIC
and distributed to a single processor. Local timer interrupts are
generated by the local APIC at every processor.

not predictable. In fact, the amount of time between when
different processors come online is not only unpredictable,
but could even exceed the duration of a quantum in the ex-
treme case. It is important to note, however, that since all
timers are driven by the same clock signal, the amount by
which quanta are misaligned across all processors should
not change significantly after the system boots. Therefore,
if we had some way of initially synchronizing all proces-
sors such that all APIC timers were enabled at the same
time, we would be able to support aligned quanta.

3.2 Global Timer Interrupts

There is also a second type of timer interrupt generated in
Linux, the global timer interrupt. These interrupts are gen-
erated by an external source—a separate timer chip, most
often the Programmable Interval Timer, or PIT. A second,
more accurate timer chip, called the High Precision Event
Timer, or HPET, also exists, and is expected to subsume the
PIT in the near future. In Linux, this timer is programmed
to generate interrupts at the same frequency as the local
APIC timers—in fact, every local APIC uses the global
timer interrupt to calibrate itself during setup in Linux.

Interrupts from this chip are received by a device known
as the Input/Output Advanced Programmable Interrupt
Controller, or IO-APIC. This device is responsible for de-
termining how to distribute the global timer interrupt across
all processors. In Linux, the IO-APIC is programmed
to distribute each global timer interrupt to a single pro-
cessor (received by the local APIC at that processor as
an external interrupt) using a pseudo-“round-robin” pol-
icy. The global timer interrupt handlers perform periodic
processor-independent activities such as updating system



P1

P2

P3

time

0P

P1

P2

P3

P0

time

P1

P2

P3

P0 X

X

X X

time

(a) (b) (c)

Figure 2: Various types of quanta on a four-processor machine:
(a) aligned quanta; (b) staggered quanta; (c) desynchronized
quanta. Black dots indicate the quantum boundaries at each pro-
cessor. An “X” indicates where a processor went idle (due to the
completion of its scheduled job before the end of the quantum),
thus indicating both where the processor called the scheduler and
the start of the next quantum.

uptime (measured in jiffies, or the interval of time between
two consecutive global timer interrupts). While any sched-
uler called in the local timer interrupt may use the system
uptime when making scheduling decisions, there are no ac-
tual scheduling decisions made during the global timer in-
terrupt.

4 Supporting Quanta in Linux

We next describe several types of quanta and the ways in
which we modified Linux in an attempt to support them.
Three types of quanta are supported, as mentioned briefly
in Section 1, and shown in Figure 2. With aligned quanta,
quantum boundaries are at identical times on every pro-
cessor, i.e., quanta are aligned across all processors. With
staggered quanta, first proposed in [6], quantum bound-
aries are not aligned but are instead staggered so that every
processor performs scheduling activities at different, but
predictable, times. For example, consider a four-processor
system with a quantum size of 4 time units. If processor
0 has a quantum boundary at time x, then processors 1, 2,
and 3, would (ideally) have quantum boundaries at times
x + 1, x + 2, and x + 3, respectively. Note that all proces-
sors still have quanta of identical size. Staggered quanta
alleviate issues related to bus contention that can occur
with aligned quanta during rescheduling, as the overhead
of scheduling and related costs (i.e., preemption and mi-
gration) are now better distributed across time, rather than
creating large spikes in bus activity at every (aligned) quan-
tum boundary.

Finally, with desynchronized quanta, processors may
make scheduling decisions between quantum boundaries,
if a processor goes idle during that time due to the
(early) completion of the previously-scheduled job. When
scheduling decisions are made between quantum bound-
aries, the next quantum boundary is set to be one quan-
tum away, thus leading to a controlled desynchronization
of quanta across all processors. Such quanta can initially
be aligned or staggered, but staggered, if available, would
likely generate less overhead.

Note that, while we attempt to support both staggered
and desynchronized quanta, both result in a sub-optimal
Pfair algorithms, where deadlines can be missed by one

P1

P2

P3

P0

time

aligned

no delay

re−enabling APIC
delay before all quanta

Figure 3: Example of the proposed modification to support
aligned quanta in Linux, described in Section 4.1, assuming all
processors have already seen their 100, 000

th local interrupt, and
recorded at least 50 interrupt invocation times from the TSC.

(full) quantum [4, 6]. This amount, however, is still con-
siderably less than the amount by which tasks can miss
deadlines with other global multiprocessor scheduling ap-
proaches, such as global EDF [5].

4.1 Supporting Aligned Quanta

We supported aligned quanta by employing the following
method, shown in Figure 3.

• Allow the system to boot, and both global and lo-
cal timer interrupts to initialize normally. To al-
low enough time for this to occur, we wait until the
100, 000th local interrupt is generated at every pro-
cessor.

• When each processor sees its 100, 000th local inter-
rupt, it begins recording the times at which its inter-
rupt handler is being invoked by recording the value of
the Time Stamp Counter (TSC), a cycle-based 64-bit
counter that records system uptime in nanoseconds.
Each processor keeps a record of the time at which
the last 100 local timer interrupts have been invoked.

• All processors except processor 0 wait until proces-
sor 0 and themselves have recorded at least 50 inter-
rupt invocation times from the TSC. When this occurs,
they use the TSC measurements to calculate how mis-
aligned they are with respect to processor 0, and by
how much they need to delay to align themselves.

• Each processor except processor 0 then disables and
resets its local APIC timer, so that when it is re-
enabled, it will generate its next interrupt after a full
timer period.

• Finally, each processor except processor 0 delays ap-
propriately, and then re-enables its local APIC timer.



• If necessary, after all other processors have aligned
themselves, processor 0 makes a small adjustment to
its own interrupt generation times, if necessary, to pre-
vent the calculation of negative delay times on the
other processors, by delaying for an appropriate time
and resetting its APIC timer as described for the other
processors.

We determine how much to delay at each of M proces-
sors by solving a system of M equations representing the
delay and quantum boundary offsets of every processor.
Consider as an example a four-processor system, which
generates the following system of equations. Assume that a
local timer interrupt occurs on processor p when the system
has been up for tp nanoseconds, and we wish to calculate
the amount of delay, dp, required on processor p to bring
all quanta into alignment.

∀p : 0 ≤ p < M − 1 :: (tp + dp = tp+1 + dp+1) (1)

Solving the system of equations for d0, we get

d0 = d0 (2)
d1 = d0 + t0 − t1

d2 = d0 + t0 − t2

d3 = d0 + t0 − t3.

Since we still want all delays to be non-negative, we calcu-
late d0 as follows. Note that d0 may be non-zero—this will
allow some other processor to have a zero delay instead of
a negative delay, as seen in Figure 3 for P1.

d0 = max(0, t1 − t0, t2 − t0, t3 − t0) (3)

Such delays were realized using a non-timer-based kernel
delay function called udelay, which is implemented using
a software loop with µs granularity.

By delaying for the times specified by these equations,
all local timer interrupts are brought into alignment with
each other; in experiments conducted by us and discussed
later in Section 5, the resulting interrupt invocations on
each processor differed by approximately twenty-five mi-
croseconds at most. Using this method, we can get aligned
quanta even if quanta were misaligned by hundreds of mi-
croseconds before delaying. We cannot make such a state-
ment about standard Linux—if all processors do not come
online and initialize their APICs at approximately the same
time, quanta can be substantially misaligned. Additionally,
we note that these delays are typically small, and therefore
do not cause other interrupts to be missed, nor do other in-
terrupts have the capability to interfere significantly with
delay times. As we perform these delays during boot time,
there are few interrupts generated besides those associated
with the timers, since neither the network nor most I/O de-
vices are yet initialized, and the user is not yet interact-
ing with the machine. This is particularly true on pro-
cessors 1 and above, which receive only their local timer
interrupts until the irqbalance service is initialized, which
distributes interrupts across processors rather than always
sending them to processor 0.

Note that our method is reasonably straightforward and
quite accurate. Our earlier attempts to implement aligned
quanta relied on substantially more complex approaches,
involving broadcasting the global timer interrupt to all pro-
cessors, or using interprocessor interrupts (IPIs) to syn-
chronize all local timer interrupts. Both approaches were
difficult to implement correctly, due to the sensitivity of
some components of Linux to any changes in how timer
interrupts are distributed, and also were not very effective.
Finally, as we will see in the following sections, our method
is easily extensible to support other quantum alignments
and durations.

4.2 Supporting Staggered Quanta

Supporting staggered quanta, in an effort to prevent high
levels of bus contention when all processors execute
scheduling code and perform other scheduling activities
at the same time, can be slightly more complicated. Two
methods can be employed to support staggered quanta:

• Modify when the scheduler is invoked: provide sup-
port for aligned quanta, but instead of invoking the
scheduler every interrupt, processor 0 would invoke
the scheduler during the first interrupt, followed by
processor 1 during the second interrupt, etc.

• Add additional delay at each processor: after achiev-
ing aligned quanta, delay for an additional amount at
each processor to get the stagger we desire.

We will now discuss each method in detail. Figure 4 shows
each approach assuming a four-processor machine.

4.2.1 Modify When the Scheduler is Invoked

The simplest way to provide staggered quanta is to lever-
age support for aligned quanta, but instead of invoking the
scheduler on every processor at every (aligned) timer in-
terrupt, we invoke it every x timer interrupts, where x is a
multiple of the number of processors in the system. Stag-
gered quanta are then achieved by equally spacing these
scheduler invocations across the processors. For example,
on a four-processor system where the quantum is 4 timer
interrupts long (i.e., x = 4), and processor 0 invokes its
scheduler at timer interrupt t, processors 1, 2, and 3 should
invoke their schedulers at timer interrupts t + 1, t + 2, and
t + 3, respectively.

While this is the most straightforward way to implement
staggered quanta, as it is both intuitive and relies on an
implementation of aligned quanta (so we do not need to
further modify when timer interrupts are generated), it re-
sults in larger quantum sizes than aligned quanta. On a
machine with M processors, our quantum duration would
have to be at least M times as large for staggered quanta
as for aligned quanta, using this approach. Therefore, an
approach that allows the same minimum quantum duration
as aligned quanta is desirable.



P1

P2

P3

P0

(dotted lines)
aligned timer interrupts

time

perform
scheduling
activites
(black
dots)

P1

P2

P3

P0

re−enabling APIC
delay before

staggered
all quanta

time
(a) (b)

Figure 4: Modifications to support staggered quanta in Linux. (a) Use aligned quanta, invoke the scheduler only at certain interrupts to
create staggered quanta (Section 4.2.1); (b) delay each processor appropriately in its local interrupt handler before re-enabling its APIC
timer (Section 4.2.2), in a similar manner to the method described in Section 4.1.

4.2.2 Add Additional Stagger Delay

Our final approach requires that we first achieve aligned
quanta, and then add the necessary delay at each processor
that will allow us to get staggered quanta. We can easily
calculate this extra delay as follows. Let s be the duration
of a quantum divided by the number of processors in the
system. For example, with a quantum duration of one mil-
lisecond and four processors, s is 250 microseconds. For
processor P , the stagger delay is P · s. For processors 0
through 3 in a four-processor system, these delays would
be 0, 250, 500, and 750 microseconds, respectively. By de-
laying for the times specified, all local timer interrupts are
staggered appropriately.

4.3 Supporting Desynchronized Quanta

Desynchronized quanta are supported by disabling, reset-
ting, and re-enabling the local APIC timer whenever intra-
quanta scheduling decisions are made, thereby readjusting
the quantum duration and alignment. When supporting
desynchronized quanta, we can begin with either aligned or
staggered quanta. However, starting with staggered quanta
would likely eliminate any chance of high bus contention
(due to scheduler invocations) in the system.

4.4 Reducing Quantum Size

We next attempt to reduce the duration of a quantum in
the Linux operating system. Smaller quanta are desirable,
as their use in Pfair scheduling algorithms may result in
less processor idling. In particular, in such algorithms,
the overall utilization of the system is highly dependent on
quantum duration, as this determines the time granularity
at which scheduling decisions are made, and therefore the
units by which the execution costs of tasks are effectively
determined. If the duration of a quantum is too large, then
the WCET of a task may force it to be scheduled for an
additional quantum, which is highly underutilized, and this
may result in a very low effective system utilization.

As an example, consider a task with an execution cost
of 1.1 milliseconds. If the duration of a quantum is one
millisecond, then such a task will need two quanta allo-
cated to every job. However, each job will only use 10%
of the second allocated quantum, resulting in only a 55%
utilization of the time it has been allocated by the sched-
uler. If the duration of a quantum was 500 microseconds,
then the job needs three quanta; however, it only uses 20%
of the third quantum, resulting in a utilization of roughly
73%. If, however, the duration of a quantum was 100 mi-
croseconds, then there would be no waste at all—each job
would require, and fully utilize, 11 quanta (assuming that
the WCET of the task is its actual execution time). (Of
course, with a smaller quantum, scheduling and preemp-
tion costs are greater. We have ignored such issues in this
simple example.)

The duration of a quantum is dictated by the frequency
of timer interrupts in the system. The frequency of both
local and global timer interrupts is governed by a constant
called HZ in Linux. This value is set to 1000 by default in
Linux 2.6.9, allowing for, at best, a one millisecond quan-
tum duration. (The value is set lower in lower versions
of the kernel due to overhead concerns on slower proces-
sors, and in higher versions of the kernel due to power con-
sumption concerns, neither of which concern us). We have
attempted to increase this value as high as possible, and
thus far, we have increased it to 3750, providing support for
quanta only slightly larger than 250 microseconds. Apply-
ing a patch found in the online Linux community (see the
post at [8]), which should allow for frequencies as high as
10000, did not help. These difficulties appear to be due to
timer calibration issues, and may also be due to the hard-
ware configuration of our system. Higher timer interrupt
frequencies have the potential to cause networking and user
I/O-related (e.g. keyboard input, terminal output) protocols
to operate incorrectly, as well, as they appear to be highly
dependent on the system timer frequency. Overall, we are
uncertain whether other aspects of our system configura-
tion, or a critical path in Linux, are limiting additional fre-



0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90
Frequency Distribution of Quantum Alignment Error

Alignment Error (µs)

F
re

qu
en

cy

Figure 5: Quantum alignment error using our method.

quency gains.
It is important to note that the use of smaller quanta

magnifies any error related to quantum alignment among
all processors. For example, we earlier claimed that quan-
tum boundaries across processors differ by about twenty-
five microseconds in the worst case. Using a HZ value
of 1000 results in a quantum duration of one millisecond
and an alignment error of 25

1000
× 100 = 2.5%. With a

HZ value of 3750, we have an alignment error of approxi-
mately 9.4%, which is substantially larger and might result
in serious timing errors.

5 Experimental Evaluation

We implemented and evaluated our approach for generating
aligned quanta. Results are shown in Figure 5. These re-
sults were obtained by measuring the time between the first
and last invocation of a particular timer interrupt across all
processors. These times were measured by reading the TSC
at the beginning of the local timer interrupt handler. Over-
all, 100 interrupt invocations were measured after Linux
had fully booted and stabilized. More measurements were
not taken due to constraints on sizes of files in the proc di-
rectory, to which data was written. However, we have yet
to observe an instance where the quantum alignment error
changed significantly over time after the system had booted
and stabilized. This is probably related to the fact that all
timers are driven by the same external clock signal, as men-
tioned in Section 3.

It appears that our method of generating aligned quanta
has a significant impact. Note that alignment error never
exceeds approximately 25 microseconds with our method.

6 Conclusion

This paper discussed ways to support aligned, staggered,
and desynchronized quanta in the Linux operating system,
in order to provide support for Pfair multiprocessor real-

time scheduling algorithms, such as PD2, in Linux. Addi-
tionally, an implementation of aligned quanta was experi-
mentally evaluated. We also determined that the frequency
of timer interrupts can be increased as high as 3750 hertz
without problems, resulting in a quantum duration of ap-
proximately 250 microseconds. The use of a smaller quan-
tum, however, magnifies any quanta alignment error among
all processors and could result in timing errors. As Pfair
scheduling algorithms are theoretically optimal for mul-
tiprocessors, the work in this paper is significant in that
brings us one step closer to realizing the full potential of
such algorithms in practice.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair
scheduling of asynchronous periodic tasks. Journal of
Computer and System Sciences, 68(1):157–204, Febru-
ary 2004.

[2] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Pro-
portionate progress: A notion of fairness in resource
allocation. Algorithmica, 15:600–625, 1996.

[3] D. Bovet and M. Cesati. Timing measurements. In Un-
derstanding the Linux Kernel, 3rd edition, pages 227–
257. O’Reilly Publishers, 2005.

[4] U. Devi and J. Anderson. Desynchronized Pfair
scheduling on multiprocessors. Proceedings of the
19th IEEE International Parallel and Distributed Pro-
cessing Symposium, April 2005.

[5] U. Devi and J. Anderson. Tardiness bounds for global
EDF scheduling on a multiprocessor. Proc. of the 26th
IEEE Real-time Systems Symposium, Dec. 2005.

[6] P. Holman and J. Anderson. Adapting Pfair scheduling
for symmetric multiprocessors. Journal of Embedded
Computing, 1(4), 2005. to appear.

[7] A. Srinivasan and J. Anderson. Optimal rate-based
scheduling on multiprocessors. In Proc. of the 34th
ACM Symposium on Theory of Computing, pages 189–
198, May 2002.

[8] J.-M. Valin. Increasing HZ (patch for HZ >

100). http://www.uwsg.iu.edu/hypermail/linux/kernel/
0312.1/0858.html, December 2003.


