
Using k-Exclusion to Implement Resilient, Scalable

Shared Objects�

(Extended Abstract)

James H. Anderson and Mark Moir

Department of Computer Science

The University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27599-3175, USA

Abstract

We present a methodology for the implementation of

resilient shared objects that allows the desired level of

resiliency to be selected based on performance concerns.

This methodology is based on the k-exclusion and re-

naming problems. To make this methodology practi-

cal, we present a number of fast k-exclusion algorithms

that employ \local spin" techniques to minimize the im-

pact of the processor-to-memory bottleneck. We also

present a new \long-lived" renaming algorithm. Our k-

exclusion algorithms are based on commonly-available

synchronization primitives, are fast in the absence of

contention, and have scalable performance when con-

tention exceeds expected thresholds. By contrast, all

prior k-exclusion algorithms either require unrealistic

atomic operations or perform badly. Our k-exclusion

algorithms are also the �rst algorithms based on local-

spin techniques that tolerate process failures.

1 Introduction

In recent years, the distributed algorithms commu-

nity has spent considerable e�ort investigating resilient

shared object implementations for shared-memory mul-

tiprocessing systems. A shared object is a data struc-

ture, along with associated operations, that is shared by

a collection of processes. An implementation of such an

object is k-resilient i� any process can complete any op-

eration in a �nite number of steps, provided at most k

�Work supported, in part, by NSF Contract CCR 9216421.
Email: fanderson,moirg@cs.unc.edu. Phone: (919)962-1757.

other processes fail undetectably. In the literature on re-

silient shared objects, \wait-free" objects have received

the most attention. An N -process object implementa-

tion is wait-free i� it is (N � 1)-resilient.

Although wait-free shared objects have many advan-

tages, they have seen only limited application in real

systems. One reason is that wait-free algorithms often

have time complexity that is at least proportional to

N , the number of processes; hence, performance does

not scale well as the number of processes increases. In

many such algorithms, such poor scalability is largely

the result of having to tolerate N � 1 process failures.1

However, in a well-designed application, one would sel-

dom expect all processes to compete simultaneously for

a single object. In short, wait-freedom links resiliency to

worst-case contention, and this can be overkill in prac-

tical settings.

From a performance standpoint, linking resiliency to

expected levels of contention may be preferable. So do-

ing requires a methodology for implementing objects at

intermediate levels of resiliency. Such a methodology

can be based on solutions to the k-exclusion [9] and k-

assignment [3] problems. The k-exclusion problem ex-

tends the well-known mutual exclusion problem [7] by

allowing up to k processes to be in their critical sec-

tions simultaneously. k-assignment extends k-exclusion

by requiring each process in its critical section to obtain

a unique name taken from a �xed set of k names. So-

lutions to both problems must be able to cope with the

failure of up to k � 1 processes.

A (k� 1)-resilient shared object can be implemented

by encasing a wait-free, k-process implementation of

that object within a k-assignment \wrapper". This

wrapper permits only k processes to enter the wait-free

implementation, and assigns entering processes unique

1Exceptions include objects, such as snapshot objects, in which
operations return state information that is at least O(N) in size.
By de�nition, such objects will not scale well, even at lower levels
of resiliency.

1

Ref. Complexity w/ Contention Complexity w/o Contention Instructions Used

[9] 1 O(1) Large Critical Sections

[10] 1 O(1) Large Critical Sections

[8] 1 O(N2) Safe Bits

[1] 1 O(N) Atomic Read and Write

Thm. 3 O(k log(N=k)) w/ coherent cache O(k) Read, Write, Fetch-and-Increment

Thm. 7 O(k log(N=k)) O(k) Above and Compare-and-Swap

Table 1: A comparison of k-exclusion algorithms.

names from a range of size k to use within that imple-

mentation. This approach allows k � 1 process failures

to be tolerated. Hence, if contention is at most k, such

an implementation is e�ectively wait-free.

For this methodology to be useful, fast k-assignment

algorithms are needed. Unfortunately, prior work on

such algorithms has been devoted to message-passing

systems. Even for the easier k-exclusion problem, the

situation is not encouraging. As shown in Table 1, all

prior k-exclusion algorithms for shared memory systems

either require unrealistic atomic operations or perform

badly. In this table, time complexity is measured as the

number of remote accesses of shared memory required

per critical section acquisition. An access is remote if it

requires a traversal of the global interconnect between

processors and shared memory, and local otherwise. We

measure time complexity in terms of remote accesses

because performance studies have shown that minimiz-

ing such accesses is important for scalable performance

[2, 11, 12, 14]. In practice, a shared variable can be made

locally-accessible by storing it in a local cache-line or in

a local partition of distributed shared memory.

In this paper, we present several fast k-exclusion al-

gorithms, for cache-coherent and distributed shared-

memory machines. For both classes of machines, we

present algorithms with O(k) complexity if contention

is at most k, and O(k log(N=k)) if contention exceeds

k. As seen in Table 1, these algorithms are based

on commonly-available synchronization primitives. We

present several other algorithms in addition to these,

including algorithms that exhibit performance that de-

grades gracefully as contention rises. To achieve good

performance in the presence of contention, our algo-

rithms employ \local-spin" techniques to minimize re-

mote accesses of shared memory [2, 11, 12, 14]. We

show that our k-exclusion algorithms can be extended

to solve k-assignment, speci�cally by using a new solu-

tion to the renaming problem [3, 4, 5]. This new solution

is the �rst that is long-lived, i.e., that allows each pro-

cess to repeatedly obtain and release names. It is based

on test-and-set, requires a name-space of exactly k, and

has time complexity O(k).

The remainder of this paper is organized as follows.

In Section 2, we present de�nitions used in the rest of

the paper. In Section 3, we present our k-exclusion algo-

rithms, and in Section 4, we show that these algorithms

can be extended to implement k-assignment. Conclud-

ing remarks appear in Section 5.

2 De�nitions

Our programming notation should be self-explanatory;

as an example of this notation, see Figure 1. In this

and subsequent �gures, each numbered statement is as-

sumed to be atomic. A program's semantics is de�ned

by a set of histories. A history of a program is a sequence

t0
s0
!t1

s1
!� � �, where t0 is an initial state and ti

si
!ti+1 de-

notes that state ti+1 is reached from state ti via the

execution of statement si.

When reasoning about programs, we de�ne safety

properties using invariant and unless assertions and

progress properties using leads-to assertions [6]. A state

assertion is an invariant i� it holds in each state of ev-

ery history. For state assertions B and C, B unless C

holds i� for each pair of consecutive states in each his-

tory, if B ^:C holds in the �rst state, then B_C holds

in the second. B leads-to C in a history t0
s0
!t1

s1
!� � � i�

for each state ti in which B holds, there is a state tj in

which C holds, where j � i.

In the k-exclusion problem, each process cycles

through a noncritical section, an entry section, a crit-

ical section, and an exit section. At most k processes

may be in their critical sections at any time. To de�ne

the progress property for this problem, it is necessary

to distinguish between faulty and nonfaulty processes.

For a given history, if a process is not in its noncritical

section, and executes no statements after some state,

then it is faulty; otherwise, it is nonfaulty. If at most

k�1 processes are faulty, then any nonfaulty process in

its entry (exit) section must eventually reach its criti-

cal (noncritical) section. The k-assignment problem ex-

tends the k-exclusion problem by requiring each process

p to have a local variable p:name ranging over 0::k� 1.

If distinct processes p and q are in their critical sections,

then it is required that p:name 6= q:name.

As mentioned previously, we focus on cache-coherent

and distributed shared-memory machines, and measure

2

shared variable X : (k �N)::k ; Q : queue of 0::N � 1
initially X = k ^Q = null

process p =� 0 � p < N �=

while true do

0: Noncritical Section ;

1: h if fetch and increment(X;�1) � 0 then =� If no critical section slots are available... �=

Enqueue(p;Q) i ; =� ... then get into queue ... �=
2: while Element(p;Q) do =� null �= od =� ... and busy-wait until released �=

� ;

Critical Section ;
3: h Dequeue(Q) ; =� Remove �rst process from Q �=

fetch and increment(X;1) i =� Increase counter of available slots again �=

od

Figure 1: (N;k)-exclusion using atomic queue procedures.

complexity by counting \remote" references of shared

memory. On distributed shared-memory machines, each

shared variable is local to one processor, and remote to

all others. Thus, the distinction between local and re-

mote references is straightforward. On cache-coherent

machines, making this distinction is more problematic.

The main di�culty is determining how many cache

misses a busy-wait construct generates. In our cache-

coherent algorithms, all busy-waiting is by means of

simple loops of the form \while Q = p do od", where

Q is a shared variable and p is the id of the spinning

process. We assume that such a loop generates at most

two remote references. In particular, we assume that the

�rst read of Q generates a remote reference that causes

a copy of Q to migrate to p's local cache. Subsequent

reads before Q is written are therefore local. When an-

other process modi�es Q, the cache entry is invalidated,

so the next read of Q generates a second remote refer-

ence, and the loop to terminates. We de�ne contention

to be the maximum number of processes outside their

noncritical sections. Suppose that each matching entry

and exit section of an algorithm together generate at

most t remote references if executed while contention

is at most c. We say that such an algorithm has time

complexity t if contention is at most c.

Notational Conventions: The predicate p@i holds

i� process p's program counter has the value i. We

use p@S as shorthand for (9i : i 2 S :: p@i). We use

p:i to denote statement i of process p, and p:var to

represent p's local variable var. We refer to k-exclusion

for N processes as (N; k)-exclusion; similarly for (N; k)-

assignment. It is assumed that k > 0, N > k, and that

p, q, and r range over 0::N � 1. 2

3 k-Exclusion

In this section, we present algorithms that e�ciently

implement k-exclusion using commonly available prim-

itives. On �rst thought, it may seem that k-exclusion

can be easily solved using a queue. To see the di�culties

involved with such an approach, consider the simple al-

gorithm in Figure 1. The shared variable X counts the

number of processes that may safely enter the critical

section and is initially k. When X � 0, a process trying

to enter the critical section waits within the queue Q.

Enqueue(p;Q) and Dequeue(p;Q) are the normal queue

operations, and Element(p;Q) is a function that returns

true i� p is in Q. Multi-line atomic statements are en-

closed in angle brackets.

Aside from the multi-line atomic statements, there

are two di�culties involved with implementing this al-

gorithm. First, the queue operations typically require

several atomic steps if implemented using only simple

primitives. Such an implementation is complicated by

the possibility that a process may fail after having only

partially executed a queue operation. Second, a queue

imposes a linear order on the waiting processes. If a

process in the queue fails, then other processes in the

queue are blocked.

Note that both problems disappear when N = k +

1, because at most one process ever waits in the

queue. This insight is the basis of the algorithms

we present. Speci�cally, we concentrate on solving

(k + 1; k)-exclusion, and then inductively apply such a

solution to solve (N; k)-exclusion.

3.1 Algorithms for Cache-Coherent Ma-

chines

In this section, we present a (k + 1; k)-exclusion algo-

rithm for cache-coherent machines, and then use the

inductive approach explained above to solve (N; k)-

exclusion. The idea of having one process in the queue

is approximated by using a shared variable Q to store

the identi�er of the process \in the queue".

The algorithm is shown in Figure 2. It uses two pro-

cedures, Acquire and Release, which are assumed to im-

3

shared variable X : �1::k ; Q : 0::N � 1 =� Counter of available slots and spin location �=

initially X = k ^ (8p : 0 � p � N :: p@0)

process p =� 0 � p < N �=

while true do

0: Noncritical Section ;

1: Acquire(N;k+ 1) ; =� Entry section of (N; k + 1)-exclusion �=

2: if fetch and increment(X;�1) = 0 then =� No slots available �=
3: Q := p ; =� Initialize spin location �=

4: if X < 0 then =� Still no slots available - must wait �=

5: while Q = p do =� null �= od =� Busy-wait until released �=
� � ;

Critical Section ;

6: fetch and increment(X;1) ; =� Release a slot �=
7: Q := p ; =� Release waiting process (if any) �=

8: Release(N;k+ 1) =� Exit section of (N;k + 1)-exclusion �=

od

Figure 2: (N;k)-exclusion on a cache-coherent machine.

plement (N; k + 1)-exclusion. That is, we have the fol-

lowing properties, where the latter two are required to

hold only if process p is nonfaulty and at most k � 1

processes are faulty.

invariant jfq :: q@f2::8ggj � k + 1 (I1)

p@1 leads-to p@2 (L1)

p@8 leads-to p@0 (L2)

It is assumed that the variables used by Acquire and

Release are distinct from those in the remainder of the

algorithm. Note that if N = k + 1, then Acquire and

Release are trivially implemented by skip statements.

We later use this as the basis of an induction to show

that (N; k)-exclusion can be implemented e�ciently.

Lemma 1: The algorithm in Figure 2 implements

(N; k)-exclusion.

Proof Sketch: This algorithm is proved correct by es-

tablishing the following properties.

� k-Exclusion: invariant jfp :: p@6gj � k.

� Starvation-Freedom: If process p is nonfaulty and

at most k � 1 processes are faulty, then p@1 leads-

to p@6. Assuming (L2), the progress proof for the

exit section is trivial.

For brevity, we state most assertions without proofs,

and give only brief descriptions of the major proofs.

Complete proofs will be given in the full paper. The

following invariants are used to prove k-Exclusion.

invariant X = k � jfp :: p@f3::6ggj (I2)

invariant X < 0) (9p :: p@3 _ (p@f4; 5g ^Q = p))

(I3)

invariant jfp :: p@6gj � k (I4)

(I2) and (I3) are straightforward to prove directly. To

show that (I4) holds, we consider two cases. If X � 0

holds, then by (I2), jfp :: p@f3::6ggj � k holds, so (I4)

holds. If X < 0 holds, then by (I3), (9p :: p@f3; 4; 5g)

holds, so by (I1), (I4) holds. This proves k-Exclusion.

The following unless property is used in the proof of

Starvation-Freedom.

p@5 ^Q 6= p unless p@6 (U1)

By (L1) and (L2), the only risk to Starvation-Freedom

is that a nonfaulty process p is blocked forever at p:5.

Process p only reaches p:5 by executing p:4 when X < 0

holds. By (I2), this implies that jfp :: p@f3::6ggj > k

holds when p:4 is executed. By the assumption that at

most k � 1 processes are faulty, this implies that there

is a nonfaulty process q 6= p such that q@f3::6g holds

when p:4 is executed.

If p@5 ^ Q 6= p holds, then by (U1), p@6 eventually

holds. If p@5 ^ Q = p holds, then process q is not

blocked at q:5 because q 6= p. Thus, if p@5 ^ Q = p

continues to hold, then q, being nonfaulty, eventually

executes q:7 and establishes Q 6= p. This concludes the

proof of Starvation-Freedom. 2

Theorem 1: Using fetch-and-increment, (N; k)-

exclusion can be implemented on a cache-coherent ma-

chine with time complexity 7(N � k).

Proof Sketch: By induction on k.

Basis: k = N � 1. The Acquire and Release proce-

dures used by the algorithm in Figure 2 can be imple-

mented by skip statements when k = N � 1. The cor-

rectness of the resulting algorithm follows by Lemma 1.

By assumption, the spin-loop at statement 5 generates

at most two remote references (see Section 2). Thus,

examination of Figure 2 shows that at most �ve remote

4

k k k k k k k k

k k k k

k k

k k

k k

k

k

N
N−k

N−2k

Fast

path

Slow path

(a) (b)

Figure 3: Two approaches for implementing Acquire(N;k). Release(N;k) is implemented analogously. Each arrow represents

a set of processes. Solid boxes represent Acquire(2k;k). (a) Acquire(8k;k) in a tree. (b) Using a \fast path" to split o� k

processes. The dotted box represents Acquire(N � k; k). One approach for implementing Acquire(N � k; k) using nested fast
paths is depicted for N = 4k (so N � 2k = 2k).

references are generated by the entry section and two

remote references by the exit section.

Induction Step: k < N � 1. Assume that (N; k + 1)-

exclusion is implemented with time complexity 7(N �

(k+1)). As shown in the basis, (k+1; k)-exclusion can

be implemented with time complexity 7. Thus, by Fig-

ure 2, (N; k)-exclusion can be implemented with time

complexity 7(N � (k + 1)) + 7 = 7(N � k). 2

This inductive algorithm requires O(N) remote refer-

ences, which is a signi�cant disadvantage. Note, how-

ever, that Theorem 1 implies that (2k; k)-exclusion can

be implemented with time complexity 7k. We can use

such an algorithm as a \building-block" to obtain more

e�cient implementations of (N; k)-exclusion. (Observe

that our (2k; k)-exclusion algorithm does not require a

process to know the identity of any other process in

advance. This is essential for e�ciently using such an

algorithm as a building-block.) One such approach is to

arrange these building-blocks in a tree that halves the

number of process at each level, until only k remain.

Figure 3(a) depicts this approach for 8k processes. This

approach yields the following result.

Theorem 2: Using fetch-and-increment, (N; k)-

exclusion can be implemented on a cache-coherent ma-

chine with time complexity 7k log2dN=ke. 2

The tree approach o�ers a signi�cant improvement,

but we would like to further reduce the number of re-

mote references performed when contention is low. This

can be achieved by adding a \fast path", as shown in

Figure 4. A fetch-and-increment2 instruction is used to

2For simplicity, we assume here that fetch-and-increment does
not cause a range error, e.g., fetch � and � increment (X;�1)
does not change X if executed when X is 0. Removing this as-
sumption results in a slightlymore complicatedalgorithm for The-

select k processes that directly execute Acquire(2k; k).

The remaining processes must �rst execute Acquire(N�

k; k), thereby ensuring that at most 2k processes at

a time access (2k; k)-exclusion. This approach is de-

picted in Figure 3(b), in which the dotted box represents

Acquire(N�k; k). Using this algorithm, when at most k

processes are participating, the test at statement 2 will

always fail, so only Acquire(2k; k) and Release(2k; k) are

executed. Thus, if contention is at most k, the number

of remote references is at most 7k + 2.

The performance degradation with increasing con-

tention for this algorithm is determined by the imple-

mentation of (N � k; k)-exclusion | the \slow path".

One alternative is to use an (N; k)-exclusion tree, as il-

lustrated in Figure 3(a), yielding the following result.

Theorem 3: Using fetch-and-increment, (N; k)-

exclusion can be implemented on a cache-coherent ma-

chine with time complexity 7k + 2 if contention is at

most k, and 7k(log2dN=ke + 1) + 2 otherwise. 2

A second alternative is to implement (N � k; k)-

exclusion inductively using the algorithm given in Fig-

ure 4, as depicted inside the dotted box in Figure 3(b).

This results in performance that degrades gracefully

with increasing contention, rather than performance

that drops suddenly when contention exceeds k. In par-

ticular, the number of remote references is proportional

to contention.

Theorem 4: Using fetch-and-increment, (N; k)-

exclusion can be implemented on a cache-coherent ma-

chine with time complexity dc=ke(7k + 2) if contention

is at most c. 2

orem 4 and a small constant factor increase in time complexity;
for details, see the full paper.

5

shared variable X : 0::k ; =� Counter of available slots �=
initially (8p : 0 � p � N :: p@0) ^X = k

process p =� 0 � p < N �=

private variable slow : boolean =� Records path taken �=
while true do

0: Noncritical Section ;

1: slow := false ; =� Haven't gone through the slow path yet �=
2: if fetch and increment(X;�1) = 0 then =� No slots available - go through slow path �=

3: slow := true ; =� Record that slow path was taken �=

4: Acquire(N � k; k) =� Slow path �=
� ;

5: Acquire(2k;k) ; =� Fast path �=

Critical Section ;
6: Release(2k;k) ;

7: if slow then =� Check if slow path was taken �=

8: Release(N � k; k)
9: else fetch and increment(X;1)

�

od

Figure 4: (N;k)-exclusion with a \fast path".

3.2 Algorithms for Distributed Shared-

Memory Machines

In the previous section, we showed that k-exclusion can

be e�ciently implemented on cache-coherent machines.

Such implementations are e�cient because when a pro-

cess waits on a variable, that variable migrates to a lo-

cal cache-line. A distributed shared-memory machine

without cache-coherence does not provide this luxury.

On such a machine, each variable is local to only one

process, so for good scalability, di�erent processes must

wait on di�erent variables. This makes k-exclusion sig-

ni�cantly more di�cult to implement e�ciently. In this

section, we show that (N; k)-exclusion can be imple-

mented using algorithms in which all busy-waiting is on

local shared variables. We use an inductive approach,

similar to that in the previous section, to reduce the

problem to that of implementing (k + 1; k)-exclusion.

The algorithm in Figure 5 implements (N; k)-

exclusion. As in the previous section, the Acquire and

Release procedures used in Figure 5 are assumed to im-

plement (N; k + 1)-exclusion. Instead of all processes

waiting on one spin location Q, each process p now has

an unbounded set of local spin locations, P [p; v], v � 0.

In the next algorithm, we bound this set of spin loca-

tions. Variable Q is now used to indicate the spin loca-

tion on which the currently-blocked process is waiting.

Because di�erent processes wait on di�erent variables,

for a process q to release a blocked process p, process q

must �rst identify the spin location on which p is wait-

ing. Statements q:5 and q:6 achieve this by reading the

identi�er of the spin location fromQ, and then updating

that spin location. When k + 1 processes have success-

fully executed the Acquire procedure, it is required that

at least one of these processes wait, so that k-Exclusion

is not violated. Thus, when process q releases process p

from its spin-loop, process q should itself start waiting.

This gives rise to the possibility that before q releases p,

another process r releases p and starts waiting. If q does

not detect this, then q might start waiting too. If the

k�1 remaining processes are faulty, then q and r might

wait forever, violating Starvation-Freedom. Thus, we

need a mechanism to allow process q to detect that pro-

cess p has already been released. The compare-and-

swap3 instruction in statement 7 serves this purpose,

speci�cally by allowing a process to detect that Q was

modi�ed between its executions of statements 5 and 7.

Observe that if q:5 and r:5 read the same spin loca-

tion identi�er from Q, and if q:7 modi�es Q, then r:7's

compare-and-swap will fail and r will not wait.

Lemma 2: The algorithm in Figure 5 implements

(N; k)-exclusion.

Proof Sketch: The proof is similar to the proof of

Lemma 1. For convenience, we de�ne the following sets.

A � fp :: p@f3; 4gg, B � fp :: p@5 ^ :P [p; p:next:loc]g,

C � fp :: p@f6; 7g ^ Q = p:v ^ :P [p; p:next:loc]g, and

D � fp :: p@f8; 9g ^ :P [p; p:next:loc]g. The following

are the main safety properties are used in the proof.

invariant X = k � jfp :: p@f3::10ggj (I5)

invariant p@f4::7g) q:v 6= p:next ^Q 6= p:next (I6)

invariant p@f5::7g) :P [p; p:next:loc] (I7)

invariant q@f6; 7g ^X < 0)

(9r :: (r@f3::7g_ (8q :: q:v 6= r:next))^

r 2 A [B [C [D) (I8)

invariant X < 0) (9r :: r 2 A [B [C [D) (I9)

3compare-and-swap(Q; v; x) \fails" if Q 6= v holds, and \suc-
ceeds" if Q = v holds. In the former case, it simply returns false,
and in the latter case, it assigns Q := x and returns true.

6

type loc type = record pid: 0::N � 1 ; loc: 0::1 end

shared variable X : �1::k ; Q : loc type ; P : array[0::N � 1; 0::1] of boolean

initially X = k ^Q = (0; 0) =� P [p; i] for i � 0 is local to process p �=

process p =� 0 � p < N �=

private variable next; v : loc type

initially p@0 ^ next:pid = p ^ next:loc = 0 ^ v:loc = 0

while true do

0: Noncritical Section ;

1: Acquire(N;k+ 1) ; =� Entry section of (N;k + 1)-exclusion �=

2: if fetch and increment(X;�1) = 0 then =� No slots available �=
3: next:loc := next:loc + 1 ; =� Use spin location never used before �=

4: P [p; next:loc] := false ; =� Initialize spin location �=

5: v := Q ; =� Get current spin location �=

6: P [v:pid; v:loc] := true ; =� Release currently spinning process �=

7: if compare and swap(Q; v; next) then =� Spinning process still the same �=

8: if X < 0 then =� Still no slots available - must wait �=
9: while :P [p; next:loc] do =� null �= od =� Wait until released �=

� � � ;

Critical Section ;
10: fetch and increment(X;1) ; =� Release a slot �=

11: v := Q ; =� Get current spin location �=

12: P [v:pid; v:loc] := true ; =� Release spinning process �=
13: Release(N;k+ 1) =� Exit section of (N;k + 1)-exclusion �=

od

Figure 5: (N;k)-exclusion using an unbounded number of local spin locations on a distributed shared-memory machine.

invariant jfp :: p@10gj � k (I10)

p@f5::9g^ P [p; p:next:loc] unless p@10 (U2)

The proofs of (I5) { (I10) and (U2) are similar to the

proofs for (I2) { (I4) and (U1). (I10), which implies k-

Exclusion, follows from (I5), (I9), and the assumption

that Acquire and Release implement (k + 1)-exclusion.

The only risk to Starvation-Freedom is that a non-

faulty process p waits forever at statement p:9. For each

of the following cases, we show that if p@9 holds, then

p@10 eventually holds.

Case 1: Q is modi�ed after the preceding p:7 is exe-

cuted. Because p@9 holds, the compare-and-swap in-

struction of the preceding p:7 succeeded, so Q = p:next

holds after p:7 is executed. By the de�nition of compare-

and-swap, the �rst modi�cation of Q after the execution

of p:7 is the result of the execution of statement q:7 for

some process q such that q@7^ q:v = Q holds. Because

p:7 establishes Q = p:next prior to q:7, q:v = p:next

holds immediately before q:7 is executed. By (I6) and

(I7), q:v 6= p:next ^ :P [p; p:next:loc] holds before p:7 is

executed. Thus, q:v = p:next is established between the

executions of p:7 and q:7. Process p does not modify

p:next between p:7 and p:9, and statement q:5 is the

last statement to modify q:v before q:7. Thus, either

p:9 is eventually executed, or q:5 and therefore q:6 are

executed after p:7. In the former case, p@10 is estab-

lished. In the latter case, q:6 establishes P [p; p:next:loc]

after p:7 is executed. Thus, by (U2), statement p:9 is

eventually executed, establishing p@10.

Case 2: Q is not modi�ed after the preceding p:7 is

executed. Because p@9 holds, X < 0 holds before

the preceding p:8 is executed. Thus, by (I5), jfq ::

q@f3::10ggj > k holds after p:8 is executed. Thus, by

the assumption that there are at most k� 1 faulty pro-

cesses, there is a nonfaulty process t 6= p such that

t@f3::10g holds. If t does not become permanently

blocked at t:9, then because t is nonfaulty, and because

Q is not modi�ed after p:7, statements t:11 and t:12

eventually establish P [p; p:next:loc]. In this case, by

(U2), p eventually establishes p@10, as p is nonfaulty.

If t does become permanently blocked at t:9, then t:7

must have modi�ed Q. As Q is not modi�ed after p:7

is executed, t:7 is executed before p:7. Then, by Case

1, t@10 eventually holds | a contradiction. This com-

pletes the proof of Starvation-Freedom. 2

The obvious drawback of the algorithm in Figure 5

is that each process uses a new spin location for every

execution of the entry section, so the space complexity

of the algorithm is unbounded. The algorithm given in

Figure 6 uses only a bounded number of spin locations

per process. The spin locations for process p are P [p; v],

where 0 � v < k+2. Associated with each spin location

P [p; v] is a counter R[p; v]. Roughly speaking, R[p; v]

counts the number of processes that have read (p; v)

7

from Q and might set P [p; v]. When selecting a new

spin location, p chooses w such that R[p; w] = 0.

In order for the algorithm to use only bounded space,

a process pmust eventually choose a spin location that it

has previously used. If p could choose a spin location not

currently stored in any variable, then this would have

the same e�ect as choosing a new location. It is easy

for p to ensure that it chooses a spin location di�erent

from the one stored in Q. However, some process q 6= p

may have previously read Q, and then experienced a

delay. Suppose q's read of Q obtained one of p's spin

locations | say (p; v). Process p should not use (p; v)

again while (p; v) remains in q's local state, but this

presents a di�culty. Process p cannot read q's local

state, so it is impossible to choose a new spin location

that is not stored in any variable.

All hope is not lost, however. The requirement that

p must choose a location that is not stored in any vari-

able can be relaxed. Instead, we require that p chooses

a location that will not be prematurely set by another

process. That is, we require that p chooses a spin lo-

cation (p; v) that will not be set before p executes the

compare and swap in statement p:11. Thus, statement

p:11 announces that p will spin on local spin location

P [p; v], and we require that P [p; v] is not set before this

announcement is made. To achieve this, we introduce

some feedback between processes. As seen in Figure 6,

after q:7 reads (p; v) from Q, q:8 \informs" p by in-

crementing R[p; v], and then q:9 reads Q again. If Q

changes between q:7 and q:9, then process q will not

set P [p; v]. On the other hand, if Q does not change

between q:7 and q:9, then it can be shown that if p is

using the spin location (p; v) when q:9 is executed, then

p has already executed statement p:11. Also, q:8 in-

forms p not to choose (p; v) for its spin location before

q executes q:15.

It may seem possible that each time statement p:4

reads a counter R[p; v], that counter is positive. In fact,

using the assumption that Acquire and Release are cor-

rect, it can be shown that this is not possible. In partic-

ular, it can be shown that when process p starts read-

ing the counters in R, there is some v 6= p:last such

that R[p; v] = 0 holds, and that this continues to hold

until p reads R[p; v]. Thus, the loop at statements p:4

and p:5 terminates after at most k + 1 iterations. Each

process uses k+2 spin locations to ensure that the most-

recently-used spin location is not chosen again. Proofs

of the results below are similar to previous ones, and

will appear in the full version of the paper.

Theorem 5: Using fetch-and-increment and compare-

and-swap, (N; k)-exclusion can be implemented on a

distributed shared-memorymachine with time complex-

ity 14(N � k).

Proof Sketch: By induction, as in Theorem 1, using

the algorithm of Figure 6. Note that all accesses in

statements 4 and 5 are local to process p. 2

Theorem 6: Using fetch-and-increment and compare-

and-swap, (N; k)-exclusion can be implemented on a

distributed shared-memory machine with time complex-

ity 14k log2dN=ke.

Proof Sketch: By Theorem 5, (2k; k)-exclusion can be

implemented on a distributed shared-memory machine

with time complexity 14k. The theorem follows by ar-

ranging such implementations in a tree as illustrated in

Figure 3(a). 2

Theorem 7: Using fetch-and-increment and compare-

and-swap, (N; k)-exclusion can be implemented on a

distributed shared-memory machine with time com-

plexity 14k + 2 if contention is at most k, and

14k(log2dN=ke + 1) + 2 if contention exceeds k.

Proof Sketch: This result is proved using the algo-

rithm in Figure 4, with (2k; k)-exclusion implemented as

in Theorem 5, and using a tree to implement (N �k; k)-

exclusion as depicted in Figure 3(a). 2

Theorem 8: Using fetch-and-increment and compare-

and-swap, (N; k)-exclusion can be implemented on a

distributed shared-memory machine with time complex-

ity dc=ke(14k + 2) if contention is at most c.

Proof Sketch: This result is proved by using the algo-

rithm shown in Figure 4, with (2k; k)-exclusion imple-

mented as in Theorem 5 and (N �k; k)-exclusion imple-

mented using the algorithm in Figure 4. This approach

is depicted in Figure 3(b). 2

4 k-Assignment

In the renaming problem [3], each of k processes must

be assigned a unique name from a �xed name space. A

solution to the renaming problem can be used to extend

a k-exclusion algorithm to a k-assignment algorithm.

To be useful in this setting, a solution to the renaming

problem must be long-lived: each process must be able

to repeatedly obtain and release names. In this section,

we present a long-lived renaming algorithm that uses

test-and-set.

In order to obtain a name using our algorithm, a pro-

cess test-and-sets each of a sequence of bits in order,

until a test-and-set succeeds. The bit X[j] is associated

with name j, where 0 � j < k. To release the name,

the successfully-set bit is cleared. It is easy to see that

distinct processes in their critical sections have distinct

names. It can be shown that if a process is about to test-

and-set X[i], then there is a j where i � j < k, such

that :X[j] holds. Thus, if a process has unsuccessfully

tested bits X[0]::X[k� 2], then :X[k� 1] holds, so the

8

type loctype = record pid: 0::N � 1 ; loc: 0::k + 1 end

shared variable X : �1::k ; Q : loctype ;
P : array[0::N � 1; 0::k+ 1] of boolean ; R : array[0::N � 1; 0::k+ 1] of 0::k + 1

initially (8p; j : 0 � p < N ^ 0 � j < k+ 2 :: R[p; j] = 0) ^X = k ^Q = (0; 0)

process p =� 0 � p < N , P [p; i] and R[p; i] for 0 � i � k + 1 are local to process p �=

private variable u; next : loctype ; last : 0::k + 1

initially p@0 ^ last = 0

while true do

0: Noncritical Section ;

1: Acquire(N;k+ 1) ; =� Entry section of (N;k + 1)-exclusion �=

2: if fetch and increment(X;�1) = 0 then =� No slots available �=
3: next:loc := (last + 1) mod (k + 2) ; =� Start at location after last one �=

4: while R[p; next:loc] 6= 0 do =� Search for a spin location not in use �=

5: next:loc := (next:loc+ 1) mod (k + 2)
od ;

6: P [p; next:loc] := false ; =� Initialize spin location �=

7: u := Q ; =� Get current spin location �=

8: fetch and increment(R[u:pid; u:loc]; 1) ; =� Record that this spin location is about to be written �=

9: if Q = u then =� Spin location has not changed �=

10: P [u:pid; u:loc] := true ; =� Release currently spinning process �=
11: if compare and swap(Q;u; next) then =� Spinning process still the same �=

12: last := next:loc ; =� Record last spin location used �=

13: if X < 0 then =� Still no slots available - must wait �=
14: while :P [p; next:loc] do =� null �= od =� Wait until released �=

� � � ;

15: fetch and increment(R[u:pid; u:loc]; �1) =� Finished with this spin location �=

� ;

Critical Section ;

16: fetch and increment(X;1) ; =� Release a slot �=
17: u := Q ; =� Get current spin location �=

18: fetch and increment(R[u:pid; u:loc]; 1) ; =� Record that this spin location is about to be written �=

19: if Q = u then =� Spin location has not changed �=
20: P [u:pid; u:loc] := true =� Release spinning process �=

� ;

21: fetch and increment(R[u:pid; u:loc]; �1) ; =� Finished with this spin location �=

22: Release(N;k+ 1) =� Exit section of (N; k + 1)-exclusion �=

od

Figure 6: (N;k)-exclusion using a bounded number of local spin locations on a distributed shared-memory machine.

shared variable X : array[0::k� 2] of boolean

initially (8i : 0 � i � k � 2 :: :X[i])

process p =� 0 � p < N �=

local variable name : 0::k� 1

initially p@0 ^ name = 0

while true do

0: Noncritical Section ;

1: Acquire(N;k) ; =� Entry section for (N; k)-exclusion �=

2: while name < k � 1 ^ test and set(X[name]) = true do name := name + 1 od ; =� Set �rst clear bit to get a name �=

Critical Section using name name ;

3: X[name];name := false; 0 ; =� Release name by resetting bit found �=
4: Release(N;k) =� Exit section for (N; k)-exclusion �=

od

Figure 7: Algorithm for k-assignment using test-and-set for renaming.

9

kth test-and-set will succeed. It can also be shown that

at most one process accesses X[k � 1] concurrently, so

in fact this bit is unnecessary. The algorithm shown

in Figure 7 combines this approach with Acquire(N; k)

and Release(N; k) to implement k-assignment. This al-

gorithm is presented in more detail in [13].

Our renaming algorithm generates at most k addi-

tional remote references. Thus, Theorems 3 and 7 can

be extended to give the following results. All the other

theorems in Section 3 can be extended similarly.

Theorem 9: Using fetch-and-increment and test-and-

set, (N; k)-assignment can be implemented on a cache

coherent machine with time complexity 8k + 2 if con-

tention is at most k, and 7k(log2dN=ke + 1) + k + 2 if

contention exceeds k. 2

Theorem 10: Using fetch-and-increment, compare-

and-swap, and test-and-set, (N; k)-assignment can be

implemented on a distributed shared-memory machine

with time complexity 15k + 2 if contention is at most

k, and 14k(log2dN=ke+1)+ k+2 if contention exceeds

k. 2

5 Concluding Remarks

The algorithms presented in this paper provide a good

starting point towards a practical methodology for con-

structing resilient shared objects. Ultimately, we would

like to develop k-exclusion algorithms for which perfor-

mance under contention is completely independent of

N . We would also like for such algorithms to have per-

formance that approaches that of the fastest spin-lock

algorithms [2, 11, 12, 14] when k approaches 1. If based

on universal wait-free constructions, the methodology

we suggest could yield a generic approach to shared ob-

ject design in which resiliency can be \tuned" according

to performance demands.

References

[1] A. Afek, D. Dolev, E. Gafni, M. Merritt, and N.

Shavit, \First-in-First-Enabled l-Exclusion", Pro-

ceedings of the 4th International Workshop on Dis-

tributed Algorithms, 1990.

[2] T. Anderson, \The Performance of Spin Lock

Alternatives for Shared-Memory Multiprocessors",

IEEE Transactions on Parallel and Distributed

Systems, Vol. 1, No. 1, January, 1990, pp. 6-16.

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D.

Peleg, and R. Reischuk, \Achievable Cases in an

Asynchronous Environment", Proceedings of the

28th Annual IEEE Symposium on Foundations of

Computer Science, October 1987, pp. 337-346.

[4] A. Bar-Noy and D. Dolev, \Shared Memory versus

Message-Passing in an Asynchronous Distributed

Environment", Proceedings of the 8th Annual ACM

Symposium on Principles of Distributed Comput-

ing , ACM, New York, August 1989, pp. 307-318.

[5] E. Borowsky and E. Gafni, \Immediate Atomic

Snapshots and Fast Renaming", Proceedings of the

12th Annual ACM Symposium on Principles of

Distributed Computing , ACM, New York, August

1993, pp. 41-50.

[6] K. Chandy and J. Misra, Parallel Program Design:

A Foundation, Addison-Wesley, 1988.

[7] E. Dijkstra, \Solution of a Problem in Concur-

rent Programming Control", Communications of

the ACM , Vol. 8, No. 9, 1965, p. 569.

[8] D. Dolev, E. Gafni, and N. Shavit, \Towards a

Non-atomic Era: l-Exclusion as a Test Case", Pro-

ceedings of the 20th ACM Symposium on Theory of

Computing , 1988, pp. 78-92.

[9] M. Fischer, N. Lynch, J. Burns, and A. Borodin,

\Resource Allocation with Immunity to Process

Failure", Proceedings of the 20th Annual IEEE

Symposium on Foundations of Computer Science,

October, 1979, pp. 234-254.

[10] M. Fischer, N. Lynch, J. Burns, and A. Borodin,

\Distributed FIFO Allocation of Identical Re-

sources Using Small Shared Space", ACM Trans-

actions on Programming Languages and Systems,

Vol. 11, No. 1, January, 1989, pp. 90-114.

[11] G. Graunke and S. Thakkar, \Synchronization

Algorithms for Shared-Memory Multiprocessors",

IEEE Computer , Vol. 23, June, 1990, pp. 60-69.

[12] J. Mellor-Crummey and M. Scott, \Algorithms

for Scalable Synchronization on Shared-Memory

Multiprocessors", ACM Transactions on Computer

Systems, Vol. 9, No. 1, February, 1991, pp. 21-65.

[13] M. Moir and J. Anderson, \Fast, Long-Lived Re-

naming", submitted for publication in Proceedings

of the 8th International Workshop on Distributed

Algorithms, 1994.

[14] J.-H. Yang and J. Anderson, \Fast, Scalable Syn-

chronization with Minimal Hardware Support",

Proceedings of the 12th Annual ACM Symposium

on Principles of Distributed Computing , ACM,

New York, August 1993, pp. 171-182.

10

