
Scheduling Suspendable, Pipelined Tasks with Non-Preemptive Sections in Soft
Real-Time Multiprocessor Systems∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

While most prior work on multiprocessor real-time
scheduling focuses on independent tasks, dependencies
due to non-preemptive sections, suspensions, and pipeline-
based precedence constraints are common in practice. In
this paper, such complexities are considered in the context
of the global earliest-deadline-first scheduling algorithm. It
is shown that any periodic task system with such dependen-
cies can be transformed into one with only suspensions in a
way that preserves maximum per-task response times. This
result enables analysis directed at systems with suspensions
to be applied if non-preemptive sections and/or pipelines
are present as well.

1 Introduction
The growing prevalence of multicore platforms has led to
much recent work on multiprocessor real-time scheduling.
Most of this work has been directed at scheduling prob-
lems that arise when systems of independent tasks are to
be supported. In practice, however, programming method-
ologies are often used that result in dependencies among
tasks. As multiprocessor platforms become more ubiqui-
tous, and real-time applications of greater complexity are
supported on them, it is crucial that scheduling-related re-
search be extended so that such dependencies can be prop-
erly addressed. In this paper, we consider this issue in the
context of periodic task systems in which task dependencies
may exist due to non-preemptive sections, suspensions, and
pipeline-based precedence constraints.

Any one of these kinds of dependencies can cause a task
system to be difficult to analyze from a schedulability per-
spective. For instance, non-preemptive sections may cause
scheduling anomalies (e.g., shortening a job’s execution
time may actually increase some job’s response time) and
suspensions may cause unbounded job response times even
in lightly-loaded systems [9]. Still, situations may exist in
which all three kinds of dependencies are present. Consider,
for example, a pipelined real-time computation where some
tasks may require disk accesses and non-preemptivity arises
due to system calls or critical sections. The timing correct-

∗Work supported by AT&T, IBM, and Sun Corps.; NSF grants CNS
0834270 and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR
grant FA9550-09-1-0549.

ness of such a system may be quite difficult to analyze,
particularly if deadline misses cannot be tolerated. How-
ever, we show in this paper that the situation is not nearly
so bleak, if bounded deadline tardiness is acceptable.

Bounded tardiness is a notion that has been studied ex-
tensively in the context of global scheduling algorithms,
and such algorithms are our focus as well. In global algo-
rithms, tasks are scheduled from a single run queue and may
migrate across processors. Such algorithms stand in con-
trast to partitioning algorithms, which statically assign tasks
to processors and use per-processor run queues. Under par-
titioning schemes, constraints on overall utilization are re-
quired to ensure timeliness even if bounded deadline tardi-
ness can be tolerated. On the other hand, a variety of global-
scheduling approaches are capable of ensuring bounded tar-
diness in ordinary periodic and sporadic systems (without
suspending tasks or pipeline tasks) with no utilization loss,
even if non-preemptive sections exist [2, 6]. In recent re-
search, this work has been extended to show that, in fully-
preemptive systems, bounded tardiness can be ensured if
tasks either suspend [9] or have pipeline constraints [7, 8]
(but not both), provided certain utilization restrictions hold.

In this paper, we consider whether these research re-
sults can be combined. That is, we address the problem
of deriving conditions under which bounded tardiness can
be ensured when all of the above-mentioned behaviors—
non-preemptive sections, pipelines, and suspensions—are
allowed. In considering this problem, we focus specif-
ically on the global earliest-deadline-first (GEDF) algo-
rithm, but our analysis could potentially be extended to ap-
ply to other global algorithms as well. Our main result is a
transformation process that converts any implicit-deadline
periodic task system with suspensions, pipelines, and non-
preemptive sections into a simpler system with only sus-
pensions. In the simpler system, each task’s maximum job
response time is at least that of the original system. This
result allows tardiness bounds to be established by focusing
only on the impacts of suspensions. While this result was
motivated by our interest in tardiness bounds, the transfor-
mation we present is also relevant to hard real-time systems.

Related Work. To our knowledge, the problem addressed
in this paper has not been considered before, in the con-
text of either global or partitioned scheduling. However,
some work has been done in which the effects of non-

preemptive sections, pipelines, or suspensions have been
considered independently, as noted above [2, 6–9]. Prior
work on pipelining has also been done in the context of dis-
tributed systems (which must be scheduled by partitioning
approaches) [3, 4, 13].

In work pertaining to uniprocessors (and by extension
multiprocessors scheduled via partitioning), several suffi-
cient schedulability tests have been presented for analyz-
ing tasks with suspensions [1, 5, 10–12, 14]. Intractabil-
ity/impossibility results pertaining to be suspension-
oriented analysis have also been obtained [15, 16].

Contributions. In this paper, we consider periodic task
systems with suspensions, pipelines, and non-preemptive
sections; for conciseness, we henceforth refer to these sys-
tems as NPS systems. We show how to transform such a
task system into a simpler periodic task system with only
suspensions. In the transformed system, per-task maximum
job response times are at least those of the original system.
We show that this enables prior results on systems with
suspensions [9] to be applied to derive tardiness bounds
for more complex systems, as scheduled by GEDF. Such
bounds are applicable to NPS task systems provided certain
utilization constraints are met. We analyze the loss of sys-
tem capacity inherent in these constraints via an extensive
experimental study involving randomly-generated task sys-
tems. This study shows that the capacity loss is moderate
to non-existent in scenarios where the executions costs of
pipeline stages vary moderately and suspension and non-
preemptive-section lengths are moderate.

Organization. The rest of this paper is organized as fol-
lows. Sec. 2 describes our system model. The transfor-
mation discussed above is obtained via a sequence of sub-
transformations, which are described in Secs. 3 and 4. In
Sec. 5, a tardiness bound for periodic NPS task systems is
derived. The above-mentioned experimental evaluation is
then presented in Sec. 6. Sec. 7 concludes.

2 NPS Task Systems

We consider the problem of scheduling a set τNPS =
{T1, ..., Tn} of n periodic pipeline tasks on m ≥ 2 iden-
tical processors, where any such task may suspend and con-
tain non-preemptive sections. Below, we present definitions
pertaining to pipeline tasks. These definitions are illustrated
with an example given later.

An h-stage pipeline task Tl, where 1 ≤ h ≤ m, con-
sists of h subtasks, T 1

l , ...Th
l . Each subtask is released re-

peatedly, with each such invocation called a job. Jobs al-
ternate between computation and suspension phases. We
assume that each job of Th

l executes for at most eh
l time

units (across all of its computation phases), suspends for at
most sh

l time units (across all of its suspension phases), and
has at most ch

l computation phases. We place no restric-

tions on how these phases interleave (a job can even begin
or end with a suspension phase). We also do not restrict
their lengths, other than upper-bounding them. Note, in par-
ticular, that 0-length computation phases are allowed in our
model. The circumstances under which a 0-length compu-
tation phase can commence execution are just like with any
other computation phase (as described later). However, a
0-length computation phase that commences execution at
time t finishes execution at time t. Computation phases are
also allowed to contain non-preemptive code segments. The
maximum duration of any non-preemptive segment of Th

l

is denoted bh
l , and the maximum such value taken over all

subtasks in τNPS is denoted bmax.
The jth job of Th

l , denoted Th
l,j , is released at time

rh
l,j and has a deadline at time dh

l,j . Associated with each
pipeline task Tl is a period pl, which specifies both the ex-
act time between two consecutive job releases of Tl and the
relative deadline of each such job, i.e., dh

l,j = rh
l,j + pl.

The release time of job Th
l,j is required to satisfy rh

l,j =
(j − 1 + h − 1) · pl. The utilization of subtask Th

l is de-
fined as uh

l = eh
l /pl, and the utilization of Tl is defined as

ul =
∑h

i=1 ui
l . The utilization of the task system τNPS is

defined as Usum =
∑

Tl∈τNPS ul. Notice that, if h = 1, and
for the subtask Th

l , sh
l = 0 holds, then Th

l is an ordinary
(non-suspending) periodic task.

Successive jobs of the same subtask are required to ex-
ecute in sequence. Also, for h > 1, job Th

l,j cannot com-
mence execution (no matter whether its first phase is a com-
putation phase or a suspension phase) until the last phase of
the prior-stage job Th−1

l,j (be it a computation phase or sus-
pension phase) completes. (That is, the jth per-stage jobs
must execute in sequence.) To avoid confusion when dis-
cussing these precedence constraints, we will refer to Th

l,j−1

as the L-predecessor of Th
l,j (assuming j > 1), and Th−1

l,j as
the U-predecessor of Th

l,j (assuming h > 1). (“L” and “U”
stand for “left” and “upper”, respectively).

The timeliness constraint considered in this paper is that
deadline tardiness be bounded. If a job T k

i,j completes at
time t, then its response time is defined as t − rk

i,j and its
tardiness is defined as max(0, t − dk

i,j). A pipeline task’s
tardiness is the maximum of the tardiness of any job of any
of its subtasks. Note that, when a job of a subtask misses its
deadline, the release time of the next job of that subtask is
not altered. Despite this, it is still required that a job cannot
execute in parallel with either of its predecessors.

The results of this paper pertain to the GEDF schedul-
ing algorithm. Under GEDF, released jobs are prioritized
by their deadlines. Jobs in τNPS are ordered based on
their priorities: Tw

i,v ≺ T c
a,b if and only if dw

i,v < dc
a,b or

(dw
i,v = dc

a,b)∧(i = a)∧(w < c) or (dw
i,v = dc

a,b)∧(i < a).
Thus, when comparing equal deadlines, the tie is broken in
favor of earlier stages of the same pipeline task, and any

Job release Job deadline

1
2T
2

2T
3

2T

1
1T

0

2
1T

10 20 305 15 25

NPS

NPS: Non-Preemptive SectionsComputation Suspension

Figure 1: Example NPS task system.

remaining tie is broken by task ID. Tw
i,v has higher priority

than T c
a,b if and only if Tw

i,v ≺ T c
a,b. At any time, GEDF

schedules the highest-priority enabled jobs (the term “en-
abled” is formally defined in Sec. 3) on the available proces-
sors subject to the constraint that a job in a non-preemptive
section cannot be preempted. GEDF becomes fully pre-
emptive when bmax = 0 and fully non-preemptive when
bh
l = eh

l , for all l, h.

Example 1. Fig. 1 depicts an example GEDF schedule of
a suspendable pipelined task system with non-preemptive
sections, scheduled on three processors. This task system
contains a two-stage pipeline task T1 with a period of 10
time units and a three-stage pipeline task T2 with a period
of 10 time units. T 1

1 executes for 2 time units, then suspends
for 3 time units, executes for another 2 time units, and fi-
nally suspends for 1 time unit. T 2

1 executes for 4 time units,
then suspends for 1 time unit, and executes for another 2
time units. T 1

2 executes for 3 time units, and then suspends
for 1 time unit. T 2

2 executes for 9 time units. T 3
2 first sus-

pends for 1 time unit, then executes non-preemptively for 3
time units and then preemptively for another time unit, sus-
pends for 1 time unit, and finally executes for 4 time units.
As seen in the GEDF schedule, T 2

2,1 misses its deadline at
time 20 by 1 time unit, which causes T 3

2,1 to start its first
suspension phase at time 21. At time 24, T 3

2,1 starts execut-
ing its first computation phase since T 1

1,3, T 2
1,2, T 1

2,3 are sus-
pended at that time. Since this execution is non-preemptive,
at time 25, T 2

1,2 preempts T 2
2,1 instead of T 3

2,1.

Roadmap. In this paper, we show how to transform τNPS, a
periodic NPS task system, into a periodic task system with
only suspensions. This transformation requires two steps:

1. Transform τNPS into τPS, where τPS denotes a fully
preemptive suspendable pipelined task system, by
treating blocking times due to non-preemptive sections
as suspensions. This is dealt with in Sec. 3.

2. Transform τPS into τ S, where τ S is a periodic task sys-
tem with only suspensions (i.e., it contains no pipeline
tasks and it is fully preemptive), by treating pipeline

t
J

NPS

J’s release time

t

J’s U-predecessorJ’s L-predecessor

NPS

NPS A job with lower priority than job J executes in a non-preemptive section

J
t

J

NPS

J’s original suspension phase

J’s additional suspension phase (in order to model NP-blocking)

J

J is NP-blocked at
its release time

J is NP-blocked at
the end of its

suspension phase

J is NP-blocked at the
end of its PP-blocking

interval

NPS A job with lower priority than job Th
l,j

executes in a non-preemptive section

t

NPS

Th
l,j is NP-blocked within [t,t1]

t1 t

NPS

Th
l,j suspends within [t,t1]

t1
Th

l,jTh
l,j

Figure 2: Modeling NP-blocking as suspension.

blocking times (see Sec. 4) as suspensions. This is
dealt with in Sec. 4.

3 Transforming τNPS to τPS

We transform τNPS into τPS by treating blocking times due
to non-preemptive sections as suspensions.

Definition 1. We say that a task system τ is concrete if the
actual execution cost and suspension time of every job of
each task is fixed. For any τ (τ may be any of the task
systems mentioned in the roadmap at the end of the prior
section), we let τ denote any arbitrary concrete instantiation
of it.

Definition 2. A job Th
l,j is enabled if it has been released

and both its U-predecessor (if any) and L-predecessor (if
any) have completed. A job is considered to be completed
if it has finished its last phase (be it suspension or computa-
tion).

A job Th
l,j is non-preemptively blocked, or NP-blocked,

at time t if it is among m highest-priority enabled jobs
according to GEDF, but it cannot execute because lower-
priority jobs are executing non-preemptively at t. This can
happen only when Th

l,j commences executing one of its
computation phases. Given that any job Th

l,j has at most
ch
l such phases and the maximum length of any job’s non-

preemptive section is at most bmax, we have the following
lemma.

Lemma 1. Any job Th
l,j in τNPS can be NP-blocked for at

most ch
l · bmax time units.

Given Lemma 1, we can define τPS by simply treating
NP-blocking times as suspensions. That is, we view all non-
preemptive sections as preemptive, and for any subtask Th

l ,
we increase sh

l by ch
l · bmax, which by Lemma 1 upper-

bounds the NP-blocking time of Th
l . This is illustrated in

Fig. 2. The theorem below immediately follows.

Theorem 1. For any concrete instantiation τNPS of τNPS,
there exists a concrete instantiation τPS of τPS such that
τNPS and τPS have equivalent GEDF schedules.1

1That is, if SNPS (SPS) is the GEDF schedule for τNPS (τPS), then job

Note that this transformation strongly exploits the fact
that, in our task model, suspension phases are upper-
bounded, and hence, can be reduced to reflect actual NP-
blocking times. Note also that the “reverse” of this theorem
may not hold: for a concrete instantiation τPS of τPS, there
may not exist a concrete instantiation τNPS of τNPS such that
τPS and τNPS have equivalent GEDF schedules.

Corollary 1. For any subtask Th
l , if the maximum response

time of any job of Th
l in any GEDF schedule for τPS is z

time units, then the maximum response time of any such job
in any GEDF schedule for τNPS is at most z time units.

4 Transforming τPS to τS

In this section, we transform τPS into τS by treating pipeline
blockings as suspensions. Notice that τS is a periodic task
system where the first job of any task is released at time 0.
However, according to our pipeline task model as described
in Sec. 2, the first job of any non-first-stage subtask (Th

l)
(where h ≥ 2) is released at time (h− 1) · pl. However, we
can easily add some “extra” initial jobs to each non-first-
stage subtask so that each subtask starts at time 0. Specif-
ically, for any subtask (Th

l) (where h ≥ 2), we add h − 1
such “extra” jobs, Th

l,2−h, Th
l,2−h+1, ..., T

h
l,−1, T

h
l,0, with ex-

ecution and suspension times of zero. Adding these jobs
will not affect the schedule.

As shown in [7], the fundamental problem that makes
pipeline scheduling difficult is PL-blocking, as defined be-
low.

Definition 3. If a released job’s L-predecessor has com-
pleted, but its U-predecessor has not, then it is said to be PL-
blocked. Note that a first-stage job cannot be PL-blocked
because it has no U-predecessor. Note also that the first job
of any subtask cannot be PL-blocked because it has no L-
predecessor.

PL-blocking is illustrated in Fig. 3(a). Note that, in the
figure, we use J to denote job T k

i,v , JU to denote J’s U-
predecessor T k−1

i,v (if k ≥ 2), and JL to denote J’s L-
predecessor T k

i,v−1 (if v ≥ 2). This shorthand notation is
sometimes used in the discussion that follows.

If no job of any subtask of any pipeline task is PL-
blocked, then every job’s U-predecessor completes no later
than its L-predecessor. In this case, the precedence con-
straint enforced by the periodic task model, which requires
consecutive jobs of the same subtask to execute in sequence,
is sufficient to ensure that the pipeline task is scheduled cor-
rectly. Therefore, it is the PL-blocking effect that makes
pipeline task scheduling different from ordinary periodic
task scheduling. (Note that, when jobs are never tardy, PL-
blocking cannot happen.)

T h
l,j is scheduled at time t in SNPS if and only if it is scheduled at time t in

SPS. A similar interpretation of “equivalent” applies to Theorem 2.

J
t1 t2 t1 t2

J is PL-blocked
within [t1,t2)

J suspends
within [t1,t2)

J
(a)

J
t1 t2

J’s U-predecessor is preempted within
[t2,t3), and J is PL-blocked within [t1,t4)

t3 t4

Preemption of J’s U-predecessor

(b)

JU JU
JL JL

JL

JU JU

Figure 3: (a) Job J is PL-blocked at time t. (b) Treating
PL-blockings as suspensions.

Based upon the above observation, we intend to trans-
form pipeline tasks into suspending tasks by treating PL-
blocking times as suspensions, and eliminating precedence
constraints among pipeline stages. The transformation con-
verts an h-stage pipeline task into h independent suspend-
ing tasks. If a job is PL-blocked within the time interval
[t1, t2), then it could be deemed to suspend within [t1, t2),
as illustrated in Fig. 3(a). The new system obtained by per-
forming such a transformation may have schedules in which
the eliminated precedence constraint is violated. However,
each schedule of the old system is also a valid schedule of
the new system, so any per-(sub)task response time bound
established for the new system is applicable to the old sys-
tem as well.

In order to treat PL-blockings as suspensions, we need
to upper-bound a job’s PL-blocking time. However, pre-
emptions (as defined below) may cause difficulties in upper-
bounding PL-blocking times.

Definition 4. If job Tw
i,v is enabled at time t and does not

suspend at t, but does not execute at t, then it is preempted
at t. The total time for which Tw

i,v is preempted is called its
preemption time.

Fig. 3(b) illustrates why preemption is a problem. Here,
J is PL-blocked within [t1, t4) and its U-predecessor is pre-
empted within [t2, t3). Since it is difficult to upper-bound
preemption times, it is also difficult to upper-bound PL-
blocking times. The situation is made even more compli-
cated by the fact that “upstream” jobs in the pipeline must
also be considered. These jobs are characterized as follows.

Definition 5. We define the set of U-jobs of any job Tw
i,v to

be Tw−1
i,v , Tw−2

i,v , ..., T 1
i,v .

A U-job of Tw
i,v is a job of the same pipeline task that

may impact the scheduling of Tw
i,v , directly or indirectly,

through precedence constraints.

T4
i,v

T3
i,v

T1
i,v

T2
i,v

One of J’s U-jobs is preempted within
[t1,t2), and J is PL-blocked within [t1,t3)

J
t1 t2 t3

The U-predecessor of J’s U-predecessor
(a U-job of J)

Preemption of one of J’s U-jobs

J
t1 t2

JU is preempted within [t4,t5),
and J is idle blocked within

[t1,t2), [t3,t4), and [t5,t6)

t3 t4

J suspends within
[t1,t2), [t3,t4), and [t5,t6)

Preemption of JU

(a)

(a)

(b)

JU

JL

JL

JU JU- - - JU

All processors are occupied
by jobs with higher priority
than JU while JU suspends

t5 t6
J

t1 t2 t3 t4
JL

JU JU- - - JU

t5 t6

0-length computation phase

Figure 4: (a) The preemption of a U-job of J may increase
its PL-blocking time. (b) Treating idle blocking time as
suspensions.

The preemption of any U-job of J may increase J’s PL-
blocking time. Consider, for example, Fig. 4(a). Here, one
of J’s U-jobs (other than JU) is preempted within [t1, t2),
which causes J’s PL-blocking time to be t3 − t1.

Fortunately, although preemption causes problems in
upper-bounding PL-blocking times, it is only necessary to
upper-bound idle blocking times, as defined below, in or-
der to transform a pipeline task into independent suspending
tasks. This is because, if one of Tw

i,v’s U-jobs is preempted
at time t while Tw

i,v is blocked, then there can be no idle
processors at t. Hence, it is not necessary to consider Tw

i,v

to be suspended at that time.

Definition 6. If Tw
i,v is PL-blocked at time t, and at least one

processor is idle or occupied by a job with lower priority
than Tw

i,v , then Tw
i,v is idle blocked at t. The total time for

which Tw
i,v is idle blocked within a time interval [t, t′) is

called its idle blocking time within [t, t′).

To see that it is only necessary to treat a job’s total idle
blocking time as suspensions, consider Fig. 4(b). As seen
in the figure, we can consider J to suspend within [t1, t2),
and then execute a 0-length computation phase, which must
be scheduled by GEDF at some t′ within [t3, t6), where
t6 is the first time at which J is scheduled. (t′ = t3 in
Fig. 4(b).) If t′ < t4, then J can be defined to suspend
within [t′, t4). Then J executes another 0-length compu-
tation phase, which must be scheduled by GEDF at some
t′′ within [t′′, t6). (t′′ = t5 in Fig. 4(b).) Finally J can

then be defined to suspend within [t5, t6). Note that the to-
tal needed suspension length is upper-bounded by the total
idle-blocking time of J . The same is true of more com-
plicated scenarios. (Later, we consider the possibility of
adding some of the needed suspension time to account for
J’s idle blocking to JL instead of J .)

To treat idle blocking times as suspensions, an upper
bound on the total idle blocking time of a job must be de-
termined. This is dealt with in Lemma 2 below.

Definition 7. If Tw
i,v’s first phase is an execution (suspen-

sion) phase and it begins executing (a suspension) for the
first time at t, then t is called its start time, denoted S(Tw

i,v).
If Tw

i,v’s last phase (be it execution or suspension) completes
at time t′, then t′ is called its finish time, denoted F (Tw

i,v).
Let ET (Tw

i,v) denote the first time instant when when Tw
i,v

is enabled.

Lemma 2. The total idle blocking time of any job T k
i,v in

τPS is at most
∑j=k−1

j=1 (ej
i + sj

i).

Proof. We prove the claim by induction on k. The base
case is trivial: T 1

i,v has no U-predecessor and thus is not
PL-blocked. We shall now prove the induction step, k > 1.
Note that if JL does not exist, then J is released at time
0 and will not be blocked, by Def. 3. So, assume that JL

exists. For simplicity, let JUL denote T k−1
i,v−2, and JUU

denote T k−2
i,v−2, as shown in Fig. 5 (a). Let eU = ek−1

i ,
eL = ek

i , sU = sk−1
i , and sL = sk

i , and let t = S(JL) and
t′ = F (JL). Also let e′U (e′L) denote the actual run-time
execution time of JU (JL). Note that if J is not released at
or before t′, then J is not blocked at t′, but may be after t′,
in which case J’s idle blocking time may not be maximal.
Thus, it suffices to assume that J is released at or before t′.

Case 1: JUU is complete at t (or, it does not exist), as
shown in Fig. 5 (b). Observe that JUL is complete by time
t (otherwise, JL could not execute). Thus, by the condition
of Case 1, JU is enabled at or before t, which implies that
all U-jobs of J other than JU complete at or before t. If JU

completes by time t′, then J is not PL-blocked, so assume
otherwise. By our priority definition, in [t, t′), JU exe-
cutes or suspends whenever JL executes (for e′L time units).
Therefore, after t′, JU has at most max(0, e′U + s′U − e′L)
computation and suspension time left. Given that JUU has
completed at t, JU is the only U-job of J that may not have
completed by time t′. By Def. 3, job J’s total idle blocking
time is given by the unfinished computation and suspension
time of J’s U-jobs after t′. Thus, T k

i,v’s total idle blocking
time is at most2 max(0, e′U + sU − e′L) ≤ eU + sU , which
equals ek−1

i + sk−1
i . Therefore, T k

i,v’s total idle blocking
time is at most

∑j=k−1
j=1 (ej

i + sj
i).

2Since we do not assume that every job executes for its worst-case ex-
ecution time, JL could execute for zero time units at run-time.

k
viTJ ,=

)(LJSt =)(' LJFt =

1
2,

−
−= k

viUL TJ 1
1,

−
−= k

viU TJ

k
viL TJ 1, −= …

2
2,

−
−= k

viUU TJ
2−k

iT

1−k
iT

k
iT

t

UJ

UUJ

ULJ

LUU eset '''' −++

LJ LJ suspends

is preemptedUJ

J

Let '+

2−k
iT

1−k
iT

k
iT

t

UUJ

ULJ

LJ J

UJ

JU is blocked

't

L

kj

j

j
iii esset kk −+++ ∑

−=

=

−−

1

2

maxmax 11'

2−k
iT

1−k
iT

k
iT

(a)

(b)

(c)

't

Figure 5: (a) Upper bounding the idle blocking time. (b)
Case 1.

Case 2: JUU is not complete at t. Since JUL must have
been complete at t (otherwise, JL cannot start at t), JU is
blocked at or after t. By the induction hypothesis, JU idle
blocks for at most

∑j=k−2
j=1 (ej

i +sj
i) time at or after t. Thus,

T k
i,v’s total idle blocking time is at most the computation

and suspension time left by J’s U-jobs after t, which is at
most JU ’s total idle blocking time plus JU ’s computation
and suspension time, which is

∑j=k−1
j=1 (ej

i + sj
i).

If JL or JL’s U-jobs execute or suspend for less than
their worst-case costs at run-time, then J’s idle blocking
time can increase, as illustrated in Fig. 6(a). In Case 1 of
Lemma 2, we assumed that JL could execute for zero time
units (see the footnote). And in Case 2 of Lemma 2, by ap-
plying the induction hypothesis to JU , we are assuming that
JL and all U-jobs of JL could execute for zero time units, in
which case JL completes at the earliest possible time point
and J’s idle blocking time becomes maximal, as shown in
Fig. 6(b). However, the proof in Lemma 2 is too pessimistic
because it ignores the fact that if JL’s U-jobs execute for
less at run-time, then the idle blocking time of JL will be
decreased at the same time, as shown in Fig. 6(b). Lemma 4
deals with this pessimistism and minimizes the per-job idle
blocking time needed to be treated as suspensions. Before
proving Lemma 4, we first prove Lemma 3, which gives the
latest possible enabled time of any tardy job T k

i,v .

Definition 8. Let maxk = max{j | 1 ≤ j ≤ k ≤ m ∧
(∀w : 1 ≤ w ≤ k : ej

i + sj
i ≥ ew

i + sw
i)}. That is, the

maximum total execution cost and suspension length among
the subtasks {T 1

i , T 2
i , ..., T k

i } is maximal for Tmaxk
i . If k =

0, then let maxk = 1.

J

F(JU)

JU

JL

t3

Preemption of JU

t1 t2

JL suspends within [t2,t3) and [t4,t5),
and is preempted within [t3,t4)

JL executes less than its worst-case
execution time

(b)

JU

JL J

(a)

t4

J

S(J)

JU

JL

t3

Preemption of JU

t1 t2 t4 t5
=t1+eL+sL+t4-t3

t5
=t1+eL+sL+t4-t3

(b)

JJL

JUJUL

JUUJUUL

JUUUL JUUU

JJL

JUJUL

JUUJUUL

JUUUL JUUU

JL is idle
blocked

JUUULL JUUULL

JUULL

JULL

JLL

JUULL

JULL

JLL

J is idle
blocked

JL is idle
blocked

J is idle
blocked

JL’s U-jobs execute for less at run-time will increase J’s idle blocking time,
but at the same time will decrease JL’s idle blocking time.

JUL

JUUJUUL

JUUL is the L-predecessor of JUU

J is idle
blocked

JU

JL J

JUL

JUUJUUL

J is idle
blocked

JLL is the L-predecessor of JL, JULL is the U-predecessor of JLL, JUUU is
the U-predecessor of JUU, JUUUL is the L-predecessor of JUUU, JUULL is
the U-predecessor of JULL, and JUUULL is the U-predecessor of JUULL

Figure 6: (a) J’s idle blocking time can be increased if JL

and JL’s U-jobs execute for less at run-time. (b) The idle
blocking time of JL will be decreased if JL’s U-jobs exe-
cute for less at run-time.

Definition 9. Let ∆1 be the total length of all maximal sub-
intervals within [max(r1

i,v−1, F (T 1
i,v−2)), ET (T 1

i,v+1))
during which some U-job of T k

i,v+1 or T k
i,v is preempted.

Let ∆j (where 1 < j ≤ k) be the total length of all
maximal sub-intervals within [ET (T j−1

i,v+1)), ET (T j
i,v+1))

during which some U-job of T k
i,v+1 or T k

i,v is preempted.
This is illustrated in Fig. 7.

Lemma 3. If v ≥ 3 − k (recall that by adding “ex-
tra” initial jobs, T k

i,3−k is the second job of T k
i), k >

1, and L3.1 and L3.2 below hold, then ET (T k
i,v+1) ≤

max(r1
i,v, F (T 1

i,v−1)) +
∑k

j=1(∆
j) + k · (emaxk−1

i +
s

maxk−1
i).

L3.1: T k−1
i,v and T k−1

i,v+1 are both tardy.
L3.2: T k

i,v completes before T k−1
i,v+1.

Proof. We prove the claim by induction on k. For the
base case, k = 2, we have ET (T 2

i,v+1)
L3.1 and L3.2=

F (T 1
i,v+1) ≤ ET (T 1

i,v+1) + ∆2 + e1
i + s1

i
L3.1= F (T 1

i,v) +
∆2 + e1

i + s1
i ≤ max(r1

i,v, F (T 1
i,v−1)) + ∆1 + e1

i + s1
i +

∆2 + e1
i + s1

i ≤ max(r1
i,v−1, F (T 1

i,v−2)) + ∆1 + ∆2 + 2 ·
(emaxk−1

i + s
maxk−1
i).

For the induction step, k > 2, we have
ET (T k

i,v+1)
L3.1 and L3.2= F (T k−1

i,v+1) ≤ ET (T k−1
i,v+1) +

∆k + ek−1
i + sk−1

i ≤ ET (T k−1
i,v+1) + ∆k + e

maxk−1
i +

s
maxk−1
i

Ind. Hyp.

≤ max(r1
i,v−1, F (T 1

i,v−2)) +
∑k−1

j=1 ∆j +
(k−1)·(emaxk−2

i +s
maxk−2
i)+∆k+e

maxk−1
i +s

maxk−1
i ≤

)(1,
k
viTET +)(1

1,
−
+

k
viTET. . . .

. . . .

)(1
1, +viTET))(,max(1

2,
1

1, −− vivi TFr

1Δ kΔ

Figure 7: Def. 9.

max(r1
i,v−1, F (T 1

i,v−2)) +
∑k

j=1 ∆j + k · (emaxk−1
i +

s
maxk−1
i).

Lemma 4. The total idle blocking time3 of any two consec-
utive jobs T k

i,v and T k
i,v+1 in τPS is at most k · (emaxk−1

i +
s

maxk−1
i).

Proof. If k = 1, then T k
i,v and T k

i,v+1 cannot be idle
blocked, so assume k > 1. We prove the lemma in this
case by induction on v.

If at most one of T k
i,v and T k

i,v+1 is idle-blocked, then
by Lemma 2, the idle blocking time for both is at most∑j=k−1

j=1 (ej
i +sj

i), which is at most k·(emaxk−1
i +s

maxk−1
i).

This reasoning applies in the base case (where v = 2 − k)
because T k

i,2−k has no L-predecessor and thus is not idle
blocked. In the rest of the proof, we consider the induction
step, v > 2 − k, and assume that T k

i,v and T k
i,v+1 are both

idle blocked. By Def. 6, this implies that both T k−1
i,v and

T k−1
i,v+1 are tardy, and T k

i,v completes before T k−1
i,v+1.

As shown in Fig. 8, by Def. 3, T k
i,v and T k

i,v+1 can be PL-
blocked only in the interval [ET (T k

i,v−1), ET (T k
i,v+1)).

Given that T 1
i,v−1 is the first-stage U-job of T k

i,v−1,
ET (T k

i,v−1) ≥ max(r1
i,v−1, F (T 1

i,v−2)). Thus,
T k

i,v and T k
i,v+1 can be PL-blocked only within

[max(r1
i,v−1, F (T 1

i,v−2)), ET (T k
i,v+1)). By Def. 6,

T k
i,v (respectively, T k

i,v+1) is idle blocked at
t ∈ [max(r1

i,v−1, F (T 1
i,v−2)), ET (T k

i,v+1)) only if, at
t, not all processors are occupied by jobs with higher
priority than T k

i,v (respectively, T k
i,v+1).

Thus, for any time t ∈ [max(r1
i,v−1, F (T 1

i,v−2)),
ET (T k

i,v+1)), if any U-job of T k
i,v or T k

i,v+1 is preempted
at t, then neither T k

i,v nor T k
i,v+1 is idle blocked at t. This

is because, by our priority definition, any U-job of T k
i,v or

T k
i,v+1 has higher priority than T k

i,v and T k
i,v+1. Thus, all

processors are occupied by jobs with higher priority than
T k

i,v and T k
i,v+1 at t. The total length of such time inter-

vals within [max(r1
i,v−1, F (T 1

i,v−2)), ET (T k
i,v+1)), during

which some U-job of T k
i,v or T k

i,v+1 is preempted, is given
by

∑k
j=1 ∆j , by Def. 9.

By Lemma 3, the latest possible enabled time of
T k

i,v+1 is ET (T k
i,v+1) ≤ max(r1

i,v−1, F (T 1
i,v−2)) +∑k

j=1 ∆j + k · (emaxk−1
i + s

maxk−1
i). Thus, the to-

tal idle blocking time of T k
i,v and T k

i,v+1 is at most

3By this, we mean the sum of all maximal sub-intervals during which
at least one of T k

i,v and T k
i,v+1 is idle-blocked.

JU

JL J

(a)

(b)

JJL

JUJUL

JUUJUUL

JUUUL JUUU

JJL

JUJUL

JUUJUUL

JUUUL JUUU

JUUUL is the L-predecessor of JUUU and JUUU is the U-predecessor of JUU

JL is idle
blocked

JUUULL JUUULL

JUULL

JULL

JLL

JUULL

JULL

JLL

J is idle
blocked

JL is idle
blocked

J is idle
blocked

JL’s U-jobs execute for less at run-time will increase J’s idle blocking time,
but at the same time will decrease JL’s idle blocking time.

JUL

JUUJUUL

JUUL is the L-predecessor of JUU

J is idle
blocked

JU

JL J

JUL

JUUJUUL

J is idle
blocked

Tk
i,v Tk

i,v+1
Tk

i,v-1

Tk-1
i,v+1

T1
i,v+1

Tk-1
i,v

T1
i,v

Tk-1
i,v-1

T1
i,v-1

The earliest enabled time of Tk
i,v-1 is max(rk

i,v-1,F(T1
i,v-2)),

when T2
i,v-1,T3

i,v-1 ...Tk-1
i,v-1 execute for zero time unit

Tk
i,v and Tk

i,v+1 are PL-blocked

. . .
T1

i,v

Preemption time intervals of a U-job of either Tk
i,v or

Tk
i,v+1, during which Tk

i,v and Tk
i,v+1 are not idle blocked

. . .
Tk-1

i,v+1

Preemption time intervals of
a U-job of either Tk

i,v or Tk
i,v+1

Figure 8: Lemma 4.

ET (T k
i,v+1) − max(r1

i,v−1, F (T 1
i,v−2))) −

∑k
j=1 ∆j ≤

max(r1
i,v−1, F (T 1

i,v−2)) +
∑k

j=1 ∆j + k · (emaxk−1
i +

s
maxk−1
i) − max(r1

i,v−1, F (T 1
i,v−2)) −

∑k
j=1 ∆j = k ·

(emaxk−1
i + s

maxk−1
i).

Thus, for any job T k
i,v , if we increase sk

i by
k · (emaxk−1

i + s
maxk−1
i)

2
, then by Lemma 4, we are able to

treat every job’s idle blocking time as suspension time. Note
that it might be necessary to treat J’s idle blocking time as
JL’s suspension time (this suspension time would be added
to the end of JL’s execution instead of the beginning of J’s).
However, the total idle blocking time for any two consecu-
tive jobs are upper-bounded by k · (emaxk−1

i +s
maxk−1
i). In

this way, we can transform each subtask Th
l to an indepen-

dent suspending task. Note that we do not need to transform
first-stage subtasks because they cannot be PL-blocked (see
Def. 3). By transforming every subtask in τPS in this way,
we obtain τ S.

Example 2. Consider a pipeline task T1 with three stages,
where (e1

1, s
1
1) = (1, 1), (e2

1, s
2
1) = (2, 1), and (e3

1, s
3
1) =

(1, 1). T 3
1 can be tramsformed into an independent suspend-

ing task by adding
k · (emaxk−1

i + s
maxk−1
i)

2
= 4.5 time

units to s3
1, and T 2

1 can be transformed into an independent

suspending task by adding
k · (emaxk−1

i + s
maxk−1
i)

2
= 3

time units to s2
1. Thus, this pipeline task can be trans-

formed into three independent suspending tasks T1, T2,
and T3, where (e1, s1) = (1, 1), (e2, s2) = (2, 4), and
(e3, s3) = (1, 5.5).

Theorem 2. For any concrete instantiation τPS of τPS, there
exists a concrete instantiation τ S of τ S such that τPS and τ S

have equivalent GEDF schedules.

Note again that this transformation strongly exploits the
fact that, in our task model, suspension phases are upper-
bounded, and hence, can be reduced to reflect actual PL-
blocking times. Note also that the “reverse” of this theorem
may not hold: for a concrete instantiation τ S of τ S, there
may not exist a concrete instantiation τPS of τPS such that
τ S and τPS have equivalent GEDF schedules.

Corollary 2. For any subtask Th
l , if the maximum response

time of any job of Th
l in any GEDF schedule for τ S is z time

units, then the maximum response time of any such job in
any GEDF schedule for τPS is at most z time units.

5 Tardiness Analysis

In this section, we first overview some recent results re-
garding tardiness in task systems with only suspensions [9],
as stated in Theorem 3. Then we analyze the tardiness of
NPS task systems by transforming such systems into sys-
tems with only suspensions.

5.1 Tardiness Bound for Suspending Task
Systems

A suspending task system is just a special case of our system
model as described in Sec. 2, where bmax = 0 and each task
is a pipeline task consisting of only one subtask. For con-
ciseness, we drop the superscript “1” as used in the pipeline
task model when referring to a first-stage subtask, and sim-
ply use Ti,j , rl,j , dl,j , el, and sl. We require el+sl ≤ pl and
Usum ≤ m; otherwise, tardiness can grow unboundedly. A
common case for real-time workloads is that both suspend-
ing tasks and computational tasks (which do not suspend)
co-exist. To reflect this, we let Us

sum denote the total uti-
lization of all suspending tasks, and U c

sum denote the total
utilization of all computational tasks.

Definition 10. Let smax = max{s1, s2, ..., sn}. Let ξi =
smax

smax + ei
be the suspension ratio of Ti. Let ξmax =

max{ξ1, ξ2, ..., ξn} be the maximum suspension ratio.

Definition 11. Let Es
sum be the total execution cost of all

suspending tasks in τS . Let Esum be the total execution
cost of all tasks in τS . Let Ss

sum be the total suspension
length of all tasks in τS . Let us

max be the maximum utiliza-
tion of any suspending task in τS .

Definition 12. Let U c
L be the sum of the min(m − 1, c)

largest computational task utilizations, where c is the num-
ber of computational tasks in τS . Let Ec

L be the sum of the
min(m−1, c) largest computational task execution costs in
τS .

Definition 13. Let V = Es
sum +Ec

L +us
max ·Ss

sum +(m−
1)el + m · sl + 3n · smax.

Theorem 3. [9] The tardiness of any task Tl in τS sched-
uled under GEDF is at most x + el + sl, where

x ≥ V

(1− ξmax) ·m− Us
sum − U c

L

, (1)

provided Us
sum + U c

L < (1− ξmax) ·m.

x is well-defined provided Usum +U c
L < (1−ξmax) ·m.

If this condition holds and x equals the right-hand side of
(1), then the tardiness of Tl,j will not exceed x + el + sl. A
value for x that is independent of the parameters of Tl can
be obtained by replacing (m−1)el+m·sl with maxl((m−
1)el + m · sl) in V .

It is worth noting that this approach allows certain sus-
pending tasks to be designated as computational tasks. In
particular, all suspension phases of any task Tl can be
treated as computation phases, and Tl can be considered to
be a computational task with execution cost of el + sl time

units and ul =
el + sl

pl
.

5.2 Tardiness Bound for NPS Task Sys-
tems

By transforming a periodic NPS task system into a periodic
task system with only suspensions, we can apply Theorem 3
to the transformed task system and derive a tardiness bound
for the NPS task system.

Definition 14. Ordinary tasks are those tasks in τNPS that
do not contain suspensions, pipelines, and non-preemptive
sections.

According to the transformations described in Secs. 3-5,
for any subtask T k

l in τNPS, we increase sk
l by ck

l · bmax (the
maximum NP-blocking time as stated in Lemma 1). Then
for any non-first-stage subtask Th

l (where h ≥ 2), we in-
crease sh

l by (h · (emaxh−1
l + s

maxh−1
l))/2 (to account for

idle blocking times, which are bounded as in Lemma 4).
Then every subtask in τNPS can be transformed into an in-
dependent task with only suspensions, which is mapped to a
task in τS with the same task parameters. Since an ordinary
task has only one computation phase, it can be NP-blocked
for at most bmax time units. Thus, each ordinary task be-
comes a suspending task with a suspension length of bmax

time units. Since in real systems most scenarios where non-
preemptivity arises are due to system calls and critical sec-
tions that are very short compared to job execution times,
we can consider each ordinary task to be a computational
task after the transformations by treating the suspension
phase of any ordinary task Tl as a computation phase. That
is, Ti is considered to be a computational task with execu-
tion cost of el + bmax time units and ui = (ei + bmax)/pi.

By Corollaries 1–2, any maximum per-subtask tardiness
bound for τS holds for τNPS as well. After transforming
τNPS into τS , we can apply Theorem 3 to τS and obtain a
tardiness bound for τNPS, as stated in the following theorem.

Theorem 4. The tardiness of any task Tl in τS (and thus
τNPS) scheduled under GEDF is at most x+el +sl, where x
is defined in Eq. (1), provided Us

sum +U c
L < (1−ξmax) ·m.

According to the suspending task model defined in
Sec. 5.1, for any task Tl, it is required that el + sl ≤ pl.
Therefore, given that any subtask Th

l in τNPS is transformed
into an independent suspending task by increasing its sus-
pension length, in order to apply Theorem 4 to τNPS, it is
required that, for any subtask Th

l , ch
l · bmax + eh

l + sh
l +(h ·

(emaxl−1
l + s

maxh−1
l))/2 ≤ pl. For any ordinary task Ti, it

is required that ei + bmax ≤ pi.

6 Experimental Evaluation
In this section, we describe experiments conducted using
randomly-generated task sets to evaluate the applicability of
the tardiness bound in Theorem 4. Our goal is to examine
how restrictive the theorem’s utilization cap is, for varying
parameter choices.

Definition 15. A task set is said to be schedulable if it sat-
isfies the utilization cap as stated in Theorem 4 and thus can
have bounded tardiness.

Our methodology for generating random task sets was
guided by practical considerations in two ways. First, we
assume that non-preemptive sections are relatively short, for
reasons discussed earlier. Second, we assume that for each
pipeline, suspensions occur only in first- and last-stage sub-
tasks. This is reflective of real-world scenarios in which in-
put data is read in the first stage and output data is written in
the last stage. With these considerations in mind, task sets
were generated as follows. Task periods were uniformly
distributed over [200ms,300ms].4 Subtask utilizations were
uniformly distributed over [0.001, 0.3]. Suspension lengths
and non-preemptive section lengths were controlled by two
parameters, RSE and RNPE. RSE is defined as S/E, where S
is the suspension length of a subtask and E is the execution
cost of that subtask. RSE was varied as follows: 0.01 (sus-
pensions are short), 0.05 (suspensions are moderate), and
0.1 (suspensions are long). The suspension-length ranges
generated by these parameters can reasonably model the
suspension lengths of real-world applications [9], as shown
in Table 1. RNPE is defined as bmax/emin, where emin is
the minimum execution cost among all subtasks. Given the
above comments about non-preemptive sections being typ-
ically short, RNPE was set to be 0.01 in our experiments. To
control the maximum idle-blocking time, a parameter smax,
called pipeline stretch, was used, as defined below.

4Although we are using 1ms as a time unit here, the definition of a time
unit is flexible. For example, we could re-define a time unit to be 0.1ms,
giving a period range of [20ms,30ms]. Such a range might be more suitable
for multimedia applications.

Table 1: Per-job suspension-length ranges.

- - - - - - - -
suspended.

t1 t2

t’

If some processor is idle during
[t’,t’+ε), then it is scheduled and

nothing else is changed.

t’

If all processors are busy during
[t’,t’+ε), then some lower-priority job

must be re-scheduled at t’+ε.

: some computation phase
ranked lower than Δ

: ρ

: task Ti

Case 1:

Case 2:

If all processors are busy during [t’,t’+ε)
and Ti,k is the lowerst-priority job among
all jobs scheduled within [t1,t2), then the

additional computation is scheduled at t3.

t3

: Ti is preempted

. . .- - - - - -

: Δ

.

short
suspensions
RSE = 0.01

moderate
suspensions

RSE = 0.1

long
suspensions

RSE = 0.3

suspension
length

min:
avg:

max:

0.52 µs
187.5 µs
500 µs

157.8 µs
440 µs

5 ms

5 µs
1.875 ms 5.625 ms

15 µs

15 ms

1.875 ms
5.15 ms
10 ms

24.75 ms
48 ms

short
suspensions
RSE = 0.01

moderate
suspensions
RSE = 0.05

long
suspensions

RSE = 0.1

suspension
length

min:
avg:

max:

2 µs
570 µs
1.5 ms 7.5 ms

10 µs
3 ms 5.6 ms

20 µs

15 ms

Table 2: Average tardiness as computed via Theorem 4.

- - - - - - - -
suspended.

t1 t2

t’

If some processor is idle during
[t’,t’+ε), then it is scheduled and

nothing else is changed.

t’

If all processors are busy during
[t’,t’+ε), then some lower-priority job

must be re-scheduled at t’+ε.

: some computation phase
ranked lower than Δ

: ρ

: task Ti

Case 1:

Case 2:

If all processors are busy during [t’,t’+ε)
and Ti,k is the lowerst-priority job among
all jobs scheduled within [t1,t2), then the

additional computation is scheduled at t3.

t3

: Ti is preempted

. . .- - - - - -

: Δ

.

short
suspensions
RSE = 0.01

moderate
suspensions
RSE = 0.05

long
suspensions

RSE = 0.1

suspension
length

Tardiness 167.5 ms 404.8 ms 824.2 ms

Definition 16. Let sw
i =

emaxw
i + smaxw

i − ew
i − sw

i

emaxw
i + smaxw

i

.

sw
i is called the subtask stretch of Tw

i . Let si =
max{s1

i , s
2
i , ..., s

m
i }. si is called the task stretch of pipeline

task Ti. Let smax = max{s1, s2, ..., sn}. smax is called the
pipeline stretch.

smax was varied over (0.01, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3). A larger value of smax indicates a larger value of
the maximum idle blocking time (as stated in Lemma 2),
which negatively impacts schedulability. We also varied
Usum within {1, 2, 3, 4, 5, 6, 7, 8} and let 90% of the tasks
in each task set be ordinary tasks. For each combination of
(RSE, smax, Usum), 1,000 task sets were generated for an
eight-processor system.

The schedulability results that were obtained are shown
in Fig. 9. Each column in this figure shows the percentage
of the generated task sets for that set of parameter choices
that were deemed to be schedulable. In general, very high
schedulability can be achieved when RSE and smax are kept
small. For instance, when RSE = 0.01 and smax ≤ 0.05,
almost 100% of all task sets are schedulable if the system is
not heavily-utilized, as shown in Fig. 9 (a). Moreover, high
schedulability can be achieved when smax is kept small
and the system is moderately loaded. For instance, when
smax ≤ 0.05 and Usum ≤ 4, around 100% (respectively,
90%/70%) of all task sets are schedulable when suspensions
are short (respectively, moderate/long). On the other hand,
our analysis is negatively impacted by increasing any one of
these three parameters. Given that the utilization constraint
stated in Theorem 3 depends crucially on the maximum sus-
pension length and the total system utilization, increasing
any one of these parameters in the original NPS task system
will either increase the suspension length of the correspond-
ing tasks in the transformed system or increase the total uti-
lization, thus further increasing the possibility for a task set
to violate the utilization constraint.

In addition to schedulability, the magnitude of tardiness,

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

80%

100%

ab
ili

ty

0.01 0.05 0.1 0.15 0.2 0.25 0.3

0%

20%

40%

60%

80%

100%

12345
6

7
8

Sc
he

du
la

bi
lit

y

sumU
maxs
(a)

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

sumU
maxs

100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 96%
100% 100% 100% 100% 100% 96% 97% 94% 92%
100% 100% 100% 99% 96% 94% 92% 89% 88%
100% 97% 94% 91% 90% 87% 82% 83% 78%

sumU
maxs

100% 97% 94% 91% 90% 87% 82% 83% 78%
94% 87% 89% 88% 82% 77% 75% 71% 63%

60%

80%

100%

ul
ab

ili
ty

20%

40%

60%

80%

100%

Sc
he

du
la

bi
lit

y

0.01 0.05 0.1 0.15 0.2 0.25 0.3

0%

20%

40%

60%

80%

100%

12345
6

7
8

Sc
he

du
la

bi
lit

y

sumUs
0.01 0.05 0.1 0.15 0.2 0.25 0.3

0%

20%

40%

60%

80%

100%

12345
6

7
8

Sc
he

du
la

bi
lit

y

sumU
maxs
(b)

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

sumU
maxs

100% 100% 100% 100% 100% 100% 100% 100% 96%
100% 100% 100% 100% 100% 100% 97% 93% 89%
100% 100% 100% 96% 93% 94% 92% 87% 84%
96% 97% 94% 92% 89% 88% 84% 81% 79%
94% 92% 89% 88% 85% 81% 77% 73% 65%
87% 82% 83% 78% 73% 66% 62% 56% 49%

sumU
maxs

87% 82% 83% 78% 73% 66% 62% 56% 49%
77% 75% 71% 63% 55% 53% 49% 43% 37%

sumU
maxs

100%

60%

80%

100%

ul
ab

ili
ty

20%

40%

60%

80%

100%

Sc
he

du
la

bi
lit

y

0.01 0.05 0.1 0.15 0.2 0.25 0.3

0%

20%

40%

60%

80%

100%

12345
6

7
8

Sc
he

du
la

bi
lit

y

sumUs
0.01 0.05 0.1 0.15 0.2 0.25 0.3

0%

20%

40%

60%

80%

100%

12345
6

7
8

Sc
he

du
la

bi
lit

y

sumU
maxs
(c)

Figure 9: Schedulability results. (a) Short suspensions (RSE = 0.01). (b) Moderate suspensions (RSE = 0.05). (c) Long
suspensions (RSE = 0.1). Each figure gives a 3-D graph in which schedulability is shown under different combinations of
two parameters: smax and Usum.

as computed using Theorem 4, is of importance. Table. 2
depicts the average of the computed bounds for each of the
tested scenarios in our experimental framework for the case
where Usum = 4 and smax = 0.05 (that is, for each sce-
nario in this case, an average of all bounds for all tasks in
all schedulable task sets is given). As can be seen, tardi-
ness is reasonable if the total utilization is moderate and
suspensions are short or moderate. However, as suspension
lengths increase, tardiness increases, as an examination of
the bound in Theorem 4 suggests should be the case.

7 Conclusion
In this paper, we presented a method for transforming a pe-
riodic NPS task system into a simpler periodic task system
with only suspensions. The transformation allows maxi-
mum response-time bounds derived for periodic suspending
task systems to be applied to periodic NPS task systems.
This allowed us to derive a deadline tardiness bound under
GEDF for such systems. This bound shows that NPS task
systems can be supported with bounded tardiness provided
certain utilization constraints are met.

References
[1] U. Devi. An improved schedulability test for uniprocessor

periodic task systems. In Proc. of the 15th Euromicro Conf.
on Real-Time Systems, pp. 23-30, 2003.

[2] U. C. Devi and J. H. Anderson. Tardiness bounds under
global EDF scheduling on a multiprocessor. In Proc. of
the 26th IEEE Int’l Real-Time Systems Symp., pp. 330-341,
2005.

[3] P. Jayachandran and T. Abdelzaher. Transforming distributed
acyclic systems into equivalent uniprocessors under preemp-
tive and non-preemptive scheduling. In Proc. of the 20th
Euromicro Conf. on Real-Time Systems, pp. 233-242, 2008.

[4] P. Jayachandran and T. Abdelzaher. A delay composition the-
orem for real-time pipelines. In Proc. of the 19th Euromicro
Conf. on Real-Time Systems, pp. 29-38, 2007.

[5] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time
scheduling of tasks that contain the external blocking inter-
vals. In Proc. of the 2nd Int’l Workshop on Real-Time Com-
puting Systems and Applications, pp. 54-59, 1995.

[6] H. Leontyev and J. H. Anderson. Generalized tardiness
bounds for global multiprocessor scheduling. In Proc. of the
28th Real-Time Systems Symp., pp. 413-422, 2007.

[7] C. Liu and J. H. Anderson. Supporting pipelines in soft real-
time multiprocessor systems. In Proc. of the 21st Euromicro
Conf. on Real-Time Systems, pp. 269–278, 2009.

[8] C. Liu and J. H. Anderson. Supporting sporadic pipelined
tasks with early-releasing in soft real-time multiprocessor
systems. In Proc. of the 15th IEEE Int’l Conf. on Embed-
ded and Real-Time Computing Systems and Applications, pp.
284-293, 2009.

[9] C. Liu and J. H. Anderson. Task scheduling with self-
suspensions in soft real-time multiprocessor systems. In
Proc. of the 30th Real-Time Systems Symp., pp. 425-436,
2009.

[10] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.
[11] J. C. Palencia and M. Gonzlez Harbour. Schedulability anal-

ysis for tasks with static and dynamic offsets. In Proc. of the
19th IEEE Real-Time Systems Symp., pp. 26-37, 1998.

[12] J. C. Palencia and M. Gonzlez Harbour. Response time anal-
ysis of EDF distributed real-time systems. In J. Embedded
Comput., Vol.1, pp. 225-237, 2005.

[13] R. Pellizzoni and G. Lipari. Improved schedulability analysis
of real-time transactions with earliest deadline scheduling.
In Proc. of the 11th IEEE Int’l Real Time and Embedded
Technology and Applications Symp., pp. 66-75, 2005.

[14] R. Rajkumar. Dealing with Suspending Periodic Tasks. IBM
Thomas J. Watson Research Center, 1991.

[15] F. Ridouard and P. Richard. Worst-case analysis of feasibility
tests for self-suspending tasks. In Proc. of the 14th Real-Time
and Network Systems, pp. 15-24, 2006.

[16] F. Ridouard, P. Richard, and F. Cottet. Negative results
for scheduling independent hard real-time tasks with self-
suspensions. In Proc. of the 25th IEEE Real-Time Systems
Symp., pp. 47-56, 2004.

