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Abstract

Google Earth is a virtual globe that allows users
to explore satellite imagery, terrain, 3D buildings, and
geo-spatial content. It is available on a wide variety
of desktop and mobile platforms, including Windows,
Mac OS X, Linux, iOS, and Android. To preserve the
sense of fluid motion through a 3D environment, the ap-
plication must render at 60Hz. In this paper, we dis-
cuss the scheduling constraints of this application as a
soft real-time scheduling problem where missed dead-
lines disrupt this motion. We describe a new scheduling
implementation that addresses these problems. The di-
versity of hardware and software platforms on which
Google Earth runs makes offline execution time analy-
sis infeasible, so we discuss ways to predict execution
time using online measurement. We provide experimen-
tal results comparing different methods for predicting
execution time. This new implementation is slated for
inclusion in a future release of Google Earth.

1. Introduction

Google Earth is a 3D graphics application used by
millions of consumers daily. Users navigate around
a virtual globe and can zoom in to see satellite im-
agery, 3D buildings, and data such as photos and links to
Wikipedia. An example screenshot is shown in Fig. 1.
In addition to a free edition, professional editions exist
for use by corporations and governments. Such editions
are used in broadcasting, architecture, environmental
monitoring, defense, and real estate for visualization
and presentation of geo-spatial content. When navigat-
ing the globe, an illusion of smooth motion should be
created. However, the application currently has a signif-
icant amount of visible stutter, a phenomenon in which
the display fails to update as frequently as it should.

Several techniques have been proposed to address
the problem of stutter in graphics applications. In [1]

Figure 1: Google Earth screenshot of St. Peter’s Basil-
ica from Sightseeing Tour.

the technique of altering level-of-detail (LOD) is pro-
posed to ensure consistent frame rates. The authors
propose certain heuristics in order to estimate rendering
time, the time required to render a single frame. In [12]
these heuristics are explored in more detail and hard-
ware extensions are proposed that can be used to enable
soft real-time scheduling. Due to the hardware require-
ments, these techniques cannot be used for an applica-
tion such as Google Earth that needs to run on a wide
range of existing consumer devices. For the specific
case of mobile devices, rendering time analysis meth-
ods are presented in [7, 10]. Although Google Earth
does currently alter LOD, for this paper we focus on the
complementary approach of delaying problematic jobs
to future frames. Therefore, rather than predicting how
the workload will be reduced when the LOD is reduced,
we need accurate predictions for how long jobs will take
to run. Furthermore, existing work applies detailed pre-
diction mechanisms only to rendering jobs that execute
primarily on the GPU, whereas we are also interested in
CPU-bound and network-bound jobs.

In this paper, we provide methods to predict the
execution time of these jobs. The wide variety of tar-
get platforms make offline analysis of execution time



impractical, so the execution time of jobs must be pre-
dicted based on online statistical collection. Further-
more, Google Earth has a limited preemption model
(described in Sec. 2.1). These issues make reducing
stutter difficult, particularly without negatively affect-
ing the response time of jobs (see Sec. 2). The primary
contribution of this paper is an implementation study of
different methods to predict execution times for hetero-
geneous sets of jobs, with the goal of reducing stutter
with minimum effect on response times. We propose a
simple prediction mechanism that can significantly re-
duce stutter.

Our new scheduler implementation is planned for
inclusion in a future release of Google Earth. Thus,
it requires careful planning and testing to ensure that
users, particularly paying customers, do not experience
any loss of functionality. One difficulty in this regard
is the requirement that the implementation be done “in-
place” without disrupting the existing behavior (due to a
planned production release halfway through this work).
As changing the scheduling logic could have complex
unforeseen consequences, the new scheduler must be
capable of mimicking the existing behavior. This was
complicated by the fact that the existing code was not
designed with a clear notion of scheduling, resulting in
several different ad-hoc methods.

In Sec. 2, we describe the terminology and task
model used in this paper. Our description of the new
scheduling implementation is given in Sec. 3, followed
by descriptions of specific time-prediction algorithms in
Sec. 4, and experimental results in Sec. 5.

2. Background

In Sec. 2.1, we describe the constraints that the ap-
plication runs under and define relevant terms used in
this paper. In Sec. 2.2 we provide an example schedule
to motivate the task model, and in Sec. 2.3, we describe
the task model.

2.1. Definitions

Each image rendered on the screen is called a
frame. The illusion of smooth motion is created by ren-
dering these frames at a sufficiently high rate. Due to
the synchronization of commodity graphics hardware
and the display device, the frame rate is a fixed amount
(usually 60 Hz. for desktop machines). This means that
all of the work to process and render a single frame
must be completed in 1/60th of a second, which gives
a frame period of 16.67ms. A frame period boundary is
known as a vsync event (from vertical synchronization).
There is no benefit to completing rendering before the

vsync event, but missing it introduces artifacts by re-
drawing the previous frame. This causes a noticeable
discontinuity in the motion, known as stutter. See [8]
for a discussion of the perceptual impact of stutter.

The Google Earth process consists of multiple
threads, each with its own context and execution path,
but all of which are part of the same process and share
common memory. The first thread started by the operat-
ing system, and running the main function, is called the
main thread. Due to the requirements of the graphics
drivers on some systems that Google Earth supports, all
direct access to the graphics hardware must take place
within the main thread. For the purposes of this paper,
we only consider the work executed on the main thread.

A scheduler is a unit of code that repeatedly calls
certain functions based on scheduling constraints. Each
function that is called constitutes a task, and each call to
the function is a job. (A job can make its own function
calls, which are considered part of the job.) A job is
released when it is added to the scheduler for execution.

Each frame requires three stages of execution
within the main thread, as depicted in Fig. 2. Ini-
tially, static jobs are run in a specific order dictated by
data dependencies. These include traversing data struc-
tures to perform updates and culling, uploading data to
the graphics card, handling input events, etc. An ex-
ample of a typical frame is given in Sec. 2.2. Then,
the dynamic scheduler considered here is invoked and
runs dynamic jobs, described in more detail in Sec. 2.3.
(Note: This work focuses on the dynamic scheduler.
Therefore, when “scheduler” is used without qualifica-
tion, it refers to the dynamic scheduler, and when “job”
is used without qualification, it refers to a dynamic job.)

Finally, the vsync function is called. The purpose of
the vsync function is to let the graphics hardware know
that there is a new image ready for the vsync event, and
it works by blocking until the next vsync event has com-
pleted and then returning. Observe that whenever the
vsync function is started, it completes at the next vsync
event, and starting the vsync function at the wrong time
results in blocking the main thread for a large amount
of time, as occurs in Frame 3 in Fig. 2. We say that a
vsync event is successful if the main thread is running
the vsync function when it occurs, and unsuccessful oth-
erwise. To attempt to ensure that the next vsync event
is successful, when the dynamic scheduler is run, it is
given a scheduler deadline to complete by. The sched-
uler deadline is before the vsync event so that there is
enough time for the overhead of returning from the dy-
namic scheduler and calling the vsync function. In the
absence of overheads, the scheduler deadline would be
at the vsync event.

From the user’s perspective, a job’s completion is
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Figure 2: Execution path within the main thread. Sizes and numbers of jobs are simplified for illustration.
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Figure 3: Both Job 1 and Job 2 have perceived response
times of 2 frames, due to the unsuccessful vsync event
caused by Job 2.

not visible until the next successful vsync event. There-
fore, we define a job’s perceived response time as the
number of (complete or partial) frame periods between
its release and the next successful vsync event after its
completion, as shown in Fig 3. For example, if a job
is released and completes between two vsync events,
and the second vsync event is successful, its perceived
response time is one frame period. The perceived re-
sponse time of each job should be as short as possible.
However, because stutter is more noticeable to the user
than a delay of even a few seconds, avoiding an unsuc-
cessful vsync event is generally a higher priority than
achieving a small perceived response time. We discuss
this tradeoff in more detail in Secs. 4 and 5.

* * * *(Preempted)

Initial NP 
Section

Post-PP NP Sections

Longest Post-PP NP Section

* Preemption Point (PP)

Figure 4: NP section types.

A point where a job can be preempted is called a
preemption point (PP), first described in [11]. (Our spe-
cific implementation of preemption points is discussed
in Sec. 3.) We divide each job into non-preemptive (NP)
sections based on its PPs. There are two NP-section
types, depicted in Fig. 4. The first NP section of a job

(from the start of the job until its first PP) is the ini-
tial NP section, and each NP section thereafter (between
two PPs or between a PP and the job completion) is a
post-PP NP section. Within the set of post-PP NP sec-
tions within a job, the longest (or an arbitrary longest
in case of a tie) is referred to as the longest post-PP NP
section. Each job contains exactly one initial NP sec-
tion, zero or more post-PP NP sections, and at most one
longest post-PP NP section.

A predictor is an object that has two functions: one
that inputs task ID, NP section type, and NP section
length for each initial or longest post-PP NP section and
updates internal state, and one that outputs a prediction
for the next NP runtime given task ID and NP section
type. (The longest post-PP NP section is used to pre-
dict all post-PP NP sections. This decision is explained
in Sec. 4.) A predictor type describes the particular
method used to produce predictions given the inputs.
Particular predictor types are described in Sec. 4.

A soft deadline is a deadline that can be missed,
but should be missed by a reasonably small amount.
There is still value in completing a job after its dead-
line has passed. Similar constraints have been discussed
in [9]. A firm deadline is a deadline after which a job
should not be completed, but should instead be dis-
carded. Missing a firm deadline is costly, but not catas-
trophic.

2.2. Example Schedule

To understand the workload of Google Earth, it is
helpful to understand some of the work needed to cre-
ate a single frame for rendering. An example schedule
(with parameters chosen for illustration rather than re-
alism) is depicted in Fig. 5. Based on the camera po-
sition, the Visibility Computation creates a list of visi-
ble regions and compares it to the existing regions. If
regions are not currently loaded or are at a different
resolution, the same job queues up a fetch to request
each needed region. In our example, there are two such
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Figure 5: Example task system with simplified parameters chosen for illustration.

regions. When the server responds, each of these re-
gions is processed (decoded, loaded into texture mem-
ory, inserted into the data structures, stored in a cache,
etc.); in Fig. 5 this per-region processing is denoted as
Fetch 1 and Fetch 2. This new data can cause a num-
ber of other data structures to be updated. For example,
higher resolution terrain data requires updating the alti-
tudes of the road segments — Road Drawing. Observe
that, due to the preemption model, idleness is present
at the end of each frame period to avoid missing the
scheduler deadline (and, in turn, risking an unsuccess-
ful vsync event). Also observe the large variance in ex-
ecution times. For example, the Road Drawing task re-
quires more work when new data has been processed.
The amount of time left after the static jobs varies dra-
matically between frame periods. The dynamic sched-
uler must account for this variation.

2.3. Task Model

There are two types of tasks with dynamic jobs in
Google Earth. A single-active sporadic (SAS) task has
one job released at each vsync event, unless another job
of the task has been released (at a previous vsync event)
but has not yet completed. In our example discussed in
Sec. 2.2 the Visibility Computation is an SAS task that
misses its deadline at the end of frame 25, and so does
not release a new job for frame 26. The Road Drawing
task is also an SAS task, but meets all of its deadlines
and therefore releases a job at every vsync event. The
requirement that there be only one job that has been re-
leased but not completed is a simple form of adaptivity
that limits the load of the system. (More complex adap-
tivity schemes exist, e.g. [4], but this simple scheme is
used to ensure that each SAS task releases jobs as fre-

quently as possible while having at most one job exe-
cuting during each frame.) The soft deadline of each
job is defined to be the next vsync event, so that in the
ideal case each job has a perceived response time of one
frame and a job is released at each vsync event. A soft
real-time (SRT) aperiodic task, on the other hand, has
jobs released in response to I/O events, such as receiv-
ing new imagery over the network. In the example dis-
cussed in Sec. 2.2, Fetch 1 and Fetch 2 are SRT aperi-
odic tasks. Because large amounts of data may be re-
quested at the same time and network behavior is some-
what unpredictable, no constraints exist on the release
times of such tasks. However, because new data usually
indicates that the view on the screen needs updating, the
timing of their jobs is also important. Therefore each
job of an SRT aperiodic task also has a soft deadline
at the next vsync event after it is released. A job of an
SRT aperiodic task can be canceled if the application
determines that it is no longer relevant. (For example, a
network response with details about a 3D building that
is no longer in view does not need to be processed.)

Furthermore, for analysis purposes, we can model
the vsync event as a periodic task with an execution time
of ε (for an arbitrarily small ε) and a period of 16.67 ms
(assuming a 60 Hz refresh rate), with a firm deadline at
the vsync event and released ε units before. This peri-
odic task represents the time when the vsync function
needs to be called. Any time that the vsync function
runs past the vsync deadline is modeled as unavailable
time like the static jobs that follow it. Meeting the dead-
line of the periodic vsync task corresponds to a success-
ful vsync event, while missing it corresponds to an un-
successful vsync event. If tasks were fully preemptible,
meeting this task’s firm deadline would be trivial, but
due to the limited preemption model we must ensure



that no other job is running when the deadline occurs.

3. Implementation

In this section, we describe the implementation of a
soft real-time scheduler within the legacy Google Earth
codebase. First we describe, in Sec. 3.1, the existing im-
plementation of task scheduling in Google Earth. Then,
in Sec. 3.2, we discuss the new implementation.

Scheduler::
Run

Job: * * *

* Preemption 
Point

Scheduler 
Deadline

Function 
Call

Function 
Return

Vsync 
Event

(a) Existing scheduler relies upon jobs to do their own time
accounting at their preemption points. This often causes un-
successful vsync events.

Scheduler::
Run

Job * *

*
Preemption 
Point

Scheduler 
Deadline

Scheduler::
ShouldContinue

Function 
Call

Function 
Returns V

T F T = True
F = False

V
Vsync 
Event

(b) Jobs now contain explicit preemption points that call back
to the scheduler through a function ShouldContinue. The
scheduler then uses online prediction to determine whether to
execute jobs, and if it returns “false,” the job returns. If the
job is unlikely to finish before the scheduler deadline, then it is
postponed until the next frame period.

Figure 6: A similar job under the (a) old and (b)
new schedulers. Moving the preemption control to the
scheduler enables advanced prediction models.

3.1. Existing Implementation

In Google Earth version 6.0 and prior, the scheduler
is passed the scheduler deadline, which is then passed to
the jobs. Jobs are scheduled in simple FIFO order. The
scheduler ceases executing when a job detects that it is
past the deadline, as shown in Fig. 6(a). Jobs check for
actual or expected deadline misses only at points where
they can safely be preempted.

A small number of jobs use time prediction to avoid
scheduler deadline misses. As these jobs process el-
ements from a work queue, they maintain a running
average of per-element execution times. If the aver-
age exceeds the available time before the deadline, they
will voluntarily give up execution. This self-preemption

ends the scheduler’s execution as well, and no further
jobs are scheduled before the vsync event.

3.2. New Implementation

For this work, we have implemented a new
scheduling interface for Google Earth, which is in-
cluded in a preliminary form in Google Earth 6.1 and
will be included in a more complete form in a future
release of Google Earth. We have a new interface
IJobScheduler, as shown in Fig. 7. As with the old
scheduler implementation, we continue to use FIFO to
prioritize jobs. (Observe that, by our task model, FIFO
is equivalent to EDF with appropriate tie-breaking.) Al-
though the prioritization of jobs is identical in our new
scheduler, the behavior has significant differences. For
one, instead of relying on jobs to avoid scheduler dead-
line misses, the scheduler does not execute a job if it
predicts it will cause a scheduler deadline miss, and
stops executing jobs if the scheduler deadline is actu-
ally missed, as shown in Fig. 6(b). The new scheduler
uses a predictor (predictors are defined in Sec. 2.1) to
determine whether each NP interval is likely to cause a
scheduler deadline miss. (If the current time plus the
NP section prediction exceeds the scheduler deadline,
then the job is predicted to cause a scheduler deadline
miss.) Specific predictor types are discussed in Sec. 4.
Unlike the previous scheduler, the new scheduler does
not stop executing when the predictor indicates a sched-
uler deadline miss, but instead executes remaining jobs
(with shorter predicted NP sections) that are not ex-
pected to cause scheduler deadline misses. In order to
prevent starvation of jobs that have very long predicted
NP section times, a non-starvation rule is applied: when
the scheduler begins its execution for a particular frame,
it always executes the highest-priority job (by FIFO),
regardless of whether that job is predicted to cause a
scheduler deadline miss.

A more direct preemption mechanism is also in-
cluded in the IJobScheduler interface. When a
job can safely be preempted, it can call a function
ShouldContinue on the scheduler, optionally in-
cluding a prediction for how much time it expects to
run before it next calls ShouldContinue or com-
pletes. The scheduler will determine whether the job
needs to be preempted and returns its decision to the
job. This approach allows us to use existing PPs and/or
time predictions where present, but we must modify all
existing jobs by replacing deadline checks with calls to
ShouldContinue.



class IJobScheduler {
void AddJob(job);
void RunJobs();
bool ShouldContinue(job);

class Job {
bool Run();
TaskID GetTaskID();

};

class TimePredictor {
double Predict(

task_id, np_section_type);
void RecordExecutionTime(

task_id, np_section_type, time);
};

};

Figure 7: Interface for the implementation of new
scheduler.

4. Time Predicton

As discussed in Sec. 3, the new Google Earth
scheduler uses predictors to estimate NP section length.
Choosing an appropriate predictor type is essential for
performance. Here we see the competition between
scheduler deadline misses and perceived response time:
if the predictor is too optimistic, it can result in large
numbers of scheduler deadline misses, but if it is too
pessimistic, it can result in large perceived response
times (because jobs are deferred to later frame periods).
Scheduler deadline misses can also increase perceived
response time by causing an unsuccessful vsync event,
as jobs that completed before the unsuccessful vsync
event will not have their effects observed until the next
successful vsync event.

Accurate time prediction is complicated by the ir-
regular distributions of NP section lengths for each par-
ticular task. A histogram of the initial NP section length
for one particular task, measured from actual execution,
is depicted in Fig. 8. The largest observed execution
for this task is 15 ms, but its average execution is far
smaller. If the predictor predicts shorter than 15 ms for
initial NP sections of this job, then a scheduler dead-
line miss is possible. However, if the predictor predicts
15 ms or larger, then jobs of this task are likely to be
delayed more frequently than necessary.

In this section we discuss several predictor types,
with a brief description of the rationale for each. In
each case, the scheduler also supports receiving time
predictions from the job itself. If a job does provide
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Figure 8: Histogram of initial NP section length for one
task with the tail of the histogram truncated at 0.1 ms.
The worst case for this task is 15 ms. Many of the tasks
in Google Earth exhibit this long-tail behavior.

such a time prediction (which is the case precisely for
jobs that implemented time prediction in version 6.0),
the scheduler will also call its associated predictor, and
will operate based on the more pessimistic (i.e., larger)
result. Pessimism can therefore only increase. We study
the improvement available by adding predictions that
did not previously exist, and are not concerned with the
accuracy of predictions already present.

Because initial NP sections and post-PP NP sec-
tions are likely to involve different code paths, their tim-
ing statistics are handled separately. Code paths for dif-
ferent post-PP NP sections may or may not differ within
a job, so we use the longest post-PP NP section when
predicting any post-PP NP section time.

We now describe the predictor types tested in this
work. Experimental results are given in Sec. 5.

No Scheduler Prediction. In order to mimic the be-
havior of the Google Earth 6.0 scheduler as closely as
possible, one implementation of time prediction is sim-
ply to predict a time of 0 for each NP section of any
type. If a job does not provide its own time prediction,
then it will be scheduled unless the scheduler deadline
has already been missed.

When using this predictor type, we sometimes
modify the scheduler to return to the top level as soon
as it decides not to schedule a particular job, to emu-
late the behavior of Google Earth 6.0 more precisely.
(Recall, as discussed in Sec. 3, that the new scheduler
will normally attempt to schedule a job with a shorter
NP section prediction in this case.) This technique is
referred to as 6.0 emulation.

Maximum Observed Execution. For a worst-case
execution time estimate, one metric is to use the maxi-



mum observed execution time for each type of NP sec-
tion. While this method provides an obvious metric for
“worst-case execution time,” it has the problem that it is
highly sensitive to outliers. For example, if the operat-
ing system decides to preempt Google Earth during the
execution of a job, then the measured NP section length
could be very large. Pessimistically assuming that all
jobs of the same task can require such a large amount of
execution time could result in large delays, and a large
perceived response time for such jobs. Simple outlier
detection methods are difficult to apply due to the ir-
regular long-tailed distributions (as in Fig. 8) that these
jobs exhibit even when functioning normally. There-
fore, we instead allow values to expire, so as to limit
the amount of time when a true outlier will have no-
ticeable effects. For example, we can use the worst ob-
served response time over the past six seconds instead
of since the start of the application. If Google Earth is
preempted while executing some job, then the relevant
task will be penalized for only the next six seconds.

NP Section Time Histogram. If we minimize the
probability of predicting too small an NP section time,
then we risk creating large perceived response times.
Instead, we consider the approach of targeting a specific
small probability of such mispredictions. In order to do
so, we can store a histogram of past NP section times.
We use a bin size of 10−3 milliseconds, and allow a con-
figurable percentile of the histogram to be selected. For
example, if using a 95% histogram, the leftmost 95%
of values will be selected, and the maximum value in
the appropriate bin range used as an execution time es-
timator. The target in this case is a 5% probability of
misprediction. Maintaining the histogram does require
substantially more overhead than other approaches, but
outliers are handled robustly.

Mean + Standard Deviations. Another predictor
type uses the average response time of the job’s NP sec-
tion lengths of each type. We can calculate the mean
and standard deviation of the previous values efficiently
in an online manner. Using only the mean to predict
NP section times would cause us to under-predict fre-
quently (as roughly half of the previous times were
longer), so we include several standard deviations above
the mean. If task NP section distributions (for each NP
section type) followed a standard distribution such as a
normal distribution, we could compute the exact num-
ber of standard deviations necessary to achieve a spe-
cific percentile. However, because task NP section dis-
tributions are not consistent, doing so is not possible.
By using the mean plus a certain (configurable) number
of standard deviations, we attempt to predict with sim-
ilar pessimism to the NP section time histogram, sacri-
ficing precision for a significant reduction in overhead.
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Figure 9: Typical perceived response histogram.

5. Experiments

In order to evaluate the tradeoffs between differ-
ent predictor types, we performed experiments using
a modified version of the “Sightseeing Tour” shipped
with Google Earth. The Sightseeing Tour shows a vari-
ety of scenes across the planet such as the Eiffel Tower,
St. Peter’s Basilica (shown in Fig 1), downtown Sydney,
and the Google campus in Mountain View, California.
This particular tour makes heavy use of demanding fea-
tures such as 3D buildings, so it exposes behavior that
is likely to be worse than will be observed during typ-
ical interactive use. In the tour provided with Google
Earth, there are pauses built into the tour at each major
landmark, allowing the user to see the scene until they
manually restart the tour. To facilitate testing, we re-
moved these pauses from the tour, so that all landmarks
are visited in one invocation.

For each run, we first cleared the disk cache of
Google Earth, and then restarted the application. In this
manner, we simulated the common situation in which
the user visits a scene he or she has not previously vis-
ited. Furthermore, we ensured that each run began with
the same cache state. This simulation therefore resulted
in some of the most extreme overload conditions possi-
ble while running Google Earth.

We ran the tests on a Windows desktop (Windows 7
64-bit, Dell Precision T3400, 2.8GHz Intel Core2 Quad
CPU, 8 GB RAM) and a MacBook Pro laptop (OS X
Snow Leopard, a 2 GHz dual-core Intel Core i7 proces-
sor, and 8 GB RAM). Each test was based on the same
version of Google Earth built from the current develop-
ment repository, compiled with the same optimizations
as production builds but including additional instrumen-
tation for measurements. The viewport resolution was
set to an HDTV value of 1280x720. Each experiment
shown was repeated at least three times to ensure that



the results were representative of typical behavior. The
performance differed on the two machines due to dif-
ferences in OS behavior (such as scheduling), graphics
cards, memory bus speeds, disk I/O speeds, and proces-
sor configuration (e.g. dual-core on the MacBook Pro
vs. quad-core on the desktop).

Several factors can affect unsuccessful vsync
events in Google Earth. It is possible for a frame to
skip even if the scheduler completes before its deadline.
There are two situations where this phenomenon can oc-
cur: the vsync event can be overrun by something that
runs before the scheduler (a static job or the top level),
or the scheduler deadline (which currently has an off-
set from the vsync event determined offline) can be too
close to the vsync event. Similarly, it is possible for the
scheduler to miss its deadline without causing an unsuc-
cessful vsync event, if the scheduler deadline is farther
than necessary from the vsync event. These considera-
tions are outside the scope of these experiments, so we
simply measure whether the last completion or preemp-
tion time occurs after the scheduler deadline.

When measuring perceived response time, we as-
sumed that the next vsync event after the end of the
scheduler would be successful, so that all tasks com-
pleted during that scheduler invocation had perceived
completion times at the next vsync event. (This assump-
tion follows from the definition of perceived response
time given in Sec. 2.1. In the unlikely situation that the
scheduler finished so close to the vsync event that there
was not enough time to perform measurement, return to
the top level, and call the vsync function, this assump-
tion would be false.)

Because one or more job releases are cancelled for
SAS tasks when a job misses its deadline, counting a job
with a perceived response time greater than one frame
as a single job biases our response metrics in favor of
jobs with smaller perceived response times. For exam-
ple, suppose within an SAS task we measure a series of
99 jobs that complete within one frame, followed by a
single job that completes in 10,000 frames. Denote as
I the time interval between the release and completion
of the last job. In this case, 99% of jobs have a per-
ceived response time of one frame. However, the actual
performance is incredibly poor: I constitutes most of
the time under consideration, but includes only one job
completion for this task, and includes 9,998 cancelled
releases. To avoid this bias, we account for each job Js
(for “skipped”) that would have run, had its predeces-
sor completed in time. We included such hypothetical
jobs in our statistics, using for each Js the perceived re-
sponse time of the job Jr that was actually running when
Js would have been released. Most perceived response
time histograms using this technique had the shape typ-

Figure 10: The tradeoff between Missed Scheduler
Deadlines per Run (dark bars, axis on the left) and Av-
erage Response Times in Frames (light bars, axis on
the right) for different time predictors, created from the
Windows results in Table 1. Smaller is better.

ified by Fig. 9, with variances in the length of tail.
Table 1 (with key features depicted in Fig. 10)

shows typical results. By comparing the “No Sched-
uler Prediction” results with and without 6.0 emulation,
we see that the minor modifications to the 6.1 scheduler,
compared to the 6.0 scheduler, have very little effect on
missed frames and response times. Adding scheduler-
based time prediction, on the other hand, has a substan-
tial impact on missed scheduler deadlines. This is illus-
trated in Fig. 10 by comparing the dark bars of the two
left-most columns with the rest of the graph.

Selecting the maximum observed execution as the
prediction for each type of NP section type provides the
fewest scheduler deadline misses of any technique, as
seen in the “Non-Expiring Maximum” results. How-
ever, doing so substantially increases response time for
some tasks. Furthermore, although not depicted directly
in the table, using a non-expiring maximum on Mac OS
X results in over half of the aperiodic jobs being can-
celled (because they involve work that is no longer rel-
evant to the scene depicted by the time they would have
been scheduled). Therefore, task starvation is signifi-
cant, and the non-expiring maximum is not a practical
choice for scheduling within Google Earth. (The dif-
ference in behavior between Mac OS X and Windows
is due to the high sensitivity of this predictor type to
outliers resulting from machine-specific behaviors.)

Expiring these values after 30 seconds significantly
reduces the worst median response time, but maintains
a large average perceived response time and worst per-
ceived response time. It would appear that enough of
the “worst” values expire quickly enough to avoid starv-
ing jobs, but the values expire slowly enough to cause
delays. Using 6-Second Maximum further improves
the response statistics at the expense of more scheduler
deadline misses. This phenomenon occurs because a



Predictor Type Platform Missed
Scheduler
Deadlines
Per Run

Worst
Median
(Within
Task)
Response
(Frames)

Average
Response
(Frames)

Worst
Response
(Frames)

No Scheduler Prediction
with 6.0 Emulation

Windows 3260 3 4.4 107
OSX 3164 2 6.5 220

No Scheduler Prediction
without 6.0 Emulation

Windows 3190 3 5.2 238
OSX 2919 2 4.0 107

6-Second Maximum Windows 351 3 11.7 372
OSX 1072 2 7.6 193

30-Second Maximum Windows 141 3 28.2 741
OSX 614 3 9.8 760

Non-Expiring Maximum Windows 64 30 16.6 619
OSX 8 8126 270.5 16006

95% Histogram Windows 992 3 8.6 237
OSX 1062 2 14.7 357

99% Histogram Windows 638 3 12.8 439
OSX 417 3 7.3 209

Mean + 2 Standard Deviations Windows 842 3 4.4 112
OSX 887 2 3.5 67

Mean + 3 Standard Deviations Windows 257 3 4.7 103
OSX 450 2 4.1 110

Mean + 4 Standard Deviations Windows 198 3 3.7 107
OSX 581 2 3.8 98

Mean + 6 Standard Deviations Windows 173 3 6.6 317
OSX 552 3 3.8 283

Table 1: Typical run of a tour for each predictor type/platform combination.

small fraction of jobs take a disproportionate amount
of time. These long-running jobs cause unnecessarily
large predictions, resulting in other jobs within the task
being unnecessarily delayed. When predictions are al-
lowed to expire, response times improve and starvation
is reduced.

A finer-grained level of control is available by
maintaining an explicit histogram of non-preemptive
execution times, and predicting based on percentile.
Using a 95% Histogram significantly reduces missed
scheduler deadlines, but not to the same degree as other
methods we attempted, and response times were actu-
ally higher than with several other methods. A 99% His-
togram provides more significant reduction in missed
scheduler deadlines, but like the 95% Histogram has
a mediocre response time distribution. This is likely
due to the overhead of maintaining the histogram and
computing the percentiles. Measurements on the OSX
laptop showed that the histogram-based techniques re-
quired 2× to 10× more time to compute predictions
than other techniques (≈ 0.4ms to 2ms per frame).

The most promising method is to compute the
mean and standard deviation for each distribution, and
add a specific number of standard deviations on top of
each mean. This is illustrated in Fig. 10 with “Mean
+ 2 Standard Deviations” through “Mean + 6 Standard
Deviations”. Because the different tasks do not follow
a consistent distribution, as discussed in Sec. 4, we re-
lied on experimental results to determine an appropriate
number of standard deviations. Selecting values three
or four standard deviations above the mean appears to
be the best choice we tried on both tested platforms,
providing both a small number of scheduler deadline
misses and small response times.

This result was surprising and a bit counter-
intuitive. For one, this prediction type does not expire
any values, so it would seem to be susceptible to the
same problems as the Non-Expiring Maximum, albeit
to a lesser degree. In addition, the variability of re-
sponse times would seem to favor the more complex
histogram methods over “Mean + Standard Deviation”.
Our experiments show that this is not the case. Not only



does it outperform all of the other predictor types, but it
is fast and requires very little storage. This makes it a
good choice for use in a future version of Google Earth.

6. Conclusion

In this paper we have described a new implementa-
tion of a soft real-time scheduler in Google Earth. We
have provided methods to dramatically reduce the num-
ber of missed scheduler deadlines, and demonstrated
these results experimentally. In addition, these methods
provide valuable insight into the execution behavior of
jobs in Google Earth. This will greatly assist the de-
velopers in reducing stutter, particularly as more of the
static jobs are made preemptible, decoupled from data
structures, converted to dynamic jobs, and placed under
control of the dynamic scheduler.

In this paper we focused on single-core schedul-
ing, but with the proliferation of multi-core devices,
multi-core scheduling is the next challenge. In that set-
ting, the scheduler will manage a pool of threads and
assign jobs to threads. The size of the pool will be
based on the number of cores, device capabilities, and
type of job (I/O blocking, requires access to graphics
hardware, etc). Initially, we will focus on static assign-
ment of jobs onto the main thread vs. non-main threads,
but we have considered dynamically assigning jobs to
threads based on workload by using a global schedul-
ing algorithm. Our existing FIFO scheduling algorithm
is appealing when extended to multiprocessors, because
it is window-constrained as described in [3]. As that
work demonstrates, bounded tardiness is thus guaran-
teed provided that the system is not over-utilized. (Sim-
ilar work, e.g. [5, 6], demonstrates that similar results
are possible when the system is not over-utilized on av-
erage, as we expect to be the case for Google Earth.)

The statistical predictors can also be improved.
Predictors such as Mean can be very sensitive to out-
liers, particularly for a small number of samples. The
Mean + Standard Deviation predictors do not currently
expire any values, which was beneficial for the Max-
imum Observed Execution predictors. We would also
like to investigate better statistical predictors for long-
tail distributions, as mean and standard deviation are
intended for normal distributions. The Histogram pre-
dictors are robust, but the cost of maintaining the data
structures and computing percentiles (particularly for
the sparse long-tail) is too expensive. This could be
addressed through algorithmic improvements or by us-
ing approximate histogram methods [2]. We would also
like to quantify the mis-predictions (when we assumed a
shorter or longer execution time than actually occurred)
directly and use this data to improve the predictors.
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