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Abstract—Parallel workloads are commonly modeled as
directed acyclic graphs (DAGs). While DAG scheduling is
an important tool, it is plagued by capacity loss; it is not
uncommon to see half of a platform go unused. Here this
loss is attacked from a new direction: reducing per-DAG
utilization prior to assigning computing cores to a DAG.
Specifically, simultaneous multithreading (SMT) is used to
schedule individual nodes of a DAG task in parallel on the
same physical computing core. An optimization program is
given that applies SMT to a DAG in a way that minimizes
total utilization without compromising correctness. Results
for both individual DAGs and systems of DAGs are evaluated
using both a large-scale study of synthetic DAGs and a case
study. Optimal use of the program can reduce DAG utilization
and required core counts by over 40% in the best cases
and by 25% in nearly half of cases. Runtime requirements
for the optimization program are considered, and a tunable
parameter is provided to make tradeoffs between runtime and
optimality, allowing even DAGs with 500 nodes to benefit.

Index Terms—real-time systems, simultaneous multi-
threading, hard real-time, parallel scheduling algorithms,
directed acyclic graphs, precedence constraints

I. INTRODUCTION

Parallelism is an essential part of scheduling real-time
workloads in modern applications such as image recogni-
tion [2, 18, 53], autonomous vehicles [30, 54], and aviation
[37]. When the total processor time required for a task ex-
ceeds the task’s relative deadline—a frequent occurrence—
scheduling a task without parallelism becomes impossible.

Such tasks can be completed in a timely manner if they
include segments that can be executed in parallel. These
parallelizable workloads can be modeled using directed
acyclic graphs, or DAGs. A DAG task is modeled in part as
a graph G = (V,E) with V denoting a set of vertices and
E denoting a set of edges. Each vertex v ∈ V represents
a portion of the task, or subtask, and each directed edge
(v1, v2) indicates that subtask v1 must be completed before
subtask v2 can begin. Vertices that are not connected may
be executed in parallel [6].

Unfortunately, scheduling DAGs tends to be inefficient.
The well-known federated scheduling algorithm may see as
much as half of a hardware platform go unused, and yet
it is still a significant improvement over earlier methods
for DAG scheduling [33]. There has been significant work
in recent years aimed at reducing this capacity loss, some
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of which we discuss in Sec. II. Even so, the challenges
associated with DAG scheduling remain a major obstacle to
scheduling modern workloads in a safety-critical context.

We propose a new approach to parallel scheduling:
scheduling individual subtasks in parallel on the same
core using simultaneous multithreading (SMT). Using this
method, it is possible to reduce both a DAG’s utilization
and core needs by nearly half without compromising safety.

Simultaneous multithreading. SMT is a technology
that allows multiple programs to execute in parallel on a
single computing core, reducing total execution time. SMT
is capable of increasing the ability of a given hardware
platform to schedule real-time systems [4, 12, 21, 22, 28,
39, 40, 41, 42, 45, 57].

In recent years, practitioners have used SMT in schedul-
ing soft real-time [40, 42], hard real-time [39, 41], and
mixed-criticality systems [4]. We advance the use of SMT
in real-time systems by considering how to combine it with
the DAG task model.

The following example shows the intuition behind using
SMT to reduce a DAG’s utilization.

Ex. 1. Consider the DAG shown in Fig. 1. It has a total
execution cost of 130 time units; if the deadline is 110 time
units, it has a utilization of 130

110 ≈ 1.18. It has a length, or
minimum execution time, of 70 time units; if it is allowed
to execute on two processors, with v3 and v5 parallel to
v2 and v4, it can complete in 70 time units.

Suppose that if subtasks v2 and v5 use SMT to execute
on a single core, then 75 time units are required for
both to complete. In that case, applying SMT to v2 and
v5 produces the DAG shown in Fig. 2. All precedence
constraints from the original DAG are maintained. The new
DAG has a reduced total execution cost of 105 time units
and a reduced utilization of 105

110 ≈ 0.95. Furthermore, it
can now be scheduled on a single physical core. ◀

Contribution and organization. We give an algorithm
that applies SMT to a DAG task so as to minimize its
utilization, as we did in Ex. 1. By doing so, we can
make dramatic reductions in both the utilization and core
requirements of DAGs. Our algorithm is optimal in terms
of minimizing total utilization, but has exponential time
complexity. To assist with using SMT with large DAGs,
we include a tunable parameter that allows for tradeoffs
between optimality and running time. We evaluate our
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Fig. 1. A DAG task consisting of six subtasks.
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Fig. 2. The same DAG task; subtasks v2 and v5 paired via SMT.

work in terms of both individual DAGs and of systems
of DAGs that use federated scheduling.

Our motivation is two-fold; first, particularly for DAGs
that require many cores, minimizing utilization will tend
to reduce the number of cores needed, making it possible
to schedule DAGs that would otherwise be unfeasible on
a given hardware platform. Second, reducing utilization
can increase the amount of lower-priority work supportable
in the mixed-criticality model of Vestal [50] or of other
settings that allow multiple priorities of work to co-exist.

The remainder of this paper is organized as follows.
In Sec. II, we cover background information, including
an overview of SMT technology, DAG scheduling, a more
precise explanation of some already-used terminology, and
a full explanation of our system model.

In Sec. III we give our algorithm. This algorithm uses a
quadratically constrained program (QCP) to decide which
subtasks should be paired together to minimize a DAG’s
total utilization. We then show how the SMT-enabled DAG
can be scheduled using existing methods, frequently using
fewer cores than would otherwise be necessary.

In Sec. IV, we test our approaches via a large-scale
synthetic task study that shows what reductions to utiliza-
tion and core count can be expected in various scenarios;
in some cases, we found that applying SMT can reduce a
DAG’s utilization by 40% and reduce the number of cores
needed by nearly as much. In Sec. V we describe a case
study that demonstrates that the schedules we produce are
both implementable and safe. In Sec. VI, we conclude and
suggest directions for future work.

II. BACKGROUND

In this section, we give assumptions of our task and
hardware platform models, provide an overview of SMT,
explain how to schedule individual DAGs, and briefly cover
existing methods for scheduling systems of DAGs.

A. Task and Platform Model

We consider the problem of scheduling a sporadic hard
real-time task τi so as to minimize its utilization and,
ideally, the number of cores1 it requires. A task is defined
as τi = (Gi, Ti), where Gi = (Vi, Ei) is a DAG, as was
discussed in Sec. I. Ti gives the period of τi, which releases
a DAG job at most once every Ti time units, beginning at
time 0. We assume implicit deadlines: every DAG job must
complete within Ti time units of its release.

DAG-specific terminology. Each task τi consists of |Vi|
subtasks, with each subtask corresponding to a vertex in
Gi. The cost of subtask vk is given by ck, assumed to
be its worst-case execution time. The sum of all subtask
costs gives the task’s total cost Ci. We use capital letters
to refer to characteristics of tasks and lowercase letters for
characteristics of subtasks. When unambiguous, we omit
subscripts from the capital letters. Each DAG job consists
of one subjob for each subtask in the DAG. The DAG job
is complete once all component subjobs have completed.

If within G there exists a path from vertex v1 to v2,
then v1 is a predecessor of v2 and v2 is a successor of v1.
Otherwise, they are unconnected and the corresponding
subjobs within a single job can execute in any order,
including simultaneously. If the vertices connect via a
one-edge path, then the two are immediate predecessors
and successors. We require that subtask indices follow a
topological order, i.e. if i < j holds, then vj is not a
predecessor of vi.
Def. 1. A chain is a sequence of vertices in which all but
the last are followed by one immediate successor. ◀
Def. 2. A DAG’s total length L is equal to the maximum
length of any chain in G. This value gives the minimum
amount of time required to fully execute all jobs given an
unlimited number of processors. ◀

Length is the formal term for the minimum task com-
pletion time time of 70 in Ex. 1. We require that L ≤ T
holds for all tasks; otherwise, the task cannot be scheduled.
While the term length is common in the DAG-scheduling
literature, some sources use the term critical path.

A task’s total utilization is defined as U = C
T . While

purely sequential tasks must have U ≤ 1 to be schedulable,
DAG tasks with U > 1 are schedulable, given a sufficient
number of cores, if L ≤ T holds [6]. We differentiate
between heavy and light tasks.
Def. 3. τi is heavy if U > 1 holds and light otherwise. ◀

B. Overview of SMT Technology

In many modern processors, each core uses instruction-
level parallelism within jobs to execute multiple instruc-
tions per cycle. By enabling SMT, this behavior is ex-
panded to allow two or more jobs to execute instructions

1We use the word core exclusively to refer to physical cores, not the
“logical cores” that may be provided by SMT.



within a single cycle. An overview of SMT execution is
given in Ex. 2 and Fig. 3 below, closely following [41].
Details on the fundamentals of SMT can be found in the
work of Eggers et al. [17], and a discussion of practical
factors that can affect SMT execution in [9].
Ex. 2. Let v1 and v2 be unconnected subtasks of a DAG
task. At the top of Fig. 3, jobs of v1 (darker) and v2
(lighter) execute sequentially without SMT on a core that
can accept two instructions per cycle. When fewer than
two instructions are ready, as in cycles 3 and 4, cycles
are wasted. v1 finishes at the end of 6 cycles and v2 at
the end of 12. In the second part of the figure, the same
jobs employ SMT to execute in parallel, thereby reducing
the number of lost cycles. v1 finishes after 8 cycles and v2
after 10. SMT thus delays the completion of v1, but speeds
up the completion of v2 since it does not have to wait for
v1 to complete before beginning its own execution. ◀

Past research—our own and that of others— has shown
that when SMT is in use, the majority of tasks execute
at between 50% and 90% of their normal speed; in most
cases, the execution time for two tasks in parallel with
SMT is less than the time required to execute the two
sequentially [4, 9, 10, 41, 42].

We limit our analysis to cores that can execute up to
two tasks in parallel, as that is by far the most common
design for SMT. It is currently implemented on Intel Xeon
processors, under the name hyperthreading, and on AMD
Zen processors; the latter is the platform for our case study.

SMT and safety. In previous work, we showed empir-
ically that timing analysis for tasks using SMT can be as
reliable as that for tasks without SMT [41]. Since then, we
made further improvements by reducing the potential for
SMT-specific cache interference [4]. We incorporate these
earlier findings to make SMT reliable in our present work.

Specifically, we require that jobs using SMT must start
simultaneously, as shown in Fig. 3; we have used this same
rule in the past [4, 39, 41]. This restriction simplifies the
timing analysis such that it is unnecessary to consider every
possible combination of start times. We adapt this rule to
our present work by limiting the application of SMT to
paired subtasks.
Def. 4. If vi and vj form a paired subtask, denoted vi:j ,
then the corresponding subjobs will always begin execution
simultaneously on a single core. Paired subtasks must
belong to the same DAG task, and each subtask may be in
at most one pair. The paired subtask notation where i = j,
i.e. vi:i, is equivalent to vi executing without SMT. ◀
Def. 5. [41] The joint cost for a paired subtask is given by
the tuple ci:j = (ci(j), cj(i)), where ci(j) is the execution
time of vi given that it is paired with vj and cj(i) is the
reverse. If i = j, i.e. SMT is not used for vi, then both
elements of the tuple are equal to ci. ◀
Ex. 3. To illustrate these joint costs, in Fig. 2, c2(5) =
c5(2) = 75. In Fig. 3, c1(2) = 8 and c2(1) = 10. ◀
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Fig. 3. Top: task execution without SMT.
Bottom: execution with SMT.

We do not allow subtasks whose costs without SMT
differ by a factor of 10 or more to be paired. Previous work
[41] has found that in this case, timing becomes unreliable.

We note that many works on DAG scheduling make the
implicit assumption that potential sources of interference
in multicore systems can be safely dealt with. These
interference sources include cache conflicts [1, 8, 14, 32,
36, 51, 52], DRAM conflicts [24, 26, 48, 55, 56], memory
bus conflicts [38, 44], general OS support [3, 13, 27], and
I/O conflicts [31, 43]. Potential cross-thread interference,
which we explicitly address, is not fundamentally different
from these other issues.

Revisiting cost and length. Given Def. 5, we formally
define a task’s total cost C and utilization U. This definition
depends on how tasks are paired.
Def. 6. The total cost C and utilization U of a DAG are
given by

C =
∑

for all pairs (i,j)

max(ci(j), cj(i)) and U =
C

T
.

Recall from Def. 4 that a subtask not using SMT is
notationally considered to be paired with itself. ◀

Adding SMT to a DAG changes the definition of length
only in that the vertices in a chain (Def. 2) may consist of
either individual subtasks or of paired subtasks.
Ex. 4. In Fig. 3, v1 completes at time 8. A successor of v1
may begin execution at time 8 on another core (assuming it
has no other incomplete predecessors). The successor task
need not wait until v2 finishes at time 10. ◀

C. Scheduling DAG Tasks.

Even without SMT, determining the minimum number
of cores needed to schedule a heavy DAG is NP-hard in the
strong sense [5] (light tasks can be scheduled sequentially
on one core). To determine how many cores are needed
by a heavy task, we follow Baruah [5] by using Alg. 1.
In this algorithm, a job begins execution as soon as all
of its predecessors have been allocated their WCETs and
at least one core is free. We modify the algorithm by
allowing “job” to mean a paired subjob; pairs may only
begin once all predecessors of both component jobs are



complete. Alg. 1 has a speedup bound of b = 2− 1
m , i.e.

if an optimal algorithm can schedule the DAG on m unit-
speed cores, then Alg. 1 can schedule the same DAG on
m speed b cores [5, 23].

Algorithm 1 Assign Cores [5, 23]
1: Maintain ready as the set of all subjobs without

incomplete predecessors.
2: Maintain mr as the number of cores not currently

executing a subjob.
3: m = ⌈U⌉
4: Let t be the time and D the DAG deadline.
5: while True do
6: t = 0
7: mr ← m
8: ready ← subjobs without predecessors
9: while t ≤ D do

10: while ready ̸= ∅ ∧mr > 0 do
11: Assign ready subjobs to cores.
12: end while
13: t← next subjob completion time
14: if all subjobs are complete and t ≤ D then
15: {m-core schedule found.}
16: return m
17: end if
18: end while
19: {No m-core schedule found; increment m.}
20: m← m+ 1
21: end while

In research on scheduling systems of DAGs, federated
scheduling on shared hardware is the most prominent
approach. In this method, a system of DAG tasks is sched-
uled by executing each heavy task on a set of dedicated
cores and partitioning light tasks among the remaining
cores [33]. Heavy tasks may be over-assigned capacity;
for example, a task needing two dedicated cores plus 10%
of another core would be assigned three cores. For soft
real-time tasks, where some deadline misses are allowable,
cores can be reclaimed by work stealing, where idle cores
“steal” work from busy ones [34].

Other methods that reduce the capacity loss of fed-
erated scheduling include semi-federated scheduling [29]
and reservation-based federated scheduling [47]. In semi-
federated scheduling, portions of heavy tasks are scheduled
as if they were light tasks; the same task described above
that would be assigned three cores under federated schedul-
ing would be assigned two dedicated cores under semi-
federated scheduling, with the remaining portion of the task
scheduled as if it were independent. In reservation-based
federated scheduling, DAG tasks are assigned reservation
servers that can be scheduled sequentially.

III. REDUCING DAG UTILIZATION

In this section, we give our quadratically constrained
program (QCP) for applying SMT to DAGs. The QCP min-
imizes total utilization2 subject to the constraints that the
DAG’s total length is at most the DAG’s deadline, paired
subtasks begin simultaneously, and precedence constraints
are respected.

QCP variables and constraints. We use the following
variables to define our problem mathematically.
Def. 7. Let xi:j be defined to equal 1 if subtasks vi and
vj are paired and 0 otherwise. For i = j, let xi:j equal 1 if
vi is to be executed without SMT and 0 otherwise. In all
cases, we require that xi:j = xj:i holds. We refer to these
variables as the x variables. ◀
Def. 8. Let si and fi give the start and finish times,
respectively, for subtask vi when the DAG, with a specified
set of task pairs, is scheduled using Alg.1 with line 3
altered to make the initial value of m arbitrarily large.
We refer to these variables, respectively, as the s and f
variables. ◀

We can express a DAG’s total utilization U in terms
of x variables, joint costs, and periods. Eq. 1 restates
Def. 6. Recall that V is the set of all vertices, each vertex
corresponds to a subtask, and thus |V | is the subtask count.

U =

|V |∑
i=1

|V |∑
j=i

xi:j ·
max(ci:j , cj:i)

T
(1)

We define our QCP as minimizing Eq. 1 subject to the
restrictions below.

(i) Every subtask executes with at most one other
subtask. Recall that Def. 4 requires this restriction.

∀i :
|V |∑
j=i

xi:j = 1

(ii) Paired subtasks begin simultaneously. This restric-
tion is required by Def. 4. For unpaired vi and vj ,
where xi:j = 0, the expression below is trivially true.

∀i, j : si · xi:j = sj · xi:j

(iii) All subtasks finish only after executing for suffi-
cient time. If vi and vj are paired, then vi finishes at
time fi = si + ci(j). Notice that fi is only dependent
on si and ci(j), not on cj(i).

∀i : fi = si + xi:j · ci(j)

(iv) All subtasks finish prior to the deadline D. This
restriction preserves feasibility.

∀i : fi ≤ D

2We have found that minimizing U is more practical than minimizing
cores. Solving time is discussed in Sec. IV-B.



(v) Precedence constraints are respected. No subtask
begins until all of its predecessors have completed.

∀i : ∀j :: vj precedes vi : si ≥ fj

Notice that (v) combined with (ii) prohibits precedence-
constrained tasks from executing as pairs.

QCP output and effectiveness. The QCP outputs
pairing decisions via the value of all x variables. Pairs
can then be assigned to cores using Alg. 1. While the
QCP is not optimal with respect to minimizing core count,
we have found that for large-utilization DAGs, reductions
in core count closely track reductions in utilization made
using our methods. We further discuss this in Sec. IV.

Limiting the number of variables. The QCP’s com-
plexity is exponential on the number of variables, and the
number of x variables needed is proportionate to |V |2.
Thus for large DAGs the QCP may be unmanageable. For
those cases, we provide an additional restriction.
(vi) Only subtasks with indices that differ by at most

some constant K can be paired.

|i− j| > K → xi:j = 0

In practice, not defining xi:j when |i−j| > K provides
a greater performance benefit than restricting xi:j to zero.
Note that K can be at most |V |.

In our experiments, K = 10 allowed our QCP to handle
DAGs with as many as one hundred subtasks while still
giving near-optimal reductions in utilization. For larger
DAGs, K = 1 gave sub-optimal but still impressive results
given the size of the problem considered. The effects of
different K values are discussed more in Sec. IV.

Implementation. We implemented3 the QCP using
Gurobi [25], a commercial mathematical optimization
solver. A free, full-featured academic license is available.

IV. SIMULATED DAG EXPERIMENTS

In this section, we present our synthetic task experi-
ments and results. We simulated over 70 thousand DAGs
and almost four million subtasks across nearly one thou-
sand scenarios. For each scenario, we test the ability of our
QCP to reduce per-DAG utilization and, when combined
with Alg. 1, to reduce the cores required per DAG.

A. Experimental Setup for Single-DAG Systems

Each scenario is defined by the number of subtasks |V |
per DAG, possible costs per subtask, a model for SMT
behavior, a model for precedence constraints, and K. 100
random DAGs were generated per scenario.

Subtask count. For each scenario, we selected |V | from
{10, 20, 40, 80, 100, 250, 500}. The scenario is large when

3Code available online: https://jamesanderson.web.unc.edu/papers/ and
https://github.com/shosborn/SMT-DAGs.

|V | ≥ 100, and small otherwise. Small DAG scenarios
were run in combination with all other parameters. Large
DAG scenarios, being very time consuming, were not.

Baseline costs. To determine the costs of individual
subtasks without SMT, each scenario had costs selected
from a narrow (1−2) or wide (1−20) uniform distribution.
Our expectation was that SMT would provide a greater
benefit with the narrow range, as our model prohibits pairs
where ci and cj differ by an order of magnitude, and
pairing tasks with very different costs provides less overall
utilization benefit. This expectation was confirmed.

SMT behavior. To generate realistic paired costs, we
follow Osborne and Anderson [41] by defining a multi-
threading score, a random variable which determines ci(j)
given ci and cj , assuming that ci ≥ cj holds. We repeat
that definition here, adapted for our terminology.
Def. 9. [41] If vi:j is a subtask pair for which ci ≥ cj
holds, then the multithreading score mi:j satisfies the
following:

ci(j) = ci +mi:j · cj . ◀ (2)

Essentially, mi:j dictates how much vi’s execution time
increases relative to cj . This reflects that if cj is much
less than ci, than its effect on vi should also be small. If
mi:j ≥ 1 holds, then there is no benefit to pairing vi and
vj together. If mi:j < 1 holds, then pairing jobs of the two
tasks is potentially beneficial, with lower values indicating
greater benefit. mi:j = 0 indicates that vj has no effect on
vi’s execution time; essentially, vj executes for free.

Def. 9 says nothing about the behavior of the shorter
task within each pair. To model the shorter task’s cost, we
expand the definition of mi:j to supersede Def. 9.
Def. 10. For all subtask pairs vi:j the multithreading score
mi:j satisfies the following:

ci(j) = max
(
ci +mi:j ·min(ci, cj), cj(i)

)
.

There is no expectation that mi:j = mj:i will hold; this
reflects the fact that SMT interactions are more complex
than a simple formula. ◀

For ci ≥ cj , this expression is equivalent to Exp. 2. In
either case, the increase in runtime is proportional to the
shorter task. The max function guarantees that the initially
shorter subtask will not become the longer subtask. This
model is consistent with behavior observed in [39].

We consider three possible distributions for mi:j . For
each distribution, the first number gives the probability of
the pair having an arbitrarily large cost with SMT. Apart
from that possibility, the multithreading scores for the pair
are drawn from the given Normal distribution with mean
and standard deviation N(µ, σ).

The distributions are optimistic [0;N(0.34, 0.2)];
mid-range [0.05;N(0.52, 0.17)]; and pessimistic
[0.2;N(0.6, 0.07)]. The optimistic and mid-range
distributions are based on observations by Bakita et al. [4]



of the Data-Intensive Systems (DIS) [16] and San Diego
Vision [49] benchmarks, respectively. The pessimistic
distribution is based on Osborne and Anderson’s [41]
analysis of the TACLe sequential benchmarks [19]. In all
cases, negative values are replaced by 0.01.

Precedence constraints. After assigning costs to all
subtasks within our DAG, we use one of two methods to
determine precedence constraints within our DAG.

In the Erdős-Rényi method, every pair of subtasks have
a probability p of being connected by an edge [15, 20].
Lower values of p will produce DAGs with more potential
for parallelism. We use the p values {0.1, 0.3, 0.5}. In
preliminary experiments, we found that DAGs with p >
0.5 had very few subtasks executable in parallel and thus
received little to no benefit from SMT.

In the layer-by-layer method, each DAG is first divided
into ℓ layers. No precedence constraints ever exist between
subtasks within the same layer, but subtasks in different
layers have probability p of being connected by an edge
[15, 46]. We use the p values {0.1, 0.3, 0.5, 0.7, 0.9, 1}.
While p = 1 specifies a task with no parallelism in the
Erdős-Rényi method, in this case it means that all subtasks
in one layer must complete before the next layer can begin.

For ℓ, we use the values {2, 4, 8, 16}, with the caveat
that |V |

ℓ ≥ 5 must hold, i.e. the expected number of
subtasks per layer must be at least five. To divide the
subtasks into layers, we randomly select ℓ − 1 integers
from the range [1, |V |] without replacement. These integers
subdivide the set of tasks into layers by index.

Ex. 5. Suppose we wish to build a DAG of 20 subtasks in
three layers. Two values are chosen from the range [1, 20].
If we select 3 and 10, the first layer consists of subtasks
v1 through v3, the second of subtasks v4 through v10, and
the third layer of all remaining subtasks. ◀ .

This method was designed to make the DAG’s total
length L easily controllable; no chain in a DAG created
this way will have more than ℓ members [15, 46]. Setting
ℓ = |V | is equivalent to using the Erdős-Rényi method.

Tunable parameter K. Our final parameter is the
value of K as defined in restriction (vi) of the QCP. We
use K values from the set {1, 10, 20, 40} except in large
scenarios, where only K ∈ {1, 10} was feasible. The QCP
is only optimal when restriction (vi) is removed by setting
K ≥ |V |, but we observed excellent results for all K ≥ 10.

DAG creation. Each DAG’s total utilization is selected
uniformly from the range (1, C

L ). Doing so implicitly
determines period and deadline (as we assume implicit
deadlines, i.e. D = T ). We do not consider DAGs with
U < 1 as those need not be scheduled in parallel. DAGs
for which U > C

L (equivalently, D < L) holds are not
schedulable on any number of cores, with or without SMT.
Note that C

L is itself a function of individual DAG struc-

tures. Consequently, the distribution of utilization across
all DAGs in a scenario will not necesarilly be uniform.

B. Single DAG Results

We evaluated the QCP’s effect on each scenario using
three metrics: relative core count, core reduction frequency,
and relative utilization.
Def. 11. Relative core count (respectively, relative utiliza-
tion) is defined as a DAG’s required core count, per Alg. 1
(respectively, total utilization) without SMT divided by the
same values after applying SMT. They are abbreviated as
RCC and RU. ◀

Values of one indicate no change due to SMT; values
less than one indicate SMT has reduced the DAG’s utiliza-
tion or core count requirement.
Def. 12. Core reduction frequency is defined as the number
of cases where the required core count was reduced by at
least one divided by the total number of cases evaluated.
It is abbreviated CRF. ◀

Note that while smaller values are better for RCC and
RU larger values are better for CRF.

In rare cases—less than 1% of all DAGs created—we
found that applying SMT would increase the number of
cores needed. In these cases, the best choice is to not use
SMT, so we set RU and RCC to one and CRF to zero.

We summarize each scenario with a scatterplot that plots
SMT utilization, baseline cores, and SMT cores on the
vertical axis against baseline utilization on the horizontal
axis. In the majority of scenarios, SMT utilization appears
to be a linear function of baseline utilization; in these cases,
RU approximates the function’s slope.

We classify scenarios as either good, moderate, or poor
based on mean RCC. RCC < 0.8 is good; RCC > 0.9 is
poor; and intermediate RCC values are moderate.

For K ≥ 10, we have 126 good scenarios, 133 moderate
scenarios, and 115 poor scenarios. For K = 1, we had 41
good, 161 moderate, and 222 poor scenarios. Mean RCC
values per scenario ranged from 0.73 to 1. We saw RU = 1
in 29 out of nearly one thousand scenarios; of those, only
four had K ≥ 10. Mean RU values ranged from 0.57 to
1, and CRF values from 0.8 to 0.

QCP execution times. We also tracked solver runtimes
for each scenario. We executed the QCP on a shared clus-
ter, so our recorded runtimes should be considered mainly
for order-of-magnitude comparisons. Recorded times are
for serial execution; we used parallelism to analyze many
DAGs at once, but not to reduce the analysis time for
individual DAGs. Our per-DAG runtimes ranged from less
than a second to nearly two days. The total CPU time for
analyzing all DAGs was roughly four years.

Our full set of graphs, along with code and a .csv
file summarizing all results, is available online.4 Here

4https://jamesanderson.web.unc.edu/papers/
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Fig. 4. Graphs for the good scenarios.

we show graphs that are representative of our best and
worst results or that demonstrate particularly interesting
behaviors. Each graph’s title identifies its scenario; if the
number of layers is unstated, then the graph was created
using the Erdős-Rényi method. In addition, graph titles
summarize performance with the tuple (mean RCC, mean
RU, CRF, mean runtime in seconds).

Small DAG scenarios. We first consider scenarios
where |V | ≤ 80 holds. Scenarios with larger subtask counts
are considered separately further down.

We show graphs for two scenarios each to represent
good, moderate, and poor scenarios.
Obs. 1. Utilization is consistently decreased, even when
K < |V | holds. In the best cases, relative utilization is
as little as 58%, as seen in Fig 4a. The first scenario of
Fig. 4 is not optimal; we use K = 20, which is less than
the subtask count of 80.
Obs. 2. The greatest benefits to core count come from
avoiding cases where many DAG subtasks require a ded-
icated core to execute. This effect can be seen most
clearly in Figs. 4 and 5a; notice that the plotted points for
base cores show core requirements approaching the total
subtasks per DAG.

The reason is as follows: without SMT, two subtasks
with combined U > 1 cannot be scheduled on a single
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Fig. 5. Graphs for the moderate scenarios.

core; with SMT, scheduling the two together becomes
possible if the corresponding pair has U ≤ 1. In a DAG
that consisted entirely of subtasks with U = 0.51, SMT
might be able to halve the required core count.

Obs. 3. In some cases, such as Fig. 5b, applying SMT
reduces core count by more than it reduces utilization.
This phenomenon may occur when small reductions in
utilization enable a DAG to be scheduled on fewer cores.
For example, a DAG with U = 1.01 requires two cores
under federated scheduling, but reducing its utilization to
0.99 would allow to to execute on a single core.

Obs. 4. The greatest improvements in terms of RU were
seen with the following scenario parameters: optimistic
SMT distribution; min(K, |V |) ≥ 20; and the layer-by-
layer method was used or p ≤ 0.3 held. All scenarios
fitting these criteria had RU < 0.8.

The role of SMT distribution in observed improvements
should be obvious. Having relatively large values for K
and |V | ensures that for each subtask, there are many
possible ways it can be paired, making it more likely that
a good pairing can be found.

Using either the layer-by-layer approach or a small p
value in the Erdős-Rényi method also ensures that each
subtask will have many possibilities for pairing; recall that
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Fig. 6. Graphs for the poor scenarios.

in the layer-by-layer method, a subtask can, at a minimum,
be paired with others in the same layer.

Obs. 5. The smallest improvements to RU (excluding
cases where K = 1; these are discussed in Obs. 6 below)
were seen when using the pessimistic SMT distribution,
the wide utilization distribution, min(K, |V |) < 20) held,
and graphs were constructed using the Erdős-Rényi method
with p > 0.3. For example, see Fig. 6a. These factors, not
surprisingly, are the opposite of those listed in Obs. 4.

Obs. 6. Decreasing K from |V | to 10 had little effect
on RCC, RU, or CRF but dramatically reduced runtime.
Setting K = 1 is more detrimental, but is better than not
using SMT at all. Fig. 7 gives an example. Decreasing K
from 40 in Fig. 7a to 10 in Fig. 7b has little effect on RU
or RCC but reduces computation time by a factor of 10.
Setting K = 1 in Fig. 7c increases RU from 0.60 to 0.75
and reduces computation time by another factor of 10.

Large DAG scenarios. Applying SMT to DAGs with
100 or more subtasks was difficult. We saw scenarios
where every DAG required hours or days to analyze.

Even so, the K parameter allowed us to benefit from
SMT in many large DAG scenarios. For |V | = 100, we
tested scenarios with K = 10 and K = 1. For |V | ∈
{250, 500}, our QCP worked well only when K = 1; for
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Fig. 7. Scenarios with different K values, otherwise identical parameters.

larger K values applying SMT to even a single DAG took
over a day. We therefore limited these DAGs to K = 1.

Obs. 7. When K = 10 held, results were comparable to
those for similar parameters for smaller |V | and larger K
values. For example, compare Fig. 8a to Figs. 7a and 7b.

Obs. 8. When K = 1 held but scenario parameters were
otherwise favorable, RU values per scenario ranged from
0.70 to 0.90. Examples can be seen in Figs. 8b and 9. Note
that apart from the |V | and K parameters, Figs. 8 and 9
depict identical scenarios.
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Fig. 8. 100 subtasks with K = 10 and K = 1.

C. Multiple DAGs and Federated Scheduling

In this subsection, we consider the case of scheduling
multiple DAGs simultaneously using federated scheduling.

Creating systems of DAGs. Within each system, all
DAGs are created using a single set of parameters (dis-
cussed below). The number of DAGs per system ranged
from 1 to 32/E(Ui), where E(Ui) gives the expected
value of a single DAG’s baseline utilization; essentially we
created systems with total utilization up to approximately
32. For each step from 1 to 32/E(Ui), we created 10
systems. A scenario consists of all systems built using a
single set of per-DAG parameters.

Per-DAG parameters. We defined four categories of
per-DAG utilization: light, low-heavy, medium-heavy, and
high-heavy. Total utilizations within each category are
randomly chosen from the uniform ranges (0, 1], (1, 2],
(2, 4], and (4, 8] respectively.

Light DAGs can all be scheduled sequentially on a
single processor, even without SMT. Within the context of
federated scheduling, SMT may allow more light DAGs to
be scheduled per processor.

All other DAGs, since they have U > 1, are considered
heavy per Def. 3 and would, without SMT, require at least
two dedicated cores each. Our expectation is that SMT
will convert many of the low-heavy DAGs into light DAGs
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Fig. 9. Scenarios with 250 and 500 subtasks.

with U ≤ 1. Medium-heavy and high-heavy DAGs will
generally remain heavy even after SMT has been applied.

In addition to the four categories of per-DAG utilization,
we used the parameters that were already discussed in
Sec. IV-A. We considered DAGs consisting of 10, 20,
or 40 subtasks each, both the Erdős-Rényi method with
p ∈ {0.1, 0.5} and the layer-by-layer method with ℓ ∈
{2, 4} and p ∈ {0.1, 0.5, 0.9}, the Narrow and Wide cost
ranges, and the Optimistic and Pessimistic ranges. We used
K = 10 in all cases. Due to the time-consuming nature
of these scenarios—each scenario includes 50 to almost
500 individual DAGs—we did not create scenarios for all
combinations of parameters.

D. Federated Scheduling Evaluation

As with individual DAGs, we evaluate each scenario
on the basis of RCC, RU, and CRF. Scenario results are
shown with scatterplots similar to those for single-DAG
scenarios. This time, utilization and cores needed are totals
for all DAGs in each system.

For each heavy DAG, the cores required are again
determined by Alg. 1. For light tasks, we used partitioned
scheduling, i.e. each task is assigned to a single core, but
each core can contain multiple tasks up to total utilization
1. Tasks are assigned to cores using a bin-packing based
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Fig. 10. Good scenarios for Federated Scheduling.
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approach. For each system, we attempted both decreasing-
best-fit and decreasing-worst-fit and used the result that
required the fewest cores.

We tested 116 scenarios. Of these, using the same
criteria as before, 51 were good, 36 moderate, and 28 poor.

We include the scatterplots for 8 federated scheduling
scenarios. Fig. 10 depicts four good scenarios and Fig. 11
four poor scenarios. The scenarios of each figure are
identical apart from the per-DAG utilizations. Note that
Fig. 4b depicts the single-DAG version of the scenarios
in Fig. 10 and Fig. 6b gives the single-DAG scenario
corresponding to those of Fig. 11. Again, the full set of
graphs is included in an online appendix.
Obs. 9. The poorest results are generally seen with per-
DAG utilizations in the medium-heavy range (U(2, 4]).

The other three utilization ranges are well-situated to
take advantage of SMT: SMT allows two light tasks with
combined U > 1 to share a core; low-heavy tasks will
likely have U > 1 after SMT is applied, making them
light, and high-heavy tasks are large enough that utilization
decreases will generally translate to core count decreases.
Obs. 10. The advantages of SMT are generally greater
with federated scheduling than in the single-DAG cases.

Compared to the corresponding single-DAG scenario,
each federated scenario generally performed slightly better
in terms of RCC, about the same in terms of RU, and much
better in terms of CRF. This can be observed by comparing
Figs. 10 and 11 with Figs. 4b and 6b, respectively. The
most dramatic example is in the change in CRF for the bad
cases: in Fig. 6b, we have CRF of 0.10, but the minimum
CRF for the Fig. 11 examples is 0.54.

V. CASE STUDY

In this section, we describe our case study and summa-
rize its results. Our goal is to demonstrate that schedules
generated using our methods are safe and implementable
on a real system.

Hardware platform. Our experiments were performed
on the AMD Ryzen 3950X. The 3950X includes three
cache levels. The L3 cache is divided into four partitions
of 16MB each, each of which is shared among four cores.
Each core has a 512KB L2 cache and separate 32KB L1
caches for instructions and data.

We assigned individual hardware threads their own
slices of L3 and L2 cache using the techniques of Bakita
et al. [4]. This eliminates cross-thread L2 and L3 cache
interference, thus improving SMT timing predictability.

Case study DAGs. Our case study DAGs are depicted
in Fig. 12. Each DAG is built by defining precedence
constraints between elements of the San Diego Vision
Benchmark Suite [49] using the “qcif” input option; these
same benchmarks are the basis of the mid-range SMT
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Fig. 12. Case study DAG tasks (1.1x safety factor) before applying SMT.

TABLE I
THE SD-VBS BENCHMARK USED FOR EACH NODE OF EACH OF THE

THREE CASE STUDY DAGS.

Node DAG 1 DAG 2 DAG 3

vA mser tracking texture
vB localization mser disparity
vC disparity stitch mser
vD svm localization localization
vE sift texture sift
vF texture disparity stitch
vG N/A N/A tracking
vH N/A N/A svm
vI N/A N/A stitch
vJ N/A N/A texture

distribution for our synthetic tasks. Table I lists which SD-
VBS benchmark is run for each node in the three DAGs.
By building these “semi-synthetic” DAGs from established
benchmarks, we obtained DAGs that are reflective of com-
mon DAG structures, allow us to highlight key possibilities
for SMT, and are small enough to be easily understood.

Subtask costs. To apply SMT to our DAGs, we needed
to know all execution times both with and without SMT.
We obtained this data previously in [4], where we mea-
sured 1000 runs of each element of the benchmark suite
both without SMT and paired with every other element. We
used two sets of costs: the obtained maximums multiplied



TABLE II
SCHEDULE FOR DAG 3 (FIGURE 12C) WITH SMT, D = 121MS.
START TIMES AND COSTS IN MS. USING 1.1X SAFETY FACTOR.

Subtask 1 Subtask 2 Core Start Costs

A N/A 0 0 5
B F 0 5 21; 27
C N/A 1 26 5
G N/A 0 32 7
D H 0 39 36; 39
E N/A 1 75 39
I N/A 0 78 20
J N/A 0 114 5

by a safety margin of 1.5 and by a safety margin of 1.1.
All costs were computed and all tests were run using
LITMUS-RT, a real-time extension of the Linux kernel
[7, 11, 35]. We also disabled power management and
used Linux’s isolcpus and irqaffinity options to
minimize interference during our case study.

Building schedules. For each of our three DAGs,
multiple deadlines—two for DAG 2 and three each for
DAGs 1 and 3—were used to provide either no, some, or
unlimited opportunity to use SMT. The case study thus
covers DAG tasks where the application of SMT may be
not beneficial, somewhat beneficial, or very beneficial.

For each of the eight DAG-deadline combinations with
each set of costs, we applied the QCP of Sec. III with
K = |V | and Alg. 1 to generate a schedule. We then
implemented each schedule using LITMUS-RT [7, 11, 35].
Each subtask was assigned a pseudo-deadline equal to its
start time plus its cost.

Table II shows the schedule generated for DAG 3 (Fig.
12c) using the 1.1x safety factor with a deadline of 121ms
(moderate length), including the subtask pairings, core
assignments, start times, and costs. For paired subtasks,
Subtask 1 has the shorter paired cost. Note that, as in
Ex. 4, a subtask can begin as soon as all predecessors
are complete, including predecessors that are paired with
a longer-running task. Here, subtask C begins as soon as
B completes, it does not wait on F , the partner of B.

We found that paired subtasks did in fact begin virtually
simultaneously, as required by Def. 4 and restriction (ii).
Among all paired subtasks in all DAGs we ran, the largest
difference between “simultaneous” start times we observed
was 870ns, with a mean of 80ns and median of 40ns. In
addition, we calculated the mean and median differences
over all ten thousand iterations for each pair, and find the
maximum of the means is 128ns and the maximum of
the medians is 90ns. Compared to the execution times of
our subtasks—all in the ms range—these differences are
insignificant, showing that our paired subtasks are as close
to starting simultaneously as is realistically possible.

Results. For each DAG-deadline and cost combination,
we ran ten thousand DAG-jobs over multiple hours. No
DAG deadlines or subtask pseudo-deadlines were missed.
This result supports our claim that timing analysis with
SMT is reliable enough to schedule DAGs on real hardware
when the safety conditions are met.

In addition to testing each of our DAGs individually,
we also experimented with running 3 DAGs at once in
a federated scheduling context. The system consists of
two light DAGs (DAG 1 with D = 120ms and DAG
2 with D = 80ms) and one heavy DAG (DAG 3 with
D = 139ms). Utilizing SMT, each DAG is able to
execute on an independent core. We repeated the DAG-
jobs ten thousand times while monitoring deadline misses.
We observed 0 deadline misses in these experiments.

VI. CONCLUSION

To reduce the utilization of DAG tasks, we explored
the possibilities of using SMT to run individual subtasks
in parallel. We defined a QCP to apply SMT to DAGs that
can minimize DAG utilization or to find a demonstrably
excellent approximation of the best way to apply SMT.

To test our algorithm, we simulated over 70 thousand
DAGs across thousands of scenarios. We found that, within
our tested scenarios, SMT can reduce DAG utilization by
nearly half and, at high utilization levels, can do the same
for DAG core requirements. Of nearly 400 scenarios we
solved near-optimally—i.e. K ≥ 10 held—40% had their
utilization reduced by at least 25%. These near-optimal
results include DAGs with as large as 100 subtasks. Given
favorable scenarios, we were able to see similar utilization
reductions for DAGs with as many as 500 subtasks.

In addition to evaluating the effects of SMT on indi-
vidual DAGs, we also applied our methods to systems of
DAGs using federated scheduling. We found that systems
of DAGs generally saw greater improvement than did
individual DAGs with similar per-DAG parameters.

To further support our findings, we performed a case
study in which we applied SMT to real DAG workloads
and implemented the resulting schedule. All of our DAGs
executed perfectly, with no deadline misses.

In the future, we hope to expand our work to include
more complex models which could not fully fit within
the body of this paper. We also hope to supplement
our synthetic-task based analysis with a more theoretical
approach.
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