
EÆcient Pure-bu�er Algorithms for Real-time Systems 1

James H. Anderson and Philip Holman

University of North Carolina, Chapel Hill, NC 27599-3175

Abstract

We present wait-free algorithms for implementing

multi-writer read/write pure-bu�ers in multiprocessor

real-time systems. Such bu�ers are commonly used

when existing data is overwritten as newly-produced

data becomes available. Pure-bu�er algorithms share

several bu�ers between client processes and use hand-

shaking mechanisms to ensure the safety of concurrent

read and write operations. We present algorithms op-

timized for both quantum- and priority-scheduled sys-

tems. When used to implement a B-word bu�er shared

across a constant number of processors, the time com-

plexity for reading and writing in each of our algorithms

is O(B), and the space complexity is �(B).

1 Introduction

Shared read/write bu�ers are commonly used in real-

time applications to exchange data values between pro-

ducer and consumer processes. Such a bu�er is de-

�ned by its size and the number of writer and reader

processes. A write operation completely overwrites

the bu�er's previous contents, while a read operation

returns the most recently-written value. Read/write

bu�ers are appropriate to use if more-recently-produced

data is always of greater value than older data, which

is often the case when data values are time-sensitive.

In real-time systems, read/write bu�er operations

are usually implemented using locks. When locks are

used, kernel support is needed to limit the impact of

priority inversions. A priority inversion occurs when a

process is forced to block on a process of lower priority.

Conventional mechanisms for bounding priority inver-

sions [7, 14, 16] rely on the kernel to dynamically raise

the priority of the lock-holding process. This adds com-

plexity to the kernel and complicates dynamic process

creation and removal. In addition, the blocking-time

estimates used to account for priority inversions in the

scheduling analysis of multiprocessor systems can be

prohibitively large.

In recent years, several researchers have investi-

gated the use of wait-free shared-object algorithms

as an alternative to lock-based mechanisms in object-

1 Work supported by NSF grants CCR 9732916, CCR

9972211, CCR 9988327, and ITR 0082866.

based real-time systems [3, 4, 5, 6, 9, 10, 15]. In a wait-

free object implementation, operations must be imple-

mented using bounded, sequential code fragments, with

no blocking synchronization constructs. Thus, a pro-

cess never blocks while accessing a wait-free object,

and hence priority inversions cannot arise due to ob-

ject accesses. In this paper, we present new wait-free

implementations of read/write bu�ers that are highly

optimized for use in real-time systems.

Related work. There has been a long history of work

on wait-free bu�er algorithms. For historical reasons,

these bu�ers are usually referred to as atomic registers

in the wait-free algorithms literature. It has been shown

that multi-writer, multi-reader, multi-bit atomic regis-

ters can be implemented in a wait-free manner from

single-writer, single-reader, single-bit atomic registers2

(see, for example, [8, 12, 13, 17]). In principle, these

constructions could be used to implement read/write

bu�ers in a real-time system. However, actual systems

provide much stronger synchronization primitives. By

using available primitives, much simpler and more eÆ-

cient algorithms can be derived.

Chen and Burns recently showed that, by using

compare-and-swap and test-and-set ,3 it is possible to ef-

�ciently implement a one-writer wait-free bu�er [9, 10].

Their algorithm can be seen as a variant of several pre-

vious algorithms that do not use strong synchroniza-

tion primitives [8]. In the wait-free algorithms litera-

ture, these algorithms are known as \pure-bu�er" algo-

rithms. In a pure-bu�er algorithm, several bu�ers are

shared between the writer and reader processes, and a

handshaking mechanism is employed that ensures that

a writer never writes into a bu�er that is concurrently

being read by some reader. When used to implement a

B-word bu�er that may be read by R processes, Chen

and Burns' algorithm requires R+2 bu�ers, and hence

its space complexity is �(RB). �(B) time is required

to read the implemented bu�er, and �(R+ B) time is

required to write it. These complexity �gures are listed

2In fact, multi-writer, multi-reader, multi-bit atomic registers

can be implemented in a wait-free manner from nonatomic single-

writer, single-reader, single-bit registers.
3Their algorithm is actually based on a consensus object and

test-and-set. However, in most systems, the consensus object

would be implemented using compare-and-swap.



Processors/ Read Write Space

Algorithm Writers System Model Complexity Complexity Complexity

Chen & Burns P/1 Asynchronous �(B) �(R+B) �(RB)

Algorithm 1 P/W Priority-based O(B) �(P +B) �(PB)

Algorithm 2 P/W Quantum-based �(B) �(P +B) �(PB)

Table 1: Wait-free read/write bu�er algorithms.

in Table 1.

Other recent research on pure-bu�er construc-

tions includes a nonblocking algorithm presented at

RTCSA '99 by Tsigas and Zhang [18]. However, their

algorithm is not wait-free and thus is of less relevance to

our work (in a nonblocking algorithm, operations can

be unboundedly retried; such retries are not allowed

in a wait-free algorithm). Moreover, their algorithm is

limited to systems in which there is at most one writer

on each processor, and each writer has the highest pri-

ority of any process on its processor.

Recent research at the University of North Car-

olina has shown that wait-free algorithms can be sim-

pli�ed considerably in real-time systems by exploiting

the way that processes are scheduled for execution in

such systems [2, 3, 15]. In particular, if processes are

scheduled by priority, then object calls by high-priority

processes automatically appear to be atomic to lower-

priority processes executing on the same processor. In

a quantum-scheduled system, if an object call crosses

a quantum boundary, then when it resumes, it will ex-

ecute nonpreemptively, assuming that it cannot cross

multiple quantum boundaries (which would almost cer-

tainly be the case, since most object calls are short in

duration relative to the size of a scheduling quantum).

These facts can be exploited to obtain algorithms that

have complexities that are a function of the number of

processors in the system, not the number of processes .

Most prior work on optimizing wait-free object im-

plementations for use in real-time systems has focused

on the development of algorithmic techniques that can

be generally applied to implement any object. While

it is important to have general-purpose object-sharing

mechanisms, it is our belief that, in most real-time ap-

plications, a small number of shared objects predomi-

nate; these include read/write bu�ers, queues, priority

queues, and perhaps linked lists. Thus, it would ben-

e�t the real-time community to have highly-optimized

wait-free implementations of these particular objects.

Contributions of this paper. In this paper, we

present new wait-free algorithms for eÆciently imple-

menting multi-writer read/write bu�ers in priority- and

quantum-scheduled multiprocessor real-time systems.

These algorithms are listed in Table 1. In the full ver-

sion of this paper [1], simpli�ed versions of these algo-

rithms are also included for more restricted cases, such

as single-writer bu�ers and bu�ers for uniprocessor sys-

tems. These other versions, as well as formal correct-

ness proofs, are omitted here due to space constraints.

All of our algorithms are pure-bu�er algorithms based

on compare-and-swap.

In Table 1, P denotes the number of processors

sharing the bu�er. In most applications, one would

expect P to be quite small. R and W denote the num-

ber of reader and writer processes (respectively), and

B denotes the number of words in the bu�er. In all of

our algorithms, the time complexity for reading is com-

parable to Chen and Burns' algorithm, and the time

complexity for writing is better. In addition, each of

our algorithms has better space complexity than their

algorithm. (As explained later, the actual space com-

plexity of Algorithm 1 is �(PB +RB +WB), but the

�(RB+WB) term represents extra space that is com-

mon to all bu�ers in the system, so it is not listed in

Table 1. In other words, the space required to imple-

ment M bu�ers is only �(MPB + RB +WB). Algo-

rithm 2 also has extra space complexity terms of this

nature.) If P is viewed as a constant, which is rea-

sonable for most systems, then the time complexity for

reading and writing in each of our algorithms is O(B),

and the space complexity is �(B); these complexity

�gures are obviously asymptotically optimal.

2 Preliminaries

Each of our bu�er algorithms is de�ned by specifying

a procedure that is invoked to read the bu�er, and one

that is invoked to write the bu�er. Each invocation

of the read procedure (respectively, write procedure) is

called a read operation (respectively, write operation).

The processes in the system are partitioned into a set

of reader processes and a set of writer processes . For

our purposes, it suÆces to view each reader (writer)

process as consisting of an in�nite loop that repeatedly

invokes the read (write) procedure. With this assump-



tion, we are simply abstracting away from the activities

of these processes outside of bu�er accesses. Each of

our algorithms is designed for use in either a priority-

or quantum-scheduled system. We make the following

assumptions regarding the manner in which processes

are scheduled for execution on a processor.

Axiom 1: (Priority-based Scheduling) A process's pri-

ority does not change during a read or write opera-

tion. 2

Axiom 2: (Quantum-based Scheduling) The quantum

is large enough to ensure that each process can be pre-

empted at most once within one read or write opera-

tion. 2

In many of our algorithms, single-word variables

are used that have counter �elds, which are used to

distinguish recently-written data from older data. We

assume that the range of each counter is suÆcient to

ensure that it does not cycle during any read or write

operation. Each counter ranges over f0; : : : ; 2k+1g for
some k 2 N and is assumed to wrap around to zero

when incremented beyond its range. Such variables are

declared using the following template.

template tagged(T ):

record tag : bounded integer; val : T

For example, a variable of type tagged(1::W+P+2) has

a tag �eld that is a bounded integer, and a val �eld

that ranges over f1; : : : ;W + P + 2g.
Our algorithms also use compare-and-swap (CAS)

operations. Such operations are denoted CAS(adr , old ,

new), where adr is the address of a shared variable, old

is a value to which this variable is compared, and new is

a new value to assign to the variable if the comparison

succeeds. The CAS operation returns true if and only if

the comparison succeeds.

Notational Conventions: We let R, W , B, and P

be de�ned as in Table 1. Unless stated otherwise, we

let p, q, and r denote reader processes, and v and w

denote writer processes. Each of p, q, and r ranges over

f1; : : : ; Rg, and each of v and w ranges over f1; : : : ;Wg.
We assume that each labeled statement in each al-

gorithm is atomic. We also assume that all private

variables of a process retain their values between oper-

ations on the implemented bu�er by that process. The

notation x:y will be used to refer to the value of process

x's private variable y.

3 Priority-based Algorithm

Our multi-writer algorithm for priority-based multipro-

cessors is shown in Figure 1. This algorithm implements

a shared bu�er using P + 2 pure bu�ers, which we will

call \slots." In contrast, Chen and Burn's algorithm

uses R+2 slots (and is also limited to only one writer).

We reduce the number of required slots by ensuring

that there is only one active reader on any processor at

any time. Thus, each writer only needs to coordinate

with at most P active readers at any time. To ensure

that there is only one active reader per processor, each

reader process is required to help complete any read

operation that it preempts.

A handshaking mechanism is used to ensure that

a writer never writes into a slot that is being read by

some reader. This mechanism requires a total of P +2

slots. This is because, due to preemptions, there may

be P active readers that are in the process of read-

ing P distinct values that were written previously by

some writer. Each of these values may di�er from the

last value written by the writer. The last-written value

cannot be immediately overwritten because this would

temporarily leave the bu�er in a state in which the

most-recently-written value is unavailable. Thus, P +2

slots are needed.

So that readers may help one another, the bu�er

into which each reader saves the value that it reads is

shared, rather than private. Thus, R shared bu�ers

are needed for helping, but these bu�ers can be used

across all shared bu�ers in the system. In other words,

these R bu�ers are part of the system's overhead rather

than the bu�er 's overhead. We also assume that each

writer stores the value it wants to write in an input

bu�er that can then be swapped with one of the slots

of the implemented bu�er. Thus, W input bu�ers are

needed. Once again, however, these same W bu�ers

can be used across all shared bu�ers in the system,

so we do not consider them as per-bu�er overhead. In

the rest of this section, we give a detailed description of

the algorithm, followed by a summary of the techniques

used to manage concurrent bu�er accesses.

Detailed description. We begin our detailed descrip-

tion of the algorithm by describing the shared variables

that are used. The P +2 slots along with each writer's

input bu�er are stored in the In array. We assume

that each slot consists of B words. The Bufptr array

indicates which P+2 of the slots in the In array are cur-

rently part of the implemented bu�er. The variable Lat-

est indicates the slot that holds the most-recently writ-

ten value. Each reader r has an output bu�er Out [r].

Each time r reads the implemented bu�er, the value

it reads is stored in Out [r]. If reader p helps reader

r, then to ensure that p does not repeat steps already

performed by r or other processes, we maintain a count

of the words already copied to Out [r]. This count is

stored in the shared variable Wdcnt [r]. Reader [k] is

used to indicate the currently-active reader (if any) on

processor k. Reading [k] indicates the last slot read by



shared var

In: array[1..W+P+2][1..B] of wordtype;

Bufptr : array[1..P+2] of tagged(1..W+P+2);

Latest : tagged(1..P+2) initially (0,1);

Out : array[1..R][1..B] of wordtype;

Wdcnt : array[1..R] of 0..B initially 0;

Reader : array[1..P ] of 0..R initially 0;

Reading : array[1..P ] of tagged(0..P+2) initially (0,1)

private var

bf , cbf : 1..W+P+2; nbf : tagged(1..W+P+2);

next , n, val : 1..P+2; `: tagged(1..P+2);

bp: 0..P+2; rb: tagged(0..P+2);

inuse: array[0..P+2] of boolean;

wc: 0..B; rd : 0..R;

wd: wordtype; succ: boolean

initially In[1] = initial value ^ (8y: 1 � y � P+2: Bufptr [y] = (0; y)) ^ (8w: 1 � w �W : w:cbf := P + 2 + w)

procedure Read(rid ,myproc)

returns array[1..B] of wordtype

1: rd := Reader [myproc];

2: if rd 6= 0 then Help-Read(rd ,myproc) �;

3: UpdateReading(myproc);

4: Wdcnt [rid ] := 1;

5: Reader [myproc] := rid ;

6: Help-Read(rid ,myproc);

7: return Out [rid ]

procedure Help-Read(rd ,myproc)

8: bp := Reading [myproc].val ;

9: bf := Bufptr [bp].val ;

10: wc := Wdcnt [rd ];

11: while Reader [myproc] = rd ^ wc > 0 do

12: wd := In[bf ][wc];

13: if Reader [myproc] = rd then

14: Out [rd ][wc] := wd

�;

15: Wdcnt [rd ] := (wc + 1) mod (B + 1);

16: wc := Wdcnt [rd ]

od;

17: Reader [myproc] := 0

procedure UpdateReading(myproc)

18: rb := Reading [myproc];

19: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0));

20: if :succ then

21: rb := Reading [myproc];

22: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0))

�;

23: if succ then

24: ` := Latest ;

25: CAS(&Reading [myproc], (rb.tag+1,0), (rb.tag+2,`.val))

�

procedure Write(wid)

26: ` := Latest ;

27: bp := FindNext();

28: nbf := Bufptr [bp];

29: if ` = Latest then

30: if CAS(&Bufptr [bp], nbf , (nbf .tag+1,cbf )) then

31: cbf := nbf .val

�;

32: CAS(&Latest , `, (`.tag+1,bp))

�

procedure FindNext() returns 1..P+2

33: for n := 1 to P do

34: rb := Reading [n];

35: val := Latest .val ;

36: if rb.val = 0 then

37: CAS(&Reading [n], rb, (rb.tag+1,val))

�

od;

38: for n := 1 to P+2 do

39: inuse[n] := false

od;

40: inuse[Latest .val ] := true;

41: for n := 1 to P do

42: inuse[Reading [n].val ] := true

od;

43: next := 1;

44: while inuse[next ] ^ next < P+2 do

45: next := next + 1

od;

46: return next

W

W

W

R

R

R

R

��
��
��
��

��
��
��
��

��
��
��
��

Latest

P

Processor

1

Reader

Wdcnt
Reading

P

Processor

Bufptr

1

P+2

In

Out

cbf

R Reader Process

W Writer Process

Shared Variable

��
��
��

��
��
��

Private Variable

Tagged Variable

Refers To

LEGEND

Figure 1: Algorithm 1: Multi-writer bu�er for priority-based multiprocessors.



a reader on processor k. A reader r on processor k

performs a read operation by invoking the Read proce-

dure. Within Read, r �rst checks to see if there is a pre-

empted read operation on processor k (statements 1-2).

If there is a preempted read, then Help-Read is called

(statement 2). This routine is described below. Af-

ter helping any preempted read, r calls UpdateReading

(statement 3), which attempts to copy the value of

Latest to Reading [k]. r's call to UpdateReading can

fail to update Reading [k] only if either a writer up-

dates Reading [k] (see statement 37) or if r is pre-

empted by another reader on processor k. In either

case, Reading [k] points to a slot written \suÆciently

recent" by the time r returns from UpdateReading. Af-

ter invoking UpdateReading, r updates Wdcnt [r] and

Reader [k] (statements 4-5) to indicate that it is now

the active reader on processor k. Note that statement

5 e�ectively \announces" r's read on processor k | if

r is preempted by another reader after this point, then

it will be helped. After updating Reader [k], r performs

its own operation by calling Help-Read (statement 6).

We now describe what happens when Help-Read is

invoked by r. First, the state of the read being helped

is determined (statements 8-10). Let p be the reader r

is helping (note that p could be r). r helps p by up-

dating Out [p] one word at a time (statement 14). If

r �nds Reader [k] 6= r:rd at either statement 11 or 13,

then r must have been preempted by a higher-priority

reader. In this case, by the time r resumes execution,

p's operation has been completed, so r can discontinue

helping. Note that it is possible for r to be preempted

by a higher-priority reader q between its execution of

statements 13 and 14, in which case its execution of

statement 14 will overwrite a word of Out [p] already

written by q. In this case, the value written to this word

by r must be the same as its current value. (This prop-

erty is proved in the full paper.) Thus, this \late write"

causes no harm. The time complexity of a read oper-

ation is clearly dominated by the calls to Help-Read,

which take O(B) time.

A writer w performs a write operation by invoking

the Write procedure. It is assumed that w has already

copied the words it intends to write into In [w:cbf ] be-

fore invoking the Write procedure. (Also, recall that,

by assumption, w:cbf retains its value between write

operations of w.) w's write operation is performed in

three steps. First, FindNext is called to locate an un-

used slot (statement 27). Then, w attempts to swap

Bufptr [w:bp] and w:cbf (statements 30 and 31), which

has the e�ect of swapping w's input bu�er with the

free slot l returned by FindNext. If CAS at statement

30 fails, then another writer must have swapped its own

input value into slot l before w's attempt. Finally, Lat-

est is updated to indicate that slot l holds the latest

value written to the bu�er (statement 32). Note that

if the value of Latest changes between statements 26

and 29, then w's operation has been \overwritten" by

a concurrent write and thus there is no need to swap in

slot l. A concurrent write operation can also cause the

CAS at statement 32 fail.

Within FindNext, w �rst reads Latest and then

completes any stalled updates of Reading variables

(statements 34-37). Using a CAS at statement 37 en-

sures that w cannot write an out-of-date value into

some Reading variable in the event that it is itself pre-

empted. In the rest of the FindNext procedure, w

simply chooses a slot index that di�ers from the cur-

rent value of Latest and any Reading variable. Since

FindNext has �(P ) time complexity, the time complex-

ity of a write operation is �(P +B).

Mechanisms. In our algorithm, three distinct mech-

anisms are used. The �rst mechanism, helping, is used

to manage local reader-reader interactions. This mech-

anism requires a local reader to acquire a \token" prior

to performing the read operation. (Reader records

which process currently holds the token.) To avoid star-

vation, other local readers are not permitted to take

the token from the current reader. However, these pro-

cesses can force the existing reader out of the announce

position once its operation is completed. Though a sim-

ilar mechanism could be applied to local writer-writer

interactions, it is more costly to do so in terms of time

and space. In addition, this approach would favor low-

priority writers over higher-priority writers.

The second mechanism, pointer swapping, handles

all writer-writer interactions. This approach is derived

from shadow copying, which uses a base pointer to ref-

erence the current value of an object. To update the

object, a process must duplicate the current value, ap-

ply the changes to its copy, and then attempt to atom-

ically swap the base pointer to reference the modi�ed

copy. In a pure-bu�er algorithm, there is no need to

perform the initial duplication since the entire bu�er is

being overwritten. Instead, a writer possesses a dedi-

cated bu�er that already contains the new value prior to

calling Write. The pointer swapping mechanism adds

a layer of indirection (the Bufptr array) in the data

referencing.

The third mechanism, the reader-writer handshake,

prevents writers from swapping out a bu�er that is be-

ing read. This is accomplished by allowing writers to

detect and complete any stalled read slot selections at

statements 33-37 prior to selecting a swapping slot at

statements 38-46.

In the full version of this paper, we show that the

algorithm can be simpli�ed considerably if there is only



one writer or if the bu�er is shared across only one

processor. In essence, these simpli�cations consist of

removing one or more of the above mechanisms. For

example, pointer swapping is clearly unnecessary in a

single-writer system.

The proof of correctness for this algorithm is given

in the full version of this paper [1]. From this proof we

have the following theorem.

Theorem 1: An R-reader, W -writer, B-word

read/write bu�er can be implemented in a wait-free

manner on a P -processor priority-scheduled system

with �(B) time complexity for reading, �(P +B) time

complexity for writing, and �(PB) per-bu�er space

complexity. 2

4 Quantum-based Algorithm

Our multi-writer algorithm for quantum-based multi-

processors is shown in Figure 2. Unlike the previous

priority-based algorithm, our quantum-based algorithm

allows a write operation to write into a slot being read

by a reader on its processor. Such read operations are

retried. In essence, retries take the place of helping

in our priority-based algorithm. By Axiom 2, each

operation will have to be retried at most once. The

handshaking mechanism of Algorithm 1 is used here to

prevent write operations from interfering with remote

readers. Because there are P � 1 remote processors,

P � 1 + 2 = P + 1 slots are needed, which is one less

than before. As before, we present a detailed descrip-

tion of the algorithm followed by a summary of the

algorithm's key mechanisms.

Detailed description. The shared variables used in

Algorithm 2 are analogous to those used in Algorithm 1

except that we now have P + 1 slots instead of P +

2. (Note also that some of the shared variables used

in Algorithm 1 are no longer needed. This is mainly

because there is no helping in Algorithm 2.) We also

have the same procedures in both algorithms.

Suppose that a reader r on processor k in-

vokes the Read procedure. At statement 1, r in-

vokes UpdateReading, which attempts to copy the

value of Latest to Reading [k]. UpdateReading is ex-

actly the same as in Algorithm 1. After invoking

UpdateReading, Reading [k] points to a slot written

\suÆciently recently," so its value can be copied to

r:out and returned. (Note that, because there is no

helping, output bu�ers are now private variables.) This

is done in statements 4-6. At statement 7, r checks to

see if the value of Reading [k] has changed. If not, then

r can safely return. If Reading [k] has changed, then

r has been preempted by another process on its pro-

cessor. In this case, the previous steps are tried again

(statements 8-12). We explain below why one retry suf-

�ces. It is easy to see that read operations complete in

�(B) time.

The Write procedure is identical to that used in Al-

gorithm 1. The FindNext procedure is also the same,

except that UpdateReading is invoked to update the

Reading variable for the local processor. This is merely

an optimization that allows us to use P + 1 slots in-

stead of P +2. In particular, all readers and writers on

the same processor now update the local Reading vari-

able. With P+2 slots, we could use the same FindNext

procedure as in Algorithm 1. As before, the time com-

plexity of a write operation is �(P +B).

Note that in Algorithm 1, helping is used to prevent

the interference of readers by other readers. Moreover,

the code that is executed to update the Reading vari-

ables prevents interferences by writers. In Algorithm 5,

this code is the same as before, except that local writers

update the local Reading variable just like local readers.

Thus, a reader could potentially return an incorrect re-

sult only if repeatedly interfered with by local readers

and writers. However, by Axiom 2, there can be at most

one such interference. This is why one retry suÆces.

Mechanisms. The quantum-based algorithm also uses

three mechanisms for coordination. However, only one

of the three mechanisms di�ers signi�cantly from its

priority-based counterpart.

In a quantum-based system, we can permit inter-

ference from a local reader as long as the interference

is both safe and detectable. To allow a reader to detect

interference, the read slot pointer for the processor is

tagged with a counter that is incremented with each

pointer change. If this counter changes while the copy

is being made, the reader pessimistically assumes that

its copy is invalid. However, by Axiom 2, the copying

procedure can be restarted and completed before the

next quantum boundary. Since a read operation does

not change the state of the shared bu�er, detection im-

plies safety here.

Since the pointer swapping mechanism does not

rely on a particular scheduling model, it appears un-

modi�ed in the quantum version of the algorithm. The

reader-writer handshake mechanism, on the other hand,

can be slightly optimized in quantum-based systems by

allowing a writer to update the local Reading pointer

(statement 35) rather than simply avoiding that slot.

Since the reader design already detects and recovers

from this form of interference, this behavior is safe.

In addition, this reduces the number of shared bu�ers

needed by one.

A proof of correctness for this algorithm is given in

the full version of this paper [1]. From that proof, we

have the following theorem.



shared var

In: array [1..W+P+1][1..B] of wordtype;

Bufptr : array [1..P+1] of tagged(1..W+P+1);

Reading : array [1..P ] of tagged(0..P+1) initially (0,1);

Latest : tagged(1..P+1) initially (0,1)

private var

out : array [1..B] of wordtype; succ: boolean;

next , bp, val : 1..P+1; `: tagged(1..P+1);

cbf , rb: 1..W+P+1; nbf : tagged(1..W+P+1);

rbp: tagged(0..P+1); n: 1..max(B, P+1);

inuse: array [0..P+1] of boolean

initially In[1] = initial value ^ (8y: 1 � y � P+2: Bufptr [y] = (0; y)) ^ (8w: 1 � w �W : w:cbf := P + 1 + w)

procedure Read(out , myproc)

returns array [1..B] of wordtype

1: UpdateReading(myproc);

2: rbp := Reading [myproc];

3: if rbp.val 6= 0 then

4: rb := Bufptr [rbp.val ].val ;

5: for n := 1 to B do

6: out [n] := In[rb][n]

od

�;

7: if rbp 6= Reading [myproc] _ rbp.val = 0 then

8: UpdateReading(myproc);

9: rbp := Reading [myproc];

10: rb := Bufptr [rbp.val ].val ;

11: for n := 1 to B do

12: out [n] := In[rb][n]

od

�;

13: return out

procedure UpdateReading(myproc)

14: rb := Reading [myproc];

15: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0));

16: if :succ then

17: rb := Reading [myproc];

18: succ := CAS(&Reading [myproc]; rb; (rb:tag + 1; 0))

�;

19: if succ then

20: ` := Latest ;

21: CAS(&Reading [myproc], (rb.tag+1,0), (rb.tag+2,`.val))

�

procedure Write(myproc)

22: ` := Latest ;

23: bp := FindNext();

24: nbf := Bufptr [bp];

25: if ` = Latest then

26: if CAS(&Bufptr [bp], nbf , (nbf .tag+1,cbf )) then

27: cbf := nbf .val

�;

28: CAS(&Latest , `, (`.tag+1,bp))

�

procedure FindNext(myproc) returns 1..P+1

29: for n := 1 to P do

30: if n 6= myproc then

31: rbp := Reading [n];

32: val := Latest .val ;

33: if rbp.val = 0 then

34: CAS(&Reading [n], rbp, (rbp.tag+1,val))

�

35: else UpdateReading(myproc)

�

od;

36: for n := 1 to P+1 do

37: inuse[n] := false

od;

38: for n := 1 to P do

39: inuse[Reading [n].val ] := true

od;

40: next := 1;

41: while inuse[next ] ^ next < P+1 do

42: next := next + 1

od;

43: return next

R

R

R

R

W

W

W

W

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

1

P

Bufptr P

1

Processor

Processor
Reading

P+1

curbf

Latest

In

out

Figure 2: Algorithm 2: Multi-writer bu�er for quantum-based multiprocessors.



Theorem 2: An R-reader, W -writer, B-word

read/write bu�er can be implemented in a wait-free

manner on a P -processor quantum-scheduled system

with �(B) time complexity for reading, �(P +B) time

complexity for writing, and �(PB) per-bu�er space

complexity. 2

5 Concluding Remarks

We have shown that characteristics of real-time sys-

tems can be exploited to implement highly-optimized

wait-free shared bu�ers. Our work has been driven by

the observation that, in most real-time applications, a

small set of shared objects predominates. Such com-

mon objects include read/write bu�ers, queues, prior-

ity queues, and perhaps linked lists. We believe design-

ers of real-time applications would bene�t from having

highly-optimized wait-free implementations of objects

such as these. This is particularly true for multiproces-

sor applications. The alternative for such applications

is to use priority-ceiling mechanisms. Unfortunately,

the conservatism of such mechanisms makes them in-

eÆcient. In future work, we hope to consider some of

the other objects listed above. Our goal is to produce a

library of such implementations, along with formal cor-

rectness proofs. Such a library would allow real-time

system designers to more easily incorporate wait-free

objects in their applications.

References

[1] J. Anderson and P. Holman. EÆcient pure-

bu�er algorithms for real-time systems (full version).

http://www.cs.unc.edu/~anderson/papers.html.

[2] J. Anderson, R. Jain, and K. Je�ay. EÆcient object

sharing in quantum-based real-time systems. Proceed-

ings of the 19th IEEE Real-Time Systems Symposium,

pp. 346{355. Dec. 1998.

[3] J. Anderson, R. Jain, and S. Ramamurthy. Wait-free

object-sharing schemes for real-time uniprocessors and

multiprocessors. Proceedings of the 18th IEEE Real-

Time Systems Symposium, pp. 111{122. Dec. 1997.

[4] J. Anderson and S. Ramamurthy. A framework for

implementing objects and scheduling tasks in lock-free

real-time systems. Proceedings of the 17th IEEE Real-

Time Systems Symposium, pp. 92{105. Dec. 1996.

[5] J. Anderson, S. Ramamurthy, and R. Jain. Implement-

ing wait-free objects in priority-based systems. Pro-

ceedings of the 16th Annual ACM Symposium on Prin-

ciples of Distributed Computing, pp. 229{238. Aug.

1997.

[6] J. Anderson, S. Ramamurthy, and K. Je�ay. Real-time

computing with lock-free objects. ACM Transactions

on Computer Systems, 15(6):388{395, May 1997.

[7] T. Baker. Stack-based scheduling of real-time pro-

cesses. Real-Time Systems, 3(1):67{99, Mar. 1991.

[8] J. Burns and G. Peterson. Pure bu�ers for concur-

rent reading while writing. Technical Report GIT-ICS-

87/17, School of Information and Computer Science,

Georgia Institute of Technology, 1987.

[9] J. Chen and A. Burns. A fully asynchronous

reader/writer mechanism for multiprocessor real-time

systems. Technical Report YCS-288, Department of

Computer Science, University of York, 1997.

[10] J. Chen and A. Burns. Asynchronous data sharing in

multiprocessor real-time systems using process consen-

sus.hard real-time scheduling: The deadline monotonic

approach. Proceedings of the 10th Euromicro Work-

shop on Real-Time Systems, pp. 2{9, June 1998.

[11] M. Herlihy and J. Wing. Linearizability: A correctness

condition for concurrent objects. ACM Transactions

on Programming Languages and Systems, 12(3):463{

492, 1990.

[12] L. Lamport. On interprocess communication, parts 1

and 2. Distributed Computing, 1:77{101, 1986.

[13] G. Peterson and J. Burns. Concurrent reading while

writing ii: The multi-writer case. Proceedings of the

28th Annual ACM Symposium on Foundation of Com-

puter Science. 1987.

[14] R. Rajkumar. Real-time synchronization protocols for

shared memory multiprocessors. Proceedings of the In-

ternational Conference on Distributed Computing Sys-

tems, pp. 116{123, 1990.

[15] S. Ramamurthy, M. Moir, and J. Anderson. Real-

time object sharing with minimal support. Proceedings

of the 15th Annual ACM Symposium on Principles of

Distributed Computing, pp. 233{242. May 1996.

[16] L. Sha, R. Rajkumar, and J. Lehoczky. Priority in-

heritance protocols: An approach to real-time system

synchronization. IEEE Transactions on Computers,

39(9):1175{1185, 1990.

[17] A. Singh, J. Anderson, and M. Gouda. The elusive

atomic register, revisited. Proceedings of the Sixth

Annual ACM Symposium on Principles of Distributed

Computing, pp. 206{221. Aug. 1987.

[18] P. Tsigas and Y. Zhang. Non-blocking data sharing in

multiprocessor real-time systems. Proceedings of the

Sixth International Conference on Real-time Comput-

ing Systems and Applications, pp. 247{254, 1999.


