
Pfair Scheduling: Beyond Periodic Task Systems�

James H. Anderson and Anand Srinivasan

Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175.

Abstract

In this paper, we consider variants of Pfair and ER-

fair scheduling in which subtasks may be released late,

i.e., there may be separation between consecutive win-

dows of the same task. We call such tasks intra-sporadic

tasks. There are two main contributions of this paper.

First, we show the existence of a Pfair (and hence ER-

fair) schedule for any intra-sporadic task system whose

utilization is at most the number of available proces-

sors. Second, we give a polynomial-time algorithm that

is optimal for scheduling intra-sporadic tasks in a Pfair

or ERfair manner on systems of one or two processors.

1 Introduction

Pfair scheduling was proposed by Baruah et al. as a way

of optimally and eÆciently scheduling periodic tasks on

a multiprocessor system [4, 5]. Pfair scheduling di�ers

from more conventional real-time scheduling disciplines

in that tasks are explicitly required to make progress at

steady rates. In the classic periodic task model, each

task T executes at an implicit rate given by T:e=T:p,

where T:e is the execution cost of each job of T , and

T:p is the period of T . However, this notion of a rate

is a bit inexact: a job of T may be allocated T:e time

units at the beginning of its period, or at the end of

its period, or its computation may be spread out more

evenly. Under Pfair scheduling, this implicit notion of a

rate is strengthened to require each task to be executed

at a rate that is uniform across each job.

Pfair scheduling algorithms ensure uniform execu-

tion rates by breaking tasks into quantum-length \sub-

tasks." Each subtask must execute within a \window"

of time slots, the last of which is its deadline. These

windows divide each period of a task into subinter-

vals of approximately equal length. By breaking tasks

into smaller executable units, Pfair scheduling algo-

rithms circumvent many of the bin-packing-like prob-

lems that lie at the heart of intractability results involv-

�Work supported by NSF grants CCR 9732916, CCR 9972211,

CCR 9988327, and ITR 0082866.

ing multiple-resource real-time scheduling problems.

Intuitively, it is easier to evenly distribute small, uni-

form items among the available bins than larger, non-

uniform items.

In recent work, we considered a work-conserving vari-

ant of Pfair scheduling called \early-release" fair (ER-

fair) scheduling [2]. ERfair scheduling di�ers from Pfair

scheduling in a rather simple way. Under Pfair schedul-

ing, if some subtask of a task T executes \early" within

its window, then T is ineligible for execution until the

beginning of its next window. Under ERfair scheduling,

if two subtasks are part of the same job, then the sec-

ond subtask is eligible for execution as soon as the �rst

completes. In other words, a subtask may be released

\early," i.e., before the beginning of its Pfair window.

Contributions of this paper. One limitation of

most prior work on Pfair and ERfair scheduling is that

only synchronous, periodic task systems have been con-

sidered. In this paper, we consider variants of Pfair and

ERfair scheduling in which subtasks may sometimes be

released late, i.e., there may be separation between con-

secutive windows of the same task. We call such tasks

intra-sporadic tasks. The notion of an intra-sporadic

task generalizes that of a sporadic task (which in turn

generalizes the notion of an asynchronous task). Why

generalize the sporadic model in this way? Our pri-

mary motivation here is to identify the most exible

notion of a rate that can be optimally supported in a

multiprocessor system. Indeed, if early releases are al-

lowed, then the intra-sporadic task model is essentially

a quantum-based multiprocessor variant of the unipro-

cessor rate-based execution model proposed recently by

Je�ay and Goddard [6]. Being able to support a exi-

ble notion of a rate simpli�es the design of applications

in which some processing steps may be highly jittered.

A good example of such an application is a multimedia

system in which packets may sometimes arrive early or

late.

All prior proofs known to us involving Pfair and ER-

fair scheduling rely crucially on the fact that at any

point of time, the exact alignment of future windows

can be predicted. However, for intra-sporadic task sys-

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(a)

1

1

1

1

1

1 2

2 1

2 1

1 2

2 1 1 1 2 2 2 2 2

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(b)

1

1

1

1

1

1 1 1

1 2

1 2

1 2

1 2 2 2 2 2 2 2

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(c)

1...

1

1

1

1

2 1

1 2

2 1

1 2

2 1 1 2 2 2 1 1 2 1

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _

_ _ _ _

_ _ _ _

_ _ _ _

A(1x5/16): _ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

B(3x4/16): _ _ _ _

C(15x1/16): _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(d)

1...

1

1

1

1

1 1 1

2 1

1 2

1 2

1 1 1 1 2 2 2 2 2 1

Figure 1: A schedule for a task set under (a) Pfair scheduling, (b) ERfair scheduling, (c) Pfair scheduling with an intra-

sporadic task, and (d) ERfair scheduling with an intra-sporadic task. In this �gure, tasks of a given weight are shown
together. Each Pfair window is shown on a separate line and is depicted by showing the time slots it spans. Each column
corresponds to a time slot. In the Pfair schedules, a slot t within a window is denoted by a dash. An integer value n means

that n of the subtasks that must execute within that window are scheduled in slot t. No integer value means that no such
subtask is scheduled in slot t. In the ERfair schedules, a subtask may be scheduled before its Pfair window.

tems such predictions cannot be made, because future

subtasks can be released late. This is the main rea-

son why earlier proofs do not directly extend to intra-

sporadic task systems, or even to sporadic task systems.

Aside from introducing the intra-sporadic task

model, there are two main contributions of this pa-

per. First, we state a feasibility condition (which is

proved in the full paper) for scheduling a system of

intra-sporadic tasks on a system of M processors. Sec-

ond, we give a simple, polynomial-time algorithm for

optimally scheduling intra-sporadic tasks on systems of

one or two processors. The development of an algo-

rithm for eÆciently scheduling intra-sporadic tasks on

systems of three or more processors is left as an open

problem.

Some example schedules. Before continuing, we

consider some example schedules that highlight the dif-

ferences among the task models considered in this pa-

per. In the Pfair scheduling literature, the ratio of a

task T 's execution cost and period, T:e=T:p, is referred

to as its weight . A task's weight determines the length

and alignment of its Pfair windows. Figure 1 shows

some schedules involving three sets of tasks: a set A of

one task of weight 5/16, a set B of three tasks of weight

4/16, and a set C of 15 tasks of weight 1/16. Inset (a)

shows the schedule for these tasks up to time slot 15

in a Pfair-scheduled system. Note that successive win-

dows of a task are either disjoint or overlap by one slot.

As we shall see, this is a general property of Pfair sys-

tems. Inset (b) shows the same task set under ERfair

scheduling. In this case, each subtask is eligible as soon

as its predecessor completes. Notice that all set-A and

set-B jobs have �nished by time slot 8, which is much

sooner than in the Pfair schedule. Insets (c) and (d)

show schedules similar to those in insets (a) and (b),

respectively, except that the third window of the set-A

task is released two time units late. In inset (d), we

have assumed that the third subtask of the set-A task

is not actually eligible until time slot 8 (for example,

maybe this late release represents a packet that arrived

late at time 8). The system would still be schedulable

if we were to allow this subtask to be eligible as soon

as the second completes. This would correspond to an

arti�cial shifting of all future subtask deadlines of this

task (although this is possible, we know of no practical

reason for wanting to shift deadlines like this).

The rest of this paper is organized as follows. In Sec-

tion 2, we de�ne Pfair and ERfair scheduling. Then, in

Section 3, we introduce the concept of an intra-sporadic

task. In Section 4, we present a polynomial-time al-

gorithm to optimally schedule intra-sporadic tasks on

systems of one or two processors. Concluding remarks

appear in Section 5.

2 Pfair and ERFair Scheduling

Consider a collection of synchronous, periodic real-time

tasks to be executed on a system of multiple proces-

sors. (For the moment, we are only considering peri-

odic tasks. The notion of an intra-sporadic task will be

de�ned later.) We assume that processor time in such

a system is allocated in discrete time units, or quanta;

the time interval [t; t+ 1), where t is a nonnegative in-

teger, is called slot t. Associated with each task T is a

period T:p and an execution cost T:e. Every T:p time

units, a new invocation of T with a cost of T:e time

units is released into the system; we call such an in-

vocation a job of T . Each job of a task must complete

execution before the next job of that task begins. Thus,

T:e time units must be allocated to T in each interval

[k � T:p; (k+1) � T:p), where k � 0. T may be allocated

time on di�erent processors in such an interval, as long

as it is not allocated time on di�erent processors at the

same time.

The sequence of allocation decisions over time de�nes

a \schedule." Formally, a schedule S is a mapping S :

� �N 7! f0; 1g, where � is a set of periodic tasks and

N is the set of natural numbers. If S(T; t) = 1, then

we say that T is scheduled at slot t. St denotes the set

of tasks scheduled in slot t. The statements T 2 St and

S(T; t) = 1 are equivalent.

Lag constraints. As mentioned previously, we refer

to the ratio T:e=T:p as the weight of task T , denoted

wt(T). We assume each task's weight is strictly less

than one | a task with weight one would require a ded-

icated processor, and thus is quite easily scheduled. A

task's weight de�nes the rate at which it is to be sched-

uled. Because processor time is allocated in quanta,

we cannot guarantee that a task T will execute for ex-

actly (T:e=T:p)t time during each interval of length t.

Instead, in a Pfair-scheduled system, processor time is

allocated to each task T in a manner that ensures that

its rate of execution never deviates too much from that

given by its weight T:e=T:p. More precisely, correctness

is de�ned by focusing on the lag between the amount

of time allocated to each task and the amount of time

that would be allocated to that task in an ideal system

with a quantum approaching zero. Formally, the lag of

task T at time t, denoted lag(T; t), is de�ned as follows:

lag(T; t) = (T:e=T:p)t� allocated (T; t); (1)

where allocated (T; t) is the amount of processor time

allocated to T in [0; t). A schedule is Pfair i�

(8T; t :: �1 < lag(T; t) < 1): (2)

Informally, the allocation error associated with each

task must always be less than one quantum.

Our notion of early-release scheduling is obtained by

simply dropping the �1 lag constraint. Formally, a

schedule is early-release fair (ERfair) i�

(8T; t :: lag(T; t) < 1): (3)

Note that any Pfair schedule is ERfair, but not neces-

sarily vice versa. It is straightforward to show that any

ERfair schedule (and hence, any Pfair schedule) is peri-

odic. In particular, in an ERfair schedule, lag(T; t) = 0

for t = 0; T:p; 2T:p; 3T:p; : : : . This is because, for these

values of t, (T:e=T:p)t is an integer, and therefore by

(1), lag(T; t) is an integer as well. By (3), if lag(T; t) is

an integer, then it must be 0 or some negative integer.

However, it cannot be a negative integer because this

would imply that more processor time has been allo-

cated to T than has been requested by jobs of T up to

time t. Hence, lag(T; t) is 0 for these values of t.

Feasibility. Baruah et al. [5] showed that a periodic

task set � has a Pfair schedule on M processors i�

X
T2�

T:e

T:p
�M: (4)

Because every Pfair schedule is also an ERfair schedule,

(4) is a feasibility condition for ERfair systems as well.

Windows. The Pfair lag bounds given in (2) have the

e�ect of breaking each task T into an in�nite sequence

of unit-time subtasks . We denote the ith subtask of task

T as Ti, where i � 1. As in [4], we associate with each

subtask Ti a pseudo-release r(Ti) and a pseudo-deadline

d(Ti). If Ti is synchronous and periodic, then r(Ti) and

d(Ti) are as follows.

r(Ti) =

�
i� 1
wt(T)

�
(5)

d(Ti) =

�
i

wt(T)

�
� 1 (6)

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11

eight
windows
of T

iT i+1T i+2T i+3T i+4T i+5T i+6T i+7T

Figure 2: The eight \windows" of a task T with weight wt(T) = 8=11. Under Pfair scheduling, each of T 's eight units of
computation must be allocated processor time during its window, or a lag-bound violation will result.

(Derivations of these expressions can be found in [3].)

In a Pfair-scheduled system, r(Ti) is the �rst slot into

which Ti could potentially be scheduled, and d(Ti) is

the last such slot. In an ERfair-scheduled system, if

Ti and Ti�1 are part of the same job, then Ti becomes

eligible immediately after Ti�1 is scheduled, so r(Ti) is

of less relevance. For brevity, we often refer to pseudo-

deadlines and pseudo-releases as simply deadlines and

releases, respectively. The interval [r(Ti),d(Ti)] is called

the window of subtask Ti and is denoted by w(Ti). The

length of window w(Ti), denoted by jw(Ti)j, is de�ned

as d(Ti) � r(Ti) + 1. As an example, consider a task

T with weight wt(T) = 8=11. Each job of this task

consists of eight windows, one for each of its unit-length

subtasks. Using Equations (5) and (6), it is possible

to show that the windows within each job of T are as

depicted in Figure 2. Note that successive windows of

T overlap by one slot and are of two di�erent lengths.

In general, consecutive windows of a task are either

disjoint or overlap by one slot. In addition, either all

windows of a task are of the same length, or they are

of two di�erent lengths (this property is proved in [3]).

Scheduling algorithms. For synchronous, periodic

task systems, the most eÆcient Pfair scheduling algo-

rithm proposed to date is an algorithm called PD [4, 5].

PD schedules subtasks by pseudo-deadline. In the orig-

inal PD algorithm, four tie-break parameters were used

to resolve ties among subtasks with the same dead-

line. In recent work, we proved that only two tie-break

parameters suÆce [3]. In other recent work, we have

shown that an early-release version of PD, called ER-

PD, can be used to optimally schedule synchronous,

periodic tasks in an ERfair manner.

3 Intra-sporadic Tasks

Intra-sporadic tasks are a generalization of sporadic

tasks. In a sporadic task system, there can be sepa-

ration between consecutive jobs of a task. The intra-

sporadic task model is obtained by carrying this a step

further and allowing separation between consecutive

subtasks of the same task.

Formal de�nition. An intra-sporadic task system is

de�ned by the tuple (�; e), where � represents a set of

tasks, and e is a function that indicates when each sub-

task �rst becomes eligible for execution. Each task may

release either a �nite or in�nite number of subtasks. We

assume that e(Ti) � e(Ti�1) for all i � 2, i.e., subtask

Ti cannot become eligible before its predecessor Ti�1.

In the intra-sporadic model, each subtask has two

windows of interest, namely its Pfair window (PF-

window) and its intra-sporadic window (IS-window),

respectively. A subtask's IS-window de�nes the span

of time slots during which it may be potentially sched-

uled. Its IS-window must include its PF-window, the

de�nition of which is similar to that given previously

for synchronous, periodic task systems. Formally, Ti's

IS-window is de�ned to be [e(Ti); d(Ti)] and its PF-

window is de�ned to be [r(Ti); d(Ti)]. As we shall see,

the terms r(Ti) and d(Ti) have a similar interpretation

to that given previously for synchronous, periodic task

systems. We will use the term w(Ti) to refer to the

PF-window of subtask Ti, as before.

The terms r(Ti) and d(Ti) are de�ned inductively by

examining the alignment of the PF-windows of T in

a synchronous, periodic task system. In such a sys-

tem, consecutive PF-windows of T are either disjoint

or overlap by one slot. The bit b(Ti), de�ned below,

distinguishes between these two possibilities.

b(Ti) =

�
0; if d i

wt(T)
e = b

i
wt(T)

c

1; otherwise.

By examining Equations (5) and (6) it should be clear

that in a synchronous , periodic task system, r(Ti+1) =

d(Ti) (i.e., w(Ti) and w(Ti+1) overlap by one slot) if

b(Ti) = 1, and r(Ti+1) = d(Ti) + 1 (i.e., w(Ti) and

w(Ti+1) do not overlap) if b(Ti) = 1. For intra-sporadic

tasks, we de�ne b(Ti) exactly as above. Given this de�-

nition, we can de�ne r(Ti), which de�nes the beginning

of the PF-window of Ti.

r(Ti) =

�
e(Ti); if i = 1

max(e(Ti); d(Ti�1) + 1� b(Ti�1)) if i � 2

(7)

According to this de�nition, the PF-window of T1 be-

gins when it �rst becomes eligible. For i � 2, r(Ti) is

de�ned to be the later of e(Ti) and d(Ti�1)+1�b(Ti�1).

Thus, if Ti becomes eligible during Ti�1's PF-window,

then r(Ti) = d(Ti�1)+1�b(Ti�1), and hence, the spac-

ing between r(Ti�1) and r(Ti) is exactly as in a syn-

chronous, periodic task system. (Note that the notion

of a job is not mentioned here. For systems in which

subtasks are grouped into jobs that are released in se-

quence, the de�nition of e would preclude Ti from be-

coming eligible during Ti�1's PF-window if Ti is the �rst

subtask of its job.) On the other hand, if Ti becomes

eligible after Ti�1's PF-window, then Ti's PF-window

begins when Ti becomes eligible. Note that the def-

inition above implies that consecutive PF-windows of

the same task are either disjoint or overlap by one slot,

just as in a synchronous, periodic task system. Also,

if Ti is scheduled within its PF-window, then it is also

scheduled within its IS-window.

Ti's deadline d(Ti) is de�ned to be r(Ti)+ jw(Ti)j�1,

where jw(Ti)j denotes the length of Ti's PF-window.

PF-window lengths are the same in intra-sporadic and

synchronous, periodic systems. Thus, by Equations (5)

and (6), we have

jw(Ti)j =

�
i

wt(T)

�
�

�
i� 1
wt(T)

�
; (8)

and hence,

d(Ti) = r(Ti) +

�
i

wt(T)

�
�

�
i� 1
wt(T)

�
� 1: (9)

From the de�nitions above, it should be clear that our

notion of an intra-sporadic task system is obtained by

allowing a task's PF-windows to be right-shifted from

where they would appear if that task were synchronous

and periodic. In addition, we allow a subtask to become

eligible before the beginning of its PF-window. In the

proofs given later, we sometimes �nd it convenient to

refer to the quantity by which a PF-window w(Ti) is

right-shifted. This quantity is given by

�(Ti) = r(Ti)�

�
i� 1
wt(T)

�
: (10)

Note that the term b
i�1
wt(T)

c gives the beginning of w(Ti)

in a synchronous, periodic system. From Equations (9)

and (10), we have

d(Ti) =

�
i

wt(T)

�
� 1 +�(Ti): (11)

Using the de�nitions given above, it can be shown that

each subtask is right-shifted by an amount that is at

least that of its predecessor, i.e.,

i � j) �(Ti) � �(Tj): (12)

Some special cases. Using the de�nitions above, we

can show that sporadic and asynchronous tasks are spe-

cial cases of intra-sporadic tasks. In particular, a spo-

radic task T is an intra-sporadic task in which only

the �rst subtask of each job may be released late,

i.e., if Ti and Ti+1 are part of the same job, then

�(Ti) = �(Ti+1). An asynchronous task T is an intra-

sporadic task such that only the very �rst subtask of

each task may be released late, i.e., �(Ti) = �(T1)

for all i � 1. Note that, by de�ning the function e

appropriately, we can obtain eligibility intervals (i.e.,

IS-windows) like those in either a Pfair or ERfair sys-

tem. In fact, we can de�ne eligibility intervals that are

longer than in a Pfair system but shorter than in an

ERfair system.

Validity of schedules. A schedule for a system of

intra-sporadic tasks on M processors is said to be valid

at time t i� the following properties are satis�ed.

(P1) Each subtask scheduled at time t is scheduled

within its IS-window.

(P2) No two subtasks of the same task are scheduled

at time t.

(P3) There are at most M tasks scheduled at time t.

A schedule is said to be valid i� it is valid at every

time slot.

In the full paper [1], we prove that an intra-sporadic

task system � is schedulable on M processors i�

X
T2�

T:e

T:p
�M: (13)

The proof is based on a network ow construction that

is similar to that given by Baruah et al. [5] to prove

that Expression (4) is a feasibility condition for syn-

chronous, periodic tasks. In fact, the proof shows that

there exists a valid schedule in which each subtask is

scheduled in its PF-window. In the next section, we

slot number: 0 1 2 3

_ _

A(3x1/2): _ _

_ _

_ _

B(2x3/4): _ _

1 2

3

1

2

2

Figure 3: An example showing that the EPDF algorithm

is not optimal on a system of three processors

show that the earliest pseudo-deadline �rst (EPDF) al-

gorithm can be used to correctly schedule any feasible

set of intra-sporadic tasks on two processors. (EPDF is

essentially the same as PD, but without the tie-breaks.)

One may wonder how an intra-sporadic task T 's lag

changes with time. When using EPDF to schedule

intra-sporadic tasks, the notion of lag is completely ir-

relevant. In particular, if we merely require the sched-

uler to maintain a count of the subtasks that have been

released in the current job of T , then T 's current pri-

ority can always be determined by using the formulae

given above. These formulae also do not depend on T 's

current lag. Note that if we were to extend our model

to allow tasks to join and leave the system dynamically,

as considered in work on proportional-share scheduling

[7], then the notion of lag would be relevant. Such sys-

tems will be considered in future work.

4 Two-Processor Systems

In this section, we prove that EPDF is optimal for

scheduling intra-sporadic tasks on a system of two pro-

cessors. The proof of optimality is complicated by the

fact that successive windows of a task may overlap. In-

deed, precisely because of this reason, we cannot di-

rectly extend the proof to work for systems of three or

more processors. In fact, the following theorem shows

that EPDF is not optimal for such systems.

Theorem 1 The EPDF algorithm is not optimal for

scheduling synchronous, periodic tasks on three or more

processors.

Proof: Consider a task set consisting of a set A of

three tasks of weight 1=2 and a set B of two tasks of

weight 3=4. The total utilization of this task set is 3

and therefore it is feasible on 3 processors. Figure 3

shows one of the possible schedules that can be obtained

using EPDF. Note that only one of the set-B tasks is

scheduled in slot 3 | the other misses its deadline. 2

Corollary 1 The EPDF algorithm is not optimal for

scheduling intra-sporadic tasks on three or more proces-

sors.

We now turn our attention to proving that the EPDF

is optimal for two-processor systems. The proof is by

contradiction. Throughout this section, we let � de-

note a feasible task system that (by assumption) misses

a deadline when scheduled on two processors using

EPDF. Let td be the earliest time at which a deadline

is missed in � . A contradiction is reached by proving

that EPDF correctly schedules � over [0; td]. This is

shown by considering certain schedules over [0; td]. To

facilitate the description of these schedules, we �nd it

convenient to totally order all subtasks in � that have

deadlines in [0; td]. Let Ti and Uj be two such sub-

tasks. Then, Ti is ordered before Uj , denoted Ti � Uj

i� d(Ti) � d(Uj). Let � be an irreexive total order

that is consistent with �, i.e., � is obtained by arbi-

trarily breaking any ties left by �. We de�ne the rank

of subtask Ti to be its position in the total order �. If

Ti � Uj , then we say that Ti has higher rank than Uj .

We de�ne a schedule S to be k-compliant i� (i)

each subtask that is not among the �rst k according

to the relation � is scheduled within its PF-window,

and (ii) the �rst k subtasks according to � are sched-

uled in accordance with EPDF. We will prove that a

k-compliant schedule exists by induction on k. Note

that a 0-compliant schedule is any valid schedule such

that each subtask is scheduled in its PF-window and

the existence of such a schedule follows from the feasi-

bility proof given in the full paper [1]. Also, if N is the

total number of subtasks with deadlines in [0; td], then

the existence of an N -compliant schedule contradicts

the fact that there is a missed deadline at td.

We now state and prove several lemmas. In the �rst

of these lemmas, an interval of time slots [t; u] is consid-

ered, and a set of conditions is stated that is suÆcient

to conclude that some subtask scheduled in [t; u] can

be shifted left or right out of this interval. In the rest

of this section, we call a slot nonfull if one or both

processors are idle during that slot.

Lemma 1 Let S be a two-processor schedule for

fTi j T 2 � ^ d(Ti) � tdg that is valid over [t; u],

where t < u. Suppose that there are no nonfull slots in

[t; u] and that there exists a subtask Uj not scheduled in

[t; u] such that d(Uj) � t. Then, there exists a subtask

Ti scheduled in [t; u] such that r(Ti) < t or d(Ti) > u.

Proof: Let A be the set of all subtasks scheduled by S

in [t; u]. Suppose, to the contrary, that

(8Ti : Ti 2 A :: r(Ti) � t ^ d(Ti) � u):

We derive a contradiction by showing that total utiliza-

tion exceeds two, which contradicts the fact that � is

feasible. Let V be a task with subtasks in A. Let V:n

denote the number of such subtasks in A, and let Vk
(respectively, Vl) be the �rst (respectively, last) sub-

task of V scheduled in [t; u]. Then, V:n = l � k + 1.

Because V is in A, d(Vl) � u and r(Vk) � t. Thus,

d(Vl)� r(Vk) � u� t: (14)

By Equations (10) and (11) in Section 3, we have

d(Vl) = d
l

wt(V)
e � 1 + �(Vl) and r(Vk) = b

k�1
wt(V)

c +

�(Vk). Substituting these expressions in Equation (14),

we get d l

wt(V)
e � 1 +�(Vl)� b

k�1
wt(V)

c ��(Vk) � u� t.

By (12), this implies that d l
wt(V)

e�1�b k�1
wt(V)

c � u� t.

Hence, d l

wt(V)
e�b

k�1
wt(V)

c � u�t+1:Because d l

wt(V)
e �

l
wt(V)

and b
(k�1)

wt(V)
c �

(k � 1)
wt(V)

, we have l � V:p
V:e

� (k�1) �

V:p

V:e
� u � t + 1: This implies that V:p

V:e
�

u�t+1
l�k+1

; which

implies that
V:e

V:p
�

V:n

u� t+ 1
: (15)

We now show that this inequality can be strength-

ened for U , yielding

U:e

U:p
>

U:n

u� t+ 1
: (16)

If U:n = 0, then the above expression clearly holds, so

assume that U:n 6= 0. Then, by the statement of the

lemma, Uj+1 must be the �rst subtask of U scheduled

in [t; u]. Let Uh be the last such subtask. Then,

d(Uh)� r(Uj+1) � u� t: (17)

Because d(Uj) � t, we have r(Uj+1) � t. If r(Uj+1) > t,

then d(Uh) � r(Uj+1) < u � t. By reasoning as above

(refer to (14)), this implies that U:e
U:p

> U:n
u�t+1

.

On the other hand, if r(Uj+1) = t, then d(Uj) = t,

which implies that b(Uj) = 1. From Equations (10)

and (11), we have d(Uh) = d
h

wt(U)
e � 1 + �(Uh) and

r(Uj+1) = b
(j+1)�1

wt(U)
c + �(Uj+1). Substituting these

expressions into (17), we get

�
h

wt(U)

�
� 1 +�(Uh)�

�
j

wt(U)

�
��(Uj+1) � u� t:

Because b(Uj) is 1, b j

wt(U)
c < j

wt(U)
. Also, by (12),

�(Uh) � �(Uj+1). It follows that

h

wt(U)
�

j

wt(U)
< u� t+ 1:

Therefore, by reasoning that is similar to that prior to

Expression (15), we have U:e
U:p

> U:n
u�t+1

.

From (15) and (16), we conclude that

X
V 2 A [fUg

V:e

V:p
>

X
V 2 A

V:n

u� t+ 1
:

Because there are a total of 2(u � t + 1) slots in [t; u]

and two subtasks are scheduled in each slot, we have

X
V 2 A [fUg

V:n = 2(u� t+ 1):

Therefore, X
V 2 A [fUg

V:e

V:p
> 2:

This contradicts the fact that the total utilization of �

is at most 2. Hence, there exists a subtask Ti scheduled

in [t; u] such that either r(Ti) < t or d(Ti) > u. 2

The lemma above actually holds for any number of

processors. In contrast, Lemma 2, given next, is valid

only for two-processor systems. This lemma gives a set

of conditions under which a subtask Uj can be right-

shifted to a later slot.

Lemma 2 Let S be a two-processor schedule for

fTi j T 2 � ^ d(Ti) � tdg. Let t � td. Assume

the following: (1) subtask Uj is scheduled at slot t, and

t is not the last slot of Uj 's PF-window; (2) either no

other subtask is scheduled at slot t or Uj�1 is sched-

uled there (in which case S is not valid at t); (3) each

subtask scheduled at or after t is scheduled in its PF-

window and S is valid for all v > t. Then, there exists

a schedule S0 for fTi j T 2 � ^ d(Ti) � tdg such that

(1) Uj is scheduled at some slot after t; (2) Sv = S0v
for all v < t; (3) each subtask scheduled at or after t is

scheduled in its PF-window and S is valid for all v � t.

Moreover, if t is nonfull in S, then it is also nonfull in

S0.

Proof: We prove the lemma by inducting over the rank

of Uj . Because t is not the last slot of Uj 's PF-window,

the deadline of Uj is after t, i.e.,

d(Uj) � t+ 1: (18)

Base case: Uj is the lowest-ranked subtask scheduled

in S. If no subtasks are scheduled after slot t in S,

then by (18), we can clearly shift Uj to slot t + 1. In

the rest of the proof for the base case, we assume that

there exist subtasks that are scheduled after slot t.

An empty slot

]j

Vh+1]h

by
induction

Vh

Uj

tv u

W k

]j

Vh Vh+1]h

... uu’

induction
by

Uj

t ...

]j

]
j

by
induction

j+1U

(c)

Uj

t u

...

kW

... t’’ ...

ut

kW

earliest

...t+1

jU

(d)

(f)(e)

Figure 4: Cases of Lemma 2. We use the following notation in this and the next �gure. \[" and \]" indicate the release and
deadline of a subtask; subscripts indicate which subtask. Each task is shown on a separate line. An arrow from subtask Ti

to subtask Uj indicates that Ti is now scheduled in place of Uj . An arrow over \[" (or \]") indicates that the actual position
of \[" (or \]") can be anywhere in the direction of the arrow. Time is divided into unit-time slots that are numbered. If Ti

is released at slot t, then \[" is aligned with the left side of slot t. If Ti has a deadline at slot t, then \]" is aligned with the
right side of slot t. In each inset, d(Uj) > t. (a) Case 1: Smallest interval [t+1; u� 1] such that all subtasks have deadlines

and releases inside the interval. (b) Subcase 1.A: u0 = t+ 1. (c) Subcase 1.B: u0 > t+ 1. (d) Subcase 2.A: d(Uj) � u, and
Wk is the earliest subtask with r(Wk) < t + 1. (e) Subcase 2.B: d(Uj) < u. (f) Repeated application of Subcase 2.B to
�nally apply Subcase 2.A.

Suppose that there exists a subtask Wk scheduled

after t such that r(Wk) � t. By the statement of the

lemma, Wk�1 is not scheduled in slot t. Thus, we can

swap Wk with Uj to get the desired schedule. (Note

that Uj+1 does not exist in S because Uj is of lowest

rank. Thus, swapping Wk with Uj will not create a

schedule in which two subtasks of U are scheduled in

the same slot.)

The remaining possibility is that, for each subtask

Wk scheduled after t, r(Wk) > t and d(Wk) � d(Uj)

(the latter follows because Uj is of lowest rank). If

there are no nonfull slots in [t+1; d(Uj)], then we have

a contradiction of Lemma 1. Therefore, there exists a

nonfull slot in [t + 1; d(Uj)]. This implies that we can

schedule Uj in that slot. Thus, a valid schedule exists

in which Uj is scheduled at a slot later than t.

Induction step: Uj is not the lowest-ranked subtask

scheduled in S. Assume that the lemma holds for all

subtasks with lower rank than Uj . We consider two

cases.

Case 1: For each subtask Wk scheduled after t,

r(Wk) > t. Let [t + 1; u] be the smallest interval

such that for each subtask Vh scheduled in [t + 1; u],

r(Vh) � t + 1 and d(Vh) � u (see Figure 4(a)). Note

that such a u exists, because S includes only a �nite

collection of subtasks. If there are no nonfull slots in

this interval, then we have a contradiction of Lemma

1. Therefore, there exists a slot u0 in [t+1; u] at which

one or both processors are idle. Without loss of gener-

ality, let u0 be the earliest such slot in [t+1; u]. Either

u0 = t+ 1 or u0 > t+ 1.

Subcase 1.A: u0 = t+1. By (18), Uj can be shifted to

slot u0. Unfortunately, subtask Uj+1 might be sched-

uled there, in which case the resulting schedule would

be invalid (see Figure 4(b)). However, by the induction

hypothesis, Uj+1 can be shifted to a later slot. This

implies that the desired schedule exists.

Subcase 1.B: u0 > t+ 1. If for all subtasks Vh sched-

uled in [t + 1; u0 � 1], d(Vh) � u0 � 1, then we have a

contradiction of the fact that [t + 1; u] was the small-

est such interval. Therefore, there exists a subtask Vh
such that d(Vh) � u0 (refer to Figure 4(c)). Note that

Vh can be Uj itself. Observe that we can move Vh to

slot u0 to get a schedule in which the nonfull slot occurs

earlier. Unfortunately, this movement of Vh is not valid

if Vh+1 is scheduled at u0. However, by the induction

hypothesis, if Vh+1 is scheduled at u0, then there exists

a schedule in which it is scheduled at a slot later than

u0 and slot u0 is still nonfull.

By the reasoning above, if Subcase 1.B applies, then

it is always possible to get a schedule in which either

Uj is shifted to a later slot, or in which the �rst nonfull

slot in [t + 1; u] occurs earlier. If we repeatedly apply

Subcase 1.B without shifting Uj to a later slot, then

Subcase 1.A will eventually apply, in which case Uj can

be shifted as desired.

Case 2: There exists a subtask Wk scheduled after t

such that r(Wk) � t. Without loss of generality, as-

sume that Wk is the earliest such subtask. Let Wk be

scheduled at slot u. If there are any nonfull slots in

[t+1; u], then Wk could be moved to the �rst such slot

u0, and the reasoning below applies with the smaller

interval [t+1; u0]. Thus, we can assume without loss of

generality that there are no nonfull slots in [t+ 1; u].

Subcase 2.A: d(Uj) � u. Refer to Figure 4(d). Be-

cause d(Uj) � u, we can swap Uj and Wk directly. Un-

fortunately, if Uj+1 is scheduled at u, then this might

result in a schedule in which Uj and Uj+1 are sched-

uled in the same slot. However, as before, if Uj+1 is

scheduled in slot u, then we can apply the induction

hypothesis to move it to a later slot.

Subcase 2.B: d(Uj) < u. In this subcase, we try to

identify subtasks that can be used as an intermediate

for swapping. BecauseWk is the earliest scheduled sub-

task after t such that r(Wk) � t, for each subtask Vh
scheduled in [t+1; u], we have r(Vh) � t+1. Hence, be-

cause there are no nonfull slots in [t+1; u], by Lemma 1,

there exists a subtask Vh scheduled in [t+1; u] for which

d(Vh) � u. Let Vh be scheduled at time v 2 [t+1; u�1]

(see Figure 4(e)). We can swap Vh and Wk to get a

schedule in which Wk is scheduled earlier (i.e., nearer

to slot t). This swapping will be valid only if Wk�1

is not scheduled at v and Vh+1 is not scheduled at u.

Because r(Wk) < t+1 � v, Wk�1 cannot be scheduled

at v. On the other hand, Vh+1 can be scheduled at

time u. However, as before, we can apply the induction

hypothesis to move Vh+1 to a later slot.

By repeatedly applying Subcase 2.b, we will obtain

either the required schedule or a schedule in which Sub-

By Lemma 5

t’t ...t’t ...

(b)(a)

iT
i

]

j
]jU no

U

]
iiT

Uj+1]jjU[
j

Figure 5: Cases of Lemma 3. (a) t0 < d(Uj) or Uj+1 is not

scheduled at t0. (b) t0 = d(Uj) and Uj+1 is scheduled at t0.

case 2.A can be applied. This is illustrated in Figure

4(f). 2

The following lemma gives the inductive step of our

proof.

Lemma 3 Let S be a k-compliant two-processor sched-

ule for fTi j T 2 � ^ d(Ti) � tdg. Then, there ex-

ists a (k + 1)-compliant two-processor schedule S0 for

fTi j T 2 � ^ d(Ti) � tdg.

Proof: Let Ti be the (k+1)
st subtask according to�. If

Ti is scheduled in accordance with EPDF, then take S0

to be S. Otherwise, we have the following: there exists

a time slot t such that Ti is eligible at t, some subtask

ranked lower than Ti according to � is scheduled at t,

and Ti is scheduled at a slot later than t. Without loss

of generality, let t be the earliest such slot and Uj be

the lowest-ranked subtask scheduled at t. Let t0 be the

slot where Ti is scheduled.

Because Ti has higher rank than Uj , d(Ti) � d(Uj).

Because Ti is scheduled at t0, this implies that t0 �

d(Ti) � d(Uj). Because t0 � d(Uj), we have t0 �

r(Uj+1), and therefore Uj+1 is scheduled at or after

t0.

If Uj+1 is not scheduled at t0, then we can directly

swap Ti and Uj to get the required schedule (see Fig-

ure 5(a)). On the other hand, if Uj+1 is scheduled at

t0, then r(Uj+1) = t0. In this case, directly swapping

Ti and Uj results in Uj and Uj+1 being scheduled in

the same slot. However, by Lemma 2, there exists a

schedule in which Uj+1 is scheduled after slot t0. The

resulting schedule is valid. This is illustrated in Figure

5(b).

Thus, in all cases, we can show the existence of a

schedule in which Ti is scheduled in accordance with

EPDF. 2

Theorem 2 EPDF optimally schedules intra-sporadic

tasks on systems of one or two processors.

Proof: Establishing the optimality of EPDF for one-

processor systems is straightforward, so we consider

only two-processor systems. Suppose to the contrary,

that EPDF is not optimal for such systems. Then, there

exists a task system � that is feasible but not schedu-

lable using EPDF. Let td be the earliest time at which

� misses a deadline under EPDF. Then, the set of sub-

tasks fTi j T 2 � ^ d(Ti) � tdgmisses a deadline at td as

well. Because � is feasible, there exists a valid schedule

for this set of subtasks such that each subtask is sched-

uled in its PF-window. Starting with this schedule, we

can apply Lemma 3 inductively (as discussed earlier)

to get a valid schedule for fTi j T 2 � ^ d(Ti) � tdg

under EPDF. Contradiction. 2

5 Concluding Remarks

Prior work on Pfair and ERfair scheduling has been

almost exclusively limited to synchronous, periodic task

systems. In this paper, we have de�ned the notion of

an intra-sporadic task. This notion generalizes that of

a sporadic task, which in turn generalizes the notion

of an asynchronous task. We have stated and proved a

feasibility condition for scheduling intra-sporadic tasks.

We have also given a polynomial-time algorithm that

can be used to optimally schedule intra-sporadic tasks

on systems of one or two processors.

The development of an algorithm for eÆciently

scheduling intra-sporadic tasks on systems of three or

more processors remains as an open problem. It follows

from Corollary 1 that EPDF is not optimal in this case.

We conjecture that ER-PD (see Section 2) is optimal

for such systems, and we are hopeful that some of our

proof techniques may be helpful in showing this. The

main challenge is to �nd an M -processor counterpart

of Lemma 2. Note that many of the swappings in Fig-

ure 4 would be potentially invalid in a system of three

or more processors. For example, consider Figure 4(d).

According to the statement of Lemma 2, either slot t is

nonfull or Uj�1 is scheduled there. On a two-processor

system, this implies that Wk�1 is not scheduled in slot

t. On a system of three or more processors, this con-

clusion cannot be reached.

In the intra-sporadic task model, deadlines are as-

signed to each subtask on arrival. These deadlines are

assigned in a way that ensures that bursts of subtasks

can be tolerated. Thus, the intra-sporadic task model

can e�ectively deal with jittered inputs or packet ar-

rivals. The intra-sporadic task model has many char-

acteristics in common with the uniprocessor rate-based

execution (RBE) model proposed recently by Je�ay and

Goddard [6]. In the RBE model, tasks execute at well-

de�ned average rates, but have no constraints on their

instantaneous rate of invocation. Formally, an RBE

task T is characterized by a four-tuple (x; y; d; c) where

y is an interval of time, x is the maximum number of

jobs of T expected in any interval of length y, d is a

relative job deadline, and c is the maximum execution

time per job, i.e., c = T:e. The pair (x; y) is called the

rate speci�cation of T . In the RBE model, a task's jobs

may sometimes arrive \early" or \late." However, a

task with a rate speci�cation (x; y) expects to execute,

on average, x jobs in every interval of length y.

One may wonder whether there are substantial di�er-

ences between the intra-sporadic and RBE rates. One

obvious di�erence is that in the intra-sporadic task

model, the basic unit of execution is a quantum-length

subtask. In essence, this is tantamount to requiring all

RBE jobs to be of the same length. We are doubtful

that this restriction can be removed on a multiprocessor

system without sacri�cing optimality. A second di�er-

ence is that RBE deadlines are determined in a di�er-

ent manner from subtask deadlines in an intra-sporadic

task system. In the RBE model, if the �rst c = T:e jobs

of T all arrive at time 0, then each of these jobs will have

a deadline of d. In contrast, in the intra-sporadic task

model, if several subtasks of the same task arrive al-

most simultaneously, then each will be given a di�erent

deadline (corresponding to the end of its PF-window).

References

[1] J. Anderson and A. Srinivasan. Pfair scheduling: Be-
yond periodic task systems (full version). Available at
http://www.cs.unc.edu/~anderson/papers.html.

[2] J. Anderson and A. Srinivasan. Early-release fair
scheduling. In Proc. of the 12th Euromicro Conference

on Real-Time Systems, pages 35{43, June 2000.

[3] J. Anderson and A. Srinivasan. A new look at pfair
priorities. Technical Report TR00-023, University of
North Carolina at Chapel Hill, Sept. 2000. Available

at http://www.cs.unc.edu/~anderson/papers.html.

[4] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Pro-
portionate progress: A notion of fairness in resource al-

location. Algorithmica, 15:600{625, 1996.

[5] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast schedul-
ing of periodic tasks on multiple resources. In Proc.

of the 9th International Parallel Processing Symposium,
pages 280{288, Apr. 1995.

[6] K. Je�ay and S. Goddard. The rate-based execution

model. In Proc. of the 20th IEEE Real-Time Systems

Symposium, pages 304{314, Dec. 1999.

[7] Ion Stoica, Hussein Abdel-Wahab, Kevin Je�ay, San-

joy Baruah, Johannes Gehrke, and C. Greg Plaxton. A
Proportional Share Resource Allocation Algorithm for
Real-Time, Time-Shared Systems. In Proc. of the 17th

IEEE Real-Time Systems Symposium, pages 288{299,
Dec. 1996.

