
Pfair Scheduling: Beyond Periodic Task Systems�

James H. Anderson and Anand Srinivasan

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599-3175

Phone: (919) 962-1757

Fax: (919) 962-1799

E-mail: fanderson,anandsg@cs.unc.edu

July 2000

Abstract

Prior work on multiprocessor Pfair scheduling algorithms has almost exclusively focused on synchronous,

periodic task systems. Under Pfair scheduling, each task is broken into quantum-length subtasks, each of

which must execute within a \window" of time slots. These windows divide each period of a task into

subintervals of approximately equal length. \Early-release" fair (ERfair) scheduling was recently proposed

as a work-conserving variant of Pfair scheduling in which subtasks within the same job are allowed to execute

before their Pfair windows.

In this paper, we consider variants of Pfair and ERfair scheduling in which subtasks may be released late,

i.e., there may be separation between consecutive windows of the same task. We call such tasks intra-sporadic

tasks. The notion of an intra-sporadic task generalizes that of a sporadic task (which in turn generalizes the

notion of an asynchronous task). If early releases are allowed, then the intra-sporadic task model provides

a very
exible notion of a rate that is essentially a multiprocessor variant of that found in the uniprocessor

rate-based execution model proposed by Je�ay and Goddard at RTSS `99.

There are two main contributions of this paper. First, we show the existence of a Pfair (and hence ERfair)

schedule for any intra-sporadic task system whose utilization is at most the number of available processors.

Second, we give a polynomial-time algorithm that is optimal for scheduling intra-sporadic tasks in a Pfair

or ERfair manner on systems of one or two processors.

Keywords: Fairness, multiprocessors, optimality, Pfair, scheduling, sporadic tasks.

�Work supported by NSF grants CCR 9732916 and CCR 9972211.

1 Introduction

Pfair scheduling was proposed by Baruah et al. as a way of optimally and eÆciently scheduling periodic tasks on

a multiprocessor system [3, 4]. Pfair scheduling di�ers from more conventional real-time scheduling disciplines

in that tasks are explicitly required to make progress at steady rates. In the classic periodic task model, each

task T executes at an implicit rate given by T:e=T:p, where T:e is the execution cost of each job (i.e., instance)

of T , and T:p is the period of T . However, this notion of a rate is a bit inexact: a job of T may be allocated

T:e time units at the beginning of its period, or at the end of its period, or its computation may be spread out

more evenly. Under Pfair scheduling, this implicit notion of a rate is strengthened to require each task to be

executed at a rate that is uniform across each job.

Pfair scheduling algorithms ensure uniform execution rates by breaking tasks into quantum-length \sub-

tasks." Each subtask must execute within a \window" of time slots, the last of which is its deadline. These

windows divide each period of a task into subintervals of approximately equal length. By breaking tasks into

smaller executable units, Pfair scheduling algorithms circumvent many of the bin-packing-like problems that lie

at the heart of intractability results involving multiple-resource real-time scheduling problems. Intuitively, it is

easier to evenly distribute small, uniform items among the available bins than larger, non-uniform items.

In recent work, we considered a work-conserving variant of Pfair scheduling called \early-release" fair (ERfair)

scheduling [2]. ERfair scheduling di�ers from Pfair scheduling in a rather simple way. Under Pfair scheduling,

if some subtask of a task T executes \early" within its window, then T is ineligible for execution until the

beginning of its next window. Under ERfair scheduling, if two subtasks are part of the same job, then the

second subtask becomes eligible for execution as soon as the �rst completes. In other words, a subtask may be

released \early," i.e., before the beginning of its Pfair window.

Contributions of this paper. One limitation of most prior work on Pfair and ERfair scheduling is that

only synchronous, periodic task systems have been considered. In this paper, we consider variants of Pfair and

ERfair scheduling in which subtasks may sometimes be released late, i.e., there may be separation between

consecutive windows of the same task. We call such tasks intra-sporadic tasks. The notion of an intra-sporadic

task generalizes that of a sporadic task (which in turn generalizes the notion of an asynchronous task). Why

generalize the sporadic model in this way? Our primary motivation here is to identify the most
exible notion of

a rate that can be optimally supported in a multiprocessor system. Indeed, if early releases are allowed, then the

intra-sporadic task model is essentially a quantum-based multiprocessor variant of the uniprocessor rate-based

execution model proposed recently by Je�ay and Goddard [6]. Being able to support a
exible notion of a rate

simpli�es the design of applications in which some processing steps may be highly jittered. A good example of

such an application is a multimedia system in which packets may sometimes arrive early or late.

All prior proofs known to us involving Pfair and ERfair scheduling rely crucially on the fact that at any

point of time, the exact alignment of future windows can be predicted. However, for intra-sporadic task systems

such predictions cannot be made, because future subtasks can be released late. This is the main reason why

2

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 _ _ _

1 _ _ _

1 _ _ _

1 _ _ _

A(1x5/16): 1 _ _ _

1 2 _ _

2 1 _ _

2 1 _ _

B(3x4/16): 1 2 _ _

C(15x1/16): _ _ 2 1 _ 1 1 2 _ _ 2 2 _ _ 2 2

(a)

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 _ _ _ _

1 _ _ _ _

1 _ _ _ _

1 _ _ _ _

A(1x5/16): 1 _ _ _

1 1 1 _ _ _ _

1 2 _ _ _ _

1 2 _ _ _ _

B(3x4/16): 1 2 _ _

C(15x1/16): _ _ _ _ _ _ _ _ 1 2 2 2 2 2 2 2

(b)

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ 1...

1 _ _ _

1 _ _ _

1 _ _ _

A(1x5/16): 1 _ _ _

2 1 _ _

1 2 _ _

2 1 _ _

B(3x4/16): 1 2 _ _

C(15x1/16): _ _ 2 1 _ 1 2 2 _ _ 2 1 _ 1 2 1

(c)

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ 1...

1 _ _ _ _

1 _ _ _

1 _ _ _ _

A(1x5/16): 1 _ _ _

1 1 1 _ _ _ _

2 1 _ _ _ _

1 2 _ _ _ _

B(3x4/16): 1 2 _ _

C(15x1/16): _ _ _ _ _ 1 1 1 _ 1 2 2 2 2 2 1

(d)

Figure 1: A schedule for a task set under (a) Pfair scheduling, (b) ERfair scheduling, (c) Pfair scheduling

with an intra-sporadic task, and (d) ERfair scheduling with an intra-sporadic task. In this �gure, tasks of a

given weight are shown together. Each Pfair window is shown on a separate line and is depicted by showing the

time slots it spans. Each column corresponds to a time slot. In the Pfair schedules, a slot t within a window

is denoted by either an integer value or a dash. An integer value n means that n of the subtasks that must

execute within that window are scheduled in slot t. A dash means that no such subtask is scheduled in slot t.

In the ERfair schedules, a subtask may be scheduled before its Pfair window.

earlier proofs do not directly extend to intra-sporadic task systems, or even to sporadic task systems.

Aside from introducing the intra-sporadic task model, there are two main contributions of this paper. First,

we state and prove a feasibility condition for scheduling a system of intra-sporadic tasks on a system of M

processors. Second, we give a simple, polynomial-time algorithm for optimally scheduling intra-sporadic tasks

on systems of one or two processors. The development of an algorithm for eÆciently scheduling intra-sporadic

tasks on systems of three or more processors is left as an open problem.

Some example schedules. Before continuing, we consider some example schedules that highlight the di�er-

ences among the task models considered in this paper. In the Pfair scheduling literature, the ratio of a task

T 's execution cost and period, T:e=T:p, is referred to as its weight . A task's weight determines the length and

alignment of its Pfair windows. Figure 1 shows some schedules involving three sets of tasks: a set A of one task

3

of weight 5/16, a set B of three tasks of weight 4/16, and a set C of 15 tasks of weight 1/16. Inset (a) shows

the schedule for these tasks up to time slot 15 in a Pfair-scheduled system. Note that successive windows of

a task are either disjoint or overlap by one slot. As we shall see, this is a general property of Pfair systems.

Inset (b) shows the same task set under ERfair scheduling. In this case, each subtask is eligible as soon as its

predecessor completes. Notice that all set-A and set-B jobs have �nished by time slot 8, which is much sooner

than in the Pfair schedule. Insets (c) and (d) show schedules similar to those in insets (a) and (b), respectively,

except that the third window of the set-A task is released two time units late. In inset (d), we have assumed

that the third subtask of the set-A task is not actually eligible until time slot 8 (for example, maybe this late

release represents a packet that arrived late at time 8). The system would still be schedulable if we were to

allow this subtask to be eligible as soon as the second completes. This would correspond to an arti�cial shifting

of all future subtask deadlines of this task (although this is possible, we know of no practical reason for wanting

to shift deadlines like this).

The rest of this paper is organized as follows. In Section 2, we de�ne Pfair and ERfair scheduling. Then, in

Section 3, we introduce the concept of an intra-sporadic task. In Section 4, we establish a feasibility condition

for scheduling intra-sporadic tasks. In Section 5, we present a polynomial-time algorithm to optimally schedule

intra-sporadic tasks on systems of one or two processors. Concluding remarks appear in Section 6.

2 Pfair and ERFair Scheduling

Consider a collection of synchronous, periodic real-time tasks to be executed on a system of multiple processors.

(For the moment, we are only considering periodic tasks. The notion of an intra-sporadic task will be de�ned

later.) We assume that processor time in such a system is allocated in discrete time units, or quanta; the time

interval [t; t+ 1), where t is a nonnegative integer, is called slot t. Associated with each task T is a period T:p

and an execution cost T:e. Every T:p time units, a new invocation of T with a cost of T:e time units is released

into the system; we call such an invocation a job of T . Each job of a task must complete execution before the

next job of that task begins. Thus, T:e time units must be allocated to T in each interval [k � T:p; (k+1) � T:p),

where k � 0. T may be allocated time on di�erent processors in such an interval, as long as it is not allocated

time on di�erent processors at the same time.

The sequence of allocation decisions over time de�nes a \schedule." Formally, a schedule S is a mapping

S : � �N 7! f0; 1g, where � is a set of periodic tasks and N is the set of natural numbers. If S(T; t) = 1, then

we say that T is scheduled at slot t. St denotes the set of tasks scheduled in slot t. The statements T 2 St and

S(T; t) = 1 are equivalent.

Lag constraints. As mentioned previously, we refer to the ratio T:e=T:p as the weight of task T , denoted

wt(T). We assume each task's weight is strictly less than one | a task with weight one would require a

dedicated processor, and thus is quite easily scheduled. A task's weight de�nes the rate at which it is to be

4

scheduled. Because processor time is allocated in quanta, we cannot guarantee that a task T will execute for

exactly (T:e=T:p)t time during each interval of length t. Instead, in a Pfair-scheduled system, processor time is

allocated to each task T in a manner that ensures that its rate of execution never deviates too much from that

given by its weight T:e=T:p. More precisely, correctness is de�ned by focusing on the lag between the amount

of time allocated to each task and the amount of time that would be allocated to that task in an ideal system

with a quantum approaching zero. Formally, the lag of task T at time t, denoted lag(T; t), is de�ned as follows:

lag(T; t) = (T:e=T:p)t� allocated (T; t); (1)

where allocated (T; t) is the amount of processor time allocated to T in [0; t). A schedule is Pfair i�

(8T; t :: �1 < lag(T; t) < 1): (2)

Informally, the allocation error associated with each task must always be less than one quantum.

Our notion of early-release scheduling is obtained by simply dropping the �1 lag constraint. Formally, a

schedule is early-release fair (ERfair) i�

(8T; t :: lag(T; t) < 1): (3)

Note that any Pfair schedule is ERfair, but not necessarily vice versa. It is straightforward to show that any

ERfair schedule (and hence, any Pfair schedule) is periodic. In particular, in an ERfair schedule, lag(T; t) = 0

for t = 0; T:p; 2T:p; 3T:p; : : : . This is because, for these values of t, (T:e=T:p)t is an integer, and therefore by

(1), lag(T; t) is an integer as well. By (3), if lag(T; t) is an integer, then it must be 0 or some negative integer.

However, it cannot be a negative integer because this would imply that more processor time has been allocated

to T than has been requested by jobs of T up to time t. Hence, lag(T; t) is 0 for these values of t.

Feasibility. Baruah et al. [4] showed that a periodic task set � has a Pfair schedule on M processors i�

X
T2�

T:e

T:p
�M: (4)

Because every Pfair schedule is also an ERfair schedule, (4) is a feasibility condition for ERfair systems as well.

Windows. The Pfair lag bounds given in (2) have the e�ect of breaking each task T into an in�nite sequence

of unit-time subtasks .1 We denote the ith subtask of task T as Ti, where i � 1. As in [3], we associate with each

subtask Ti a pseudo-release r(Ti) and a pseudo-deadline d(Ti). If Ti is synchronous and periodic, then r(Ti)

1We have refrained from introducing the term \subjob" to refer to an invocation of a subtask because each subtask is invoked

only once (each task consists of an in�nite sequence of subtasks).

5

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11

eight
windows
of T

iT i+1T i+2T i+3T i+4T i+5T i+6T i+7T

Figure 2: The eight \windows" of a task T with weight wt(T) = 8=11. Under Pfair scheduling, each of T 's eight

units of computation must be allocated processor time during its window, or a lag-bound violation will result.

and d(Ti) are as follows.

r(Ti) =

�
i� 1
wt(T)

�
(5)

d(Ti) =

�
i

wt(T)

�
� 1 (6)

(Derivations of these expressions can be found in [1].) In a Pfair-scheduled system, r(Ti) is the �rst slot into

which Ti could potentially be scheduled, and d(Ti) is the last such slot. In an ERfair-scheduled system, if Ti and

Ti�1 are part of the same job, then Ti becomes eligible immediately after Ti�1 is scheduled, so r(Ti) is of less

relevance. For brevity, we often refer to pseudo-deadlines and pseudo-releases as simply deadlines and releases,

respectively. The interval [r(Ti),d(Ti)] is called the window of subtask Ti and is denoted by w(Ti). The length

of window w(Ti), denoted by jw(Ti)j, is de�ned as d(Ti) � r(Ti) + 1. As an example, consider a task T with

weight wt(T) = 8=11. Each job of this task consists of eight windows, one for each of its unit-length subtasks.

Using Equations (5) and (6), it is possible to show that the windows within each job of T are as depicted in

Figure 2. Note that successive windows of T overlap by one slot and are of two di�erent lengths. In general,

consecutive windows of a task are either disjoint or overlap by one slot. In addition, either all windows of a task

are of the same length, or they are of two di�erent lengths (this property is proved in [1]).

Scheduling algorithms. For synchronous, periodic task systems, the most eÆcient Pfair scheduling algorithm

proposed to date is an algorithm called PD [3, 4]. PD schedules subtasks by pseudo-deadline. In the original

PD algorithm, four tie-break parameters were used to resolve ties among subtasks with the same deadline. In

recent work, we proved that only two tie-break parameters suÆce [1]. In other recent work, we have shown that

an early-release version of PD, called ER-PD, can be used to optimally schedule synchronous, periodic tasks in

an ERfair manner.

3 Intra-sporadic Tasks

Intra-sporadic tasks are a generalization of sporadic tasks. In a sporadic task system, there can be separation

between consecutive jobs of a task. The intra-sporadic task model is obtained by carrying this a step further

6

and allowing separation between consecutive subtasks of the same task.

Formal de�nition. An intra-sporadic task system is de�ned by the tuple (�; e), where � represents a set of

tasks, and e is a function that indicates when each subtask �rst becomes eligible for execution. Each task may

release either a �nite or in�nite number of subtasks. We assume that e(Ti) � e(Ti�1) for all i � 2, i.e., subtask

Ti cannot become eligible before its predecessor Ti�1.

In the intra-sporadic model, each subtask has two windows of interest, namely its Pfair window (PF-window)

and its intra-sporadic window (IS-window), respectively. A subtask's IS-window de�nes the span of time slots

during which it may be potentially scheduled. Its IS-window must include its PF-window, the de�nition of

which is similar to that given previously for synchronous, periodic task systems. Formally, Ti's IS-window is

de�ned to be [e(Ti); d(Ti)] and its PF-window is de�ned to be [r(Ti); d(Ti)]. As we shall see, the terms r(Ti)

and d(Ti) have a similar interpretation to that given previously for synchronous, periodic task systems. We will

use the term w(Ti) to refer to the PF-window of subtask Ti, as before.

The terms r(Ti) and d(Ti) are de�ned inductively by examining the alignment of the PF-windows of T in a

synchronous, periodic task system. In such a system, consecutive PF-windows of T are either disjoint or overlap

by one slot. The bit b(Ti), de�ned below, distinguishes between these two possibilities.

b(Ti) =

8><
>:

0; if

�
i

wt(T)

�
=

�
i

wt(T)

�

1; otherwise.

By examining Equations (5) and (6) it should be clear that in a synchronous , periodic task system, r(Ti+1) =

d(Ti) (i.e., w(Ti) and w(Ti+1) overlap by one slot) if b(Ti) = 1, and r(Ti+1) = d(Ti)+ 1 (i.e., w(Ti) and w(Ti+1)

do not overlap) if b(Ti) = 1. For intra-sporadic tasks, we de�ne b(Ti) exactly as above. Given this de�nition,

we can de�ne r(Ti), which de�nes the beginning of the PF-window of Ti.

r(Ti) =

8<
:

e(Ti); if i = 1

max(e(Ti); d(Ti�1) + 1� b(Ti�1)) if i � 2
(7)

According to this de�nition, the PF-window of T1 begins when it �rst becomes eligible. For i � 2, r(Ti) is

de�ned to be the later of e(Ti) and d(Ti�1) + 1 � b(Ti�1). Thus, if Ti becomes eligible during Ti�1's PF-

window, then r(Ti) = d(Ti�1) + 1 � b(Ti�1), and hence, the spacing between r(Ti�1) and r(Ti) is exactly as

in a synchronous, periodic task system. (Note that the notion of a job is not mentioned here. For systems in

which subtasks are grouped into jobs that are released in sequence, the de�nition of e would preclude Ti from

becoming eligible during Ti�1's PF-window if Ti is the �rst subtask of its job.) On the other hand, if Ti becomes

eligible after Ti�1's PF-window, then Ti's PF-window begins when Ti becomes eligible. Note that the de�nition

above implies that consecutive PF-windows of the same task are either disjoint or overlap by one slot, just as

in a synchronous, periodic task system. Also, if Ti is scheduled within its PF-window, then it is also scheduled

7

within its IS-window. (This property is used in the feasibility proof given in the next section.)

Ti's deadline d(Ti) is de�ned to be r(Ti) + jw(Ti)j � 1, where jw(Ti)j denotes the length of Ti's PF-window.

PF-window lengths are the same in intra-sporadic and synchronous, periodic systems. Thus, by Equations (5)

and (6), we have

jw(Ti)j =

�
i

wt(T)

�
�

�
i� 1
wt(T)

�
; (8)

and hence,

d(Ti) = r(Ti) +

�
i

wt(T)

�
�

�
i� 1
wt(T)

�
� 1: (9)

From the de�nitions above, it should be clear that our notion of an intra-sporadic task system is obtained by

allowing a task's PF-windows to be right-shifted from where they would appear if that task were synchronous

and periodic. In addition, we allow a subtask to become eligible before the beginning of its PF-window. In

the proofs given later, we sometimes �nd it convenient to refer to the quantity by which a PF-window w(Ti) is

right-shifted. This quantity is given by

�(Ti) = r(Ti)�

�
i� 1
wt(T)

�
: (10)

Note that the term

�
i� 1
wt(T)

�
gives the beginning of w(Ti) in a synchronous, periodic system. From Equations

(9) and (10), we have

d(Ti) =

�
i

wt(T)

�
� 1 +�(Ti): (11)

Using the de�nitions given above, it can be shown that each subtask is right-shifted by an amount that is at

least that of its successor, i.e.,

i � j) �(Ti) � �(Tj): (12)

Some special cases. Using the de�nitions above, we can show that sporadic and asynchronous tasks are

special cases of intra-sporadic tasks. In particular, a sporadic task T is an intra-sporadic task in which only the

�rst subtask of each job may be released late, i.e., if Ti and Ti+1 are part of the same job, then �(Ti) = �(Ti+1).

An asynchronous task T is an intra-sporadic task such that only the very �rst subtask of each task may be

released late, i.e., �(Ti) = �(T1) for all i � 1. Note that, by de�ning the function e appropriately, we can

obtain eligibility intervals (i.e., IS-windows) like those in either a Pfair or ERfair system. In fact, we can de�ne

eligibility intervals that are longer than in a Pfair system but shorter than in an ERfair system.

Validity of schedules. A schedule for a system of intra-sporadic tasks on M processors is said to be valid

at time t i� the following properties are satis�ed.

(P1) Each subtask scheduled at time t is scheduled within its IS-window.

(P2) No two subtasks of the same task are scheduled at time t.

8

(P3) There are at most M subtasks scheduled at time t.

A schedule is said to be valid i� it is valid at every time slot.

In the next section, we prove that an intra-sporadic task system � is schedulable on M processors i�

X
T2�

T:e

T:p
�M: (13)

The proof is based on a network
ow construction that is similar to that given by Baruah et al. [4] to prove that

Expression (4) is a feasibility condition for synchronous, periodic tasks. In Section 5, we show that the earliest

pseudo-deadline �rst (EPDF) algorithm can be used to correctly schedule any feasible set of intra-sporadic tasks

on two processors. (EPDF is essentially the same as PD, but without the tie-breaks.)

One may wonder how an intra-sporadic task T 's lag changes with time. When using EPDF to schedule

intra-sporadic tasks, the notion of lag is completely irrelevant. In particular, if we merely require the scheduler

to maintain a count of the subtasks that have been released in the current job of T , then T 's current priority can

always be determined by using the formulae given above. These formulae also do not depend on T 's current lag.

Note that if we were to extend our model to allow tasks to join and leave the system dynamically, as considered

in work on proportional-share scheduling [7], then the notion of lag would be relevant. Such systems will be

considered in future work.

4 Feasibility Condition for Intra-sporadic Tasks

In this section, we prove that Expression (13) is a feasibility condition for an intra-sporadic task system �

executing on M processors. Let tl be an arbitrary time slot. We show that � is schedulable up to time tl by

considering
ows in a certain graph G(�; tl). By examining the windows of the subtasks with deadlines in the

interval [0; tl], we can construct a
ow graph G(�; tl) such that any
ow f in G(�; tl) corresponds to a valid

schedule of some of these subtasks. We will construct a valid schedule by showing that each subtask can be

scheduled in its PF-window, which implies that it is scheduled in its IS-window.

De�nition of G(�; tl). Let ns(T; tl) denote the number of subtasks of T that have deadlines in the interval

[0; tl], and let et(T; tl) denote the set of times at which T is eligible to be scheduled in [0; tl]. That is, et(T; tl)

is the union of the PF-windows of the �rst ns(T; tl) subtasks of T .

The vertex set V of G(�; tl) is the union of six disjoint sets of vertices V0; : : : ; V5 and the edge set E is the

union of �ve disjoint sets of weighted edges E0; : : : ; E4, where Ei is a subset of Vi � Vi+1 �N+, 0 � i � 4.

Thus, G is a six-layered graph, with all the edges connecting vertices in adjacent layers. The sets V0; : : : ; V5

and E0; : : : ; E4 are de�ned as follows.

9

V0 = fsourceg

V1 = fh1; T i j T 2 �g

V2 = fh2; T; ii j T 2 �; 1 � i � ns(T; tl)g

V3 = fh3; T; ti j T 2 �; t 2 et(T; tl)g

V4 = fh4; ti j 0 � t � tlg

V5 = fsinkg

E0 = f(source; h1; T i; ns(T; tl)) j T 2 �g

E1 = f(h1; T i; h2; T; ii; 1) j T 2 �; 1 � i � ns(T; tl)g

E2 = f(h2; T; ii; h3; T; ti; 1) j T 2 �; 1 � i � ns(T; tl); t 2 w(Ti)g

E3 = f(h3; T; ti; h4; ti; 1) j T 2 �; t 2 et(T; tl)g

E4 = f(h4; ti; sink;M) j 0 � t � tlg

Figure 3 shows an example graph for a set of tasks T , U , V , and W , where wt(T) = 3=7, wt(U) = 1=6,

wt(V) = 4=7, and wt(W) = 5=6. Note that these tasks fully utilize two processors. The time interval is [0; 8).

In this interval, all subtasks are released as in a periodic task system, except that the second subtask of T is

released one time unit late. The
ow shown in Figure 3 corresponds to the following schedule: W1 and V1 are

scheduled in slot 0, W2 and T1 in slot 1, W3 and V2 in slot 2, and W4 and V3 in slot 3.

The existence of a schedule for any intra-sporadic task system � that satis�es Expression (13) follows from

the two lemmas stated and proved below.

Lemma 1 If there exists an integral
ow of size
P

T2�
ns(T; tl) in G(�; tl), then there exists a valid schedule

for � over the interval [0; tl].

Proof: An integral
ow of size
P

T2�
ns(T; tl) implies that the
ow out of the source is

P
T2�

ns(T; tl). Because

the sum of the capacities of all the outgoing edges from the source is
P

T2�
ns(T; tl), all the edges in E0 carry

a
ow equal to their capacity. Hence, an edge from the source to h1; T i 2 V1 carries a
ow equal to ns(T; tl).

Because there are ns(T; tl) outgoing edges from h1; T i, each edge of E1 carries a
ow of 1. Therefore, the
ow

into each vertex in V2 is 1. This implies that the outgoing
ow from each vertex in V2 is also 1. Therefore, for

each subtask Ti of T only one of h3; T; ti (where t 2 w(Ti)) has an incoming
ow of 1. This corresponds to the

scheduling of subtask Ti in its PF-window. Note that, because successive PF-windows of the same task may

overlap by one slot, vertex h3; T; ti can have more than one incoming edge. However, because the edge from

h3; T; ti to h4; ti has a capacity of 1, at most one such incoming edge can have a
ow of 1. This ensures that

multiple subtasks of the same task are not scheduled in the same slot. Also, because each edge in E4 has a

capacity of M , there can be at most M edges in E3 with a
ow of 1 that are incident on the same vertex in V4.

In other words, at most M subtasks are scheduled in a single slot. From the discussion given here, it should be

clear that a valid schedule can be constructed from the given
ow graph. 2

Note that the maximum
ow of G(�; tl) is at most
P

T2�
ns(T; tl), because this is the sum of the capacities

of all edges coming from the source. We now show that a real-valued
ow of size
P

T2� ns(T; tl) exists.

Lemma 2 G(�; tl) has a real-valued
ow of size
P

T2�
ns(T; tl).

Proof: We use the following
ow assignments. These assignments are similar to those given in [3] to establish

that (4) is a feasibility condition for synchronous, periodic tasks.

10

<3,T,1>

<3,T,3>

<3,T,4>

<3,T,5>

<3,T,6>

<3,T,7>

<3,T,2>

<3,U,5>
<3,U,4>
<3,U,3>

<3,U,2>
<3,U,1>
<3,U,0>

<3,V,6>

<3,V,5>

<3,V,4>

<3,V,3>

<3,V,2>

<3,V,1>

<3,V,0>

<3,W,7>

<3,W,6>

<3,W,5>

<3,W,4>

<3,W,3>

<3,W,2>

<3,W,1>

<3,W,0>

sink
source

<1,U>

<1,V>

<1,W>

<1,T>

<2,T,1>

<2,T,2>

<2,T,3>

<2,U,1>

<2,V,1>

<2,W,1>

<2,W,2>

<2,W,3>

<2,W,4>

<2,W,5>

<2,V,2>

<2,V,4>

<2,V,3>

<2,W,6>

<4,1>

<4,5>

<4,6>

<4,2>

<4,7>

<4,0>

<4,4>

<4,3>

<3,T,0>

Figure 3: Example
ow graph for a task set consisting of four tasks T , U , V , and W , where wt(T) = 3=7,

wt(U) = 1=6, wt(V) = 4=7 and wt(W) = 5=6. Subtask T2 is released one slot late. The bold lines in the �gure

correspond to a
ow f . The value of f is 8, which indicates that eight subtasks have been scheduled.

� Each edge (source; h1; T i; ns(T; tl)) 2 E0 carries a
ow of size ns(T; tl).

� Each edge (h1; T i; h2; T; ii; 1) 2 E1 carries a
ow of 1. Because there are ns(T; tl) outgoing edges from

each h1; T i,
ow is conserved at all vertices in V1.

� The
ow through the edges in E2 is as follows.

{ Each edge (h2; T; ii; h3; T; r(Ti)i; 1) carries a
ow of size wt(T)�

�
(i� 1)� wt(T)�

�
i� 1
wt(T)

��
.

{ Each edge (h2; T; ii; h3; T; d(Ti)i; 1), where b(Ti) = 1, carries a
ow of size i� wt(T)�

�
i

wt(T)

�
.

{ Every other edge (h2; T; ii; h3; T; ti; 1) carries a
ow of size wt(T).

� Each edge (h3; T; ti; h4; ti; 1) 2 E3 carries a
ow equal to the sum of all incoming
ows at h3; T; ti. From

11

the above
ow assignments for edges in E2, we can show that this
ow is at most wt(T) (which is at most

1). In particular, if b(Ti) = 1 and the PF-windows of Ti and Ti+1 overlap, then the
ow into h3; T; d(Ti)i

is

�
i� wt(T)�

�
i

wt(T)

��
+wt(T)�

�
i� wt(T)�

�
i

wt(T)

��
, which reduces to wt(T). If b(Ti) = 0 and

the PF-windows of Ti and Ti+1 do not overlap, then the
ow into h3; T; d(Ti)i is (i � wt(T)�

�
i

wt(T)

�
)

which is at most wt(T). This same analysis works for determining the
ow into h3; T; r(Ti)i. For all other

values of t, the
ow is wt(T), by de�nition.

� Each edge (h4; ti; sink;M) 2 E4 carries a
ow equal to the sum of all incoming
ows at h4; ti. The incoming

ow into h4; ti from h3; T; ti can be at most
P

T2�
wt(T). Because

P
T2�

wt(T) � M , the incoming
ow

and hence the outgoing
ow at h4; ti is at most M .

We have shown that the
ow is conserved at all vertices in V1, V3, and V4. It remains to be shown that

the
ow is conserved at all vertices in V2, i.e., the
ow out of each vertex h2; T; ii 2 V2 is 1. This follows

from the
ow assignments of edges in E2. In particular, if b(Ti) = 1, then the total
ow out of h2; T; ii is

wt(T)�

�
i� 1� wt(T)�

�
i� 1
wt(T)

��
+

�
i� wt(T)�

�
i

wt(T)

��
+(jw(Ti)j�2)�wt(T). By Equations (5) and

(6), jw(Ti)j =

�
i

wt(T)

�
�

�
i� 1
wt(T)

�
, which implies that this expression reduces to 1. If b(Ti) = 0, then the total

ow out is wt(T)�

�
i� 1� wt(T)�

�
i� 1
wt(T)

��
+ (jw(Ti)j � 1)�wt(T), which reduces to 1 upon substituting

jw(Ti)j =

�
i

wt(T)

�
�

�
i� 1
wt(T)

�
(because b(Ti) = 0,

�
i

wt(T)

�
=

�
i

wt(T)

�
holds).

This proves that the
ow is conserved at all vertices, and the
ow along each edge is at most its capacity.

Thus, the
ow de�ned above is a valid
ow. 2

We are now in a position to state the following lemma and theorem.

Lemma 3 An intra-sporadic task system � has a valid schedule on M processors, such that each subtask is

scheduled in its PF-window, i�
P

T2�
wt(T) �M .

Proof: We will show that we can construct a valid schedule for � in [0; t + 1) for any given t. Because t is

arbitrary, it follows that � has a valid schedule. By Lemma 2, it follows that G(�; t) has a real-valued
ow of

size
P

T2�
ns(T; t). Because all edge capacities in G(�; t) are integers, G(�; t) also has a integral
ow of sizeP

T2� ns(T; t) [5]. By Lemma 1, � has a valid schedule over [0; t + 1). By the de�nition of G(�; t), it follows

that in this schedule each subtask will be scheduled in its PF-window. 2

Theorem 1 An intra-sporadic task system � has a valid schedule on M processors i�
P

T2�
wt(T) �M .

Proof: Follows directly from Lemma 3. 2

12

slot number: 0 1 2 3

1 2

A(3x1/2): 3 _

_ 1

_ 2

B(2x3/4): _ 2

Figure 4: An example showing that the EPDF algorithm is not optimal on a system of three processors

5 Two-Processor Systems

In this section, we prove that EPDF is optimal for scheduling intra-sporadic tasks on a system of two processors.

The proof of optimality is complicated by the fact that successive windows of a task may overlap. Indeed,

precisely because of this reason, we cannot directly extend the proof to work for systems of three or more

processors. In fact, the following theorem shows that EPDF is not optimal for such systems.

Theorem 2 The EPDF algorithm is not optimal for scheduling synchronous, periodic tasks on three or more

processors.

Proof: Consider a task set consisting of a set A of three tasks of weight 1=2 and a set B of two tasks of weight

3=4. The total utilization of this task set is 3 and therefore it is feasible on 3 processors. Figure 4 shows one of

the possible schedules that can be obtained using EPDF. Note that only one of the set-B tasks is scheduled in

slot 3 | the other misses its deadline. 2

Corollary 1 The EPDF algorithm is not optimal for scheduling intra-sporadic tasks on three or more processors.

We now turn our attention to proving that the EPDF is optimal for two-processor systems. The proof is

by contradiction. Throughout this section, we let � denote a feasible task system that (by assumption) misses

a deadline when scheduled on two processors using EPDF. Let td be the earliest time at which a deadline is

missed in � . A contradiction is reached by proving that EPDF correctly schedules � over [0; td]. This is shown

by considering certain schedules over [0; td]. To facilitate the description of these schedules, we �nd it convenient

to totally order all subtasks in � that have deadlines in [0; td]. Let Ti and Uj be two such subtasks. Then, Ti

is ordered before Uj , denoted Ti � Uj i� d(Ti) � d(Uj). Let � be an irre
exive total order that is consistent

with �, i.e., � is obtained by arbitrarily breaking any ties left by �. We de�ne the rank of subtask Ti to be its

position in the total order �. If Ti � Uj , then we say that Ti has higher rank than Uj .

We de�ne a schedule S to be k-compliant i� (i) each subtask that is not among the �rst k according to

the relation � is scheduled within its PF-window, and (ii) the �rst k subtasks according to � are scheduled

in accordance with EPDF. We will prove that a k-compliant schedule exists by induction on k. Note that a 0-

compliant schedule is any valid schedule such that each subtask is scheduled in its PF-window and the existence

13

of such a schedule follows from Lemma 3. Also, if N is the total number of subtasks with deadlines in [0; td],

then the existence of an N -compliant schedule contradicts the fact that there is a missed deadline at td.

We now state and prove several lemmas. In the �rst of these lemmas, an interval of time slots [t; u] is

considered, and a set of conditions is stated that is suÆcient to conclude that some subtask scheduled in [t; u]

can be shifted left or right out of this interval. In the rest of this section, we call a slot nonfull if one or both

processors are idle during that slot.

Lemma 4 Let S be a two-processor schedule for fTi j T 2 � ^ d(Ti) � tdg that is valid over [t; u], where t < u.

Suppose that there are no nonfull slots in [t; u] and that there exists a subtask Uj not scheduled in [t; u] such

that d(Uj) � t. Then, there exists a subtask Ti scheduled in [t; u] such that r(Ti) < t or d(Ti) > u.

Proof: Let A be the set of all subtasks scheduled by S in [t; u]. Suppose, to the contrary, that

(8Ti : Ti 2 A :: r(Ti) � t ^ d(Ti) � u):

We derive a contradiction by showing that total utilization exceeds two, which contradicts the fact that � is

feasible. Let V be a task with subtasks in A. Let V:n denote the number of such subtasks in A, and let Vk

(respectively, Vl) be the �rst (respectively, last) subtask of V scheduled in [t; u]. Then, V:n = l� k+1. Because

V is in A, d(Vl) � u and r(Vk) � t. Thus,

d(Vl)� r(Vk) � u� t: (14)

By Equations (10) and (11) in Section 3, we have d(Vl) =

�
l

wt(V)

�
�1+�(Vl) and r(Vk) =

�
k � 1
wt(V)

�
+�(Vk).

Substituting these expressions in Equation (14), we get

�
l

wt(V)

�
� 1+�(Vl)�

�
k � 1
wt(V)

�
��(Vk) � u� t. By

(12), this implies that

�
l

wt(V)

�
� 1�

�
k � 1
wt(V)

�
� u� t. Hence,

�
l

wt(V)

�
�

�
k � 1
wt(V)

�
� u� t+ 1:

Because

�
l

wt(V)

�
�

l
wt(V)

and

�
(k � 1)
wt(V)

�
�

(k � 1)
wt(V)

, we have

l �
V:p

V:e
� (k � 1) �

V:p

V:e
� u� t+ 1:

This implies that
V:p

V:e
�

u� t+ 1

l � k + 1
;

which implies that
V:e

V:p
�

V:n

u� t+ 1
: (15)

14

We now show that this inequality can be strengthened for U , yielding

U:e

U:p
>

U:n

u� t+ 1
: (16)

If U:n = 0, then the above expression clearly holds, so assume that U:n 6= 0. Then, by the statement of the

lemma, Uj+1 must be the �rst subtask of U scheduled in [t; u]. Let Uh be the last such subtask. Then,

d(Uh)� r(Uj+1) � u� t: (17)

Because d(Uj) � t, we have r(Uj+1) � t. If r(Uj+1) > t, then d(Uh)� r(Uj+1) < u� t. By reasoning as above

(refer to (14)), this implies that U:e
U:p

> U:n
u� t+ 1.

On the other hand, if r(Uj+1) = t, then d(Uj) = t, which implies that b(Uj) = 1. From Equations (10)

and (11), we have d(Uh) =

�
h

wt(U)

�
� 1 +�(Uh) and r(Uj+1) =

�
(j + 1)� 1
wt(U)

�
+�(Uj+1). Substituting these

expressions into (17), we get

�
h

wt(U)

�
� 1 +�(Uh)�

�
j

wt(U)

�
��(Uj+1) � u� t:

Because b(Uj) is 1,

�
j

wt(U)

�
<

j
wt(U)

. Also, by (12), �(Uh) � �(Uj+1). It follows that

h

wt(U)
�

j

wt(U)
< u� t+ 1:

Therefore, by reasoning that is similar to that prior to Expression (15), we have U:e
U:p

> U:n
u� t+ 1.

From (15) and (16), we conclude that

X
V 2 A

V:e

V:p
>

X
V 2 A

V:n

u� t+ 1
:

Because there are a total of 2(u� t+ 1) slots in [t; u] and two subtasks are scheduled in each slot, we have

X
V s.t. Vi 2 A

V:n = 2(u� t+ 1):

Therefore, X
V 2 A

V:e

V:p
> 2:

This contradicts the fact that the total utilization of � is at most M . Therefore, there exists a subtask Ti

scheduled in [t; u] such that either r(Ti) < t or d(Ti) > u. 2

15

The lemma above actually holds for any number of processors. In contrast, Lemma 5, given next, is valid only

for two-processor systems. This lemma gives a set of conditions under which a subtask Uj can be right-shifted

to a later slot.

Lemma 5 Let S be a two-processor schedule for fTi j T 2 � ^ d(Ti) � tdg. Let t � td. Assume the following:

� subtask Uj is scheduled at slot t, and t is not the last slot of Uj 's PF-window;

� either no other subtask is scheduled at slot t or Uj�1 is scheduled there (in which case S is not valid at t);

� each subtask scheduled at or after t is scheduled in its PF-window.

Then, there exists a schedule S0 for fTi j T 2 � ^ d(Ti) � tdg such that

� Uj is scheduled at some slot after t;

� Sv = S0v for all v < t;

� each subtask scheduled at or after t is scheduled in its PF-window.

Moreover, if t is nonfull in S, then it is also nonfull in S0.

Proof: We prove the lemma by inducting over the rank of Uj . Because t is not the last slot of Uj 's PF-window,

the deadline of Uj is after t, i.e.,

d(Uj) � t+ 1: (18)

Base case: Uj is the lowest-ranked subtask scheduled in S. If no subtasks are scheduled after slot t in S, then

by (18), we can clearly shift Uj to slot t + 1. In the rest of the proof for the base case, we assume that there

exist subtasks that are scheduled after slot t.

Suppose that there exists a subtask Wk scheduled after t such that r(Wk) � t. By the statement of the

lemma, Wk�1 is not scheduled in slot t. Thus, we can swap Wk with Uj to get the desired schedule. (Note that

Uj+1 does not exist in S because Uj is of lowest rank. Thus, swapping Wk with Uj will not create a schedule

in which two subtasks of U are scheduled in the same slot.)

The remaining possibility is that, for each subtask Wk scheduled after t, r(Wk) > t and d(Wk) � d(Uj)

(the latter follows because Uj is of lowest rank). If there are no nonfull slots in [t + 1; d(Uj)], then we have

a contradiction of Lemma 4. Therefore, there exists a nonfull slot in [t + 1; d(Uj)]. This implies that we can

schedule Uj in that slot. Thus, a valid schedule exists in which Uj is scheduled at a slot later than t.

Induction step: Uj is not the lowest-ranked subtask scheduled in S. Assume that the lemma holds for all

subtasks with lower rank than Uj . We consider two cases.

16

Case 1: For each subtask Wk scheduled after t, r(Wk) > t. Let [t+1; u] be the smallest interval such that for

each subtask Vh scheduled in [t+1; u], r(Vh) � t+1 and d(Vh) � u (see Figure 5(a)). Note that such a u exists,

because S includes only a �nite collection of subtasks. If there are no nonfull slots in this interval, then we have

a contradiction of Lemma 4. Therefore, there exists a slot u0 in [t + 1; u] at which one or both processors are

idle. Without loss of generality, let u0 be the earliest such slot in [t+ 1; u]. Either u0 = t+ 1 or u0 > t+ 1.

Subcase 1.A: u0 = t + 1. By (18), Uj can be shifted to slot u0. Unfortunately, subtask Uj+1 might be

scheduled there, in which case the resulting schedule would be invalid (see Figure 5(b)). However, by the

induction hypothesis, Uj+1 can be shifted to a later slot. This implies that the desired schedule exists.

Subcase 1.B: u0 > t + 1. If for all subtasks Vh scheduled in [t + 1; u0 � 1], d(Vh) � u0 � 1, then we have a

contradiction of the fact that [t+1; u] was the smallest such interval. Therefore, there exists a subtask Vh such

that d(Vh) � u0 (refer to Figure 5(c)). Note that Vh can be Uj itself. Observe that we can move Vh to slot u0 to

get a schedule in which the nonfull slot occurs earlier. Unfortunately, this movement of Vh is not valid if Vh+1 is

scheduled at u0. However, by the induction hypothesis, if Vh+1 is scheduled at u0, then there exists a schedule

in which it is scheduled at a slot later than u0 and slot u0 is still nonfull.

By the reasoning above, if Subcase 1.B applies, then it is always possible to get a schedule in which either

Uj is shifted to a later slot, or in which the �rst nonfull slot in [t+ 1; u] occurs earlier. If we repeatedly apply

Subcase 1.B without shifting Uj to a later slot, then Subcase 1.A will eventually apply, in which case Uj can be

shifted as desired.

Case 2: There exists a subtask Wk scheduled after t such that r(Wk) � t. Without loss of generality, assume

that Wk is the earliest such subtask. Let Wk be scheduled at slot u. If there are any nonfull slots in [t+ 1; u],

then Wk could be moved to the �rst such slot u0, and the reasoning below applies with the smaller interval

[t+ 1; u0]. Thus, we can assume without loss of generality that there are no nonfull slots in [t+ 1; u].

Subcase 2.A: d(Uj) � u. Refer to Figure 5(d). Because d(Uj) � u, we can swap Uj and Wk directly.

Unfortunately, if Uj+1 is scheduled at u, then this might result in a schedule in which Uj and Uj+1 are scheduled

in the same slot. However, as before, if Uj+1 is scheduled in slot u, then we can apply the induction hypothesis

to move it to a later slot.

Subcase 2.B: d(Uj) < u. In this subcase, we try to identify subtasks that can be used as an intermediate

for swapping. Because Wk is the earliest scheduled subtask after t such that r(Wk) � t, for each subtask Vh

scheduled in [t+1; u], we have r(Vh) � t+1. Hence, because there are no nonfull slots in [t+1; u], by Lemma 4,

there exists a subtask Vh scheduled in [t+1; u] for which d(Vh) � u. Let Vh be scheduled at time v 2 [t+1; u�1]

(see Figure 5(e)). We can swap Vh and Wk to get a schedule in which Wk is scheduled earlier (i.e., nearer to

slot t). This swapping will be valid only if Wk�1 is not scheduled at v and Vh+1 is not scheduled at u. Because

17

An empty slot

An empty slot

Either there is an empty slot
or is scheduled here

]j

by
induction

]j

Vh+1]h

by
induction

Vh

Uj

tv u

W k

]j

Vh Vh+1]h

... uu’

induction
by

Uj

t ...

]j

]
j

by
induction

]j

ut ut u’(=t+1)

Uj Uj+1

(b)

j+1U

(c)

Uj

t u

...

kW

... t’’ ...

ut

kW

earliest

...t+1

jU

(d)

(f)(e)

Uj

all subtasks here have deadlines
at or before u and releases after t

Uj-1

(a)

Figure 5: Cases of Lemma 5. We use the following notation in this and the next �gure. \[" and \]" indicate

the release and deadline of a subtask; subscripts indicate which subtask. Each task is shown on a separate line.

An arrow from subtask Ti to subtask Uj indicates that Ti is now scheduled in place of Uj . An arrow over \["

(or \]") indicates that the actual position of \[" (or \]") can be anywhere in the direction of the arrow. Time is

divided into unit-time slots that are numbered. If Ti is released at slot t, then \[" is aligned with the left side

of slot t. If Ti has a deadline at slot t, then \]" is aligned with the right side of slot t. In each inset, d(Uj) > t.

(a) Case 1: Smallest interval [t+1; u� 1] such that all subtasks have deadlines and releases inside the interval.

(b) Subcase 1.A: u0 = t+ 1. (c) Subcase 1.B: u0 > t + 1. (d) Subcase 2.A: d(Uj) � u, and Wk is the earliest

subtask with r(Wk) < t + 1. (e) Subcase 2.B: d(Uj) < u. (f) Repeated application of Subcase 2.B to �nally

apply Subcase 2.A.

18

By Lemma 5

t’t ...t’t ...

(b)(a)

iT
i

]

j
]jU no

U

]
iiT

Uj+1]jjU[
j

Figure 6: Cases of Lemma 6. (a) t0 < d(Uj) or Uj+1 is not scheduled at t0. (b) t0 = d(Uj) and Uj+1 is scheduled

at t0.

r(Wk) < t + 1 � v, Wk�1 cannot be scheduled at v. On the other hand, Vh+1 can be scheduled at time u.

However, as before, we can apply the induction hypothesis to move Vh+1 to a later slot.

By repeatedly applying Subcase 2.b, we will obtain either the required schedule or a schedule in which

Subcase 2.A can be applied. This is illustrated in Figure 5(f). 2

The following lemma gives the inductive step of our proof.

Lemma 6 Let S be a k-compliant two-processor schedule for fTi j T 2 � ^ d(Ti) � tdg. Then, there exists a

(k + 1)-compliant two-processor schedule S0 for fTi j T 2 � ^ d(Ti) � tdg.

Proof: Let Ti be the (k + 1)st subtask according to �. If Ti is scheduled in accordance with EPDF, then take

S0 to be S. Otherwise, we have the following: there exists a time slot t such that Ti is eligible at t, some subtask

ranked lower than Ti according to � is scheduled at t, and Ti is scheduled at a slot later than t. Without loss

of generality, let t be the earliest such slot and Uj be the lowest-ranked subtask scheduled at t. Let t0 be the

slot where Ti is scheduled.

Because Ti has higher rank than Uj , d(Ti) � d(Uj). Because Ti is scheduled at t0, this implies that t0 �

d(Ti) � d(Uj). Because t
0
� d(Uj), we have t

0
� r(Uj+1), and therefore Uj+1 is scheduled at or after t0.

If Uj+1 is not scheduled at t0, then we can directly swap Ti and Uj to get the required schedule (see Figure

6(a)). On the other hand, if Uj+1 is scheduled at t0, then r(Uj+1) = t0. In this case, directly swapping Ti and

Uj results in Uj and Uj+1 being scheduled in the same slot. However, by Lemma 5, there exists a schedule in

which Uj+1 is scheduled after slot t0. The resulting schedule is valid. This is illustrated in Figure 6(b).

Thus, in all cases, we can show the existence of a schedule in which Ti is scheduled in accordance with

EPDF. 2

Theorem 3 EPDF optimally schedules intra-sporadic tasks on systems of one or two processors.

Proof: Establishing the optimality of EPDF for one-processor systems is straightforward, so we consider only

two-processor systems. Suppose to the contrary, that EPDF is not optimal for such systems. Then, there exists

a task system � that is feasible but not schedulable using EPDF. Let td be the earliest time at which � misses

a deadline under EPDF. Then, the set of subtasks fTi j T 2 � ^ d(Ti) � tdg misses a deadline at td as well.

Because � is feasible, by Lemma 3, there exists a valid schedule for this set of subtasks such that each subtask

19

is scheduled in its PF-window. Starting with this schedule, we can apply Lemma 6 inductively (as discussed

earlier) to get a valid schedule for fTi j T 2 � ^ d(Ti) � tdg under EPDF. Contradiction. 2

6 Concluding Remarks

Prior work on Pfair and ERfair scheduling has been almost exclusively limited to synchronous, periodic task

systems. In this paper, we have de�ned the notion of an intra-sporadic task. This notion generalizes that of

a sporadic task, which in turn generalizes the notion of an asynchronous task. We have stated and proved a

feasibility condition for scheduling intra-sporadic tasks. We have also given a polynomial-time algorithm that

can be used to optimally schedule intra-sporadic tasks on systems of one or two processors.

The development of an algorithm for eÆciently scheduling intra-sporadic tasks on systems of three or more

processors remains as an open problem. It follows from Corollary 1 that EPDF is not optimal in this case.

We conjecture that ER-PD (see Section 2) is optimal for such systems, and we are hopeful that some of our

proof techniques may be helpful in showing this. The main challenge is to �nd an M -processor counterpart of

Lemma 5. Note that many of the swappings in Figure 5 would be potentially invalid in a system of three or

more processors. For example, consider Figure 5(d). According to the statement of Lemma 5, either slot t is

nonfull or Uj�1 is scheduled there. On a two-processor system, this implies that Wk�1 is not scheduled in slot

t. On a system of three or more processors, this conclusion cannot be reached.

In the intra-sporadic task model, deadlines are assigned to each subtask on arrival. These deadlines are

assigned in a way that ensures that bursts of subtasks can be tolerated. Thus, the intra-sporadic task model can

e�ectively deal with jittered inputs or packets arrivals. The intra-sporadic task model has many characteristics in

common with the uniprocessor rate-based execution (RBE) model proposed recently by Je�ay and Goddard [6].

In the RBE model, tasks execute at well-de�ned average rates, but have no constraints on their instantaneous

rate of invocation. Formally, an RBE task T is characterized by a four-tuple (x; y; d; c) where y is an interval of

time, x is the maximum number of jobs of T expected in any interval of length y, d is a relative job deadline, and

c is the maximum execution time per job, i.e., c = T:e. The pair (x; y) is called the rate speci�cation of T . In

the RBE model, a task's jobs may sometimes arrive \early" or \late." However, a task with a rate speci�cation

(x; y) expects to execute, on average, x jobs in every interval of length y.

One may wonder whether there are substantial di�erences between the intra-sporadic and RBE rates. One

obvious di�erence is that in the intra-sporadic task model, the basic unit of execution is a quantum-length

subtask. In essence, this is tantamount to requiring all RBE jobs to be of the same length. We are doubtful that

this restriction can be removed on a multiprocessor system without sacri�cing optimality. A second di�erence

is that RBE deadlines are determined in a di�erent manner from subtask deadlines in an intra-sporadic task

system. In the RBE model, if the �rst c = T:e jobs of T all arrive at time 0, then each of these jobs will have a

deadline of d. In contrast, in the intra-sporadic task model, if several subtasks of the same task arrive almost

simultaneously, then each will be given a di�erent deadline (corresponding to the end of its PF-window).

20

References

[1] J. Anderson and A. Srinivasan. A new look at pfair priorities. In Submission, October 1999. Available at

http://www.cs.unc.edu/~anderson/papers.html.

[2] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceedings of the 12th Euromicro Conference

on Real-Time Systems, pages 35{43, June 2000.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource

allocation. Algorithmica, 15:600{625, 1996.

[4] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple resources. In

Proceedings of the 9th International Parallel Processing Symposium, pages 280{288, April 1995.

[5] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[6] K. Je�ay and S. Goddard. The rate-based execution model. In Proceedings of the Twentieth IEEE Real-Time

Systems Symposium, pages 304{314, December 1999.

[7] Ion Stoica, Hussein Abdel-Wahab, Kevin Je�ay, Sanjoy Baruah, Johannes Gehrke, and C. Greg Plaxton. A

Proportional Share Resource Allocation Algorithm for Real-Time, Time-Shared Systems. In IEEE Real-Time

Systems Symposium, pages 288{299, December 1996.

21

