
Supporting Sporadic Pipelined Tasks with Early-Releasing in Soft Real-Time
Multiprocessor Systems∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Soft real-time sporadic multiprocessor task systems are
considered that include processing pipelines. Conditions
are presented for guaranteeing bounded deadline tardiness
in such systems under global EDF or FIFO scheduling.
“Early-releasing” is applied to make pipeline scheduling
work-conserving. This lessens job response times in lightly-
loaded systems.

1 Introduction

With the advent of multicore technologies, it is impor-

tant for programming frameworks for real-time applications

to provide support for commonly-used multiprocessor pro-

gramming techniques. One such technique is pipelined ex-

ecution, which is used to increase throughput by leveraging

the parallelism inherent on multiprocessor platforms. In this

paper, we consider the problem of supporting such pipelines

in real-time multiprocessor systems where the workload is

specified as a sporadic task system with implicit deadlines

(relative deadlines equal periods).

If all deadlines in such a task system are considered to

be hard, then pipelines can be easily supported by assigning

a common period to all tasks in a pipeline and by adjust-

ing job releases so that successive pipeline stages execute

in sequence. Fig. 1 shows an example, where an ordinary

sporadic task T1 executes on a two-processor system with

three other tasks, T 1
2 , T 2

2 , and T 3
2 , which form a three-stage

pipeline (the kth job of T 1
2 , T 2

2 , and, T 3
2 , respectively, must

execute in sequence). As seen in this example, as long as no

deadlines are missed, the timing guarantees provided by the

sporadic model ensure that any pipeline executes correctly.

Unfortunately, if all deadlines must be viewed as hard,

then significant processing capacity must be sacrificed, due

to either inherent schedulability-related utilization loss—

which is unavoidable under most scheduling schemes [1]—

or high runtime overheads—which typically arise in opti-

mal schemes that avoid schedulability-related loss [2, 3].

In recent work [4], we showed that such loss can often be

∗Work supported by IBM, Intel, and Sun Corps.; NSF grants CNS

0834270, CNS 0834132, and CNS 0615197; and ARO grant W911NF-

06-1-0425.

Job release Job deadline

1
2T
2

2T
3

2T

1T

Figure 1. Example pipeline task system.

avoided in periodic task systems if bounded deadline tardi-

ness is allowed. In particular, pipelines can be supported in

such systems if certain utilization constraints are enforced;

the required constraints are quite liberal. This result holds

for a class of global scheduling algorithms that includes

the global earliest-deadline-first (GEDF) and global first-
in first-out (GFIFO) algorithms. (Note that these two algo-

rithms are also capable of ensuring bounded deadline tardi-

ness for ordinary sporadic task systems—i.e., systems with-

out pipelined tasks—with no utilization loss [5, 6].) In this

paper, we show how to adapt this result for use in sporadic

pipeline task systems.

The above-mentioned result concerning periodic tasks

hinges crucially upon the assumption that priority ties in-

volving successive stages of the same pipeline are broken

in favor of earlier stages. However, in a sporadic pipeline

task system, job releases can be slightly jittered to produce

a schedule that is “almost” periodic in which no two jobs

have the same priority. Thus, tie-breaking rules are of lit-

tle or no utility. Another limitation of this prior work is

that pipeline scheduling is not work-conserving. This can

cause unnecessarily long job response times, particularly in

lightly-loaded systems. (A scheduler is work conserving if

and only if it never leaves a processor idle when uncom-

pleted work exists.) Work-conserving behavior can be en-

sured by “early-releasing” successive pipeline stages. A job

that is early-released is allowed to become eligible for exe-

cution before its “actual” release time as dictated by the pe-

riodic or sporadic model. In the case of a pipeline, we wish

to allow the jth job of stage k (where k > 1) to become

eligible once both (j−1)st job of stage k (if j > 1) and the

jth job of stage k−1 have completed execution. This can be

accomplished by defining the early-release time of the jth

job of stage k to equal the release time of the jth job of the

first stage. Fig. 2 shows the impact of this technique on the

1

Job release Job deadline Job early release

1
2T
2

2T
3

2T

1T

1 4 8 12 16 20 24 28

Figure 2. Example pipeline task system with
early-releasing.

system considered earlier in Fig. 1. For example, the second

job of T 2
2 is early-released at time 4 becasue the second job

of T 1
2 is released at that time. In this paper, we show that

by allowing early-releasing, pipelines can be supported in a

work-conserving way, not only in periodic systems, but spo-

radic systems as well. In addition, we show that rate-based

pipeline task systems can also be supported. In a rate-based

system, job release times may experience significant jitter

(see Sec. 4).

Related work. To our knowledge, we are the first to

consider the problem of supporting pipelined execution in

globally-scheduled soft real-time multiprocessor systems.

However, pipelined execution has been considered in dis-

tributed systems (which must be scheduled by partition-

ing approaches). For example, Jayachandran and Abdelza-

her have presented delay composition rules that provide a

bound on the end-to-end delay of jobs in partitioned dis-

tributed systems that include pipelines [7] or more general

(acyclic) precedence constraints [8]. These rules permit

a pipelined system to be transformed so that uniprocessor

schedulability analysis can be applied.

Several off-line algorithms have also been proposed

for scheduling tasks with precedence constraints in dis-

tributed real-time systems comprised of periodic tasks

[7,8,9]. Schedulability tests for pipelined distributed sys-

tems have also been proposed in which end-to-end dead-

lines are supported by deriving deadlines for individual

pipeline stages [9, 10].

Contributions. We derive a general tardiness bound that

can be applied to globally-scheduled sporadic pipeline task

systems with early-releasing. This bound is applicable to a

class of global algorithms that includes GEDF and GFIFO.

The derived tardiness bound requires overall utilization to

be constrained. We show via counterexamples that such

constraints are generally required. However, nontrivial con-

straints (beyond either Usum < m or Usum ≤ m where

Usum is the total utilization and m is the processor count)

are not required if all pipeline tasks are monotonically in-

creasing (see Def. 7) or on two-processor systems. For

systems where utilization must be further constrained, the

required constraint is quite liberal. As we show via ex-

perimental results, early-releasing can significantly improve

response times (and hence tardiness) in both sporadic and

rate-based systems.

Organization. The remainder of this paper is organized

as follows. Sec. 2 describes our system model. In Sec. 3, a

tardiness bound for periodic tasks with early-releasing is de-

rived. In Sec. 4, this result is extended to apply to sporadic

and rate-based systems. In Sec. 5, experimental results are

presented. The paper concludes in Sec. 6.

2 System Model

We consider the problem of scheduling a set τ =
{T1, ..., Tn} of n independent sporadic pipeline tasks on

m ≥ 2 identical processors. A z-stage pipeline task Tl,

where 1 ≤ z ≤ m, consists of z subtasks, T 1
l , ...T z

l . (If

z = 1, then Tl is an ordinary sporadic task.) Each subtask is

released repeatedly, with each such invocation called a job.

We assume that each job of Th
l (1 ≤ h ≤ z) executes for ex-

actly eh
l time units. This assumption can be eased to treat eh

l

as an upper bound, at the expense of more cumbersome no-

tation. For the class of scheduling algorithms we consider,

reducing a job’s execution cost cannot increase any job’s re-

sponse time. The jth job of Th
l , denoted Th

l,j , is released at

time rh
l,j and has a deadline at time dh

l,j . Associated with

each pipeline task Tl is a period pl, which specifies both the

minimum time between two consecutive job releases of any

subtask of Tl and the relative deadline of each such job (i.e.,

dh
l,j = rh

l,j + pl). If, for each task Tl, pl specifies the exact
time between two consecutive job releases of any subtask of

Tl, then τ is called a periodic task system. The utilization of
a subtask Th

l is defined as uh
l = eh

l /pl, and the utilization
of the task system τ as Usum =

∑
Ti∈τ

∑
T j

i
∈Ti

uj
i .

Given the way pipelines usually function (the kth jobs of

all subtasks of a pipeline task represent a sequential com-

putation that is initiated at the first stage), we assume that

“sporadic separations” originate only within first-stage sub-

tasks, i.e., for any j > 1, r1
l,j ≥ d1

l,j−1, and for any h > 1,

rh
l,j = dh−1

l,j . Our proofs remain valid if this assumption is

removed, but we find it natural to assume in the examples

we present.

Successive jobs of the same subtask are required to ex-

ecute in sequence. Also, for h > 1, job Th
l,j cannot com-

mence execution until job Th−1
l,j completes. To avoid con-

fusion when discussing these precedence constraints, we

will refer to Th
l,j−1 as the L-predecessor of Th

l,j (assuming

j > 1), and Th−1
l,j as the U-predecessor of Th

l,j (assuming

h > 1). (“L” and “U” stand for “left” and “upper”, respec-

tively). For example, in Fig. 1, T 1
2,1 is the L-predecessor of

T 1
2,2 and the U-predecessor of T 2

2,1.

If a job T k
i,j completes at time t, then its tardiness is de-

2

fined as max(0, t− dk
i,j). A pipeline task’s tardiness is the

maximum of the tardiness of any job of any of its subtasks.

We require uk
i ≤ 1 and Usum ≤ m; otherwise, tardiness

can grow unboundedly. Note that, when a job of a subtask

misses its deadline, the release time of the next job of that

task is not altered. Despite this, it is still required that a job

cannot execute in parallel with either of its predecessors.

We allow jobs to execute before their actual release times

by being “early-released.” The earliest time at which job

Th
l,j may execute is defined by its early-release time ε(Th

l,j),
where ε(Th

l,j) ≤ rh
l,j . An unfinished job Th

l,j is eligible for

execution at time t if both its L- and U-predecessors (if they

exist) have completed by time t and t ≥ ε(Th
l,j).

The common case for pipelines is that first-stage jobs

are released due to external events. In this case, it is not

possible to early-release any first-stage job before its actual

release time. However, any non-first-stage job T k
l,j (k > 1)

should be able to start execution whenever its L- and U-

predecessors complete, even if both predecessors complete

before T k
l,j’s actual release time. This can be accomplished

by defining the early-release time of a non-first-stage job to

equal the release time of the corresponding first-stage job,

i.e., ε(Th
l,j) = r1

l,j where 1 ≤ h ≤ z. This particular early-

releasing method is not required of our proofs (as presented

in Sec. 3), but it is assumed in the examples we present.

Under GEDF (GFIFO), released jobs are prioritized by

their deadlines ((actual) release times). So that our results

can be applied to both algorithms, we consider a generic

scheduling algorithm (GSA) where each job is prioritized

by some time point between its release time and deadline.

For any job Tw
i,k, its prioritization function, ρw

i,k, is defined

as: ρw
i,k = rw

i,k + κ · pi, where 0 ≤ κ ≤ 1. Jobs in τ are

ordered based on their priorities: Tw
i,v ≺ T c

a,b if and only

if ρw
i,v < ρc

a,b or (ρw
i,v = ρc

a,b) ∧ (i = a) ∧ (w < c) or

(ρw
i,v = ρc

a,b) ∧ (i < a). Tw
i,v has higher priority than T c

a,b

if and only if Tw
i,v ≺ T c

a,b. Note that GEDF and GFIFO are

special cases of GSA where κ is set to 1 and 0, respectively.

3 A Tardiness Bound for GSA with Early-
Releasing

In this section, we derive a tardiness bound for GSA with

early-releasing for periodic pipeline task systems. Based

upon this, we then present an approach for dealing with spo-

radic task systems in Sec. 4. The tardiness bound is given

in Theorem 1 below. The definitions that follow are used in

the statement of the theorem.

Definition 1. Let U(τ, y) (E(τ, y)) be the set of min(y, b)
subtasks of highest utilization (execution cost) in τ , where

b is the number of subtasks in τ . Define U and Γ as follows.

U =
∑

T w
i
∈U(τ,m(m−1)) uw

i

Γ =
∑

T w
i
∈E(τ,m(m−1)) ew

i

Definition 2. Let maxk = max{j | 1 ≤ j ≤ k ≤ m ∧
(∀w : 1 ≤ w ≤ k : ej

i ≥ ew
i)}.

Definition 3. Let sv
i =

emaxv
i − ew

i

emaxv
i

. sv
i is called the sub-

task stretch of T v
i . Let si = max{s1

i , s
2
i , ..., s

z
i }. si is called

the task stretch of Ti. Let smax = max{s1, s2, ..., sn}. si

is called the maximum stretch.

Definition 4. Let emax be the maximum execution time

among all subtasks.

Theorem 1. The tardiness for any subtask Th
l

scheduled under GSA (or GEDF or GFIFO)
with early-releasing is at most x + eh

l , where

x =
Γ +

∑
Ti∈τ

∑
T k

i
∈Ti

ek
i + (m− 1)eh

l + memax

(1− smax) ·m− U
,

provided U < (1 − smax) · m, where U is sum of the
m(m− 1) largest subtask utilizations.

The above theorem has been proved in [4] for GSA with-

out early-releasing for periodic pipeline task systems. We

now sketch the proof of this theorem (as presented in [4])

and explain why it remains valid if early-releasing is al-

lowed. In the proof of Theorem 1, allocations to a periodic

pipelined task system τ are compared in a processor shar-

ing (PS) schedule and an actual GSA schedule for τ , both

on m processors. The value of x given in the theorem is de-

rived by considering a job Th
l,j of a subtask Th

l in τ , where

td = dh
l,j , in a GSA schedule S for τ with the following

property.

(P) The tardiness of every job Tw
i,k such that Tw

i,k ≺ Th
l,j is

at most x + ew
i in S, where x ≥ 0.

Determining the smallest x such that the tardiness of Th
l,j

is at most x + eh
l inductively ensures a tardiness of at most

x + ek
i for all jobs of every subtask T k

i of Ti ∈ τ . A value

for x is derived via three steps:

1. Determine an upper bound on the work pending for

tasks in τ that can compete with Th
l,j after td. This is

dealt with in Lemma 1, given later.

2. Determine a lower bound on the amount of work pend-

ing for tasks in τ that can compete with Th
l,j after td,

required for the tardiness of Th
l,j to exceed x+eh

l . This

is dealt with in Lemma 2.

3. Determine the smallest x such that the tardiness of Th
l,j

is at most x + eh
l , using the above upper and lower

bounds.

3

To formally describe these steps, some additional nota-

tion is required. Let A(Tw
i,k, t1, t2, S) denote the total allo-

cation to the job Tw
i,k in an arbitrary schedule S in [t1, t2).

Then, the total time allocated to all jobs of Tw
i in [t1, t2) in

S is given by

A(Tw
i , t1, t2, S) =

∑

k≥1

A(Tw
i,k, t1, t2, S).

Consider a PS schedule PS. In such a schedule, Tw
i,k ex-

ecutes at the rate uw
i within [rw

i,k, rw
i,k + pi), i.e., for any

subinterval [t1, t2) of this interval, A(Tw
i,k, t1, t2, PS) =

(t2 − t1)uw
i .

The difference between the allocation to a job Tw
i,k up

to time t in a PS schedule PS and an arbitrary schedule S,

denoted the lag of job Tw
i,k at time t in schedule S, is defined

by

lag(Tw
i,k, t, S) = A(Tw

i,k, 0, t, PS)−A(Tw
i,k, 0, t, S).

The concept of lag is important because, if it can be

shown that lags remain bounded, then tardiness is bounded

as well. The LAG for a finite job set J at time t in the sched-

ule S is defined by

LAG(J, t, S) =
∑

T w
i,k
∈J lag(Tw

i,k, t, S)

=
∑

T w
i,k
∈J(A(Tw

i,k, 0, t, PS)−A(Tw
i,k, 0, t, S)).

Definition 5. We categorize jobs based on the relationship

between their priorities and deadlines and those of Th
l,j :

d = {Tw
i,v : (Tw

i,v 	 Th
l,j) ∧ (dw

i,v ≤ td)}

D = {Tw
i,v : (Tw

i,v ≺ Th
l,j) ∧ (dw

i,v > td)}.

d is the set of jobs with deadlines at most td with priority

at least that of Th
l,j . These jobs do not execute beyond td in

the PS schedule. Note that Th
l,j is in d (in fact, it is the only

job of equal priority). D is the set of jobs that have higher

priority than Th
l,j and deadlines greater than td. Note that

D is empty under GEDF because jobs with later deadlines

have lower priorities.

Definition 6. Let B(D, td, S) be the amount of work due to

jobs in D that can compete with Th
l,j after td.

Since d ∪ D includes all jobs of higher priority than

Th
l,j , the competing work for Th

l,j is given by the sum of

(i) the amount of work pending at td for jobs in d, and

(ii) the amount of work B(D, td, S) demanded by jobs in

D that competes with Th
l,j after td. Since jobs from d

have deadlines at most td, they do not execute in the PS

schedule beyond td. Thus, the work pending for them is

given by LAG(d, td, S). Therefore, the competing work

for Th
l,j after td (including that due to Th

l,j itself) is given by

LAG(d, td, S) + B(D, td, S).

Upper bound. The upper bound on the work pending for

tasks in τ that can compete with Th
l,j after td is given by

the following lemma, which was proved in [4] for systems

without early-releasing.

Lemma 1. LAG(d, td, S) + B(D, td, S) ≤ U · x + Γ +∑
Ti∈τ

∑
T w

i
∈Ti

ew
i .

Note that the value of LAG(d, td, S) + B(D, td, S) de-

pends on allocations in the PS schedule PS and allocations

to jobs in d∪D in the actual schedule S by time td. The PS

schedule is not impacted by early-releasing—each job Tw
i,v

is allocated processor time only in [rw
i,v, dw

i,v). Also, Prop-

erty (P) alone is sufficient for determining how much work

any job in d∪D other than Th
l,j completes before td—it does

not matter if such a job is early-released. For these reasons,

Lemma 1 continues to hold if early-releasing is allowed.

Lower bound. A lower bound on LAG(d, td, S) +
B(D, td, S) that is necessary for the tardiness of Th

l,j to ex-

ceed x+ eh
l was established in [4] via the following lemma.

Lemma 2. If the tardiness of Th
l,j exceeds x + eh

l , then
LAG(d, td, S) + B(D, td, S) > (1 − smax) ·mx − (m −
1)eh

l −memax.

Proving this lemma involves reasoning about how

higher-priority jobs that may impact Th
l,j are scheduled be-

yond time td. As before, Property (P) largely dictates how

much work these jobs can perform beyond td. Furthermore,

note that all of the higher-priority jobs that must be ana-

lyzed are released before td. Thus, none of these jobs is

early-released in the portion of the schedule that must be

analyzed beyond time td. For this reason, early-releasing

has no impact on the proof of Lemma 2 and thus it holds if

early-releasing is allowed.

The value of x stated in Theorem 1 is obtained by set-

ting the upper bound on LAG(d, td, S) + B(D, td, S) in

Lemma 1 to be at most the lower bound in Lemma 2 and

solving for the minimum x that satisfies the resulting in-

equality.

Two corollaries of Theorem 1 were also stated in [4],

and they also continue to hold if early-releasing is allowed.

They are as follows.

Definition 7. A pipeline task Tl with z stages is monotoni-
cally increasing if (∀j : 1 ≤ j < z :: ej

l ≤ ej+1
l).

Corollary 1. If all pipeline tasks are monotonically in-
creasing, then the tardiness for any subtask Th

l sched-
uled under GSA is at most x + eh

l , where x =
Γ +

∑
Ti∈τ

∑
T k

i
∈Ti

ek
i + (m− 1)eh

l + memax

m− U
. In this

4

50

T k 1

20

30

40
Task 1

Task 2

ar
di

ne
ss

ar
di

ne
ss

ar
di

ne
ss

ar
di

ne
ss

ar
di

ne
ss

ar
di

ne
ss

0

10

20

1 6 11 16 21 26 31 36 41 46

TaTaTaTaTaTa

1 6 11 16 21 26 31 36 41 46

Number of job instanceNumber of job instanceNumber of job instanceNumber of job instanceNumber of job instanceNumber of job instance

Figure 3. Tardiness growth rates for Coun-
terexample 1 under GFIFO.

case, because U ≤ Usum, we only need to constrain total
utilization by Usum < m.

Corollary 2. For two-processor systems, the
tardiness for any subtask Th

l scheduled un-
der GSA is at most x + eh

l , where x =
Γ +

∑
Ti∈τ

∑
T k

i
∈Ti

ek
i + (m− 1)eh

l + memax

m− U
(no

utilization constraint other than Usum ≤ m is required).

As stated in Theorem 1, the condition U < (1−smax)·m
is required in order to ensure bounded tardiness for peri-

odic pipeline task systems. It has been shown in [4] that

some such constraint is needed via a counterexample where

a periodic pipeline task system has unbounded tardiness.

We now show that early-releasing does not eliminate the

need for such a constraint by showing that tardiness grows

unboundedly in the same counterexample if jobs are early-

released.

Counterexample 1. Consider a task set τ , to be sched-

uled under GFIFO or GEDF on three processors, that con-

sists of two two-stage pipeline tasks: T 1
1 = (9, 10), T 2

1 =
(7, 10), T 1

2 = (5, 5), and T 2
2 = (2, 5). Each job is assumed

to be early-released in the way described in Sec. 2. For this

task system, smax =
e1
2 − e2

2

e1
2

= 0.6 and U = 3. Thus,

(1 − smax) · m = 1.2 < U , which violates the condition

stated in Theorem 1. Figs. 3 and 4 show the tardiness of

both pipeline tasks scheduled under GFIFO and GEDF by

job instance. We have verified analytically that the tardiness

growth rate seen in these graphs continues indefinitely.

4 Handling Sporadic Task Systems

The proof of Theorem 1 relies crucially on the assump-

tion that if there is a priority tie between any two subtasks

of a pipeline task, the earlier stage is favored. However, in

50

30

40
Task 1

Task 2

di
ne

ss
di

ne
ss

di
ne

ss
di

ne
ss

di
ne

ss
di

ne
ss

0

10

20

T
ar

d
T

ar
d

T
ar

d
T

ar
d

T
ar

d
T

ar
d

1 6 11 16 21 26 31 36 41 46

Number of job instanceNumber of job instanceNumber of job instanceNumber of job instanceNumber of job instanceNumber of job instance

Figure 4. Tardiness growth rates for Coun-
terexample 1 under GEDF.

a sporadic pipeline task system, job releases can be slightly

jittered to produce a schedule that is “almost” periodic in

which no two jobs have the same priority. Thus, tie break-

ing rules are of little or no utility for sporadic task systems.

In fact, there exist sporadic task systems with unbounded

tardiness for which tardiness is guaranteed by Theorem 1 to

be bounded if all tasks are periodic. An example of such a

system is given next.

Counterexample 2. Consider a task set τ , to be sched-

uled under GFIFO or GEDF on three processors, that con-

sists of two two-stage pipeline tasks: T 1
1 = (69, 100), T 2

1 =
(70, 100), T 1

2 = (40, 50), and T 2
2 = (40, 50). Note that all

pipeline tasks in this task system are monotonically increas-

ing. Thus, by Corollary 1, tardiness is bounded, assuming

the system is periodic. Consider a schedule of this task set

in which job releases are defined as follows:

r1
1,j = j · p1 + (j − 1) · δ

r2
1,j = (j + 1) · p1 + (j − 1) · δ

r1
2,j = j · p2 + (j − 1) · δ

r2
2,j = (j + 1) · p2 + (j − 1) · δ,

where j denotes the jth job instance of a subtask and

δ = 0.01. δ is used to jitter job releases to produce a spo-

radic schedule that is ”almost” periodic in which no two

jobs of any pipeline task have the same priority. This re-

lease pattern is shown in Fig. 5.

Figs. 6 and 7 show the tardiness of both pipeline tasks

scheduled under GFIFO and GEDF in this example by job

instance. We have verified analytically that the tardiness

growth rate seen in these graphs continues indefinitely.

An approach for scheduling sporadic systems. Because

proper tie-breaking appears to be so fundamental, and tie-

breaking is rendered ineffective by non-periodic releases,

we propose to schedule sporadic task systems by forcing job

5

0 50 100 150 200 250 300

1
1T
2

1T

2
2T

Job release Job deadline

1
2T

Figure 5. Job release pattern of Counterex-
ample 2.

500

300

400
Task 1

Task 2

rd
in

es
s

rd
in

es
s

rd
in

es
s

rd
in

es
s

rd
in

es
s

rd
in

es
s

0

100

200

Ta
r

Ta
r

Ta
r

Ta
r

Ta
r

Ta
r

p

1 6 11 16 21 26 31 36 41 46

Number of job instance

Figure 6. Tardiness growth rates for Coun-
terexample 2 under GFIFO.

releases to be periodic. While such an approach may seem

unreasonable in other contexts, in our case, it can be applied

in a way that causes tardiness to increase only marginally.

If a first-stage job T 1
l,j is released at time t ∈ ((k−1) ·pl, k ·

pl], then job Th
l,j’s (h ≥ 1) early-release time, release time,

deadline, and priority are re-defined according to rules, S1-

S4, below (applied in the order specified).

S1 ε(Th
l,j) = t.

S2 rh
l,j = (k + h− 1) · pl.

S3 dh
l,j = rh

l,j + pl.

S4 ρh
l,j = rh

l,j + κ · pl.

Example 1. To motivate these rules, consider Fig. 8 (a),

which depicts the schedule of a sporadic task set with a

three-stage pipeline task: T 1
1 = (2, 4), T 2

1 = (2, 4), and

T 3
1 = (2, 4) under GEDF or GFIFO (the schedule is the

same for both) on a two-processor system. Jobs are released

in a sporadic manner. (Recall that “sporadic separations”

originate at the first stage, as described in Sec. 2.) Every job

in this task set is forced to be scheduled as if it were periodic

500

300

400

500
Task 1

Task 2

ne
ss

ne
ss

ne
ss

ne
ss

ne
ss

ne
ss

100

200

T
ar

di
n

T
ar

di
n

T
ar

di
n

T
ar

di
n

T
ar

di
n

T
ar

di
n

0
1 6 11 16 21 26 31 36 41 46

Number of job instance

Figure 7. Tardiness growth rates for Coun-
terexample 2 under GEDF.

by applying Rules S2-S4. For example, T 1
1,2 is released at

time 6 (which is not a multiple of T1’s period), and hence

by S2, its release time is re-set to be r1
1,2 = 2 · 4 = 8 and

its deadline to be d1
1,2 = 3 · 4 = 12. Fig. 8 (b) shows the

schedule that results by forcing periodic behavior without

applying Rule S1 to enable early-releasing. Note that, with-

out early-releasing, a job’s execution may be unnecessarily

delayed. For instance, T 1
1,2 is actually released at time 6 and

could start execution then. Rule S1 enables each job to start

execution at its early-release time. As shown in Fig. 8 (c),

when Rule S1 is applied, T 1
1,2 can start execution at time

6, although its priority and deadline are still determined by

its newly-set release time, which is time 8. By applying

this approach, each job could be delayed for at most one

additional period in comparison to the periodic case. Thus,

for each task, we must merely increase the tardiness bound

given earlier for periodic pipeline task systems by the task’s

period.

Theorem 2. With x as defined in Theorem 1, the tardi-
ness for any subtask Th

l in a sporadic pipeline task sys-
tem scheduled under GSA (or GEDF or GFIFO) with
early-releasing is at most x + eh

l + pl, where x =
Γ +

∑
Ti∈τ

∑
T k

i
∈Ti

ek
i + (m− 1)eh

l + memax

(1− smax) ·m− U
, provided

U < (1 − smax) · m, where U is sum of the m(m − 1)
largest subtask utilizations.

Corollary 3. If all pipeline tasks are monotonically in-
creasing, then the tardiness for any subtask Th

l in a spo-
radic pipeline task system with early-releasing scheduled
under GSA is at most x + eh

l + pl. As in Corollory 1, we
require Usum < m.

Corollary 4. For two-processor systems, the tardiness for
any subtask Th

l in a sporadic pipeline task system with
early-releasing scheduled under GSA is at most x+ eh

l + pl

(no utilization constraint other than Usum ≤ m is re-
quired).

6

Job release Job deadline

1
1T
2

1T
3

1T

New periodic
release

New periodic
deadline

(b) Forced periodic behavior.

0 4 8 12 16 20 24

1
1T
2

1T
3

1T

(a) Sporadic schedule.

0 4 8 12 16 20 24

(c) Improving job response time by early-releasing.

1
1T
2

1T
3

1T
0 4 8 12 16 20 24

Figure 8. An example of forcing periodic be-
havior on sporadic workflows.

The above-mentioned early-releasing technique can also

be used to support rate-based arrivals. In rate-based task

models [11], a minimum inter-arrival separation between

jobs is not ensured (which is different from the peri-

odic/sporadic task model where a task’s period specifies the

exact/minimum inter-arrival separation between any two of

its consecutive jobs). We assume that rate-based release

patterns originate in first-stage-subtasks. The release time

of any non-first-stage job T c
a,b where c > 1 is set to be

dc−1
a,b , which is the deadline of T c

a,b’s U-predecessor. In or-

der to support rate-based arrivals, if a first-stage job T 1
l,j is

released at time t ∈ ((k − 1) · pl, k · pl], then job Th
l,j’s

(h ≥ 1) early-release time, release time, deadline, and pri-

ority are modified according to rules, R1-R4, below.

R1 ε(Th
l,j) = t.

R2 rh
l,j = max{(k + h− 1) · pl, d

h
l,j−1}.

R3 dh
l,j = rh

l,j + pl.

R4 ρh
l,j = rh

l,j + κ · pl.

Example 2. Consider Fig. 9 (a), which depicts a schedule

of the same task set considered in Eample 1, but with rate-

1
1T
2

1T
3

1T

(a) Rate-based schedule.

0 4 8 12 16 20

Job release Job deadline New periodic
release

New periodic
deadline

1
1T
2

1T
3

1T

(b) Rate-based schedule with early-releasing.

0 4 8 12 16 20

Figure 9. Rate-based schedules.

based arrivals. In this task system, T 1
1,1, T 1

1,2, and T 1
1,3 are

released at times 0, 5, and 6 respectively. According to rule

R2, the release times of T 1
1,2 and T 1

1,3 are modified to be 8

and 12. Note that, without early-releasing, a job’s execu-

tion may be unnecessarily delayed. For instance, as shown

in Fig. 9 (a), T 1
1,3 is actually released at time 6 and could

start execution then. Rule R1 enables each job to start exe-

cution at its early-release time. As shown in Fig. 9 (b), when

Rule R1 is applied, T 1
1,2 can start execution at time 5. Ob-

serve that job response times can be significantly reduced

by early-releasing.

Early-releasing could be very effective for applications

where a job’s actual execution time (AET) may be sub-

stantially less than its worst case execution time (WCET).

Whenever a job executes for less than its WCET, early-

releasing allows its successive-stage job to receive such un-

used capacity and start execution immediately.

Example 3. Fig. 10 (a) dipicts a schedule for a three-stage

pipeline task, T 1
1 = (4, 4), T 2

1 = (4, 4), and T 3
1 = (4, 4),

scheduled under GEDF or GFIFO on a three-processor sys-

tem. Suppose at runtime, every job executes for only two

time units, as shown in Fig. 10 (b). Fig. 10 (c) shows how

such jobs are scheduled if early-releasing is enabled.

5 Experimental Evaluation

In this section, we describe the results of several sets of

experiments conducted using randomly-generated task sets

to evaluate the effectiveness of early-releasing with respect

to both deadline tardiness and job response times on spo-

radic task systems, rate-based task systems, and task sys-

tems with various AET/WCET ratios. Due to space con-

straints, we do not present experimental results that assess

the accuracy and the applicability of the tardiness bounds

for GFIFO and GEDF derived in this paper, as such results

7

Job release Job deadline

1
1T
2

1T
3

1T

(a) Schedule with WCET.

0 4 8 12 16 20

1
1T
2

1T
3

1T

(b) Runtime schedule with AET.

0 4 8 12 16 20

1
1T
2

1T
3

1T

(c) Runtime early-releasing schedule with AET.

0 4 8 12 16 20

Figure 10. Impact by early-releasing on sys-
tems with runtime execution cost.

have been given earlier [4].

In these experiments, GEDF and GFIFO with and with-

out early-releasing were compared assuming 4, 8, and 16

processors (m). For each m, 1,000 task sets were gener-

ated. For each task set, new tasks were added until total

utilization exceeded m, and then the last task’s utilization

was reduced if needed so that total utilization equaled m.

The utilization of each subtask was selected uniformly over

[0.01, 0.5]. The execution cost of each subtask was cho-

sen uniformly over (0,20]. The sporadic job release pat-

tern was defined as follows. For any pipeline task Tl, the

first job of its first task, T 1
l,1, was assumed to be released at

time 0. The release time of any subsequent job, T 1
l,k where

k > 1, was chosen uniformly over [d1
l,k−1, d

1
l,k−1 + pl].

The release time of any other job, Th
l,j where h > 1, was

determined based on the system model described in Sec. 2.

When generating task sets, we dropped any task set that vio-

lates the utilization constraint as stated in Thereom 2. To de-

termine average observed tardiness values, a simulator was

used for each scheduling scheme that schedules tasks until

time 50,000.

The first set of experiments evaluates the impact early-

releasing has on deadline tardiness. In Fig. 11, the aver-

age observed tardiness is plotted for m = 4, m = 8, and

m = 16, where Usum = m. As seen, early-releasing sub-

stantially lowered tardiness in all cases.

The second set of experiments was conducted to eval-

 0

 5

 10

 15

 20

 25

4 8 16

Ta
rd

in
es

s

Processor Count

GEDF
GEDF with early-releasing

GFIFO
GFIFO with early-releasing

Figure 11. Impact on deadline tardiness by
early-releasing .

uate the impact of early-releasing on end-to-end pipeline

response times in sporadic task systems scheduled under

GEDF. The average response time (ART) of a pipeline task

Ti, denoted rti, is defined as

rti =

∑L
k=1(CT (T z

i,k)− r1
i,k)

L
,

where L is the number of jobs released by any subtask of

Ti in the schedule under consideration (note that each such

subtask releases the same number of jobs), z is the number

of stages of Ti, and r1
i,k is the actual release time of T 1

i,k

before applying Rule S2 or R2. Let rti(s1) denote the ART

of Ti scheduled under some scheduling policy A without

early-releasing, and let rti(s2) denote the ART of Ti sched-

uled under the same scheduling policy A but with early-

releasing. The average response time improvement (ARTI)

by early-releasing for a task system τ with N pipeline tasks

is defined by

∑
Ti∈τ

(rti(s1)− rti(s2)
rti(s2)

· 100%
)

N
.

Figs. 12-14 depict scatter plots for m = 4, m = 8, and

m = 16, respectively, where each point denotes the ARTI

for one task set under GEDF. Observe that ARTI can be

significant, particularly in lightly-loaded systems. For ex-

ample, in Fig. 14, when Usum = 2 and m = 16, ARTI

ranges between 400% and 800%. On the other hand, for

heavily-loaded systems, early-releasing yields limited im-

provement.

In the third set of experiments, the impact of early-

releasing on job response times in rate-based task systems

scheduled under GEDF was evaluated. In a rate-based task

system, a job may arrive any time after the release of its L-

predecessor. In these experiments, task sets were randomly

generated in the same way as mentioned above, except that

they obey a rate-based arrival pattern, which was defined

as follows. For any pipeline task Tl, the first job of its first

8

 0%

50%

100%

150%

200%

250%

300%

 0 1 2 3 4 5

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

Total Utilization

Figure 12. Average response time improve-
ment for sporadic systems on four proces-
sors.

 0%

100%

200%

300%

400%

500%

600%

700%

 0 1 2 3 4 5 6 7 8 9

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

Total Utilization

Figure 13. Average response time improve-
ment for sporadic systems on eight proces-
sors.

task, T 1
l,1, was assumed to be released at time 0. The release

time of any subsequent job, T 1
l,k where k > 1, was chosen

randomly over (r1
l,k−1, d

1
l,k−1] with probability v and over

(d1
l,k−1, d

1
l,k−1 + pl] with probability 1− v (thus, “sporadic

separations” are more likely if v is lower). For any non-

first-stage job, Th
l,j , where h > 1, rh

l,j = dh−1
l,j .

Figs. 15-17 depict scatter plots for v = 25%, v = 50%,

and v = 75%, respectively, where m = 8 and each point

denotes the ARTI for one task set under GEDF. These fig-

ures suggest that early-releasing can have a significant im-

pact in rate-based task systems. Unlike the sporadic case,

significant impact is seen even in heavily-loaded systems.

As seen in Figs. 15-17, ARTI can be as high as 120% even

if Usum = m. Another interesting observation is that as

v increases, ARTI does as well. This is because as v in-

creases, the probability of a job being released before the

deadline of its L-predecessor also increases. Hence, with-

out early-releasing, the probability of a job being scheduled

 0%

100%

200%

300%

400%

500%

600%

700%

800%

 0 2 4 6 8 10 12 14 16 18

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

Total Utilization

Figure 14. Average response time improve-
ment for sporadic systems on sixteen pro-
cessors.

 0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

 0 2 4 6 8 10

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

Total Utilization

Figure 15. Average response time improve-
ment for rate-based systems on eight proces-
sors where v = 25%.

much later is increased, according to Rules R2-R4. Early-

releasing, by Rule R1, allows jobs to execute much earlier.

The fourth set of experiments evaluates the impact of

early-releasing on job response times in periodic task sys-

tems where tasks’ AETs may be shorter than their WCETs.

In these experiments, task sets were randomly generated

in the same way as mentioned above, except that they

obey a periodic arrival pattern. We varied the AET/WCET

ratio, denoted ω, in order to study the impact of early-

releasing with different AET/WCET ratios in periodic task

systems. As seen in Fig. 18, when ω equals 25%, 50%, and

75%, ARTIs range within [190%, 380%], [30%, 100%], and

[10%, 60%], respectively.

6 Conclusion

We have derived a tardiness bound that can be applied
to globally-scheduled sporadic pipeline task systems. This

9

 0%

100%

200%

300%

400%

500%

600%

 0 2 4 6 8 10

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

Total Utilization

Figure 16. Average response time improve-
ment for rate-based systems on eight proces-
sors where v = 50%.

 0%

100%

200%

300%

400%

500%

600%

 0 2 4 6 8 10

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

Total Utilization

Figure 17. Average response time improve-
ment for rate-based systems on eight proces-
sors where v = 75%.

bound is applicable to a class of global algorithms that
includes GEDF and GFIFO. The derived tardiness bound
requires overall utilization to be constrained in some sys-
tems. However, only Usum < m is required for any sys-
tem where all pipeline tasks are monotonically increasing
and no utilization constraint (other than Usum ≤ m) is re-
quired for any two-processor system. For other systems,
utilization constraints are fundamental, as we have shown
via counterexamples. Nonetheless, for these systems, the
required constraint is quite liberal. To enable the work-
conserving scheduling of pipelines, we introduced the tech-
nique of early-releasing. Early-releasing can greatly reduce
job response times, particularly in lightly-loaded systems,
as demonstrated in the presented experimental evaluation.

References

[1] J. Carpenter, S. Funk, P. Holman, J. H. Anderson, and

S. Baruah. Handbook on Scheduling Algorithms, Methods,

 0%

50%

100%

150%

200%

250%

300%

350%

400%

 0 25 50 75 100

R
es

po
ns

e
Ti

m
e

Im
pr

ov
em

en
t

AET/WCET Ratio

Figure 18. Average response time improve-
ment for periodic systems with various
AET/WCET ratios on eight processors where
Usum = 8.

and Models. Chapman Hall/CRC, Boca, 2004.

[2] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.

Proportionate progress: A notion of fairness in resource al-

location. In Algorithmica, Vol.15, pp. 600-625, 1996.

[3] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-

time scheduling algorithm for multiprocessors. In Proc. of
the 27th IEEE Int’l Real-Time Systems Symp., pp. 101-110,

2006.

[4] C. Liu and J. H. Anderson. Supporting pipelines in soft real-

time multiprocessor systems. In Proc. of the 21st Euromicro
Conf. on Real-Time Systems, 2009 (to appear).

[5] U. C. Devi and J. H. Anderson. Tardiness bounds under

global EDF scheduling on a multiprocessor. In Proc. of
the 26th IEEE Int’l Real-Time Systems Symp., pp. 330-341,

2005.

[6] H. Leontyev and J. H. Anderson. Tardiness bounds for FIFO

scheduling on multiprocessors. In Proc. of the 19th Euromi-
cro Conf. on Real-Time Systems, pp. 71-80, 2007.

[7] P. Jayachandran and T. Abdelzaher. A delay composition the-

orem for real-time pipelines. In Proc. of the 19th Euromicro
Conf. on Real-Time Systems, pp. 29-38, 2007.

[8] P. Jayachandran and T. Abdelzaher. Transforming distributed

acyclic systems into equivalent uniprocessors under preemp-

tive and non-preemptive scheduling. In Proc. of the 20th
Euromicro Conf. on Real-Time Systems, pp. 233-242, 2008.

[9] J.C. Palencia and M.G. Harbour. Offset-based response time

analysis of distributed systems scheduled under edf. In Proc.
of the 15th Euromicro Conf. on Real-Time Systems, pp. 3-12,

2003.

[10] R. Pellizzoni and G. Lipari. Improved schedulability analysis

of real-time transactions with earliest deadline scheduling.

In Proc. of the 11th IEEE Int’l Real Time and Embedded
Technology and Applications Symp., pp. 66-75, 2005.

[11] K. Jeffay and S. Goddard. A theory of rate-based execution.

In Proc. of the 20th IEEE Int’l Real-Time Systems Symp., pp.

304-314, 1999.

10

