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Abstract

Real-time locking protocols employ progress mechanism(s)
to ensure that resource-holding jobs are scheduled. These
mechanisms are required to bound the duration of priority-
inversion blocking (pi-blocking) for jobs sharing resources.
Examples of such progress mechanisms include priority
inheritance and priority donation. Unfortunately, some
progress mechanisms can cause any job, including those
that never request shared resources, to be blocked upon
job release. This paper presents a variant of priority dona-
tion for globally-scheduled systems that only causes block-
ing for jobs waiting for shared resources. Additionally, this
variant of priority donation is employed to construct a
new suspension-based locking protocol called the replica-
request donation global locking protocol (R2DGLP ), which
is optimal for both mutex and k-exclusion (i.e., multi-
resource) locks. This work is motivated by multicore sys-
tems where tasks may share I/O devices (e.g., GPUs) where
critical sections can be long. In such applications, progress
mechanisms that cause jobs that do not access I/O devices
to be blocked to ensure progress can be detrimental from a
schedulability perspective.

1 Introduction

When resources are shared among tasks in a multiproces-
sor real-time system, multiprocessor synchronization algo-
rithms must be coupled with scheduling algorithms to en-
sure that blocking caused by synchronization does not cause
timing violations. To bound the duration of time a job can be
blocked, real-time locking protocols employ progress mech-
anisms that ensure that resource-holding jobs are scheduled,
and therefore that blocked jobs make progress towards ac-
quiring the shared resources they require. These progress
mechanisms are dependent upon the scheduler employed.

A wide range of such schedulers can be viewed as instan-
tiations of clustered scheduling, wherein processors are par-
titioned into clusters (often representative of the underlying
hardware architecture), with each task assigned to a single
cluster. Within each cluster, tasks are scheduled from a sin-
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gle ready queue and may migrate among processors within
the cluster. Note that clustered scheduling generalizes both
partitioned and global scheduling in which, respectively,
each processor is a cluster, or all processors form a single
cluster. Recent experimental work [2, 4] has demonstrated
that partitioned scheduling is often preferable for hard-real-
time systems (i.e., systems in which deadlines cannot be
missed), while clustered scheduling is often preferable for
soft-real-time system (i.e., systems in which deadlines can
be missed by a bounded duration of time) [7, 16].

When resources are shared among clusters, the mecha-
nisms required to ensure progress can cause blocking for all
jobs in the system upon job release, not just those that en-
gage in the locking protocol [6]. Intuitively, this is caused
when the execution of a higher-priority job must be de-
layed upon its release so that a lower-priority resource-
holding job in the same cluster is not preempted, thereby
ensuring progress for resource-requesting jobs in other clus-
ters. We call this type of blocking release-blocking, in con-
trast to the blocking experienced by jobs waiting for shared
resources, which we call request-blocking. Examples of
progress mechanisms that induce release-blocking include
non-preemptive sections, and job-release priority donation
(JRPD) [6], which will be described more formally later.
An example schedule in which both release- and request-
blocking occur is given in Fig. 1. Both optimal and heuristic
algorithms have been developed to pack tasks onto clusters
to reduce sharing across clusters and therefore minimize the
effect of release-blocking [14, 15]. However, this problem
has been shown to be NP-hard in the strong sense [15].

Locking protocols developed for sharing resources be-
tween clusters can still be used when resource sharing
is strictly local within a cluster. However, the progress
mechanisms that induce release-blocking, necessary for
inter-cluster resource sharing, are no longer necessary—
alternative progress mechanisms that induce only request-
blocking are therefore often favorable. For example, it has
been shown that locking protocols can be employed in real-
time applications where graphics processing units (GPUs)
perform general-purpose computations. These locking pro-
tocols enable guarantees on real-time constraints to be made
since they subsume the role of resource arbitration from
non-real-time GPU driver software [9, 10, 11]. However,
the critical sections associated with general-purpose com-
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Figure 1: Example of the effects of release-blocking under JRPD
on an earliest-deadline-first globally-scheduled system with m =
2 processors. J4 is release-blocked at time t = 1 while it donates
its priority to J1. This release-blocking causes J4 to miss its dead-
line. If instead, J4 had preempted J1, J1 and J2 would finish three
time units later, but still meet their deadlines. Also, at time t = 1,
J2 is request-blocked by J1, which holds the shared resource.

putation on GPUs can be very long: typically tens of mil-
liseconds, but even as great as several seconds, in length.
These lengths are orders of magnitude greater than those
normally associated with shared data structures [4], a more
typical application of locking protocols.

The use of locking protocols that induce release-blocking
for resources shared strictly locally within a cluster may
be acceptable (though inefficient) with respect to schedu-
lability, when critical section lengths are short. However,
schedulability can easily become infeasible when critical
section lengths are long. For example, it is impossible to
schedule a job that has a response-time constraint shorter
than the longest critical section, since such a job can be
release-blocked for the duration of the longest critical sec-
tion. Therefore, in a typical GPU case, no task may have
a response-time requirement less than tens of milliseconds.
This can significantly limit the flexibility of a GPU-enabled
real-time system in that tasks with short response-time con-
straints cannot be scheduled within the same cluster as
GPU tasks. However, if a locking protocol that only uses
progress mechanisms that incur request-blocking is used,
then a GPU-enabled real-time system can schedule tasks
with a wide array of response-time constraints, scheduling
tasks with both short and long response-time requirements.

The blocking behavior of locking protocols is analyzed
on the basis of priority inversion blocking (pi-blocking), or
the duration of time that a job is blocked while a lower-
priority job is executing. The duration of pi-blocking is
then treated as CPU demand (execution time) under most
schedulability analysis techniques for globally-scheduled
multiprocessor systems, thereby increasing system utiliza-
tion. This motivates another reason why release-blocking
should be avoided whenever possible: generally speaking,

workloads with greater utilizations are more difficult to
schedule. Release-blocking affects every task and can thus
have a cumulative affect on the system utilization, particu-
larly when there are many tasks in the system. This is es-
pecially unfortunate when only a few tasks actually access
shared resources, since this may still result in significant
system-wide effects. The situation is even worse when per-
task release-blocking is large, such as in the case of GPUs.

Motivated by applications with long critical sections,
such as systems containing GPUs, and the desire to elim-
inate release-blocking, we focus on globally scheduled sys-
tems, though our results can be applied locally within a clus-
ter. We assume a job-level fixed priority (JLFP) system, in
which a each job’s priority is constant (e.g., earliest dead-
line first (EDF) or static priority scheduling). We also as-
sume that jobs suspend while waiting for shared resources
instead of busy-waiting or spinning. By suspending, the pro-
cessor is made available for other tasks to execute, which
can improve response times, particularly when critical sec-
tions are long as is the case with GPUs.

Contributions. We have developed replica-request prior-
ity donation (RRPD), a progress mechanism, which is a
variant of JRPD [6], for globally scheduled systems and
within a local cluster, that does not cause release-blocking.
We then construct the R2DGLP,1 an optimal k-exclusion2

suspension-based locking protocol based on RRPD and pri-
ority inheritance. We compare the R2DGLP with exist-
ing locking protocols and demonstrate the performance im-
provements.

Prior work. Many suspension-based multiprocessor real-
time locking protocols such as the MPCP [17], DPCP [17],
PPCP [8] and the MSRP [13] are multiprocessor extensions
of their uniprocessor counterparts, the stack resource policy
(SRP) [1] and the priority ceiling protocol (PCP) [1, 17].
Recent research has built upon these results through the de-
velopment of new multiprocessor locking protocols that are
asymptotically optimal, which we discuss next.

Brandenburg and Anderson [5] developed two defini-
tions of priority-inversion blocking: suspension-oblivious
(s-oblivious) and suspension-aware (s-aware). Under s-
oblivious analysis, the suspensions of higher-priority jobs
are considered computation time analytically, whereas un-
der s-aware analysis, these suspension are modeled analyt-
ically. They also established per-request lower bounds of
Ω(m) and Ω(n) for s-oblivious pi-blocking and s-aware
pi-blocking, respectively, on any JLFP system (partitioned,
clustered or global), for mutual exclusion (mutex) resources
where m is the number of processors and n is the number
of tasks in the task system.

Block et al. [3] developed the FMLP, which was later
proven to be asymptotically optimal under s-aware anal-

1Previously called the I-KGLP in [18], and described in an unpublished
appendix available online only.

2A k-exclusion lock is a generalization of mutex lock in which there
are k identical serially reusable replicas.
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ysis. The FMLP uses non-preemptive sections to ensure
progress. Later, Brandenburg [4] extended the FMLP to
the FIFO mutex locking protocol (FMLP+), which is more
flexible because resource-holding jobs can execute either
preemptively or non-preemptively. The FMLP+ is optimal
under s-aware analysis for a large class of global sched-
ulers, including global EDF (G-EDF), for task systems
with job deadlines equal to their periods.3 Brandenburg
and Anderson also developed the O(m) locking protocol
(OMLP) family of locking protocols, which are optimal un-
der partitioned-, clustered-, and globally-scheduled systems
under s-oblivious analysis for mutex resources [5, 6].

The clustered variant of the OMLP (C-OMLP) employs
a progress mechanisms called priority donation, which, as
noted earlier, we refer to as job-release priority donation
(JRPD). In JRPD, a job Jd that would cause a preemp-
tion of a resource-holding job Ji suspends and donates its
priority to Ji [6]. Jd is then said to be the priority donor
of Ji. A donation relationship is static and persists until
Ji completes its critical section, or another higher-priority
job relieves Jd of its donation obligation. This property en-
sures that a resource-holding job is always scheduled. Pri-
ority donation is very general and has been used to con-
struct optimal mutex, k-exclusion, and reader-writer lock-
ing protocols [6]. However, priority donation can also cause
release-blocking for all jobs in the system, in addition to the
request-blocking incurred for each request. An example of
JRPD, and the consequences of long release-blocking are
depicted in Fig. 1.

In work on k-exclusion locking protocols, Elliott and
Anderson extended the FMLP to the k-FMLP, which is opti-
mal under s-aware analysis [11] for the same class of global
schedulers for which the FMLP+ is optimal. Elliott and
Anderson also developed the O-KGLP which is asymptot-
ically optimal under s-oblivious analysis [9]. The O-KGLP
is composed of a priority queue, and a FIFO queue per re-
source. It also employs a variant of priority donation that
is initiated upon request, similar to the progress mechanism
we present. However, their definition of priority donation
can cause additional pi-blocking, which we eliminate in this
work.

Organization. In Sec. 2, we formally define our system
model and specify our assumptions. In Sec. 3, we describe
a new variant of priority donation called replica-request pri-
ority donation (RRPD). In Sec. 4, we present the R2DGLP,
a k-exclusion locking protocol based upon RRPD. In Sec. 5,
we compare the R2DGLP to previous suspension-based
locking protocols through schedulability experiments re-
flective of systems with GPU-inspired schedulability con-
straints. Finally, we conclude in Sec. 6.

3S-aware optimality under clustered systems, including globally-
scheduled systems, is still an open issue.

Figure 2: Phases of a replica acquisition under RRPD.

2 Background and Definitions

We consider a system of n sporadic tasks {T1, . . . , Tn}
scheduled on m processors. Each task is composed of a se-
quence of jobs; we let Ji,k denote the kth job of the ith task,
though we omit the job index when it is insignificant. A task
is characterized by its worst-case execution time, ei, mini-
mum job separation, pi, and its relative deadline, di. Each
job is said to be released when it is available for execution
and pending until it finishes its execution. A pending job can
be either ready or suspended. A job is said to be ready if it
is available for execution, whereas a suspended job cannot
be scheduled.

Resources. The system also contains q shared resources,
L = {`1, . . . , `q} such as shared memory objects or I/O
devices. Each resource `a may be a multi-unit resource, with
ka serially reusable units. Therefore, at most ka requests
for `a may be satisfied at a time, one for each replica. We
assume that a job can only request one replica at a time.
Note that in the case that ka = 1, the resource is an ordinary
serially reusable (mutex) resource.

Access to each resource is controlled by a locking proto-
col. Ordinarily, when a job Ji requires a replica of resource
`a, it issues a replica requestR to the locking protocol for a
replica of `a. However, in the locking protocol we develop,
the issuance of R can be deferred from the first instant at
which Ji requires a replica of `a. A request is said to be sat-
isfied when Ji acquires a replica of `a and completed when
Ji releases its replica of `a. A job Ji is said to have an in-
complete request during the interval of time between when
the request is issued to when the request is completed. Ji is
said to require a replica of `a from the first instant in time at
which it requires a replica of `a through the time at which
it completes its request. The segment of a job’s execution
between a request being satisfied and completed is called
a critical section. These phases of replica acquisition are
shown in Fig. 2.

We assume that replica requests are non-nested, i.e., a
job holding a replica of `a cannot make another replica re-
quest for either a replica of `a or another resource `b until
its current critical section is completed. Note, however, that
coarse-grained nesting can be supported by grouping repli-
cas and treating such a group as a single resource as in the
FMLP [3].

Scheduling. We consider globally-scheduled JLFP sys-
tems, in which jobs are scheduled from a single ready

3



Figure 3: Illustration adapted from [5] of the difference between
s-oblivious and s-aware analysis. In this example, three G-EDF-
scheduled jobs share a single resource `a on two processors. Dur-
ing [2, 4), J3 is blocked, but there are m jobs with higher priority,
thus J3 is not s-oblivious pi-blocked. However, because J1 is also
suspended, J3 is s-aware pi-blocked. Intuitively, under s-oblivious
analysis, the suspension time of higher-priority jobs is modeled as
computation, but under s-aware analysis, it is not.

queue. Jobs are therefore free to migrate among all proces-
sors. Under a JLFP scheduler, each job has a fixed base pri-
ority that is assigned upon job release. However, progress
mechanisms such as priority inheritance can alter a job’s
priority during its execution. A job’s modified priority is
called its effective priority. For example, under priority in-
heritance, a job holding `a has an effective priority equal to
the highest base priority of any job waiting for `a. At any
time, the m ready jobs with the highest effective priorities
are scheduled.
Blocking. Brandenburg and Anderson [5] defined s-
oblivious and s-aware blocking as follows.
Definition 1. Under s-oblivious schedulability analysis, a
job Ji incurs s-oblivious pi-blocking at time t if Ji is pend-
ing but not scheduled and fewer than m higher-priority jobs
are pending.
Definition 2. Under s-aware schedulability analysis, a job
Ji incurs s-aware pi-blocking at time t if Ji is pending but
not scheduled and fewer than m higher-priority jobs are
ready.

An example of the difference between s-oblivious and
s-aware pi-blocking is given in Fig. 3. In this paper we
focus on s-oblivious analysis because it is used in almost
all global schedulability analysis. As such, unless otherwise
noted, when we say a job is release- or request-blocked, we
assume it to also be s-oblivious pi-blocked.
Assumptions. In our analysis of worst-case pi-blocking
bounds, we consider a number of variables such as the crit-
ical section length Lmax, the frequency of replica requests,
and number of requests each task Ti may issue Ni, to be
constant. Fine-grained analysis of pi-blocking, which incor-
porates the specific values of many of these variables (e.g.,

per-request critical section lengths), can be conducted to
achieve tighter pi-blocking bounds, using similar analysis
techniques to that presented in [5, 4]. We assume that n and
m are variable and all other parameters are constant, similar
to the analysis assumptions of [5, 6, 18].

3 Replica-Request Priority Donation
Job-release priority donation (JRPD) was designed as
a progress mechanism for clustered systems [6]. In a
clustered-scheduled system, comparing priorities across
clusters is not very useful, because a high-priority job with
respect to one cluster may have a relatively low prior-
ity when compared to jobs in another cluster. To ensure
progress, JRPD ensures that all resource-holding jobs are
scheduled by forcing high-priority jobs to suspend and do-
nate their priority upon release to prevent preemptions of
resource-holding jobs. However, this donation can cause
release-blocking for any job in the system, not just those
that engage in the locking protocol. We demonstrate such
behavior in Fig. 1, in which, at time t = 1, J4 is released,
and is forced to suspend and donate its priority to J1, so that
J1 remains scheduled.

In a globally-scheduled system, priorities can be com-
pared among all tasks, which allows us to adapt the rules
of priority donation such that jobs that do not ever require
shared resources are never pi-blocked. Thus, there is no
release-blocking. To do so, we modify priority donation
such that a job donates its priority on replica request in-
stead of job release. We call this new definition of priority
donation, replica-request priority donation (RRPD). Note
that RRPD on its own is not sufficient to ensure progress,
but when coupled with a progress mechanism such as pri-
ority inheritance, as we will demonstrate with respect to the
R2DGLP in Sec. 4, yields desirable worst-case pi-blocking
bounds. The rules of the RRPD will be demonstrated later
in an example of the R2DGLP.

In the following rules, let Ji be a job that requires a
replica of `a at time t1. Let t2 be the time that Ji issues its
replica request. Let t3 and t4 be the times that Ji’s request
is satisfied and completed, respectively. These times are de-
picted in Fig. 2. Additionally, let Jd be a priority donor of
Ji that requires a replica of `a at time tx. Jd suspends to let
Ji complete its replica request.

D1 Ji may issue a request for a replica of `a only if it is
among the m jobs of highest effective priority that cur-
rently require a replica of `a (including jobs with an
incomplete request for a replica of `a). If necessary, Ji
suspends until it may issue its replica request.

D2 Jd becomes Ji’s priority donor a time tx if (a) Jd has
one of the m highest base priorities among jobs that
currently require a replica of `a, (b) Ji is the lowest
effective-priority job4 with an incomplete request for a

4Ties are broken according to the scheduler’s tie-breaking rules.
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replica of `a at time tx, and (c) there are m jobs with
an incomplete request for a replica of `a.

D3 Ji assumes the priority of Jd (if any) during [t2, t4). Jd
is considered to have no effective priority while it is a
donor.

D4 If a job Jd donating its priority to Ji is displaced from
the set of the m highest base-priority jobs that require
a replica of `a by a job Jh, then Jh becomes Ji’s pri-
ority donor and Jd ceases to be a priority donor. (By
Rule D3, Ji thus assumes Jh’s priority.)

D5 A priority donor is suspended throughout the duration
of its donation.

D6 Jd ceases to be a priority donor as soon as either (a) Ji
completes its critical section (i.e., at time t4), or (b) Jd
is relieved by Rule D4.

Note that Rules D1-D6 on their own do not necessarily
ensure progress in their own right. For example, consider a
system with two processors, and one replica of `a, in which
two lower-priority jobs Jl1 and Jl2 have incomplete requests
for a replica of `a, and two higher-priority jobs Jh1 and Jh2

are the priority donors of Jl1 and Jl2 , respectively. If Ji is
released and has one of the highest m effective priorities in
the system, then only one of Jh1

and Jh2
has sufficient pri-

ority to be scheduled. If Jh1
has a higher priority than Jh2

,
but Jh1

is not donating to the replica holder, than progress is
not ensured. For this reason, we require the rules of a lock-
ing protocol that utilizes RRPD to also ensure the following
progress property.

P1 A job Ji with an incomplete replica request makes
progress (i.e., the replica-holding job for which Ji is
waiting is scheduled) if Ji has sufficient effective pri-
ority to be scheduled.

In the R2DGLP, this property is satisfied through the use of
priority inheritance.
Analysis. We next analyze several qualities of RRPD that
will later be used to bound the duration of pi-blocking for
the R2DGLP.
Lemma 1. A job Ji with an incomplete request for a replica
of `a has one of the m highest effective priorities among
jobs that require a replica of `a (those that have issued a
request, as well as those that are suspended waiting to issue
a request, as seen in Fig. 2).
Proof. By contradiction. Assume Ji has an incomplete re-
quest for a replica of `a but does not have one of the m high-
est effective priorities among the jobs that require a replica
of `a. Thus there are at least m jobs of higher effective pri-
ority than Ji that require a replica of `a. Then either all m
of these higher effective-priority jobs have issued requests,
or there is at least one such higher effective-priority job that
is suspended waiting to issue its request by either Rule D1
or D5. We consider these cases separately.

If all m jobs with higher effective priority than Ji that
currently require a replica of `a issued their replica requests
before Ji, then Ji would not have been allowed to issue its
request by Rule D1.

Consider a job Jd that is one of the m jobs of higher ef-
fective priority than Ji, which is suspended and waiting to
issue its request for a replica of `a. Jd is not suspended by
Rule D1, because it has one of the highest m effective prior-
ities among jobs that currently require a replica of `a. Thus
Jd must be suspended by Rule D2, and is thus a priority
donor. Therefore Jd has no effective priority by Rule D3,
because its priority is being donated to a job with an incom-
plete request for `a (e.g., Ji).

Lemma 2. There are at most m jobs with an incomplete
request for a replica of `a at any time.

Proof. Assume for contradiction that there are more than m
jobs with an incomplete request for a replica of `a. Let Ji be
the job that issued the (m + 1)st request for a replica of `a.
By Rule D1, when Ji issued its request, it was one of the m
jobs of highest effective priority with an incomplete request
for a replica of `a. However, there were also m jobs with
incomplete requests for a replica of `a, that, by Lemma 1,
had the highest m effective priorities of jobs that required
a replica of `a. This contradicts the assumption that Ji was
allowed to issue a replica request.

Lemma 3. A job Ji that has one of the highest m base pri-
orities among jobs that currently require a replica of `a also
has one of the highest m effective priorities (with respect to
priority donation only) among jobs that currently require a
replica of `a.

Proof. The only way for a job’s effective priority to be in-
creased is through priority donation, or Rule D2. Priority
donation forms a one-to-one relationship between donor
and recipient, in which the recipient’s effective priority is
elevated while the donor’s effective priority is reduced to
zero. Thus, the highest m effective priorities are equal to the
highest m base priorities among jobs that currently require
a replica of `a. Therefore, if a job has one of the highest
m base priorities, it is not a priority donor or recipient, and
thus also has one of the highest m effective priorities (with
respect to priority donation only) among jobs that currently
require a replica of `a.

Lemma 4. Under RRPD, if a job Ji that requires a replica
of `a is pi-blocked waiting for a replica of `a it either has
an incomplete request for a replica of `a or it is a priority
donor.

Proof. Assume for contradiction that a job Ji is pi-blocked,
does not have an incomplete request for a replica of `a, and
is not a priority donor. By the definition of pi-blocking, if Ji
is pi-blocked, then it has one of the highest m base priori-
ties in the system, and by Lemma 3 is among the set of the
highest m effective-priority jobs that need a replica of `a.
Thus, by Rule D1, Ji would issue a request for a replica of

5



Figure 4: Queue structure used by the CK-OMLP, which is
suboptimal when used with RRPD. Under JRPD, the progress
mechanism employed by the CK-OMLP, all replica-holding jobs
are scheduled, and thus the total pi-blocking is at most d(m −
k)/keLmax. However, under RRPD, if Jh is the only job with
sufficient effective priority to be scheduled, then only one replica-
holding job will be scheduled. Thus Jh must wait in the wait queue
for (m− k − 1)Lmax, which is suboptimal.

`a.

Lemma 5. A priority donor Jd can be pi-blocked during
priority donation for at most the maximum duration of time
that a job can be pi-blocked with an incomplete request for
a replica of `a (refer to timeline in Fig. 2), plus one critical
section.

Proof. If Jd is pi-blocked while it is a priority donor, then the
recipient of its priority donation Ji has sufficient effective
priority to be scheduled. By Property P1, Ji makes progress.
Thus Jd can be pi-blocked while it is donor for at most the
maximum duration of time Ji can be pi-blocked waiting for
its request to be satisfied, plus Ji’s critical section length.

The rules of RRPD facilitate the design of a simple
yet optimal k-exclusion locking protocol, which we present
next.

4 R2DGLP

The clustered k-exclusion OMLP (CK-OMLP) [6], which
employs JRPD, uses a single FIFO-ordered queue to or-
der the acquisition of replicas. Under JRPD, every replica-
holding job is scheduled, and thus all requests make
progress and the maximum duration of pi-blocking is
O(m/k). This design does not extend to RRPD. Under
RRPD, a replica-holding job is not guaranteed to be sched-
uled (if higher-priority work is present), and thus if only one
job Ji with an incomplete replica request has sufficient pri-
ority to be scheduled, only one replica-holding job would be
scheduled. Thus it is possible for all requests to be serialized
on a single resource, which results in an (m− k − 1)Lmax

blocking bound, which is suboptimal, as shown in Fig. 4.
Instead the R2DGLP employs a similar queue structure to
the O-KGLP [9] and the k-FMLP [11], in which there are
ka queues for each resource `a, one per replica.

Figure 5: Queue structure of the R2DGLP.

Structure. In the R2DGLP, access to each replica of a re-
source `a is arbitrated by an individual FIFO ordered replica
queue denoted KQx. Within each replica queue, priority in-
heritance is used to ensure progress. As will be proven later,
this design limits the maximum queue length to dm/ke,
and thus the maximum duration of pi-blocking is O(m/k),
which is optimal. The queue structure of the R2DGLP is
shown in Fig. 5. In the following rules and analysis, we con-
sider, without loss of generality, only a single resource `a,
with k replicas.

K1 Ji is enqueued on the shortest KQx when it issues
R. Ji suspends until R is satisfied (if KQx was non-
empty).

K2 R is satisfied when Ji becomes the head of KQx. A
resource-holding job is ready.

K3 The head of KQx inherits the highest effective priority
(which could be a donated priority) of any job in KQx.

K4 Ji is dequeued from KQx when R is completed. The
new head of KQx, if any, acquires replica x.5 Ji’s pri-
ority donor (if any) may then issue a replica request
subject to Rule D1.

Example 1. Consider a G-EDF-scheduled system on m =
4 processors with a single resource `a with ka = 2 repli-
cas as depicted in Fig 6. At time t = 0, jobs J1 and J2 are
released with deadlines of d1 = 10 and d2 = 13. At time
t = 1, J3 and J4 are released with deadlines d3 = 15 and
d4 = 14. Also at t = 1, both J1 and J2 request and ac-
quire a replica of `a. At time t = 2, J3 requests a replica
of `a, and is enqueued in KQ2 and suspends by Rule K1.
Then at time t = 3, J5 and J6 are released with deadlines
of d5 = d6 = 12. At this time, J1, J4, J5, and J6 have
the four highest effective priorities, and therefore are sched-
uled, even though J2 is holding a replica of `a. At t = 4,
J4 requests a replica of `a, enqueues in KQ1 and suspends
by Rule K1. Also at t = 4, J5 requests a replica of `a and
because there are m = 4 jobs with incomplete replica re-
quests, by Rule D2, J5 must donate to J3, the job with the

5As an implementation optimization, if KQx is left empty after Ji de-
queues, a request from another KQy can migrate to KQx and acquire
replica x to reduce average-case pi-blocking. For example, the highest
effective-priority job could be chosen to migrate, or the job with the least
remaining slack.
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Figure 6: Figure depicting the task system in Example 1. In this
example, k = 2 and m = 4.

lowest effective priority among the jobs with incomplete re-
quests for a replica of `a. J2 then inherits J3’s effective pri-
ority, or J5’s priority, by Rule K3. At time t = 5, J1 releases
its replica of `a, allowing J4, the next job in KQ1 to acquire
a replica of `a. Also at time t = 5, J6 requests a replica of
`a, and is enqueued in KQ1, J4 also inherits J6’s priority
by Rule K3. At time t = 6, J2 releases its replica of `a,
and J3 acquires it. At time t = 7, J4 releases its replica,
which allows J6 to begin its critical section. At t = 8, J3
finishes its critical section, and J5’s donation obligation is
finally completed by Rule D6, and it therefore is allowed
to request a replica of `a. At this time, J6 can immediately
acquire its replica and begin its critical section. Finally, at
times t = 9 and t = 10, J6 and J5 respectively complete
their critical sections and the example returns to ordinary
G-EDF scheduling.

Analysis. Next, we analyze the worst-case pi-blocking of
the R2DGLP. By Lemma 4, if a job is pi-blocked it either
has an incomplete replica request or it is a priority donor.
Thus, the total duration of pi-blocking is equal to the max-
imum duration of time a job can be pi-blocked while it is
a priority donor as well as the maximum duration of time
a job can be pi-blocked while it has an incomplete replica
request. We analyze each of these times separately.

Lemma 6. The maximum length of KQx is dm/ke.
Proof. By Lemma 2, there are no more than m jobs with
incomplete replica requests. By Rule K1, jobs are enqueued
in the shortest queue upon request, and thus a job Ji will
never be enqueued on a queue of length longer than dm/ke,
otherwise there would have been a shorter queue on which
Ji would have enqueued.

Lemma 7. Rule K3 ensures Property P1.

Proof. If a job Ji with an incomplete request in KQx

has sufficient effective priority to be scheduled, then by

Release-blocking Request-blocking
R2DGLP 0 2(dm/ke − 1)Lmax

O-KGLP 0 2(dm/ke+ 2)Lmax

CK-OMLP dm/keLmax (dm/ke − 1)Lmax

k-FMLP dn/keLmax (dn/ke − 1)Lmax

Table 1: Blocking bounds of several k-exclusion suspension-
based locking protocols.

Rule K3, the job at the head of KQx inherits Ji’s effective
priority. Thus the replica holder is scheduled, and Ji makes
progress.

Lemma 8. A job Ji can be pi-blocked for (dm/ke −
1)Lmax in KQx.

Proof. By Lemma 7, a job that is pi-blocked makes progress.
By Lemma 6, there are at most dm/ke − 1 jobs that are
enqueued ahead of Ji in KQx. Thus, the maximum duration
of pi-blocking in KQx is (dm/ke − 1)Lmax.

Lemma 9. A job Jd can be pi-blocked for a maximum du-
ration of dm/keLmax while it is a priority donor.

Proof. Follows from Lemmas 5 and 8.

Theorem 1. The maximum duration of pi-blocking a job
Ji can experience waiting for a replica per request is
(2dm/ke − 1)Lmax.

Proof. Follows from Lemma 4, 8, and 9.
Note that the O-KGLP [9], the only other known asymp-

totically optimal k-exclusion locking protocol under s-
oblivious analysis that does not cause release-blocking, has
a worst-case pi-blocking bound of (2dm/ke + 2)Lmax.
Thus, the locking protocol we present has a worst-case
blocking bound that improves upon the O-KGLP by 3Lmax.
These blocking bounds can be seen in Table 1. As we show
next in Sec. 5, this improvement can be quite significant
when critical sections (i.e., Lmax) are long.

Additionally, note that when k = 1, the blocking bound
is (2m − 1)Lmax, which is the same as that of the global
OMLP [5] for serially reusable resources. The R2DGLP is
therefore a more flexible and applicable locking protocol in
that it can be used either for a mutex lock, or a k-exclusion
lock, both with good blocking bounds.

5 Experimental Results
To better understand the schedulability properties of the
R2DGLP, we randomly generated task sets with varying
characteristics. Soft real-time schedulability under G-EDF
scheduling was determined, as described in [12] for tasks
with relative deadlines equal to periods (di = pi). We focus
our attention on soft real-time schedulability since global
schedulers (the only type the R2DGLP supports) are capa-
ble of ensuring bounded deadline tardiness in sporadic task
systems with no utilization loss [16]. Schedulability was
also tested under different locking protocols for compari-
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son. These were the k-FMLP [11], the CK-OMLP [6], and
the O-KGLP [9].

Experimental Setup. The task set characteristics varied by
per-task utilization, number of replicas k, critical section
length, and number of resource-using tasks in a task set. In
all experiments, the system contained a single k-exclusion
resource. Utilization intervals determine the range of uti-
lization for individual tasks and were [0.01, 0.1] (light),
[0.1, 0.4] (medium), and [0.5, 0.9] (heavy). The number of
replicas in each case varied among k ∈ {2, 4, 6, 8}. Criti-
cal section intervals determine the range of critical section
lengths for resource-using tasks and were (0%, 2%] (very
short), (0%, 10%] (short), [10%, 25%] (moderate), and
[50%, 75%] (long), where critical section length is a per-
centage of ei. The moderate and long intervals are inspired
by GPU-usage patterns in which there are k GPUs [10] (a
motivating example described in Sec. 1) while very short
and short intervals may be common for other shared re-
sources. Resource usage percentage intervals determine the
number of tasks in a task set that use a resource protected
by the k-exclusion lock and vary in increments of 10% from
0% to 100%. Each combination of these four parameters re-
sulted in an experimental scenario. Each scenario was used
to evaluate schedulability under each locking protocol on an
eight CPU system. For example, one such scenario tested
schedulability for task sets with light utilizations, k = 4
replicas, short critical section intervals, where 50% to 60%
of tasks required the use of a replica of the shared resource.
A total of 432 experimental scenarios were run.

We generated random task sets for each experimental
scenario in the following manner. First, we selected a total
system utilization cap uniformly in the interval (0, 8] cap-
turing the possible system utilizations on a platform with
eight CPUs. We then generated tasks by making selections
uniformly from the intervals in each scenario. Per-task uti-
lization was selected from the scenario’s utilization interval.
Task periods were selected from the range [3ms, 33ms],
a common range for multimedia applications. Execution
times were derived from the selected utilization and pe-
riod. We added the generated tasks to a task set until the
set’s total utilization exceeded the utilization cap, at which
point the last-generated task was discarded. Next, we desig-
nated some tasks to use the shared resource; we determined
the number of resource-using tasks by selecting a percent-
age from the resource usage percentage interval of the sce-
nario. A critical section length for each resource-using task
was selected from the scenario’s critical section interval.
Bounds on pi-blocking were computed using detailed anal-
ysis such as that presented in [5, 4] for each tested locking
protocol. As per s-oblivious analysis, task execution times
were inflated by their respective pi-blocking bounds (i.e.,
einflated
i = ei +bi, where bi is the pi-blocking bound of Ti),

prior to performing the soft real-time schedulability test.
Tardiness bounds were computed using the method devel-
oped by Erickson et al. since it offers the tightest know tar-
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Figure 7: The R2DGLP dominates both the CK-OMLP and O-
KGLP. This scenario highlights that release-blocking affects neg-
atively affect the CK-OMLP.
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Figure 8: The R2DGLP dominates both the CK-OMLP and O-
KGLP. The O-KGLP performs poorly due to additional blocking
for resource-using tasks

diness bounds for G-EDF schedulers [12]. These tardiness
bounds were incorporated into fixed-point iterative schedu-
lability tests. Fixed-point tests are necessary because tardi-
ness can affect bounds on pi-blocking, which in turn can in-
crease tardiness. Thus, tight tardiness bounds can improve
soft real-time schedulability analysis.
Results. A selection of results that demonstrate observable
trends across all scenarios is presented here. We found that
trends were most clearly expressed in scenarios using light
utilizations since this resulted in task sets with more tasks.

Observation 1. Schedulability is poor under the CK-
OMLP when critical section lengths are long and when
there are relatively few resource-using tasks.

Fig. 7 depicts schedulability under a scenario where
a small percentage of tasks use a resource, yet each of
these have long critical sections. Under the CK-OMLP, all
non-resource-using tasks experience release-blocking from
dm/ke replica requests. This negatively affects schedula-
bility in all cases, but is particularly harmful when critical
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Figure 9: The R2DGLP dominates both the CK-OMLP and O-
KGLP, and the O-KGLP dominates the CK-OMLP. However, the
k-FMLP outperforms the R2DGLP (occurred in about 14% of
tested scenarios).

section lengths are long, as is the case in Fig 7. Here, only
20% to 30% of tasks in every task set use a resource, but
critical section lengths are long, ranging from 50% to 75%
of execution time. Roughly 50% of task sets with utiliza-
tions of 5.0 are schedulable under the R2DGLP. In contrast,
approximately 50% of task sets with utilizations of 2.5 (half
that of the R2DGLP) are schedulable under the CK-OMLP.
Further, no task sets with utilizations greater than 4.0 are
schedulable under the CK-OMLP.

Observation 2. The R2DGLP improves upon the O-KGLP,
especially when k is large.

Fig. 7 also depicts schedulability under a scenario where
k is large. Though both the R2DGLP and O-KGLP are
asymptotically optimal, the R2DGLP significantly outper-
forms the O-KGLP. Under the R2DGLP, resource-using
tasks can experience request-blocking from 2dm/ke − 1
other replica requests (Theorem 1). In comparison, these
tasks experience request-blocking from 2dm/ke + 2 other
replica requests under the O-KGLP; three more requests
than the R2DGLP. When k is large, the addition of three re-
quests to the blocking term has a stronger affect on schedu-
lability. For example, in the scenario depicted in Fig. 7,
m = 8 and k = 8, so under the R2DGLP, requests are pi-
blocked by only a single request versus four requests under
the O-KGLP.

Observation 3. Schedulability under the CK-OMLP can
be better than the O-KGLP when there are many resource-
using tasks.

Fig. 8 illustrates a scenario where the number of
resource-using tasks is relatively high and the CK-OMLP
can outperform the O-KGLP. Here, we begin to see trade-
offs between release-blocking and request-blocking be-
tween these two protocols. Like the R2DGLP, resource-
using tasks can experience pi-blocking from 2dm/ke − 1
replica requests under the CK-OMLP, though non-resource-

using tasks also experience pi-blocking (Obs. 1). Resource-
using tasks experience pi-blocking from three additional
requests under the O-KGLP, but non-resource-using tasks
experience no pi-blocking. When the relative number of
resource-using tasks is high, the blocking effects from non-
resource-using tasks is decreased, while the blocking effects
from resource-using tasks are magnified. Thus, neither the
CK-OMLP or O-KGLP dominates the other in all scenar-
ios. However, the R2DGLP dominates both of these in all
scenarios.

Observation 4. The R2DGLP strictly dominates the CK-
OMLP and O-KGLP when jobs only make a single request.

When jobs only make one replica request, the R2DGLP
offers the best schedulability of known optimal k-exclusion
locking protocols for globally-scheduled JLFP systems. The
dominance of the R2DGLP over the CK-OMLP and O-
KGLP in this case can be observed in Figs. 7, 8, and 9.
The R2DGLP exhibits the best aspects of both the CK-
OMLP and O-KGLP: resource-using jobs can experience
pi-blocking from 2dm/ke − 1 replica requests, and non-
resource-using jobs experience no pi-blocking.

Note that if individual jobs make many requests for
shared resources than the CK-OMLP may have better
schedulability. In the CK-OMLP, jobs can be blocked upon
release, however, subsequent requests can only be blocked
for (dm/ke−1)Lmax instead of (2dm/ke−1)Lmax. There-
fore, if jobs make many short requests, the CK-OMLP may
be favorable to the R2DGLP.

Observation 5. The k-FMLP sometimes outperforms the
R2DGLP.

Fig. 9 illustrates a scenario where the k-FMLP outper-
forms the R2DGLP, despite not being asymptotically op-
timal. This occurred in about 14% of the tested scenar-
ios. While the R2DGLP is asymptotically optimal, there
are cases where the k-FMLP can offer better schedulability.
This is due to two aspects of the k-FMLP. First, resource-
using tasks can experience pi-blocking from dna/ke re-
quests, where na is the number of tasks that may request `a.
Thus, the k-FMLP can outperform the R2DGLP when na

is sufficiently small. Second, due to the FIFO ordering of
all requests, a task can be pi-blocked by at most one request
per task under the k-FMLP. Due to donation mechanisms, a
task can be pi-blocked by at most two requests per task un-
der the R2DGLP, even though the total number of requests
that may pi-block a task is 2dm/ke − 1. A task may expe-
rience less pi-blocking under the k-FMLP if there is a high
degree of variance in critical section lengths.

Minimum Response-Time Constraints. As discussed in
Sec. 1, release-blocking imposes a minimum response time
on all tasks, including those that do not use resources. This
minimum response time is on the order of several of the
longest critical sections. As a result, non-resource-using
tasks must have similar response-time constraints to those
of resource-using tasks. For implicit-deadline systems, this
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Figure 10: Release-blocking imposes a minimum response time
on all tasks. This negatively affects schedulability of tasks with
varying response-time constraints.

means that all tasks, resource-using and non-resource-using,
must have similar periods. This limits system flexibility
since not all potential applications have this characteristic.
In order to highlight this limitation, we selected a scenario
from our prior experiments and scaled the execution times
and periods of non-resource-using tasks by a scaling factor,
s ∈ {1/2, 1/4, 1/8}. Thus, task utilization remained con-
stant, yet response-time constraints on non-resource-using
tasks become more stringent with smaller scaling factors.
The results of this are depicted in Fig. 10. It is easily ob-
served that release-blocking negatively affects schedulabil-
ity of the CK-OMLP. In contrast, the remaining protocols
(which only incur request-blocking) are unaffected.

6 Conclusions
In this paper, we have presented RRPD, a progress mech-
anism for globally-scheduled multiprocessor real-time sys-
tems that does not cause release-blocking under s-oblivious
analysis. Using a combination of RRPD and priority inheri-
tance we have constructed the R2DGLP, a k-exclusion lock-
ing protocol that is asymptotically optimal. The R2DGLP
improves upon existing k-exclusion locking protocols such
as the O-KGLP and the clustered k-exclusion variant of the
OMLP, as we have demonstrated. These improvements are
particularly significant for applications in which critical sec-
tions are long, as is the case when using a locking protocol
to arbitrate access to shared I/O devices such as GPUs.

The protocols that we have presented are applicable not
only in globally scheduled systems, but also on a clustered
systems for resources that are shared locally within a single
cluster. In the future, we hope to investigate clustering algo-
rithms, in which the cluster sizes are determined, and tasks
assigned to clusters in such a way as to minimize sharing
across clusters. This allows for more lightweight progress
mechanisms such as RRPD to be employed instead of more
heavyweight progress mechanisms such as JRPD, which
cause more release-blocking.
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