
Fine-Grained Multiprocessor Real-Time Locking with
Improved Blocking∗

Bryan C. Ward and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill
{bcw,anderson}@cs.unc.edu

ABSTRACT
Existing multiprocessor real-time locking protocols that sup-
port nesting are subject to adverse blocking that can be
avoided when additional resource-usage-pattern information
is known. These sources of blocking stem from system over-
heads, varying critical section lengths, and a lack of sup-
port for replicated resources. In this paper, these issues are
resolved in the context of the recently proposed real-time
nested locking protocol (RNLP). The resulting protocols are
the first to support fine-grained real-time lock nesting while
allowing multiple resources to be locked in one atomic op-
eration, both spin- and suspension-based waiting to be used
together, and resources to be replicated. They also reduce
“short-on-long” blocking, which is very detrimental if both
very long and very short critical sections must be supported.

1. INTRODUCTION
In concurrent systems, it is sometimes necessary for a sin-

gle task to perform operations on multiple shared resources
concurrently. When lock-based mechanisms are used to re-
alize resource sharing, such concurrent operations can be
implemented by nesting lock requests. In this paper, we con-
sider multiprocessor systems that employ lock nesting and
that also have real-time constraints. In this case, a synchro-
nization protocol must be used that, when coupled with a
scheduling algorithm, ensures that all timing constraints can
be met.

There currently exist two general techniques for support-
ing nested resource requests on multiprocessor real-time sys-
tems: coarse- and fine-grained locking. Under coarse-grained
locking, resources that may be accessed in a nested fash-
ion are grouped into a single lockable entity, and a single-
resource locking protocol is used. This approach is also known

∗Work supported by NSF grants CNS 1016954, CNS
1115284, CNS 1218693, and CNS 1239135; and ARO grant
W911NF-09-1-0535. The first author was supported by an
NSF graduate research fellowship.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

RTNS 2013 , October 16 - 18 2013, Sophia Antipolis, France
Copyright is held by the owner/authors(s). Publication rights licensed to ACM.
ACM 978-1-4503-2058-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2516821.2516843.

as group locking [1]. In contrast, a fine-grained locking pro-
tocol allows such resources to be held concurrently by dif-
ferent tasks [12]. In recent work, we developed the first such
protocol for multiprocessor real-time systems: the real-time
nested locking protocol (RNLP) [12]. The RNLP is actually a
“pluggable” protocol that has different variants for different
schedulers and analysis assumptions. Most of these variants
have asymptotically optimal blocking behavior.

Fine-grained locking often allows for increased parallelism
among resource-using tasks. If this parallelism can be cap-
tured analytically, then predicted worst-case blocking times
decrease. However, even if more pessimistic blocking anal-
ysis is applied, the increased parallelism afforded by fine-
grained lock nesting allows for improved response times in
practice. Also, fine-grained lock nesting is more dynamic in
that resources can be more easily added to or removed from
a system. In contrast, under coarse-grained locking, resource
groups must be statically created before execution.

After developing the RNLP, we attempted to apply it
within two interesting use cases. In the first, we sought to
manage usage of graphics processing units (GPUs) by em-
ploying fine-grained locking to arbitrate access to various
interconnects and GPU functional units that are involved in
GPU computations [9]. In the second, we sought to manage
the shared cache of a multicore machine by treating cache
lines as shared resources that tasks may acquire via a fine-
grained locking protocol [14]. In both use cases, we found
that, despite its asymptotic optimality, the RNLP can some-
times cause unnecessary or problematic blocking:

I1 If a task requires access to multiple resources that
are a priori known, then acquiring each resource in-
dividually in a nested fashion can unnecessarily in-
crease system-call overhead and hence blocking times
for suspension-based locks. This is especially problem-
atic if such overheads are long relative to critical sec-
tion lengths.

I2 In the RNLP, requests may be blocked by other pos-
sibly non-conflicting requests for different resources.
This can cause short-on-long blocking, i.e., short re-
quests may be blocked by long requests. This is partic-
ularly problematic if critical section lengths are highly
variant or if some critical sections are quite lengthy, as
is true in our GPU use case.

I3 In applications in which resources are replicated (e.g.,
GPUs), viewing each replica as a distinct resource may
cause unnecessary blocking if a task merely requires ac-

cess to some replica and not a specific one. The original
RNLP [12] does not support replicated resources.

While Issue I3 concerns new functionality, Issues I1 and
I2 stem from the fact that the RNLP was designed with
asymptotic optimality in mind: in designing it, system over-
heads were ignored, and critical section lengths were con-
sidered constants (thus, effectively ignored). In this paper,
we explain how all three issues can be addressed to obtain
new protocols with better blocking bounds. As discussed
elsewhere [9, 14], several of these new protocols have been
successfully applied in the GPU and shared-cache use cases
mentioned above.

Prior work. Rajkumar developed the first multiproces-
sor real-time locking protocols, the multiprocessor priority
ceiling protocol (MPCP) and the distributed priority ceil-
ing protocol (DPCP) [11]. More recently, these results have
been built upon to produce the MPCP with virtual spinning
(MPCP-VS) [10] and the parallel priority ceiling protocol
(PPCP) [6]. However, the prior work most applicable to the
issues we address is the flexible multiprocessor locking proto-
col (FMLP) and related protocols [1, 2]. Under the FMLP,
resources are categorized as short or long depending on ac-
cess times; tasks wait on short resources by spinning and on
long resources by suspending. The FMLP allows requests
for short resources to be nested within requests for long re-
sources, but not vice versa. This eliminates short-on-long
blocking. Also, the FMLP uses group locks to support the
nesting of requests that are either all short or all long.

Contributions. In this paper, we address the three issues
raised above for job-level fixed priority (JLFP) systems, i.e.,
systems in which each job has a constant priority. We ad-
dress Issue I1 by allowing a task to lock multiple resources
with one lock request—we call such locks dynamic group
locks (DGLs). DGLs are a hybrid of coarse- and fine-grained
locking in that a task need not request an entire group of
resources, but rather only the subset it requires. Also, tasks
may issue nested DGL requests.

We address Issue I2 by enabling short requests to be sat-
isfied more greedily. This can cause additional blocking on
short requests by long requests (long-on-short blocking), but
this is often an acceptable tradeoff at runtime. We allow
waiting on short resources by either spinning or suspending;
thus, we allow both waiting mechanisms to be used in the
same protocol. In the original RNLP [12], different waiting
mechanisms are not used together.

Finally, we address Issue I3 by introducing support for
replicated resources in the RNLP, which requires altering
some of its queue structures to allow multiple tasks to hold
replicas of the same resource concurrently. The resulting par-
allelism is reflected in the blocking analysis.

Organization. In Secs. 2–3, we present background ma-
terial and review the RNLP. We then present our extensions
of the RNLP in Secs. 4–6. In Sec. 7, we present an experi-
mental evaluation, and in Sec. 8, we conclude.

2. BACKGROUND AND DEFINITIONS
We assume the sporadic task model in which there are

n tasks τ = {T1, . . . , Tn} that execute on m processors. We
denote the kth job (invocation) of the ith task as Ji,k though
we often omit the job index k if it is insignificant. Each

Figure 1: Illustration of request phases.

task Ti is characterized by a worst-case execution time ei,
minimum job separation pi, and relative deadline di. For
simplicity, we assume implicit deadlines (di = pi), and that
every job must complete before its deadline (no tardiness).
We say that a released job is pending until it finishes its
execution.

Resources. We consider a system that contains q shared
resources L = {`1, . . . , `q}. We assume basic familiarity with
terms related to resource sharing (e.g., critical section, out-
ermost critical section, etc.). With respect to the RNLP (see
Sec. 3), resource requests proceed through several phases, as
depicted in Fig. 1. A job making an outermost request must
first acquire a token, as described in Sec. 3. Once a token
is acquired, resources may be requested in a nested fashion.
Once such a request is issued, the requesting job blocks (if
necessary) until the request is satisfied, and then continues
to hold the requested resource until its critical section is
completed. An issued but not completed request is called an
incomplete request. A job that has an incomplete request and
is waiting for a shared resource is said to have an outstand-
ing resource request. Waiting can be realized by spinning or
suspending. A pending job is ready if it can be scheduled
(a suspended job is not ready). We say that job Ji makes
progress if a job that holds a resource for which Ji is waiting
is scheduled and executing its critical section.

We denote Ji’s k
th outermost request as Ri,k, though we

omit the request index k where it is inconsequential. We let
Ni be the maximum number of outermost requests that Ji
makes. The maximum duration of time that Ji executes (not
counting suspensions and spinning) during its kth outermost
critical section is given by Li,k.

Scheduling. We consider clustered-scheduled systems and
job-level static-priority schedulers (we assume familiarity
with these terms—recall that global and partitioned schedul-
ing are special cases of clustered scheduling). We assume
that there are m

c
clusters of c processors each.

Each task has a base priority dependent upon the schedul-
ing policy. A locking protocol can alter a job’s priority such
that it has a higher effective priority. Three such mecha-
nisms, which we call progress mechanisms, exist to change a
job’s effective priority: priority inheritance, priority boosting,
and priority donation. Priority boosting elevates a resource-
holding job’s priority to be higher than any base priority
in the system so as to ensure that it is scheduled. Non-
preemptive execution is an example of priority boosting. Un-
der priority inheritance, a resource-holding job’s priority is
elevated to that of the highest priority job waiting upon the
held resource. Priority donation [5] is a hybrid of these two
approaches: when a job Jd is released that would preempt
a job Ji with an incomplete resource request, Jd is forced

Figure 2: Illustration (from [4]) of s-oblivious vs.
s-aware analysis under global earliest-deadline-first
scheduling on two processors. During [2, 4), job J3 is
blocked, but there are m jobs with higher priority,
so J1 is not s-oblivious pi-blocked. However, because
J1 is also suspended, J3 is s-aware pi-blocked. In-
tuitively, under s-oblivious analysis, the suspension
time of higher-priority jobs is modeled as compu-
tation, but under s-aware analysis, it is not. (The
legend applies to all figures.)

to suspend and donate its priority to Ji until Ji finishes its
critical section. Priority boosting and priority donation both
cause a type of blocking described later.

Blocking. We analyze locking protocols on the basis of
priority inversion blocking (pi-blocking), i.e., the duration of
time a job is blocked while a lower-priority job is running.
Brandenburg and Anderson [4] defined two definitions of pi-
blocking for tasks with suspensions, depending on whether
schedulability analysis is suspension-aware (s-aware) (sus-
pensions are considered) or suspension-oblivious (s-oblivious)
(suspensions are modeled as computation).

Def. 1. Under s-aware analysis, a job Ji incurs s-aware
pi-blocking if Ji is pending but not scheduled and fewer than
c higher-priority jobs are ready in Ji’s cluster.

Def. 2. Under s-oblivious analysis, a job Ji incurs s-
oblivious pi-blocking if Ji is pending but not scheduled and
fewer than c higher-priority jobs are pending in Ji’s cluster.

The difference between s-oblivious and s-aware pi-blocking
is demonstrated in Fig. 2. If waiting is realized by spinning,
a different definition is required [2].

Def. 3. A job Ji incurs spin-based blocking if Ji is spin-
ning (and thus scheduled) waiting for a resource.

For both spin- and suspension-based protocols, progress
mechanisms such as non-preemptive spinning or priority do-
nation can cause priority inversions for non-resource-using
tasks. We call such blocking progress-mechanism blocking,
(pm-blocking), because it is the result of the progress mech-
anism; we note that often pm-blocking happens upon job
release, and thus has previously been termed release block-
ing. In contrast, we call pi-blocking (such as s-blocking) that

Token HoldersToken Lock Wait Queue

Resource Wait Queues

Resource
Holders

Figure 3: Components of the RNLP.

occurs while a job has an incomplete resource request request
blocking.

Analysis assumptions. We let Lmax denote the maxi-
mum critical section length. In asymptotic analysis, we as-
sume the number of processors m and tasks n to be variable,
and all other variables constant, as in prior work [2, 4, 5, 12].

3. RNLP
The RNLP is composed of two components, a token lock,

and a request satisfaction mechanism (RSM). When a job
Ji requires a shared resource, it requests a token from the
token lock. Once Ji has acquired a token, it issues a resource
request to the RSM, which orders the satisfaction of resource
requests. The overall architecture of the RNLP is shown in
Fig. 3. Depending upon the system (clustered, partitioned,
or globally scheduled), as well as the type of analysis being
conducted (spin-based, s-oblivious, or s-aware), different to-
kens locks, number of tokens T , and RSMs can be combined
to form an efficient locking protocol.

The token lock is effectively a k-exclusion lock1 that serves
to limit the number of jobs that can have incomplete re-
source requests at a time. Therefore, existing k-exclusion
locks can be employed as the token lock [5, 13] with k = T .

As presented in [12], a single RSM controls access to all
shared resources in the system. Associated with each re-
source `a is a resource queue RQa in the RSM that is or-
dered by the timestamp of token acquisition. This ordering
is FIFO, but as seen below, a job that issues a nested re-
quest may “cut in line” to where it would have been had it
issued the nested request at the time of token acquisition.
Additionally, the RNLP prevents a request at the head of
RQa from acquiring `a if another request with an earlier
timestamp could issue a nested request for `a. These two
properties effectively reserve spaces in all resource queues
for the resources a job may request in the future. The non-
greedy nature of these rules ensure that a request is never
blocked by a request with a later timestamp (Lemma 1 of
[12]), which results in efficient bounds on pi-blocking.

The original rules of the RSM are given below.2 In these
rules, Li denotes the set of resources that Ji may request
in an outermost critical section under consideration (includ-
ing nested requests). Li can be specified at run-time when
a job makes an outermost request, or defined implicitly via
a partial ordering on allowable request nestings defined of-

1k-exclusion generalizes mutual exclusion by allowing up to
k simultaneous lock holders.
2We adapted the notation from [12] for simplicity later. The
two sets of rules are functionally identical.

Analysis Scheduler T Progress Mechanism pm-blocking Request Blocking
spin Any m Non-Preemptive Spinning mLmax (m− 1)Lmax

s-aware
Partitioned n Boosting (n− 1)Lmax (n− 1)Lmax

Clustered n Boosting O(φ · n) (n− 1)Lmax

Global† n Inheritance O(n) (n− 1)Lmax

s-oblivious

Partitioned m Donation mLmax (m− 1)Lmax

Clustered m Donation mLmax (m− 1)Lmax

Global
m Donation mLmax (m− 1)Lmax

m Inheritance 0 (2m− 1)Lmax

† Applicable only under certain schedulers such as EDF and rate monotonic.

Table 1: Table adapted from [12], which gives the blocking behavior of different
variants of the RNLP. Lmax denotes the maximum critical section length. All listed
protocols are asymptotically optimal except the case of clustered schedulers under
s-aware analysis for which no asymptotically optimal locking protocol is known. φ is
the ratio of the maximum to minimum period in the system.

Figure 4: Illustration of Example 1. Note that during
the interval [5, 7) J2 and J3 are both scheduled under
the RNLP, while a coarse-grained locking scheme
would have disallowed such concurrency.

fline (in practice, this is commonly done by simply indexing
resources).

Q1 When Ji acquires a token at time t for its kth outer-
most critical section, the timestamp of token acquisi-
tion is recorded for the outermost request: ts(Ri) := t.
We assume a total order on such timestamps.

Q2 All jobs with requests in RQa wait with the possible
exception of the job whose request is at the head of
RQa.

Q3 A job Ji with an incomplete request Ri acquires `a
when it is the head of RQa, and there is no request Rx

with ts(Rx) < ts(Ri) such that `a ∈ Lx.3

Q4 When a job Ji issues a request Ri for resource `a, Ri

is enqueued in RQa in increasing timestamp order.4

Q5 When a job releases resource `a it is dequeued from
RQa and the new head of RQa can gain access to `a,
subject to Rule Q3.

Q6 When Ji completes its outermost critical section, it
releases its token.

Example 1. To illustrate the key concepts of the RNLP,
consider a globally scheduled earliest-deadline-first (EDF)

3This rule was presented as Rule M1 in the online appendix
of [12]. It generalizes the original Rule Q3.
4We assume that the acquisition of a token and subsequent
enqueueing into the associated RQ occur atomically.

system with m = 2 processors, T = 2 tokens, and q = 2
resources, `a and `b, as seen in Fig. 4. Assume that a job
that holds `a can make a nested request for `b, but not vice
versa. At time t = 0, two jobs J1 and J2 are released, and
later at time t = 2, jobs J3 and J4 are released. At time
t = 1, J1 makes a request for `a, and it thus acquires a
token with ts(R1) = 1, and then immediately acquires `a.
At time t = 2, J2 requires `b, and it acquires a token with
timestamp ts(R2) = 2. However, because J1 could request
`b in the future, J2 suspends until time t = 5 by Rule Q3
when J1 finishes its outermost critical section. While J2 is
suspended, J3 requires `a at time t = 3. However, J1 and J2
hold the only two tokens, and thus J3 must suspend and wait
until J1 releases its token at t = 5. At such time J3 acquires
`a despite having a later timestamp than J2, because J2 will
never issue a request for `a. However, at time t = 7, when
J3 requires `b, it must suspend by Rule Q2 until time t = 8
when J2 releases `b. Similarly, at time t = 4, J4 requires `a
but there is not an available token. J4 suspends until time
t = 8 when J2 finishes its outermost critical section and
releases its token. However, at time t = 8, `a is held, and
thus J4 must wait while holding a token for J3 to release `a
at time t = 10.

Table 1 summarizes the different variations of the origi-
nal RNLP and their pi-blocking bounds [12]. We now turn
our attention to modifications of the RNLP that resolve the
issues raised in Sec. 1.

4. DYNAMIC GROUP LOCKS
Under fine-grained locking as provided by the original

RNLP, a task may concurrently access multiple resources,
but must acquire the locks on those resources individually.
Under group locking, a task acquires a lock on an entire
set of resources in one operation; however, this set may in-
clude far more resources than the task actually needs to
access. In this section, we merge these two ways of sup-
porting nesting in a mechanism we call dynamic group locks
(DGLs). DGLs extend the notion of locking in the original
RNLP by allowing a resource request to specify a set of re-
sources to be locked. DGLs provide better concurrency than
group locks, and lower system-call overheads than the orig-
inal RNLP when the set of resources to lock in a nested
fashion is known a priori. Also, DGLs do not alter the ex-
isting worst-case blocking bounds of the RNLP. Thus, the

optimality of the RNLP is retained.
Note that DGLs can be supported in addition to nested

locking, that is, tasks can issue nested DGL requests. Also,
with the RNLP extended to support DGLs, individual nested
requests can still be performed like before. Such nesting may
be preferable to improve response times, as tasks are likely
blocked by fewer requests. However, even if the set of re-
sources that will actually be required is unknown—for ex-
ample, when the resource access sequence is determined by
executing conditional statements—DGLs can still be em-
ployed to request all resources that could be required, to
reduce system-call overheads.

Rules. To enable the use of DGLs in the RNLP, we mod-
ify it as follows. When a job Ji requires a set of resources
Di, it must first acquire a token, just as it would have un-
der the original RNLP. Once Ji has acquired its token, its
request is enqueued in the resource queue for each resource
in {RQa| `a ∈ Di}. The DGL request is satisfied when it
has acquired all resources in Di, at which point in time Ji
is made ready. This can be expressed by replacing Rules Q3
and Rule Q4 with the following more general rules:

D1 A job Ji with an outstanding resource request Ri for a
subset of resources Di ⊆ L acquires all resources in Di

when Ri is the head of every resource queue associated
with a resource in Di, and there is no request Rx with
ts(Rx) < ts(Ri) for which there exists a resource `a ∈
Di ∩ Lx.

D2 When a job Ji issues a request Ri for a set of resources
Di, for every resource a ∈ Di, Ri is enqueued in RQa

in timestamp order.

In Appendix A, we prove that this modified version of the
RNLP has the same worst-case blocking bounds as the orig-
inal. Intuitively, such bounds do not change because a DGL
request enqueues in multiple resource queues atomically when
it is issued, instead of enqueueing in a single queue and es-
sentially “reserving” slots in other queues for potential fu-
ture nested requests. In the worst case, the set of blocking
requests is the same in either case.

If all concurrent resource accesses in a system are sup-
ported by using DGLs, then the implementation of the RNLP
can be greatly simplified. The timestamp-ordered queues be-
come simple FIFO queues, and there is no need for jobs to
“reserve” their position in any queue. This is due to the fact
that all enqueueing due to one request is done atomically.
Thus, in this case, not only is the number of system calls
reduced, but the execution time of any one system call is
likely lessened as well.

5. REDUCING SHORT-ON-LONG
BLOCKING

For ease of exposition, we explain how to reduce short-on-
long blocking by considering the original RNLP as specified
by Rules Q1–Q6. However, the modification to these rules
explained below can easily be adapted to the DGL RNLP
variant given previously.

In this section, we assume that each resource is either
short or long,5 similarly to [1]. All outermost critical sections

5In the GPU use case mentioned in Sec. 1, critical sections

during which only short resources are locked are themselves
short and have a maximum length of Ls

max. All other re-
quests are long, and have a maximum duration of Ll

max >
Ls

max. We assume that a job holding a long resource can is-
sue a nested request for a short resource, but not vice versa.
This is a common assumption in practice so as to minimize
the blocking time for the short resources. Also, we denote
the subset of resources that are short (long) as Ls (Ll).

In this model, the primary source of short-on-long request
blocking under the RNLP is Rule Q3, which ensures that
a request is never blocked by another request with a later
timestamp. This rule effectively “reserves a slot” in a queue
for all resources that could potentially be required by a task
in the future. This can cause a request to be pi-blocked by
requests for other resources, potentially of a different length.
Nonetheless, Rule Q3 is sufficient to ensure optimal bounds
on pi-blocking. In the presence of variant critical section
lengths, this rule can be relaxed slightly to reduce short-on-
long blocking.

The required relaxation is simple: a long request should
not “reserve a slot” in any short-resource queue, even if it
may issue nested requests for short resources in the future.
This relaxation reduces short-on-long blocking, but at the
expense of allowing long requests to be blocked by short re-
quests with later timestamps. This increases the duration
of pi-blocking for long requests, but only by a few short re-
quests. However, we believe this to be an acceptable tradeoff.
In this paper, we only consider this relaxation with waiting
on short resources realized by spinning (as per the rules of
the spin-based RSM [12]—see Table 1), and waiting for long
resources realized by suspending, as recommended by [2].
However, the same idea can be applied if jobs wait for short
resources by suspending.

To support both short and long resources within the RNLP
without short-on-long blocking, we make two modifications.
First, we employ two token locks, one for long resources and
the other for short resources.6 Second, we replace Rule Q3
with the two rules below.

Let T = Tl + Ts where Ts (resp. Tl) is the number of
tokens available to requests for short (resp. long) resources.
A job that issues an outermost request that may include a
long resource must compete for one of the Tl long tokens,
while a job that issues an outermost request for exclusively
short resources competes for one of the Ts short tokens. Also,
let C(Ri, S) be the set of incomplete requests for at least
one resource in S for which Ri contends. Importantly, a
long request Rx that may issue a nested request for a short
resource is only in C(Ri,Ls) once it has issued its nested
short request.

H1 A job Ji with an incomplete long requestRi for `a ∈ Ll

acquires `a when Ri is the head of RQa, and there is
no incomplete long request Rx with ts(Rx) < ts(Ri)
and `a ∈ Lx.

H2 A job Ji with an incomplete short request Ri for `a ∈
Ls acquires `a when Ri is the head of RQa, and there

with respect to GPU functional units are quite long and can
be many orders of magnitude greater than short ones.
6This idea can be extended to create token locks for arbi-
trary subsets of resources at the expense of more verbose
notation and analysis.

Figure 5: Illustration of Example 2 where m = 2 and
q = 3.

is no request Rx ∈ C(Ri,Li) with ts(Rx) < ts(Ri).

Example 2. Consider the two-processor system in Fig. 5,
which is scheduled by global EDF with three resources, `a,
`b, and `c, which can be locked in a nested fashion only in
index order (`a before `b before `c). Assume that `a is long
and `b and `c are short. (Thus, jobs suspend while waiting
on `a, and spin while waiting on `b and `c.) Let Ts = 2 and
Tl = 1.

Jobs J1 and J2 are released at time t = 0 with deadlines
of 14 and 15, respectively. At time t = 1, both J1 and J2
need resource `a, J1 acquires the only suspension token, and
J2 must suspend and wait for J1 to release that token. At
time t = 2, J3 is released, and at time t = 3, J3 issues a
request for `b. J3 then makes a nested request for `c at time
t = 4, which is satisfied immediately. At time t = 4, J1
issues a request for `b and spins until time t = 5 when J3
releases `b and `c. Note that at time t = 4, J1 is blocked
by another job with a later timestamp. J1 then executes
non-preemptively (by the rules of the spin-based RSM [12])
with `a and `b, thereby pi-blocking J4. When J1 releases `b,
J4 executes because it has a sufficiently high priority and
J1 is no longer non-preemptive. When J3 finishes at time
t = 7, J1 can resume its critical section. At time t = 9, J1
releases `a, and J2 finally acquires the suspension token, and
acquires `a.

Note that under Rules Q1-Q6, under either spinning or
suspending, both J1 and J2 would execute their critical sec-
tions before J3 or J4 could ever execute their critical sec-
tions. The combined length of the critical sections of J1 and
J2 is 10, and thus Rule Q3 would not allow J3 to acquire
`b until t = 11, which is after its deadline. Under Rules Q1-
Q6 this task set would be unschedulable. However, under
Rule H2, a job accessing a long resource can be blocked by
a short request with a later timestamp, as is seen at time
t = 4. Thus, the blocking term for the long resources is
greater, but short requests are unaffected by long requests.
Consequently, the task set is schedulable.

Detailed blocking analysis for this variant of the RNLP
is given in Appendix B. As seen there, the modifications
above do not affect asymptotic blocking bounds, but elimi-
nate short-on-long blocking.

6. MULTI-UNIT MULTI-RESOURCE
LOCKING

In this section, we turn our attention to showing how to
support replicated resources within the RNLP. We do this

Figure 6: Figure illustrating the basic queue struc-
ture used in previous k-exclusion locking protocols.
The arbitration mechanisms in these protocols be-
have similar to the token lock of the RNLP.

by leveraging recent work on asymptotically optimal real-
time k-exclusion protocols [7, 8, 13]. Such protocols provide
a limited form of replication: they enable requests to be per-
formed on k replicas of a single resource. We desire to extend
this functionality by allowing tasks to perform multiple re-
quests simultaneously on replicas of different resources.

To motivate our proposed modifications to the RNLP,
we consider three prior k-exclusion protocols, namely the
O-KGLP [8], the K-FMLP [7], and the R2DGLP [13], which
function as depicted in Fig. 6. In these protocols, each replica
is conceptually viewed as a distinct resource with its own
queue. An “arbitration mechanism” (similar to our token
lock) is used to limit the number of requests concurrently
enqueued in these queues. In the case of s-aware (resp., s-
oblivious) analysis, the arbitration mechanism is configured
to allow up to n (resp., m) requests to be simultaneously
enqueued. A “shortest queue” selection rule is used to deter-
mine the queue upon which a given request will be enqueued.
This rule ensures that in the s-aware (resp., s-oblivious and
spin-based) case, each queue can contain at most dn/ke
(resp., dm/ke) requests. From this, a pi-blocking bound of
O(n/k) (resp., O(m/k)) can be shown. Both bounds are
asymptotically optimal.

Suppose now that we have two such replicated resources,
as shown in Fig. 7, and that we wish to be able to support re-
quests that involve accessing two replicas, one per resource,
simultaneously. If the enqueueing associated with such a re-
quest is done by the arbitration mechanism atomically, then
this is simple to do: as a result of processing the request,
it is enqueued onto the shortest queue associated with each
resource at the same time. This simple generalization of the
aforementioned k-exclusion algorithms retains their optimal
pi-blocking bounds.

Note that the functionality just described is provided by
DGLs. Thus, to support multiple replicas when simultaneous
lock holding is done only via DGLs (and not nesting), we
merely need to treat each replica as a single resource and
use a “shortest queue” rule in determining the replica queues
in which to place a request. If each resource is replicated at
least k times then it is straightforward to show that the
earlier-stated pi-blocking bounds of O(m/k) and O(n/k) for
s-oblivious and s-aware analysis, respectively, still apply. As
before, both bounds are asymptotically optimal.

If simultaneous lock holding is done via nesting, then
the situation is a bit more complicated. This is due to the
RNLP’s conservative resource acquisition rule (Rule Q3),

Figure 7: Figure illustrating how DGL can be used
to request replicas of different resources.

which enables a request with a lower timestamp to effectively
“reserve” its place in line within any queue of any resource
it may request in the future. This rule causes problems with
replicated resources. Consider again Fig. 7. Consider an out-
ermost request Ri for `a that may make a nested request for
`q. Which replica queue for `q should hold its “reservation?”
If a specific queue is chosen by the“shortest queue”rule when
Ri receives its timestamp, and if Ri does indeed generate
a nested request for `q later, then the earlier-selected queue
may not still be the shortest for `q when the nested request
is made. If a queue is not chosen until the nested request is
made, then since Ri had no “reservation” in any queue of
`q until then, it could be the case that requests with later
timestamps hold all replicas of `q when the nested request
is made. This violates a key invariant of the RNLP.

Our solution is to require Ri to conceptually place a reser-
vation in the shortest replica queue for each resource that
may be required in the future. The idea is to enact a “DGL-
like” request for Ri when it receives a token that enqueues
a “placeholder” request for Ri on one replica queue, deter-
mined by the “shortest queue” rule, for each resource it may
access. Such a placeholder can later be canceled if it is known
that the corresponding request will not be made. Thus, as
before, nesting and DGLs are equivalent from the perspec-
tive of worst-case asymptotic pi-blocking.

7. EXPERIMENTAL RESULTS
Next we present an experimental evaluation of fine-grained

locking via the RNLP through a schedulability study. In this
study, we evaluated the schedulability of randomly gener-
ated task systems, and report the fraction that are schedu-
lable. These experiments were designed to depict the effect of
blocking bounds on schedulability, and therefore do not in-
clude overheads. A full overhead-aware schedulability study
is deferred to future work, though we note the presented
techniques have been implemented and been proven useful
in the context of the aforementioned GPU [9] and shared-
cache [14] use cases.

We randomly generated task systems using a similar ex-
perimental design as previous studies (e.g., [4]). We assume

that tasks are partitioned onto m = 8 processors, and sched-
uled with EDF priorities. We also assume that all tasks have
implicit deadlines (di = pi). We generated task systems with
total system utilizations in {0.1, 0.2, . . . , 8.0}. The per-task
utilizations where chosen uniformly from the range [0.1, 0.4]
or [0.5, 0.9], denoted, medium or heavy, respectively. The pe-
riod of each task was chosen uniformly from either [3, 33] ms
(short) or [50, 250] ms (long). All tasks were assumed to ac-
cess N ∈ {2, 4, 8} of 16 shared resources. The duration of
each critical section was exponentially distributed with a
mean of either 10µs (small) or 1000µs (large).

For each generated task set, we evaluated hard real-time
(HRT) schedulability under four different locking protocols:
two coarse-grained protocols, the mutex OMLP and the clus-
tered k-exclusion variant of the OMLP [5] (denoted CK-
OMLP), and two fine-grained protocols, the RNLP [12] and
the k-exclusion RNLP variant presented herein (denoted K-
RNLP). We also evaluated the schedulability of the task
system assuming no critical sections (denoted NOLOCK).
For the fine-grained protocols, additional analysis optimiza-
tions where included that are based on evaluations of pos-
sible transitive blocking relationships.7 We present a subset
of our generated graphs in Figs. 8-10, in which all critical
section lengths are long.

Obs. 1. Schedulability is no worse using a fine-grained
locking protocol than a similar coarse-grained one.

This observation is supported by Fig. 8, which depicts the
schedulability of two different system configurations. Inset
(a) depicts a system in which fine-grained locking provides
little if any schedulability benefit over coarse-grained lock-
ing for either mutex or k-exclusion locks. Inset (b), on the
other hand, depicts a system in which fine-grained locking
provides more significant schedulability benefits owing to the
additional analysis optimizations. We note that the blocking
bounds for the coarse-grained locking protocols upper bound
the worst-case blocking for the fine-grained protocols, and
thus the fine-grained protocols will perform no worse than
the coarse-grained ones.

Obs. 2. Resource replication improves schedulability.

This observation is supported by Fig. 9, which depicts the
schedulability of a given system under different degrees of
resource replication. When resources are more highly repli-
cated, more requests can be satisfied concurrently, which
decreases blocking bounds. As described in Sec. 6, the re-
duced blocking made possible by resource replication can be
reflected in the worst-case blocking bound, which is O(m/k).
This improved blocking bound results in improved schedu-
lability, as is seen in Fig. 9.

Obs. 3. Fine-grained locking improves schedulability over
coarse-grained locking most when the number of resources
accessed within an outermost critical section is small.

7Tighter analysis than that employed in these experiments
is possible using an exponential-time algorithm. Such analy-
sis, while perhaps computationally tractable for a single task
system, is intractable when evaluating hundreds of thou-
sands of task systems.

0 1 2 3 4 5 6 7 8
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
H
R
T
S
ch
e
d
u
la
b
ili
ty

RNLP
OMLP
K-RNLP
CK-OMLP
NOLOCK

[1]

[2]

[3]

[4]

[5]

[5]

[3-4]

[1-2]

(a) k = 4, short periods, N = 8, heavy per-task utilizations.

0 1 2 3 4 5 6 7 8
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R
T
S
ch
e
d
u
la
b
ili
ty

RNLP
OMLP
K-RNLP
CK-OMLP
NOLOCK

[1]

[2]

[3]

[4]

[5]

[5]

[4]

[3]

[2]

[1]

(b) k = 2, short periods, N = 2, heavy per-task utilizations.

Figure 8: Sample schedulability results. Inset (a) demonstrates that fine-grained nesting, in some cases pro-
vides little if any advantage over coarse-grained nesting. Inset (b) demonstrates that in other cases, fine-
grained nesting can provide more significant schedulability benefits over coarse-grained nesting.

0 1 2 3 4 5 6 7 8
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

K-RNLP k=1

CK-OMLP k=1
K-RNLP k=2

CK-OMLP k=2
K-RNLP k=4

CK-OMLP k=4

NOLOCK

H
R
T
S
ch
e
d
u
la
b
ili
ty

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Figure 9: Illustration of the improved schedulabil-
ity made possible with a higher degree of resource
replication. In this figure, periods are long, per-task
utilizations are medium, and N = 2.

0 1 2 3 4 5 6 7 8
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R
T
S
ch
e
d
u
la
b
ili
ty

N = 2
N = 4
N = 8
N = 16
NOLOCK

[1]

[2]

[3]

[4]

[5]

[3-4]

[2]
[1]

[5]

Figure 10: Illustration of the effect of the number
of resources accessed within an outermost critical
section on schedulability. In this figure, periods are
short, per-task utilizations are heavy, and k = 2.

This observation is corroborated by Fig. 10, which de-
picts the schedulability under the K-RNLP of a given sys-
tem with tasks requesting different numbers of resources, N .
In that particular system, the schedulability when N = 2 is
considerably better than when N > 2, but the benefits of
fine-grained nesting diminish with larger N . This is because
when the number of resources accessed within a critical sec-
tion is small, fine-grained locking is more likely to allow non-
conflicting requests, which would have been serialized under
coarse-grained locking, to be satisfied concurrently. In many
cases, as is seen in Fig. 10, this parallelism can be reflected
in the blocking analysis (though it does not affect blocking
bounds asymptotically). Note also the number of resources
accessed within an outermost critical section are often small
in practice [3]. Thus, the cases in which fine-grained locking
performs best are the most common in practice.

From these results, we conclude that fine-grained locking
protocols offer improved schedulability over coarse-grained
ones. Furthermore, we note that even in cases in which
fine-grained locking provides no analytical benefit, it is still
preferable in practice as it may lead to improved response
times and therefore safety margins and responsiveness. In
the future, we plan to implement these protocols, measure
overheads, and conduct an overhead-aware schedulability
study.

8. CONCLUSIONS
We have presented several extensions to the RNLP [12]

that address issues of practical concern that arise when at-
tempting to support nested resource requests in real-time
multiprocessor systems in a fine-grained way. First, we in-
troduced dynamic group locks (DGLs) to reduce system-call
overhead when the set of resources to lock is known a pri-
ori. With support for DGLs added, the RNLP generalizes
standard group locking by allowing groups of resources to be
atomically locked dynamically and by allowing such locks to
be nested.

Second, we addressed the problem of short-on-long block-
ing, which occurs when a short resource request is blocked
by a long resource request. This is a potential problem, for

example, when a single synchronization protocol is used to
control access to both I/O devices as well as shared mem-
ory objects. We generalized the RNLP by biasing its rules to
favor short requests over long ones. This eliminates short-on-
long blocking at the expense of creating a modest amount of
long-on-short blocking. This new variant of the RNLP is also
of interest because it allows both spin- and suspension-based
waiting to be used in the same synchronization protocol.

Finally, we showed how to incorporate replicated resources
within the RNLP. Viewing different resources as replicas of
a single resource is useful when a task only requires access to
some replica and not a particular one. We also conducted a
schedulability study of this RNLP, which showed that fine-
grained locking offered improved schedulability over coarse-
grained locking in many cases.

To simplify the presentation, we have for the most part
considered these various extensions separately from one an-
other. However, they can all be combined into a single ex-
tended RNLP with no adverse impact on asymptotic pi-
blocking bounds.

When designing a system that employs these techniques,
there are many design decisions that can be made to make
the system schedulable, or, in a soft real-time system, im-
prove response times. Resources can be grouped and marked
as short or long, resource replicas can be determined, tasks
can be partitioned across clusters of processors in such a
way so as to minimize blocking and improve schedulability,
etc. In future work, we plan to investigate algorithms to au-
tomate this design process so as to improve the chance of
a system being schedulable. Additionally, we plan to imple-
ment these techniques and evaluate them empirically.

References
[1] A. Block, H. Leontyev, B. Brandenburg, and J. Ander-

son. A flexible real-time locking protocol for multipro-
cessors. In RTCSA ’07, pages 47–56, Aug. 2007.

[2] B. Brandenburg. Scheduling and Locking in Multipro-
cessor Real-Time Operating Systems. PhD thesis, The
University of North Carolina at Chapel Hill, 2011.

[3] B. Brandenburg and J. Anderson. Feather-trace: A
light-weight event tracing toolkit. In OSPERT ’07,
pages 61–70, 2007.

[4] B. Brandenburg and J. Anderson. Optimality results
for multiprocessor real-time locking. In RTSS ’10, pages
49–60, 2010.

[5] B. Brandenburg and J. Anderson. Real-time resource-
sharing under clustered scheduling: Mutex, reader-
writer, and k-exclusion locks. In EMSOFT ’11, pages
69–78, Sep. 2011.

[6] A. Easwaran and B. Andersson. Resource sharing in
global fixed-priority preemptive multiprocessor schedul-
ing. In RTSS ’09, pages 377–386, 2009.

[7] G. Elliott and J. Anderson. Robust real-time multi-
processor interrupt handling motivated by GPUs. In
ECRTS ’12.

[8] G. Elliott and J. Anderson. An optimal k-exclusion
real-time locking protocol motivated by multi-GPU sys-
tems. In RTNS ’11, pages 15–24, Sep. 2011.

[9] G. Elliott, B. Ward, and J. Anderson. GPUSync: A
framework for real-time GPU management. In RTSS
’13, (to appear).

[10] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coor-
dinated task scheduling, allocation and synchronization
on multiprocessors. In RTSS ’09, 2009.

[11] R. Rajkumar. Synchronization In Real-Time Systems
– A Priority Inheritance Approach. Kluwer Academic
Publishers, Boston, 1991.

[12] B. Ward and J. Anderson. Supporting nested locking
in multiprocessor real-time systems. In ECRTS ’12.

[13] B. Ward, G. Elliott, and J. Anderson. Replica-request
priority donation: A real-time progress mechanism for
global locking protocols. In RTCSA ’12.

[14] B. Ward, J. Herman, C. Kenna, and J. Anderson. Mak-
ing shared caches more predictable on multicore plat-
forms. In ECRTS ’13.

APPENDIX
In these appendices, we provide detailed proofs of claims in
Secs. 5, and 4.

A. DGL ANALYSIS
Let w(Ri, t) be the set of resources upon which Ri is wait-

ing at time t. We say Ji is directly blocked by all jobs with
earlier timestamps in any of the resource queues that Ji is
enqueued in.

DB(Ri, t) = {Rx ∈ RQa| `a ∈ w(Ri, t),

ts(Rx) < ts(Ri)}

Additionally, it is possible that a job Ji is blocked because
a request with an earlier timestamp could make a nested
request for the resource for which Ji is waiting. We call this
indirect blocking.

IB(Ri, t) = {Rx ∈ RQa| `a ∈ L ∧
w(Ri, t) ∩ Lx 6= ∅ ∧
ts(Rx) < ts(Ri)}

The set of all jobs that Ji is blocked by at time t is the
transitive closure of both direct and indirect blocking.

B(Ri, t) =
⋃

Rx∈DIB(Ri,t)

DIB(Rx, t)

where DIB = DB(Ri, t) ∪ IB(Ri, t). Note that DB(Ri, t) ∪
IB(Ri, t) ⊆ B(Ri, t).

From the definition of B(Ri, t), similar to Lemma 1 of [12],
we have the following.

Lemma 1. For any request Ri and any time t, ∀Rx ∈
B(Ri), ts(Rx, t) < ts(Ri, t).

To ensure a bounded duration of pi-blocking, we require
that all jobs that are pi-blocked make progress. We thus re-
quire that Property P1 from [12] be upheld by any progress
mechanism employed in an RSM supporting DGLs (Rules D1
and D2).

P1 If Ji is progress blocked (s-oblivious, s-aware, or spin-
based) by the RSM, then Ji makes progress.

We then have the following, similar to Theorem 1 of [12].

Theorem 1. A job can be blocked by at most T −1 (recall
that T is the number of tokens in the RNLP) outermost
requests within an RSM supporting DGLs (Rules D1 and
D2).

Proof. By Property P1 a job that is pi-blocked makes
progress. By Lemma 1, a request can never be blocked by
another request with a later timestamp. Because there are
at most T jobs with tokens, a job can be request blocked by
at most (T − 1) requests with earlier timestamps.

Lemma 1 and Theorem 1 parallel Lemma 1 and Theorem 1
of [12], and thus the duration of pi-blocking, irrespective
of overheads, for DGLs is the same as requesting the set
of resources in a nested fashion. This is because the set of
requests that block Ri is the same under either policy due
to the non-greedy nature of the resource queues.

Progress mechanisms for DGLs. Property P1 can be
satisfied using priority boosting or priority donation under
DGLs (see [12] for more detail). However, under the spo-
radic task model, which most existing schedulability tests
assume, two jobs cannot inherit the priority of one job si-
multaneously. Thus, if priority inheritance is used to ensure
progress, then we must be careful to ensure that this prop-
erty is not violated.

The priority inheritance rule of the RNLP (Rule I1 of [12]),
simply stated, allows only the earliest timestamp job that
blocks a job Ji to inherit Ji’s priority. This inheritance rule
was defined to allow a job that either transitively or indi-
rectly blocks Ji to inherit Ji’s priority, and ensure progress.
However, there is a single job with the earliest timestamp
that blocks Ji (because timestamps are totally ordered).
Thus, a job’s priority can be inherited by at most one job at
a time, and hence, this inheritance rule also supports DGLs.

Note that DGL requests and nested requests can both be
supported by an RNLP instance. A job may make a request
for a set of resources, execute a conditional statement, and
then make a nested request for another set of resources. In
hard real-time systems, however, it may be preferable to
make a single request for all of the resources that may be
needed in an outermost critical section to avoid excess con-
text switches. This may be a rather conservative approach,
particularly if most of the resources are not used. However,
the conservative, non-greedy nature of Rule Q3 would have
prevented other jobs from acquiring these resources under
the original RNLP. Thus, the blocking term is no different,
with the exception of the differences in context-switch over-
heads.

B. SHORT-ON-LONG ANALYSIS
(Recall that, in describing how to eliminate short-on-long

blocking, we assumed that DGLs are not also supported, to

simplify the presentation. We assume that here as well.) For
analysis, we must have additional information about inner
critical sections. We define a nested outermost short request
to be a nested request for a short resource that is outermost
with respect to short resources. Additionally, if Ri is a long
request, then we let Ns

i,k denote the number of nested short
request within it. When analyzing the blocking behavior of
short resources, we must consider that a short request can be
blocked by all Ns

i,k short requests of Ji. Additionally, when
analyzing the blocking behavior of a long resource request,
we must account for the fact that within each long outermost
critical section, a job can be blocked by up to Ns

i,k short
requests with later timestamps.

Let Ll
max (Ls

max) be the maximum critical section length
for a long (short) outermost request. Additionally, let Ns

max

be the maximum number of nested outermost short requests
a job makes within a long outermost critical section.

Before conducting rigorous analysis, we must first rede-
fine the definitions of direct and indirect blocking so as
to account for the blocking behavior of Rules H1 and H2.
These rules allow for a job to be blocked by a job holding
a short resource with a later timestamp. Thus, we must up-
date the definition of direct blocking in the case that a job
is blocked by a later timestamp short request. Let h(`a, t)
be the request holding `a at time t and let w(Ri, t) be the
resource for which Ri is waiting at time t. Also, assume that
DB(Ri) is the original definition of direct blocking from [12].
If ts(Ri) < ts(h(w(Ri, t), t)), then the new definition of di-
rect blocking, denoted DB ′(Ri) is equal to DB(Ri, t), oth-
erwise, DB ′(Ri, t) = h(w(Ri, t), t)∪DB(h(w(Ri, t), t)). Ad-
ditionally, Rules H1 and H2 change the definitions of indi-
rect blocking. Under these rules, the expression for indirect
blocking is dependent upon whether a job is waiting for a
short or long resource, we denote these cases as IBs(Ri, t)
and IB l(Ri, t) respectively.

IBs(Ri, t) = {Rx ∈ RQa| `a ∈ Ls,

w(Ri, t) ∈ Lx ∧
ts(Rx) < ts(Ri)}

IB l(Ri, t) = {Rx ∈ RQa| `a ∈ Ll,

w(Ri, t) ∈ Lx ∧
ts(Rx) < ts(Ri)}

Lemma 2. A job is never blocked by a long critical sec-
tion of a job with a later timestamp.

Proof. Assume Jx is executing an outermost critical sec-
tion that is long while holding `a. Then Rx has been satis-
fied. Now consider a request Ri that Rx blocks. If ts(Ri) <
ts(Rx), then Rule H1 or H2 would have prevented Rx from
being satisfied, because Ri could request `a in the future.
Thus, a job can never be blocked by a long request with a
later timestamp.

Lemma 3. Within the long outermost critical section of
Ri, Ri can be blocked by at most one outermost short request
with a later timestamp for each short request nested within
Ri.

Proof. Rule H2 allows an outstanding outermost request
for a short resource `s to be satisfied even if an incomplete

long requestRi with a later timestamp may request `s in the
future. Thus, each time such a request Ri makes a nested
short request, it could be blocked by up to one (but no more)
outermost short request with a later timestamp.

Lemma 4. An outermost long request Ri can be request
blocked by the RSM for a total duration of at most (TlNs

max+
Ts)Ls

max + (Tl − 1)Ll
max.

Proof. By Lemma 2, Ri can be blocked by three types
of requests: long requests with earlier timestamps, short re-
quests with earlier timestamps, and short requests with later
timestamps. We next quantify each of these blocking terms.

There can be at most Tl − 1 long token-holding requests
with earlier timestamps than Ri, each of which executes
for up to Ll

max time. This accounts for (Tl − 1)Ll
max block-

ing. It is also possible for Ri to issue nested requests for
short resources and be blocked by Ts short requests with
earlier timestamps, resulting in up to TsLs

max units of block-
ing from short requests with earlier timestamps. Finally, by
Lemma 3,Ri and up to Tl−1 other long requests with earlier
timestamps that block Ri may each be blocked by an outer-
most short request with a larger timestamp for each nested
short request they make. This creates up to TlNs

maxL
s
max

additional blocking due to short requests with later times-
tamps.

Thus, a job can hold the long token for at most (TlNs
max+

Ts)Ls
max + TlLl

max time.

Lemma 5. An outermost short request Ri can be request
blocked by the RSM for a total duration of at most (min(m, T)−
1)Ls

max.

Proof. (From Table 1, jobs that are waiting by spinning
are assumed to be priority boosted.) While there can be
at most Ts jobs holding short tokens, the Tl jobs holding
long tokens can additionally make nested resource requests,
resulting in a total of T jobs that can have incomplete short
requests at a time. However, because waiting is realized by
spinning for short resources and there can be at most m
spinning jobs, a job can be blocked by at most m− 1 short
requests. Thus, the maximum duration of request blocking
for Ri is given by (min(m, T)− 1)Ls

max.

Thus, a job can hold the short token for a maximum du-
ration of min(m, T)Ls

max time.
Lemmas 4 and 5 only quantify how long a request can

be request blocked by the RSM. Next we consider the total
duration of request blocking a job can experience by incor-
porating the duration of blocking in the token lock. We first
consider total s-oblivious request blocking.

Theorem 2. Under s-oblivious analysis, an outermost
long request Ri can be request blocked for a total duration of
at most

2

⌈
m

Tl

⌉(
(TlNs

max + Ts)Ls
max + TlLl

max

)
− Ll

max

assuming a token lock with a worst-case blocking term given
by (2dmTl

e−1)Lmax (where Lmax is w.r.t. to the critical sec-

tion of the k-exclusion lock) is employed (such as the CK-
OMLP [5] or the R2DGLP [12]).

Proof. Ri is delayed by the request blocking it experi-
ences once it receives a token, which is given by the bound
in Lemma 4, and also by the token hold time of every re-
quest that may receive a token before it. The token hold
time is Ls

max greater than the bound in Lemma 4, and by
the stated assumption concerning the token lock, there are
at most 2dmTl

e − 1 such preceding requests in total to con-
sider.

Theorem 3. An outermost short request Ri can be re-
quest blocked for a total duration of at most

max(0,min(m, T)Ls
max(m− Ts − 1))+

(min(m, T)− 1)Ls
max.

Proof. Given that spinning jobs are boosted, at most m
short requests can execute concurrently. Hence, the token
queue for short requests is of length at most m − Ts. The
rest of the proof is similar to that of Theorem 2: we have
to account for the token hold time of up to m − Ts − 1 re-
quests and the request blocking experienced by Ri while
it holds the token. By Lemma 5, the former is at most
max(0,min(m, T)Ls

max(m − Ts − 1)) and the latter is at
most (max(m, T)− 1)Ls

max.

According to Theorem 3, it is likely best in practice to set
Ts = m, for in this case, the total worst-case request blocking
per outermost short request is merely (m − 1)Ls

max, which
is independent of Tl.

