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ABSTRACT
We present EDF-sh, which is the first soft real-time schedul-
ing algorithm with restricted migrations for heterogeneous
multiprocessors. EDF-sh does not restrict total utilization as
long as the system is not overutilized. However, it requires a
per-task utilization constraint, which is not too constraining
but nonetheless renders EDF-sh non-optimal. We evaluate
the effectiveness of EDF-sh by means of schedulability exper-
iments. In these experiments, more than 87% of the feasible
task sets that were considered were soft-real-time-schedulable
under EDF-sh. Additionally, tardiness bounds for these task
sets under EDF-sh were found to be quite low in almost all
cases.

1. INTRODUCTION
Most multiprocessor real-time scheduling research pertains

to multiprocessors where every processor is of the same speed.
However, heterogeneous platforms are becoming increasingly
common. For example, ARM recently proposed a new CPU
technology called big.LITTLE [1], which integrates relatively
slower, low-power processors with faster, high-power ones to
balance performance and energy efficiency. This heteroge-
neous computing architecture is being used by Samsung in
their new mobile SoC, Exynos 5422, which consists of four
slower ARM Cortex-A7 cores and four faster ARM Cortex-
A15 cores [2]. As another example, CPU frequency scaling,
e.g., cpufrequtils in Linux, may cause a homogeneous multi-
processor to function as a heterogeneous one.

Unfortunately, schedulability analysis for heterogeneous
multiprocessors is much harder than for homogeneous ones,
because such analysis must consider not only which tasks are
executing but also where they execute. Therefore, the exist-
ing literature pertaining to real-time scheduling on heteroge-
neous systems is much more limited than that pertaining to
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homogeneous ones. In this paper, we propose a new schedul-
ing algorithm for such heterogeneous multiprocessors. This
algorithm is designed for soft real-time (SRT) systems where
some deadlines may be missed as long as deadline tardiness
is bounded. In contrast, most prior work on heterogeneous
multiprocessor scheduling has instead focused on hard real-
time (HRT) constraints.

Prior Work. We limit our attention to uniform multi-
processor systems in this paper. That is, each processor may
have a different speed, or clock frequency, but every processor
is of the same functionality. See Sec. 2.1 for a more detailed
taxonomy of multiprocessor platforms.

In [18], Funk et al. established a feasibility condition for
scheduling periodic tasks upon uniform heterogeneous multi-
processors by leveraging the Level Algorithm [22]; this condi-
tion applies to sporadic tasks as well. Subsequently, Baruah
et al. considered earliest-deadline-first (EDF) scheduling [7]
and rate-monotonic (RM) scheduling [8] upon uniform het-
erogeneous multiprocessors. Also, Funk proposed three EDF-
based schedulers for uniform heterogeneous multiprocessors
with different migration constraints: f-EDF (full migration),
p-EDF (partitioned, no migration), and r-EDF (restricted
migration) [19]. In a restricted-migration algorithm, migra-
tions are boundary-limited : a task can only migrate at job
boundaries, i.e., between task invocations. All of these prior
algorithms are directed at HRT scheduling, and each re-
quires that total utilization be capped. The resulting uti-
lization loss means that the underlying platform cannot be
fully utilized.

In work on SRT systems, Devi et al. showed that un-
der global EDF (GEDF) scheduling any feasible sporadic
task system has bounded tardiness [13], i.e., GEDF is SRT-
optimal. Thereafter, Erickson et al. derived better tardi-
ness bounds for GEDF [15], and Leontyev et al. established
such bounds for a class of global schedulers called window-
constrained schedulers [27]. Finally, Erickson et al. developed
the global fair-lateness (GFL) scheduling algorithm [16], and
showed that it has a lower maximum tardiness bound than
GEDF but a similar implementation to GEDF.

While this SRT research focused on global scheduling,
global schedulers can potentially migrate tasks frequently,
causing significant overheads in practice. An alternative is
semi-partitioned scheduling. Under semi-partitioned schedul-
ing, most tasks are assigned to processors, like in partitioned
scheduling; however, those tasks that cannot be feasibly as-
signed to a single processor are allowed to migrate. EDF-
fm [3] was the first semi-partitioned scheduling algorithm.



Subsequently, numerous other such algorithms were pro-
posed [5, 6, 9, 10, 11, 14, 17, 20, 21, 23, 24, 25, 30, 31],
in which various migration strategies were considered. Re-
cently, Anderson et al. proposed EDF-os [4], a SRT-optimal
semi-partitioned scheduling algorithm. Migrations in EDF-
os are boundary-limited. This is a desirable property because
migrations within a job can be expensive in practice and also
can cause problems for locking protocols [12].

All of the SRT work cited above pertains to homogeneous
systems. SRT scheduling on heterogeneous multiprocessor
platforms was first considered by Leontyev et al. in designing
EDF-ms [26]; to the best of our knowledge, EDF-ms is the
only prior algorithm proposed for SRT heterogeneous sys-
tems. EDF-ms is intended for multiprocessors with a large
number of cores, where cores of the same speed are grouped
together and every group has at least two cores. The semi-
partitioned scheduler EDF-fm is applied at the group level,
but within each group, the GEDF scheduler is used. There-
fore, inter-group migrations are boundary-limited while intra-
group migrations are not.

Contributions. In this paper, we propose an EDF-based
semi-partitioned algorithm for scheduling SRT sporadic tasks
upon uniform heterogeneous multiprocessors. We design it
by generalizing EDF-os for use on heterogeneous multipro-
cessors. Our proposed algorithm, called EDF-sh (earliest-
deadline-first-based semi-partitioned scheduling upon uni-
form heterogeneous multiprocessors), ensures bounded tar-
diness and has boundary-limited migrations, like EDF-os.
Moreover, EDF-sh does not restrict total utilization as long
as the system is not overutilized, though it does require
a per-task utilization cap. To the best of our knowledge,
this is the first SRT scheduling algorithm with boundary-
limited migrations for heterogeneous systems. Also, unlike
EDF-ms [26], restrictions on the hardware platform are not
required.

We evaluate EDF-sh from both schedulability and
tardiness-bound perspectives. In terms of SRT schedulabil-
ity, EDF-sh theoretically dominates EDF-ms. To better as-
sess the efficiency of EDF-sh, we conducted experiments in
which schedulability was checked and tardiness bounds were
computed for randomly generated feasible task sets on cer-
tain heterogeneous platforms. In these experiments, more
than 87% of the considered task sets were SRT-schedulable
under EDF-sh. As for tardiness bounds, in most cases, EDF-
sh exhibited significantly lower tardiness bounds than EDF-
ms.

Organization. In Sec. 2, we provide necessary back-
ground. Then, in Sec. 3 we describe EDF-sh in detail. We
present our tardiness-bound proof in Sec. 4. and experimen-
tally evaluate EDF-sh in Sec. 5. We conclude and suggest
future work in Sec. 6.

2. BACKGROUND
We consider scheduling n sporadic tasks on m processors,

where n ≥ m. We also assume implicit deadlines, i.e., each
task has a relative deadline equal to its period. Thus, a task
τi can be specified by (Ci, Ti), where Ci is its worst-case
execution requirement1 and Ti is its period. We define the

1Techniques from [28] can be applied to instead provision
tasks on an average-case basis; we do not consider such tech-
niques further due to space constraints.

utilization of a task τi as

ui =
Ci
Ti
. (1)

Note that on heterogeneous multiprocessors, ui may exceed
1.0. We will give needed restrictions on utilization later in
Sec. 2.3.

A job is an invocation of a task; the jth job of task τi
is denoted τi,j . ri,j is its release time and di,j is its abso-
lute deadline, where di,j = ri,j + Ti. The tardiness of a job
τi,j that completes at time tc is defined as max{0, tc− di,j},
while its lateness is tc− di,j . The two differ only if τi,j com-
pletes before its deadline, in which case its tardiness is zero
but its lateness is negative. In this paper, a task system is
considered to be SRT-schedulable under a given scheduling
algorithm if each task can be guaranteed bounded tardiness
under that algorithm. The speed of a processor refers to the
amount of work completed in one time unit when a job is
executed on that processor.

2.1 A Taxonomy of Multiprocessors
In terms of heterogeneity, multiprocessors can be classified

as follows [19, 29]:

• Identical multiprocessors. Every job is executed on
any processor at the same speed, which is usually nor-
malized to be 1.0 for simplicity.

• Uniform heterogeneous multiprocessors. Differ-
ent processors may have different speeds, but on a
given processor, every task is executed at the same
speed. The speed of processor p is denoted sp.

• Unrelated heterogeneous multiprocessors. The
execution speed of a job depends on both the proces-
sor on which it is executed and the task to which it
belongs, i.e., a given processor may execute jobs of dif-
ferent tasks at different speeds. The execution speed
of task τi on processor p is denoted sp,i.

In this paper, we focus on uniform heterogeneous multi-
processors.

2.2 EDF-os
EDF-os [4] is an EDF-based semi-partition SRT-optimal

scheduling algorithm for identical multiprocessors. The term
SRT-optimal means that, for any feasible system, bounded
deadline tardiness for every job is ensured. EDF-os has two
phases: an assignment phase and an execution phase. Each
task has a reserved amount of capacity, or share, on one or
more processors. ψi,p denotes the share (which potentially
can be zero) of task τi on processor p. The total share allo-

cation on processor p is denoted σp
def
=
∑n
k=1 ψk,p. EDF-os

maintains that no processor is overutilized, i.e., σp ≤ 1.0
holds for all p. Also, the total share allocation of a task τi
matches its utilization, i.e.,

∑m
k=1 ψi,k = ui (note that, on

an identical multiprocessor, ui ≤ 1.0). If a task has non-zero
shares on more than one processor, then it is a migrating
task, otherwise it is a fixed task. We use fi,p to denote the
long-term fraction of task τi’s jobs that execute on processor
p. fi,p is commensurate with the share allocated:

fi,p =
ψi,p
ui

. (2)



The set of all fixed tasks on processor p is denoted τfp , and

σfp
def
=
∑
τi∈τ

f
p
ψi,p.

In the assignment phase, EDF-os considers tasks in non-
increasing-utilization order in the following two steps.

• First, it uses a worst-fit bin-packing heuristic to assign
as many tasks as possible to be fixed.

• Second, it considers the remaining tasks to be assigned
to processors in turn, and allocates these tasks on ei-
ther one (in which case, the task is fixed) or more (in
which case, the task is migrating) processors.

The processor with the lowest index where a migrating task
is allocated is called its first processor.

In the execution phase, the scheduling rules are as follows
on each processor.

• Jobs of migrating tasks are statically prioritized over
those of fixed tasks.

• Jobs of fixed tasks are prioritized against each other
on an EDF basis.

• On a migrating task’s first processor, its priority is
lower than other migrating tasks, but still higher than
fixed ones.

To achieve the goal of boundary-limited migrations, EDF-
os assigns jobs to processors and a single job executes only on
the processor to which it is assigned without migration. To
properly maintain (2), EDF-os uses a mechanism to fairly
assign the jobs of a migrating task to guarantee Prop. 1
below. This scheme was first used by EDF-fm [3].

Property 1. For the first z jobs of task τi, at least bfi,p ·
zc and at most dfi,p · ze of them are assigned to processor p.

Example 1. Consider scheduling the task set τ = {(5, 6),
(6, 9), (4, 6), (2, 3), (2, 3), (10, 30), (1, 6)} (tasks are listed
in non-increasing-utilization order) on four identical proces-
sors. Fig. 1 depicts the task assignment used by EDF-os. In
the first step of the EDF-os assignment phase, the first four
tasks are assigned to the four processors as fixed tasks. In
the second step, the fifth task needs capacity from proces-
sors 1, 2, and 3 to be allocated, so it is a migrating task
that assigns jobs to processors 1, 2, and 3. Similarly, τ6 is a
migrating task, because it has non-zero shares on both pro-
cessors 3 and 4. However, the last task τ7 is a fixed task since
processor 4 is the only processor on which τ7 has a non-zero
share. For the two migrating tasks, processor 1 is the first
processor of τ5, while processor 3 is the first processor of τ6.

2.3 Uniform Heterogeneous Multiprocessors
In the rest of this paper, we consider a uniform hetero-

geneous multiprocessor system π, which has m processors.
Processor p is identified by its speed sp (1 ≤ p ≤ m,
sp ∈ R). Also, we index the processors in non-increasing-
speed order, i.e., π = {s1, s2, · · · , sm}, where sp ≥ sp+1

for p ∈ {1, 2, · · · ,m − 1}. We consider scheduling a spo-
radic task set τ on π. We index the tasks in non-increasing-
utilization order, i.e., τ = {τ1, τ2, · · · , τn}, where ui ≥ ui+1

for i ∈ {1, 2, · · · , n− 1}.
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Figure 1: EDF-os task assignment for Ex. 1.

Let Uk
def
=
∑k
i=1 ui and Sk

def
=
∑k
i=1 si. By leveraging

the Level Algorithm [22], Funk et al. [18] showed that an
implicit-deadline periodic task system τ can be successfully
scheduled on a uniform heterogeneous multiprocessor sys-
tem π without missing any deadlines if and only if

Un ≤ Sm (3)

and

Uk ≤ Sk for k = 1, 2, · · · ,m− 1. (4)

In fact, the proof in [18] also shows (3) and (4) are a neces-
sary and sufficient feasibility condition for implicit-deadline
sporadic task systems.

In this paper, we further restrict task utilizations slightly
by requiring∑

ui>sk

ui ≤
∑
sp>sk

sp for k = 1, 2, · · · ,m. (5)

Nevertheless, the total utilization Un can be as large as the
total speed Sm.

Note that (5) implies (4) (this can be proved by induc-
tion but we omit the proof due to space constraints). Thus,
we omit (4) and hence let (3) and (5) be our task system
utilization restriction in this paper.

3. ALGORITHM EDF-SH
We design EDF-sh by extending EDF-os to uniform het-

erogeneous multiprocessors. As a result, EDF-sh inherits
most of the advantages of EDF-os, such as:

• Under EDF-sh, every job has bounded tardiness.

• Migrations are boundary-limited.

• The underlying platform can be fully utilized, i.e., Un
can be as large as Sm.

In the tardiness-bound proof for EDF-os, and for EDF-sh
here, it is essential that each task executes only on processors
that have a speed at least its utilization without overutilizing
any processor. Unfortunately, this cannot be ensured for all
feasible task systems (recall (3) and (4)). For example, a task
system τ = {(2, 1), (2, 1)} to be scheduled on π = {3, 1} is
feasible, but if we assign jobs of each task only to processors
with a speed at least its utilization, then the first processor
will be overutilized. Because of this difficulty, we assume (5),
which is a little more restrictive than (4).

Besides this utilization restriction, we employ the follow-
ing modifications:



initially ψi,p = 0 and σp = 0 for all i and p;
index tasks in a non-increasing-utilization order;
index processors in a non-increasing-speed order;
/* p is the index of the last processor to which

a migrating task was assigned (or 1, if no

migrating task has been assigned yet). sp is

the first processor for next migrating task

if its capacity has not been exhausted yet.

*/

p := 1;
for i := 1 to n do

/* If task τi can be fixed, then we assign it

to be fixed task via worst-fit here. */

Select k that sk − σk is maximal;
if sk − σk ≥ ui then

ψi,k = ui;
σk = σk + ui;

else
/* If task τi has to migrate, then we

assign its shares on processors to

exhaust processor capacities in turn

from the fastest one to the slowest

one. */

remaining := ui;
repeat

ψi,p := min(remaining, (sp − σp));
σp := σp + ψi,p;
remaining := remaining − ψi,p;
if σp = sp then

p := p+ 1;
end

until remaining = 0;

end

end
Algorithm 1: EDF-sh task assignment phase

• We have a different assignment phase, which consists
of a single step instead of two. In our assignment phase,
we always assign the currently considered task to be
fixed if possible, regardless of whether an initial mi-
grating task has been identified.

• Rather than statically giving a migrating task the
highest priority on any processor that is not its first
processor, we statically give it the highest priority on
any processor that is not its last processor, which is
the largest-indexed processor where it has a non-zero
share.

Similarly to EDF-os, EDF-sh has two phases, an assign-
ment phase and an execution phase. In the assignment
phase, we consider tasks in non-increasing-utilization order.
When considering a task, we first check the current available
capacity of each processor to see if this task can be fixed.
If so, we assign this task to some processor as a fixed task
via a bin-packing heuristic. The specific heuristic does not
matter in terms of theoretical schedulability; we choose to
use worst-fit here. The pseudo-code in Algorithm 1 defines
the assignment phase of EDF-sh.

Example 2. To illustrate the difference between the as-
signment phases of EDF-os and EDF-sh, we revisit the sys-
tem in Ex. 1. Note that any identical multiprocessor is a
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Figure 2: EDF-sh task assignment for Ex. 2. This is the

same system as in Ex. 1, but EDF-sh has a different as-

signment from EDF-os.
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Figure 3: EDF-sh task assignment for Ex. 3. The width

of each column indicates the processor speed.

uniform heterogeneous one (with sp = 1 for all p), so EDF-
sh also works on identical multiprocessors. The assignment
of the first five tasks by EDF-sh is exactly the same as that
by EDF-os. However, we will attempt to make all remaining
tasks fixed as well, and this results in τ6 being fixed on pro-
cessor 4 and thereafter τ7 being fixed on processor 3. That
is, EDF-sh will have only one migrating task for this system.
Fig. 2 shows the resulting assignment by EDF-sh.

Example 3. We now give an example of the task assign-
ment phase of EDF-sh for the case where processor speeds
are different. In this example, we have a uniform heteroge-
neous multiprocessor system π = {4, 2, 2, 1}, upon which a
set of sporadic tasks τ = {(3, 1), (11, 6), (5, 3), (4, 3), (1, 2),
(2, 6), (1, 3)} will be scheduled. Via the worst-fit heuristic,
τ1, τ2, and τ3 are assigned as fixed tasks to s1, s2, and s3,
respectively. Thereafter, no single processor has enough ca-
pacity to fix τ4, so τ4 must migrate. It is assigned non-zero
shares on s1, s2, and s3. However, next, τ5 and τ6 can be
fixed, specifically on s4. Finally, τ7 must migrate between s3

and s4. The resulting task assignment is depicted in Fig. 3.
For the two migrating tasks, s3 is the last processor of τ4,
and s4 is the last processor of τ7.

The assignment phase of EDF-sh ensures the following
properties.

Property 2. There are no more than two migrating
tasks on sp. If there are exactly two migrating tasks on sp,
then sp is the last processor for exactly one of them.

This property follows from the assignment procedure, and



it can be proved by induction.
By Prop. 2, we know that a processor sp will have at most

two migrating tasks, and if exactly two, then they must be of
different priorities. Therefore, if there is only one migrating
task on a given processor sp, then we use τl to denote that
task; if there are two, then we let τl (τh) denote the migrating
task with lower (higher) priority.

Property 3. For any processor sp, σfp+ψh,p+ψl,p ≤ sp.
(If for sp, τh and/or τl do not exist, then we just consider
ψh,p and/or ψl,p to be zero.)

This property holds because in our assignment phase, we
do not overutilize any processor, i.e., we always maintain
σp ≤ sp.

Property 4. A task has non-zero shares only on proces-
sors that have a speed at least its utilization.

Proof. This property clearly holds for fixed tasks. We
show that it holds for migrating tasks as well by contradic-
tion.

Suppose there is some migrating task that violates this
property. Let τa be the first migrating task to do so, and
let sq be the first processor such that sq < ua where τa is
assigned a non-zero share. In Alg. 1, we do not assign a mi-
grating task a non-zero share on a slower processor unless
the capacity of every faster one has been exhausted. By the
definition of τa, Prop. 4 holds for all previously assigned mi-
grating tasks and hence all previously assigned tasks, since
it trivially holds for any fixed task. Moreover, because tasks
are considered in non-increasing-utilization order, every such
prior task has a utilization at least ua and therefore larger
than sq. These facts imply that all prior tasks have been as-
signed shares only on the first q−1 processors, and including
τa, the total allocated shares of the first a tasks exceeds the
capacity of the first q − 1 processors. Thus, we have

a∑
i=1

ui > Sq−1. (6)

Since the processors are indexed in non-increasing-speed or-
der,

Sq−1 ≥
∑
sp>sq

sp. (7)

Since ua > sq and the tasks are indexed in non-increasing-
utilization order, ui ≥ ua > sq holds for all i ≤ a. That
is, ∑

ui>sq

ui ≥
a∑
i=1

ui. (8)

By (6), (7), and (8), we have∑
ui>sq

ui >
∑
sp>sq

sp,

which contradicts (5). Thus, no such τa exists and therefore
Prop. 4 holds.

Property 5. When we assign a migrating task a non-
zero share on a processor, there must be at least one fixed
task on that processor.

Proof. Suppose this property is violated for the first
time when migrating task τi is assigned a non-zero share on
processor sp, i.e., there is no fixed task on sp. Since τi is the
first migrating task that violates Prop. 5, no other migrating
task is assigned a non-zero share on sp either. Because no
prior task (fixed or migrating) is assigned a non-zero share
on sp and sp ≥ ui (by Prop. 4), τi would be assigned as fixed
on sp, which contradicts our assumption that it is a migrat-
ing task. Thus, no such τi exists and hence this property
holds.

Property 6. If there are exactly two migrating tasks on
sp, i.e., ψh,p > 0 and ψl,p > 0, then ψh,p + ul < sp.

Proof. By Prop. 5, there must be at least one fixed task
τa that was assigned to sp before the two migrating ones
are assigned shares on sp. Since the tasks are considered
in non-increasing-utilization order, we have ul ≤ ua. Also,
by the definition of σfp , σfp ≥ ua, so ul ≤ σfp . Therefore,

ul + ψh,p + ψl,p ≤ σfp + ψh,p + ψl,p
{by Prop. 3}
≤ sp. Because

ψl,p > 0 here, we get ψh,p + ul < sp.

In the execution phase, every fixed task will only release
jobs on the processor to which it assigned, whereas jobs of
migrating tasks will be assigned in accordance with Prop. 1.
Therefore, the following property holds as well.

Property 7. For any k consecutive jobs of a migrating
task τi, at most fi,p · k+ 2 of them are assigned to processor
sp.

Proof. In the first z jobs of task τi, let Γi,p(z) be
the number of jobs assigned to processor sp. By Prop. 1,
bfi,p · zc ≤ Γi,p(z) ≤ dfi,p · ze. For any k consecutive jobs of
task τi, τi,j through τi,j+k−1, the number of jobs assigned
to processor sp is

Γi,p(j + k − 1)− Γi,p(j − 1)

≤ {since by Prop. 1, bfi,p · zc ≤ Γi,p(z) ≤ dfi,p · ze}
dfi,p · (j + k − 1)e − bfi,p · (j − 1)c

< {since dxe < x+ 1 and bxc > x− 1}
(fi,p · (j + k − 1) + 1)− (fi,p · (j − 1)− 1)

={simplifying}
fi,p · k + 2.

4. TARDINESS BOUNDS
In this section, we prove tardiness bounds for EDF-sh.

We consider migrating tasks and fixed task separately in
Secs. 4.1 and 4.2. Moreover, for migrating tasks, rather than
tardiness, we upper bound lateness for each task.

4.1 Migrating Tasks
In this subsection, we derive lateness bounds for migrating

tasks. Since migrating tasks are statically prioritized over
fixed ones, we can ignore all fixed tasks when considering
migrating ones.

Lemma 1. Let t0 ≥ 0 and tc > t0. If the lateness of jobs
of task τi is upper bounded by ∆i, then in the time interval
[t0, tc), the demand from τi on processor sp is less than

ψi,p · (tc − t0) + ψi,p · (2Ti + ∆i) + 2Ci.



Proof. Because lateness is upper bounded by ∆i, the
jobs of τi released before t0 − (Ti + ∆i) complete their exe-
cution by t0. Therefore, in the time interval [t0, tc), the de-
mand from τi can only come from its jobs released in [t0 −
Ti −∆i, tc). τi can release at most

⌈ tc−(t0−Ti−∆i)
Ti

⌉
jobs in

[t0−Ti−∆i, tc). By Prop. 7, at most fi,p ·
⌈ tc−(t0−Ti−∆i)

Ti

⌉
+2

of them are assigned to processor sp. Thus, in the time in-
terval [t0, tc), the demand from τi on processor sp is at most(

fi,p ·
⌈
tc − (t0 − Ti −∆i)

Ti

⌉
+ 2

)
· Ci

< {since dxe < x+ 1}(
fi,p ·

(
tc − (t0 − Ti −∆i)

Ti
+ 1

)
+ 2

)
· Ci

= {simplifying}(
fi,p ·

tc − t0 + 2Ti + ∆i

Ti
+ 2

)
· Ci

= {by (1) and (2)}
ψi,p · (tc − t0) + ψi,p · (2Ti + ∆i) + 2Ci.

According to the following lemma, if we assume that all
the jobs of a migrating task are moved to its last processor,
then the lateness of these jobs under this assumption upper
bounds their lateness in the actual schedule. This analysis
device was first used by Anderson et al. [4], but assuming
such jobs are moved to the task’s first processor. We must
instead consider the last processor, because in our case pro-
cessors may have different speeds. Thus, we must conserva-
tively assume such moves are with respect to a task’s slowest
processor.

Lemma 2. If we execute all jobs of a migrating task on
its last processor rather than the processors where these jobs
are actually assigned, then no job of this task will complete
its execution earlier. Moreover such job moves do not impact
the other migrating task on this processor (if one exits).

Proof. A migrating task has the highest priority on any
processor that is not its last processor. Also, on any non-last
processor, a migrating task is executed at a speed at least
that of its last processor, since the processors are indexed
from fastest to slowest. Thus, the first part of Lemma 2
holds.

The second part of Lemma 2 follows because on its last
processor, a migrating task has statically lower priority than
any other migrating task.

Prop. 4 and Prop. 6 ensure that, with respect to migrating
tasks, such job moves will not overutilize the last processor
of the considered task.

We now compute a lateness bound for each migrating task
assuming its jobs are moved as described above. If a task is
the only migrating task on its last processor, then its lateness
bound can be computed directly; if a migrating task τl shares
its last processor with another migrating task τh, then its
lateness bound depends on the lateness bound of τh, which
can be computed inductively by the formula in Theorem 1.
Lemma 3 below ensures that the base case exists.

Lemma 3. The migrating task with the largest index does
not share its last processor with any other migrating task.

Proof. Follows directly from Alg. 1.

Theorem 1. Consider a migrating task τl that has sp as
its last processor. If it shares sp with some other migrating
task τh, then τh is the only such task (by Prop. 2). Let ∆h

be the lateness bound of τh. Then τl has lateness at most

∆l
def
=

{
ψh,p·(2Th+∆h)+2Ch+Cl

sp−ψh,p
− Tl if τh exists,

Cl
sp
− Tl otherwise.

(9)

Proof. By Lemma 2, we can upper bound the lateness
of all jobs of τl by assuming that all such jobs execute on
sp. We make that assumption here.

If τl does not share its last processor sp with any other
migrating task, i.e., τh does not exist, then τl has the highest
priority on sp, and by Prop. 4, sp ≥ ul. Therefore, every
job of τl completes its execution within Cl

sp
time units of its

release. Thus, lateness is upper bounded by Cl
sp
− Tl.

In the remainder of the proof, we consider the case where
τh does exist. In this case, we prove Theorem 1 by contra-
diction.

Interval [t0, tc). Let τl,j be the first job of τl that has

lateness exceeding ∆l and define tc
def
= dl,j + ∆l. Let t0 be

the latest time instant before tc such that sp is idle for mi-
grating tasks, i.e., all jobs of τl or τh released before t0 have
completed execution by t0 and a job of τl and/or τh is re-
leased at t0. t0 is well defined because if no such time instant
exists within (0, tc), then time 0 must be such a time instant.

Demand from τh. By Lemma 1, in the time interval
[t0, tc), the demand from τh on sp is less than

ψh,p · (tc − t0) + ψh,p · (2Th + ∆h) + 2Ch. (10)

Demand from τl. The demand from τl on sp comes from
jobs of τl released before rl,j and τl,j itself. By the definition
of t0, the number of such jobs released before rl,j is at most⌊ rl,j−t0

Tl

⌋
. Including τl,j itself, at most

⌊ rl,j−t0
Tl

⌋
+ 1 jobs of

τl create demand in the interval. Thus, in the time interval
[t0, tc), the demand due to τl on processor sp is at most(⌊rl,j − t0

Tl

⌋
+ 1
)
Cl

≤
(rl,j − t0

Tl
+ 1
)
Cl

= {by (1)}
ul(rl,j − t0) + Cl.

(11)

For the purpose of minimizing redundancy in expressions,
we define

K
def
= ψh,p · (2Th + ∆h) + 2Ch + Cl. (12)

Using this definition, by (10), (11), and (12), the total de-
mand within [t0, tc) due to migrating tasks is less than

K + ψh,p · (tc − t0) + ul(rl,j − t0)

= {rearranging}
K + ψh,p · (tc − rl,j) + (ψh,p + ul)(rl,j − t0)

< {by Prop. 6}
K + ψh,p · (tc − rl,j) + sp(rl,j − t0).



Since for contradiction, we assumed that τl,j has lateness
exceeding ∆l, i.e., τl,j completes execution after tc, the total
demand in the time interval [t0, tc) is greater than the total
supply in this interval, which is sp(tc − t0). This implies

K + ψh,p · (tc − rl,j) + sp(rl,j − t0) > sp(tc − t0). (13)

By simplifying (13), we have

K > (tc − rl,j)(sp − ψh,p). (14)

By Prop. 6, we have ψh,p + ul < sp. Because ul > 0, this
implies ψh,p < sp, i.e.,

sp − ψh,p > 0. (15)

By (14) and (15),

tc − rl,j <
K

sp − ψh,p
. (16)

Replacing the right-hand side of (16) by the definition of K
in (12) and the definition of ∆l in (9), we have

tc − rl,j < ∆l + Tl. (17)

Since Tl = dl,j − rl,j , (17) implies tc < dl,j + ∆l, which con-
tradicts the definition of tc Thus, such an assumed job τl,j
with lateness exceeding ∆l does not exist. Hence, Theorem 1
holds.

4.2 Fixed Tasks
In this subsection, instead of lateness, we consider tardi-

ness directly.
To begin with, note that if no migrating task assigns jobs

to a processor, then all of the fixed tasks on that processor
have a tardiness bound of zero, since EDF is optimal for
uniprocessor scheduling and by Prop. 3 we do not overutilize
any single processor.

Theorem 2 below provides a tardiness bound for a fixed
task that executes on a processor where migrating task(s)
also execute. In this case, the tardiness bound for the fixed
task depends on the lateness bound(s) for the migrating
task(s) on the same processor, which can be computed by
Theorem 1. By Prop. 2, at most two migrating tasks have
non-zero shares on a processor.

Theorem 2. Suppose that one or two migrating tasks
have non-zero shares on processor sp. If two, let τl (τh) be
the one with lower (higher) priority; if only one, let τl denote
that task and consider τh to be a “null” task with Ch = 0,
ψh,p = 0, and Th = 1. Then, a fixed task τi on sp has
tardiness at most

∆i
def
=
ψl,p · (2Tl + ∆l) + 2Cl + ψh,p · (2Th + ∆h) + 2Ch

sp − ψl,p − ψh,p
.

(18)

Proof. This proof is similar to that of Theorem 1.
Interval [t0, tc). Let τi,j be the first job of any fixed task

on sp that has tardiness exceeding the bound in (18) and

define tc
def
= di,j + ∆i. Let t0 be the latest idle time instant

before tc, i.e., at time instant t0, the processor sp is either
idle or executing some job with a priority lower than τi,j ’s
priority and at least one job with a priority at least τi,j ’s
priority is released. t0 is well-defined because if no such time
instant exists within (0, tc), then time 0 must be a such time
instant.

Demand from mirgrating tasks. By Lemma 1, in
[t0, tc), the demand from τl on sp is less than

ψl,p · (tc − t0) + ψl,p · (2Tl + ∆l) + 2Cl, (19)

and the demand from τh on sp is less than

ψh,p · (tc − t0) + ψh,p · (2Th + ∆h) + 2Ch. (20)

Demand from fixed tasks. A fixed task τk can release
at most

⌊ di,j−t0
Tk

⌋
jobs with a priority at least τi,j ’s priority

in the interval [t0, tc). Thus, the demand from fixed tasks in
[t0, tc) is at most ∑

τk∈τ
f
p

⌊di,j − t0
Tk

⌋
· Ck

≤(di,j − t0) ·
∑
τk∈τ

f
p

Ck
Tk

={by the definition of σfp}

(di,j − t0) · σfp
≤{by Prop. 3}

(di,j − t0)(sp − ψl,p − ψh,p).

(21)

For the purpose of minimizing redundancy in expressions,
we define

K
def
= ψl,p · (2Tl + ∆l) + 2Cl +ψh,p · (2Th + ∆h) + 2Ch. (22)

Using this definition, by (19), (20), (21), and (22), the total
demand within [t0, tc) is at most

K+ (ψl,p +ψh,p)(tc− t0) + (sp−ψl,p−ψh,p)(di,j − t0).

Since for the purpose of contradiction, we assume τi,j has
tardiness exceeding ∆i, i.e., τi,j completes execution after
tc, the total demand in the time interval [t0, tc) is greater
than the total supply in the interval which is sp(tc − t0).
That is,

K + (ψl,p + ψh,p)(tc − t0)

+ (sp − ψl,p − ψh,p)(di,j − t0) > sp(tc − t0). (23)

By simplifying (23), we have

K > (tc − di,j)(sp − ψl,p − ψh,p). (24)

By Prop. 3, we have σfp +ψh,p +ψl,p ≤ sp. Because σfp > 0,
this implies

sp − ψl,p − ψh,p ≥ σfp > 0. (25)

By (24) and (25),

tc − di,j <
K

sp − ψl,p − ψh,p
. (26)

Replacing the right-hand side of (26) by the definition of K
in (22) and the definition of ∆i in (18), we have

tc − di,j < ∆i. (27)

(27) implies tc < di,j+∆i, which contradicts the definition of
tc. Thus, such an assumed job τi,j with tardiness exceeding
∆i does not exist. Hence, Theorem 2 holds.



5. EVALUATION
To evaluate how restrictive the assumed per-task utiliza-

tion constraint is and the effectiveness of EDF-sh, we con-
ducted experiments to assess schedulability and tardiness
bounds for EDF-sh.

When conducting such experiments for identical multipro-
cessors, the assumed platform is implicitly determined by an
assumed total processor capacity, or the number of proces-
sors. However, for uniform heterogeneous multiprocessors,
processor speeds must be defined. Given a total processor
capacity, there are a infinite number of speed choices from
which to select. Because only selected choices can be consid-
ered, no evaluation can be exhaustive. In our experiments,
we considered systems of eight processors with a total pro-
cessor capacity of 36. We considered four such platforms,
with speeds as follows: π1 = {6, 6, 6, 6, 3, 3, 3, 3}, π2 = {8,
8, 4, 4, 4, 4, 2, 2}, π3 = {8, 7, 6, 5, 4, 3, 2, 1}, π4 = {15, 3,
3, 3, 3, 3, 3, 3}.

The process of randomly generating feasible task systems
for the considered platforms also varies from that for identi-
cal ones. In the identical case, the per-task utilization bound
is fixed for every task to be 1.0. However, per-task utilization
bounds in the heterogeneous case must instead follow (4). As
such, before generating a new task, we calculated a per-task
utilization cap for it by (4), considering previously generated
tasks. We then selected the utilization of that task uniformly
at random between zero and the computed cap. This gen-
eration process terminates when the total utilization of all
generated tasks exceeds or equals a pre-set total utilization
limit. The utilization of the last generated task is then ad-
justed so that the total generated utilization matches the
pre-set limit.

We require the number of tasks n to be at least the num-
ber of processors m. To ensure this, whenever n < m held
for a generated system, a task was chosen at random and
replaced by two tasks with half the utilization of the orig-
inal one (this process was repeated as necessary). Given a
platform and a total task system utilization, having fewer
(more) tasks means having higher (lower) expected per-task
utilizations. To reflect these two extremes, we defined the
minimum number of the tasks to be either eight (fewer but
heavier tasks) or 32 (more but lighter tasks) for every con-
sidered platform. Also, we selected each task’s execution re-
quirement uniformly from [5, 25] and calculated its period
from its utilization and execution requirement. In all ex-
periments in this section, we varied total utilization within
[0, 36] by increments of 0.5, and for each total utilization, we
generated 10, 000 feasible task sets.

Schedulability. EDF-sh has the same utilization restric-
tions (i.e., (3) and (5)) as EDF-ms, but EDF-sh can support
platforms in which speed groups exist with only one proces-
sor, while EDF-ms requires each such group to have at least
two processors. For this reason, EDF-sh dominates EDF-ms
in terms of SRT schedulability.

Given this provable dominance over EDF-ms, our assess-
ment of schedulability under EDF-sh focuses on determining
the fraction of randomly generated feasible systems (as de-
fined by (3) and (4)) it can successfully schedule for every
given total utilization and every platform. Fig. 4 shows the
results of these experiments. More than 87% of the gener-
ated systems were SRT-schedulable under EDF-sh. In gen-
eral, the smaller the difference among processor speeds, the
better the schedulability. This makes sense, since for iden-
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Figure 4: Schedulability under EDF-sh.

tical multiprocessors, EDF-sh is SRT-optimal, like EDF-os.
Furthermore, when there are many lighter tasks instead of
few heavier ones, schedulability is quite close to optimal.

Tardiness Bounds. We also compared tardiness bounds
under EDF-sh to those under EDF-ms. Since EDF-ms re-
quires each speed group to have at least two processors, i.e.,
it does not apply to π3 and π4, we only computed tardiness
bounds for π1 and π2. We compared EDF-sh and EDF-ms in
terms of both maximum absolute tardiness bounds and max-
imum relative tardiness bounds, where the latter is defined
as the ratio of a task’s tardiness bound to its period. Fig. 5(a)
shows absolute tardiness bounds and Fig. 5(b) shows relative
tardiness bounds.

In most cases, EDF-sh exhibits significantly lower maxi-
mum tardiness bounds than EDF-ms. The only exception to
this is when total utilization is close to overutilizing the plat-
form, and even then, EDF-sh is never substantially worse.
Furthermore, note that in EDF-sh, migrations are boundary-
limited. If we were to take overheads into account, EDF-sh
would likely outperform EDF-ms in all cases. We defer an
overhead-aware comparison to future work.

6. CONCLUSION
We have presented EDF-sh, an EDF-based semi-

partitioned scheduling algorithm for SRT uniform hetero-
geneous systems. To the best of our knowledge, this is the
first restricted-migration scheduling algorithm for SRT het-
erogeneous systems.

EDF-sh is an extension of EDF-os, which is a SRT-optimal
semi-partitioned scheduling algorithm for identical multipro-
cessors. Hence, EDF-sh inherits the boundary-limited prop-
erty from EDF-os. However, the optimality of EDF-os has
not been retained, due to the introduction of (5). On the
other hand, EDF-sh, like EDF-os, allows total task system
utilization to be as high as the total processor capacity.

We also presented an experimental evaluation that shows
that EDF-sh has good performance in terms of both schedu-
lability and tardiness bounds. Furthermore, EDF-sh domi-
nates the previously proposed EDF-ms in terms of schedula-
bility, and in our experiments, almost always exhibited sig-
nificantly lower tardiness bounds than EDF-ms.

Future work. The development of SRT-optimal global
and semi-partitioned scheduling algorithms for uniform het-
erogeneous multiprocessors remains as an open problem.
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Figure 5: Tardiness bounds of EDF-ms and EDF-sh.

Overhead-aware scheduler comparisons based on actual im-
plementations remain as future work as well. Processors are
available today that can run at degraded speeds to save en-
ergy or reduce temperature. An identical multiprocessor sys-
tem that consists of such processors can potentially become
a uniform heterogeneous system if each processor can de-
grade speed independently. Such systems warrant further
attention as well.
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