
Optimal Soft Real-Time Semi-Partitioned Scheduling Made
Simple (And Dynamic)

Clara Hobbs

Univ. of North Carolina at Chapel Hill

cghobbs@cs.unc.edu

Zelin Tong

Univ. of North Carolina at Chapel Hill

ztong@cs.unc.edu

James H. Anderson

Univ. of North Carolina at Chapel Hill

anderson@cs.unc.edu

ABSTRACT

Semi-partitioned scheduling is an approach to multiprocessor real-

time scheduling where most tasks are fixed to processors, while a

small subset of tasks is allowed to migrate. This approach offers re-

duced overhead compared to global scheduling, and can reduce pro-

cessor capacity loss compared to partitioned scheduling. Prior work

has resulted in a number of semi-partitioned scheduling algorithms,

but their correctness typically hinges on a complex intertwining of

offline task assignment and online execution. This brittleness has

resulted in few proposed semi-partitioned scheduling algorithms

that support dynamic task systems, where tasks may join or leave

the system at runtime, and few that are optimal in any sense. This

paper introduces EDF-sc, the first semi-partitioned scheduling al-

gorithm that is optimal for scheduling (static) soft real-time (SRT)

sporadic task systems and allows tasks to dynamically join and

leave. The SRT notion of optimality provided by EDF-sc requires

deadline tardiness to be bounded for any task system that does not

cause over-utilization. In the event that all tasks can be assigned

as fixed, EDF-sc behaves exactly as partitioned EDF. Heuristics are

provided that give EDF-sc the novel ability to stabilize the workload

to approach the partitioned case as tasks join and leave the system.

CCS CONCEPTS

• Computer systems organization→ Real-time systems.

KEYWORDS

multicore processors, real-time, semi-partitioned scheduling, dy-

namic, reweighting

ACM Reference Format:

Clara Hobbs, Zelin Tong, and James H. Anderson. 2019. Optimal Soft Real-

Time Semi-Partitioned Scheduling Made Simple (And Dynamic). In 27th

International Conference on Real-Time Networks and Systems (RTNS 2019),

November 6–8, 2019, Toulouse, France. ACM, New York, NY, USA, 19 pages.

https://doi.org/10.1145/3356401.3356402

ACKNOWLEDGMENTS

Work supported by NSF grants CNS 1409175, CNS 1563845, CNS

1717589, and CPS 1837337, ARO grant W911NF-17-1-0294, and

funding from General Motors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS 2019, November 6–8, 2019, Toulouse, France

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7223-7/19/11. . . $15.00

https://doi.org/10.1145/3356401.3356402

1 INTRODUCTION

Semi-partitioned scheduling is a compromise between the tradi-

tional global and partitioned approaches to multiprocessor schedul-

ing, where most tasks are assigned as fixed, or only able to execute

on one processor, while a small subset of tasks are migrating, or

able to execute on more than one processor. This approach gives

reduced overhead compared to global scheduling because few tasks

can migrate, and can avoid the capacity loss of up to 50% inherent

to partitioned scheduling. Semi-partitioned scheduling was first

proposed for soft real-time (SRT) scheduling [1], where deadline

misses are acceptable as long as they are bounded in length. In this

paper, we focus our attention on this type of SRT system.

Unfortunately, most proposed semi-partitioned scheduling al-

gorithms depend on an inflexible offline task-assignment phase to

provide correctness guarantees. This offline assignment is usually

quite brittle, and is intertwined with the scheduling rules used on-

line so that the assignment cannot be changed at runtime, at least

not without incurring prohibitive computational costs. This pre-

cludes the possibility of supporting dynamic task systems, in which

tasks may be added to or removed from the system at runtime. In

this paper, we alleviate this restriction by introducing a simple SRT

semi-partitioned scheduling algorithm that is optimal for (static)

sporadic task systems, and that supports dynamic task systems.

Prior work. The first semi-partitioned scheduling algorithm to

be proposed was EDF-fm [1], which guarantees bounded tardiness

with no overall system utilization cap (beyond the obvious cap of

m on anm-processor system), but is not optimal because it requires

that each task has utilization at most 1/2. Since then, numerous

other semi-partitioned scheduling algorithms have been proposed

[2–4, 7–9, 12–14, 17, 19–21, 24–26, 30–32]. Of these, two are espe-

cially relevant to this work. Anderson et al. [2] proposed EDF-os,

the first SRT optimal semi-partitioned scheduling algorithm. Unfor-

tunately, EDF-os does not support dynamic task systems because its

tardiness bounds critically hinge on properties established during

its offline task-assignment phase, and these properties are difficult

to maintain if changes to the system occur. Casini et al. [14] pro-

posed an approximate C=D splitting algorithm, which is to our

knowledge the only prior semi-partitioned scheduling algorithm

that supports dynamic workloads. Unlike our work, however, Casini

et al. focused on hard real-time systems, for which their algorithm

is not optimal.

Contributions. In this paper, we present the first semi-partitioned

scheduling algorithm that is optimal in the SRT case, and that sup-

ports dynamic task systems. This algorithm, called EDF-sc (earliest-

deadline-first-based semi-partitioned scheduling with containers),

takes a novel yet simple approach to semi-partitioned scheduling.

Rather than performing an inflexible offline assignment of tasks

https://doi.org/10.1145/3356401.3356402
https://doi.org/10.1145/3356401.3356402

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

to processors and then scheduling tasks by a set of rules based on

this assignment, EDF-sc schedules migrating tasks on a global EDF

(GEDF) basis alongside a set of containers that are each assigned to

a unique processor. Each container holds the set of fixed tasks on

its corresponding processor. When a container is selected to run,

it schedules its fixed tasks using uniprocessor EDF. This simple,

hierarchical approach gives bounded tardiness for all tasks, and

to the best of our knowledge is the first algorithm to do so irre-

spective of the assignment of tasks to processors. Because of this

property, we are able to provide rules to add and remove tasks from

the system at runtime. We introduce a number of heuristics for

adding and removing tasks that stabilize the workload by reducing

the number of migrating tasks over time. Finally, we present the

results of a migration-overhead-aware schedulability study compar-

ing EDF-sc to GEDF in static systems. We also show the results of

an experimental evaluation of our heuristics, and compare tardiness

under EDF-sc to that under GEDF. These experiments show that

EDF-sc generally provides higher schedulability than GEDF, and

can give reduced tardiness compared to GEDF for systems with

low-utilization tasks. They also show that our reweighting heuris-

tics can effectively reduce the number of migrating tasks as tasks

are added to or removed from the system.

Organization. The rest of this paper is organized as follows. We

describe our system model in Sec. 2, and describe the EDF-sc algo-

rithm in Sec. 3. We derive tardiness bounds for EDF-sc in Sec. 4.

These tardiness bounds do not depend on the task assignment being

performed in any particular way. Accordingly, numerous heuristics

can be used to assign tasks to processors. We present several such

heuristics in Sec. 5. We show the results of an experimental evalu-

ation of EDF-sc in Sec. 6. Sec. 7 concludes the paper and outlines

future work.

2 SYSTEM MODEL

We consider the scheduling of a dynamic system of sporadic tasks

on m identical processors π1,π2, . . . ,πm (we assume familiarity

with the periodic and sporadic task models). In this paper, we limit

our attention to a form of dynamic task system that is commonly

found in practice in which tasks may be added to or removed

from the system at runtime, but a task’s parameters may not be

arbitrarily changed. While some prior work has considered fine-

grained reweighting in which task parameters may be arbitrarily

changed at runtime [10], our notion of a dynamic task system is

sufficient for many real-world use cases such as mode changes. We

model such a dynamic task system by a set T = {τ1,τ2, . . . ,τN }
containing all tasks that can ever be run on the system, and a

set τ ⊆ T containing the tasks that are currently able to be executed.

While T is constant, the subset τ may change over time.
1

Each task τi ∈ T is specified by the parameters (Ci ,Ti), where
Ci denotes τi ’s execution cost (assumed to be the worst case) andTi
denotes its period, or minimum inter-release time. The utilization

or weight
2
of task τi is denoted byUi = Ci/Ti , and the utilization of

a set of tasks S is denotedU (S) = ∑
τi ∈S Ui . We consider dynamic

task systems for which (∀τi ∈ T :: Ui ≤ 1) and U (τ) ≤ m both

1
Because the set τ (and several other sets defined in Secs. 3 and 5) changes over time,

it may be more technically precise to use the notation τ (t), but we omit the time

parameter where it is obvious to avoid clutter.

T: all tasks

F1 F2 Fm· · ·

τF
1

τF
2

τFm· · ·

τ f
: container tasks

τ : active tasks

τ fp

τ fg = τ f\τ fp
:

globally scheduled

container tasks

τ m = τ \
m⋃
i=1

Fi : migrating tasks

τ g = τ m ∪ τ fg
:

globally scheduled

tasks

partitioned container tasks

containers

Figure 1: The relationships between the sets used in EDF-sc.

hold, as otherwise tardiness may grow without bound. We call an

SRT scheduling algorithm optimal if it guarantees that tardiness is

bounded for any task system satisfying these conditions.

We denote the jth job of task τi by τi, j . We denote the release time

and deadline of τi, j by ri, j and di, j , respectively. We assume all task

deadlines are implicit (di, j = ri, j +Ti). A job τi, j is called pending

at time t if t ≥ ri, j and τi, j has not completed by t . Assuming that a

job τi, j completes execution at time t , its tardiness is max(0, t −di, j).
The tardiness of task τi is the maximum tardiness of any of its jobs.

3 EDF-SC

Our goal in designing EDF-sc was to create a semi-partitioned

scheduling algorithm that is optimal in the SRT sense, and that sup-

ports dynamic task systems. Because the set of tasks in the system

can change over time, unlike most other semi-partitioned sched-

uling algorithms, EDF-sc does not require any particular offline

assignment phase. The initial task assignment can be generated

simply by adding one task at a time to an initially empty task sys-

tem. Performing the initial assignment offline may still be of benefit,

however, and we provide some discussion of this issue in Sec. 5.

In fact, unlike every prior semi-partitioned scheduling algorithm

known to us, EDF-sc has no dependence on any particular method

of assigning tasks to processors: bounded tardiness is guaranteed

for all tasks under any arbitrary assignment of tasks to processors.

This property holds regardless of even howmany tasks are assigned

as migrating rather than fixed. In this sense, EDF-sc can be viewed

as a generalization of both global and partitioned EDF. If all tasks

are assigned to processors and none are migrating, then EDF-sc can

behave exactly as partitioned EDF. Similarly, if no tasks are assigned

to processors, then EDF-sc behaves exactly as GEDF, maintaining

bounded tardiness for all tasks [16].

3.1 Execution

The EDF-sc scheduling algorithm divides the currently active tasksτ
into m + 1 pairwise-disjoint subsets F1, F2, . . . , Fm ,τ

m
such that⋃m

i=1 Fi ∪ τm = τ , and for each Fi , U (Fi) ≤ 1 holds. These sets are

depicted in Fig. 1. We call each set Fi a container. By the scheduling

rules of EDF-sc described below, the tasks in each container Fi can
only be scheduled on processor πi . Thus, we say that the tasks in Fi
are fixed on processor πi , while the tasks in τ

m
are migrating.

We manage the execution budget of each container Fi using a

synchronous and periodic container task τFi with a period TFi and
utilization UFi . From these two parameters, the container task’s

2
In prior work on dynamic task systems, the term weight is often used to refer to task

utilizations. Changing a task’s utilization is referred to as reweighting the task [10, 11].

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

Scheduled at

top level

Scheduled at

bottom level

Job release

Job deadline

Job completion

Execution (π1)

Execution (π2)

Execution (π3)

Execution (π4)

Figure 2: Legend for Figs. 3, 4, 5, and 6.

execution budget is calculated as CFi = UFi ·TFi . Unlike the tasks
in T, the utilization of each container task may be varied over

time in order to adjust the container’s budget. We refer to each

time instant dFi , j = rFi , j+1 as a job boundary of τFi . The set of all
container tasks is denoted τ f. The period of each container task may

be chosen freely and independently by the system designer, so long

as (∀τFi ∈ τ f :: TFi > 0) holds. The utilizations for all container
tasks must be chosen so that the following two conditions are met.

(∀τFi ∈ τ f :: U (Fi) ≤ UFi ≤ 1) (1)

U (τm) +U (τ f) ≤ m (2)

IfUFi = U (Fi), then the container task τFi is said to beminimally

provisioned; otherwise, it is over-provisioned. If UFi = 1, then τFi
is said to be fully provisioned. Note that a container task may be

over-provisioned without being fully provisioned, and vice versa.

Let τ fp = {τFi | UFi = 1} (partitioned container tasks) be the

set of fully provisioned container tasks. Note that by construction,

U (τ fp) = |τ fp |. Also, let τ fg = {τFi | UFi < 1} (globally scheduled

container tasks) be the set of container tasks that are not fully

provisioned, and let πg = {πi | UFi < 1} be the processors on

which their contained tasks are fixed. The scheduling rules used by

EDF-sc are as follows.

S1 All jobs of tasks in τ g = τm ∪ τ fg are scheduled on a GEDF

basis on the processors in πg. If a job of a container task τFi
is selected to run, then it is scheduled on πi .

S2 Jobs of each container task τFi ∈ τ fp are scheduled on πi
without competition from migrating tasks.

S3 When a container task τFi is scheduled, it executes the

pending job (if any) of a fixed task τj ∈ Fi with the earliest

deadline. If there is no pending job of any task in Fi , then
the container may execute a pending job of a migrating task

instead. If no such job is available, then πi is left idle.

In Rules S1 and S3, all deadline ties are broken in an arbitrary

and consistent manner. If two pending jobs τi, j and τk, ℓ have the
same deadline and τi, j is prioritized over τk, ℓ at time t , then τi, j is
prioritized over τk, ℓ at all other times t ′ , t when both are pending.

Being container-based, EDF-sc is a hierarchical scheduler with

two levels. Rules S1 and S2 prescribe the top level of the schedul-

ing hierarchy, together handling all migrating and container tasks.

Rule S1 schedules all migrating tasks and the containers with which

they share processors using GEDF on |πg | processors. Because Fi al-
ways runs on πi , it may force a job of a migrating task running on πi
to migrate to another processor. Rule S2 fully partitions the proces-

sors that are fully utilized by their containers. This prevents these

containers, and the fixed tasks they contain, from “gaining” tardi-

ness due to competition from migrating tasks. Rule S3 schedules

the bottom level of the hierarchy, performing the intra-container

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

τ6

τF1

τF2

τF3

τF4

Figure 3: The schedule described in Example 3.1.

scheduling of all fixed tasks. If a container is scheduled but none of

its fixed tasks have pending jobs, then its unused budget may be

used to execute migrating tasks. This may occur if the container is

over-provisioned, or if some of its fixed tasks release jobs with an

inter-release time greater than their periods or with an execution

cost less than the worst-case value for their tasks.

Example 3.1. Fig. 3 shows a four-processor EDF-sc schedule of

the tasks τ1 = (1, 2), τ2 = (2, 4), τ3 = (4, 5), τ4 = (2, 3), τ5 = (4, 6),
and τ6 = (2, 3), partitioned so that F1 = {τ1,τ2}, F2 = {τ3}, F3 =
{τ4}, F4 = {τ5}, and τm = {τ6}. All container tasks τFi have period
TFi = 6. UF1 = UF2 = 1, and UF3 = UF4 = 2/3. Deadline ties are
broken by first prioritizing container tasks over migrating tasks,

and then by prioritizing the highest row.

Container tasks τF1 and τF2 are fully provisioned, so they are

scheduled continuously by Rule S2. The other container tasks com-

pete on a GEDF basis with τ6 by Rule S1. U (F2) = 4/5 < UF2 , so π2
is idle over several intervals. During one of these, [9, 10), jobs of
both τF3 and τF4 are scheduled by GEDF, but because there are no

pending jobs of any task in F2, τ6 is scheduled on π2.

Because the migrating and container tasks in EDF-sc are sched-

uled at the top level by GEDF, tardiness bounds easily follow from

prior work [16]. Bounded tardiness for fixed tasks likewise follows

from uniprocessor scheduling analysis with limited processor avail-

ability [29]. Thus, for static sporadic task systems, the SRT optimal-

ity of EDF-sc (bounded tardiness if no over-utilization) is not hard

to show. However, the simplicity of EDF-sc enables the design of

rules to support dynamic workload changes, which complicate the

derivation of tardiness bounds somewhat. We prove expressions for

such bounds in Sec. 4, after first describing in the following section

the rules we propose for managing dynamic workload changes.

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

3.2 Reweighting Rules

EDF-sc supports dynamic task systems by allowing tasks to be

added to or removed from the system. This is done by applying

the following reweighting rules, which support the addition and

removal of tasks in τ , as well as changing container weights.
3
The

rules described in this section are low-level operations, and in some

cases more than one rule may need to be applied to add a given task

to the system. In Sec. 5, we give heuristics that handle these cases

seamlessly and attempt to assign all tasks as fixed where possible.

AM (add migrating task) A task τa < τ may be added to τm

if and only if the following condition holds.

Ua ≤ min

(
1,
��πg�� −U (τ g)) (3)

AF (add fixed task) A task τa < τ may be added to the con-

tainer Fi if and only if the following condition holds.

Ua ≤ UFi −U (Fi) (4)

R (remove task) A task τr ∈ τ whose most recently released

job τr,i completes at time tc may be removed from τ at

or after time max(dr,i , tc), provided no new job τr,i+1 is

released before this time.

W (reweight container) The weight of a container task τFi
may be changed from UFi to U

′
Fi

at its job boundaries if and

only if the following two conditions hold.

U (Fi) ≤ U ′Fi ≤ 1 (5)

U ′Fi −UFi +U (τ
m ∪ τ f) ≤ m (6)

The weight change only affects newly released jobs of τFi .

Intuitively, Rule AM allows a migrating task to be added to the

task system if it does not over-utilize a single processor, and if its

addition will not cause the processors of πg to be over-utilized

by containers and migrating tasks. Similarly, Rule AF allows a

fixed task to be added to a container if adding it will not cause the

container to be over-utilized. Rule R allows tasks to be removed at

job deadlines or completion times, whichever is later. RuleW allows

container tasks to be reweighted at container job boundaries as

long as the new utilization is at least the utilization of the contained

tasks, and the system is not over-utilized at the top level.

4 TARDINESS BOUNDS

In this section, we derive tardiness bounds for all tasks in a dynamic

sporadic task system scheduled by EDF-sc. We begin in Sec. 4.1 by

proving a tardiness bound for migrating and container tasks based

on work by Devi [15]. We then use this bound to derive a tardiness

bound for fixed tasks under EDF-sc in Sec. 4.2.

4.1 Tardiness Bound for Migrating and

Container Tasks

By Rule S1, the migrating and container tasks in EDF-sc compete

on a GEDF basis on |πg | processors. Rule S3 may cause migrating

tasks to be scheduled by the container tasks, but this can only move

3
Alternative reweighting rules could free system utilization more aggressively than

the ones presented here. In particular, a removed migrating task’s utilization could be

freed at the deadline of its last job. This would allow dynamic workload changes to be

made more quickly, but would also create a blocking term in the tardiness analysis for

fixed tasks to account for tasks that are being changed from migrating to fixed. To aid

in understanding, we opt for more conservative reweighting rules in this work.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

Inactive Terminated

Terminated

Inactive

τ c
1

τ c
2

τ c
3

Figure 4: The extended sporadic task system in Example 4.1.

execution of migrating tasks earlier, so Rule S3 can never increase

the tardiness of migrating or container tasks. The set of globally

scheduled tasks can be modified by Rules AM, R, and W.

Devi [15] presented an extended sporadic task model that can be

used to model dynamic task models such as the one considered

in this work. In Devi’s model, the total utilization of all tasks is

allowed to exceedm, but at any time instant, the total utilization

of all active tasks is at mostm. A task is initially inactive until the

release of its first job, at which point it is active until the deadline of

its last job, when it becomes terminated. The extended sporadic task

model divides the tasks in the system into task classes τ c
1
,τ c
2
, . . . ,τ cn

so that the active intervals for each pair of tasks in each class are

disjoint, and with the precedence constraint that the first job of a

task cannot execute until all jobs of tasks in the same class with

earlier release times have completed. Intuitively, each task class

in this model is meant to model a single dynamic task, and each

task in a class represents a set of parameters it could take on. Devi

showed that using GEDF scheduling in this extended sporadic task

model, tardiness for each task in the task class τ ci is at most
4∑

τ c

z ∈C cmax(m−1)C
cmax

z

m −∑τ c

z ∈U cmax(m−2)U
cmax

z
+Ccmax

i , (7)

where Ccmax

z andU cmax

z are the maximum execution cost and uti-

lization of any task in task class τ cz , and C cmax(ℓ) and U cmax(ℓ)
are the subsets of ℓ task classes with the greatest values of Ccmax

andU cmax
, respectively.

Example 4.1. An example of an extended sporadic task system

scheduled on two processors by GEDF is depicted in Fig. 4. This

task system consists of three task classes τ c
1
= {τ1 : (2, 4)}, τ c

2
=

{τ2 : (2, 3)}, and τ c
3
= {τ3 : (5, 5),τ4 : (4, 5)}. Before time 10, only

tasks τ1 and τ3 are active, giving a system utilization of 3/2. At
time 10, τ3 terminates and τ2 and τ4 activate, increasing the system

utilization to 59/30. At time 16, task τ2 terminates, decreasing the

system utilization to 13/10.

Lemma 4.2. Migrating and container tasks in EDF-sc can be mod-

eled by Devi’s extended sporadic task model.

4
New tardiness analysis techniques for GEDF [18, 27] have been proposed since Devi’s

work, and could likely be applied to obtain reduced bounds for the extended sporadic

task model. However, deriving new bounds is beyond the scope of what we can present

in the space allowed.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

0 2 4 6 8 10 12 14 16 18 20

τF1

τ1

τF2

Rule AM Rule R

Rule W

Figure 5: An EDF-sc schedule analogous to the one in Fig. 4.

Proof. Throughout this proof, we illustrate how Devi’s model

can be used to model dynamic behaviors by comparing the sched-

ules in Figs. 4 and 5. As there are no inter-task precedence con-

straints in EDF-sc, each task τi ∈ T can be modeled in Devi’s model

as a task class τ ci , where each task in τ ci has the same parameters

as τi . Rule R in EDF-sc allows a migrating task τi to be removed at

the deadline or completion time of its most recently released job,

or any time thereafter. This is similar to terminating the active task

in τ ci in Devi’s model, but more conservative because the task’s

utilization will be reserved after its last released job’s deadline if

it is tardy. Because Rule AM ensures that the set of tasks sched-

uled by GEDF never overutilizes the processors on which they are

scheduled, adding a task τi with Rule AM in EDF-sc is equivalent

to activating a task in τ ci in Devi’s model. These equivalences are

shown by task τ1 in Fig. 5, which is added by Rule AM at time 10

and removed by Rule R at time 16. This is equivalent to τ c
2
under

Devi’s model in Fig. 4.

Each container task τFi ∈ τ f is likewise equivalent to a task

class τ cFi
in Devi’s model. Initially, each class τ cFi

has an active task

with parameters (CFi ,TFi). Each time τFi is reweighted with RuleW,

the active task in τ cFi
terminates, and a task with the new parameters

of τFi activates. Condition (6) ensures that the new set of active

tasks will have total utilization at mostm. For example, container

task τF2 in Fig. 5 initially has parameters (5, 5), and is reweighted

with Rule W at time 10, giving it new parameters (4, 5). This task
is modeled in Fig. 4 by task class τ c

3
: task τ3 = (5, 5) is active until

time 10, when it terminates and task τ4 = (4, 5) activates. □

Using Lemma 4.2 and the tardiness bound (7) for GEDF under

the extended sporadic task model, we now derive a tardiness bound

for migrating and container tasks in EDF-sc.

Theorem 4.3. Tardiness for any migrating or container task τi
under EDF-sc is at most∑

τz ∈Cmax(τ m∪τ f,m−1)C
max

z

m −∑τz ∈U max(τ m∪τ f,m−2)U
max

z
+Cmax

i , (8)

whereCmax

z andUmax

z are themaximum execution cost and utilization

of task τz , and Cmax(τ , ℓ) and U max(τ , ℓ) are the subsets of ℓ tasks
in τ with the greatest values of Cmax

andUmax
, respectively.

Proof. Rule S1 schedules migrating and container tasks using

GEDF, so as long as this is the only rule that schedules migrating

and container tasks, the bound (8) follows from Lemma 4.2.

Rule S3 can schedule migrating tasks using the budget of con-

tainer tasks. This does not directly affect the tardiness of container

tasks, as they consume budget regardless. The tardiness of migrat-

ing tasks can only be decreased by Rule S3, because their execution

can only be moved earlier by this rule. Thus, the bound (8) holds if

migrating and container tasks are scheduled by Rules S1 and S3.

It remains to be shown that the bound (8) holds when container

tasks are scheduled by Rule S2 as well. This rule schedules fully

provisioned container tasks without competition from migrating

tasks, so their tardiness can never increase as a result of being

scheduled by Rule S2. This causes the tasks in τ g to be scheduled

using GEDF on |πg | < m processors. Thus, by Lemma 4.2, tardiness

for a task τi ∈ τ g is upper-bounded by∑
τz ∈Cmax(τ g, |π g |−1)C

max

z

|πg | −∑τz ∈U max(τ g, |π g |−2)U
max

z
+Cmax

i . (9)

The numerator of (9) is at most the numerator of (8) because it is

the sum of fewer maximum execution costs from a subset of the

set considered in (8). The denominators of the two expressions are

equal: the tasks in τm ∪ τ f excluded from the summation in the

denominator of (9) are the fully provisioned containers τ fp, whose
total maximum utilization ism− |τ g |. Therefore, tardiness for tasks
in τ g is still upper-bounded by (8), so the theorem holds. □

4.2 Tardiness Bound for Fixed Tasks

Fixed tasks are scheduled using uniprocessor EDF by Rule S3, but

they may still miss deadlines if their container is not fully provi-

sioned. This is because the processor is unavailable to the fixed

tasks when their container task is not scheduled, which could cause

processor demand to exceed supply over some time intervals. Real-

time scheduling with limited processor availability has been studied

previously [28, 29], but prior work focuses on static systems. In this

section, we derive a tardiness bound for fixed tasks under EDF-sc

by extending limited availability analysis techniques to handle dy-

namic behaviors. To aid in this, for the remainder of this section,

we will explicitly show the time parameter t for container Fi (t) and
the utilization of its container task,UFi (t).

Theorem 4.4. Under EDF-sc, tardiness for fixed tasks on proces-

sor πi is at most

σi = 2TFi +

∑
τz ∈Cmax(τ m∪τ f,m−1)C

max

z

m −∑τz ∈U max(τ m∪τ f,m−2)U
max

z
+Cmax

Fi . (10)

Proof sketch. Assume for purposes of contradiction that in a

system scheduled by EDF-sc, some job τa,b of a fixed task τa on

processor πi completes with tardiness greater than σi . In particular,

let tc > da,b + σi denote the completion time of τa,b . Define a job
of a fixed task on processor πi as a competing job if its deadline is at

or before di, j . Let t0 denote the unique instant in time at or before

ri, j immediately before which no competing jobs were pending,

and starting at which πi is either busy executing competing jobs or

unavailable to fixed tasks until tc .
We next derive bounds for processor demand and supply over

any time interval [r , s), where for every t ∈ [r , s), U (Fi (t)) > 0

holds. Because the interval of interest [t0, tc)meets this description,

we can then use these bounds to derive a completion time for τa,b .
As discussed earlier, due to the dynamic behavior of EDF-sc, we

cannot simply use linear bounds for these functions. Instead, we

derive piecewise linear functions expressed with definite integrals.

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

The processor demand created by jobs of fixed tasks on πi over an
interval [r , s) is at most

αi (r , s) =
∫ s

r
U
(
Fi (t)

)
dt .

Therefore, the processor demand created by competing jobs released

at or after t0 is at most αi (t0,di, j).
Now we derive a lower bound to processor availability to fixed

tasks on πi over an interval [r , s), as described above. Prior work

involving limited processor availability for static systems typically

provides a lower bound for an interval of length ∆ of the form

β(∆) = max

(
0, Û · (∆ − σ)

)
,

where Û is the long-term average processor availability, and σ is

the maximum duration of time where the processor can be contin-

uously unavailable [28]. This is insufficient for our needs because

the average processor availability can change over time, so we de-

velop a similar lower bound to availability over an interval [r , s) as
described above.

By examining the scheduling of τFi , we can see that the maxi-

mum processor unavailability occurs when a job τFi , j completes

execution as early as possible, and the next job τFi , j+1 completes

as late as possible. Thus by adding two container periods to the

tardiness bound from Theorem 4.3, we arrive at σi from the the-

orem statement as an upper bound to the maximum duration of

processor unavailability regardless the container task’s utilization.

We now argue that the processor availability over any inter-

val [r , s) is at least

βi (r , s) = max

(
0,

∫ s−σi

r
U
(
Fi (t)

)
dt

)
.

The reweighting rules in Sec. 3.2 guarantee that at any time t ,
U (Fi (t)) ≤ UFi (t), so it is safe to use the utilization of the contained

tasksU (Fi (t)) in a lower bound for processor availability. The func-

tion βi (r , s) assumes that the processor is initially unavailable for

σi time units. Because this occurs when a job τFi , j completes as

late as possible, the entire budget of τFi , j must then be consumed

non-preemptively. Furthermore, to ensure the tardiness bound is

met, each subsequent job τFi , j+k where k > 0 must now consume

its budget over an interval of length at most TFi , maintaining an

average availability ofUFi (rFi , j+k) from that moment onward.

Now that we have derived an upper bound to processor de-

mand and a lower bound to processor supply, we observe that the

maximum demand created by competing jobs released at or after

t0, αi (t0,da,b), equals the minimum processor supply from t0 to
da,b + σi , βi (t0,da,b + σi). Therefore, all work created by compet-

ing jobs must have completed by time da,b + σi . This contradicts
the assumption that τa,b completes at time tc > da,b + σi , so the

theorem holds. □

5 REWEIGHTING HEURISTICS

The tardiness bounds shown in Sec. 4 apply for any assignment of

tasks to processors, as long as no processor or the whole system is

ever over-utilized. Therefore, the rules in Sec. 3.2 can be composed

to create reweighting heuristics that are stabilizing; that is, as tasks

are added to and removed from the system, the heuristics attempt

to fully partition the workload.

5.1 Initial Assignment

If the initial set of tasks τ is known in advance, a static assignment

of tasks to processors to be used at system startup may be produced

offline. To create this initial assignment, we suggest that the system

designer try several different bin-packing heuristics and compare

their results. Clearly any produced assignment that makes all tasks

fixed is preferable to one that does not, as such an assignment

enables EDF-sc to operate as partitioned EDF, guaranteeing zero

tardiness for all tasks until the first reweighting event. If multiple

assignments are able to fix all tasks to processors, then it is likely

that an assignment whose least-utilized processor has the lowest

utilization among all assignments is preferable, as this would al-

low tasks with higher utilization to be added to the system later

without having to migrate. If no assignment is able to fix all tasks

to processors, then one that allows the most containers to be fully

provisioned would tend to give lower tardiness bounds not only

for the fixed tasks in these containers, but for all other tasks in the

system as well. This is because GEDF tardiness bounds tend to be

lower (and tighter) with smaller processor counts [15].

5.2 Runtime Workload Changes

When making workload changes at runtime, a system designer may

only be concerned with the high-level operations of adding and re-

moving tasks. By contrast, the EDF-sc reweighting rules in Sec. 3.2

expose the details of whether a new task is to be fixed or migrating,

which container a fixed task is added to, and updating container

utilizations. In this section, we propose a set of reweighting heuris-

tics to support high-level “add task” and “remove task” operations.

These heuristics try to assign as many tasks as possible as fixed, and

to keep as many containers fully provisioned as possible. To ease

the process of reweighting containers due to dynamic workload

changes, the heuristics proposed here require that all container

tasks have equal periods.

Additionally, when fixed tasks are removed, the heuristics at-

tempt to move migrating tasks that are already in τ into containers.

We refer to this process as stabilizing the workload. The problem

of stabilizing a dynamic semi-partitioned workload is related to the

problem of fully dynamic bin-packing [23]. However, approximation

algorithms for fully dynamic bin packing are designed to operate

on an infinite number of bins, and cannot be directly applied to

our problem where the number of bins is finite and the goal is to

pack as many items as possible rather than to pack all items into

the fewest possible bins. Pseudocode for our reweighting heuristics

is listed in Algorithm 1, which we explain next.

Task addition. Requests to add tasks to τ may be issued at any

time using the procedure AddTask(τa). Task additions are not

actually carried out by our heuristic until container job boundaries

because containers may first need to be reweighted; this is discussed

in more detail below. The AddTask procedure simply adds the

task τa to a FIFO queue that holds all tasks that have been requested

to be added since the last container period boundary.

At each container job boundary, the queue is emptied in the

while loop at lines 11–14, running a ContainerSelectionHeuris-

tic for each task in FIFO order to attempt to add tasks into tempo-

rary containers F ′
1
, . . . , F ′m ,τ

m′
. This heuristic uses a bin-packing

heuristic to find a container F ′i so that U (F ′i) + Ua ≤ 1 holds.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

Algorithm 1 Heuristics for adding and removing tasks, and for

stabilizing the workload.

PendingAdds: FIFO queue, initially empty

1: procedure AddTask(τa)
2: PendingAdds.Enqeue(τa)

3: procedure RemoveTask(τr)
4: if τr ’s most recently released job τr , j is pending then

5: Forbid τr from releasing new jobs

6: Schedule R(τr) to occur at the later of dr , j and τr , j ’s completion time

7: else

8: R(τr) ▷ Remove the task now

9: procedure ContainerBoundary()

▷ Function called at each container job boundary t
10: F ′

1
, . . . , F ′m, τ m′ ← F1, . . . , Fm, τ m

▷ Determine which tasks can be added

11: while PendingAdds is not empty do

12: τa ← PendingAdds.Deqeue()

13: Select container F ′i , τ
m′
, or ⊥ for τa via ContainerSelectionHeuristic

14: Add τa to selected container, or reject if ⊥
▷ Try to move migrating tasks into containers

15: for each τk ∈ τ m
do

16: τ ′k ← τk
17: if τk ’s most recently released job τk, j is not pending and dk, j < t +TF

1

and τ ′k will fit in some container F ′i then
18: Select container F ′i for τ

′
k via ContainerSelectionHeuristic

19: Add τ ′k to selected container

20: Schedule an atomic operation ⟨R(τ ′k); R(τk); AF(τk , Fi)⟩ to occur at

max(dk, j , t), i.e., use Rules R and AF to enact the move of τk into Fi
21: Compute new container task weights via ContainerReweightingHeuristic

22: Reweight container tasks using Rule W

▷ Enact all non-rejected task additions using Rules AF and AM

23: for i ← 1 . . .m do

24: for each τk ∈ F ′i \Fi do
25: AF(τk , Fi)
26: for each τk ∈ τ m′\τ m

do

27: AM(τk)

In our experiments in Sec. 6, we evaluate the choices of Best-

Fit, WorstFit, and FirstFit as the bin-packing heuristic. If no

suitable container can be found, ContainerSelectionHeuris-

tic checks if τa can be added as a migrating task by checking

if

∑m
i=1U (F ′i)+U (τ

m′)+Ua ≤ m holds. If not, the heuristic returns

⊥, and τa is rejected.

After the new tasks are added to the temporary containers, the

container tasks are reweighted with Rule W, which we discuss

below. Following this, all new tasks are added at lines 23–27 using

the EDF-sc reweighting rules for adding tasks.

Task removal. Requests to remove tasks from τ may be issued

at any time using the procedure RemoveTask(τr). This procedure
simply removes task τr with Rule R as early as possible, preventing

it from releasing new jobs if necessary.

Stabilization. At each container job boundary, after accepting

any new tasks to be added to the system, the heuristics attempt to

stabilize the workload by moving migrating tasks into containers,

making them fixed tasks (lines 15–20). The procedure by which

we move tasks is illustrated in Fig. 6. Using the rules from Sec. 3.2,

this must be done by removing a migrating task τk using Rule R

and immediately adding it as a fixed task using Rule AF. This could

potentially prevent job releases of τk if its last released job τk, j
completes at a future time after its deadline, so to avoid this, we

0 2 4 6 8 10 12 14 16 18 20

τk

τFi

τk ∈ τ m τk ∈ Fi
τ ′k ∈ Fi

Figure 6: Task τk is eligible to be moved at time 5, since τk,1
completed at time 4, and dk,1 = 9 < dFi ,2 = 10. Its copy τ ′k is

added to Fi at time 5, and at time 9 the move is completed.

Such “copy” tasksmerely reserve container capacity and are

not executed.

require that τk, j is not pending when deciding to move τk . (While

we deem such delayed job releases as unacceptable, applications

might exist in which they can be tolerated, in which case alternative

heuristics could be used.)

If we decide to move task τk into a container, then we can only

do so at the later of its deadline or the current time. Therefore,

we must ensure that there is space in the container to add τk at

its deadline. This is accomplished creating a copy of τk at line 16,

denoted τ ′k , which never releases any jobs and merely serves as a

placeholder for τk . Because this space must be reserved over the

time interval between deciding to move τk and enacting the move,

we do not attempt to move any tasks whose last-released job has a

deadline more than one container period in the future, as this would

keep the container’s utilization reserved for longer than necessary.

(Alternative heuristics could resolve this issue differently.)

For each task τk that is eligible to be moved by the conditions

at line 17 outlined above, we choose a container for it using the

ContainerSelectionHeuristic at line 18, then add its copy τ ′k to

that container at line 19. We then schedule an atomic operation at

line 20 to remove τ ′k from the container, remove τk as a migrating

task, and add τk to the container at the deadline of its most recently

released job.

Container task reweighting. Once all operations that add tasks to

containers have been fully planned, we call a ContainerReweight-

ingHeuristic at line 21 to determine new container weights based

on the sets F ′
1
, . . . , F ′m ,τ

m′
. This procedure determines newweights

for the container tasks so that for each τFi , U (F ′i) ≤ UFi ≤ 1 holds,

and so that Σmi=1UFi +U (τ
m′) ≤ m holds. There are many different

ways this reweighting can be done; we propose two techniques

here and evaluate them experimentally in Sec. 6.2.

MinOrFull (Fig. 7a) Begin by minimally provisioning all

container tasks. Then fully provision as many as possible

while maintainingU (τ g) ≤ |πg |, e.g. by choosing container

tasks in order of decreasing U (Fi). This may leave some

processor capacity in πg unavailable to fixed tasks.

EqalOver (Fig. 7b) Fully provision container tasks as with

MinOrFull, but over-provision the others, each by an equal

fraction of the extra processor capacity |πg | −U (τ g).
Once the new weights have been determined by one of these heuris-

tics, the container tasks are all reweighted using Rule W at line 22.

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

UFi U (Fi)

U (τ m)

π1 π2 π3 π4

U

0

1

Unused

(a) MinOrFull

π1 π2 π3 π4

U

0

1

Equal

(b) EqalOver

Figure 7: The two container task provisioning techniques

discussed. (a) Container tasks τF3 and τF4 are minimally pro-

visioned (UFi = U (Fi)), and τF1 and τF2 are fully provisioned

(UFi = 1). (b) Container task utilizations UF3 and UF4 are in-

creased equally to consume the system capacity left unused

by MinOrFull.

6 EXPERIMENTS

In this section, we present the results of experiments conducted

to evaluate EDF-sc, compared to GEDF, which is also SRT-optimal

and supports dynamic task systems. We first demonstrate the ad-

vantages of semi-partitioned scheduling over global scheduling

with a cache-related preemption and migration delay (CPMD)-aware

schedulability study in static systems. We then evaluate the effec-

tiveness of the various options presented in Sec. 5 for bin-packing

heuristics and container task provisioning in dynamic systems. We

also compare observed tardiness and tardiness bounds for dynamic

systems under EDF-sc and GEDF. Finally, we demonstrate how ef-

fectively our heuristics stabilize a dynamic workload by comparing

versions of Algorithm 1 with lines 15–20, which attempt to move

migrating tasks into containers, either enabled (i.e., heuristics are

applied) or disabled (i.e., no heuristics applied). Code for all the

experiments in this section is available online [22].

6.1 CPMD-Aware Schedulability Study

To illustrate the advantages of semi-partitioned scheduling over

global scheduling, we performed a CPMD-aware schedulability

study comparing EDF-sc to GEDF with a variety of static task sys-

tems. In lieu of a kernel implementation of EDF-sc (the development

of which we leave to future work), we cannot consider overheads

due to the execution of the scheduler itself. However, since semi-

partitioning results in run queues that are smaller than a single,

global run queue, we expect overheads in a static system to be

lower in EDF-sc than in GEDF. The reweighting heuristics may

offset this advantage somewhat, so we expect the overheads to be

similar between EDF-sc and GEDF in a dynamic system.

In these experiments, we randomly generated static sporadic

task systems and increased the execution times of each task to

account for average-case CPMD overheads on a 24-core Intel sys-

tem as measured in [5]. We then calculated the schedulability, or

proportion of the generated task systems that remain feasible, un-

der each scheduler. Task sets were generated similarly to [6], with

task utilizations chosen from uniform, bimodal, and exponential

distributions, each with medium or heavy tasks. For uniform distri-

butions, task utilizations were chosen from [0.1, 0.4] for medium

64 128 256 512 1024 2048

WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Uniform Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 8:Weighted schedulability for task sets with uniform

medium utilizations and uniform short periods.

task sets and from [0.5, 0.9] for heavy task sets. For bimodal distri-

butions, task utilizations were chosen uniformly from [0.001, 0.5)
or [0.5, 0.9] with probabilities of 6/9 and 3/9 for medium task sets

and 4/9 and 5/9 for heavy task sets, respectively. For exponential

distributions, task utilizations were generated with a mean of 0.25

for medium task sets and 0.5 for heavy task sets, discarding any

values greater than 1. For each of these, we generated task periods

uniformly at random from [3, 33] ms (short), [10, 100] ms (moder-

ate), or [50, 250] ms (long). We generated task sets with utilization

caps in [15, 24] with a step size of 0.25, and with working set sizes

(WSS) of each power of two in [64, 2048] kB.
For each combination of utilization distribution, period distri-

bution, utilization cap, and WSS, we generated 100 task sets by

adding tasks until the next task would cause the utilization cap

to be exceeded without accounting for overheads. The schedulers

tested were EDF-sc with BestFit bin-packing and minimal con-

tainer provisioning (we do not expect the choice of heuristics to

have a major impact on schedulability), and GEDF. For EDF-sc,

we used a binary search over [0, 1024] ms to determine the mini-

mum container task period for which each task set was schedulable,

and computed the average of these for each task set parameter

combination. We considered CPMD values for both idle systems

(low cache contention) and systems under load (high cache con-

tention). To aid in the presentation of a large number of schedu-

lability experiments, we use weighted schedulability [5], defined

as S(W) = (∑U ∈Q U · S(U ,W))/(∑U ∈Q U), where Q is the set of

utilization caps considered,W is a WSS value, and S(U ,W) is the
schedulability ratio for utilization capU and WSSW .

Results. Due to space constraints, the full results of these experi-

ments are given in an online appendix [22]. A typical result for task

sets with short periods is shown in Fig. 8. Systems with moderate

and long periods show a similar trend, but weighted schedulability

is improved about uniformly for all schedulers considered. In gen-

eral, GEDF gave significantly lower schedulability than EDF-sc with

idle overheads, and slightly lower schedulability with load over-

heads. Due to several effects influencing the measurement of CPMD

values, GEDF gave higher schedulability with large WSS values

when using load overheads instead of idle overheads; please see [5]

for more details. Further, the container task periods remained very

low (typically under about 30 ms) for most of the feasible task sets,

increasing sharply for higher utilizations where most task sets were

unschedulable. The plots for this are given in an online appendix.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

best+min best+equal worst+min worst+equal first+min first+equal GEDF

64 128 256 512 1024 2048

WSS (KB)

0

2

4

6

8

10

12

14

T
a

rd
in

e
s
s
 (

m
s
)

64 128 256 512 1024 2048

WSS (KB)

0

5

10

15

20

25

T
a

rd
in

e
s
s
 (

m
s
)

64 128 256 512 1024 2048

WSS (KB)

0

10

20

30

40

50

60

70

T
a

rd
in

e
s
s
 (

m
s
)

Figure 9: Left to right: observed average tardiness over easy-, moderate-, and hard-to-partition workloads.

6.2 EDF-sc Heuristic Comparison

To evaluate the efficacy of our reweighting heuristics for EDF-sc,

we conducted experiments on a simulated identical 24-processor

system running a set of synthetically generated dynamic workloads.

Intuitively, one heuristic is more effective than another if it pro-

vides reduced tardiness in a dynamic workload. To quantify this,

we measured the average and maximum observed tardiness of all

jobs in each dynamic workload, and the analytic tardiness bounds

that result. We conducted the same experiments with GEDF, using

EDF-sc rules AM and R to add and remove tasks from the system.

Using GEDF this way is actually a special case of EDF-sc where all

container tasks always have utilization 0.

Dynamic workload generation. For this experiment, we generated

dynamic workloads using a similar methodology to one pioneered

by Casini et al. [14]. Each dynamic workload consisted of a task

set T, and a sequence of task addition and removal events. The

tasks in T were generated with periods selected from a uniform

distribution over the range [10, 1000] ms, and with utilizations

generated from a beta distribution with mean µU and variance σ 2U .

We used values for µU of 0.2, 0.4, and 0.6 to create workloads that are

easy-, moderate-, and hard-to-partition, respectively. Preliminary

results showed that changing the value of σ 2U did not have a major

impact on the results, so we kept this at a constant value of 0.006.

In all of our experiments, all tasks released jobs periodically.

Initially the set of active tasks τ in each dynamic workload con-

sisted of tasks from T chosen at random one at a time until the next

chosen task would have become unschedulable by the CPMD-aware

schedulability test used in Sec. 6.1. This task set was modified by

a sequence of 100 task addition or removal events, with interar-

rival times selected uniformly over the range [1000, 4000] ms. To

determine whether each event should constitute a task addition or

removal, we generated a number x from a uniform distribution over

[0, 1], and compared it to a threshold Λ = (1−U (τ)/m)+ψ (U (τ)/m)
that was used to control the average load on the system. If x ≤ Λ,
then the event attempted to add a random task from T\τ to τ . Oth-
erwise, the event selected a random task to be removed from τ .
Generating events in this way increases the probability of adding

tasks when the system utilization is low, and increases the proba-

bility of removing tasks when the system utilization is high [14].

We held ψ = 0.8 across all generated workloads to keep system

utilization high.

For each combination of µU value and WSS for each power

of two in [64, 2048] kB, we generated 100 dynamic workloads. We

simulated the scheduling of eachworkload on a 24-processor system

using EDF-sc, with each combination of the bin-packing heuristics

BestFit, WorstFit, and FirstFit, and the container reweighting

heuristics MinOrFull and EqalOver. For these experiments, we

only used idle CPMD overheads (low cache contention), as this is

a more common case in real systems. Following the results of the

experiments in Sec. 6.1, we set all container periods to 30 ms in

these experiments. We also simulated the scheduling with GEDF to

compare tardiness between the two schedulers.

Results. Fig. 9 shows average tardiness across all sets of generated

workloads that are easy-, moderate-, and hard-to-partition. In each

graph, the x axis shows each WSS considered, and the y axis shows

the average tardiness observed across all generated workloads. A

lower curve represents a better-performing heuristic. To reduce

visual clutter, standard deviations are omitted from the figure. The

relative orders of the heuristics by maximum observed tardiness

were similar to those for average tardiness, but with values around

300, 100, and 20 times larger for easy-, moderate-, and hard-to-

partition workloads, respectively. Due to space constraints, these

graphs are given in an online appendix [22], alongwith the tardiness

bounds. GEDF typically gave maximum tardiness around a quarter

to a half that of EDF-sc, though for easy-to-partition task sets with

higher WSS values, the two algorithms were roughly equal.

We found that across a majority of scenarios considered, the

container reweighting procedure MinOrFull gave slightly greater

average task tardiness than EqalOver. The BestFit and First-

Fit bin-packing heuristics gave similar average tardiness to one

another, and WorstFit gave somewhat higher tardiness in most

cases. Given the overall trends and considering runtime overhead,

we consider the best overall combination of heuristics to be FirstFit

bin-packing with EqalOver container task provisioning.

We found that GEDF gave similar average tardiness values re-

gardless the average task utilization. GEDF gave lower average

tardiness than EDF-sc for all WSS values in hard-to-partition work-

loads. However, EDF-sc gave lower average tardiness for higher

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

0 50 100 150 200
Time(s)

0

5

10

15

20
N

um
be

r
of

 M
ig

ra
tin

g
T

as
ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

Figure 10: Stabilization heatmaps for WSS of 2048 kB. Insets (a), (b), and (c) (top) show easy-, moderate-, and hard-to-partition

workloads with stabilization disabled. Insets (d), (e), and (f) (bottom) show easy-, moderate-, and hard-to-partition workloads

with stabilization enabled.

WSS values in the moderate- and easy-to-partition workloads, so

EDF-sc may be a good choice for tasks with lower utilizations.

6.3 Stabilization

To evaluate how effectively our heuristics stabilize dynamic work-

loads, we measured the number of migrating tasks at intervals of

1000 ms in 50 workloads generated as in Sec. 6.2, using FirstFit

bin-packing and EqalOver container task provisioning. To obtain

a baseline, we conducted the same experiments with lines 15–20

of our heuristics, which attempt to move migrating tasks into con-

tainers, disabled.

Results. Results of these experiments for a WSS of 2048 kB are

shown in Fig. 10. Due to space constraints, the other WSSs are

included in an online appendix [22]. Insets (a), (b), and (c) show

the number of migrating tasks over time with stabilization disabled

in easy-, moderate-, and hard-to-partition workloads, respectively,

and insets (d), (e), and (f) show the number of migrating tasks over

time with stabilization enabled in easy-, moderate-, and hard-to-

partition workloads, respectively. Each inset shows the number of

migrating tasks over time as a heatmap: the x axis shows time, and

the y axis shows the number of migrating tasks. Through trial and

error, we found that the average number of migrating tasks had

stopped changing before 200 s in all cases, so we limited the x axis

to show the interval [0, 200] s. The color of each cell indicates how

many workloads had a particular number of migrating tasks at each

time observed.

We found that hard-to-partition workloads, the stabilization code

had little effect on the number of migrating tasks. Indeed, for task

sets with a mean task utilization of 0.6, it would not be possible in

many cases to pack two tasks into a single container. However, we

also found that for moderate- and easy-to-partition task sets, our

stabilization heuristic successfully reduced the number of migrating

tasks below the baseline with stabilization disabled.

7 CONCLUSION

We have presented EDF-sc, the first semi-partitioned scheduling

algorithm that is optimal for static SRT sporadic task systems (in

the “bounded tardiness” sense of SRT correctness) and that can also

handle dynamic workload changes. EDF-sc guarantees bounded

tardiness for all tasks regardless of the assignment of tasks to pro-

cessors. If no tasks are assigned as fixed, then it behaves as GEDF,

and if all tasks are fixed, then it behaves as partitioned EDF. Be-

cause it is desirable to fully partition the task system if possible, we

presented heuristics to achieve this goal as tasks are reweighted.

These heuristics afford EDF-sc with a novel property, never before

considered in work on semi-partitioned scheduling, of being able

to stabilize towards increasing the number of tasks that are fixed

as the system executes.

Because fixed tasks in EDF-sc execute within containers that

may lose budget, they effectively have priorities that may vary over

time. Since most multiprocessor real-time locking protocols require

job-level fixed priorities, it is not currently clear how to handle

shared resources accessible by fixed tasks under EDF-sc. We would

like to investigate a job-level fixed priority variant of EDF-sc to

ease this restriction.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

REFERENCES

[1] James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. 2005. An EDF-based

Scheduling Algorithm for Multiprocessor Soft Real-Time Systems. In Proceedings

of the 17th Euromicro Conference on Real-Time Systems (ECRTS).

[2] James H. Anderson, Jeremy P. Erickson, UmaMaheswari C. Devi, and Benjamin N.

Casses. 2016. Optimal semi-partitioned scheduling in soft real-time systems.

Journal of Signal Processing Systems 84, 1 (2016), 3–23.

[3] Björn Andersson, Konstantinos Bletsas, and Sanjoy K. Baruah. 2008. Scheduling

arbitrary-deadline sporadic task systems on multiprocessors. In Proceedings of

the 29th IEEE Real-Time Systems Symposium (RTSS). 385–394.

[4] Björn Andersson and Eduardo Tovar. 2006. Multiprocessor scheduling with few

preemptions. In Proceedings 12th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA). 322–334.

[5] Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. 2010. Cache-

related preemption and migration delays: Empirical approximation and impact

on schedulability. Proceedings of OSPERT (2010), 33–44.

[6] Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. 2011. Is semi-

partitioned scheduling practical?. In 2011 23rd Euromicro Conference on Real-Time

Systems. IEEE, 125–135.

[7] M. Khurram Bhatti, Cécile Belleudy, and Michel Auguin. 2012. A semi-partitioned

real-time scheduling approach for periodic task systems on multicore platforms.

In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC).

1594–1601.

[8] Konstantinos Bletsas and Björn Andersson. 2009. Notional processors: an ap-

proach for multiprocessor scheduling. In proceedings of the 15th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS). 3–12.

[9] Konstantinos Bletsas and Björn Andersson. 2011. Preemption-light multiproces-

sor scheduling of sporadic tasks with high utilisation bound. Real-Time Systems

47, 4 (2011), 319–355.

[10] Aaron Block, James H. Anderson, and Gary Bishop. 2005. Fine-grained task

reweighting on multiprocessors. In Proceedings of the 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA). 429–435.

[11] Aaron Block, James H. Anderson, and UmaMaheswari C. Devi. 2008. Task

reweighting under global scheduling on multiprocessors. Real-Time Systems 39,

1-3 (2008), 123–167.

[12] Björn B. Brandenburg and Mahircan Gül. 2016. Global scheduling not required:

Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned

reservations. In Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS).

99–110.

[13] Alan Burns, Robert I. Davis, Pengyu Wang, and Fengxiang Zhang. 2012. Parti-

tioned EDF scheduling for multiprocessors using a C = D task splitting scheme.

Real-Time Systems 48, 1 (2012), 3–33.

[14] Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. 2017. Semi-partitioned

scheduling of dynamic real-time workload: A practical approach based on

analysis-driven load balancing. In Proceedings of the 29th Euromicro Conference

on Real-Time Systems (ECRTS). 13:1–13:23.

[15] UmaMaheswari C. Devi. 2006. Soft Real-Time Scheduling on Multiprocessors. Ph.D.

Dissertation. University of North Carolina at Chapel Hill.

[16] UmaMaheswari C. Devi and James H. Anderson. 2008. Tardiness bounds under

global EDF scheduling on a multiprocessor. Real-Time Systems 38, 2 (2008),

133–189.

[17] François Dorin, Patrick Meumeu Yomsi, Joël Goossens, and Pascal Richard. 2010.

Semi-Partitioned Hard Real-Time Scheduling with Restricted Migrations upon

Identical Multiprocessor Platforms. CoRR abs/1006.2637 (2010). arXiv:1006.2637

http://arxiv.org/abs/1006.2637

[18] Jeremy P. Erickson, UmaMaheswari C. Devi, and Sanjoy K. Baruah. 2010. Im-

proved Tardiness Bounds for Global EDF. In Proceedings of the 22nd Euromicro

Conference on Real-Time Systems (ECRTS). 14–23.

[19] Ming Fan and Gang Quan. 2012. Harmonic semi-partitioned scheduling for

fixed-priority real-time tasks on multi-core platform. In Proceedings of the 2012

Design, Automation Test in Europe Conference Exhibition (DATE). 503–508.

[20] NanGuan,Martin Stigge,Wang Yi, and Ge Yu. 2010. Fixed-prioritymultiprocessor

scheduling: Beyond Liu & Layland utilization bound. In Proceedings of the 31st

IEEE Real-Time Systems Symposium (RTSS) Work-in-Progress Session. 1594–1601.

[21] NanGuan,Martin Stigge,Wang Yi, and Ge Yu. 2010. Fixed-prioritymultiprocessor

scheduling with Liu and Layland’s utilization bound. In Proceedings of the 16th

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

165–174.

[22] Clara Hobbs, Zelin Tong, and James H. Anderson. 2019. Optimal Soft Real-

Time Semi-Partitioned Scheduling Made Simple (And Dynamic), full version.

http://cs.unc.edu/~anderson/papers.html

[23] Zoran Ivkovic and Errol L. Lloyd. 1998. Fully Dynamic Algorithms for Bin

Packing: Being (Mostly) Myopic Helps. SIAM J. Comput. 28, 2 (1998), 574–38.

[24] Shinpei Kato and Nobuyuki Yamasaki. 2007. Real-Time Scheduling with Task

Splitting on Multiprocessors. In Proceedings of the 13th IEEE International Confer-

ence on Embedded and Real-Time Computing Systems and Applications (RTCSA).

441–450.

[25] Shinpei Kato and Nobuyuki Yamasaki. 2008. Portioned EDF-based Scheduling

on Multiprocessors. In Proceedings of the 8th ACM International Conference on

Embedded Software (EMSOFT). 139–148.

[26] Shinpei Kato and Nobuyuki Yamasaki. 2009. Semi-partitioned Fixed-Priority

Scheduling on Multiprocessors. In Proceedings of the 15th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). 23–32.

[27] Mauro Leoncini, ManuelaMontangero, and Paolo Valente. 2018. A parallel branch-

and-bound algorithm to compute a tighter tardiness bound for preemptive global

EDF. Real-Time Systems (2018), 1–38. https://doi.org/10.1007/s11241-018-9319-6

[28] Hennadiy Leontyev, Samarjit Chakraborty, and James H. Anderson. 2011. Mul-

tiprocessor extensions to real-time calculus. Real-Time Systems 47, 6 (2011),

562.

[29] Aloysius KMok, Xiang Feng, andDeji Chen. 2001. Resource partition for real-time

systems. In Proceedings of the Seventh IEEE Real-Time Technology and Applications

Symposium (RTAS). 75–84.

[30] Mayank Shekhar, Abhik Sarkar, Harini Ramaprasad, and Frank Mueller. 2012.

Semi-Partitioned Hard-Real-Time Scheduling under Locked Cache Migration in

Multicore Systems. In Proceedings of the 24th Euromicro Conference on Real-Time

Systems (ECRTS). 331–340.

[31] Paulo B. Sousa, Pedro Souto, Eduardo Tovar, and Konstantinos Bletsas. 2013. The

Carousel-EDF scheduling algorithm for multiprocessor systems. In Proceedings

of the 19th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA). 12–21.

[32] Sergey Voronov and James H. Anderson. 2018. An Optimal Semi-Partitioned

Scheduler Assuming Arbitrary Affinity Masks. In Proceedings of the 39th IEEE

Real-Time Systems Symposium (RTSS). 408–420.

http://arxiv.org/abs/1006.2637
http://arxiv.org/abs/1006.2637
http://cs.unc.edu/~anderson/papers.html
https://doi.org/10.1007/s11241-018-9319-6

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

A FIGURES

A.1 Schedulability Experiments

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Uniform Medium Utilizations, Uniform Short Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Uniform Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Uniform Medium Utilizations, Uniform Long Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 11: Schedulability results for medium task sets generated with a uniform distribution.

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Bimodal Medium Utilizations, Uniform Short Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Bimodal Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Bimodal Medium Utilizations, Uniform Long Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 12: Schedulability results for medium task sets generated with a bimodal distribution.

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Exponential Medium Utilizations, Uniform Short Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Exponential Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Exponential Medium Utilizations, Uniform Long Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 13: Schedulability results for medium task sets generated with an exponential distribution.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Uniform Heavy Utilizations, Uniform Short Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Uniform Heavy Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Uniform Heavy Utilizations, Uniform Long Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 14: Schedulability results for heavy task sets generated with a uniform distribution.

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Bimodal Heavy Utilizations, Uniform Short Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Bimodal Heavy Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Bimodal Heavy Utilizations, Uniform Long Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 15: Schedulability results for heavy task sets generated with a bimodal distribution.

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Exponential Heavy Utilizations, Uniform Short Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Exponential Heavy Utilizations, Uniform Moderate Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

64 128 256 512 1024 2048

WSS (KB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Exponential Heavy Utilizations, Uniform Long Periods

EDF-sc(idle)

EDF-sc(load)

GEDF(idle)

GEDF(load)

Figure 16: Schedulability results for heavy task sets generated with an exponential distribution.

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

A.2 Container Period Experiments

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

160

180

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 128KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

300

350

400

450

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 2048KB

Idle
Load

Figure 17: Minimum container periods required to schedule medium task sets generated with a uniform distribution and

medium periods at different WSS.

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

160

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Short Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

200

400

600

800

1000

1200

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Long Periods, WSS = 512KB

Idle
Load

Figure 18: Minimum container periods required to schedule medium task sets generated with a uniform distribution and

differing periods at WSS = 512.

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Bimodal Medium Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

160

180

C
on

ta
in

er
 P

er
io

d
(m

s)

Exponential Medium Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

Figure 19: Minimum container periods required to schedule medium task sets generated with different distributions and

medium periods at WSS = 512.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

15 16 17 18 19 20 21 22 23 24

Utilization

0

5

10

15

20

25

30

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Moderate Periods, WSS = 128KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Moderate Periods, WSS = 2048KB

Idle
Load

Figure 20:Minimumcontainer periods required to schedule heavy task sets generatedwith a uniformdistribution andmedium

periods at different WSS.

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Short Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

10

20

30

40

50

60

70

80

90

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Long Periods, WSS = 512KB

Idle
Load

Figure 21: Minimum container periods required to schedule heavy task sets generated with a uniform distribution and differ-

ing periods at WSS = 512.

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

50

100

150

200

250

C
on

ta
in

er
 P

er
io

d
(m

s)

Bimodal Heavy Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

15 16 17 18 19 20 21 22 23 24

Utilization

0

20

40

60

80

100

120

140

160

180

C
on

ta
in

er
 P

er
io

d
(m

s)

Exponential Heavy Utilizations, Uniform Moderate Periods, WSS = 512KB

Idle
Load

Figure 22:Minimumcontainer periods required to schedule heavy task sets generatedwith different distributions andmedium

periods at WSS = 512.

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

A.3 Tardiness Experiments

best+min best+equal worst+min worst+equal first+min first+equal GEDF

64 128 256 512 1024 2048

WSS (KB)

0

100

200

300

400

500

600

700

T
a
rd

in
e
s
s
 (

m
s
)

64 128 256 512 1024 2048

WSS (KB)

0

200

400

600

800

1000

T
a
rd

in
e
s
s
 (

m
s
)

64 128 256 512 1024 2048

WSS (KB)

200

400

600

800

1000

T
a
rd

in
e
s
s
 (

m
s
)

Figure 23: Left to right: observed maximum tardiness over easy-, moderate-, and hard-to-partition workloads.

best+min best+equal worst+min worst+equal first+min first+equal GEDF

64 128 256 512 1024 2048

WSS (KB)

600

700

800

900

1000

1100

1200

1300

T
a
rd

in
e
s
s
 (

m
s
)

64 128 256 512 1024 2048

WSS (KB)

1200

1400

1600

1800

2000

2200

2400

T
a
rd

in
e
s
s
 (

m
s
)

64 128 256 512 1024 2048

WSS (KB)

1400

1600

1800

2000

2200

2400

T
a
rd

in
e
s
s
 (

m
s
)

Figure 24: Left to right: tardiness bound over easy-, moderate-, and hard-to-partition workloads.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

A.4 Migrating Task Experiments

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20
N

um
be

r
of

 M
ig

ra
tin

g
T

as
ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

Figure 25: Stabilization heatmaps for WSS of 64 kB. Insets (a), (b), and (c) (top) show easy-, moderate-, and hard-to-partition

workloads with stabilization disabled. Insets (d), (e), and (f) (bottom) show easy-, moderate-, and hard-to-partition workloads

with stabilization enabled.

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

Figure 26: Stabilization heatmaps for WSS of 128 kB. Insets (a), (b), and (c) (top) show easy-, moderate-, and hard-to-partition

workloads with stabilization disabled. Insets (d), (e), and (f) (bottom) show easy-, moderate-, and hard-to-partition workloads

with stabilization enabled.

RTNS 2019, November 6–8, 2019, Toulouse, France Clara Hobbs, Zelin Tong, and James H. Anderson

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

0 50 100 150 200
Time(s)

0

5

10

15

20
N

um
be

r
of

 M
ig

ra
tin

g
T

as
ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

Figure 27: Stabilization heatmaps for WSS of 256 kB. Insets (a), (b), and (c) (top) show easy-, moderate-, and hard-to-partition

workloads with stabilization disabled. Insets (d), (e), and (f) (bottom) show easy-, moderate-, and hard-to-partition workloads

with stabilization enabled.

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20
N

um
be

r
of

 M
ig

ra
tin

g
T

as
ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

Figure 28: Stabilization heatmaps for WSS of 512 kB. Insets (a), (b), and (c) (top) show easy-, moderate-, and hard-to-partition

workloads with stabilization disabled. Insets (d), (e), and (f) (bottom) show easy-, moderate-, and hard-to-partition workloads

with stabilization enabled.

Optimal Soft Real-Time Semi-Partitioned Scheduling Made Simple (And Dynamic) RTNS 2019, November 6–8, 2019, Toulouse, France

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

0 50 100 150 200
Time(s)

0

5

10

15

20
N

um
be

r
of

 M
ig

ra
tin

g
T

as
ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

0 50 100 150 200
Time(s)

0

5

10

15

20

N
um

be
r

of
 M

ig
ra

tin
g

T
as

ks

Figure 29: Stabilization heatmaps for WSS of 1024 kB. Insets (a), (b), and (c) (top) show easy-, moderate-, and hard-to-partition

workloads with stabilization disabled. Insets (d), (e), and (f) (bottom) show easy-, moderate-, and hard-to-partition workloads

with stabilization enabled.

	Abstract
	Acknowledgments
	1 Introduction
	2 System Model
	3 EDF-sc
	3.1 Execution
	3.2 Reweighting Rules

	4 Tardiness Bounds
	4.1 Tardiness Bound for Migrating and Container Tasks
	4.2 Tardiness Bound for Fixed Tasks

	5 Reweighting Heuristics
	5.1 Initial Assignment
	5.2 Runtime Workload Changes

	6 Experiments
	6.1 CPMD-Aware Schedulability Study
	6.2 EDF-sc Heuristic Comparison
	6.3 Stabilization

	7 Conclusion
	References
	A Figures
	A.1 Schedulability Experiments
	A.2 Container Period Experiments
	A.3 Tardiness Experiments
	A.4 Migrating Task Experiments

