
Noname manuscript No.
(will be inserted by the editor)

Real-Time Multiprocessor Locks with Nesting:
Optimizing the Common Case

Catherine E. Nemitz · Tanya Amert ·
James H. Anderson

Received: date / Accepted: date

Abstract In prior work on multiprocessor real-time locking protocols, only
protocols within the RNLP family support unrestricted lock nesting while
guaranteeing asymptotically optimal priority-inversion blocking bounds. How-
ever, these protocols support nesting at the expense of increasing the cost of
processing non-nested lock requests, which tend to be the common case in prac-
tice. To remedy this situation, a new fast-path mechanism is presented herein
that extends prior RNLP variants by ensuring that non-nested requests are
processed efficiently. This mechanism yields overhead and blocking costs for
such requests that are nearly identical to those seen in the most efficient single-
resource locking protocols. In experiments, the proposed fast-path mechanism
enabled observed blocking times for non-nested requests that were up to 18
times lower than under an existing RNLP variant and improved schedulability
over that variant and a simple group lock.

Keywords multiprocess locking protocols · nested locks · priority-inversion
blocking · reader/writer locks · real-time locking protocols

Work supported by NSF grants CNS 1409175, CPS 1446631, CNS 1563845, and CNS
1717589, AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-0499, ARO grant
W911NF-17-1-0294, and funding from General Motors. This material is based upon work
supported by the National Science Foundation Graduate Research Fellowship Program un-
der Grant No. DGS 1650116. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

C. E. Nemitz
UNC-Chapel Hill, 201 S. Columbia St., Chapel Hill, NC 27599
E-mail: nemitz@cs.unc.edu

T. Amert
UNC-Chapel Hill, 201 S. Columbia St., Chapel Hill, NC 27599
E-mail: tamert@cs.unc.edu

J. H. Anderson
UNC-Chapel Hill, 201 S. Columbia St., Chapel Hill, NC 27599
E-mail: anderson@cs.unc.edu

2 Catherine E. Nemitz et al.

1 Introduction

Multicore technologies have the potential to enable a wealth of new computa-
tionally intensive embedded real-time applications, provided efficient resource-
allocation infrastructure is available. Such infrastructure must necessarily in-
clude support for multiprocessor real-time locking protocols. Evidence suggests
that the ability to nest lock requests to allow a task to access multiple resources
simultaneously is commonly required in practice, even though non-nested re-
quests predominate [7,14]. However, only a few protocols exist that support
unrestricted nesting, and of those that do, only those in the RNLP (real-
time nested locking protocol) family provide asymptotically optimal priority-
inversion blocking (pi-blocking) bounds.

The RNLP family includes the basic RNLP [50], which provides mutex
sharing, the RW-RNLP [52], which provides reader/writer sharing, and the
C-RNLP [34], which provides contention-sensitive mutex sharing. A locking
protocol is contention-sensitive if a task’s pi-blocking time is O(C), where C is
the number of tasks actually contending for an overlapping set of resources [34].
The key to ensuring contention-sensitivity is to avoid transitive blocking chains,
which are caused by nested requests and may create blocking relationships
between otherwise non-conflicting tasks.

Transitive Blocking. Under any non-contention-sensitive RNLP variant, re-
quests may become part of transitive blocking chains caused by nested re-
quests. These chains cause requests, even non-nested requests, to have non-
contention-sensitive pi-blocking bounds. A simple example is given in Fig. 1,
which depicts two resources `a and `b, on m processors, accessed by m requests,
R1, . . . ,Rm, issued in this order. Two scenarios are shown that result in differ-
ent pi-blocking times for request Rm. In inset (a), there are no nested requests,
and each resource is protected by a FIFO-ordered locking protocol, such as a
ticket lock. In this case, Rm is pi-blocked by only one other request, which is
clearly in accordance with the definition of contention-sensitivity. In inset (b),
request Rm−1 accesses both resources, and a non-contention-sensitive RNLP
variant is used. Here, the nested request Rm−1 forces Rm to be pi-blocked by
all other requests, which is clearly not contention-sensitive.

The price of supporting nested requests. To support nested requests, each
RNLP variant employs logic more complicated than that of single-resource
protocols. This logic is the most complex in the C-RNLP because it ensures
contention-sensitivity. The RNLP and the RW-RNLP employ simpler logic but
sacrifice contention-sensitive pi-blocking, even for non-nested requests. Thus,
these protocols support nesting (the less common case) at the expense of in-
creased processing costs and/or pi-blocking bounds for non-nested requests
(the more common case).

Contributions. Motivated by this observation, we propose a new fast-path
mechanism for the RNLP family that was designed with the twin goals of

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 3

R1

R2

R
m-2

R
m-1

R
m

R1

R2

R
m-2

R
m

resource

R
m-1 R

m-1

. .
 .

. .
 .

(a) (b) nested request

non-nested
request with
O(m) blocking

holder

l la b

l la b

Fig. 1: Impact of transitive blocking on non-nested requests. In (b), Rm−1 requests `a and
`b together using a dynamic group lock (defined in Sec. 2), as allowed by the RNLP and
RW-RNLP.

ensuring non-nested lock requests (i) are contention-sensitive and (ii) incur
low lock/unlock overhead comparable to that of single-resource protocols. We
present this fast-path mechanism in the context of a new reader/writer RNLP
variant, which we call the fast RW-RNLP.1 In reader/writer sharing, read re-
quests can execute concurrently but write requests require exclusive access [23].
(Since reader/writer sharing subsumes mutex sharing, the fast RW-RNLP can
be applied to support the latter.) A preliminary version of this work presented
the fast RW-RNLP, which uses a component called the RW-RNLP* [40]. In
this work we present a second variant with the reader-reader-reader phase-
fair locking protocol (R3LP) as a central component; the R3LP extends the
notion of a reader-only phase-fair lock [41]. We derive tighter bounds for the
fast RW-RNLP when the R3LP is used in place of the RW-RNLP*. Addition-
ally, we show the schedulability benefits of the fast RW-RNLP with the R3LP
by presenting a large-scale schedulability study that compares the two fast
RW-RNLP variants to existing protocols.

We build directly on two prior protocols. The first is the phase-fair ticket
lock (PF-TL), which is used to provide reader/writer access to a single re-
source [17]. The PF-TL is a non-preemptive spin-lock. The protected resource
has two FIFO request queues, one for reads and one for writes. If both kinds of
requests are queued concurrently, the protocol alternates between read phases
wherein read requests are given preference, and corresponding write phases.
The PF-TL has asymptotically optimal pi-blocking bounds and very low run-
time overhead (and is trivially contention-sensitive).

The other protocol we build on is the RW-RNLP. At this point, it suffices
to know that the RW-RNLP uses two queues per resource, one for readers and
one for writers, like the PF-TL does for a single resource. However, additional
complications arise because tasks can hold multiple resources at the same

1 The terminology “fast-in-the-common-case RW-RNLP,” which is obviously too verbose,
would be more technically precise.

4 Catherine E. Nemitz et al.

time. This affects the queueing logic and the orchestration of phases. The
latter becomes more difficult as different resources may be in different phases.

In our fast RW-RNLP, non-nested requests are immune from the effects of
transitive blocking chains caused by nesting. This is achieved by employing a
modular design that mostly separates concerns related to handling nested and
non-nested requests. This modular design also facilitates applying the proto-
col in different contexts. For example, one of the components we introduce
directly supports constant-time access for all requests in systems of single-
writer, multiple-reader resources, a common use case in embedded systems
[33]. Additionally, by altering one of the components, contention-sensitivity
can be ensured for nested requests (like with the C-RNLP, but at the expense
of greater overhead for such requests). Waiting in the fast RW-RNLP can be
realized by either spinning or suspension, though we consider only the former
in detail in this work. When no nested requests occur, the fast RW-RNLP can
function nearly identically to a set of per-resource PF-TLs, depending on the
choice of one component.

This similarity is borne out in experiments we conducted in which
lock/unlock overhead and observed pi-blocking times were recorded for non-
nested requests. We found that lock/unlock overhead for such requests is nearly
identical under the fast RW-RNLP and PF-TLs. We also found that observed
pi-blocking times for such requests are reduced compared to the RW-RNLP.
This is because non-nested requests require less overhead and are immune to
transitive blocking effects under the fast RW-RNLP. These results for overhead
and pi-blocking are reflected in the schedulability study we present, in which
the fast RW-RNLP variants, and the R3LP in particular, tended to outperform
the other protocols when non-nested requests are the common case.

Organization. In the rest of the paper, we give needed background and discuss
related work (Sec. 2), describe the fast RW-RNLP in detail along with two
new protocols that are applied as components within it (Secs. 3 and 4), discuss
our experimental results (Sec. 5), and conclude (Sec. 6).

2 Background

In this section, we present relevant background material.

Task model. We consider the classic sporadic real-time task model (we assume
familiarity with this model) and focus on a system Γ = {τ1, . . . , τn} of n
tasks scheduled on m processors by a job-level fixed-priority scheduler (e.g.,
a partitioned, global, or clustered earliest-deadline-first scheduler). We denote
an arbitrary job of task τi as Ji.

Resource model. We assume the existence of nr shared resources, denoted
L = {`1, . . . , `nr

}. When a job Ji requires access to one or more of these
resources, it issues a request Ri for its needed resources by invoking a locking

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 5

protocol. We say that Ri is satisfied as soon as Ji holds its requested resources
and that it has completed once Ji has released all of those resources. A request
Ri is considered to be active during the time interval that begins with its
issuance and ends with its completion. Whenever job Ji holds any resources, it
is said to be executing within a critical section. We let Li denote the maximum
duration of a critical section of Ji and define Lmax = max1≤i≤n{Li}.

We allow requests to be nested. The essence of nesting is that jobs are al-
lowed to hold multiple resources simultaneously. We say that a locking protocol
is fine-grained if each resource is protected individually.

Ordinarily, nesting is realized by allowing jobs to request and acquire each
resource individually in a sequential fashion. This approach can substantially
inflate critical-section lengths, as the first resource is acquired before a second
is requested. Any blocking a job may experience while waiting for a second
resource must be counted toward the critical-section length of the first re-
source [46]. To prevent deadlock when using this approach, requests must
acquire resources according to some prescribed ordering [24,31]. Locking pro-
tocols that use this approach are fine grained, however, which can allow tighter
blocking bounds to be computed in some cases.

A second approach to handling nested lock requests is to statically group
resources in a manner that eliminates nesting. This coarse-grained approach
allows protocols to be used that do not otherwise allow nesting, at the cost of
reduced parallelism. By the way resources are defined (as groups of resources),
protocols controlling access to these resources cannot deadlock.

To avoid critical-section inflation and minimize lost parallelism, we instead
assume that a job requests all of its needed resources via one request. The
resulting functionality is equivalent to a mechanism called a dynamic group
lock (DGL) [49], which allows groups of resources to be coalesced under one
lock dynamically at runtime. (This is different from the ordinary group locks
described above, which are used to coordinate access to groups of resources
that are statically determined offline.) The usage of DGLs also avoids dead-
lock. When using DGLs, jobs may sometimes have to request resources that
are not actually needed if conditional code exists. For example, if after ac-
quiring resource `a, job Ji acquires one of resources `b and `c based on some
condition, it would have to acquire all three resources via one request. While
this functionality may seem to put DGLs at a disadvantage, the usage of DGLs
results in the same worst-case pi-blocking bounds (see below) under all exist-
ing RNLP variants as when resource orderings are enforced. This approach is
also fine grained, as resources can be added to the dynamic group individually.

Given our focus on reader/writer sharing, we classify resource accesses as
either reads or writes: a resource may be accessed by multiple jobs concurrently
for reading but by only one job at a time for writing. If a job requests multiple
resources via one request, we assume that all such resources are requested for
either reading or writing. Mechanisms for handling mixed requests, comprised
of both read and write accesses, have been presented in prior work [49]; our
focus is efficiently processing non-nested requests.

6 Catherine E. Nemitz et al.

If a request Ri is a read (resp., write) request, then we will often use the
notation Rr

i (resp., Rw
i) to emphasize its type. If its type is not relevant, then

we will simply use Ri. Occasionally, we will find it convenient to distinguish
whether a read request Rr

i or a write request Rw
i is nested or non-nested. For

this purpose, we will use the notation Rr,n
i , Rr,nn

i , Rw,n
i , and Rw,nn

i , where
the superscript “n” (resp., “nn”) means “nested” (resp., “non-nested”). We
let Di denote the set of resources requested by Ri. Additionally, we denote the
maximum critical-section length over all read (resp., write) requests by any
task as Lr

max (resp., Lw
max).

Pi-blocking. When designing a real-time locking protocol, the primary goal is
to enable pi-blocking to be bounded. In the multiprocessor case, the precise
definition of pi-blocking is subtle as it depends on how waiting is realized
(spinning vs. suspension) and on certain analysis assumptions [12]. We limit
our attention to protocols that use spinning to realize blocking and that are
invoked non-preemptively (i.e., a resource-requesting job is non-preemptive
for the entire time it is executing code involving the acquisition, use, and
release of resources), but suspension-based variants of our fast RW-RNLP can
be obtained by slightly altering the spin-based version presented herein. Non-
preemptive execution is an example of a progress mechanism [12]: it ensures
that lock-holding tasks are not delayed by untimely preemptions and thus
make progress. With spin-based waiting, a job can be considered to be pi-
blocked if it is spinning.2

Analysis assumptions. In our analysis of pi-blocking, we consider critical-
section lengths and the number of critical sections per job to be constants,
and m and n to be variables, as in prior work [12]. If t is the time at which
request Ri is issued, then we define the contention Ci of Ri to be the number
of other active requests at time t that require resources in common with Ri. A
reader/writer locking protocol ensures contention sensitivity for a request Ri

if the worst-case pi-blocking for Ri is O(1) if it is a read request, and O(Ci) if
it is a write request. These pi-blocking bounds are asymptotically optimal for
non-preemptive, spin-based locking protocols [49].

Phase-fair locks. Given our focus (non-preemptive spin locks), phase-fair
reader/writer locks are perhaps the best contention-sensitive option in terms
of lock/unlock costs (i.e., the time required to acquire or release a lock) if
all requests are non-nested requests [17]. Several possible implementations of
phase-fair locks were considered by Brandenburg and Anderson [17]. They
found the phase-fair ticket-lock (PF-TL) to be comparable to or better than
other phase-fair implementations from the perspective of lock/unlock costs.
We extend the concept of a phase-fair lock to a general phase-fair reader-only
lock in Sec. 3.

2 A job can also be pi-blocked at release by lower-priority jobs executing non-preemptively.
By our analysis assumptions, this release blocking is asymptotically upper bounded by the
maximum spin blocking for any such jobs, so we focus on spin blocking.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 7

The RW-RNLP. As mentioned earlier, the RW-RNLP uses two per-resource
FIFO queues, one for read requests and one for write requests. Furthermore, it
uses a mechanism called request entitlement to orchestrate reader and writer
phases; the entitlement rules determine “who” (reader or writer) must concede
to “whom”: entitled requests do not concede. In Sec. 4, we consider in detail
a new variant of the RW-RNLP, which we call the RW-RNLP*, that is useful
for our purposes. We carefully explain there the concept of entitlement.

The RW-RNLP is actually a family of protocols because waiting can be re-
alized by spinning or suspension and because different mechanisms for dealing
with priority inversions are required depending on how tasks are scheduled. For
the non-preemptive, spin-based variant of the RW-RNLP (our focus), worst-
case pi-blocking is O(1) for read requests and O(m) for write requests. These
bounds are asymptotically optimal if contention for write requests is Ω(m).

Other related work. As the prevalence of multiprocessor systems has grown,
the literature on support for shared resources in a multiprocessor context
has grown accordingly [2–6,10,11,13,12,15,16,18,17,19–22,25–30,34,37,39–
44,46–49,51,52,50,53–57]. However, much of this work does not handle nested
resource accesses. We highlight some of these approaches that do not handle
nested requests (except by means of a static, coarse-grained group lock) before
covering prior work that allows fine-grained lock nesting.

Several multiprocessor protocols expanded on their uniprocessor counter-
parts. The distributed and multiprocessor priority ceiling protocols (DPCP
and MPCP) [42–44] build on ideas of the priority ceiling protocol (PCP) [45].
The MPCP was then used as a basis for developing a partitioning heuristic
for resource-sharing tasks [37]. The multiprocessor stack resource protocol ex-
pands on the ideas of the stack resource protocol [8] by classifying resources
as local or global; access to global resources is coordinated in FIFO order,
with waiting processes spinning non-preemptively [29]. This was then com-
pared to the MPCP [28]. Beyond multiprocessor ceiling-based protocols [22],
the FMLP [11], FMLP+ [13], and OMLP [19] have been developed. Many of
the above protocols have been implemented and those implementations com-
pared [12,15,16].

Other work explored resource-sharing schemes beyond mutual exclu-
sion. For example, k-exclusion protocols [18,25,53] and new resource-sharing
paradigms like preemptive mutual exclusion and half-protected sharing [48]
have been developed. Prior work has also investigated different priorities at
which a blocked task may spin; at lower priorities, spinning tasks may sus-
pend [2–4]. Work has also been done to coordinate resource sharing between
independently developed system components that are then used modularly in
a larger system [5,6,39].

Within the context of various protocols that grant access to resources in a
non-nested fashion, computing reasonably tight blocking bounds has also been
an area of focus. For example, the impact of queue locks on low-priority tasks
scheduled with a global fixed-priority scheduler has been explored to improve

8 Catherine E. Nemitz et al.

schedulability [21]. Additionally, worst-case blocking bounds for a broad vari-
ety of lock types, including FIFO and priority-ordered, were tightened by using
mixed-integer linear programming [54]. Comparing global semaphore protocols
based on six types of delay was also enabled by linear optimization [56].

Challenges with allowing arbitrary nesting have long been known. Imposing
a constraint that nesting depth be at most two allowed for the development of
FIFO- and priority-inheritance-based spin-lock algorithms [46,47]. Accurately
bounding the blocking caused by arbitrarily nested resource access is NP-
hard [55]. A graph-based abstraction has been presented that serves as the
basis for an integer linear program to compute blocking [10].

In recent years, a number of locking protocols have been presented that
are asymptotically optimal with respect to pi-blocking. These include RNLP
variants [34,51,52,50] that provide fine-grained lock nesting. The only other
protocols known to us that provide fine-grained lock nesting are the multipro-
cessor bandwidth inheritance protocol (M-BWI) [26,27] and MrsP [20,30,57];
however, neither is optimal in any sense. (Both the M-BWI and MrsP han-
dle nested requests by requiring resources to be acquired sequentially.) Only
approaches that are explicitly contention-sensitive [34,40,41] can reduce the
worst-case blocking analysis from O(m) for nested requests due to the chal-
lenge shown in Fig. 1; all other approaches to handling nested requests may
encounter such a chain of blocking.

The M-BWI expands the original uniprocessor protocol, which allows a
resource-holding task to inherit the execution budget or bandwidth of a higher-
priority task, to work in a multiprocessor context. This is accomplished by
reasoning about the resource reservation servers that grant bandwidth and
coordinating between such servers on different processors. The M-BWI has
been implemented and compared to the FMLP and OMLP on the basis of
schedulability [27].

MrsP builds upon the PCP by using the PCP locally to bound accesses
to global resources. It then employs a helping mechanism in which a blocked
task may allow a preempted task to execute. Nested resource access is allowed
by MrsP, and the priority ceilings of some resources may be recalculated if a
nested resource access occurs while that resource is held [30].

3 Reader-Only Phase-Fair Locks

The main contribution of this paper is the fast RW-RNLP, which is presented
in Sec. 4. Two components of the fast RW-RNLP employ reader-only phase-fair
locks, a notion first introduced by us in restricted form in a recent paper [41].
In this section, we review the basic mechanisms of reader-writer phase-fair
locks before introducing reader-only phase-fair locks and a corresponding im-
plementation. We also present bounds on the worst-case acquisition delay, i.e.,
the worst-case time between the issuance and satisfaction of a request, expe-
rienced by a request under several variants of phase-fair locks. As in [52], we
assume that all lock and unlock invocations take no time.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 9

Read
Write

R3

R1
r

r

Read
Write

R3 R4
wrR2

w

Read
Write

R4
w

R2
w

R4
w R5

r

R3 , R5
r r

Time t1 Time t2 Time t3

Fig. 2: Illustration of reader-writer phase-fair locking protocol managing access to a resource.

3.1 Reader-Writer Phase-Fair Locks

As described in Sec. 1, a phase-fair lock utilizes two FIFO queues, one for
read requests and one for write requests, and alternates between read phases
and write phases. In the presence of both types of requests, all active read
requests are satisfied at the start of a read phase and one active write request
is satisfied at the start of a write phase.

In Fig. 2 and subsequent figures, we use gray shading to indicate which
requests will execute in the next phase; this shading corresponds to the notion
of request entitlement, as described in Sec. 2 and defined formally in Sec. 4.
A formal definition is not necessary for a basic understanding of the protocols
under consideration. In our examples, jobs issue requests in increasing index
order; Ex. 1, depicted in Fig. 2, is comprised of five requests, R1 through R5.

Example 1 Fig. 2 depicts the state of a reader-writer phase-fair lock at three
time instants, t1, t2, and t3, where t1 < t2 < t3. At time t1, four requests
have been issued. Read request Rr

1 is satisfied, and write request Rw
2 will be

satisfied after the read phase that includes Rr
1 completes. Rr

3 and Rw
4 have

also enqueued in their corresponding queues. At time t2, Rw
2 is satisfied, and

an additional read request, Rr
5, has been issued. In the next read phase, all

read requests will be satisfied, as indicated by the gray shading. Indeed, at
time t3, Rr

3 and Rr
5 are satisfied. This read phase will be followed by a write

phase, in which Rw
4 will be satisfied.

3.2 Reader-Reader Phase-Fair Locks

In recent work, we introduced the reader-reader phase-fair locking protocol,
which we denote as R2LP [41]. The R2LP arbitrates access to a resource be-
tween two types of read requests; an arbitrary read request of Type 1 (resp.,
Type 2) may execute concurrently with requests of the same type but may
not execute with requests of Type 2 (resp., Type 1). (The problem of support-
ing multiple types of read requests is similar to the group mutual exclusion
problem [35,36] except that we require O(1) pi-blocking bounds.)

We denote a read request of Type 1 as Rr1
i and a read request of Type 2 as

Rr2
i . Under the R2LP, requests enqueue in the “lane” corresponding to their

10 Catherine E. Nemitz et al.

Lane 1
Lane 2

R3

R1
r1

r1

Lane 1
Lane 2

R3
r1R2

r2

Lane 1
Lane 2

R4
r2 R5

r1

R3 , R5
r1 r1

Time t1 Time t2 Time t3

R2 , R4
r2 r2

Fig. 3: R2LP illustration with read requests of Type 1 and Type 2.

type. For example, Rr1
3 in Fig. 3 is enqueued in Lane 1. We now walk through

the phase transitions of the R2LP in an example.

Example 2 As shown in Fig. 3, at time t1, a read request of Type 1, Rr1
1 , is

satisfied. The group of requests in Lane 2, Rr2
2 and Rr2

4 , will be satisfied in the
next phase, as indicated by the gray shading. Though Rr1

3 is of the same type
as the satisfied request, it cannot be satisfied at t1; allowing such behavior
could cause starvation. Therefore, the R2LP prevents this and instead allows
requests of the other type to be satisfied after all currently satisfied requests
complete.

At time t2, Rr1
1 has completed and Rr2

2 and Rr2
4 are satisfied. Additionally,

Rr1
5 has been issued. At time t3, Rr2

2 and Rr2
4 have completed, and both Rr1

3

and Rr1
5 are satisfied.

The above example illustrates the basic functionality of the R2LP, which
was originally presented in [41]. We state without proof the following lemma,
which is a generalization of a corresponding result presented there (as Theo-
rem 5). In this lemma, we use Lr1

max (resp., Lr2
max) to indicate the maximum

critical-section length of a read request of Type 1 (resp., Type 2).

Lemma 1 Under the R2LP, the worst-case acquisition delay of a request of
any type is Lr1

max + Lr2
max time units.

3.3 Reader-Reader-Reader Phase-Fair Locks

In this paper, we introduce the reader-reader-reader phase-fair locking proto-
col (R3LP). The R3LP arbitrates resource access among three types of read
requests; read requests of one type may run concurrently with other read re-
quests of the same type but must be prevented from accessing the resource
concurrently with requests of a different type.

Example 3 As shown in Fig. 4, at time t1, a read request of Type 1, Rr1
1 , is

satisfied. The group of requests in Lane 3, Rr3
2 and Rr3

4 , will be satisfied in the
next phase, as indicated by the dark gray shading. In the following phase, Rr2

5

will be satisfied, as indicated with the light gray shading. As with the R2LP,
under the R3LP, Rr1

3 cannot be satisfied at t1.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 11

Lane 1
Lane 2

R3

R1
r1

r1

Lane 1
Lane 2

R3
r1R2

r3

Lane 1
Lane 2

R4
r3 R6

r1

Time t1 Time t2 Time t3

R2 , R4
r3 r3

Lane 3
Lane 3

Lane 3

R5
r2 R5

r2 R3
r1

R6
r1

R5
r2

Fig. 4: R3LP illustration with read requests of Type 1, Type 2, and Type 3.

At time t2, Rr1
1 has completed and Rr3

2 and Rr3
4 are satisfied. Rr2

5 will be
satisfied in the next phase, and Rr1

3 and the newly issued Rr1
6 will be satisfied

in the subsequent phase. At time t3, Rr3
2 and Rr3

4 have completed, and Rr2
5 is

satisfied.

This simple example gives intuition about how the R3LP functions. Phases
cycle between the three types, and the order of these phases depends on the
order in which requests are issued and enqueued.

3.4 R3LP Implementation

Our implementation of the R3LP expands on concepts from the R2LP. We
start by introducing the shared variables. Then we present the pseudocode for
requests of Type 1.

Listing 1 R3LP Definitions
type type state: record

in, out, head, sat, phase: unsigned integer initially 0

shared variables
s: unsigned integer initially 0
r1 type, r2 type, r3 type: type state

constant
R1 PRES 0x2 // Type 1 present bit
R1 PHID 0x1 // Type 1 phase ID bit
R1 BITS 0xff // Type 1 bits in s
R2 PRES 0x200 // Type 2 present bit
R2 PHID 0x100 // Type 2 phase ID bit
R2 BITS 0xff00 // Type 2 bits in s
R3 PRES 0x20000 // Type 3 present bit
R3 PHID 0x10000 // Type 3 phase ID bit
R3 BITS 0xff0000 // Type 3 bits in s

Shared variables of the R3LP. The set of variables used by the R3LP is pre-
sented in Listing 1. For each of the three types, we define a set of variables as
part of the type state. The counters in and out represent how many requests of
the specified type have been issued and have completed, respectively, similar

12 Catherine E. Nemitz et al.

24 23 17 16 1524 31 9 8 7 1 0

R2_PRES

R2_PHID

unusedunusedunused

R1_PRES

R1_PHID

R3_PRES

R3_PHID

unused

R3_BITS R2_BITS R1_BITS

Fig. 5: Bits in the shared s variable.

to a ticket lock. The integer head indicates the ticket of the one request that
modifies shared variables during the Lock call and determines when all the
requests in its phase are satisfied. The variable sat stores the highest satisfied
ticket number, and the variable phase alternates between all 0’s and all 1’s to
track different phases of this same type.

The variable s, as shown in Fig. 5, is the shared variable on which the
different request types synchronize. (The spacing between the pairs of bits
for each phase is not required but makes the constant values more readable
for this presentation.) In our implementation, s must be marked volatile to
ensure stale values are never read, and operations on s are done via sync *

functions to ensure atomic updates with necessary memory barriers.

Pseudocode for the R3LP. The pseudocode for a request of Type 1 is shown
in Listing 2. A request of Type 1, Rr1

i , increments the in counter for Type 1,
taking the previous value as its ticket value (Line 3). Rr1

i then checks if it
is the “head” request (Line 4). If it is not, Rr1

i waits until its ticket number
is at least the value sat, indicating that it is now satisfied (Lines 5-6),3 or
until it is the “head” request. The “head” request Rr1

j changes the phase
(Line 7). Then, it sets the bits of s related to this specific type of request
and queries the presence of requests of the other two types (Line 8). After
separating both types (Lines 9-10), Rr1

j waits for a phase each of requests of
Type 2 and 3, if necessary (Line 11). Specifically, for Type 2 it must ensure that
there were no requests present (r2 = 0) or that those requests have completed
(r2 6= (s&R2 BITS)). It does the same checks for requests of Type 3. Finally
the request sets sat to indicate that access should be granted to all requests
of Type 1 currently holding a ticket (the highest of which is ticket in− 1).

When a request Rr1
i completes, it increments out for its type (Line 15),

then checks if it is the last request of the phase to complete (Line 16). If so,
Rr1

i clears the bits of s that correspond to its type (Line 17) and sets the head
to be the next ticket value (Line 18). This ticket may already be held by a
request in the R3LP Lock procedure.

3 Line 5 can be modified to handle overflow in p�in and p�sat. In a spin-based implemen-
tation, at most m requests can be active at once, so p�in and p�sat can be at most m apart.
Therefore, the condition in Line 5 can be modified to [p�sat ≥ ticket] or [(p�sat + m) ≥
(ticket +m)] to mitigate overflow.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 13

Listing 2 R3LP Routine for Type 1

1: procedure R3LP Lock(p: ptr to type state)
2: var ticket, r2r3, r2, r3:unsigned int
3: ticket := fetch&add(p�in, 1)
4: while p�head 6= ticket: . Only head changes global variables
5: if p�sat ≥ ticket:
6: return . Satisfied
7: p�phase := ∼(p�phase) . Flip phase bits
8: r2r3 := fetch&add(s, R1 PRES|(p�phase & R1 PHID)) . Mark present
9: r2 := r2r3 & R2 BITS . Get value for Type 2

10: r3 := r2r3 & R3 BITS . Get value for Type 3
11: await (((r2 = 0) or (r2 6= (s & R2 BITS))) and ((r3 = 0) or (r3 6= (s & R3 BITS))))
12: p�sat := p�in− 1 . Satisfied

13: procedure R3LP Unlock(p: ptr to type state)
14: var ticket:unsigned int
15: ticket := fetch&add(p�out, 1)
16: if p�sat = ticket: . Last request of phase to finish
17: fetch&and(s,∼(R1 BITS)) . Clear R1 BITS

18: p�head := ticket + 1 . Update head

Based on the above description and implementation, we state the following
lemma.

Lemma 2 Under the R3LP the worst-case acquisition delay of a request of
any type is Lr1

max + Lr2
max + Lr3

max time units.

Proof A request of a given type may need to wait for the completion of phases
of each of the other two types of requests as well as a phase of its type. The
implementation of the R3LP in Listing 2 ensures that the duration of each
such phase is at most the longest critical-section length of requests in that
phase and that a phase of a given type is repeated after at most one phase of
each of the other types.

Suppose we focus on a request of interest that is of Type 1. Suppose also
that one or more requests of Type 1 are executing and that requests of both
Type 2 and Type 3 are waiting at their corresponding Line 11. Our request
of interest is not initially the head (Line 4) as one of the satisfied requests is.
Any later issued requests of Type 1 also cannot become the head, so p�sat
will not be updated and no new request of Type 1 can become satisfied. Thus,
the current phase of requests of Type 1 will complete in at most Lr1

max time
units, as that is the maximum critical section length of any request of Type 1.

Once the satisfied requests of Type 1 complete, requests of either Type 2
or Type 3 may execute. Without loss of generality, suppose requests of Type 2
become satisfied. If our request of interest is not the head (Line 4), some
other request of Type 1 is. The head request executes Lines 7-10 and waits at
Line 11, as neither r2 nor r3 is zero and the phases represented in R2 BITS

and R3 BITS have yet to change from the recorded values (taken in Lines 9
and 10). Once Line 8 is executed, any new requests of Type 2 will wait at
the corresponding Line 11 for Type 2 for the phase containing our request of
interest to complete, as the phase shown in the R1 BITS of s will not change

14 Catherine E. Nemitz et al.

until after our request is satisfied and a request of Type 1 executes Line 17.
Therefore, the phase of requests of Type 2 will complete in at most Lr2

max time
units, by the definition of Lr2

max. Similarly all active requests of Type 3 will
become satisfied, but any new requests must wait, and the phase of requests
of Type 3 will complete within Lr3

max time units. Thus, our request of interest
of Type 1 may experience acquisition delay of up to Lr1

max +Lr2
max +Lr3

max time
units in the worst case.

The analysis above applies to requests of Type 2 and Type 3 as well. If
any of the types do not have an active request while a request is active, it can
only shorten the blocking experienced. Therefore, the worst-case acquisition
delay of a request of any type is Lr1

max + Lr2
max + Lr3

max time units under the
R3LP. ut

Corollary 1 The bound given in Lemma 2 is tight.

Proof This is illustrated in Ex. 3 and Fig. 4 with Rr1
3 . ut

Corollary 2 Under the R3LP, if no requests of Type 1 are present, the worst-
case acquisition delay of a request of Type 2 or Type 3 is Lr2

max + Lr3
max time

units.

Proof This follows directly from above, as one fewer phase of execution is
possible before a request becomes satisfied. ut

The above proof is actually phase independent, so similar bounds exist
regardless of which of the types of request is not present.

4 The Fast RW-RNLP

Our proposed fast RW-RNLP is constructed in a modular fashion based on ex-
isting locking protocols and a choice of two new protocols. These new protocols
are the R3LP and the RW-RNLP*, which is a new variant of the RW-RNLP.
In this section, we present the structure of the fast RW-RNLP and provide
abstract pi-blocking analysis. We then present pi-blocking analysis for the fast
RW-RNLP with the R3LP. Finally, we describe the RW-RNLP* and provide
pi-blocking analysis for the fast RW-RNLP with the RW-RNLP*.

4.1 Protocol Structure

In this section, we describe our proposed fast RW-RNLP protocol. Our
goals for this protocol are threefold: (i) non-nested requests should have
low lock/unlock overhead; (ii) such requests should have contention-sensitive
worst-case pi-blocking bounds; (iii) nested requests should have worst-case
pi-blocking bounds that are asymptotically the same as under the RW-RNLP.
To achieve Goals (ii) and (iii), we separate nested and non-nested requests; in
Sec. 4.2 and Sec. 4.5 we show these goals can be achieved with the R3LP or

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 15

global arbitration
mechanism

l1 l2 ln -1 ln

...

rr
l1 l2

...

R
i

w,n

RNLP

Ti
ck

et
 lo

ck

R
i

w,nn

R
i

r,n
R

i
r,nn

NESTED_WRITE(D
i
):

 RNLP_LOCK(D
i
)

 W_LOCK
n(D

i
)

 Critical Section
 W_UNLOCKn(D

i
)

 RNLP_UNLOCK(D
i
)

NESTED_READ(D
i
):

 R_LOCKn(D
i
)

 Critical Section

 R_UNLOCKn(D
i
) ln -1r

lnr

NON_NESTED_WRITE(D
i
):

 TL_LOCK(D
i
)

 W_LOCK
nn(D

i
)

 Critical Section
 W_UNLOCKnn(D

i
)

 TL_UNLOCK(D
i
)

NON_NESTED_READ(D
i
):

 R_LOCKnn(D
i
)

 Critical Section

 R_UNLOCKnn(D
i
)

Fig. 6: Fast RW-RNLP structure.

the RW-RNLP*, respectively. (Between these two protocols, there is a trade-
off between optimizing for better analytical bounds and optimizing for better
runtime performance.) We address Goal (i) in Sec. 5 with an experimental
evaluation of both implementations.

The fast RW-RNLP is defined by using the lock and unlock routines of
other locking protocols as subroutines. As shown in Fig. 6, we use ordinary
(not phase-fair) mutex ticket locks (TLs) [38] and the RNLP [50].

A non-nested write request first acquires a TL associated with its requested
resource. A FIFO-ordered TL provides mutex sharing for a single resource and
ensures contention-sensitive pi-blocking. The lemma below follows from the
definition of a ticket lock.

Lemma 3 The worst-case acquisition delay of a request Ri under a ticket lock
is upper bounded by the product of the number of requests ahead of Ri and the
longest time any such request holds the lock.

Similarly, a nested write request invokes the RNLP; recall that the RNLP
provides mutex sharing and supports nested requests. Under it, the worst-
case pi-blocking of any request is O(m) [50]. More specifically, we present the
following lemma about the RNLP used in this context.

Lemma 4 [50] The worst-case acquisition delay of a request Ri under the
RNLP is upper bounded by the product of the number of previously issued
active requests in the system and the longest time any such request holds the
lock.

Note that instead of the RNLP, a different protocol, such as the C-RNLP,
could be used to arbitrate between nested write requests without changing the
overall structure of the fast RW-RNLP. We will continue to assume the RNLP
is used, unless indicated otherwise.

To arbitrate between the two types of write requests, as well as read re-
quests, a global arbitration mechanism is needed. Once a non-nested (resp.,

16 Catherine E. Nemitz et al.

nested) write request is granted the resource-specific lock by a TL (resp., the
RNLP), it may enter the global arbitration mechanism, as depicted in Fig. 6.
Any read requests may enter the global arbitration mechanism directly.

The global arbitration mechanism is applied in a specific context in the fast
RW-RNLP, which can be described by the following rules. With the excep-
tion of Rule P3, the rules below are standard for non-preemptive spin-based
locking protocols. As we shall see, Rule P3 enforces our restricted context and
enables contention-sensitive pi-blocking bounds for non-nested requests to be
computed in the context of the fast RW-RNLP. It is upheld by the structure
explained above and depicted in Fig. 6. Rule P3 is also trivially upheld in sys-
tems with only single-writer resources, which is a common use case we consider
later.

P1 A resource-holding job is always scheduled.

P2 At most m jobs may have incomplete resource requests at any time, at
most one per processor.

P3 There is at most one incomplete non-nested write request and one incom-
plete nested write request per resource at any time.

In this paper, we consider two ways of implementing the global arbitration
mechanism: the R3LP, presented earlier in Sec. 3, and a restricted variant of
the RW-RNLP, the RW-RNLP*, which we present later in Sec. 4.3. Fig. 6
shows how each type of request uses these locking protocols.4

We denote the worst-case acquisition delay of a read request under the
global arbitration mechanism as Gr. Similarly, the worst-case acquisition delay
of a non-nested write request (resp., nested write request) under the global
arbitration mechanism is denoted Gw,nn (resp., Gw,n). The following theorem
incorporates these upper-bounds directly. We similarly define the maximum
critical-section length of each request type; for example, Lw,nn

max is the maximum
critical-section length of any non-nested write request.

Theorem 1 Under the fast RW-RNLP, the worst-case acquisition delay of a
request Ri is:
(i) Gr time units, if Rr

i is a read request;
(ii) Ci · (Lw,nn

max + Gw,nn) + Gw,nn time units, if Rw,nn
i is a non-nested write

request;
(iii) (m − 1) · (Lw,n

max + Gw,n) + Gw,n time units, if Rw,n
i is a nested write

request.

Proof In Case (i), a read request Rr
i enters the global arbitration protocol

directly. Therefore, the worst-case acquisition delay of Rr
i is Gr time units.

In Case (ii), a request Rw,nn
i must wait for each contending write request

ahead of it in the TL associated with its requested resource. There may be up
to Ci contending write requests, each of which may face an acquisition delay
of up to Gw,nn time units within the global arbitration protocol while holding

4 The lock and unlock routines for the R3LP or RW-RNLP* routines have been denoted
in a slightly abbreviated way. For example, W Locknn denotes the lock routine invoked by
non-nested write requests under the chosen protocol.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 17

the ticket lock. Additionally, each such request must then execute its critical
section for up to Lw,nn

max time units. Thus, Rw,nn
i may wait up to Ci · (Lw,nn

max +
Gw,nn) time units before invoking the global arbitration protocol (Lemma 3),
after which it may experience an acquisition delay of up to Gw,nn time units.
This yields a worst-case acquisition delay of Ci · (Lw,nn

max +Gw,nn)+Gw,nn time
units for Rw,nn

i .
A request Rw,n

i in Case (iii) must wait for other requests within the RNLP
to complete before invoking the global arbitration protocol. There may be up
to m− 1 such requests (Lemma 4 and Rule P2). By using the same argument
as before and applying Lemma 4, the worst-case acquisition delay of Rw,n is
(m− 1) · (Lw,n

max +Gw,n) +Gw,n time units. ut

4.2 The Fast RW-RNLP with the R3LP

Based on the structure of the fast RW-RNLP provided in the previous section,
we discuss how to apply the R3LP as the global arbitration protocol. We then
show that the worst-case acquisition delay a request of each type may expe-
rience under the fast RW-RNLP with the R3LP achieves Goals (ii) and (iii)
presented in Sec. 4.1.

Given that Rule P3 ensures that there is at most one non-nested write
request submitted to the R3LP per resource at any given time, all non-nested
write requests that are present can be allowed to execute together; they must
require different resources. In a sense, this means that all non-nested write
requests can be treated similarly to read requests relative to each other. The
same holds true for the set of nested write requests at a given time. Naturally,
all read requests, nested or non-nested, can execute together.

It follows from this discussion that, to coordinate nested and non-nested
write requests as well as read requests, it suffices to use a protocol that can
coordinate three different types of read requests: requests of the same type can
execute concurrently but requests of different types cannot. For this purpose,
we can use the R3LP. The three types of requests processed by our application
of the R3LP are non-nested write, nested write, and read requests.

We now derive bounds on the worst-case acquisition delay that any re-
quest can experience under the fast RW-RNLP with the R3LP. We distinguish
between an arbitrary read request Rr

i , non-nested write request Rw,nn
i , and

nested write request Rw,n
i .

Theorem 2 Under the fast RW-RNLP with the R3LP, the worst-case acqui-
sition delay for a request Ri is:
(i) Lw

max+Lr
max time units, if Rr

i is a read request and no nested write requests
are active while Rr

i is active;
(ii) 2Lw

max +Lr
max time units, if Rr

i is a read request and nested write requests
may be active while Rr

i is active;
(iii) Ci · (2Lw

max + Lr
max) + Lw

max + Lr
max time units, if Rw,nn

i is a non-nested
write request and no nested write requests are active while Rw,nn

i is active;

18 Catherine E. Nemitz et al.

(iv) Ci · (3Lw
max +Lr

max) + 2Lw
max +Lr

max time units, if Rw,nn
i is a non-nested

write request and nested write requests may be active while Rw,nn
i is active;

(v) (m− 1) · (3Lw
max + Lr

max) + 2Lw
max + Lr

max time units, if Rw,n
i is a nested

write request.

Proof Cases (ii), (iv), and (v) follow directly from Lemma 2 and Theorem 1.
Here, Gr = Gw,nn = Gw,n = 2Lw

max + Lr
max.

When no nested write requests are active, as in cases (i) and (iii), the
above statements follow from Corollary 2 and Theorem 1. Here, Gr = Gw,nn =
Lw
max + Lr

max; there is no nested write phase. ut

Theorem 2 shows that non-nested requests have contention-sensitive block-
ing (Goal (ii)) and that nested requests have blocking bounds asymptotically
the same as under the RW-RNLP (Goal (iii)). Referring to Goal (iii), we note
that the worst-case pi-blocking under the RW-RNLP is O(1) for read requests
and O(m) for write requests [52].5 The pi-blocking bound for nested write re-
quests under the fast RW-RNLP with the R3LP has a higher coefficient than
under the RW-RNLP. In practice, however, the fast RW-RNLP with the R3LP
outperforms the RW-RNLP, as discussed in Sec. 5.

4.3 The RW-RNLP*

While the R3LP arbitrates resource access correctly, it does so at the cost
of some concurrency; access to resources is coordinated in global phases. An
alternate choice for the global arbitration mechanism is the RW-RNLP*. Sim-
ilarly to the R3LP, the RW-RNLP* must arbitrate resource access between
read and write requests. However, it arbitrates access on a per-resource basis,
allowing increased concurrency in resource accesses. It is obtained from the
RW-RNLP by altering one aspect of its design and changing the context in
which it is applied (Rule P3). For each resource `a, the RW-RNLP* maintains
two queues Qr

a and Qw
a , for unsatisfied read and write requests, respectively.

Example 4 We will use Fig. 7 as a continuing example to illustrate impor-
tant concepts in the design of the RW-RNLP*. Each inset of this figure shows
read and write queues for four resources: `1, `2, `3, and `4. At the time illus-
trated in Fig. 7(a), the write request Rw

1 is satisfied for its requested resources
D1 = {`1, `2}, as indicated by being positioned within the circles denoting the
resources `1 and `2. Because Rw

1 is satisfied, it is not in any of the queues.
Similarly, the read request Rr

2 for D2 = {`3, `4} is satisfied.

Basic RW-RNLP* rules. We describe the RW-RNLP* via a set of rules to
which an implementation must conform. The following are general rules that
define how requests are processed.

5 More precisely, the bounds presented are Lw
max + Lr

max and (m − 1)(Lw
max + Lr

max) for
read and write requests, respectively.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 19

R3 , R5
r

R3

R3 , R5

Read
Write

R6

R7 R7

R7 R7R7

R7

R4

R4

R4R9

R5

(a)

(b)

(c)

(d)

Read
Write Read

Write Read
Write

R1
w

l1

R1
w

l2

R2
r

l3

R2
r

l4

R1
w

l1

R1
w

l2

R2
r

l3

R2
r

l4

R2
r

l4

R2
r

l4

R6
w

l2

l2

r

l1

r R2 , R8
r

l3

r

R2 , R8
r

l3

r

l1

r

www wr

ww ww

B(R3,t) = { R1 }
wr

w w

r

r

Fig. 7: Example illustrating the rules of the RW-RNLP*.

G1 When Ji issues Ri at time t, the timestamp of the request is recorded:
ts(Ri) := t.

G2 When Ri is satisfied, it is dequeued from either Qr
a (if it is a read request)

or Qw
a (if it is a write request) for each `a ∈ Di.

G3 When Ri completes, it unlocks all resources in Di.

G4 Each request issuance or completion occurs atomically. Therefore, there is
a total order on timestamps, and a request cannot be issued at the same
time that a critical section completes.

20 Catherine E. Nemitz et al.

Example 4 (cont’d) Moving from inset (a) to inset (b) in Fig. 7, four additional
requests have been issued. Timestamps are determined for these requests when
they are issued (Rule G1). The issuance of each request occurs atomically
(Rule G4), so it is not possible for two requests to obtain the same timestamp.

The arrow from Rr
3 to Rw

1 indicates that Rr
3 is blocked by Rw

1 . This block-
ing relationship is formally defined later and serves to represent just one such
relationship in the system.

Fig. 7(c) depicts the system after Rw
1 has completed. By Rule G3, it re-

leased resources `1 and `2. This enabled both Rr
3 and Rr

5 to be satisfied for `1
and dequeued from Qr

1 (Rule G2). Similarly, Rw
6 became satisfied for `2.

In moving from inset (b) to inset (c), Rw
7 and Rr

8 have been issued, and
Rr

8 was satisfied immediately. Notice that request Rw
7 for resources D7 =

{`2, `3, `4} was atomically enqueued on Qw
2 , Qw

3 , and Qw
4 . Because such an

action is atomic, no cycles among blocked requests can exist. In an actual
implementation, the issuance and completion of a request would not really
occur atomically. However, an implementation must ensure that these actions
have the “effect” of being atomic. We consider such issues in Sec. 4.6.

Read and write entitlement. Like the RW-RNLP, the RW-RNLP* functions
by alternating read and write phases. The mechanism for orchestrating these
phases is entitlement, which is defined separately for read and write requests
below (these definitions are taken directly from [52]). Intuitively, a request
is entitled when it should be satisfied in the next phase, thus only unsat-
isfied requests may be entitled. Together with the reader and writer rules
presented later, the definition of entitlement ensures progress and allows us to
upper-bound pi-blocking times. Below, we use E(Qw

a) to denote the earliest-
timestamped unsatisfied write request for resource `a.

Example 4 (cont’d) In Fig. 7(b), E(Qw
2) = Rw

6 .

Definition 1 An unsatisfied read request Rr
i becomes entitled when there

exists `a ∈ Di that is write locked, and for each resource `a ∈ Di, E(Qw
a) is

not entitled (see Def. 2).6 (Note that E(Qw
a) = ∅ could hold. In this case, we

consider E(Qw
a) = ∅ to be a “null” request that is not entitled.) Rr

i remains
entitled until it is satisfied.

Definition 2 An unsatisfied write requestRw
i becomes entitled when for each

`a ∈ Di, Rw
i = E(Qw

a), no read request in Qr
a is entitled (see Def. 1),6 and `a

is not write locked. Rw
i remains entitled until it is satisfied.

Example 4 (cont’d) In Fig. 7(b), Rr
3 and Rr

5 are both entitled (Def. 1): `1 is
write locked, and there exists no resource `a in D3 or D5 for which E(Qw

a)
is entitled (Def. 2). Entitled requests are indicated in Fig. 7 by gray shading.

6 Entitlement is a property of a request, and Def. 1 and Def. 2 give conditions upon which
a request becomes entitled in terms of the entitlement of other requests. Therefore, while
Def. 1 and Def. 2 reference each other parenthetically to aid the reader, they are not in fact
circularly defined.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 21

In Fig. 7(c), Rw
4 is entitled: `1 is the only resource in D4, E(Qw

1) = Rw
4

holds, there is no entitled read in Qr
1, and `1 is not write locked. In moving

from inset (c) to inset (d), Rw
6 completed and released `2. In Fig. 7(d), Rw

7 is
entitled: Rw

7 was at the head of each of its queues and there were no entitled
read requests in the corresponding read queues, so the only condition that
prevented Rw

7 from being entitled earlier was Rw
6 ’s lock on `2.

Rules for read and write requests. We complete our specification of the RW-
RNLP* by stating rules that govern how read and write requests are pro-
cessed. To state these rules, we introduce notation to allow us identify the set
of requests on which an entitled request Ri (a read or a write) is blocked.
Specifically, we let B(Ri, t) denote the set of requests on which such a request
Ri is blocked at time t.

Example 4 (cont’d) In Fig. 7(b), there are two entitled requests, Rr
3 and Rr

5,
both waiting on the satisfied write request Rw

1 . If inset (b) reflects the system
state at time t, then B(Rr

3, t) = {Rw
1 } and B(Rr

5, t) = {Rw
1 }. Only one of

these relationships is depicted with an arrow in the diagram to avoid clutter.
Similarly, if Fig. 7(c) reflects the system state at time t′, then B(Rw

4 , t
′) =

{Rr
3,Rr

5}. Note that there are other blocking relationships throughout Fig. 7,
and B(Ri, t) is only defined for Ri at a time t when Ri is entitled.

The rules for read requests are as follows.

R1 When Rr
i is issued, for each `a ∈ Di, Rr

i is enqueued in Qr
a. If Rr

i does
not conflict with any entitled or satisfied write requests, then it is satisfied
immediately.

R2 An entitled read request Rr
i is satisfied at the first time instant t such

that B(Rr
i , t) = ∅.

Example 4 (cont’d) When Rr
3 and Rr

5 were issued, by Rule R1, each was en-
queued in Qr

1, as shown in Fig. 7(b). When Rw
1 later completed at some time

t, as shown in Fig. 7(c), B(Rr
3, t) = ∅ and B(Rr

5, t) = ∅ were both established
and Rr

3 and Rr
5 were both satisfied immediately, by Rule R2. Fig. 7(c) also

shows Rr
8 being satisfied immediately after being issued. This occurred by

Rule R1, as no satisfied or entitled write requests for `3 existed at that time.

The rules for write requests are as follows.

W1 When Rw
i is issued, for each `a ∈ Di, Rw

i is enqueued in timestamp
order in the write queue Qw

a . If Rw
i does not conflict with any entitled or

satisfied requests (read or write), then it is satisfied immediately.

W2 An entitled write request Rw
i is satisfied at the first time instant t such

that B(Rw
i , t) = ∅.

Example 4 (cont’d) When Rw
6 was issued prior to the system state depicted in

Fig. 7(b), it was enqueued in Qw
2 , and because it conflicted with the satisfied

request Rw
1 , by Rule W1, it was not satisfied immediately. Request Rw

1 later
completed at some time t, as shown in Fig. 7(c), and at that time t,Rw

6 became
entitled and B(Rw

6 , t) = ∅ held, so Rw
6 became satisfied, by Rule W2.

22 Catherine E. Nemitz et al.

write requests
not expanded

write requests
expanded

Read
Write Read

Write Read
Write

l1 l2 l3

l1 l2 l3

l1 l2 l3

l1 l2 l3

l1 l2 l3

(b)

(c)

(i)

(i)

(ii)

(ii)

(a)

R1
w

R1
w R1

w

R2
w

R2
w

R2
w R2

w R2
w R2

w

R2
w R2

w R2
w R2

wR2
w

R3
wR3

w

R3
wR3

w

R4
rR4

r

R4
rR4

r

R3
w

R3
w R4

rR4
r

R4
rR4

r

R2
w

Fig. 8: System states without write expansion are labeled (i), and states with write expansion
(used in the RW-RNLP) are labeled (ii).

Write expansion. Aside from Rule P3, the only other difference between the
RW-RNLP* and the RW-RNLP is with regard to a technique called write
expansion, which is employed by the latter but not the former. Since the RW-
RNLP* does not employ write expansion, we have chosen to avoid introducing
the necessary formal machinery to completely define this technique, opting
instead for conveying the general idea behind it with an example.

Example 5 The general idea behind write expansion is as follows. If a write
request Rw

i is issued, and if a read request Rr
j that accesses resources in com-

mon with Rw
i could possibly be active concurrently, then the set of resources

requested by Rw
i , Di, must be expanded to include all resources in Dj . An

example is given in Fig. 8. In inset (a), a write request Rw
1 is satisfied, holding

the lock for `3. Inset (b) shows two possible scenarios after the issuance of Rw
2 ,

Rw
3 , and Rr

4, with D2 = {`2, `3}, D3 = {`1}, and D4 = {`1, `2}. Inset (b)(i),
on the left, shows the situation with no write expansion. Rw

3 requires only re-
source `1 and thus is immediately satisfied. Rr

4 is then entitled. In inset (b)(ii),
Rw

2 and Rw
3 are expanded: because there exists a read request (namely, Rr

4) in
the system that requires `1 and `2, Rw

2 must be issued for D2 = {`1, `2, `3} and
Rw

3 must be issued for D3 = {`1, `2}. Therefore, in inset (b)(ii), Rw
3 cannot

be satisfied until Rw
2 completes, even though they do not share resources.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 23

Inset (c) shows the situation after Rw
1 has completed. As depicted in in-

set (c)(i), in the scenario without write expansion, nothing new happens to the
other requests, as Rw

2 cannot proceed ahead of the entitled read Rr
4. However,

as shown in inset (c)(ii), in the scenario with write expansion, the completion
of Rw

1 makes Rw
2 entitled.

One reason write expansion is used in the RW-RNLP is because it makes
reasoning about the largest possible pi-blocking for write requests easier. With
write expansion, if Rw

i is the earliest-timestamped write among all write re-
quests, then it is either entitled or satisfied, as illustrated in Ex. 5 and proven
in [52]. Additionally, write expansion eases certain implementation challenges.

In our setting, write expansion is problematic, as our ultimate intent is to
speed the processing of non-nested requests. With write expansion, these could
be converted into nested requests. However, removing write expansion under
the RW-RNLP* creates additional complexity with respect to the pi-blocking
scenarios that can occur, and increases worst-case pi-blocking bounds for write
requests by a constant factor compared to the bounds under the RW-RNLP.

4.4 RW-RNLP* Pi-Blocking Bounds

In this section, we derive bounds on the worst-case acquisition delay experi-
enced by a request under the RW-RNLP*. The properties needed to derive
acquisition-delay bounds are stated below. Lemma 5 and Theorem 3 were
proved in [52] (appearing as Lemma 1 and Theorem 1 there), and those proofs
are not affected by the changes we made to the RW-RNLP to obtain the RW-
RNLP*. The remaining properties either require new proofs or are entirely
new. We illustrate each of these properties by referring to our prior example.

Lemma 5 Under the RW-RNLP*, a write request Rw
i experiences acquisition

delay of at most Lr
max time units after becoming entitled.

Example 4 (cont’d) In insets (c) and (d) of Fig. 7, Rw
4 is simply waiting for

all requests in B(Rw
4 , te) to complete, where te is the time when Rw

4 became
entitled. It can be shown that no new requests can be added to B(Rw

4 , te)
until Rw

4 is satisfied. Furthermore, by Def. 2, all of the requests in this set are
read requests. In this scenario, Rw

4 waits for two requests to complete before
becoming satisfied, as B(Rw

4 , te) = {Rr
3,Rr

5}. In the worst case, Rw
4 must wait

for Lr
max time units. Note that having multiple reads in the set B(Rw

4 , te) does
not increase this worst-case acquisition delay.

Theorem 3 Under the RW-RNLP*, the worst-case acquisition delay of a read
request Rr

i is at most Lw
max + Lr

max time units.

Example 4 (cont’d) Consider Rr
9 in Fig. 7(d). Resource `1 is currently in a

read phase, as Rr
3 and Rr

5 are in their critical sections, and there is an entitled
write request, Rw

4 . Therefore, before Rr
9 is satisfied, the read requests Rr

3 and
Rr

5 could take up to Lr
max time units, and then the write request Rw

4 could
take up to Lw

max additional time units.

24 Catherine E. Nemitz et al.

Lemma 6 below is very similar to Lemma 2 in [52] and much of the proof
given for it is taken verbatim from there. However, new reasoning is required
as we do not employ write expansion.

Lemma 6 Under the RW-RNLP*, if Rw
i is the earliest-timestamped active

write request for each resource in Di, then Rw
i will be satisfied within Lw

max +
Lr
max time units.

Proof An unsatisfied write request Rw
i is either entitled or not. If Rw

i is en-
titled, then by Lemma 5, it will become satisfied within Lr

max time units.
Otherwise, by Def. 2, for some resource `a ∈ Di, either (i) Rw

i 6= E(Qw
a),

(ii) some request Rr
x ∈ Qr

a is entitled, or (iii) `a is write locked by some
other request. By Rule W1, Cases (i) and (iii) are not possible because the
write queues are timestamp ordered, and Rw

i is the earliest-timestamped ac-
tive write request for each resource in Di. For Case (ii), assume that Rr

x is
entitled and `a ∈ Di ∩ Dx. Then, by Def. 1, Rr

x is blocked by at least one
satisfied write request Rw

j . By Rule P1 (a resource-holding job is continually
scheduled), all such write requests will complete within Lw

max time units. At
the time t when all such write requests have completed, by Rule R2, each Rr

x

in B(Rw
i , t) will be satisfied, and by Def. 2, Rw

i will be entitled. By Lemma 5,
Rw

i will subsequently experience at most Lr
max additional time units of delay

before being satisfied. ut

In systems for which each resource is a single-writer resource, each write
request is the earliest-timestamped active write request for all of its required
resources upon release.

Corollary 3 Under the RW-RNLP*, if all resources are single-writer re-
sources, then the worst-case acquisition delay of a write request Rw

i is at most
Lw
max + Lr

max time units.

Similarly, we bound the time it takes the earliest-timestamped active write
request to become satisfied in the special scenario of no active nested requests.

Lemma 7 Under the RW-RNLP*, if no nested requests are active while the
non-nested request Rw,nn

i is active, and if Rw,nn
i is the earliest-timestamped

active write request for its lone requested resource `a in Di, then Rw,nn
i will

be satisfied within Lr
max time units.

Proof The proof of this lemma differs from that given above for Lemma 6
only in how Case (ii) in that proof is addressed. For Case (ii) in the context of
Lemma 7, if the non-nested request Rr,nn

x is entitled, then by Def. 1, it must
blocked by a satisfied write request Rw,nn

j for resource `a. However, Rw,nn
i is

the earliest-timestamped request for `a, so Case (ii) is actually impossible in
the context of Lemma 7. Therefore, Rw,nn

i must be either satisfied or entitled,
and in the latter case, it becomes satisfied within Lr

max time units, by Lemma 5.
ut

The next two lemmas heavily exploit Rule P3, which requires that there be
at most one incomplete non-nested write request and one incomplete nested
write request per resource at any time.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 25

Lemma 8 Under the RW-RNLP*, after being issued, a nested write request
Rw,n

i will become the earliest-timestamped active write request for all of the
resources in Di within 2Lw

max + Lr
max time units.

Proof For any resource in Di for which Rw,n
i is not the earliest-timestamped

write request, by Rule P3, the earliest-timestamped write is a non-nested write
request. By Lemma 6, each such request is satisfied within Lw

max + Lr
max time

units. By Rule P1, once satisfied, all such non-nested write requests will com-
plete within Lw

max time units. Summing these two bounds yields the worst-case
bound of 2Lw

max + Lr
max time units stated in the lemma. ut

Lemma 9 Under the RW-RNLP*, after being issued, a non-nested write re-
quest Rw,nn

i will become the earliest-timestamped active write request for its
lone requested resource `a in Di:
(i) immediately, if no nested write requests are active while Rw,nn

i is active;
(ii) within 4Lw

max + 2Lr
max time units, if nested requests may be active while

Rw,nn
i is active.

Proof In Case (i), by Rule P3, there are no other write requests accessing
`a, so Rw,nn

i immediately becomes the earliest-timestamped request for that
resource.

In Case (ii), if Rw,nn
i is not immediately the earliest-timestamped write re-

quest for `a, then there exists exactly one nested write request Rw,n
x that is the

earliest-timestamped write request for `a (Rule P3). By Lemma 8, Rw,n
x will

be the earliest-timestamped request for all of its requested resources within
2Lw

max +Lr
max time units. By Lemma 6, Rw,n

x will be satisfied within an addi-
tional Lw

max+Lr
max time units. Once it is satisfied, by Rule P1, it will complete

within Lw
max time units. At that time, Rw,nn

i will be the earliest-timestamped
write request for its requested resource. Summing all the bounds just stated,
this occurs within 4Lw

max + 2Lr
max time units in the worst case. ut

Theorem 4, given next, provides our desired acquisition-delay bounds. To-
gether with Theorem 3, this theorem implies that all pi-blocking bounds under
the RW-RNLP* are O(1).

Theorem 4 Under the RW-RNLP*, the worst-case acquisition delay of a
write request Rw

i is:
(i) Lr

max time units, if Rw,nn
i is a non-nested request and no nested requests

are active while Rw,nn
i is active;

(ii) Lw
max + Lr

max time units, if Rw,nn
i is a non-nested request and no nested

write requests are active while Rw,nn
i is active;

(iii) 5Lw
max + 3Lr

max time units, if Rw,nn
i is a non-nested request and nested

requests may be active while Rw,nn
i is active;

(iv) 3Lw
max + 2Lr

max time units, if Rw,n
i is a nested request.

Proof In Case (i), by Lemma 9(i), Rw,nn
i will be the earliest-timestamped

active write request for its lone requested resource as soon as it is issued. By
Lemma 7, it will be satisfied within Lr

max time units.

26 Catherine E. Nemitz et al.

In Case (ii), by Lemma 9(i), Rw,nn
i will be the earliest-timestamped active

write request for its lone requested resource as soon as it is issued. By Lemma 6,
it will be satisfied within Lw

max + Lr
max time units.

In Case (iii), by Lemma 9(ii),Rw,nn
i will be the earliest-timestamped active

write request for its lone requested resource within 4Lw
max + 2Lr

max time units.
By Lemma 6, it will then be satisfied within Lw

max +Lr
max time units, resulting

in a worst-case acquisition delay of 5Lw
max + 3Lr

max time units.
In Case (iv), by Lemma 8, Rw,n

i will be the earliest-timestamped active
write request for all of its requested resources within 2Lw

max +Lr
max time units.

By Lemma 6, it is then satisfied within Lw
max + Lr

max time units, resulting in
a worst-case acquisition delay of 3Lw

max + 2Lr
max time units. ut

In an appendix we show that all of the blocking bounds in Theorem 4 are
tight, i.e., scenarios exist in which these exact bounds occur (see Sec. A.1).
Note that, by Theorem 3 and Theorem 4(i), if non-nested requests are not
affected by nested requests, then read and write requests have worst-case pi-
blocking bounds of only Lw

max + Lr
max and Lr

max time units, respectively.

4.5 The Fast RW-RNLP with the RW-RNLP*

Referring back to the fast RW-RNLP structure in Fig. 6, notice that all read
requests (both nested and non-nested) directly invoke the RW-RNLP*. Fur-
thermore, Rule P3 ensures that at most one non-nested write request and one
nested write request per resource accessing the RW-RNLP* at a time.

Because read requests directly invoke the RW-RNLP*, the pi-blocking in-
curred by them is O(1) in the worst case (we consider Lmax to be constant),
as shown in the following theorem. Thus, Goals (ii) and (iii) above are met
for read requests: non-nested requests have contention-sensitive blocking and
nested requests have blocking bounds asymptotically the same as under the
RW-RNLP. The following theorem also shows that Goals (ii) and (iii) are
met for write requests: the pi-blocking incurred by a non-nested write request
Rw,nn

i is O(Ci) in the worst case (recall that Ci is the contention experienced
by request Ri), and the pi-blocking incurred by a nested write request is O(m)
in the worst case. As with the R3LP, the fast RW-RNLP with the RW-RNLP*
does result in a higher coefficient for blocking of nested write requests, but we
show in Sec. 5 that the fast RW-RNLP outperforms the RW-RNLP in practice.

Theorem 5 Under the fast RW-RNLP with the RW-RNLP*, the worst-case
acquisition delay for a request Ri is:
(i) Lw

max + Lr
max time units, if Rr

i is a read request;
(ii) Ci·(Lw

max+Lr
max) +Lr

max time units, if Rw,nn
i is a non-nested request and

no nested requests are active while Rw,nn
i is active;

(iii) Ci ·(2Lw
max+Lr

max) + Lw
max + Lr

max time units, if Rw,nn
i is a non-nested

request and no nested write requests are active while Rw,nn
i is active;

(iv) Ci·(6Lw
max +3Lr

max)+5Lw
max +3Lr

max time units, if Rw,nn
i is a non-nested

request and nested requests may be active while Rw,nn
i is active;

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 27

(v) (m− 1)·(4Lw
max + 2Lr

max) + 3Lw
max + 2Lr

max time units, if Rw,n
i is a nested

request.

Proof Each case follows directly from Theorems 1, 3, and 4. ut

In a system with only single-writer resources, the RW-RNLP* alone is
sufficient; other protocols are not required to arbitrate access between write
requests as no write requests will conflict. Thus Corollary 3 can be applied to
show that all requests incur O(1) pi-blocking with very low constant factors.

To this point, we have fully specified the RW-RNLP* abstractly. What
remains is to devise an actual implementation of it with reasonable overhead.

4.6 RW-RNLP* Implementation

Of the building blocks used to construct the fast RW-RNLP, the TL and the
RNLP have existing implementations [17,50]. In Sec. 3 we provided an imple-
mentation of the R3LP. Thus, it remains for us to provide an implementation
of the RW-RNLP*. Recall that we focus on the user-level, spin-based version.

The main challenge in implementing the RW-RNLP* lies in supporting the
atomicity assumptions inherent in the rule-based specification. Such assump-
tions could be supported by encapsulating certain code regions within lock and
unlock calls to an underlying mutex. Indeed, this approach was taken in imple-
menting the rules of the RW-RNLP [52]. While such an approach introduces
additional pi-blocking, the protected critical sections are usually very short,
so we consider such blocking to be part of the lock and unlock overhead of the
protocol being implemented. Still, we would like to avoid relying on the use of
mutex protocols in this way if possible, and we want to categorically preclude
their use in implementing the lock and unlock routines for non-nested requests,
as efficiently implementing such routines is the emphasis of this paper.

Our implementation of the RW-RNLP* is based on the same ideas under-
lying PF-TLs. We begin by describing the shared variables we use to track
requests and then present pseudocode for each type of request.

Listing 3 RW-RNLP* Definitions
type res state: record

rin, rout : unsigned integer initially 0
win, wout : unsigned integer initially 0

constant
RINC 0x100 // reader increment value
WBITS 0xff // writer bits in rin
PRES 0x80 // writer present bit
PHID 0x7f // writer phase ID bits

Shared variables of the RW-RNLP*. In our implementation, corresponding
to each shared resource `a is a pointer to a structure called res state, which
consists of four shared counters, rin, rout, win, and wout, as shown in Listing 3.
Almost identical counters to these are used in the PF-TL [17]. Counters win

28 Catherine E. Nemitz et al.

24 23

24 23 16 15

16 1524 31

24 31

 8 7 6

 8 7 6

 0

 0

unusedrout: count of completed read requests

rin: count of issued read requests

PRES: writer present boolean

PHID: writer phase ID

Fig. 9: Bits in the per-resource rin and rout variables. (A very similar figure appears in [17].)

and wout track the number of write requests for resource `a that have been
issued and completed, respectively. Counters rin and rout similarly count read
requests, with the added complexity of storing information about writes in the
bottom byte, as shown in Fig. 9. Listing 3 shows various constant bitmasks
used in our code to access and manipulate certain bits in rin and rout. As with
the R3LP, shared state must be marked volatile and updated atomically.

Listing 4 RW-RNLP* Routines for Non-Nested Requests
1: procedure R* Locknn (`: ptr to res state)
2: var w: unsigned int
3: w := fetch&add(`�rin, RINC) & WBITS . In read queue
4: await (w = 0) or (w 6= (`�rin & WBITS)) . Satisfied

5: procedure R* Unlocknn (`: ptr to res state)
6: atomic add(`�rout, RINC)

7: procedure W* Locknn (`: ptr to res state)
8: var rticket, wticket, w: unsigned int
9: wticket := fetch&add(`�win, 1) . In write queue

10: await (wticket = `�wout) . Head of write queue
11: w := PRES | (wticket & PHID)
12: rticket := fetch&add(`�rin, w) . Marked entitled now for all reads to see
13: await (rticket = `�rout) . Satisfied

14: procedure W* Unlocknn (`: ptr to res state)
15: fetch&and(`�rin, ∼(WBITS)) . Clear WBITS

16: `�wout := `�wout + 1

Non-nested requests in the RW-RNLP*. The lock and unlock routines for non-
nested requests in our implementation are shown in Listing 4. These are nearly
identical to those for the PF-TL [17], which to our knowledge is the most
efficient reader/writer lock for single-resource requests proposed to date. A
non-nested read request Rr,nn

i for a resource `a is performed by simply incre-
menting the number of readers for `a (Line 3) and then spinning if necessary
(Line 4). In particular, if `a is currently being written, then Rr,nn

i waits for
a single write request to complete as indicated by either the PRES bit being
cleared or the PHID bits being changed, which indicates that a new writer has
set those bits, and thus the prior write has completed. To unlock `a, Rr,nn

i

simply increments rout by RINC (Line 6).

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 29

A non-nested write Rw,nn
i of a resource `a waits until it holds the earliest

ticket among all write requests for `a (Lines 9–10). It then atomically sets the
last byte of `a’s rin variable and determines the number of read requests for
`a upon which it must block (Lines 11–12). Next, it waits until those reads (if
any) are complete (Line 13). When Rw,nn

i completes, it clears the writer byte
of `a’s rin variable (Line 15) and increments its wout counter (Line 16).

Listing 5 RW-RNLP* Routines for Nested Requests
1: procedure R* Lockn(D: set of ptr to res state)
2: var w`: unsigned int for each ` in D
3: for each ` in D:
4: w` := `�rin & WBITS

5: for each ` in D:
6: await (w` = 0) or (w` 6= (`�rin & WBITS))
7: R2LP Lock(r type)
8: for each ` in D:
9: w` := fetch&add(`�rin, RINC) & WBITS . Marked entitled for all writes to see

10: R2LP Unlock(r type)
11: for each ` in D:
12: await (w` =0)or (w` 6=(`�rin & WBITS)) . Satisfied

13: procedure R* Unlockn(D: set of ptr to res state)
14: for each ` in D:
15: atomic add(`�rout, RINC)

16: procedure W* Lockn(D: set of ptr to res state)
17: var rticket`,wticket`,w`:unsigned int for each ` in D
18: for each ` in D:
19: wticket` := fetch&add(`�win, 1) . In write queue
20: await (wticket` = `�wout) . Head of all requested write queues now
21: R2LP Lock(w type)
22: for each ` in D:
23: w` := PRES | (wticket` & PHID)
24: rticket` := fetch&add(`�rin, w`) . Marked entitled for all reads to see
25: R2LP Unlock(w type)
26: for each ` in D:
27: await (rticket` = `�rout) . Satisfied

28: procedure W* Unlockn(D: set of ptr to res state)
29: for each ` in D:
30: fetch&and(`�rin, ∼(WBITS)) . Clear WBITS

31: `�wout := `�wout + 1

Nested requests in the RW-RNLP*. The lock and unlock routines for nested
requests are shown in Listing 5. These routines are very similar to those in
Listing 4, with two notable exceptions.

First, an extra phase has been added to the lock routine for read requests
(Lines 3–6).7 In the analysis in Sec. 4.4, we assumed that enqueueing takes
no time; that is not the case in practice. We introduced this extra phase to
handle a corner case in which unnecessary writer blocking occurs as a result

7 This extra phase erroneously combined lines 3–6 into a single loop in the conference
paper [40], given there as Listing 3, but the source code was correct. It has been corrected
here.

30 Catherine E. Nemitz et al.

of enqueueing taking some time; this corner case is explored in Sec. A.2. This
extra phase does add an additional Lw

max +Lr
max time units to the acquisition

delay for nested read requests. This additional blocking is accounted for in the
schedulability study in 5.2.

Second, because requests are now for sets of resources, we need to ensure
that such sets can be enqueued atomically to prevent potential deadlock. (This
is why, as discussed in Sec. 2, resources must be acquired according to a prede-
termined order in the variant of the RNLP that does not use DGLs.) However,
it turns out that the only potential deadlock situation that can occur involves
a race condition between nested readers and nested writers. Furthermore, we
discovered that this race condition can be eliminated by coordinating access
to the lock state with a reader/reader locking protocol (R2LP). We define the
phases of the R2LP such that read requests are allowed to execute together
and write requests may execute together, but read requests and write requests
are prevented from executing simultaneously. The calls to the R2LP lock and
unlock routines in Lines 7, 10, 21, and 25 specify their type as an input pa-
rameter. While using the R2LP introduces blocking overhead, this overhead is
only O(1), as shown in [41]. This is preferable to the blocking overhead that
would result from using a mutex lock to prevent race conditions.

Clearly, the routines in our implementation are not actually atomic: each
executes over a duration of time, not instantaneously. However, it can be for-
mally shown that each routine is linearizable. That is, for each routine, an in-
stantaneous linearization point can be defined at which the routine “appears”
to take effect atomically (see Sec. A.3). When viewed in this way, the routines
can be shown to support the rule-based specification of the RW-RNLP* given
earlier.

5 Evaluation

To evaluate both variants of our new protocol, we explored the tradeoffs be-
tween overhead and blocking via user-space experiments. We also conducted
a large-scale overhead-aware schedulability study to explore the impact of the
worst-case acquisition delays from Theorems 2 and 5 on system schedulability.

5.1 Overhead and Blocking

We conducted a user-space experimental evaluation of both variants of the
fast RW-RNLP, for which we compared lock/unlock overhead and observed
blocking times recorded under a variety of scenarios. Given the focus of this
paper, we were particularly interested in overhead and blocking times for non-
nested requests. We conducted our experiments on a dual-socket, 18-cores-per-
socket, 2.3 GHz Intel Xeon E5-2699 platform running Ubuntu 14.04.

In our experiments, we varied a number of experimental parameters, in-
cluding the number of tasks (n), nesting depth (D = |Di|), critical-section

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 31

length (Li), probability of a request being nested (rather than non-nested), and
probability of a request being a read request (rather than a write request). We
considered the following parameter ranges: n ∈ {2, 4, ..., 36}, D ∈ {1, 2, ..., 10},
Li ∈ {0µs, 10µs, ..., , 100µs}, and nested and read probabilities independently
in {0.0, 0.1, ..., 1.0}. We define a scenario as choosing a value for four of the
parameters, and varying the fifth. Each task was pinned to a single core, and
for task counts of up to 18, all tasks were assigned to the same socket. To sim-
ulate behavior that would generate the worst-case lock overhead and blocking
times, each task was configured to issue lock and unlock calls 10,000 times,
as fast as possible. Each such lock-unlock call pair corresponded to a single
request that was randomly chosen to be nested (or non-nested) and a read
(or a write) given the scenario’s parameters, for 1 or D resources randomly
chosen from nr = 64 possible resources for non-nested and nested requests,
respectively.

In all of our graphs, we plot these worst-case values, which were obtained
by computing the 99th percentile of all recorded results in order to filter out
any spurious measurements (our measurements were taken at user level, so
we have no other means for filtering results impacted by interrupts). In the
course of our experiments, we produced hundreds of graphs. Our protocol
implementations and the full set of graphs can be found online.8

Overhead and blocking. We compared the considered protocols on the basis of
overhead and blocking: the overhead incurred by a resource request is the total
time spent by it executing lock logic within lock and unlock routines (including
any time spent waiting to access underlying locks used to enforce atomicity
properties required by that logic); the blocking incurred by the request is the
total time spent by it waiting to access its requested resources. We measured
both overhead and blocking for a number of different scenarios, using the
experimental parameters defined above.

In designing both fast RW-RNLP variants, we have sought to ensure that
(i) non-nested requests have low overhead and experience contention-sensitive
pi-blocking and (ii) nested requests experience pi-blocking that is no worse
(and hopefully better) than that under the RW-RNLP. Accordingly, as stan-
dards for comparison, we considered the use of per-resource PF-TLs (which
exhibit very low overhead and are contention-sensitive) in assessing (i) and
the RW-RNLP (of course) in assessing (ii). A few graphs that are exemplars
of trends seen generally are discussed in the following observations.

Obs. 1 For non-nested read requests (resp., non-nested write requests), the
fast RW-RNLP with the RW-RNLP* and PF-TLs exhibit comparable overhead
(resp., higher overhead).

This observation is supported by Fig. 10(a), which plots overhead for both
reads and writes under both the fast RW-RNLP and PF-TLs as a function of
the task count, n. The data in this figure corresponds to a scenario in which all

8 See online appendix: http://www.cs.unc.edu/~anderson/papers.html.

32 Catherine E. Nemitz et al.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

W-NN - Fast RW-RNLP (R 3LP)

R-NN - Fast RW-RNLP (R 3LP)

W-NN - Fast RW-RNLP (RW-RNLP ∗)

R-NN - Fast RW-RNLP (RW-RNLP ∗)

W-NN - PF-TL

R-NN - PF-TL

Fig. 10: (a) Overhead and (b) blocking for non-nested read and write requests when using
PF-TLs versus both variants of the fast RW-RNLP. For each request Ri, L

r
i = 40µs,

Lw
i = 40µs, nr = 64, |Di| = 1. Requests were randomly chosen to be a read (or a write)

with probability 0.5.

requests were non-nested, evenly distributed between read and write requests,
and the total number of resources, nr, was set to 64. The critical section
of each request was configured to have a duration of 40µs. For comparison,
overhead for both protocols holds steady in the range of around 0.1µs to 0.5µs
for up to 18 tasks, with the fast RW-RNLP with the RW-RNLP* having a
higher write-lock overhead than PF-TLs. Implementation-wise, the difference
for write requests under the fast RW-RNLP with the RW-RNLP* is that each
request must first acquire the ticket lock corresponding to its required resource;
this contributes additional overhead (if not also additional blocking). Beyond
18 tasks, overhead increases under both protocols. This is because, beyond
a task count of 18, tasks are executing on both sockets of the considered
platform.

Obs. 2 The fast RW-RNLP with the R3LP exhibits higher overhead than
PF-TLs and the fast RW-RNLP with the RW-RNLP*.

This trend is seen in Fig. 10(a) and is unsurprising; unlike the other proto-
cols, the fast RW-RNLP with the R3LP requires all requests to modify parts
of the lock state based on request type rather than on a per-resource basis.
Therefore, in a system with more resources than request types, the R3LP
approach is likely to cause more cache invalidations, in turn causing higher
overhead.

Obs. 3 In general, overhead increases when using two sockets instead of one.

This trend is seen in Fig. 10(a), discussed earlier, and also in Fig. 11(a)
and (b), considered in detail below. When tasks execute on two sockets instead
of one, overhead due to maintaining cache coherency increases. Observe that,
in Fig. 10(a), overhead under the fast RW-RNLP with the RW-RNLP* is

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 33

Table 1: Implementation-based worst-case acquisition delay under the fast RW-RNLP

Request Case with the R3LP with the RW-RNLP*

Rr 2 Lw + Lr Lw + Lr

Rr 1 2Lw + Lr 2Lw + 2Lr

Rw,nn 2 Ci · (2Lw + Lr) + Lw + Lr Ci ·(Lw + Lr) + Lr

Rw,nn 3 Ci · (2Lw + Lr) + Lw + Lr Ci ·(2Lw + Lr) + Lw + Lr

Rw,nn 1 Ci · (3Lw + Lr) + 2Lw + Lr Ci ·(6Lw + 3Lr) + 5Lw + 3Lr

Rw,n 1 (m− 1) · (3Lw + Lr) + 2Lw + Lr (m− 1)·(4Lw + 2Lr) + 3Lw + 2Lr

Cases: [1] No restrictions [2] No nested requests [3] No nested write requests
Note that, for brevity, Lw (resp., Lr) is used here to denote Lw

max (resp., Lr
max).

For reference, the bounds of RW-RNLP: Lw + Lr for Rr and (m− 1)(Lw + Lr) for Rw.

never more than around 1.0µs. This value is quite small compared to the 40µs
critical-section length. For the RW-RNLP with the R3LP, the overhead is as
high as 3.2µs, but still significantly lower than the critical-section length.

Obs. 4 In scenarios with only non-nested requests, the fast RW-RNLP with
the RW-RNLP* and PF-TLs exhibit nearly identical blocking.

This observation is clearly supported by Fig. 10(b). Together with Obs. 1,
this observation suggests the viability of providing the fast RW-RNLP with the
RW-RNLP* as a general synchronization solution. It can be used in systems
in which nested requests do not occur with no detrimental impacts of note.

Obs. 5 In general, the fast RW-RNLP with the R3LP exhibits higher observed
blocking than either PF-TLs or the fast RW-RNLP with the RW-RNLP*.

With requests of each type present, the R3LP cycles between phases in a
manner that can easily cause the worst-case acquisition delay to be experienced
by requests. This is in contrast to the fast RW-RNLP with the RW-RNLP*,
which requires conflicting requests to be issued in precisely the worst order to
actually realize the worst-case blocking. We suspect that the particular request
issuance order required to generate the worst-case is not occurring during our
experiments. Recall, however, that the R3LP has lower analytical worst-case
blocking bounds, as shown in Sec. 4.2 and 4.5 and summarized in Table 1.

Obs. 6 In scenarios with both nested and non-nested requests, overhead for
write requests tends to be much lower under both fast RW-RNLP variants than
under the RW-RNLP.

This observation is supported by Fig. 11(a) and (b), which depict data
from two different scenarios, as detailed in the figure’s caption. The higher
overhead under the RW-RNLP is partially due to the use of write expansion
(recall Fig. 8), which increases resource contention. This increased contention
impacts the overhead of write requests, as they write-lock an underlying PF-
TL to update all relevant resource queues atomically [52]. Note that, under the
RW-RNLP, write expansion forces non-nested write requests to be processed
like nested ones.

34 Catherine E. Nemitz et al.

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0

5

10

15

20

25

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

W-N - Fast RW-RNLP (R 3LP)

W-NN - Fast RW-RNLP (R 3LP)

W-N - Fast RW-RNLP (RW-RNLP ∗)

W-NN - Fast RW-RNLP (RW-RNLP ∗)

W-N - RW-RNLP

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0

5

10

15

20

25

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0

500

1000

1500

2000

2500

3000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(c)

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0

500

1000

1500

2000

2500

3000
B

lo
ck

in
g
 (

m
ic

ro
se

co
n
d
s)

(d)

Fig. 11: (a), (b) Overhead and (c), (d) blocking for nested and non-nested write requests
under the RW-RNLP and the fast RW-RNLP. Here, Lr

i = 40µs, Lw
i = 40µs, nr = 64,

|Di| = 1, for non-nested requests, and |Di| = 4, for nested requests. Requests were chosen
to be a read (or write) with probability 0.5. Data is plotted for the cases of 20% (left) and
80% (right) of requests being nested. Due to write expansion (recall Fig. 8), Di was inflated
to include all 64 resources for writes under the RW-RNLP.

Obs. 7 In scenarios with both nested and non-nested requests, blocking for
write requests tends to be much lower under both fast RW-RNLP variants than
under the RW-RNLP.

This observation is supported by Fig. 11(c) and (d), which plot recorded
worst-case blocking times associated with the scenarios in Fig. 11(a) and (b).
For m = 36, blocking was up to 18 times lower (resp., 12 times lower) under
the fast RW-RNLP with the RW-RNLP* (resp., with the R3LP) than under
the RW-RNLP; write expansion increases resource contention, which increases
blocking times of the RW-RNLP.

Obs. 8 Non-nested write requests exhibit contention-sensitive blocking under
the fast RW-RNLP variants but not the RW-RNLP.

This observation is also supported by Fig. 11(c) and (d). Notice that, as
the task count increases, the potential for additional blocking increases due
to transitive blocking, which negatively impacts any protocol that provides
no mechanisms for eliminating transitive blocking. Blocking for non-nested
requests under the fast RW-RNLP increases slowly as the task count increases;

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 35

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(a)

R-N - Fast RW-RNLP (R 3LP)

R-NN - Fast RW-RNLP (R 3LP)

R-N - Fast RW-RNLP (RW-RNLP ∗)

R-NN - Fast RW-RNLP (RW-RNLP ∗)

R-N - RW-RNLP

R-NN - RW-RNLP

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

(b)

0 5 10 15 20 25 30 35 40
Number of Tasks (20% nested)

0

20

40

60

80

100

120

140

160

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(c)

0 5 10 15 20 25 30 35 40
Number of Tasks (80% nested)

0

20

40

60

80

100

120

140

160
B

lo
ck

in
g
 (

m
ic

ro
se

co
n
d
s)

(d)

Fig. 12: (a), (b) Overhead and (c), (d) blocking for nested and non-nested read requests
under the RW-RNLP and the fast RW-RNLP, in the same scenario as in Fig. 11.

with more tasks, more contention is possible, and we expect a slow linear
growth of contention (and thus blocking) with the number of tasks. In contrast,
non-nested write requests are converted to nested ones under the RW-RNLP
due to write expansion. As a result, their blocking under that protocol is not
O(C), but instead O(m). This translates to a faster linear growth of blocking,
as in Fig. 11(c) and (d).

Notice that Fig. 11 pertains to write requests. The corresponding read
request results are shown in Fig. 12. Both overhead and blocking are much
lower for reads than for writes, as expected. Under the fast RW-RNLP variants,
non-nested read requests had higher blocking than under the RW-RNLP by
1-2 critical-section lengths, and nested read requests had higher blocking by
2-3 critical-section lengths, as expected from the implementation-based worst-
case acquisition delay bounds in Table 1.

Of relevance to the analysis presented in Sec. 4, Fig. 13 demonstrates the
results of varying the critical-section length while holding the number of tasks
n constant (in our experiments, m and n are equal). In contrast, in Fig. 11(b)
the number of tasks was varied, and the critical-section length was held con-
stant; the points in Fig. 11(c) at m = 36 are the same as those in Fig. 13
for Li = 40µs. Note that varying m effectively modifies the term Ci for each
request Ri.

36 Catherine E. Nemitz et al.

0 20 40 60 80 100
Critical-Section Length

0

1000

2000

3000

4000

5000

6000

7000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(b)

W-N - Fast RW-RNLP (RW-RNLP ∗)

R-N - Fast RW-RNLP (RW-RNLP ∗)

W-NN - Fast RW-RNLP (RW-RNLP ∗)

R-NN - Fast RW-RNLP (RW-RNLP ∗)

W-N - RW-RNLP

R-N - RW-RNLP

R-NN - RW-RNLP

0 20 40 60 80 100
Critical-Section Length

0

1000

2000

3000

4000

5000

6000

7000

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

(a)

W-N - Fast RW-RNLP (R 3LP)

R-N - Fast RW-RNLP (R 3LP)

W-NN - Fast RW-RNLP (R 3LP)

R-NN - Fast RW-RNLP (R 3LP)

W-N - RW-RNLP

R-N - RW-RNLP

R-NN - RW-RNLP

Fig. 13: Blocking for nested and non-nested write requests under the RW-RNLP and the fast
RW-RNLP. The critical-section length varies, m = 36, nr = 64, |Di| = 1, for non-nested
requests, and |Di| = 4, for nested requests. (|Di| is inflated to 64 under the RW-RNLP as
above.) A request was chosen to be a write with probability 0.5.

Obs. 9 Blocking time scales linearly with critical-section length for both the
fast RW-RNLP variants and the RW-RNLP.

Fig. 13 illustrates this observation, which reflects expected behavior based
on the blocking analysis; for each type of request, the worst-case blocking
bound contains both Lw

max and Lr
max terms with different coefficients depend-

ing on the request type.
Although our approach results in higher coefficients for the nested write

requests than the bounds proven for the RW-RNLP, lower blocking times
were generally seen under both variants of the fast RW-RNLP. We suspect
this difference is because, under the RW-RNLP, write expansion guarantees
that all write requests conflict.

We also noted differences between nested and non-nested write requests
under the fast RW-RNLP variants, highlighting the improvement of O(C)
over O(m) blocking. Under the fast RW-RNLP, the O(C) blocking of non-
nested write requests was almost identical to the O(1) blocking of nested read
requests. Thus, there is a significant benefit that can be gained when contention
is guaranteed to be low.

5.2 Schedulability study

The results presented in Sec. 5.1 demonstrate the tradeoffs between protocols
in experimentally measured overhead and blocking times. In this section, we
present an evaluation of the two fast RW-RNLP variants on the basis of hard

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 37

real-time schedulability. Our large-scale study varied a range of parameters,
detailed below, and took over 100 CPU-days on the platform described above.

We begin by introducing several additional constraints that can be applied
to tighten the computed blocking. Then we discuss each protocol we analyze.
Finally, we present the range of our schedulability study and key findings.

Constraints. For each task system, we calculated blocking using the worst-
case acquisition delay bounds presented in Table 1. However, we tightened
these bounds using several constraints. Instead of accounting for the system-
wide worst-case critical section as repeatedly causing Lmax blocking for other
requests, we impose period-based constraints that limit the number of times
each critical section can delay a given request based on the period of each
task. Based on the functionality of each protocol, if two write requests share a
resource queue, the FIFO nature of the protocol enforces that each such write
can delay the write request of interest at most once. We call this constraint on
blocking the FIFO constraint. Similarly, the number of critical sections of read
requests is limited by the number of write requests that can be counted. We
refer to this as the read-write constraint. Finally, the blocking of non-nested
write requests in the fast RW-RNLP variants depends on contention. Because
the only contending requests that impact blocking are other non-nested write
requests (recall Theorem 1), we use that number of requests for the contention
constraint. More details and examples of these constraints can be found in
Sec. A.4.

Protocols evaluated. We evaluated four protocols: the PF-TL, the RW-RNLP,
the fast RW-RNLP with the R3LP, and the fast RW-RNLP with the RW-
RNLP*. The latter three protocols are as described above, and the PF-TL
is applied to protect the group of all resources; that is, we statically group
all resources and protect this group with a standard PF-TL, eliminating all
nesting. We refer to this application of a PF-TL as a group PF-TL.

Experimental setup. We used SchedCAT [1], an open-source real-time schedu-
lability test toolkit, to randomly generate task systems, implement blocking
bound computations, and check for schedulability on an 18-core platform with
global EDF scheduling. We varied a wide range of system parameters. For
each set of parameters, we generated task sets with system utilizations in
{2.0, 2.5, ..., 18.0}. We examined tasks sets with short ([3, 33]ms), moderate
([10, 100]ms), and long ([50, 250]ms) task periods. For each of these ranges,
per-task utilizations were varied between medium (uniformly chosen from
[0.1, 0.4]) and heavy (uniformly chosen from [0.5, 0.9]). Tasks were chosen
to issue a single request with a probability chosen from {0.1, 0.2, 0.5, 1.0}.
Each request was a read (as opposed to a write) request with a probability in
{0.0, 0.2, 0.5, 0.8} and nested (as opposed to non-nested) with a probability in
{0.01, 0.05, 0.1, 0.2, 0.5}. Nested requests were all for four resources chosen ran-
domly from a set of 64 resources. The critical-section length for each request
was chosen uniformly within short ([1, 15]µs) or long ([100, 1000]µs).

38 Catherine E. Nemitz et al.

For each generated task system, we computed the impact of blocking on
each request given the constraints discussed above. We did not consider most
types of overhead, such as migration overhead, release blocking, and other
overhead sources that impact each scheme similarly. However, we did account
for the overhead incurred by using a specific locking protocol; we applied the
appropriate overhead values for nested and non-nested read and write requests
based on the experimental results presented in Sec. 5.1. We chose the maxi-
mum values of lock and unlock overhead from relevant scenarios (eliminating
scenarios with 100% read requests and rerunning each protocol evaluation for
a critical-section length of 1µs, the shortest critical section used in our schedu-
lability study). For the fast RW-RNLP with the RW-RNLP*, the worst-case
overhead values for short critical-section lengths were significantly higher than
that for medium or long critical-section lengths, so we applied the correct over-
head measurement based on the given scenario. For all other protocols, over-
head values were chosen only based on request type (e.g., non-nested read).

Our schedulability experiments resulted in 960 plots. The full set is avail-
able online,8 and we highlight a few interesting trends here.

Schedulability versus nested probability. In Fig. 14, each plot shows the schedu-
lability curve of each protocol; a point on a given curve indicates that, given the
system utilization shown, the corresponding fraction of task systems generated
for this scenario were deemed schedulable by Baruah’s G-EDF schedulability
test [9] after applying the appropriate blocking bounds and protocol overhead
values. For each point, between 1,000 and 100,000 task systems were generated
at random from within the specified ranges. The line denoted NOLOCK shows
the fraction of task systems for a given utilization that were schedulable when
no additional interference was caused by non-preemptive critical sections or
non-preemptive spin blocking.

For the plots shown in Fig. 14, tasks systems were generated that had
medium task utilization, long periods, long critical sections, and with all tasks
issuing resource requests. Requests were chosen to be read requests with proba-
bility 0.8. Each of the subplots shows the schedulability results given a different
percent of nested requests.

In addition to highlighting key trends in the figures, we present data sum-
marizing all results. For each of the 960 graphs, we compute the schedulable
utilization area (SUA) of each protocol, which is the area under the curve
for that protocol as approximated by a midpoint Riemann sum. In general,
a higher SUA indicates better schedulability. We present a breakdown of the
number of times each protocol was the best (in terms of SUA) by scenario
in Table 2. We filtered out all scenarios in which all four protocols performed
equally (within 2% of each other). The highest entry per nested probability is
shown in bold.

Obs. 10 For task systems in which non-nested requests are the common case,
the fast RW-RNLP with the R3LP outperforms the RW-RNLP and the group
PF-TL.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 39

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][4]
[3,2,5]

(a)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][4]
[5,3,2]

(b)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1]

[5,4,3,2]

(c)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty
[1][3,2]

[5,4]

(d)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][3,2]
[5,4]

(e)

[1] NOLOCK

[2] PF-TL

[3] RW-RNLP

[4] R3LP

[5] RW-RNLP*

Fig. 14: Hard real-time schedulability results with varying nested probabilities for the sce-
nario with medium task utilizations, long periods, long critical-section lengths, and read
probability 0.8. Nested probabilities are (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, and (e) 0.5.

Fig. 14(a), (b), and (c) reflect the trends that we observe as the percentage
of requests which are nested varies. When only 1%, 5%, or 10% of requests
are nested, the fast RW-RNLP variant with R3LP tended to perform as well
or better than the two existing protocols. This trend is highlighted in Table 2.

Obs. 11 For most task systems we explored in which 50% of requests were
nested, the group PF-TL and RW-RNLP outperform the other protocols.

This is reflected in Fig. 14(e) and quantified in Table 2.

Schedulability versus task utilization and period. In Fig. 15, schedulability
curves for each protocol are shown for task systems with short critical-section

40 Catherine E. Nemitz et al.

Table 2: Best protocols per scenario by SUA

Task
Util.

Nested
Prob.

PF-TL RW-RNLP R3LP RW-RNLP* All tied

0.01 15 1 75 13 18

0.05 28 5 75 14 18

0.1 44 10 68 10 18

0.2 66 30 31 5 17m
ed

iu
m

0.5 76 35 0 5 17

0.01 7 1 30 6 63

0.05 11 5 28 4 64

0.1 13 8 25 3 64

0.2 19 11 12 4 64h
ea

v
y

0.5 33 18 2 5 59

Number of scenarios with medium (top) and heavy (bottom) task utilizations in which each
protocol had the highest SUA. Each line contains 96 total scenarios, and any protocols
within 2% of the highest SUA for that scenario was also counted as the best.

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[1][4,2][3] [5]

(a)

[1] NOLOCK

[2] PF-TL

[3] RW-RNLP

[4] R3LP

[5] RW-RNLP*

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[5,4,2,1]
[3]

(b)

2 4 6 8 10 12 14 16 18
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

[3,5,2,4,1]

(c)

Fig. 15: Hard real-time schedulability results with varying task utilizations and periods for
the scenario with short critical-section lengths, nested probability 0.1, and read probability
0.2. Task utilizations and periods are, respectively, (a) medium and short, (b) heavy and
short, and (c) heavy and long.

lengths, nested probability 0.1, read probability 0.2, and all tasks making
requests.

Obs. 12 The fast RW-RNLP with the R3LP results in higher schedulability
than the fast RW-RNLP with the RW-RNLP* in most task systems.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 41

Table 3: Relative SUAs

Task
Util.

Nested
Prob.

PF-TL RW-RNLP R3LP RW-RNLP*

0.01 0.685 0.656 0.748 0.670

0.05 0.685 0.656 0.719 0.655

0.1 0.685 0.656 0.695 0.643

0.2 0.685 0.656 0.664 0.627m
ed

iu
m

0.5 0.685 0.656 0.620 0.601

0.01 0.830 0.825 0.865 0.815

0.05 0.830 0.825 0.852 0.811

0.1 0.830 0.825 0.839 0.806

0.2 0.830 0.825 0.822 0.800h
ea

v
y

0.5 0.830 0.825 0.796 0.788

Fraction of summed SUA for each protocol relative to the summed SUA of NOLOCK.

This trend can be observed in Fig. 14 and Fig. 15(a) and (b). In some task
systems, the fast RW-RNLP variants display almost identical schedulability
(as shown in Fig. 15(c)), and in very few task systems does the RW-RNLP*
variant outperform the R3LP variant. This trend is also reflected in Table 2,
in which the R3LP is a better choice more often than the RW-RNLP*.

For each group of scenarios, we summed the SUA of all scenarios in the
group. In Table 3, we present the ratio of each of these compared to NOLOCK.
This serves to give some intuition about the impact of shared resources man-
aged by each protocol on schedulability with respect to the schedulability when
no resource management is required. As before, we bold the highest entry per
nested probability.

Obs. 13 Given a scenario, changing from medium task utilization to heavy
task utilization tends to make all protocols have higher schedulability.

This is as expected; with each task having a higher utilization, generally
fewer tasks (and thus possible requests) are necessary to hit each utilization
threshold. This is supported by Fig. 15(a) and (b), as well as by Table 3.
In Table 3, all relative SUAs increase when the task utilization changes from
medium to heavy.

Obs. 14 For some task systems, the locking protocol chosen has very minimal
effect on schedulability.

For task systems with medium task utilizations, approximately one-sixth
of all scenarios resulted in identical schedulability (within 2% difference) for
each locking protocol considered. This effect is also visible in Fig. 15(c). In
scenarios with heavy task utilization, this effect is even more pronounced,
with approximately two-thirds of the scenarios having identical schedulability
(Table 2).

42 Catherine E. Nemitz et al.

6 Conclusion

We have presented a new RNLP variant, the fast RW-RNLP, which employs
a fast-path mechanism to provide contention-sensitive pi-blocking and low
processing costs for non-nested lock requests, while preserving the RW-RNLP’s
asymptotic pi-blocking bounds for nested requests. While the goal of ensuring
contention sensitivity efficiently in the general case (nested requests) has so
far proven to be elusive, we have shown that it is at least possible to do so
for the common case of non-nested requests even when nested requests exist.
To ensure contention-sensitivity for non-nested requests, we eliminated the
write-expansion rule of the RW-RNLP. In our experiments, this had a positive
impact on blocking for all requests. We additionally demonstrated the benefit
of using a fast RW-RNLP variant in scenarios in which non-nested resource
accesses are the common case by conducting a large-scale schedulability study
that incorporated locking protocol overhead.

The fast RW-RNLP has a modular structure that enables different vari-
ants to be applied in different contexts. For example, using the R3LP or the
RW-RNLP* gives constant-time access to all resource requests in systems
comprised of single-writer, multiple-reader resources. Additionally, the RNLP
component in Fig. 6 could be replaced by the C-RNLP to obtain contention-
sensitive pi-blocking for nested requests (at the expense of higher overhead
for such requests). Further variants realize task waiting by suspending tasks
rather than by requiring them to block by spinning; the implementation of one
such variant is in progress.

A Additional Details

This appendix provides additional details on several claims made in the body
of the paper.

A.1 Tight Blocking Bounds for the RW-RNLP*

To show that each blocking bound proven for the RW-RNLP* is tight, we
show that each worst-case bound can actually occur by means of examples.
An example corresponding to each lemma and theorem about the RW-RNLP*
is presented below in the order in which the lemmas and theorems appear in
Sec. 4.4. In each example, requests are numbered in the order in which they
were issued.

Lemma 5 bounds the acquisition delay that a write request can experience
after becoming entitled to Lr

max.

Example 6 As shown in Fig. 16, write request Rw
2 , issued just after Rr

1, is
immediately entitled and can experience Lr

max acquisition delay. This is exactly
the upper bound presented in Lemma 5.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 43

R2

Re
ad

Wr
ite

R3

R1
r

l1

r w

Fig. 16: A simple example that shows worst-case acquisition delay for a read request and
the acquisition delay a write may experience after becoming entitled.

Re
ad

Wr
ite

R2

R1
w

l1 l2

r

Re
ad

Wr
ite

R2 R3
wr

Fig. 17: An issuance order which may cause the maximum blocking after a write request Rw
3

becomes the earliest-timestamped active write request for each of its resources, here just `2.

Theorem 3 bounds the acquisition delay a read request can experience to
Lw
max + Lr

max.

Example 7 In Fig. 16, read request Rr
3 experiences an acquisition delay of up

to Lw
max + Lr

max time units. It was issued after the issuance of requests Rr
1

and Rw
2 , all for the same resource. Rr

3 cannot be satisfied initially, as Rw
2 is

entitled. Therefore it waits for up to Lr
max time units for Rr

1 to complete. Once
Rw

2 is satisfied, Rr
3 waits for up to Lw

max time units for Rw
2 to complete before

acquiring the resource.

According to Lemma 6, a write request Rw
i may experience up to Lw

max +
Lr
max blocking after becoming the earliest-timestamped active write request

for each resource in Di.

Example 8 Similarly to the previous examples, in Fig. 17, write request Rw
3

can experience the worst-case delay stated in Lemma 6. Because requests were
issued in increasing index order,Rw

3 can potentially block for the entire critical
sections of Rw

1 and Rr
2, which can be as high as Lw

max and Lr
max, respectively.

The earliest-timestamped non-nested write request with no nested requests
present can experience blocking of Lr

max. This upper-bound proven in Lemma 7
is shown to be tight in Ex. 6 with Rw

2 as depicted in Fig. 16.
Lemma 8 bounds the time a nested write request must wait before becom-

ing the earliest-timestamped write request for all of its resources to 2Lw
max +

Lr
max. The following example shows this bound is tight.

44 Catherine E. Nemitz et al.

Re
ad

Wr
ite

R3

(a)

(c)

Re
ad

Wr
ite

Re
ad

Wr
ite

Re
ad

Wr
ite

R1
w

l1 l2 l3 l4

l1

R3
w

l2 l3

R7
w

l4

wR2R2
r r

R4
w

R4
wR6

r

R4
w

R8R8
r r

R4
w

R5
w

(d)

l1

R4
w

l2 l3 l4

R10
r R5

w

R4
w

R3

(b)

l1 l2 l3 l4

w

R2R2
r r

R4

w

R6
r

R4
w

R5

w

R5

w

R10
r

R9
w

Fig. 18: A series of read and write requests that illustrate the worst-case acquisition delay
for nested and non-nested write requests.

Example 9 As shown in Fig. 18(a),Rw,n
4 is not the earliest-timestamped active

write request for each of D4 = {`2, `3} when it is issued. In fact, it must wait
until Rw

3 has completed. Given that each of these requests could have been
issued immediately after each other and that Rw

4 will need to wait until Rw
1 ,

Rr
2, and Rw

3 complete, Rw
4 may wait up to 2Lw

max +Lr
max time units to become

the earliest-timestamped active write request.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 45

Lemma 9 has two cases for how soon a non-nested write request Rw,nn
i will

become the earliest-timestamped request for each of its resources. Case (i) does
not need an example: the worst-case delay for Rw,nn

i becoming the earliest-
timestamped active write request in the RW-RNLP* for Di is zero when no
nested requests are active. Case (ii) bounds this time to 4Lw

max + 2Lr
max in the

presence of nested requests.

Example 10 Consider Rw
5 in Fig. 18. This non-nested write request may wait

for up to 4Lw
max+2Lr

max time units to become the earliest-timestamped request
for D5 = {`3}. To become the earliest-timestamped request for D5, Rw

5 must
wait for Rw

4 to complete, which in turn must wait for Rw
3 to complete. As

shown in Fig. 18(a), Rw
3 may wait for up to Lw

max time units to become entitled
(the time for Rw

1 to complete, after which Rr
2 is no longer entitled). After Rw

3

becomes entitled, Rr
6 is issued, as shown in (b). After up to Lr

max time units
after Rw

3 becomes entitled, Rr
2 completes and Rw

3 is satisfied. Rw
3 may execute

for just under Lw
max time units before Rw

7 and Rr
8 are issued, as shown in (c).

Once Rw
3 completes, Rw

4 may still wait for up to Lw
max+Lr

max time units before
becoming satisfied (for Rw

7 and Rr
8 to complete). After Rw

4 is satisfied, it may
execute for Lw

max time units, after which Rw
5 is finally the earliest-timestamped

request for D5 after waiting for up to 4Lw
max + 2Lr

max time units.

Theorem 4 presents four bounds for write requests. Non-nested write re-
quests may experience up to Lr

max time units of acquisition delay if no nested
requests are active (illustrated in Fig. 16 and described in Ex. 6). If nested read
requests may be present but no nested write requests are active, non-nested
write requests may experience up to Lw

max + Lr
max time units of acquisition

delay, as illustrated in Fig. 17 and described in Ex. 8. The third bound pre-
sented in Theorem 4 is that non-nested write requests in the presence of nested
requests may experience up 5Lw

max + 3Lr
max time units of acquisition delay (il-

lustrated below). Finally, nested write requests may experience acquisition
delay of up to 3Lw

max + 2Lr
max (also illustrated below).

Example 11 As illustrated by Fig. 18 and Ex. 10, Rw
5 may wait for 4Lw

max +
2Lr

max time units to become the earliest-timestamped request for its resources.
Suppose just before Rw

4 completes, Rw
9 and Rr

10 are issued, as illustrated in
Fig. 18(d). (This is similar to the situation in Ex. 10 when Rw

7 and Rr
8 were

issued just before the completion of Rw
3 .) Rw

5 may indeed need to wait an
additional Lw

max + Lr
max time units before being satisfied, making its total

acquisition delay 5Lw
max + 3Lr

max time units.

Fig. 18 also illustrates that a nested write request, namely Rw
4 , may experi-

ence acquisition delay of 3Lw
max + 2Lr

max. Indeed, Rw
4 waits for the completion

of three write requests (Rw
1 , Rw

3 , and Rw
7), which may only barely overlap,

and two read phases (those of Rr
2 and Rr

8) that do not overlap with any of the
write requests.

46 Catherine E. Nemitz et al.

R2

Re
ad

Wr
ite

R3

R1
r

l1 l2

r w

Re
ad

Wr
ite

R3 R4
wr

Fig. 19: Illustrates the edge case in which a write request (Rw
4) would need to wait unnec-

essarily behind a nested read request (Rr
3) if the extra code step had not been added in

Listing 5.

A.2 Corner Case for Nested Read Requests

If the extra phase in Lines 3-6 of Listing 5 is not included for the R* Lock
n

routine, a potential edge case exists, as demonstrated in Fig. 19. In this edge
case, write requests suffer unnecessary transitive blocking caused by read re-
quests incorrectly marking themselves entitled.

In this scenario, read request Rr,nn
1 is satisfied and write request Rw,nn

2 is
entitled when read request Rr,n

3 is issued. At this point, Rr,nn
1 has completed

the R* Lock
nn

routine and Rw,nn
2 is waiting at Line 13 for its requested

resource to become available.
Without Lines 3-6, Rr,n

3 immediately modifies `1’s rin variable, effectively
marking itself entitled, and waits at Line 12 for Rw,nn

2 to complete. When
Rw,nn

4 is released, it must wait at Line 13 (Listing 4) for Rr,n
3 to complete,

even though it should have been immediately satisfied following the rules of
the fast RW-RNLP.

Using the implementation given in Listing 5, however, Rr,n
3 must wait at

Line 6 due to Rw,nn
2 having marked itself present in the bottom byte of `1’s

rin variable. This prevents Rr,n
3 from modifying `1’s rin variable before it

becomes entitled. Therefore, when Rw,nn
4 is released, the condition at Line 13

in Listing 4 is true for its single resource `2, so it is immediately satisfied.

A.3 Linearizability

Herlihy and Wing presented linearizability as a correctness condition for con-
current objects that “provides the illusion that each operation applied by
concurrent processes takes effect instantaneously at some point between its
invocation and its response.” Linearizability is a local property; if the opera-
tions on each object can be linearized, the system as a whole is considered to
be linearizable [32]. In the following discussion, we focus on the fast RW-RNLP
with the RW-RNLP* as our example, but the fast RW-RNLP with the R3LP
is linearizable as well.

In the body of the paper, we claim that each routine we presented has a
linearization point; this is the point at which the routine can be considered to

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 47

l2 R2
w,nn

lock

l1, l2 R1
w,n

lock

l2 R2
w,nn

unlock

l1, l2 R1
w,n

unlock

l1 R4
r,nn

lock

l1 R5
w,nn

lock

l1 R4
r,nn

unlock

l1 R5
w,nn

unlock

l1, l2 R3
r,n

lock l1, l2 R3
r,n

unlock

time

Fig. 20: Illustration of a series of lock and unlock calls by requests R1 through R5 with the
linearization point of each operation shown with a circle.

take effect (atomically). For the non-nested routines, these points are clear. A
read request enqueues atomically at Line 3 (Listing 4) and can be viewed as
executing the lock function as a whole atomically at the end of the procedure.
Similarly for R* Unlock

nn
, the routine’s linearization point can be consid-

ered to be at its invocation. The non-nested write routines function similarly,
with linearization points at the end of the lock routine’s execution and the
beginning of the execution of the unlock routine.

The nested routines grant access to groups of resources at a time (List-
ing 5). Considering the routines themselves, each call of the lock routine can
be said to linearize to the last point in its execution. That is, no access to
any of the requested resources occurs before that point in time, and the order
of request accesses to those resources is exactly the order of termination of
the lock routines. (Recall that linearization is defined relative to a specific re-
source; there may be requests for other resources occurring concurrently. These
requests are not granted access clearly before or after the non-conflicting re-
quest. Again, linearization is a local property and there may be multiple legal
sequential histories [32].) Just like non-nested requests, the invocation of each
unlock routine can be considered to be the linearization point of the entire
routine.

An example of the linearization of several objects is shown in Fig. 20. An
operation invocation op on a set of shared resources Di by request Ri is indi-
cated by Di op Ri above a line whose length corresponds to the duration of
time each invocation takes. The linearization point of each operation’s execu-
tion is indicated with a circle at some point during its execution. As discussed
above, this point can always be selected at the end of the execution of a lock

operation and at the beginning of the execution of an unlock operation. In
Fig. 20, time moves forward to the right.

Example 12 In Fig. 20, Rw,n
1 is the first to begin executing the lock logic to

gain mutually exclusive access to D1 = {`1, `2}. Then Rw,nn
2 is issued for

D2 = {`2}. Rw,nn
2 calls W* Lock

nn
for `2. It is granted access to `2 first (at

the end of the lock routine), and then enters its critical section before calling
W* Unlock

nn
.

48 Catherine E. Nemitz et al.

During Rw,nn
2 ’s execution of the lock operation, Rr,n

3 invoked the lock call
for D3 = {`1, `2}.

At some point Rw,nn
2 completes its critical section and invokes the un-

lock routine. The unlock routine can be linearized to the point indicated in
the Fig. 20, which clearly comes before the point at which Rw,n

1 or Rr,n
3 has

linearized its respective lock call. Note that this properly reflects the mutu-
ally exclusive access for Rw,nn

2 for `2; a request is considered to access the
resource between the linearization point for its call to the lock routine and the
linearization point for its call to the unlock routine.

At a later point in time, Rw,n
1 finishes execution of the lock routine, enters

its critical section, and then calls the unlock routine.

While Rw,n
1 is executing the unlock routine for D1 = {`1, `2}, Rr,nn

4 and
Rw,nn

5 are issued for D4 = {`1} and D5 = {`1}, respectively.

At some point in time after Rw,n
1 has updated the writer bits of `1’s rin

variable, Rr,nn
4 becomes satisfied and completes its call to the lock routine.

Similarly, after Rw,n
1 has updated `2’s rin variable, Rr,n

3 becomes satisfied and
completes its call to the lock routine. Note that overlapping critical sections
for `1 is expected behavior for these requests; read requests may overlap.

Once the read requests finish accessing their respective resources, they both
call the unlock routine. At a future point in time, Rw,nn

5 completes its call to
the lock routine and can begin its critical section. Note that the linearization
points correctly reflect mutually exclusive access for this request for `1.

A.4 Constraints used in Schedulability Study

As mentioned in the body of the paper, we tightened the calculated blocking
from the the worst-case acquisition-delay bounds presented in Table 1 by ap-
plying several constraints. We illustrate these with an example using a ticket
lock, and then discuss how these can be applied to more complex protocols.

Example 13 Suppose that we are working with an application with four tasks
(n = 4) and six processors (m = 6) in which all tasks have the same period and
access the same resource. The access of this resource is protected by a ticket
lock. The requests issued by these tasks are Rw

1 , ...,Rw
4 , with critical-section

lengths L1 = 50µs, L2 = 60µs, L3 = 30µs, and L4 = 20µs. When calculating
the worst-case blocking that the task issuing request Rw

1 may experience, we
can use the analytical bound for a ticket lock of (m− 1)Lw

max, where Lw
max =

60µs. Then the worst-case blocking for Rw
1 is bounded by 5 · 60 = 300µs.

However this blocking can never occur in practice.

Period-based constraints. Based on the period of each task in the system, we
can compute how many jobs (and thus requests) of that task may be active
while a given request is active. Then we can tighten our analysis to select only
the highest instances of critical sections that may delay a given request.

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 49

Example 13 (cont’d) As all tasks have the same period, at most two jobs of a
given task can overlap with the job of interest. Thus, the job that issues Rw

2

can only issue it twice while Rw
1 is waiting or executing. We can tighten our

analysis to select the top m − 1 instances of critical sections that may delay
Rw

1 . Our new bound on the worst-case blocking after applying period-based
constraints is 60 + 60 + 30 + 30 + 20 = 200µs. Note that we do not count Rw

1

as potentially increasing its own blocking.

FIFO constraints. The write requests handled by a ticket lock are enqueued
in a FIFO queue. Thus, each request can only delay a given request once.

Example 13 (cont’d) By imposing FIFO constraints, we can bound worst-case
blocking to 60 + 30 + 20 = 110µs.

Example 14 We now modify the task system presented in Ex. 13 by adding
a read request Rr

5 with L5 = 3µs. The task that issues Rr
5 has a shorter

period such that it could be issued six times while a given write request is
active. We switch from using a ticket lock to using a PF-TL. When considering
the blocking Rw

1 may experience, the above analysis still holds for the write
requests. Now we must account for the blocking Rw

1 may experience due to
read requests.

Note that when we consider locking protocols with both read and write
requests, FIFO constraints may apply to the write requests but will not apply
to read requests; all reader/writer protocols we have discussed handle read re-
quests separately from write requests to yield constant-time blocking. Because
of this, a given read request may execute multiple times before a write request
of interest. However, we can constrain the total number of read requests that
must be included by period-based constraints and a new constraint.

Read-write constraints. Each protocol examined in this paper functions by
alternative write and read phases in some manner. Thus, the number of read
phases by which a request is blocked is constrained by the number of write
phases possible, which may be limited by the above constraints.

Example 14 (cont’d) In this scenario, only three write requests could con-
tribute to the blocking Rw

1 experiences. In the worst case, before each of these
write requests (including Rw

1), a read phase could occur. Thus, we are limited
to the four highest read critical-section instances. Because our read request
could occur six times, its critical section can be counted for all four instances.
Thus the blocking Rw

1 experiences due to read requests is at most 4 · 3 = 12µs
and the total blocking is at most 110 + 12 = 122µs.

While we have focused on the blocking a write request may experience in
the above examples, the same constraints may be applied when calculating
the write and read critical sections that may block a read request.

50 Catherine E. Nemitz et al.

Contention constraints. For both fast RW-RNLP variants, the blocking bound
for non-nested write requests depends on contention. Recall that in Theorem 1
the contending requests that contributed to blocking were only other non-
nested write requests for the same resource. Therefore, for each task system
and each request, we use the number of contending non-nested write requests
for the value of contention.

Constraints applied to protocols. Recall that we evaluated four protocols: the
PF-TL, the RW-RNLP, the fast RW-RNLP with the R3LP, and the fast RW-
RNLP with the RW-RNLP*. The PF-TL was applied as group lock for a static
group of all resources.

When the period-based, FIFO, and read-write constraints are applied to
the group PF-TL, the blocking computed for read and write requests may be
tightened. The same analysis holds for the RW-RNLP. While the RW-RNLP
is a fine-grained locking protocol, its worst-case blocking for write requests
is still (m − 1)(Lw

max + Lr
max) due to potential transitive blocking chains be-

tween nested write requests. Computing these transitive blocking chains is an
expensive process, and in a system with randomly requested resources, write
expansion and potential chains imply that it is likely that each write request
could delay any other write request. However, the FIFO manner in which the
RW-RNLP functions allows us to use the FIFO constraint to limit the contri-
bution of each write request to blocking others only once. Without expensive
tighter analysis that considers possible transitive blocking chains, the tight-
ened blocking bounds of the RW-RNLP are identical to those of the group
PF-TL.

FIFO constraints can also be applied to the fast RW-RNLP, but the modu-
lar structure means that FIFO constraints cannot be applied to write requests
of the opposite type. For example, a given nested write request may enter the
RNLP and then be allowed to execute by the global arbitration mechanism
multiple times while a non-nested write request waits behind other non-nested
write requests in its ticket lock. The same scenario can occur for nested write
requests. Thus the FIFO constraints can only be applied to nested write re-
quests which share at least one resource or non-nested write requests for the
same resource. For any write requests to which FIFO constraints cannot be
applied, the period-based constraints can still be applied. Due to the way in
which requests are grouped by the R3LP, when we account for blocking in
the fast RW-RNLP with the R3LP, we add the highest critical-section length
instances of non-nested write requests and nested write requests separately to
get a tighter bound.

Based on the number of requests being generated in each scenario, we
expect that in some scenarios, the manner in which the FIFO constraints can
be applied in the context of the group PF-TL may greatly reduce the number
of critical sections that may be counted toward blocking. (Because it is a
group lock, each write can only effect the request of interest once by the FIFO
constraint.) The FIFO constraint cannot be applied as broadly to the fine-
grained nesting protocols, as some requests may delay the request of interest

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 51

multiple times. This argues for tighter blocking analysis, though getting exact
blocking analysis for nested resource accesses is NP-hard [55].

References

1. SchedCAT: Schedulability test collection and toolkit. http://www.mpi-sws.org/bbb/

projects/schedcat. Accessed: 2018-05-31
2. Afshar, S., Behnam, M., Bril, R., Nolte, T.: Flexible spin-lock model for resource sharing

in multiprocessor real-time systems. In: Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems, pp. 41–51. IEEE (2014)

3. Afshar, S., Behnam, M., Bril, R., Nolte, T.: An optimal spin-lock priority assignment
algorithm for real-time multi-core systems. In: Proceedings of the 23rd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications,
pp. 1–11. IEEE (2017)

4. Afshar, S., Behnam, M., Bril, R., Nolte, T.: Per processor spin-based protocols for
multiprocessor real-time systems. Leibniz Transactions on Embedded Systems 4(2),
1–30 (2018)

5. Afshar, S., Behnam, M., Nolte, T.: Integrating independently developed real-time ap-
plications on a shared multi-core architecture. ACM SIGBED Review 10(3), 49–56
(2013)

6. Afshar, S., Khalilzad, N., Nemati, F., Nolte, T.: Resource sharing among prioritized
real-time applications on multiprocessors. ACM SIGBED Review 12(1), 46–55 (2015)

7. Bacon, D., Konuru, R., Murthy, C., Serrano, M.: Thin locks: Featherweight synchro-
nization for Java. In: ACM SIGPLAN Notices, vol. 33, pp. 258–268. ACM (1998)

8. Baker, T.P.: Stack-based scheduling of realtime processes. Real-Time Systems 3(1),
67–99 (1991)

9. Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: Proceedings
of the 28th IEEE Real-Time Systems Symposium, pp. 119–128. IEEE (2007)

10. Biondi, A., Brandenburg, B., Wieder, A.: A blocking bound for nested FIFO spin locks.
In: Proceedings of the 37th IEEE Real-Time Systems Symposium, pp. 291–302. IEEE
(2016)

11. Block, A., Leontyev, H., Brandenburg, B., Anderson, J.: A flexible real-time locking
protocol for multiprocessors. In: Proceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pp. 71–80. IEEE
(2007)

12. Brandenburg, B.: Scheduling and locking in multiprocessor real-time operating systems.
Ph.D. thesis, University of North Carolina, Chapel Hill, NC (2011)

13. Brandenburg, B.: The FMLP+: An asymptotically optimal real-time locking protocol
for suspension-aware analysis. In: Proceedings of the 26th Euromicro Conference on
Real-Time Systems, pp. 61–71. IEEE (2014)

14. Brandenburg, B., Anderson, J.: Feather-trace: A lightweight event tracing toolkit. In:
Proceedings of the 3rd International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, pp. 19–28 (2007)

15. Brandenburg, B., Anderson, J.: A comparison of the M-PCP, D-PCP, and FMLP on
LITMUSRT. In: Proceedings of the 12th International Conference on Principles of
Distributed Systems, pp. 105–124. Springer (2008)

16. Brandenburg, B., Anderson, J.: An implementation of the PCP, SRP, D-PCP, M-PCP,
and FMLP real-time synchronization protocols in LITMUSRT. In: Proceedings of the
14th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 185–194. IEEE (2008)

17. Brandenburg, B., Anderson, J.: Spin-based reader-writer synchronization for multipro-
cessor real-time systems. Real-Time Systems 46(1), 25–87 (2010)

18. Brandenburg, B., Anderson, J.: Real-time resource-sharing under clustered scheduling:
Mutex, reader-writer, and k-exclusion locks. In: Proceedings of the 9th ACM Interna-
tional Conference on Embedded Software, pp. 69–78. ACM (2011)

52 Catherine E. Nemitz et al.

19. Brandenburg, B., Anderson, J.: The OMLP family of optimal multiprocessor real-time
locking protocols. Design Automation for Embedded Systems 17(2), 277–342 (2013)

20. Burns, A., Wellings, A.: A schedulability compatible multiprocessor resource sharing
protocol - MrsP. In: Proceedings of the 25th Euromicro Conference on Real-Time
Systems, pp. 282–291. IEEE (2013)

21. Chang, Y., Davis, R., Wellings, A.: Reducing queue lock pessimism in multiprocessor
schedulability analysis. In: Proceedings of the 18th International Conference on Real-
Time and Network Systems, pp. 99–108 (2010)

22. Chen, C., Tripathi, S.: Multiprocessor priority ceiling based protocols. Tech. Rep. CS-
TR-3252, University of Maryland (1994)

23. Courtois, P., Heymans, F., Parnas, D.: Concurrent control with readers and writers.
Communications of the ACM 14(10), 667–668 (1971)

24. Dijkstra, E.: Two starvation free solutions to a general exclusion problem. EWD 625,
Plataanstraat 5, 5671 Al Nuenen, The Netherlands

25. Elliott, G., Anderson, J.: An optimal k-exclusion real-time locking protocol motivated
by multi-GPU systems. Real-Time Systems 49(2), 140–170 (2013)

26. Faggioli, D., Lipari, G., Cucinotta, T.: The multiprocessor bandwidth inheritance pro-
tocol. In: Proceedings of the 22nd Euromicro Conference on Real-Time Systems, pp.
90–99. IEEE (2010)

27. Faggioli, D., Lipari, G., Cucinotta, T.: Analysis and implementation of the multipro-
cessor bandwidth inheritance protocol. Real-Time Systems 48(6), 789–825 (2012)

28. Gai, P., Di Natale, M., Lipari, G., Ferrari, A., Gabellini, C., Marceca, P.: A comparison
of MPCP and MSRP when sharing resources in the Janus multiple-processor on a chip
platform. In: Proceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 189–198. IEEE (2003)

29. Gai, P., Lipari, G., Di Natale, M.: Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip. In: Proceedings of the 22nd IEEE
Real-Time Systems Symposium, pp. 73–83. IEEE (2001)

30. Garrido, J., Zhao, S., Burns, A., Wellings, A.: Supporting nested resources in MrsP.
In: Proceedings of the Ada-Europe International Conference on Reliable Software Tech-
nologies, pp. 73–86. Springer (2017)

31. Havender, J.: Avoiding deadlock in multitasking systems. IBM systems journal 7(2),
74–84 (1968)

32. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

33. Huang, H., Pillai, P., Shin, K.: Improving wait-free algorithms for interprocess commu-
nication in embedded real-time systems. In: Proceedings of the General Track of the
Annual Conference on USENIX Annual Technical Conference, pp. 303–316. USENIX
Association (2002)

34. Jarrett, C., Ward, B., Anderson, J.: A contention-sensitive fine-grained locking pro-
tocol for multiprocessor real-time systems. In: Proceedings of the 23rd International
Conference on Real-Time Networks and Systems, pp. 3–12. ACM (2015)

35. Joung, Y.: Asynchronous group mutual exclusion. Distributed Computing 13(4), 189–
206 (2000)

36. Keane, P., Moir, M.: A simple local-spin group mutual exclusion algorithm. In: Pro-
ceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing,
pp. 23–32. ACM (1999)

37. Lakshmanan, K., Niz, D., Rajkumar, R.: Coordinated task scheduling, allocation and
synchronization on multiprocessors. In: Proceedings of the 30th IEEE Real-Time Sys-
tems Symposium, pp. 469–478. IEEE (2009)

38. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems 9(1), 21–65 (1991)

39. Nemati, F., Behnam, M., Nolte, T.: Independently-developed real-time systems on
multi-cores with shared resources. In: Proceedings of the 23rd Euromicro Conference
on Real-Time Systems, pp. 251–261. IEEE (2011)

40. Nemitz, C., Amert, T., Anderson, J.: Real-time multiprocessor locks with nesting: Op-
timizing the common case. In: Proceedings of the 25th International Conference on
Real-Time Networks and Systems, pp. 38–47. ACM (2017)

Real-Time Multiprocessor Locks with Nesting: Optimizing the Common Case 53

41. Nemitz, C., Amert, T., Anderson, J.: Using lock servers to scale real-time locking pro-
tocols: Chasing ever-increasing core counts. In: Proceedings of the 30th Euromicro
Conference on Real-Time Systems, pp. 25:1–25:24. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik (2018)

42. Rajkumar, R.: Real-time synchronization protocols for shared memory multiprocessors.
In: Proceedings of the 10th International Conference on Distributed Computing Sys-
tems, pp. 116–123. IEEE (1990)

43. Rajkumar, R.: Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Boston (1991)

44. Rajkumar, R., Sha, L., Lehoczky, J.: Real-time synchronization protocols for multipro-
cessors. In: Proceedings of the 9th IEEE Real-Time Systems Symposium, pp. 259–269.
IEEE (1988)

45. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on computers 39(9), 1175–1185 (1990)

46. Takada, H., Sakamura, K.: Real-time scalability of nested spin locks. In: Proceedings of
the 2nd IEEE International Workshop on Real-Time Computing Systems and Applica-
tions, pp. 160–167. IEEE (1995)

47. Wang, C., Takada, H., Sakamura, K.: Priority inheritance spin locks for multiprocessor
real-time systems. In: Proceedings of the 2nd IEEE International Symposium on Parallel
Architectures, Algorithms, and Networks, pp. 70–76. IEEE (1996)

48. Ward, B.: Relaxing resource-sharing constraints for improved hardware management
and schedulability. In: Proceedings of the 36th IEEE Real-Time Systems Symposium,
pp. 153–164. IEEE (2015)

49. Ward, B.: Sharing non-processor resources in multiprocessor real-time systems. Ph.D.
thesis, University of North Carolina, Chapel Hill, NC (2016)

50. Ward, B., Anderson, J.: Supporting nested locking in multiprocessor real-time systems.
In: Proceedings of the 23rd Euromicro Conference on Real-Time Systems, pp. 223–232.
IEEE (2012)

51. Ward, B., Anderson, J.: Fine-grained multiprocessor real-time locking with improved
blocking. In: Proceedings of the 21st International Conference on Real-Time Networks
and Systems, pp. 67–76. ACM (2013)

52. Ward, B., Anderson, J.: Multi-resource real-time reader/writer locks for multiprocessors.
In: Proceedings of the 28th IEEE International Parallel and Distributed Processing
Symposium, pp. 177–186. IEEE (2014)

53. Ward, B., Elliott, G., Anderson, J.: Replica-request priority donation: A real-time
progress mechanism for global locking protocols. In: Proceedings of the 18th IEEE
International Conference on Embedded and Real-Time Computing Systems and Appli-
cations, pp. 280–289. IEEE (2012)

54. Wieder, A., Brandenburg, B.: On spin locks in AUTOSAR: Blocking analysis of FIFO,
unordered, and priority-ordered spin locks. In: Proceedings of the 34th IEEE Real-Time
Systems Symposium, pp. 45–56. IEEE (2013)

55. Wieder, A., Brandenburg, B.: On the complexity of worst-case blocking analysis of
nested critical sections. In: Proceedings of the 35th IEEE Real-Time Systems Sympo-
sium, pp. 106–117. IEEE (2014)

56. Yang, M., Wieder, A., Brandenburg, B.: Global real-time semaphore protocols: A survey,
unified analysis, and comparison. In: Proceedings of the 36th IEEE Real-Time Systems
Symposium, pp. 1–12. IEEE (2015)

57. Zhao, S., Garrido, J., Burns, A., Wellings, A.: New schedulability analysis for MrsP. In:
Proceedings of the 23rd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 1–10. IEEE (2017)

