
Statically Optimal Dynamic Soft Real-Time Semi-Partitioned
Scheduling

Clara Hobbs · Zelin Tong · Joshua Bakita ·
James H. Anderson

Abstract Semi-partitioned scheduling is an approach to multiprocessor real-time
scheduling where most tasks are fixed to processors, while a small subset of tasks
is allowed to migrate. This approach offers reduced overhead compared to global
scheduling, and can reduce processor capacity loss compared to partitioned schedul-
ing. Prior work has resulted in a number of semi-partitioned scheduling algorithms,
but their correctness typically hinges on a complex intertwining of offline t ask as-
signment and online execution. This brittleness has resulted in few proposed semi-
partitioned scheduling algorithms that support dynamic task systems, where tasks
may join or leave the system at runtime, and few that are optimal in any sense.
This paper introduces EDF-sc, the first s emi-partitioned s cheduling a lgorithm that
is optimal for scheduling (static) soft real-time (SRT) sporadic task systems and al-
lows tasks to dynamically join and leave. The SRT notion of optimality provided by
EDF-sc requires deadline tardiness to be bounded for any task system that does not
cause over-utilization. In the event that all tasks can be assigned as fixed, EDF-sc be-
haves exactly as partitioned EDF. Heuristics are provided that give EDF-sc the novel
ability to stabilize the workload to approach the partitioned case as tasks join and
leave the system.

Keywords multicore processors, real-time, semi-partitioned scheduling, dynamic,
reweighting

Work supported by NSF grants CNS 1409175, CNS 1563845, CNS 1717589, and CPS 1837337, ARO
grant W911NF-17-1-0294, and funding from General Motors.

Clara Hobbs · Zelin Tong · Joshua Bakita · James H. Anderson
Department of Computer Science, UNC-Chapel Hill, 201 S. Columbia St., Chapel Hill, NC 27599
E-mail: {cghobbs,ztong,jbakita,anderson}@cs.unc.edu

2 Clara Hobbs et al.

1 Introduction

Semi-partitioned scheduling is a compromise between the traditional global and par-
titioned approaches to multiprocessor scheduling, where most tasks are assigned as
fixed, or only able to execute on one processor, while a small subset of tasks are
migrating, or able to execute on more than one processor. This approach gives re-
duced overhead compared to global scheduling because few tasks can migrate, and
can avoid the capacity loss of up to 50% inherent to partitioned scheduling. Semi-
partitioned scheduling was first proposed for soft real-time (SRT) scheduling (An-
derson et al. 2005), where deadline misses are acceptable as long as they are bounded
in length. In this paper, we focus our attention on this type of SRT system.

Unfortunately, most proposed semi-partitioned scheduling algorithms depend on
an inflexible offline task-assignment phase to provide correctness guarantees. This of-
fline assignment is usually quite brittle, and is intertwined with the scheduling rules
used online so that the assignment cannot be changed at runtime, at least not with-
out incurring prohibitive computational costs. This precludes the possibility of sup-
porting dynamic task systems, in which tasks may be added to or removed from the
system at runtime. In this paper, we alleviate this restriction by introducing a simple
SRT semi-partitioned scheduling algorithm that is optimal for (static) sporadic task
systems, and that supports dynamic task systems.

1.1 Prior work

The first semi-partitioned scheduling algorithm to be proposed was EDF-fm (Ander-
son et al. 2005), which guarantees bounded tardiness with no overall system utiliza-
tion cap (beyond the obvious cap of m on an m-processor system), but is not optimal
because it requires that each task has utilization at most 1/2. Since then, numerous
other semi-partitioned scheduling algorithms have been proposed (Anderson et al.
2016; Andersson et al. 2008; Andersson and Tovar 2006; Bhatti et al. 2012; Bletsas
and Andersson 2009, 2011; Brandenburg and Gül 2016; Burns et al. 2012; Casini
et al. 2017; Dorin et al. 2010; Fan and Quan 2012; Guan et al. 2010a,b; Kato and Ya-
masaki 2009, 2008; Shekhar et al. 2012; Kato and Yamasaki 2007; Sousa et al. 2013;
Voronov and Anderson 2018). Of these, two are especially relevant to this work. An-
derson et al. (2016) proposed EDF-os, the first SRT optimal semi-partitioned schedul-
ing algorithm. Unfortunately, EDF-os does not support dynamic task systems because
its tardiness bounds critically hinge on properties established during its offline task-
assignment phase, and these properties are difficult to maintain if changes to the sys-
tem occur. Casini et al. (2017) proposed an approximate C=D splitting algorithm,
which is to our knowledge the only prior semi-partitioned scheduling algorithm that
supports dynamic workloads. Unlike our work, however, Casini et al. focused on hard
real-time systems, for which their algorithm is not optimal.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 3

1.2 Contributions

In this paper, we present the first semi-partitioned scheduling algorithm that is opti-
mal in the SRT case, and that supports dynamic task systems. This algorithm, called
EDF-sc (earliest-deadline-first-based semi-partitioned scheduling with containers),
takes a novel yet simple approach to semi-partitioned scheduling. Rather than per-
forming an inflexible offline assignment of tasks to processors and then scheduling
tasks by a set of rules based on this assignment, EDF-sc schedules migrating tasks
on a global EDF (GEDF) basis alongside a set of containers that are each assigned
to a unique processor. Each container holds the set of fixed tasks on its correspond-
ing processor. When a container is selected to run, it schedules its fixed tasks using
uniprocessor EDF. This simple, hierarchical approach gives bounded tardiness for all
tasks, and to the best of our knowledge is the first algorithm to do so irrespective
of the assignment of tasks to processors. Because of this property, we are able to
provide rules to add and remove tasks from the system at runtime. We introduce a
number of heuristics for adding and removing tasks that stabilize the workload by re-
ducing the number of migrating tasks over time. Finally, we present the results of an
overhead-aware schedulability study comparing EDF-sc to GEDF in static systems,
with overheads measured from a kernel implementation of EDF-sc. We also show the
results of an experimental evaluation of our heuristics using this implementation, and
compare tardiness under EDF-sc to that under GEDF. These experiments show that
EDF-sc generally provides higher schedulability than GEDF, and can give reduced
tardiness compared to GEDF for systems with low-utilization tasks. They also show
that our reweighting heuristics can effectively reduce the number of migrating tasks
as tasks are added to or removed from the system.

We presented an earlier version of this work in a conference paper (Hobbs et al.
2019). This paper builds upon that work by contributing an open-source kernel im-
plementation of EDF-sc, which was used to conduct new experiments that take real-
world scheduling overheads into account. New heuristics are introduced for this im-
plementation, as we found some heuristics from the conference paper to be impracti-
cal outside the theoretical realm.

1.3 Organization

The rest of this paper is organized as follows. We describe our system model in Sec. 2,
and describe the EDF-sc algorithm in Sec. 3. We derive tardiness bounds for EDF-sc
in Sec. 4. These tardiness bounds do not depend on the task assignment being per-
formed in any particular way. Accordingly, numerous heuristics can be used to assign
tasks to processors. We present several such heuristics in Sec. 5. We show the results
of an experimental evaluation of EDF-sc in Sec. 6. Sec. 7 concludes the paper and
outlines future work.

4 Clara Hobbs et al.

2 System Model

We consider the scheduling of a dynamic system of sporadic tasks on m identical
processors π1,π2, . . . ,πm (we assume familiarity with the periodic and sporadic task
models). In this paper, we limit our attention to a form of dynamic task system that
is commonly found in practice in which tasks may be added to or removed from
the system at runtime, but a task’s parameters may not be arbitrarily changed. While
some prior work has considered fine-grained reweighting in which task parameters
may be arbitrarily changed at runtime (Block et al. 2005), our notion of a dynamic
task system is sufficient for many real-world use cases such as mode changes, where
the set of tasks executing on a system must change due to some change in the system’s
environment.1 We model such a dynamic task system by a set T = {τ1,τ2, . . . ,τN}
containing all tasks that can ever be run on the system, and a set τ ⊆ T containing
the tasks that are currently able to be executed. While T is constant, the subset τ may
change over time.2

Each task τi ∈ T is specified by the parameters (Ci,Ti), where Ci denotes τi’s
execution cost (assumed to be the worst case) and Ti denotes its period, or minimum
inter-release time. The utilization or weight3 of task τi is denoted by Ui =Ci/Ti, and
the utilization of a set of tasks S is denoted U(S) = ∑τi∈S Ui. We consider dynamic
task systems for which (∀τi ∈ T :: Ui ≤ 1) and U(τ) ≤ m both hold, as otherwise
tardiness may grow without bound. We call an SRT scheduling algorithm optimal if
it guarantees that tardiness is bounded for any task system satisfying these conditions.

We denote the jth job of task τi by τi, j. We denote the release time and deadline
of τi, j by ri, j and di, j, respectively. We assume all task deadlines are implicit (di, j =
ri, j+Ti). A job τi, j is called pending at time t if t ≥ ri, j and τi, j has not completed by t.
Assuming that a job τi, j completes execution at time t, its tardiness is max(0, t−di, j).
The tardiness of task τi is the maximum tardiness of any of its jobs.

3 EDF-sc

Our goal in designing EDF-sc was to create a semi-partitioned scheduling algorithm
that is optimal in the SRT sense, and that supports dynamic task systems. Because the
set of tasks in the system can change over time, unlike most other semi-partitioned
scheduling algorithms, EDF-sc does not require any particular offline assignment
phase. The initial task assignment can be generated simply by adding one task at a

1 Mode change protocols (Real and Crespo 2004; Nélis et al. 2011) have been extensively studied in
the real-time literature for both uniprocessor and multiprocessor systems. While EDF-sc could certainly be
made to support various types of mode change protocols, they are mentioned here mainly for illustrative
purposes, and adding such support is outside the scope of this work.

2 Because the set τ (and several other sets defined in Secs. 3 and 5) changes over time, it may be more
technically precise to use the notation τ(t), but we omit the time parameter where it is obvious to avoid
clutter.

3 In prior work on dynamic task systems, the term weight is often used to refer to task utilizations.
Changing a task’s utilization is referred to as reweighting the task (Block et al. 2005, 2008).

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 5

T : all tasks

F1 F2 Fm· · ·

τF1 τF2 τFm· · ·

τ F: container tasks
τ: active tasks

τ FP

τ FG = τ F \ τ FP:
globally scheduled
container tasks

τ M = τ \
m⋃

i=1
Fi: migrating tasks

τ G = τ M ∪ τ FG:
globally scheduled
tasks

partitioned container tasks

containers

Fig. 1: The relationships between the sets used in EDF-sc.

time to an initially empty task system. Performing the initial assignment offline may
still be of benefit, however, and we provide some discussion of this issue in Sec. 5.

In fact, unlike every prior semi-partitioned scheduling algorithm known to us,
EDF-sc has no dependence on any particular method of assigning tasks to processors:
bounded tardiness is guaranteed for all tasks under any arbitrary assignment of tasks
to processors. This property holds regardless of even how many tasks are assigned as
migrating rather than fixed. In this sense, EDF-sc can be viewed as a generalization
of both global and partitioned EDF. If all tasks are assigned to processors and none
are migrating, then EDF-sc can behave exactly as partitioned EDF. Similarly, if no
tasks are assigned to processors, then EDF-sc behaves exactly as GEDF, maintaining
bounded tardiness for all tasks (Devi and Anderson 2008).

3.1 Execution

The EDF-sc scheduling algorithm divides the currently active tasks τ into m + 1
pairwise-disjoint subsets F1,F2, . . . ,Fm,τ

M such that
⋃m

i=1 Fi ∪ τ M = τ , and for each
Fi, U(Fi)≤ 1 holds. These sets are depicted in Fig. 1. We call each set Fi a container.
By the scheduling rules of EDF-sc described below, the tasks in each container Fi
can only be scheduled on processor πi. Thus, we say that the tasks in Fi are fixed on
processor πi, while the tasks in τ M are migrating.

We manage the execution budget of each container Fi using a synchronous and
periodic container task τFi with a period TFi and utilization UFi . From these two pa-
rameters, the container task’s execution budget is calculated as CFi =UFi ·TFi . Unlike
the tasks in T , the utilization of each container task may be varied over time in order
to adjust the container’s budget. We refer to each time instant dFi, j = rFi, j+1 as a job
boundary of τFi . The set of all container tasks is denoted τ F. The period of each con-
tainer task may be chosen freely and independently by the system designer, so long
as (∀τFi ∈ τ F :: TFi > 0) holds. The utilizations for all container tasks must be chosen
so that the following two conditions are met.

(∀τFi ∈ τ
F :: U(Fi)≤UFi ≤ 1) (1)

U(τ M)+U(τ F)≤ m (2)

6 Clara Hobbs et al.

Scheduled at
top level

Scheduled at
bottom level

Job release

Job deadline

Job completion

Execution (π1)

Execution (π2)

Execution (π3)

Execution (π4)

Fig. 2: Legend for Figs. 3, 4, 5, 6, and 7.

If UFi = U(Fi), then the container task τFi is said to be minimally provisioned;
otherwise, it is over-provisioned. If UFi = 1, then τFi is said to be fully provisioned.
Note that a container task may be over-provisioned without being fully provisioned,
and vice versa.

Let τ FP = {τFi |UFi = 1} (partitioned container tasks) be the set of fully provi-
sioned container tasks. Note that by construction, U(τ FP) = |τ FP|. Also, let τ FG =
{τFi |UFi < 1} (globally scheduled container tasks) be the set of container tasks that
are not fully provisioned, and let πG = {πi |UFi < 1} be the processors on which their
contained tasks are fixed. The scheduling rules used by EDF-sc are as follows.

S1 All jobs of tasks in τ G = τ M ∪ τ FG are scheduled on a GEDF basis on the proces-
sors in πG. If a job of a container task τFi is selected to run, then it is scheduled
on πi.

S2 Jobs of each container task τFi ∈ τ FP are scheduled on πi without competition
from migrating tasks.

S3 When a container task τFi is scheduled, it executes the pending job (if any) of a
fixed task τ j ∈ Fi with the earliest deadline. If there is no pending job of any task
in Fi, then the container may execute a pending job of a migrating task instead. If
no such job is available, then πi is left idle.

In Rules S1 and S3, all deadline ties are broken in an arbitrary and consistent
manner. If two pending jobs τi, j and τk,` have the same deadline and τi, j is prioritized
over τk,` at time t, then τi, j is prioritized over τk,` at all other times t ′ 6= t when both
are pending.

Because of its use of containers, EDF-sc is a hierarchical scheduler with two
levels. Rules S1 and S2 prescribe the top level of the scheduling hierarchy, together
handling all migrating and container tasks. Rule S1 schedules all migrating tasks and
the containers with which they share processors using GEDF on |πG| processors.
Because Fi always runs on πi, it may force a job of a migrating task running on πi
to migrate to another processor. Rule S2 fully partitions the processors that are fully
utilized by their containers. This prevents these containers, and the fixed tasks they
contain, from “gaining” tardiness due to competition from migrating tasks. Rule S3
schedules the bottom level of the hierarchy, performing the intra-container scheduling
of all fixed tasks. If a container is scheduled but none of its fixed tasks have pending
jobs, then its unused budget may be used to execute migrating tasks. This may occur
if the container is over-provisioned, or if some of its fixed tasks release jobs with an
inter-release time greater than their periods or with an execution cost less than the
worst-case value for their tasks.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 7

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

τ6

τF1

τF2

τF3

τF4

Fig. 3: The schedule described in Example 1.

Example 1 Fig. 3 shows a four-processor EDF-sc schedule of the tasks τ1 = (1,2),
τ2 = (2,4), τ3 = (4,5), τ4 = (2,3), τ5 = (4,6), and τ6 = (2,3), partitioned so that
F1 = {τ1,τ2}, F2 = {τ3}, F3 = {τ4}, F4 = {τ5}, and τ M = {τ6}. All container tasks
τFi have period TFi = 6. UF1 =UF2 = 1, and UF3 =UF4 = 2/3. Deadline ties are broken
by first prioritizing container tasks over migrating tasks, and then by prioritizing the
highest row.

Container tasks τF1 and τF2 are fully provisioned, so they are scheduled contin-
uously by Rule S2. The other container tasks compete on a GEDF basis with τ6 by
Rule S1. U(F2) = 4/5 <UF2 , so π2 is idle over several intervals. During one of these,
[9,10), jobs of both τF3 and τF4 are scheduled by GEDF, but because there are no
pending jobs of any task in F2, τ6 is scheduled on π2.

Because the migrating and container tasks in EDF-sc are scheduled at the top
level by GEDF, tardiness bounds easily follow from prior work (Devi and Anderson
2008). Bounded tardiness for fixed tasks likewise follows from uniprocessor schedul-
ing analysis with limited processor availability (Mok et al. 2001). Thus, for static
sporadic task systems, the SRT optimality of EDF-sc (bounded tardiness if no over-
utilization) is not hard to show. However, the simplicity of EDF-sc enables the design
of rules to support dynamic workload changes, which complicate the derivation of
tardiness bounds somewhat. We prove expressions for such bounds in Sec. 4, after
first describing in the following section the rules we propose for managing dynamic
workload changes.

8 Clara Hobbs et al.

3.2 Reweighting Rules

EDF-sc supports dynamic task systems by allowing tasks to be added to or removed
from the system. This is done by applying the following reweighting rules, which
support the addition and removal of tasks in τ , as well as changing container weights.4

The rules described in this section are low-level operations, and in some cases more
than one rule may need to be applied to add a given task to the system. In Sec. 5, we
give heuristics that handle these cases seamlessly and attempt to assign all tasks as
fixed where possible.

AM (add migrating task) A task τa /∈ τ may be added to τ M if and only if the follow-
ing condition holds.

Ua ≤min
(
1,
∣∣πG
∣∣−U(τ G)

)
(3)

AF (add fixed task) A task τa /∈ τ may be added to the container Fi if and only if the
following condition holds.

Ua ≤UFi −U(Fi) (4)

R (remove task) A task τr ∈ τ whose most recently released job τr,i completes at
time tc may be removed from τ at or after time max(dr,i, tc), provided no new
job τr,i+1 is released before this time.

W (reweight container) The weight of a container task τFi may be changed from UFi

to U ′Fi
at its job boundaries if and only if the following two conditions hold.

U(Fi)≤U ′Fi
≤ 1 (5)

U ′Fi
−UFi +U(τ M ∪ τ

F)≤ m (6)

The weight change only affects newly released jobs of τFi .

Intuitively, Rule AM allows a migrating task to be added to the task system if it
does not over-utilize a single processor, and if its addition will not cause the proces-
sors of πG to be over-utilized by containers and migrating tasks. Similarly, Rule AF
allows a fixed task to be added to a container if adding it will not cause the container
to be over-utilized. Rule R allows tasks to be removed at job deadlines or completion
times, whichever is later. Rule W allows container tasks to be reweighted at container
job boundaries as long as the new utilization is at least the utilization of the contained
tasks, and the system is not over-utilized at the top level.

4 Tardiness Bounds

In this section, we derive tardiness bounds for all tasks in a dynamic sporadic task
system scheduled by EDF-sc. We begin in Sec. 4.1 by proving a tardiness bound for
migrating and container tasks based on work by Devi (2006). We then use this bound
to derive a tardiness bound for fixed tasks under EDF-sc in Sec. 4.2.

4 Alternative reweighting rules could free system utilization more aggressively than the ones presented
here. In particular, a removed migrating task’s utilization could be freed at the deadline of its last job. This
would allow dynamic workload changes to be made more quickly, but would also create a blocking term
in the tardiness analysis for fixed tasks to account for tasks that are being changed from migrating to fixed.
To aid in understanding, we opt for more conservative reweighting rules in this work.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 9

4.1 Tardiness Bound for Migrating and Container Tasks

By Rule S1, the migrating and container tasks in EDF-sc compete on a GEDF basis
on |πG| processors. Rule S3 may cause migrating tasks to be scheduled by the con-
tainer tasks, but this can only move execution of migrating tasks earlier, so Rule S3
can never increase the tardiness of migrating or container tasks. The set of globally
scheduled tasks can be modified by Rules AM, R, and W.

Devi (2006) presented an extended sporadic task model that can be used to model
dynamic task models such as the one considered in this work. In Devi’s model, the
total utilization of all tasks is allowed to exceed m, but at any time instant, the total
utilization of all active tasks is at most m. A task is initially inactive until the release of
its first job, at which point it is active until the deadline of its last job, when it becomes
terminated. The extended sporadic task model divides the tasks in the system into task
classes τc

1 ,τ
c
2 , . . . ,τ

c
n so that the active intervals for each pair of tasks in each class are

disjoint, and with the precedence constraint that the first job of a task cannot execute
until all jobs of tasks in the same class with earlier release times have completed.
Intuitively, each task class in this model is meant to model a single dynamic task, and
each task in a class represents a set of parameters it could take on. Devi showed that
using GEDF scheduling in this extended sporadic task model, tardiness for each task
in the task class τc

i is at most5

∑τc
z∈C cmax(m−1)Ccmax

z

m−∑τc
z∈U cmax(m−2)Ucmax

z
+Ccmax

i , (7)

where Ccmax
z and Ucmax

z are the maximum execution cost and utilization of any task
in task class τc

z , and C cmax(`) and U cmax(`) are the subsets of ` task classes with the
greatest values of Ccmax and Ucmax, respectively.

Example 2 An example of an extended sporadic task system scheduled on two pro-
cessors by GEDF is depicted in Fig. 4. This task system consists of three task classes,
τc

1 = {τ1 : (2,4)}, τc
2 = {τ2 : (2,3)}, and τc

3 = {τ3 : (5,5),τ4 : (4,5)}. Before time 10,
only tasks τ1 and τ3 are active, giving a system utilization of 3/2. At time 10, τ3 ter-
minates and τ2 and τ4 activate, increasing the system utilization to 59/30. At time 16,
task τ2 terminates, decreasing the system utilization to 13/10.

Lemma 1 Migrating and container tasks in EDF-sc can be modeled by Devi’s ex-
tended sporadic task model.

Proof Throughout this proof, we illustrate how Devi’s model can be used to model
dynamic behaviors by comparing the schedules in Figs. 4 and 5. As there are no inter-
task precedence constraints in EDF-sc, each task τi ∈ T can be modeled in Devi’s
model as a task class τc

i , where each task in τc
i has the same parameters as τi. Rule R in

EDF-sc allows a migrating task τi to be removed at the deadline or completion time of

5 New tardiness analysis techniques for GEDF (Erickson et al. 2010; Leoncini et al. 2018) have been
proposed since Devi’s work, and could likely be applied to obtain reduced bounds for the extended sporadic
task model. However, deriving new bounds for existing scheduling algorithms is beyond the scope of this
work.

10 Clara Hobbs et al.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

Inactive Terminated

Terminated

Inactive

τc
1

τc
2

τc
3

Fig. 4: The extended sporadic task system in Example 2.

its most recently released job, or any time thereafter. This is similar to terminating the
active task in τc

i in Devi’s model, but more conservative because the task’s utilization
will be reserved after its last released job’s deadline if it is tardy. Because Rule AM
ensures that the set of tasks scheduled by GEDF never overutilizes the processors on
which they are scheduled, adding a task τi with Rule AM in EDF-sc is equivalent to
activating a task in τc

i in Devi’s model. These equivalences are shown by task τ1 in
Fig. 5, which is added by Rule AM at time 10 and removed by Rule R at time 16.
This is equivalent to τc

2 under Devi’s model in Fig. 4.
Each container task τFi ∈ τ F is likewise equivalent to a task class τc

Fi
in Devi’s

model. Initially, each class τc
Fi

has an active task with parameters (CFi ,TFi). Each
time τFi is reweighted with Rule W, the active task in τc

Fi
terminates, and a task with

the new parameters of τFi activates. Condition (6) ensures that the new set of active
tasks will have total utilization at most m. For example, container task τF2 in Fig. 5
initially has parameters (5,5), and is reweighted with Rule W at time 10, giving it
new parameters (4,5). This task is modeled in Fig. 4 by task class τc

3 : task τ3 = (5,5)
is active until time 10, when it terminates and task τ4 = (4,5) activates. ut

Using Lemma 1 and the tardiness bound (7) for GEDF under the extended spo-
radic task model, we now derive a tardiness bound for migrating and container tasks
in EDF-sc.

Theorem 1 Tardiness for any migrating or container task τi under EDF-sc is at most

∑τz∈C max(τ M∪τ F ,m−1)Cmax
z

m−∑τz∈U max(τ M∪τ F ,m−2)Umax
z

+Cmax
i , (8)

where Cmax
z and Umax

z are the maximum execution cost and utilization of task τz, and
C max(τ, `) and U max(τ, `) are the subsets of ` tasks in τ with the greatest values of
Cmax and Umax, respectively.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 11

0 2 4 6 8 10 12 14 16 18 20

τF1

τ1

τF2

Rule AM Rule R

Rule W

Fig. 5: An EDF-sc schedule analogous to the one in Fig. 4.

Proof Rule S1 schedules migrating and container tasks using GEDF, so as long as
this is the only rule that schedules migrating and container tasks, the bound (8) fol-
lows from Lemma 1.

Rule S3 can schedule migrating tasks using the budget of container tasks. This
does not directly affect the tardiness of container tasks, as they consume budget re-
gardless. The tardiness of migrating tasks can only be decreased by Rule S3, because
their execution can only be moved earlier by this rule. Thus, the bound (8) holds if
migrating and container tasks are scheduled by Rules S1 and S3.

It remains to be shown that the bound (8) holds when container tasks are sched-
uled by Rule S2 as well. This rule schedules fully provisioned container tasks without
competition from migrating tasks, so their tardiness can never increase as a result of
being scheduled by Rule S2. This causes the tasks in τ G to be scheduled using GEDF
on |πG| < m processors. Thus, by Lemma 1, tardiness for a task τi ∈ τ G is upper-
bounded by

∑τz∈C max(τ G ,|πG |−1)Cmax
z

|πG|−∑τz∈U max(τ G ,|πG |−2)Umax
z

+Cmax
i . (9)

The numerator of (9) is at most the numerator of (8) because it is the sum of fewer
maximum execution costs from a subset of the set considered in (8). The denomina-
tors of the two expressions are equal: the tasks in τ M ∪ τ F excluded from the summa-
tion in the denominator of (9) are the fully provisioned containers τ FP, whose total
maximum utilization is m− |τ G|. Therefore, tardiness for tasks in τ G is still upper-
bounded by (8), so the theorem holds. ut

The tardiness bound in Theorem 1 may be impractical to compute directly, as it
requires knowledge of the online behavior of the system, which may not be known in
advance. However, by assuming the worst case where each container task may have
utilization 1 and the tasks in T with the highest execution cost are at some point
in τ M, we obtain the following bound, which can be computed offline.

12 Clara Hobbs et al.

Corollary 1 Tardiness for any migrating or container task τi under EDF-sc is at
most

∑τz∈C max(T ∪τ F ,m−1)Cmax
z

2
+Cmax

i , (10)

where

Cmax
z =

{
Cz if τz ∈ T
Tz if τz ∈ τ F,

and C max(τ, `) is the subset of ` tasks in τ with the greatest value of Cmax.

4.2 Tardiness Bound for Fixed Tasks

Fixed tasks are scheduled using uniprocessor EDF by Rule S3, but they may still
miss deadlines if their container is not fully provisioned. This is because the proces-
sor is unavailable to the fixed tasks when their container task is not scheduled, which
could cause processor demand to exceed supply over some time intervals. Real-time
scheduling with limited processor availability has been studied previously (Leon-
tyev et al. 2011; Mok et al. 2001), but prior work focuses on static systems. In this
section, we derive a tardiness bound for fixed tasks under EDF-sc by extending lim-
ited availability analysis techniques to handle dynamic behaviors. To aid in this, for
the remainder of this section, we will explicitly show the time parameter t for con-
tainer Fi(t) and the utilization of its container task, UFi(t).

Theorem 2 Under EDF-sc, tardiness for fixed tasks on processor πi is at most

σi = 2TFi −2Cmin
Fi

+
∑τz∈C max(τ M∪τ F ,m−1)Cmax

z

m−∑τz∈U max(τ M∪τ F ,m−2)Umax
z

+Cmax
Fi

, (11)

where Cmax
z , Umax

z , C max(τ, `), and U max(τ, `) are as in Theorem 1, and Cmin
Fi

is the
lowest budget assigned to τFi for any t where Fi(t) 6= /0.

Proof Assume for purposes of contradiction that in a system scheduled by EDF-sc,
some job τa,b of a fixed task τa on processor πi completes with tardiness greater than
σi. In particular, let tc > da,b +σi denote the completion time of τa,b. Define a job of
a fixed task on processor πi as a competing job if its deadline is at or before da,b. Let
t0 denote the most recent instant in time at or before ra,b immediately before which
no competing jobs were pending, and starting at which πi is either busy executing
competing jobs or unavailable to fixed tasks until tc.

We next derive bounds for processor demand and supply from time t0 to an arbi-
trary time u> t0, where for every t ∈ [t0,u), U(Fi(t))> 0 holds. Such an interval [t0,u)
is called non-empty. Because the interval of interest [t0, tc) is non-empty, we can then
use these bounds to derive a completion time for τa,b. As discussed earlier, due to
the dynamic behavior of EDF-sc, we cannot simply use linear bounds for these func-
tions. Instead, we derive piecewise linear functions expressed with definite integrals.
To allow for tighter accounting, we define the set F̂i(t) by

F̂i(t) =
{

τh |
(
∃ j : t0 ≤ rh, j ≤ t ::

(
∀s : rh, j ≤ s≤ t :: τh ∈ Fi(s)

))}
,

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 13

0 2 4 6 8 10 12 14 16 18 20

τFi

tardiness bound

Fig. 6: An example of the maximum duration of processor unavailability in the proof
of Theorem 2.

which intuitively considers each task τh as having been added by Rule AF at the
moment of its first job release after it was actually added, or after t0 if τh ∈ Fi(t0).
Using this definition, the processor demand created by jobs of fixed tasks on πi over
an interval [t0,u) is at most

αi(u) =
∫ u

t0
U
(
F̂i(t)

)
dt.

Therefore, the processor demand created by competing jobs released at or after t0 is
at most αi(da,b).

Now we derive a lower bound to processor availability to fixed tasks on πi. Prior
work involving limited processor availability for static systems typically provides a
lower bound for an interval of length ∆ of the form

β (∆) = max
(
0,Û · (∆ −σ)

)
,

where Û is the long-term average processor availability, and σ is the maximum du-
ration of time where the processor can be continuously unavailable (Leontyev et al.
2011). This is insufficient for our needs because the average processor availability
can change over time, so we develop a similar lower bound to availability over a
non-empty interval [t0,u) that takes dynamic behavior into account.

To determine the maximum duration of processor unavailability, consider the ex-
ample in Fig. 6. In the figure, the container task τFi is assumed to have a period of
5 and a budget of 3, while σi is 8. The first job τFi,1 runs as soon as it is released,
completing at time 3; the second job τFi,2 completes just at its tardiness bound, be-
ginning its execution at time 15. As it is not possible for these jobs to be spaced any
farther apart, the maximum processor unavailability in this case is 12. In general, we
can see that the maximum processor unavailability occurs when a job τFi, j completes
execution as early as possible, and the next job τFi, j+1 completes as late as possible.
Thus by adding two container periods, less two minimum container task budgets, to
the tardiness bound from Theorem 1, we arrive at σi from the theorem statement as
an upper bound to the maximum duration of processor unavailability regardless the
container task’s utilization.

We now show that the processor availability over any non-empty interval [t0,u) is
at least

βi(u) = max
(

0,
∫ u−σi

t0
U
(
F̂i(t)

)
dt
)
.

14 Clara Hobbs et al.

The reweighting rules in Sec. 3.2 guarantee that at any time t, U(Fi(t)) ≤ UFi(t).
By construction, F̂i(t) ⊆ Fi(t) holds for any time t, so it is safe to use the utiliza-
tion of the contained tasks U(F̂i(t)) in a lower bound for processor availability. The
function βi(u) assumes that the processor is initially unavailable for σi time units.
Because this occurs when a job τFi, j completes as late as possible, the entire budget
of τFi, j must then be consumed non-preemptively. Furthermore, to ensure the tardi-
ness bound is met, each subsequent job τFi, j+k where k > 0 must now consume its
budget over an interval of length at most TFi , maintaining an average availability of
UFi(rFi, j+k) from that moment onward.

Now that we have derived an upper bound to processor demand and a lower bound
to processor supply, we observe that the maximum demand created by competing
jobs released at or after t0, αi(da,b), equals the minimum processor supply from t0
to da,b +σi, βi(da,b +σi). Therefore, all work created by competing jobs must have
completed by time da,b +σi. This contradicts the assumption that τa,b completes at
time tc > da,b +σi, so the theorem holds. ut

As in Sec. 4.1, the bound in Theorem 2 requires knowledge of the system’s online
behavior. We can likewise obtain the following tardiness bound that can be computed
offline by applying Corollary 1 to upper-bound the tardiness of τFi , and by computing
the minimum budget of τFi from the lowest utilization of any task in T .

Corollary 2 Under EDF-sc, tardiness for fixed tasks on processor πi is at most

σi = 3TFi −2UminTFi +
∑τz∈C max(T ∪τ F ,m−1)Cmax

z

2
, (12)

where Umin is the lowest utilization of any task in T .

5 Reweighting Heuristics

The tardiness bounds shown in Sec. 4 apply for any assignment of tasks to processors,
as long as no processor or the whole system is ever over-utilized. Therefore, the rules
in Sec. 3.2 can be composed to create reweighting heuristics that are stabilizing; that
is, as tasks are added to and removed from the system, the heuristics attempt to fully
partition the workload.

5.1 Initial Assignment

If the initial set of tasks τ is known in advance, a static assignment of tasks to pro-
cessors to be used at system startup may be produced offline. To create this initial
assignment, we suggest that the system designer try several different bin-packing
heuristics and compare their results. Clearly any produced assignment that makes all
tasks fixed is preferable to one that does not, as such an assignment enables EDF-sc
to operate as partitioned EDF, guaranteeing zero tardiness for all tasks until the first
reweighting event. If multiple assignments are able to fix all tasks to processors, then
it is likely that an assignment whose least-utilized processor has the lowest utilization

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 15

among all assignments is preferable, as this would allow tasks with higher utilization
to be added to the system later without having to migrate. If no assignment is able to
fix all tasks to processors, then one that allows the most containers to be fully pro-
visioned would tend to give lower tardiness bounds not only for the fixed tasks in
these containers, but for all other tasks in the system as well. This is because GEDF
tardiness bounds tend to be lower (and tighter) with smaller processor counts (Devi
2006).

5.2 Runtime Workload Changes

When making workload changes at runtime, a system designer may only be con-
cerned with the high-level operations of adding and removing tasks. By contrast, the
EDF-sc reweighting rules in Sec. 3.2 expose the details of whether a new task is to be
fixed or migrating, which container a fixed task is added to, and updating container
task utilizations. In this section, we propose a set of reweighting heuristics to support
high-level “add task” and “remove task” operations. These heuristics try to assign
as many tasks as possible as fixed, and to keep as many container tasks fully pro-
visioned as possible. To ease the process of reweighting containers due to dynamic
workload changes, the heuristics proposed here require that all container tasks have
equal periods.

Additionally, when fixed tasks are removed, the heuristics attempt to move mi-
grating tasks that are already in τ into containers. We refer to this process as stabiliz-
ing the workload. The problem of stabilizing a dynamic semi-partitioned workload is
related to the problem of fully dynamic bin-packing (Ivkovic and Lloyd 1998). How-
ever, approximation algorithms for fully dynamic bin packing are designed to operate
on an infinite number of bins, and cannot be directly applied to our problem where
the number of bins is finite and the goal is to pack as many items as possible rather
than to pack all items into the fewest possible bins. Pseudocode for our reweighting
heuristics is listed in Algorithm 1, which we explain next.

5.2.1 Task addition

Requests to add tasks to τ may be issued at any time using the procedure ADD-
TASK(τa). Task additions are not actually carried out by our heuristic until container
job boundaries because containers may first need to be reweighted; this is discussed
in more detail below. The ADDTASK procedure simply adds the task τa to a FIFO
queue that holds all tasks that have been requested to be added since the last con-
tainer period boundary.

At each container job boundary, the queue is emptied in the while loop at lines 11–
14, running a CONTAINERSELECTIONHEURISTIC for each task in FIFO order to
attempt to add tasks into temporary containers F ′1, . . . ,F

′
m,τ

M′. This heuristic uses a
bin-packing heuristic to find a container F ′i so that U(F ′i)+Ua ≤ 1 holds. In our ex-
periments in Sec. 6, we evaluate the choices of BESTFIT, WORSTFIT, and FIRSTFIT
as the bin-packing heuristic. If no suitable container can be found, CONTAINERSEL-
ECTIONHEURISTIC checks if τa can be added as a migrating task by checking if

16 Clara Hobbs et al.

Algorithm 1 Heuristics for adding and removing tasks, and for stabilizing the work-
load.

PendingAdds: FIFO queue, initially empty

1: procedure ADDTASK(τa)
2: PendingAdds.ENQUEUE(τa)

3: procedure REMOVETASK(τr)
4: if τr’s most recently released job τr, j is pending then
5: Forbid τr from releasing new jobs
6: Schedule R(τr) to occur at the later of dr, j and τr, j’s completion time
7: else
8: R(τr) . Remove the task now

9: procedure CONTAINERBOUNDARY()
. Function called at each container job boundary t

10: F ′1, . . . ,F
′
m,τ

M′← F1, . . . ,Fm,τ
M

. Determine which tasks can be added
11: while PendingAdds is not empty do
12: τa← PendingAdds.DEQUEUE()
13: Select container F ′i , τ M′, or ⊥ for τa via CONTAINERSELECTIONHEURISTIC
14: Add τa to selected container, or reject if ⊥

. Try to move migrating tasks into containers
15: for each τk ∈ τ M do
16: τ ′k ← τk
17: if τk’s most recently released job τk, j is not pending and dk, j < t +TF1

and τ ′k will fit in some container F ′i then
18: Select container F ′i for τ ′k via CONTAINERSELECTIONHEURISTIC
19: Add τ ′k to selected container
20: Schedule an atomic operation 〈R(τ ′k); R(τk); AF(τk,Fi)〉 to occur at

max(dk, j, t), i.e., use Rules R and AF to enact the move of τk into Fi

21: Compute new container task weights via CONTAINERREWEIGHTINGHEURISTIC
22: Reweight container tasks using Rule W

. Enact all non-rejected task additions using Rules AF and AM
23: for i← 1 . . .m do
24: for each τk ∈ F ′i \Fi do
25: AF(τk,Fi)
26: for each τk ∈ τ M′ \ τ M do
27: AM(τk)

∑
m
i=1 U(F ′i) +U(τ M′) +Ua ≤ m holds. If not, the heuristic returns ⊥, and τa is re-

jected.
After the new tasks are added to the temporary containers, the container tasks are

reweighted with Rule W, which we discuss below. Following this, all new tasks are
added at lines 23–27 using the EDF-sc reweighting rules for adding tasks.

5.2.2 Task removal

Requests to remove tasks from τ may be issued at any time using the procedure
REMOVETASK(τr). This procedure simply removes task τr with Rule R as early as
possible, preventing it from releasing new jobs if necessary.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 17

0 2 4 6 8 10 12 14 16 18 20

τk

τFi

τk ∈ τ M τk ∈ Fi

τ ′k ∈ Fi

Fig. 7: Task τk is eligible to be moved at time 5, since τk,1 completed at time 4, and
dk,1 = 9 < dFi,2 = 10. Its copy τ ′k is added to Fi at time 5, and at time 9 the move is
completed. Such “copy” tasks merely reserve container capacity and are not executed.

5.2.3 Stabilization

At each container job boundary, after accepting any new tasks to be added to the
system, the heuristics attempt to stabilize the workload by moving migrating tasks
into containers, making them fixed tasks (lines 15–20). The procedure by which we
move tasks is illustrated in Fig. 7. Using the rules from Sec. 3.2, this must be done by
removing a migrating task τk using Rule R and immediately adding it as a fixed task
using Rule AF. This could potentially prevent job releases of τk if its last released
job τk, j completes at a future time after its deadline, so to avoid this, we require that
τk, j is not pending when deciding to move τk. (While we deem such delayed job
releases as unacceptable, applications might exist in which they can be tolerated, in
which case alternative heuristics could be used.)

If we decide to move task τk into a container, then we can only do so at the later
of its deadline or the current time. Therefore, we must ensure that there is space in the
container to add τk at its deadline. This is accomplished by creating a copy of τk at
line 16, denoted τ ′k, which never releases any jobs and merely serves as a placeholder
for τk. Because this space must be reserved over the time interval between decid-
ing to move τk and enacting the move, we do not attempt to move any tasks whose
last-released job has a deadline more than one container period in the future, as this
would keep the container’s utilization reserved for longer than necessary. (Alternative
heuristics could resolve this issue differently.)

For each task τk that is eligible to be moved by the conditions at line 17 outlined
above, we choose a container for it using the CONTAINERSELECTIONHEURISTIC at
line 18, then add its copy τ ′k to that container at line 19. We then schedule an atomic
operation at line 20 to remove τ ′k from the container, remove τk as a migrating task,
and add τk to the container at the deadline of its most recently released job.

Note that if the task system has not changed since the prior invocation of the
CONTAINERBOUNDARY procedure, there is no need to run lines 15–20, since the
stabilization routine will again find no migrating tasks to move into containers. Our
kernel implementation of EDF-sc, as discussed in Sec. 6, makes use of this optimiza-
tion.

18 Clara Hobbs et al.

UFi
U(Fi)

U(τ M)

(a) Legend

π1 π2 π3 π4

U

0

1

Unused

(b) MINORFULL

π1 π2 π3 π4

U

0

1

Equal

(c) EQUALOVER

π1 π2 π3 π4

U

0

1

Equal

(d) HALFEQUALOVER

Fig. 8: The three container task provisioning techniques discussed. (b) Container
tasks τF3 and τF4 are minimally provisioned (UFi = U(Fi)), and τF1 and τF2 are
fully provisioned (UFi = 1). (c) Container task utilizations UF3 and UF4 are increased
equally to consume the system capacity left unused by MINORFULL. (d) Container
task utilizations UF3 and UF4 are increased by half as much as with EQUALOVER to
leave some extra capacity for migrating tasks.

5.2.4 Container task reweighting

Once all operations that add tasks to containers have been planned, we call a CON-
TAINERREWEIGHTINGHEURISTIC at line 21 to determine new container weights
based on the sets F ′1, . . . ,F

′
m,τ

M′. This procedure determines new weights for the
container tasks so that for each τFi , U(F ′i) ≤ UFi ≤ 1 holds, and so that Σ m

i=1UFi +
U(τ M′) ≤ m holds. Once the new weights have been determined, the container tasks
are all reweighted using Rule W at line 22. As with stabilization, this can be skipped if
there have been no changes to the task system since the last invocation of CONTAINER-
BOUNDARY, as the container task weights need not be changed. There are many
different ways to determine new container task weights; in prior work (Hobbs et al.
2019) we proposed the following two techniques.

MINORFULL (Fig. 8b) Begin by minimally provisioning all container tasks. Then
fully provision as many as possible while maintaining U(τ G) ≤ |πG|, e.g. by
choosing container tasks in order of decreasing U(Fi). This may leave some pro-
cessor capacity in πG unavailable to fixed tasks.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 19

EQUALOVER (Fig. 8c) Fully provision container tasks as with MINORFULL, but
over-provision each of the other |πG| container tasks by (m−U(τ))/|πG|.

Unfortunately, neither of these heuristics can be used directly in a real imple-
mentation of EDF-sc. Scheduler overheads would cause MINORFULL to effectively
under-provision container tasks, resuling in unbounded tardiness for fixed tasks. EQUAL-
OVER would likewise reserve insufficient system utilization for migrating tasks when
overheads are considered, violating the assumptions needed for the tardiness bound
proven in Theorem 1. To address this issue, we propose one further heuristic.

HALFEQUALOVER (Fig. 8d) Fully provision container tasks as with MINORFULL,
but over-provision each of the other |πG| container tasks by (m−U(τ))/(2 · |πG|).

This new heuristic is a simple modification of EQUALOVER that assigns half the
total remaining capacity to migrating tasks, and the other half to be split among the
container tasks. This ensures that both fixed and migrating tasks have extra processor
capacity for scheduler overhead, so tardiness will not grow without bound.

6 Experiments

In this section, we present the results of experiments conducted to evaluate EDF-sc
compared to GEDF, which is also SRT-optimal and supports dynamic task systems.
We begin by demonstrating the advantages of semi-partitioned scheduling over global
scheduling with an overhead-aware schedulability study in static systems. We then
evaluate the effectiveness of the various options presented in Sec. 5 for bin-packing
heuristics and container task provisioning in dynamic systems. We also compare ob-
served tardiness and tardiness bounds for dynamic systems under EDF-sc and GEDF.
Finally, we demonstrate how effectively our heuristics stabilize a dynamic workload
by comparing versions of Algorithm 1 with lines 15–20, which attempt to move mi-
grating tasks into containers, either enabled (i.e., heuristics are applied) or disabled
(i.e., no heuristics applied). Code for all the experiments in this section is available
online (Hobbs et al. 2020).

6.1 Overhead-Aware Schedulability Study

To illustrate the advantages of semi-partitioned scheduling over global scheduling, we
performed an overhead-aware schedulability study comparing EDF-sc to GEDF with
a variety of static task systems. In order to accurately compare these schedulers in a
practical setting, we produced a kernel implementation of EDF-sc in LITMUSRT ver-
sion 2017.1 (Calandrino et al. 2006; Brandenburg 2011), based on the Linux kernel
version 4.9.30. Although this version of LITMUSRT provides support for reservations
that are similar to the containers used in EDF-sc, these reservations are unfortunately
not suitable for GEDF scheduling, so our implementation handles container and fixed
tasks manually. This open-source implementation is available online (Hobbs et al.
2020).

20 Clara Hobbs et al.

Table 1: Average case overheads of EDF-sc for different task set sizes.

TASKS
CXS
(µs)

RELEASE
LATENCY

(µs)

RELEASE
(µs)

CONTAINER
BOUNDARY

(µs)

SCHED
(µs)

SCHED2
(µs)

SEND
RESCHED

(µs)
24 2.220 20.027 0.894 54.559 4.544 0.163 2.234
48 2.234 12.563 1.018 55.526 4.693 0.173 2.213
72 1.777 9.974 0.887 54.442 4.152 0.177 2.123
96 1.371 1.758 1.018 56.076 3.470 0.180 2.106

120 1.288 0.797 1.177 63.467 3.498 0.166 2.133
144 1.250 0.759 1.188 65.212 3.321 0.166 2.133
168 1.216 0.832 1.174 60.320 3.030 0.166 2.123
192 1.195 0.790 1.236 59.661 2.992 0.156 2.123
216 1.281 0.790 1.365 58.048 3.855 0.166 2.043
240 1.368 0.786 1.344 59.325 3.875 0.156 2.040

Table 2: Average case overheads of GEDF for different task set sizes.

TASKS
CXS
(µs)

RELEASE
LATENCY

(µs)

RELEASE
(µs)

SCHED
(µs)

SCHED2
(µs)

SEND
RESCHED

(µs)
24 1.070 15.749 2.334 9.825 0.166 2.320
48 1.423 11.263 2.376 20.606 0.177 2.282
72 1.808 8.083 2.386 18.083 0.170 2.234
96 2.210 1.282 2.303 11.574 0.159 2.123
120 2.241 0.882 2.210 9.881 0.149 2.043
144 2.248 0.873 2.210 9.818 0.149 2.033
168 2.258 0.935 2.140 10.552 0.149 2.054
192 2.261 0.930 2.192 10.348 0.149 2.040
216 2.265 0.884 2.140 10.494 0.149 2.012
240 2.279 0.914 2.154 10.677 0.149 2.023

We measured overheads of EDF-sc and GEDF following the methodology of Bas-
toni et al. (2011), additionally measuring the execution time of the CONTAINER-
BOUNDARY routine in EDF-sc. We considered the average case overheads for these
experiments, since we are considering SRT systems, which are more likely to be pro-
visioned based on the average case. Tables 1 and 2 show the overheads of EDF-sc
and GEDF, respectively, for task sets of size 24,48,72, . . . ,240. In these tables, CXS
denotes the overhead of context switches. RELEASE LATENCY is the duration of time
between a job’s actual release and the moment its release timer signals for its release.
RELEASE is the overhead of releasing the job after its release timer expires. SCHED
and SCHED2 denote the overhead of each scheduling decision and its post decision
bookkeeping, respectively. SEND RESCHED is the inter-processor interrupt overhead
necessary for global scheduling. The overhead of the CONTAINERBOUNDARY rou-
tine in EDF-sc is given, and is absent for GEDF, which has no equivalent routine.

Notably, EDF-sc has values of SCHED noticeably lower than those of GEDF.
Moreover, lower values were observed in systems with more tasks. Intuitively, this ef-
fect is due to the semi-partitioned nature of EDF-sc. Most tasks in EDF-sc are packed
into containers, and thus multiple per-core run queues, which reduces the size of the
global run queue. When the number of scheduled tasks in a system increases, the

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 21

likelihood of each task having lower utilization also increases. This results in a more
efficient packing in EDF-sc, and thus more fully-provisioned containers, for which
the global run queue need not be considered when making scheduling decisions.

In these experiments, we randomly generated static sporadic task systems and
increased the execution times of each task to account for average-case overheads on
a 24-core Intel system. This is the same system used by Bastoni et al. (2010), so
the same cache-related preemption and migration delay (CPMD) values were used in
our experiments. These CPMD values included measurements for both idle systems
(low cache contention, where all tasks running on the system were real-time) and
systems under load (high cache contention, where best-effort cache thrashing tasks
were also run). After inflating the execution time, we calculated the schedulability,
or proportion of the generated task systems that remain feasible, under each sched-
uler. Task sets were generated similarly to Bastoni et al. (2011), with task utilizations
chosen from uniform, bimodal, and exponential distributions, each with medium or
heavy tasks. For uniform distributions, task utilizations were chosen from [0.1,0.4]
for medium task sets and from [0.5,0.9] for heavy task sets. For bimodal distribu-
tions, task utilizations were chosen uniformly from [0.001,0.5) or [0.5,0.9] with
probabilities of 6/9 and 3/9 for medium task sets and 4/9 and 5/9 for heavy task
sets, respectively. For exponential distributions, task utilizations were generated with
a mean of 0.25 for medium task sets and 0.5 for heavy task sets, discarding any val-
ues greater than 1. For each of these, we generated task periods uniformly at random
from [3,33] ms (short), [10,100] ms (moderate), or [50,250] ms (long). We generated
task sets with utilization caps in [10,24] with a step size of 0.25, and with working
set sizes (WSS) of each power of two in [64,2048] kB.

For each combination of utilization distribution, period distribution, utilization
cap, and WSS, we generated 100 task sets by adding tasks until the next task would
cause the utilization cap to be exceeded without accounting for overheads. The sched-
ulers tested were EDF-sc with BESTFIT bin-packing and HALFEQUALOVER con-
tainer provisioning (we do not expect the choice of heuristics to have a major impact
on schedulability), and GEDF. For EDF-sc, we used a binary search over [0,1024] ms
to determine the minimum container task period for which each task set was schedu-
lable, and computed the average of these for each task set parameter combination.
To aid in the presentation of a large number of schedulability experiments, we use
weighted schedulability (Bastoni et al. 2010), defined as

S(W) =
∑U∈Q U ·S(U,W)

∑U∈Q U
,

where Q is the set of utilization caps considered, W is a WSS value, and S(U,W) is the
schedulability ratio for utilization cap U and WSS W . Using weighted schedulability
collapses an entire traditional schedulability plot into a single point, allowing us to
explore the parameter space without resorting to 3D plots.

Results. We discuss a representative subset of our schedulability experiments here;
the full results are given in the appendix. Typical results are shown in Fig. 9 for task
sets with uniform medium utilizations. As shown in the left subfigure, when idle

22 Clara Hobbs et al.

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Medium Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Medium Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 9: Left: weighted schedulability for task sets with uniform medium utilizations
and uniform short periods. Right: weighted schedulability for task sets with uniform
medium utilizations and uniform long periods.

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Short Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Long Periods, WSS = 512KB

Idle
Load

Fig. 10: Minimum container periods required to schedule medium-utilization task
sets generated with a uniform distribution and differing periods at WSS = 512.

CPMD overheads are considered, EDF-sc performs significantly better than GEDF
for task systems with short periods. Under load overheads, EDF-sc performs slightly
worse than or comparably to GEDF. This behavior is expected, as the CPMD over-
head for migrations through L1 cache is similar to a memory level migration under
intense memory traffic. Therefore, the advantage of semi-partitioning allowing fixed
tasks to only experience L1 migrations is nullified. Due to several effects influenc-
ing the measurement of CPMD values, GEDF gave higher schedulability with large
WSS values when using load overheads instead of idle overheads; please see Bas-
toni et al. (2010) for more details. Systems with bimodal and exponential utilization
distributions showed similar trends. GEDF is more competitive when task periods
are longer, and in some cases, can achieve marginally higher weighted schedulability
than EDF-sc.

Fig. 10 shows the averages of the minimum container periods for which the gen-
erated task systems remained schedulable under EDF-sc. The minimum feasible con-
tainer task periods remained very low (typically under about 50 ms) for most of the

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 23

feasible task sets, increasing sharply for higher utilizations where most task sets were
unschedulable. This trend holds under both idle and load CPMD overheads. Since
fewer task systems are schedulable with load overheads, the sharp increase in con-
tainer task period occurs at a lower utilization. The full set of plots for these experi-
ments is given in an online appendix.

6.2 EDF-sc Heuristic Comparison

To evaluate the efficacy of our reweighting heuristics for EDF-sc, we conducted ex-
periments on a 24-processor machine running a working EDF-sc implementation
with a set of synthetically generated dynamic workloads. Intuitively, one heuristic
is more effective than another if it provides reduced tardiness in a dynamic work-
load. To quantify this, we measured the average and maximum observed tardiness of
all jobs in each dynamic workload, and the analytic tardiness bounds that result. We
conducted the same experiments with GEDF, using EDF-sc rules AM and R to add
and remove tasks from the system. Using GEDF this way is actually a special case of
EDF-sc where all container tasks always have utilization 0.

Dynamic workload generation. For this experiment, we generated dynamic work-
loads using a similar methodology to one pioneered by Casini et al. (2017). Each
dynamic workload consisted of a task set T , and a sequence of task addition and re-
moval events. The tasks in T were generated with periods selected from a uniform
distribution over the range [10,1000] ms, and with utilizations generated from a beta
distribution with mean µU and variance σ2

U . We used values for µU of 0.2, 0.4, and
0.6 to create workloads that are easy-, moderate-, and hard-to-partition, respectively.
Preliminary results showed that changing the value of σ2

U did not have a major impact
on the results, so we kept this at a constant value of 0.006. In all of our experiments,
all tasks released jobs periodically.

Initially the set of active tasks τ in each dynamic workload consisted of tasks
from T chosen at random one at a time until the next chosen task would have become
unschedulable by the overhead-aware schedulability test used in Sec. 6.1. Each work-
load was subsequently modified by a sequence of 25 task addition or removal events
over the course of the workload execution, with event interarrival times selected uni-
formly over the range [1000,4000] ms. To determine whether each event should con-
stitute a task addition or removal, we generated a number x from a uniform distribu-
tion over [0,1], and compared it to a threshold Λ = (1−U(τ)/m)+ψ(U(τ)/m) that
was used to control the average load on the system. If x≤Λ , then the event attempted
to add a random task from T \ τ to τ . Otherwise, the event selected a random task to
be removed from τ . Generating events in this way increases the probability of adding
tasks when the system utilization is low, and increases the probability of removing
tasks when the system utilization is high (Casini et al. 2017). We held ψ = 0.8 across
all generated workloads to keep system utilization high.

For each combination of µU value and WSS for each power of two in [64,2048] kB,
we generated 50 dynamic workloads. Each workload is scheduled on a 24-processor

24 Clara Hobbs et al.

EDF-sc-Best EDF-sc-Worst EDF-sc-First GEDF

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

Ta
rd

in
es

s
(m

s)

64 128 256 512 1024 2048
WSS (KB)

0

1

2

3

4

Ta
rd

in
es

s
(m

s)

64 128 256 512 1024 2048
WSS (KB)

0

5

10

15

20

Ta
rd

in
es

s
(m

s)

64 128 256 512 1024 2048
WSS (KB)

0

50

100

150

Ta
rd

in
es

s
(m

s)

64 128 256 512 1024 2048
WSS (KB)

0

100

200

300

400
Ta

rd
in

es
s

(m
s)

64 128 256 512 1024 2048
WSS (KB)

0

200

400

600

Ta
rd

in
es

s
(m

s)

Fig. 11: Insets (a), (c), and (e) (left) show observed average tardiness over easy-,
moderate-, and hard-to-partition workloads. Insets (b), (d), and (f) (right) show ob-
served maximum tardiness over easy-, moderate-, and hard-to-partition workloads.

system using EDF-sc, with each combination of the bin-packing heuristics BEST-
FIT, WORSTFIT, and FIRSTFIT, and the HALFEQUALOVER container reweighting
heuristic. Following the results of the experiments in Sec. 6.1, we used container peri-
ods of 50 ms in our implementation. We also scheduled the same dynamic workloads
under GEDF to compare tardiness between the two algorithms.

Results. Fig. 11 shows average and maximum tardiness across all sets of generated
workloads that are easy-, moderate-, and hard-to-partition. Plots of the mean of the
analytical tardiness bounds computed for these workloads using Corollaries 1 and 2
are available in the appendix. In each graph, the x axis shows each WSS considered,
and the y axis shows the tardiness observed across the generated workloads. A lower

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 25

curve represents a better-performing heuristic. To reduce visual clutter, standard de-
viations are omitted from the figure.

For easy-to-partition task sets, all EDF-sc heuristics gave low average tardiness
under 1 ms, but this is still higher than GEDF. In moderately-hard-to-partition and
hard-to-partition workloads however, GEDF significantly outperformed EDF-sc on
the basis of tardiness. This is expected, since when a large number of tasks have
utilization greater than 1/2, bin-packing will result in many migrating tasks, whose
presence significantly decreases the number of fully provisioned containers. The ex-
ecution of fixed tasks can then be delayed for prolonged periods of time when the
containers that are not fully-provisioned run out of budget. It is worth noting that the
task set generation yields an expected mean period of 505 ms, so the average tardi-
ness under EDF-sc is still quite low compared to most task periods. It may further be
noted that GEDF gave significantly lower tardiness in these real-world experiments
than it did in our prior simulated experiments (Hobbs et al. 2019). This is likely due
to migrations incurring lower cache-related delays in practice than we had assumed
for the simulation.

The maximum tardiness observed for EDF-sc is significantly higher than that for
GEDF in these experiments. This is partly because of the delays due to container
budget exhaustion, but also due to an inherent tendency of EDF-sc to run the top-
level GEDF scheduling with high-utilization container tasks. Tasks with high utiliza-
tion are known to cause greater actual tardiness and tardiness bounds under GEDF
scheduling. Indeed, the mean tardiness bounds for EDF-sc in these task systems were
3–4 times those of GEDF.

The WORSTFIT bin-packing heuristic tended to give higher average and maxi-
mum tardiness than BESTFIT and FIRSTFIT. This is likely due to WORSTFIT’s ten-
dency to keep the utilization of fixed tasks on each processor balanced, which may in
turn make the container reweighting heuristic unable to fully provision many contain-
ers. BESTFIT and FIRSTFIT were fairly competitive with one another, but FIRSTFIT
gave slightly lower average tardiness for moderate- and easy-to-partition workloads
where EDF-sc is most practical. Further, FIRSTFIT has slightly lower runtime over-
head, so it may be preferred for this reason as well.

6.3 Stabilization

To evaluate how effectively our heuristics stabilize dynamic workloads, we measured
the number of migrating tasks at intervals of 1000 ms in 50 workloads generated
as in Sec. 6.2, using FIRSTFIT bin-packing and HALFEQUALOVER container task
provisioning. To obtain a baseline, we conducted the same experiments with lines 15–
20 of our heuristics, which attempt to move migrating tasks into containers, disabled.

Results. Results of these experiments for a WSS of 2048 kB are shown in Fig. 12.
Insets (a), (b), and (c) show the number of migrating tasks over time with stabiliza-
tion disabled in easy-, moderate-, and hard-to-partition workloads, respectively, and
insets (d), (e), and (f) show the number of migrating tasks over time with stabiliza-
tion enabled in easy-, moderate-, and hard-to-partition workloads, respectively. Each

26 Clara Hobbs et al.

0 5 10 15 20 25 30

Number of Workloads

0 10 20 30 40
Time(s)

0

5

10

15

20

N
um

be
r o

f M
ig

ra
tin

g
Ta

sk
s

0 10 20 30 40
Time(s)

0

5

10

15

20

N
um

be
r o

f M
ig

ra
tin

g
Ta

sk
s

0 10 20 30 40
Time(s)

0

5

10

15

20

N
um

be
r o

f M
ig

ra
tin

g
Ta

sk
s

0 10 20 30 40
Time(s)

0

5

10

15

20

N
um

be
r o

f M
ig

ra
tin

g
Ta

sk
s

0 10 20 30 40
Time(s)

0

5

10

15

20

N
um

be
r o

f M
ig

ra
tin

g
Ta

sk
s

0 10 20 30 40
Time(s)

0

5

10

15

20

N
um

be
r o

f M
ig

ra
tin

g
Ta

sk
s

Fig. 12: Stabilization heatmaps for tasks with WSS of 2048 kB. Insets (a), (c), and
(e) (left) show easy-, moderate-, and hard-to-partition workloads with stabilization
enabled. Insets (b), (d), and (f) (right) show easy-, moderate-, and hard-to-partition
workloads with stabilization disabled.

inset shows the number of migrating tasks over time as a heatmap: the x axis shows
time, and the y axis shows the number of migrating tasks. Through trial and error,
we found that the average number of migrating tasks had stopped changing before
45 s in all cases, so we limited the x axis to show the interval [0,45] s. The color of
each cell indicates how many workloads had a particular number of migrating tasks
at each time observed.

We found that for hard-to-partition workloads, the stabilization code had little
effect on the number of migrating tasks. Indeed, for task sets with a mean task uti-

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 27

lization of 0.6, it would not be possible in many cases to pack two tasks into a single
container. The benefit of stabilization can be seen for the easy-to-partition workloads
however, becoming most apparent at t = 25. We found that most easy-to-partition
workloads remain at 2 migrating tasks instead of increasing to 3 when stabilization
is disabled. For moderately-hard-to-partition workloads, the band on the heatmap for
the stabilized system is much wider, including many more instances with less than 6
migrating tasks in the system compared to the unstabilized system. This confirms that
our stabilization heuristic successfully reduced the number of migrating tasks below
the baseline with stabilization disabled.

7 Conclusion

We have presented EDF-sc, the first semi-partitioned scheduling algorithm that is op-
timal for static SRT sporadic task systems (in the “bounded tardiness” sense of SRT
correctness) and that can also handle dynamic workload changes. EDF-sc guarantees
bounded tardiness for all tasks regardless of the assignment of tasks to processors. If
no tasks are assigned as fixed, then it behaves as GEDF, and if all tasks are fixed, then
it behaves as partitioned EDF. Because it is desirable to fully partition the task system
if possible, we presented heuristics to achieve this goal as tasks are reweighted. These
heuristics afford EDF-sc with a novel property, never before considered in work on
semi-partitioned scheduling, of being able to stabilize towards increasing the num-
ber of tasks that are fixed as the system executes. Finally, we presented the results
of experiments performed using a newly-written implementation of EDF-sc in the
LITMUSRT kernel, which show that it is especially competitive with GEDF for task
systems with shorter periods or lower per-task utilizations.

Because fixed tasks in EDF-sc execute within containers that may lose budget,
they effectively have priorities that may vary over time. Since most multiprocessor
real-time locking protocols require job-level fixed priorities, it is not currently clear
how to handle shared resources accessible by fixed tasks under EDF-sc. We would
like to investigate a job-level fixed priority variant of EDF-sc to ease this restriction.

References

Anderson JH, Bud V, Devi UC (2005) An EDF-based scheduling algorithm for multiprocessor soft real-
time systems. In: Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS)

Anderson JH, Erickson JP, Devi UC, Casses BN (2016) Optimal semi-partitioned scheduling in soft real-
time systems. Journal of Signal Processing Systems 84(1):3–23

Andersson B, Tovar E (2006) Multiprocessor scheduling with few preemptions. In: Proceedings 12th
IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp 322–334

Andersson B, Bletsas K, Baruah SK (2008) Scheduling arbitrary-deadline sporadic task systems on multi-
processors. In: Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), pp 385–394

Bastoni A, Brandenburg BB, Anderson JH (2010) Cache-related preemption and migration delays: Empir-
ical approximation and impact on schedulability. Proceedings of the 6th International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications (OSPERT) pp 33–44

Bastoni A, Brandenburg BB, Anderson JH (2011) Is semi-partitioned scheduling practical? In: Proceedings
of the 23rd Euromicro Conference on Real-Time Systems (ECRTS), IEEE, pp 125–135

28 Clara Hobbs et al.

Bhatti MK, Belleudy C, Auguin M (2012) A semi-partitioned real-time scheduling approach for periodic
task systems on multicore platforms. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing (SAC), pp 1594–1601

Bletsas K, Andersson B (2009) Notional processors: an approach for multiprocessor scheduling. In: Pro-
ceedings of the 15th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp 3–12

Bletsas K, Andersson B (2011) Preemption-light multiprocessor scheduling of sporadic tasks with high
utilisation bound. Real-Time Systems 47(4):319–355

Block A, Anderson JH, Bishop G (2005) Fine-grained task reweighting on multiprocessors. In: Proceed-
ings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pp 429–435

Block A, Anderson JH, Devi UC (2008) Task reweighting under global scheduling on multiprocessors.
Real-Time Systems 39(1-3):123–167

Brandenburg BB (2011) Scheduling and locking in multiprocessor real-time operating systems. PhD thesis,
University of North Carolina at Chapel Hill

Brandenburg BB, Gül M (2016) Global scheduling not required: Simple, near-optimal multiprocessor
real-time scheduling with semi-partitioned reservations. In: Proceedings of the 37th IEEE Real-Time
Systems Symposium (RTSS), pp 99–110

Burns A, Davis RI, Wang P, Zhang F (2012) Partitioned EDF scheduling for multiprocessors using a C =
D task splitting scheme. Real-Time Systems 48(1):3–33

Calandrino JM, Leontyev H, Block A, Devi UC, Anderson JH (2006) LitmusRT: A testbed for empirically
comparing real-time multiprocessor schedulers pp 111–123

Casini D, Biondi A, Buttazzo G (2017) Semi-partitioned scheduling of dynamic real-time workload: A
practical approach based on analysis-driven load balancing. In: Proceedings of the 29th Euromicro
Conference on Real-Time Systems (ECRTS), pp 13:1–13:23

Devi UC (2006) Soft real-time scheduling on multiprocessors. PhD thesis, University of North Carolina at
Chapel Hill

Devi UC, Anderson JH (2008) Tardiness bounds under global EDF scheduling on a multiprocessor. Real-
Time Systems 38(2):133–189

Dorin F, Yomsi PM, Goossens J, Richard P (2010) Semi-partitioned hard real-time scheduling
with restricted migrations upon identical multiprocessor platforms. CoRR abs/1006.2637, URL
http://arxiv.org/abs/1006.2637, 1006.2637

Erickson JP, Devi UC, Baruah SK (2010) Improved tardiness bounds for global EDF. In: Proceedings of
the 22nd Euromicro Conference on Real-Time Systems (ECRTS), pp 14–23

Fan M, Quan G (2012) Harmonic semi-partitioned scheduling for fixed-priority real-time tasks on multi-
core platform. In: Proceedings of the 2012 Design, Automation Test in Europe Conference Exhibition
(DATE), pp 503–508

Guan N, Stigge M, Yi W, Yu G (2010a) Fixed-priority multiprocessor scheduling: Beyond Liu & Layland
utilization bound. In: Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS) Work-in-
Progress Session, pp 1594–1601

Guan N, Stigge M, Yi W, Yu G (2010b) Fixed-priority multiprocessor scheduling with Liu and Layland’s
utilization bound. In: Proceedings of the 16th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pp 165–174

Hobbs C, Tong Z, Anderson JH (2019) Optimal soft real-time semi-partitioned scheduling made simple
(and dynamic). In: Proceedings of the 27th International Conference on Real-Time Networks and
Systems (RTNS), pp 112–122

Hobbs C, Tong Z, Bakita J, Anderson JH (2020) Statically optimal dynamic soft real-time semi-partitioned
scheduling, additional materials. URL http://cs.unc.edu/%7Eanderson/papers.html

Ivkovic Z, Lloyd EL (1998) Fully dynamic algorithms for bin packing: Being (mostly) myopic helps.
SIAM Journal on Computing 28(2):574–38

Kato S, Yamasaki N (2007) Real-time scheduling with task splitting on multiprocessors. In: Proceedings
of the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pp 441–450

Kato S, Yamasaki N (2008) Portioned EDF-based scheduling on multiprocessors. In: Proceedings of the
8th ACM International Conference on Embedded Software (EMSOFT), pp 139–148

Kato S, Yamasaki N (2009) Semi-partitioned fixed-priority scheduling on multiprocessors. In: Proceedings
of the 15th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp
23–32

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 29

Leoncini M, Montangero M, Valente P (2018) A parallel branch-and-bound algorithm to com-
pute a tighter tardiness bound for preemptive global EDF. Real-Time Systems pp 1–38, URL
https://doi.org/10.1007/s11241-018-9319-6

Leontyev H, Chakraborty S, Anderson JH (2011) Multiprocessor extensions to real-time calculus. Real-
Time Systems 47(6):562

Mok AK, Feng X, Chen D (2001) Resource partition for real-time systems. In: Proceedings of the Seventh
IEEE Real-Time Technology and Applications Symposium (RTAS), pp 75–84

Nélis V, Andersson B, Marinho J, Petters SM (2011) Global-edf scheduling of multimode real-time sys-
tems considering mode independent tasks. In: 2011 23rd Euromicro Conference on Real-Time Sys-
tems, IEEE, pp 205–214

Real J, Crespo A (2004) Mode change protocols for real-time systems: A survey and a new proposal.
Real-time systems 26(2):161–197

Shekhar M, Sarkar A, Ramaprasad H, Mueller F (2012) Semi-partitioned hard-real-time scheduling under
locked cache migration in multicore systems. In: Proceedings of the 24th Euromicro Conference on
Real-Time Systems (ECRTS), pp 331–340

Sousa PB, Souto P, Tovar E, Bletsas K (2013) The carousel-EDF scheduling algorithm for multiprocessor
systems. In: Proceedings of the 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pp 12–21

Voronov S, Anderson JH (2018) An optimal semi-partitioned scheduler assuming arbitrary affinity masks.
In: Proceedings of the 39th IEEE Real-Time Systems Symposium (RTSS), pp 408–420

30 Clara Hobbs et al.

A Additional Figures

In this appendix, we present additional experimental results that were omitted from Sec. 6 for brevity. We
first show the full results of our schedulability study from Sec. 6.1, followed by the corresponding plots of
minimum schedulable container periods. Finally, we show the mean analytical tardiness bounds that were
computed for the dynamic task systems generated in Sec. 6.2.

A.1 Schedulability Experiments

In this section, we provide full results of the schedulability study from Sec. 6.1. The same general trend
observed there holds throughout, with EDF-sc giving high weighted schedulability when periods are short,
and both schedulers giving high weighted schedulability for task systems with longer periods.

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Medium Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Medium Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 13: Schedulability results for medium task sets generated with a uniform distri-
bution.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 31

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Bimodal Medium Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Bimodal Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Bimodal Medium Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 14: Schedulability results for medium task sets generated with a bimodal distri-
bution.

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Exponential Medium Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Exponential Medium Utilizations, Uniform Moderate Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Exponential Medium Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 15: Schedulability results for medium task sets generated with an exponential
distribution.

32 Clara Hobbs et al.

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Heavy Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Heavy Utilizations, Uniform Moderate Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Uniform Heavy Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 16: Schedulability results for heavy task sets generated with a uniform distribu-
tion.

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Bimodal Heavy Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Bimodal Heavy Utilizations, Uniform Moderate Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Bimodal Heavy Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 17: Schedulability results for heavy task sets generated with a bimodal distribu-
tion.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 33

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Exponential Heavy Utilizations, Uniform Short Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Exponential Heavy Utilizations, Uniform Moderate Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

64 128 256 512 1024 2048
WSS (KB)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

Exponential Heavy Utilizations, Uniform Long Periods

EDF-sc(idle)
EDF-sc(load)
GEDF(idle)
GEDF(load)

Fig. 18: Schedulability results for heavy task sets generated with an exponential dis-
tribution.

34 Clara Hobbs et al.

A.2 Container Period Experiments

In this section, we show the full set of plots of the minimum container periods for which the task sets from
the experiments in Sec. 6.1 were schedulable with EDF-sc. As mentioned in the main text, these curves all
show a sharp upward trend once the container period reaches some value. This period at which this occurs
varies between the different task set parameters, but is not more than 50 ms in any case, so this was used
as a conservative container period in the subsequent experiments.

14 16 18 20 22 24
Utilization

0

20

40

60

80

100

120

140

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Moderate Periods, WSS = 128KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

100

200

300

400

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Moderate Periods, WSS = 2048KB

Idle
Load

Fig. 19: Minimum container periods required to schedule medium task sets generated
with a uniform distribution and medium periods at different WSS.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 35

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

350
C

on
ta

in
er

 P
er

io
d

(m
s)

Uniform Medium Utilizations,
Uniform Short Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Long Periods, WSS = 512KB

Idle
Load

Fig. 20: Minimum container periods required to schedule medium task sets generated
with a uniform distribution and differing periods at WSS = 512.

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

350

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Medium Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

C
on

ta
in

er
 P

er
io

d
(m

s)

Bimodal Medium Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

C
on

ta
in

er
 P

er
io

d
(m

s)

Exponential Medium Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

Fig. 21: Minimum container periods required to schedule medium task sets generated
with different distributions and medium periods at WSS = 512.

36 Clara Hobbs et al.

14 16 18 20 22 24
Utilization

0

10

20

30

40

50
C

on
ta

in
er

 P
er

io
d

(m
s)

Uniform Heavy Utilizations,
Uniform Moderate Periods, WSS = 128KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

100

200

300

400

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations,
Uniform Moderate Periods, WSS = 2048KB

Idle
Load

Fig. 22: Minimum container periods required to schedule heavy task sets generated
with a uniform distribution and medium periods at different WSS.

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations,
Uniform Short Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

20

40

60

80

100

120

C
on

ta
in

er
 P

er
io

d
(m

s)

Uniform Heavy Utilizations,
Uniform Long Periods, WSS = 512KB

Idle
Load

Fig. 23: Minimum container periods required to schedule heavy task sets generated
with a uniform distribution and differing periods at WSS = 512.

Statically Optimal Dynamic Soft Real-Time Semi-Partitioned Scheduling 37

14 16 18 20 22 24
Utilization

0

50

100

150

200
C

on
ta

in
er

 P
er

io
d

(m
s)

Uniform Heavy Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

C
on

ta
in

er
 P

er
io

d
(m

s)

Bimodal Heavy Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

14 16 18 20 22 24
Utilization

0

50

100

150

200

250

300

C
on

ta
in

er
 P

er
io

d
(m

s)

Exponential Heavy Utilizations,
Uniform Moderate Periods, WSS = 512KB

Idle
Load

Fig. 24: Minimum container periods required to schedule heavy task sets generated
with different distributions and medium periods at WSS = 512.

38 Clara Hobbs et al.

A.3 Tardiness Bounds from Heuristic Comparison

Finally, in this section, we show the mean tardiness bounds for the dynamic task systems generated in
Sec. 6.2.

64 128 256 512 1024 2048
WSS (KB)

0

1000

2000

3000

4000

Ta
rd

in
es

s
(m

s)

64 128 256 512 1024 2048
WSS (KB)

0

1000

2000

3000

4000

5000

Ta
rd

in
es

s
(m

s)

64 128 256 512 1024 2048
WSS (KB)

0

2000

4000

6000

Ta
rd

in
es

s
(m

s)

Fig. 25: Mean tardiness bounds for easy- (a), moderate- (b), and hard-to-partition (c)
dynamic workloads, as computed using Corollaries 1 and 2. Note the different scales
on the Y axis.

