
Quick-release Fair Scheduling∗

James H. Anderson, Aaron Block, and Anand Srinivasan

Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

In prior work on multiprocessor fairness, efficient techniques with provable properties for reallocating spare

processing capacity have been elusive. In this paper, we address this shortcoming by proposing a new notion of

multiprocessor fairness, called quick-release fair (QRfair) scheduling, which is a derivative of Pfair scheduling

that allows efficient allocation of spare capacity. Under QRfair scheduling, each task is specified by giving

both a minimum and a maximum weight (i.e., processor share). The goal is to schedule each task (as the

available spare capacity changes) at a rate that is (i) at least that implied by its minimum weight and (ii) at

most that implied by its maximum weight. Our contributions are fourfold. First, we present a quick-release

variant of the PD2 Pfair scheduling algorithm called PDQ. Second, we formally prove that the allocations

of PDQ always satisfy (i) and (ii). Third, we consider the problem of defining maximum weights in a way

that encourages a fair distribution of spare capacity. Fourth, we present results from extensive simulation

experiments that show the efficacy of PDQ in allocating spare capacity.

Keywords: Dynamic systems, fair scheduling, multiprocessors, Pfairness, work-conserving scheduling.

∗Work supported by NSF grants CCR 9972211, CCR 9988327, ITR 0082866, and CCR 0204312.

1 Introduction

There has been much recent work on scheduling techniques that ensure fairness, temporal isolation, and timeliness

among tasks scheduled on the same resource. Much of this work is rooted in an idealized scheduling abstraction

called generalized processor sharing (GPS). Under GPS scheduling, tasks are assigned weights, and each task is

allocated a share of the resource in proportion to its weight. Thus, each task’s designated share is guaranteed

(fairness) and any “misbehaving” task is prevented from consuming more than its share (temporal isolation). In

addition, real-time deadlines can be guaranteed, where feasible (timeliness).

GPS-fairness requires that, at all times, each task has been assigned precisely its required share of the resource

thus far. In practice, this degree of fairness is impractical, as it requires the ability to preempt and swap tasks at

arbitrarily small scales. Nonetheless, GPS serves as a useful “benchmark” against which practical algorithms can

be judged: most such algorithms are designed to ensure that, over time, per-task allocations never deviate “too

much” from GPS. The earliest work on GPS-like algorithms was directed at the problem of scheduling packets

in networks (e.g., [6, 10, 11, 13]); here the “tasks” to be scheduled are packet flows. More recently, GPS-like

algorithms for processor scheduling have been proposed (e.g., [1, 2, 3, 4, 5, 8, 9, 14, 15, 16]). Much of this work

has been directed at multiprocessor systems. Such systems are the focus of this paper.

In work on fairness in networks, the need to consider dynamic behavior is fundamental, because the set of flows

passing through a router changes with time. In work on fair processor scheduling, dynamic systems have only

recently been considered [5, 15, 16]. The distinguishing characteristic of such a system is that tasks are allowed to

join and leave. Moreover, the weights of existing tasks may change (thereby increasing or decreasing their shares).

Because of such changes, spare processing capacity may become available that can be reallocated to other tasks.

The development of techniques for efficiently doing this has been one of the most important goals in prior work on

fairness in uniprocessors and networks. To this end, the concept of virtual time was proposed [6, 10, 11, 13, 16].

In essence, virtual time is a scaling factor that can be applied to shrink or expand the deadlines of tasks, in order

to increase or decrease their shares, as the amount of spare processing capacity changes.

Unfortunately, in the multiprocessor case, techniques with provable properties for reallocating spare capacity

have been elusive. Indeed, uniprocessor notions of virtual time are not straightforward to extend to this case.

While it is beyond the scope of this paper to discuss this in much detail, a single scaling factor appears to be

insufficient when scheduling multiple resources. Because of such difficulties, previous researchers have resorted

to using heuristics to allocate spare capacity [8]. While such heuristics may work well in certain situations, their

lack of formal properties makes them of questionable utility in systems where predictability is a concern.

In this paper, we propose a new notion of multiprocessor fairness, called quick-release fair (QRfair) scheduling,

1

1

A(3x4/16):

T(1x 5/16):

(b)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 11 2B(15x1/16):

1 2

1 2 222

1

1

1

1

1

2 1

2 1

21
1

1

1

1

1

2 1

2 1

1 2

A(3x4/16):

T(1x 5/16):

(a)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 12 2(15x1/16):

1 2

2 222

Figure 1: Two partial schedules on two processors are shown. In each schedule, tasks of a given weight are shown
together. Each quantum-length subtask has an eligibility interval , denoted by dashes, corresponding to the sequence of
time slots (i.e., quanta) in which it can be scheduled; a subtask’s eligibility interval includes its Pfair window, denoted in
bold. An integer value n in slot t of some window means that n of the subtasks that must execute within that window are
scheduled in slot t. No integer value means that no such subtask is scheduled in slot t. (a) All tasks are Pfair-scheduled.
(b) Task T is ERfair-scheduled and all other tasks are Pfair-scheduled.

which has been devised with the goal of allocating spare processing capacity more seamlessly in multiprocessor

systems. We also present an efficient QRfair scheduling algorithm and formally establish a number of properties

concerning the allocation decisions it makes. The notion of QRfair scheduling is derived from earlier work on

proportionate fair (Pfair) scheduling [3]. Before describing our main contributions in detail, we first present a

brief overview of notions relevant to Pfair scheduling.

Pfair scheduling. Under Pfair scheduling [2, 3, 4], each task is required to execute at a uniform rate, while

respecting a fixed allocation quantum. Each task’s rate is specified by a rational weight , which gives its required

utilization. Uniform rates are ensured by requiring the allocation error for each task to be always less than one

quantum, where “error” is determined by comparing to an ideal GPS-like system. Due to this requirement, each

task is effectively subdivided into quantum-length subtasks that must execute within windows of approximately

equal lengths: if a subtask of a task T executes outside of its window, then T ’s error bounds are exceeded. The end

of a subtask’s window defines a pseudo-deadline for that task. A task’s subtasks may execute on any processor,

i.e., migration is allowed. An example of a Pfair schedule is shown in Fig. 1(a). (The other inset of this figure is

considered below.) The depicted schedule includes a task T of weight 5/16, a set A of three tasks of weight 4/16

each, and a set B of 15 tasks of weight 1/16 each, executing on two processors.

Under Pfair scheduling, if some subtask of a task executes “early” within its window, then it is ineligible for

execution until the beginning of its next window. Thus, Pfair scheduling algorithms are not work conserving

when used to schedule periodic tasks. Informally, a scheduling algorithm is work conserving if no processor ever

idles unnecessarily. In [1], Anderson and Srinivasan proposed a work-conserving variant of Pfair scheduling, called

early-release fair (ERfair) scheduling, which differs from Pfair scheduling in a rather simple way: under ERfair

2

1 1

1

2 1

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21

1 2

2 1

12

1 2

1
1

1
1

1

1
1

A(3x 9/16):

T(1x 5/16):

2 1

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

21

1

1 2

1

1 2

2

A(3x 9/16):

T(1x 5/16):

1

1

1
1

Figure 2: Partial schedules showing how spare capacity is utilized under (a) ERfair and (b) QRfair scheduling.

scheduling, a subtask may become eligible for execution early , i.e., before its Pfair window. By allowing early

releases, response times can often be reduced. This is illustrated in Fig. 1(b); note that T completes six time

units earlier here than an inset (a). (Other task models that allow late releases are considered later in Sec. 2.)

Three algorithms have been devised that are optimal under Pfair and ERfair scheduling: PF [3], PD [4], and

PD2 [1]. These algorithms prioritize subtasks on an earliest-pseudo-deadline-first (EPDF) basis, but differ in the

choice of tie-breaking rules. PD2 is the most efficient of the three and uses two tie-break parameters.

Quick-release fair scheduling. To motivate the problem of allocating spare capacity in a multiprocessor

system, consider the two-processor schedules in Fig. 2. The depicted system consists of one task T of weight

5/16, which is present at time 0, and a set A of three tasks of weight 9/16, which join the system at time 5. Note

that spare capacity exists prior to time 5, but the system is fully utilized afterwards. In inset (a), task T makes

use of the spare capacity by early releasing its first five subtasks. These subtasks “use up” the first five subtask

deadlines of T . As a result, when the other tasks join the system at time 5, T is prevented from executing for a

very long time. That is, the system treats T unfairly by penalizing it for having used spare capacity in the past.

Such a scenario is precisely the kind of behavior uniprocessor notions of virtual time were devised to prevent.

Fig. 2(b) depicts the same scenario under QRfair scheduling. In comparing the two insets, it can be seen that

the main difference is that task T ’s first five windows have been left shifted in inset (b). As a result, the first five

subtask deadlines that T “uses up” do not correspond to deadlines far into the future. In fact, in the depicted

scenario, T begins releasing subtasks at time 5 as if it had never used any spare capacity in the past.

The distinguishing characteristic of QRfair scheduling is as follows: if a processor is idle at time t, then each

task’s next subtask window can begin either at time t+1 or time t+2, if it otherwise would begin later. (Later,

3

we indicate which windows may begin at t + 1 and which at t + 2.) Moreover, such subtasks are allowed to be

released early, i.e., before their windows. This allows the idle capacity in slot t to be utilized. We call such releases

quick releases. Later, we show that the optimality of PD2 is not compromised if quick releases are allowed.

When a task performs a quick release, the position of its next subtask window is left-shifted as much as

possible. This allows it to execute at a rate that is greater than that implied by its Pfair weight. Note, however,

that in an actual system, there may be an upper bound on the amount of capacity a given task can consume. If

such a task’s subtasks are always left-shifted as aggressively as possible, then it may be allocated more processor

time than it can use. This is clearly no better than allowing processors to idle. For this reason, we consider a task

model in which each task has both a minimum and maximum weight. A task’s minimum weight corresponds to

its Pfair weight. Its maximum weight controls the extent to which its quick-released subtasks can be left-shifted.

Contributions. There are four main contributions of this paper beyond introducing the concept of QRfair

scheduling. First, we present a quick-release variant of PD2 called PDQ. PDQ has the same asymptotic time

complexity as PD2 but supports both minimum and maximum task weights. To the best of our knowledge, PDQ

is the first fair multiprocessor scheduling algorithm that allows nontrivial maximum weights less than unity to

be specified. Second, we formally prove that PDQ always executes each task at a rate that is (i) at least that

implied by its minimum weight and (ii) at most that implied by its maximum weight. Third, we consider the

problem of defining maximum weights in a way that encourages a fair distribution of spare capacity. Fourth, we

present results from extensive simulation experiments that show the efficacy of PDQ in allocating spare capacity.

In most of these experiments, curves plotted to compare PDQ and ideal allocations are almost indistinguishable.

The rest of the paper is organized as follows. In Sec. 2, needed definitions are presented. In Secs. 3 and 4, PDQ

is presented and Property (i) mentioned above is proved. Issues related to defining and maintaining maximum

weights are considered in Sec. 5. Simulation results are then given in Sec. 6. We conclude in Sec. 7.

2 Preliminaries

In this section, definitions relating to Pfair scheduling and the task models considered in this paper are given.

2.1 Pfair and ERfair Scheduling

In defining notions relevant to Pfair scheduling, we limit attention (for now) to periodic tasks.1 A periodic task T

with an integer period T.p and an integer execution cost T.e has a weight wt(T) = T.e/T.p, where 0 < wt(T) ≤ 1.

A task T is light if wt(T) < 1/2, and heavy otherwise.

1Unless specified otherwise, we assume that each periodic task begins execution at time 0.

4

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T4

T5

T6

T7

T8

(c)(b)(a)

Figure 3: (a) Windows of the first job of a periodic task T with weight 8/11. This job consists of subtasks T1, . . . , T8.
Each of these subtasks must be scheduled during its window, or a lag-bound violation will result. (This pattern repeats for
every job.) (b) The Pfair windows of an IS task. Subtask T5 becomes eligible one time unit late. (c) The Pfair windows
of a GIS task. Subtask T3 is absent and T5 is one time unit late. (Because T3 is absent, this is not an IS task.)

Under Pfair scheduling, processor time is allocated in discrete time units, called quanta; the time interval

[t, t + 1), where t is a nonnegative integer, is called slot t. (Hence, time t refers to the beginning of slot t.) The

sequence of allocation decisions over time defines a schedule. Formally, a schedule S is a mapping S : τ × N �→
{0, 1}, where τ is a set of tasks and N is the set of nonnegative integers; S(T, t) = 1 iff T is scheduled in slot t.

The notion of a Pfair schedule is defined by comparing to an ideal schedule that allocates wt(T) processor time

to task T in each slot. Deviance from the ideal schedule is formally captured by the concept of lag . The lag of task

T at time t, lag(T, t), is defined as wt(T) · t− ∑t−1
u=0 S(T, u). A schedule is Pfair iff (∀T, t :: −1 < lag(T, t) < 1).

Informally, each task’s allocation error must always be less than one quantum.

Each quantum of a task’s execution, henceforth called a subtask , must be allocated without violating the lag

bounds above. We denote the ith subtask (i.e., ith quantum of allocation) of task T as Ti, where i ≥ 1. Associated

with subtask Ti is a pseudo-release r(Ti) and pseudo-deadline d(Ti) defined as follows.

(
r(Ti) =

⌊
i− 1
wt(T)

⌋)
∧

(
d(Ti) =

⌈
i

wt(T)

⌉)
(1)

(For brevity, we often drop the prefix “pseudo-.”) Ti must be scheduled in the interval w(Ti) = [r(Ti), d(Ti)),

termed its window , or else a lag-bound violation will result. As an example, consider subtask T2 in Fig. 3(a).

Here, we have r(T2) = 1, d(T2) = 3, and w(T2) = [1, 3). Therefore, T2 must be scheduled in either slot 1 or 2. (If

T1 is scheduled in slot 1, then T2 must be scheduled in slot 2.)

ERfair scheduling. The notion of ERfair scheduling [1], mentioned earlier, is obtained by dropping the −1
constraint in the Pfair lag bounds above. With this change, a subtask can become eligible before its Pfair window.

2.2 The Intra-sporadic and Generalized Intra-sporadic Models

The intra-sporadic (IS) task model generalizes the well-known sporadic task model [12] by allowing subtasks to

be released late [14]. This extra flexibility is useful in many applications where processing steps may be delayed

5

(e.g., due to jitter). Fig. 3(b) illustrates the Pfair windows of an IS task. Each subtask Ti of an IS task has an

offset θ(Ti) that gives the amount by which its release has been delayed. By (1),

(
r(Ti) = θ(Ti) +

⌊
i− 1
wt(T)

⌋)
∧

(
d(Ti) = θ(Ti) +

⌈
i

wt(T)

⌉)
. (2)

These offsets are constrained so that the separation between any pair of subtask releases by a task is at least the

separation between those releases if the task were periodic. Formally, the offsets satisfy the following property.

k ≥ i ⇒ θ(Tk) ≥ θ(Ti) (3)

Each subtask Ti has an additional parameter e(Ti) that corresponds to the first time slot in which Ti is eligible

to be scheduled. It is assumed that e(Ti) ≤ r(Ti) and e(Ti) ≤ e(Ti+1) for all i ≥ 1. Allowing e(Ti) to be less

than r(Ti) is equivalent to allowing “early” subtask releases as in ERfair scheduling. The interval [r(Ti), d(Ti)) is

called the PF-window of Ti, while the interval [e(Ti), d(Ti)) is called the IS-window of Ti. (We stress that when

we refer to the release time of a subtask, we mean the beginning of its PF-window. Such a subtask may become

eligible for execution before its release time. Note that a subtask’s release time determines its deadline.)

The generalized intra-sporadic (GIS) model generalizes the IS model by allowing subtasks to be absent. That

is, a GIS task is obtained by removing some subtasks from an IS task of equal weight. Fig. 3(c) shows an example.

If a task T , after executing subtask Ti, releases subtask Tk, then Tk is called the successor of Ti and Ti is called

the predecessor of Tk. For example, T4 is T2’s successor in Fig. 3(c). Note that subtask indices are assigned to

reflect the missing subtasks. For example, task T in Fig. 3(c) releases subtask T4 after releasing T2; T3 is missing

and θ(T4) = 0. Hence, the formulae for subtask release times and deadlines of a GIS task are as in (2).

2.3 Scheduling Algorithms

Three Pfair scheduling algorithms are known to be optimal for scheduling GIS tasks on an arbitrary number of

processors: PF [3], PD [4], and PD2 [1]. Each prioritizes subtasks on an earliest-pseudo-deadline-first (EPDF)

basis, but they use different tie-breaks. PD2, the most efficient of the three, uses the following two tie-breaks.

b-bit. b(Ti) is defined as
⌈

i
wt(T)

⌉
−

⌊
i

wt(T)

⌋
. In a periodic task system, b(Ti) is 0 if Ti’s window does not

overlap Ti+1’s, and is 1 otherwise. For example, in Fig. 3(a), b(Ti) = 1 for 1 ≤ i ≤ 7 and b(T8) = 0.

Group deadline. This parameter is needed in systems containing tasks with windows of length two; a task T

has such windows iff 1/2 ≤ wt(T) < 1. The group deadline of subtask Ti, denoted D(Ti), is defined as follows.

D(Ti) = θ(Ti) +

⌈⌈
i

wt(T)

⌉
× (1− wt(T))

⌉
1− wt(T)

6

A heavy periodic task has group deadlines at the end of each slot that is contained only within a single window.

For example, the task in Fig. 3(a) has group deadlines at times 4, 8, and 11, and D(T4) = 8, D(T5) = 8, and

D(T7) = 11. For a GIS task, the group deadline is defined similarly assuming that all future subtasks are present

and are released as early as possible. For example, in Fig. 3(c), D(T4) = 8, D(T5) = 9, and D(T7) = 12. If T is a

light task, then D(Ti) is defined to be zero.

Under PD2, if two subtasks have the same deadline, then a subtask with a b-bit of 1 is favored over one with a

b-bit of 0. If both subtasks have a b-bit of 1, then the one with the larger group deadline is favored. Any further

ties are broken arbitrarily. (Refer to [1] for a more detailed description of PD2.)

In [14], Srinivasan and Anderson proved that PD2 is optimal for scheduling GIS task systems, i.e., it correctly

schedules any GIS task system on M processors if the sum of the weights all tasks is at most M .

2.4 Dynamic Task Systems

In recent work, Srinivasan and Anderson [15] derived the following sufficient conditions under which GIS tasks

may dynamically join and leave a running system, without causing any missed deadlines under PD2.

(J) Join condition: A task T can join at time t iff the sum of the weights of all tasks after joining is at most M ,

the number of processors (follows from the feasibility test).

(L) Leave condition: Let Ti denote the last-scheduled subtask of T . If T is light, then T can leave at time t iff

either t = d(Ti) ∧ b(Ti) = 0 or t > d(Ti) holds. If T is heavy, then T can leave at time t iff t ≥ D(Ti).

Theorem 1 ([15]) PD2 correctly schedules any dynamic GIS task system satisfying (J) and (L).

As shown in [15], these conditions are tight: if a task is allowed to leave earlier than allowed by (L), then it

can re-join immediately, effectively executing at a higher rate. Deadlines may be missed as a result.

3 QRfair Scheduling and the PDQ Scheduling Algorithm

Quick-release fair (QRfair) scheduling improves upon ERfair scheduling by more intelligently using idle processor

time. In a schedule S, if k processors are idle in slot t, then we say that there are k holes in S in slot t. Note

that holes may exist because of late subtask releases, even if total utilization is M . When a slot with a hole is

encountered, various subtasks may be “quick released” using rules specified below. These rules allow each subtask

Ti to have a minimum separation parameter x(Ti) that gives the minimum value allowed for r(Ti)− r(Tj), where

Tj is the predecessor of Ti. The reason for allowing this parameter will become apparent later in Sec. 5.

7

t−4 t−2 t−1 t+1 t+2 t+3t−3 t t+4 t+6 t+7t+5 t−4 t−2 t−1 t+1 t+2 t+3t−3 t t+4 t+6 t+7t+5

t−4 t−2 t−1 t+1 t+2 t+3t+4 t t+4 t+6 t+7t+5 t−3 t+8t−2 t−1 t+1 t+2 t+3t t+4 t+6 t+7t+5

Ti−1

Ti

T i+1

(a)

hole

Ti−1

Ti

T i+1

(b)

hole

Ti−1

Ti+1

Ti

T i−1

Ti

T i+1

(c)

hole

(d)

hole

Figure 4: Illustration of the application of Rule A in a slot t that has a hole. Solid line segments depict PF-windows;
dashed lines are used to show the extent to which an IS-window extends before a corresponding PF-window. (a) Pfair
scheduling: Rule A is not applied. (b) T is (t+ 1)-releasable and Ti is scheduled before slot t. (c) T is (t+ 1)-releasable
and Ti is scheduled in slot t. (d) T is (t+ 2)-releasable.

Quick-release rules. Let t be a slot with one or more holes. Let Ti be the last subtask of task T that is

scheduled at or before t, and assume that Ti has a deadline after t + 1. (If T has an earlier deadline, then its

successor subtask’s window may begin at t or t+ 1, so the rules given below have no impact.) We say that T is

(t+ 1)-releasable at time t if it satisfies one of the following two properties: (i) Ti is scheduled before t; (ii) Ti is

scheduled at t, its predecessor2 subtask has a deadline at or before t, and T is light. Also, T is (t+ 2)-releasable

at time t if T is light, Ti is scheduled in slot t, and its predecessor subtask has a deadline at time t+ 1.

Let Tk denote the successor subtask of Ti. By (2) and (3), r(Tk) ≥ t+ 1. If r(Tk) > t+ 1, then under QRfair

scheduling, we may modify the parameters of Tk using the following two rules. (It is not necessary to apply this

modification for every such subtask.)

Rule A: If T is t′-releasable at time t (where t′ is either t+1 or t+2), then r(Tk) is modified to max(t′, r(Ti)+

x(T)). Thus, θ(Tk) = max(t′, r(Ti)+x(T))−
⌊

k−1
wt(U)

⌋
, and d(Tk) = max(t′, r(Ti)+x(T))−

⌊
k−1

wt(U)

⌋
+

⌈
k

wt(U)

⌉
.

D(Tk) is modified in a similar manner but b(Tk) remains unchanged.

Rule B: e(Tk) may be assigned any value in [t, r(Tk)].

Rule A tries to left-shift a subtask’s PF-window (and hence, its deadline) as much as possible without violating

the minimum separation between consecutive PF-windows. Fig. 4 illustrates this. The only case that Rule A

does not cover is when a subtask Ti of a heavy task is scheduled in a slot with a hole. Since a heavy task has

windows of length two or three [1], the window of Ti’s successor subtask can begin at either t+1 or t+2 anyway.

2Note that if the predecessor subtask does not exist, then the conditions given here and in the next sentence are vacuously true.
For brevity, we will avoid saying “if it exists” when considering these conditions later.

8

Rule B allows the shifted subtask to be eligible early. In our implementation of PDQ, we always set e(Tk) := t

when applying Rule B because this allows the idle capacity in slot t to be utilized. Rule B is stated in a more

general way because this facilitates the correctness proof given later.

Once these rules are applied, Ti’s predecessor, instead of Ti, is considered as Tk’s predecessor in future

applications of these rules. In other words, Ti is effectively considered as being absent. For example, in Fig. 4(c),

Ti−1 would now be considered as Ti+1’s predecessor. (The reason for this assumption will become clear in Sec. 4.)

Note that, since Rule A left-shifts windows, the resulting task system may no longer be a GIS system. In

particular, the separation between consecutive windows of a task may be less than that for a periodic system.

The PDQ algorithm. PDQ is based on the earlier PD2 algorithm and applies Rules A and B when it encounters

slots with holes. PDQ can be implemented in O(M logN) time, where M is the number of processors and N

is the number of tasks. As in the implementation of PD and PD2, task queues are implemented using binomial

heaps. (The primary reason for using binomial heaps is that two such heaps can be merged in O(log n) time,

where n is the total number of items in both heaps.) Pseudo-code for PDQ is given in Fig. 5.

In Fig. 5, heap H contains all ready tasks. Heap Q contains subtasks of tasks that may be quick-released

by Rule A. Heap J contains any new tasks that join the system. Heap R[t] contains those subtasks that have

PF-windows beginning at time t. The array S indicates the set of tasks that have been chosen for execution at

time t, and n denotes the number of such tasks.

At any instant, if fewer than M subtasks are eligible, then the scheduler does the following: (i) makes all

subtasks in Q ready, i.e., assigns H := Q (line 17 of PDQ); (ii) removes the array of heaps R (line 20); and (iii)

selects for execution h subtasks, where h is the number of idle processors (lines 22–27). Rule A is implemented

by lines 3–15 of Update as follows. Let Ti be the subtask of T mentioned in the quick-release rules that has a

deadline after u+ 1, where Rule A is applied at u, and let Tk be its successor. If there is no hole in slot t, where

Ti is scheduled (which would be before slot u), then Tk is simply inserted into heap Q (line 5 of Update), where it

remains until it is either scheduled or a slot with a hole is encountered. (Q is ordered according to PD2 priorities

taking into account the offset for each subtask’s PF-window; we assume that the Insert routine takes this offset

as a parameter for insertion into a heap.) If slot t has a hole (in which case t = u), then Tk is inserted into Q

(lines 9 and 12 of Update) as well as into the appropriate release heap R[u] depending on whether T is (t+1)- or

(t + 2)-releasable at time t (lines 8, 11, and 16–18 of Update). Thus, whenever any subtask Ti is scheduled, its

successor subtask Tk is inserted into Q as well as R[t′] where t′ = r(Tk) (line 5 of Requeue; note that r(Tk) may

have been unchanged by the quick-release rules, or changed as shown in lines 8 and 11 of Update).

9

variables
H: priority-ordered heap of tasks;
R: array [0..∞] of priority-ordered heap of tasks;
Q: priority-ordered heap of tasks;
J : priority-ordered heap of tasks;
T : task;
S: array [1..M] of task;
t: integer;
r′: integer;
r: integer;
n: integer;
k: integer

Update(T : task, t: integer)
1: r := T ’s current release;
2: r′ := T ’s next release;
3: if T ’s current deadline is greater than t + 1 then
4: if t has no hole then /∗ refer to line 15 in PDQ ∗/
5: Insert(Q, T , max(0, r + x(T)− t))
6: else if T is light then
7: if T ’s previous deadline is at most t then
8: r′ := min(r′, max(t + 1, r + x(T)));
9: Insert(Q, T , r′ − t)
10: else if T ’s previous deadline is at t + 1 then
11: r′ := min(r′, max(t + 2, r + x(T)));
12: Insert(Q, T , r′ − t)
13: fi
14: fi
15: fi;
16: Update T ’s next release to be r′;
17: Update T ’s deadline, b-bit, and group deadline fields;
18: Requeue(T , r′)

Requeue(T : task, t: integer)
1: if R[t] does not exist then
2: R[t] := MakeHeap()
3: fi;
4: Determine T ’s priority at time t;
5: Insert(R[t], T , 0)

Algorithm PDQ

1: H := MakeHeap();
2: Q := MakeHeap();
3: R := MakeHeapArray();
4: t := 0;
5: when next time slot begins do
6: H := Merge(H, J);
7: free(J);
8: n := 0;
9: while n < M and H is non-empty do
10: T := ExtractMin(H);
11: Delete(Q, T);
12: Schedule task T in slot t;
13: S[n] := T ;
14: n := n + 1
15: od;
16: if n < M then /∗ there is a hole in slot t ∗/
17: H := Q;
18: free(Q);
19: Q := MakeHeap();
20: free(R);
21: R := MakeHeapArray();
22: while n < M and H is non-empty do
23: T := ExtractMin(H);
24: Schedule task T in slot t;
25: S[n] := T ;
26: n := n + 1
27: od
28: fi;
29: k := n;
30: while k > 0 do
31: Update(S[k], t);
32: k := k − 1
33: od;
34: if R[t + 1] is non-empty then
35: H := Union(H, R[t + 1])
36: fi;
37: t := t + 1
38: od

Figure 5: Implementation of the PDQ scheduling algorithm.

4 Correctness of PDQ

Before continuing, we introduce some terminology that we use in the rest of the paper.

Terminology. We use the term AB-GIS task system to refer to GIS task system with subtask releases that are

modified according to Rules A and B. We use the term AC-GIS task system to refer to a GIS task system with

subtask releases that are modified according to Rule A and Rule C as follows.

Rule C: e(Tk) may be assigned any value in [t+ 1, r(Tk)].

In other words, in an AC-GIS task system, subtask deadlines are left-shifted when a slot with a hole in encountered,

but the idle capacity in that slot is not utilized.

An instance of a task system is obtained by specifying a valid release time and eligibility time for each subtask.

Note that the deadline of a subtask is automatically determined once its release time is fixed (refer to (2)). We

10

0 2 3 4 5 6 71 0 2 3 4 5 6 71

T1

T2

T3 T3
T2

U1

U2

U3

V1

V2 V2

U1

U3

T1

V3 V3

U2

1W

V1

(b)(a)

a hole

W1

2 holes

leads to the following

chain of displacements.

ask T

ask U

ask V

ask W

Removing subtask

, 0, , 11VT1

, 1, 1 , 22UV

, 2, 2 , 31WU

Figure 6: A schedule for three tasks of weight 3/7 and one task of weight 1/7 on two processors. Only subtasks T2 and
U2 are eligible before their PF-windows. Inset (b) illustrates the displacements caused by the removal of subtask T1 from
the schedule shown in inset (a).

say that an algorithm correctly schedules a task system instance if it ensures that all subtask deadlines are met.

Proof overview. We prove that PDQ correctly schedules any AB-GIS task system in two steps.

Step 1: If PDQ correctly schedules any AC-GIS task system, then it correctly schedules any AB-GIS task system.

Step 2: PDQ correctly schedules any AC-GIS task system.

In Step 1, we show that applying Rule B instead of Rule C cannot cause a missed deadline. In Step 2, we prove

that an assumption to the contrary leads to a contradiction. In particular, we start with an AC-GIS task system

τ that misses a deadline under PDQ. We then convert it into a dynamic GIS task system that satisfies (J) and

(L) and yet misses a deadline under PD2. Thus, we obtain a contradiction of Theorem 1.

In transforming one schedule to another, we need to consider task systems obtained by removing subtasks

from τ . We now present certain results about subtask removals that are used in our proofs.

Displacements. By definition, the removal of a subtask from one instance of a GIS (or an AC-GIS) task system

results in another valid instance. Let X(i) denote a subtask of any task in a GIS task system τ . Let S denote

any schedule of τ obtained by an EPDF-based algorithm. Assume that removing X(1) scheduled at slot t1 in S

causes X(2) to shift from slot t2 to t1, where t1 �= t2, which in turn may cause other shifts. We call this shift

a displacement and denote it by a four-tuple 〈X(1), t1,X
(2), t2〉. A displacement 〈X(1), t1,X

(2), t2〉 is valid iff

e(X(2)) ≤ t1. Because there can be a cascade of shifts, we may have a chain of displacements, as shown in Fig. 6.

The lemmas below concern displacements and holes, and are proved in [14]. Though these were proved in the

context of GIS task systems, they apply to AC-GIS task systems as well. Lemma 1 states that a subtask removal

can only cause left-shifts, as in Fig. 6(b). Lemma 2 indicates when a left-shift into a slot with a hole can occur.

Here, S denotes a schedule for a task system τ obtained by an EPDF-based algorithm (such as PD2 and PDQ).

11

t−2t−3 t+2t+1 t+3 t+4 t+5t−1 t t+6 t−2t−3 t+2t+1 t+3 t+4 t+5t−1 t t+6

Ti+1

Uj+1

Uj

Ti+1

Uj

VkVk

Ti−1 Ti−1

Ti

Vk+1 Vk+1

Ti

Uj+1

(a)

hole

(b)

is removed

Figure 7: (a) There is a hole in slot t and Rules A and B are applied to tasks T , U , and V , as shown. T is (t+2)-releasable
at t, while U and V are (t+1)-releasable. Uj+1 is scheduled in slot t. (b) The schedule resulting after removing Uj+1 and
changing the eligibility time of Vk+1 to t+1. No subtask can shift from t′ ≥ t+1 into slot t. Thus, there is a hole in slot t.

Lemma 1 Let X(1) be a subtask that is removed from τ , and let the resulting chain of displacements in S be

C = ∆1,∆2, . . . ,∆k, where ∆i =〈X(i), ti, X(i+1), ti+1〉. Then ti+1 > ti for all i ∈ {1, . . . , k}.

Lemma 2 Let ∆ = 〈X(1), t1,X
(2), t2〉 be a valid displacement in S. If t1 < t2 and there is a hole in slot t1 in

that schedule, then X(2) is X(1)’s successor in τ .

4.1 Step 1

Lemma 3 If PDQ correctly schedules all feasible AC-GIS task systems, then it correctly schedules all feasible

AB-GIS task systems.

Proof: We transform an AB-GIS task system instance τ to a corresponding AC-GIS task system instance τ ′ by

applying two modifications: (i) if the PF-window of any subtask is left-shifted by Rule A due to a hole in slot t,

and it is scheduled in slot t, then such a subtask is removed; (ii) if the PF-window of any subtask is left-shifted

by Rule A due to a hole in slot t, and it is not scheduled in slot t, then Rule C is applied to it instead of Rule B.

Fig. 7 illustrates these modifications. Since Rules A and C are applied, τ ′ is an AC-GIS task system. Further,

because these modifications affect only the subtasks that are early-released and also scheduled where there was

a hole, the rest of the schedule remains the same. Thus, τ would miss a deadline under PDQ if and only if τ ′

would. Hence, if PDQ correctly schedules τ ′, then it correctly schedules τ as well. ✷

4.2 Step 2

Lemma 4 PDQ correctly schedules any AC-GIS task system.

Proof: We prove Lemma 4 by contradiction. We start with the assumption that PDQ misses a deadline for

some AC-GIS task system instance τ , and then inductively transform τ to a dynamic GIS task system instance

12

τ ′ that satisfies (J) and (L), and misses a deadline under PD2. During this transformation, we produce several

intermediate schedules in which all subtask releases up to a certain time are in accordance with the definition of

a GIS task system. To facilitate this, we call a schedule t-GIS-compliant if all subtask releases that are at most

t satisfy (2) and (3).

Let td be the earliest time at which a deadline is missed by any AC-GIS task system instance under PDQ.

Let τ be an AC-GIS task system instance that misses a deadline at td, and let S be its PDQ schedule. Without

loss of generality, we assume that τ satisfies the following property.

for every subtask Ti in τ , e(Ti) = min(r(Ti), t), (4)

where t is the time at which Ti is scheduled in S. If e(Ti) < r(Ti), and if Ti is scheduled at t < r(Ti), then this

assumption has the effect of redefining e(Ti) to be t. This does not affect the schedule produced by PDQ.

Before continuing with the proof of Lemma 4, we first establish the following.

Lemma 5 Suppose that S is t-GIS-compliant and there is a hole in slot t. Let Uj be a subtask in τ that is

scheduled at or before t such that d(Uj) > t + 1. Then Uj can be removed from τ without causing the missed

deadline at time td to be met.

Proof: Let τ ′ be the task system instance obtained by removing Uj from τ , and let S′ be its PDQ schedule.

Let the chain of displacements caused by removing Uj be ∆1,∆2, . . . ,∆k, where ∆i = 〈X(i), ti, X
(i+1), ti+1〉,

X(1) = Uj , and t1 is the time at which Uj is scheduled in S. (Note that by the statement of the lemma, t1 ≤ t.)

By Lemma 1, ti+1 > ti for all i ∈ [1, k]. Note that at slot ti, the priority of subtask X(i) is higher than the

priority of X(i+1), because X(i) was chosen over X(i+1) in S. Thus, because X(1) = Uj , by the statement of

the lemma, we have the following: for each subtask X(i), i ∈ [1, k + 1], d(X(i)) > t + 1. Therefore, by (2) and

(3), the property (X) stated below follows. This property holds even if the successor subtask X(i,succ) has been

quick-released, because S is t-GIS-compliant (hence, all subtask releases up to time t satisfy (2) and (3)).

(X) For all i ∈ [1, k + 1], if X(i,succ) is the successor subtask of X(i), then r(X(i,succ)) ≥ t+ 1.

We now show that the displacements do not extend beyond slot t, which implies that a deadline is still missed

at td in S′, as required. Suppose that these displacements do extend beyond slot t, i.e., tk+1 > t. Let h be the

smallest i ∈ [2, k + 1] such that ti > t. Since t1 ≤ t, we have th−1 ≤ t. Further, because ∆h−1 is valid,

e(X(h)) ≤ th−1. (5)

Now, if th−1 < t, then by the above expression, X(h) is eligible at t. Because there is a hole in slot t, this implies

that X(h) should have been scheduled at t in S instead of later at th. Therefore, th−1 = t. (Refer to Fig. 8.)

13

t(=)h−1
ht1t ht1t . . .

. . .

X (h−1)

. . .

hole

. . .

X

X

(2)

(h)

t t+1+1 +1

Figure 8: Lemma 5. X(h) must be the successor of X(h−1) because there is a hole in slot t.

Because there is a hole in slot t, by Lemma 2, X(h) is the successor of X(h−1). Thus, by (X), r(X(h)) ≥ t+1.

Because X(h) is scheduled in slot th and th > t, by (4), we have e(X(h)) ≥ t + 1 > th−1. This contradicts (5).

Thus, no subtask scheduled after t can get left-shifted, and hence, a deadline is still missed at td in S′. ✷

Proof of Lemma 4 (continued): We now show by induction that a td-GIS-compliant schedule exists in which

a deadline is missed at td, contradicting Theorem 1.

Base case. Because any schedule is 0-GIS-compliant, S is 0-GIS-compliant.

Induction step. We assume that S is t-GIS-compliant and prove that a (t+ 1)-GIS-compliant schedule exists

that also has a missed deadline at time td. If all subtask releases at time t+1 are in accordance with (2) and (3),

then S is (t+1)-GIS-compliant. Otherwise, there exists a subtask for which Rule A is applied, and its PF-window

has been shifted to begin at t+ 1. Therefore, corresponding to this quick-release, there exists a slot u ∈ [0, t+ 1)

with a hole, and a task T that is (u+ 1)- or (u+ 2)-releasable at u. (Because we are using Rule C, the hole at u

is not eliminated by quick releasing.) Let Ti be the subtask of T mentioned in the quick-release rules that has a

deadline after u+ 1, i.e.,

d(Ti) > u+ 1. (6)

Let Tk be the successor subtask of Ti that has its PF-window shifted to t+1. We consider two cases depending on

whether T is (u+2)- or (u+1)-releasable at u. (In the former case, t+1 ≥ u+2, and in the latter, t+1 ≥ u+1.)

Case 1: T is (u+ 2)-releasable at u. In this case, by definition, T is light, Ti is scheduled in slot u, and Ti’s

predecessor has a deadline at time u+ 1. By Lemma 5, Ti can be removed without causing the missed deadline

at td to be met.

We construct τ ′ from τ by creating two new tasks U and V with the same weight as T as follows: U leaves

14

t−2t−3t−4 t+2t+1 t+3 t+4 t+5t−1 t t−2t−3t−4 t+2t+1 t+3 t+4 t+5t−1 t

Ti−1

Ti
Ui−1

V1Ti+1

(a) (b)

Task V
joins at

Removed

Task U
leaves at
time t+1

time t+1

hole hole

Figure 9: There is a hole in slot t − 1. (a) Case 1 in the proof of Lemma 4. Task T is (t + 1)-releasable at t − 1. Ti−1,
Ti, and Ti+1 are assumed to be consecutive subtasks of T (no subtasks are missing). (b) The new task system obtained
by breaking task T into two tasks U and V .

the system at time u + 2, and V joins the system at r(Tk), which equals t + 1, by assumption. (Recall that

t+ 1 ≥ u+ 2.) Further, U consists of all subtasks of T (if any) up to Ti’s predecessor, and V consists of all the

subtasks of T after Ti. In other words, τ ′ is obtained by removing Ti from τ . (Fig. 9 illustrates this for u = t−1.)

Since wt(V) = wt(T), V satisfies the join condition (J). Because T is light and Ti’s predecessor has a deadline

at u+1, by (L), T can be allowed to leave at time u+2. Thus, U satisfies the leave condition (L). In other words,

all subtask releases of U and the first subtask release of V (trivially) are in accordance with (2) and (3).

Case 2: T is (u+ 1)-releasable at u. In this case, either Ti is scheduled before u or it is scheduled in slot u,

and its predecessor subtask Tj has a deadline at or before u. Therefore, by Lemma 5, Ti can be removed without

causing the missed deadline at td to be met.

As in Case 1, we construct a new task system instance τ ′ from τ by creating two new tasks U and V with the

same weight as T as follows: U leaves the system at time u + 1, and V joins the system at r(Tk), which again

equals t+ 1. (Recall that t+ 1 ≥ u+ 1.) U consists of all the subtasks of T (if any) up to Ti’s predecessor, and

V consists of all the subtasks of T after Ti. As in Case 1, V satisfies the join condition (J); we now show that U

satisfies the leave condition (L).

Claim 1 Task U satisfies the leave condition (L).

Proof of Claim: Because T is (u+1)-releasable at time u, there are two possibilities: either (i) Ti is scheduled

before slot u, or (ii) Ti is scheduled in slot u, and its predecessor has a deadline at or before u. If (i) holds, then

r(Ti) < u ≤ t, which, by (2), (3), and the fact that S is t-GIS compliant, implies that d(Tj) ≤ u for all j < i.

Thus, under both possibilities, the last-scheduled subtask of task U before time u has a deadline at or before

u. If U is light, then by (L), U can be allowed to leave at time u+ 1.

Because r(Ti) < u and d(Ti) > u+ 1 (by (6)), the length of Ti’s PF-window is at least three. Therefore, if T

is heavy and Tj is Ti’s predecessor in τ (if its predecessor exists), then D(Tj) ≤ u+ 1. Hence, by (L), task T can

be allowed to leave at time u+ 1. Thus, U satisfies (L). This concludes the proof of Claim 1. ✷

15

By Claim 1, T can be broken up into two tasks U and V that satisfy (L) and (J), respectively, and this

modification ensures that all subtask releases of U and V until time t+1 satisfy (2) and (3). Further, a deadline

is still missed at time td. This concludes Case 2.

Repeating this argument for all subtasks that have their PF-windows shifted (by Rule A) to begin at t + 1,

we can obtain a schedule that is (t+ 1)-GIS-compliant. Therefore, by induction, there exists a td-GIS-compliant

schedule that misses a deadline at td. This contradicts Theorem 1. Hence, τ and td cannot exist. This completes

the proof of Lemma 4. ✷

By Lemmas 3 and 4, we have the following theorem.

Theorem 2 PDQ correctly schedules any AB-GIS task system.

Consider a task that is always eligible to execute over an interval [0, t), i.e., it is backlogged throughout that

interval. Note that the Pfair deadline of a subtask Ti is determined based on wt(T). Under QRfair scheduling,

Rules A and B only cause these deadlines to be shifted left. Because, under Pfair scheduling, T is guaranteed a

share of �wt(T)× t� over [0, t), PDQ provides the same guarantee. Thus, by Theorem 2, we have the following.

Theorem 3 If a task T is backlogged throughout the interval [0, t), then PDQ guarantees T a share of at least

�wt(T)× t� over the interval [0, t).

5 Enforcing Maximum Weights

In the previous section, we showed that if there is a hole at slot t, then each task’s next subtask window could

be left-shifted to begin as early as time t + 1 or t + 2 (if the window would otherwise begin later). However, if

every subtask of a task is always left-shifted as aggressively as possible, then such a task may be allocated more

processing capacity than it can use. Such overallocations can be avoided by specifying a maximum weight for each

task, which indicates the maximum amount of processing capacity that it can use. The weight wt(T) considered

earlier can then been seen as specifying a minimum weight for task T .

Fortunately, incorporating maximum weights within PDQ is not difficult. Rule A given earlier requires that a

minimum separation between subtask releases of the same task be respected. To ensure that a task is not over-

allocated, we simply have to control left-shifts in a manner that ensures that the separation between consecutive

subtask deadlines of that task is in keeping with its maximum weight. It can be shown that a task of a given

weight has windows of at most two different lengths. For example, the task in Fig. 3 has windows of length two

and three. Thus, there are at most two different window lengths associated with a given maximum weight. The

minimum separation between a task’s subtask deadlines can therefore be defined by using a constant separation

16

as defined by either the (i) smaller or (ii) larger window length associated with its maximum weight (if there is

only one such length, then these two rules converge); or (iii) by using the actual sequence of windows defined by

its maximum weight. Using Method (i), a task’s actual allocation may be slightly more than that defined by its

maximum weight. Using Method (ii), it may be slightly less. Method (iii) will result in a more accurate allocation,

but it requires more computational overhead. To handle boundary conditions when implementing Methods (ii)

and (iii), a subtask’s separation parameter must actually be defined as the minimum of the separation defined by

its minimum weight and that described above (otherwise, the task’s allocation rate might occasionally dip below

that defined by its minimum weight). If maximum weights should never be exceeded, then Method (ii) must be

used. For this method, we have the following counterpart of Theorem 3. (Due to certain pathological cases, which

for lack of space we do not describe, this theorem may not always hold for Methods (i) and (iii).)

Theorem 4 If maximum weights are enforced using Method (ii) and Rule A (i.e., subtasks are not early released),

and if a task T is backlogged throughout the interval [0, t), then PDQ guarantees T a share of at most �maxwt(T)×t�
over the interval [0, t), where maxwt(T) is the maximum weight of T .

Defining useful maximum weights. If the sum of all maximum weights exceeds M (the number of proces-

sors), then the capacity allocated to some tasks may be very near their maximum weights, while others may be

much less (although the capacity allocated to each task will be at least that defined by its minimum weight). Such

a situation is not in keeping with the principle of fairness. The likelihood of unfair allocations can be reduced

by specifying an effective maximum weight (or effective max, for short) for each task so that the sum of all such

weights is less than M . The effective max of a task gives the maximum rate at which it can execute, given the

current load of the system. Such an effective max can be calculated using the formula

effective max of task T = wt(T) +
M −W

X −W
· (maxwt(T)− wt(T)), (7)

where W is the sum of all minimum task weights, X is the sum of all actual (not effective) maximum task

weights, maxwt(T) is the actual maximum weight for task T , and wt(T) is the minimum weight for task T . If

X ≥ M , then M −W ≤ X−W , and hence, this definition ensures that no task will exceed its maximum weight.3

Further,
∑

T

(
wt(T) + M−W

X−W · (maxwt(T)− wt(T))
)
= W + (M −W) · X−W

X−W , which simplifies to M . Thus, the

sum of all effective maxes is exactly M . It is also clear from the formula that a task’s effective max is at least

its minimum weight. (This is why the simpler formula (M/X) · maxwt(T) may not always work.) Although

other methods could be used for calculating effective maxes, this is the one used in the experiments presented

3If effective maxes are used when X < M , then a task’s effective max will be at least its actual maximum weight. This is really
not a problem, however, because the system is underutilized anyway.

17

in the next section. The results presented there indicate that fair allocations result when using effective maxes

defined in this way. An additional advantage is that effective maxes so defined can be efficiently maintained. In

particular, the right-hand-side of Equation (7) can be re-written as X−M
X−W ·wt(T) + M−W

X−W ·maxwt(T). Since the

coefficients of wt(T) and maxwt(T) are the same for all tasks, they can be updated globally in O(1) time as the

workload changes. With these coefficients, a task’s effective max can be computed in O(1) time.

A different definition of an effective max has been given previously by Chandra et al. [8]. In their definition, all

actual maximum weights are assumed to be unity. This is obviously quite limiting because tasks can easily exist

in practice that cannot make use of the entire capacity of a single processor. In work on elastic scheduling [7],

non-unity maximum weights were considered, but this work (as presented) pertains only to uniprocessors.

6 Experiments

To empirically evaluate PDQ, we conducted a number of simulations. Each simulated system consisted of eight

processors, and 100 randomly-weighted light tasks, each with a light minimum weight and a possibly-heavy

maximum weight. Each system was simulated for 30,000 time steps. In enforcing maximum weights, Method (iii)

in Sec. 5 was used. Effective maxes were used as maximum weights and determined using Equation (7). One way

of evaluating PDQ is by comparing its allocations to that of an ideal scheduler. In each time slot, such an ideal

scheduler schedules each eligible task for a fraction of a quantum that is equal to its effective max.

The first experiment was conducted to determine the fraction of its ideal allocation that each task receives

under PDQ. We refer to this fractional value as an allocation ratio. Fig. 10(a) shows the allocation ratios for

one randomly-generated task set. In this figure, such a ratio is plotted for each of the 100 tasks in the task set.

A ratio of one means that the corresponding task received exactly the amount of processing time that it should

have received according to the ideal scheduler (over all 30,000 time steps). As can be seen, tasks ranged from

being underallocated by 3% to being overallocated by 4% (relative to its effective max).

To confirm that these results were typical, we randomly generated three hundred different task sets and

computed the average value by which a task is underallocated. Specifically, this value was computed for each

task set by averaging the allocation ratios of all underallocated tasks in that task set. The results are shown in

Fig. 10(b). In this graph, the x-axis ranges over all 300 task sets. As this graph shows, no system had an average

underallocation of more than 3.5%. Furthermore, in most systems, this average was between 1% and 2%.

To determine the effectiveness of PDQ in a dynamic system, we simulated a number of systems in which

tasks leave and join dynamically. Insets (c) and (d) of Fig. 10 depict results pertaining to one such system. In

this system, there were 97 dynamic tasks and three initially-present static tasks. Each dynamic task joined the

18

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0 20 40 60 80 100

F
ra

ct
io

n
A

bo
ve

/B
el

ow

Tasks

Fraction Above/Below Ideal (Ideal = 1)

Fraction

(a)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300

F
ra

ct
io

n
B

el
ow

 Id
ea

l

Schedule

Average Fraction Below Ideal Schedule for 300 Unique Schedules

Fraction

(b)

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000 25000 30000

T
ot

al
 P

ro
ce

ss
or

 T
im

e
A

llo
ca

te
d

Time

Three tasks with dynamic leaves/joins

Ideal3
QRfair3

Ideal2
QRfair2

Ideal1
QRfair1

(c)

150

200

250

300

350

400

450

500 520 540 560 580 600

T
ot

al
 P

ro
ce

ss
or

 T
im

e
A

llo
ca

te
d

Time

Three tasks with dynamic leaves/joins

Ideal3
QRfair3

Ideal2
QRfair2

Ideal1
QRfair1

(d)

Figure 10: Simulation results.

system at some randomly-selected time, and then left at a later randomly-selected time. The graph in Fig. 10(c)

depicts the allocations of the three static tasks as a function of time. The graph actually depicts both the PDQ

and ideal allocation for each of these tasks. However, these allocations almost coincide for each task, so it is

difficult to see that six curves have actually been plotted. The graph in Fig. 10(d) depicts a magnified view of

the graph in Fig. 10(c) over the time interval [500, 600]. Even in this view, the difference between the PDQ and

ideal allocations is very small. This experiment was repeated a number of times with other task sets, and similar

results were obtained each time. Unfortunately, we cannot present these other results due to space limitations.

The next experiments presented here were conducted to compare PDQ to ER scheduling, which penalizes

tasks for having used spare capacity in the past. The results from two such experiments are shown in the two

graphs in Fig. 11(a)-(b). As before, each system consisted of three initially-present static tasks, and 97 dynamic

tasks. In the experiment depicted in Fig. 11(a), each dynamic task joined at some randomly-selected time (and

did not leave). In that depicted in Fig. 11(b), each such task joined at time 15,000 (and did not leave). To

avoid clutter, we have only depicted in each graph the allocations for one of the static tasks. (The curves for

19

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000 15000 20000 25000 30000

T
ot

al
 P

ro
ce

ss
or

 T
im

e
A

llo
ca

te
d

Time

Comparison of ERfair and QRfair Scheduling (Random Joins)

Ideal1
QRfair1
ERfair1

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5000 10000 15000 20000 25000 30000

T
ot

al
 P

ro
ce

ss
or

 T
im

e
A

llo
ca

te
d

Time

Comparison of ERfair and QRfair Scheduling (97 tasks join at time 15000)

Ideal1
QRfair1
ERfair1

(b)

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000 30000

T
ot

al
 P

ro
ce

ss
or

 T
im

e
A

llo
ca

te
d

Time

Using Actual Max

Ideal2
Effective2

Max2
Max1

Ideal1
Effective1

(c)

Figure 11: Simulation results (continued).

the other tasks show similar trends.) Three curves have been plotted in each graph, showing the depicted task’s

PDQ allocation, its ER allocation, and its ideal allocation. As before, the ideal allocation in each case so closely

coincides with the PDQ allocation that it is hard to discern that there are actually three curves in each graph.

It can be seen that the use of only ER scheduling to utilize spare capacity results in underallocation. This is

due to the problems with ER scheduling noted before. As before, a number of other experiments were conducted

showing similar results, but these other results have been omitted due to space constraints.

Our final experiment illustrates the importance of using effective maxes instead of actual maximum weights if

the latter results in an overutilized system and fairness is a concern. The graph in Fig. 11(c) depicts the allocations

of two tasks as a function of time. The graph shows the allocations of each task under an ideal scheduler and

under PDQ, using actual maximum weights and effective maxes. At time 15,000, half of the tasks drop their

rates in half. This information is not conveyed to the PDQ scheduler (that is, this change is not registered by

having these tasks leave with their old weights and then re-join with new weights); however, we assume that it

20

is conveyed to the ideal scheduler. Two behaviors can be observed. First, PDQ does not respond to the change

when effective maxes are used. Second, even though PDQ is responsive when actual maximum weights are used,

it is significantly unfair : task 1 receives substantially more processor time then in the ideal schedule, while task 2

receives substantially less. Note that if such a rate change were registered with the scheduler, then new effective

maxes could be computed, and PDQ would then more accurately track the ideal scheduler. As before, a number

of experiments showing similar results were performed that are not reported here.

In all experiments that we conducted in which effective maxes were used and dynamic changes were registered

with the scheduler, PDQ and ideal allocations were virtually indistinguishable. While more work is needed to

thoroughly evaluate PDQ, this evidence suggests that PDQ performs remarkably well in allocating spare capacity.

7 Conclusions

In this paper, we have introduced a new notion of multiprocessor fairness, called quick-release fair scheduling, in

which spare processing capacity is allocated without penalizing tasks for having used spare capacity in the past.

We have also presented a quick-release scheduling algorithm, PDQ, and have formally proved it correct. This

algorithm has the same asymptotic time complexity as the most efficient Pfair scheduling algorithm currently

known. To the best of our knowledge, PDQ is the first fair multiprocessor scheduling algorithm, with provable

properties concerning the allocation decisions it makes, that supports both minimum and maximum task weights.

Moreover, unlike prior work, we have not required all maximum weights to be unity.

The results of this paper give rise to several questions that warrant further investigation. For example, it

would be interesting to consider other ways of defining maximum weights, as well as efficient mechanisms for

maintaining such weights as the workload changes. In addition, the performance results presented in the previous

section suggest that the allocations made by PDQ when using our definition of an effective max very closely track

those that would be made by an ideal scheduler. This gives rise to the possibility that PDQ may have provable

lag bounds. While such bounds may be quite difficult to obtain, they certainly warrant further research.

References

[1] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceedings of the 12th Euromicro Conference on

Real-Time Systems, pages 35–43, June 2000.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. In Proceedings of the

13th Euromicro Conference on Real-Time Systems, pages 76–85, June 2001.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation.

Algorithmica, 15:600–625, 1996.

21

[4] S. Baruah, J. Gehrke, and C.G. Plaxton. Fast scheduling of periodic tasks on multiple resources. In Proceedings of

the 9th International Parallel Processing Symposium, pages 280–288, April 1995.

[5] S. Baruah, J. Gehrke, C.G. Plaxton, I. Stoica, H. Abdel-Wahab, and K. Jeffay. Fair on-line scheduling of a dynamic

set of tasks on a single resource. Information Processing Letters, 64(1):43–51, October 1997.

[6] J. Bennett and H. Zhang. WF2Q: Worst-case fair queueing. In Proceedings of IEEE INFOCOM’96, pages 120–128,

March 1996.

[7] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In Proceedings of the 19th IEEE

Real-time Systems Symposium, pages 286–295, December 1998.

[8] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus fair scheduling: A proportional-share CPU scheduling

algorithm for symmetric multiprocessors. In Proceedings of the Fourth Symposium on Operating System Design and

Implementation (OSDI 2000), pages 45–58, October 2000.

[9] A. Chandra, M. Adler, and P. Shenoy. Deadline fair scheduling: Bridging the theory and practice of proportionate-

fair scheduling in multiprocessor servers. In Proceedings of IEEE Real-time Technology and Applications Symposium,

pages 3–14, June 2001.

[10] S.J. Golestani. A self-clocked fair queueing scheme for broadband applications. In Proceedings of IEEE INFOCOM

’94, pages 636–646, April 1994.

[11] P. Goyal, H. Vin, and H. Cheng. Start-time fair queuing: A scheduling algorithm for integrated services packet

switching networks. In Proceedings of ACM SIGCOMM’96, pages 157–168, August 1996.

[12] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time environment. Technical Report

MIT/LCS/TR-297, Massachusetts Institute of Technology, 1983.

[13] A. K. Parekh. A Generalized Processor Sharing Approach To Flow Control in Integrated Services Networks. PhD

thesis, MIT, 1992.

[14] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In Proceedings of the 34th ACM

Symposium on Theory of Computing, pages 189–198, May 2002.

[15] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on multiprocessors. In Proceedings of the

11th International Workshop on Parallel and Distributed Real-Time Systems, April 2003.

[16] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and C.G. Plaxton. A proportional share resource allocation

algorithm for real-time, time-shared systems. In Proceedings of the 17th IEEE Real-Time Systems Symposium, pages

288–299, 1996.

22

