On the Implementation of Global Real-Time Schedulers*

Bjorn B. Brandenburg and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

An empirical study of implementation tradeoffs (choice of
ready queue implementation, quantum-driven vs. event-
driven scheduling, and interrupt handling strategy) affect-
ing global real-time schedulers, and in particular global
EDF, is presented. This study, conducted using UNC'’s
Linux-based LITMUS®T on Sun’s Niagara platform, sug-
gests that implementation tradeoffs can impact schedula-
bility as profoundly as scheduling-theoretic tradeoffs. For
most of the considered workloads, implementation scalabil-
ity proved to not be a key limitation of global EDF on the
considered platform. Further, a combination of a paral-
lel heap, event-driven scheduling, and dedicated interrupt
handling performed best for most workloads.

1 Introduction

The advent of multicore systems has resulted in renewed
interest in real-time multiprocessor scheduling algorithms.
In work on this topic, scheduling-theoretic issues have re-
ceived the greatest attention. By comparison, only little at-
tention has been devoted to the actual implementation of
such algorithms within real OSs on real hardware, and con-
sequently, only little is known about how implementation
tradeoffs impact schedulability. This is surprising, as it is
well established that such tradeoffs play a crucial role in
real-time performance on uniprocessors [16].

In light of recent algorithmic research, a particularly rel-
evant case in point is global scheduling algorithms, which
use a single shared ready queue. Very little guidance can
be found in the literature concerning how to best imple-
ment such algorithms. Should ready queues be imple-
mented as lists or heaps? Should sequential queues with
coarse-grained locking or parallel data structures be used?
Should the scheduler rely on periodic timer ticks or follow
an event-driven approach? On the surface, it may seem that
any of these choices are viable. However, is this really true?

In this paper, we present an evaluation of these and other
implementation tradeoffs as they arise in the implementa-
tion of a global earliest-deadline-first (G-EDF) scheduler.
We show that different implementation choices—all seem-

*Work supported by IBM, Intel, and Sun Corps., NSF grants CCF
0541056, and CNS 0615197, and ARO grant W91 1NF-06-1-0425.

ingly plausible “in theory”—can have dramatically differ-
ent effects on real-time schedulability.

Prior work. This is the third in a series of papers by
our group investigating fundamental questions concern-
ing the viability of supporting sporadic real-time work-
loads on SMP and multicore platforms under considera-
tion of real-world overheads. To facilitate this line of re-
search, our research group developed a Linux extension
called LITMUSRT (LInux Testbed for MUItiprocessor
Scheduling in Real-Time systems), which allows different
(multiprocessor) scheduling algorithms to be implemented
as plugin components [9, 13]. To the best of our knowl-
edge, LITMUSRT is the only (published) real-time OS in
which global real-time schedulers are supported.

In the initial study [9], Calandrino et al. evaluated sev-
eral well-known multiprocessor real-time scheduling algo-
rithms on a four-processor 2.7 GHz Intel Xeon SMP (not
multicore) platform. On this platform with few and fast pro-
cessors, relatively large, private L2 caches, and fast mem-
ory, each tested algorithm was found to be a viable choice
in some of the tested scenarios, and global algorithms ex-
celled at supporting soft real-time workloads.

In the second study [7], Brandenburg et al. explored
the relative scalability of different real-time schedulers
as implemented in LITMUS®T. To do so, they ported
LITMUSET to a radically different, and much larger, mul-
ticore platform: a Sun Niagara with 32 logical processors,
each with an effective speed well below 1 GHz.! On this
platform with many slow processors, a relatively small,
shared L2 cache, and slower memory, a decrease in the
competitiveness of G-EDF was noted, especially in the
presence of many tasks. Clearly, this study had uncovered
scalability limitations in that particular implementation of
G-EDF, but does this imply that G-EDF-like algorithms
are a “lost cause” on large multicore platforms? Could the
G-EDF plugin be significantly improved, and, in terms of
schedulability, would overhead reductions even matter?

Contributions. Both preceding studies [7, 9] considered
several scheduling algorithms, but only one implementa-
tion per algorithm. In stark contrast, the study presented
in this paper considers only one scheduling algorithm, G-

IEight 1.2 GHz cores with four hardware threads per core. A core’s
cycles are distributed among its hardware threads in a round-robin manner.

EDF, but twelve possible realizations of it, seven of which
were implemented and evaluated in LITMUSRT. The ob-
jective of this study was to determine which of these imple-
mentations are viable. Our major findings are as follows:
(i) implementation tradeoffs in global real-time schedulers
such as G-EDF affect schedulability significantly; (ii) there
is a “best” way to implement G-EDF that outperforms other
approaches in most cases; (iii) on our Niagara, which is a
large multicore platform by today’s standards, implementa-
tion scalability is not a key limitation of G-EDF.

In the sections that follow, we provide needed back-
ground (Sec. 2), describe the various implementation alter-
natives that we considered (Sec. 3), present our study and
findings (Sec. 4), and conclude (Sec. 5).

2 Background

We consider the problem of scheduling n independent®
real-time tasks 74,...,7, on m identical processors
Py, ..., P,,. LITMUSRT supports sporadic tasks with im-
plicit deadlines,’ wherein each task Tj is specified by its
worst-case execution time e; and its period p;. The 7 job
of T;, denoted T/ and released at 1~/ (where 7/ > 7/~ +4p;),
should complete by its deadline rg + p;, otherwise it is
tardy. Note that T’ ZJ being tardy does not alter rlj *1 but
Tij *1 cannot execute until Tij completes (tasks are se-
quential). T;’s utilization u; is given by e;/p;; the sum
> u; < m denotes the system’s rotal utilization. A job
is pending after its release until it completes.

To avoid confusion, we use the term “task” exclusively
to refer to sporadic tasks, and use the term “process” when
discussing OS implementation issues. In LITMUSRT, spo-
radic tasks are implemented as processes, and jobs are an
accounting abstraction managed by the kernel.

Scheduling. A hard real-time (HRT) system is considered
to be schedulable iff it can be shown that no job is ever
tardy. A soft real-time (SRT) system is considered (in this
paper) to be schedulable iff it can be shown that tardiness
is bounded.

We investigate G-EDF as a representative of the class
of global, preemptive, priority-driven, work-conserving
scheduling policies, i.e., all processors use a single shared
ready queue sorted by non-decreasing deadlines and jobs
(but not necessarily the OS!) can be preempted.

There are two fundamental ways to realize schedulers
(see [10, 16] for overviews):

S1 event-driven scheduling, wherein a job is scheduled

2While LITMUSRT supports real-time synchronization among tasks,
this study is focussed on synchronization requirements within the kernel.

3We expect the reader to be familiar with the sporadic task model; see
[10, 16] for an overview and relevant citations.

immediately when there are fewer than m higher-
priority* jobs pending (either upon release or when a
higher-priority job completes);

S2 quantum-driven scheduling, wherein real-time jobs
are only scheduled at integer multiples of a schedul-
ing quantum @) (hence, a job may be delayed by up to
@ time units before being scheduled).

Both approaches are illustrated in Fig. 1. Inset (a) shows
an ideal, event-driven schedule of three jobs on two pro-
cessors. The schedule is “ideal” in the sense that releases
and completions are processed immediately (and require no
processing time), and preemptions are enacted in zero time
across processors. For example, at time 6.5, T7' is released
on P, and immediately scheduled on P, without incurring
any delay. While unattainable in practice, most G-EDF
analysis assumes ideal, event-driven scheduling.

The same scenario in the ideal, quantum-driven case for
@ = 1 is shown in Fig. 1(b). Again, the system does
not incur overhead, but jobs are delayed when awaiting the
next quantum boundary. For example, 75 is released at
r3 = 1.5, but not scheduled until time 2 when the next
quantum starts. Similarly, the preemption on P> due to T}"’s
arrival at 7 = 6.5 does not take place until the start of the
next quantum at time 7. Note that some quanta may only
be partially used if jobs complete during a quantum (e.g.,
P; is partially idle for this reason in quantum [8,9)). Anal-
ysis assuming ideal, event-driven G-EDF scheduling can
be applied to ideal, quantum-driven scheduling by short-
ening periods by one quantum (to account for delays upon
release) and by rounding execution times up to a quantum
multiple (to account for partially-idle quanta) [10].

Historically, OSs have employed quantum-driven (or hy-
brid) designs to facilitate time keeping and reduce over-
head [16]; the first version of LITMUSET also followed
this approach [9]. The current version supports both event-
driven and quantum-driven scheduling.

LITMUSRT. As mentioned in Sec. 1, LITMUSFT is a
real-time extension of the Linux kernel.> The stock Linux
scheduler is organized as a static hierarchy of scheduling
classes: when the scheduler is invoked, each scheduling
class is queried in top-down order until a process to ser-
vice next is found. LITMUSRT installs its scheduling class
at the top of the hierarchy and hence overrides the stock
Linux scheduler whenever real-time work is pending.

The LITMUSRT scheduling class does not implement
any particular scheduling policy; instead it allows schedul-
ing policy plugins to be activated at runtime. All scheduling
decisions are delegated by invoking plugin-provided event

4We assume that priorities are unique, i.e., that deadline ties are broken
arbitrarily but consistently. LITMUSRT tie-breaks by lower task index.

5The current base version is Linux 2.6.24. We plan to rebase
LITMUSRET to the latest kernel version in the near future.

-
Pl @ e
Py 75 o T
IS I Y I B N B WA TN
0 3 r§ 5 T 10 15
b1
(a) P2
b3
| partially-used quantum |
Tl
Py [£ _ '
P, 7y @il
IS I Y I I B N B WA TN
0 r3 g 5 T 10 15
b1
(b) iz
b3
| release || schedule | |context switch|

t

RERTI
15

Figure 1: Example G-EDF schedules of three jobs (17, T, T3),
where (e;,p;)i = (2.5,8)1,(6,11)2, (6.5,12)3, on two proces-
sors (P1, P») illustrating delays introduced by quantum-driven
scheduling and system overheads. Large up-arrows denote in-
terrupts, small up-arrows denote job releases, down-arrows de-
note job deadlines, T-shaped arrows denote job completions, and
wedged boxes denote overheads (which are magnified for clar-
ity). Job releases occur at r3 = 1.5, r§ = 3.9, and r{ = 6.5.
(a) Event-driven schedule and (b) quantum-driven schedule with-
out overheads. (c¢) Event-driven schedule with overheads.

handlers, prominently among them the tick and sched-
ule handlers. The tick handler is invoked, on each pro-
cessor, each time a periodic timer interrupt occurs; this al-
lows quantum-driven polices to be implemented. A typical
tick period (i.e., quantum length) is one millisecond. The
schedule handler is invoked when traversing the sched-
uler class hierarchy to select the next process. Note that
a quantum-driven plugin will make use of both the tick and
schedule handlers—the tick handler assigns processes to
processors and determines if preemptions are required, and
the schedule handler, on each processor, enacts the de-
sired changes. This split is required because the schedule

handler, for technical reasons, must execute on the proces-
sor on which the preemption is to occur. In LITMUSRT s
event-driven plugins, the tick handler is usually only used
for bookkeeping and overrun detection.

As a boot-time option, LITMUS®T supports both
aligned and staggered quanta. With aligned quanta, the
per-processor tick interrupts are programmed to occur at
the same time on all processors, whereas with staggered
quanta, tick interrupts are spread out evenly across a full
quantum. Staggering quanta may reduce bus and lock con-
tention, but also delays job completions by up to @ - W
time units. This can be accounted for by shortening periods.

Overheads. In LITMUSRT, processes are delayed by six
major sources of overhead, four of which are illustrated in
Fig. 1(c). Release overhead is incurred while handling an
interrupt that releases a real-time job and involves making
the corresponding process available for execution. If a pre-
emption is required, then scheduling overhead is incurred
while selecting the next process to execute and re-queueing
the previously-scheduled process (which may be a back-
ground or the idle process). Context-switching overhead is
incurred while switching the execution stack and processor
registers. All three overhead sources occur in sequence in
Fig. 1(c) on processor P; at time 1.5 when 77 is released,
and again on P» at time 3.9 when TQy is released. A dif-
ferent scenario occurs at time 6.5 when 77 is released on
P;: release overhead is incurred on P; (where the inter-
rupt occurred), but scheduling and context-switching over-
head are incurred on P, where T preempts T3 (the lowest-
priority scheduled job). To initiate the required preemption,
P, sends an inter-processor interrupt (IPI) to P». Since IPIs
are not delivered instantly, 77" incurs additional /P! latency.

For the sake of clarity, Fig. 1(c) omits the two additional
sources of overhead. At the beginning of each quantum,
tick overhead is incurred on each processor when the pe-
riodic timer interrupt is handled. Note that tick overhead
also occurs, but to a lesser extent, under purely event-driven
plugins as the periodic tick can currently not be disabled
in Linux (while a process is executing). Preemption and
migration overhead account for any costs due to a loss of
cache affinity. Preemption (resp., migration) overhead is
incurred when a preempted job later resumes execution on
the same (resp., a different) processor.

Analysis that assumes ideal (i.e., overhead-free), event-
driven scheduling can be applied to real, overhead-
impacted systems by inflating per-task worst-case execu-
tion costs. Accounting for overheads that only occur ex-
actly before or after a job is scheduled is trivial as they
are, from an analysis point of view, equivalent to ex-
tended execution: each job causes scheduling and context-
switching overhead exactly twice [16], and causes preemp-

tion/migration overhead at most once.® Similarly, a job’s
completion time may be delayed by IPI latency and its own
release overhead.

However, accounting for release overhead due to other
jobs and tick overhead is more problematic as their occur-
rence is interrupt-based and hence not subject to G-EDF
scheduling [8]. For example, in Fig. 1(c), T is delayed
by release overhead at time 6.5 due to T7°’s release even
though T3 has higher priority than 77 . As the techniques
for multiprocessor interrupt accounting are somewhat in-
volved, a detailed discussion is unfortunately beyond the
scope of this paper; the interested reader is referred to [8].

Given the preceding discussion, we can now refine the
focus of this paper: we seek to understand how differences
in the implementation of global policy plugins affect run-
time overheads, and hence, after accounting for overheads,
real-time performance (in terms of “schedulability”—see
Sec. 4).

3 Plugin Implementation

Conceptually, a global scheduling policy implementation
consists of three main components: a release queue holds
not yet released jobs; a one-to-one processor mapping as-
sociates each of the currently-scheduled jobs with a proces-
sor; and pending jobs that are not currently scheduled are
kept, sorted by descending priority, in a shared ready queue.
Since these components are shared by all processors, the
way in which synchronization is provided strongly impacts
overheads. Next, we briefly describe some implementation
and synchronization choices for these components.

Release queue. A release queue is required for two rea-
sons: time-driven tasks (e.g., video display) require job
releases to occur at particular times, and interrupt-driven
tasks (e.g., sensor data acquisition) may have jobs triggered
“too early” after the last job release, i.e., the minimum job
separation may have to be enforced by the OS. In both
cases, a job must be made available for execution at a fu-
ture point in time. In a quantum-driven implementation,
the release queue can be implemented as a priority queue
or timer wheel [18] that is polled by the tick handler to
transfer all jobs with release times in the preceding quan-
tum to the ready queue. Alternatively, hardware timers can
be programmed to trigger future job releases with interrupts
if sufficiently high-resolution hardware timers are available.

As our test machines have such timers, LITMUSET fol-
lows the latter approach. However, instead of using a timer
for every job, our implementation uses a timer per release
time to avoid unnecessary overhead, i.e., if multiple job re-
leases coincide (e.g., on a hyperperiod boundary), then only

6Since jobs starting to execute do not have cache affinity, only the pre-
empted job (if any) must be considered.

one timer interrupt is required. Efficient timer sharing is
accomplished by looking up future release times in a hash
table. As a side effect, timer sharing enables the use of
mergeable queues (see below).

Processor mapping. Since scheduling and switching be-
tween processes takes time, the notion of when a job is
“scheduled” is not clear-cut. For example, consider a sce-
nario in which a job 77 is one of the m highest-priority jobs
when released, but a higher-priority job T,i arrives before
the context switch to Tij ’s implementing process is com-
plete. Now suppose that a third job 77 with priority less
than 77’s but higher than 7} ’s arrives concurrently on an-
other processor. Which job is “scheduled?” Is a preemption
required? Should an IPI be sent?

In our experience, relying on the OS’s notion of whether
a particular process is scheduled (i.e., is its stack in use?)
for assigning jobs to processors is both difficult and error-
prone, and tends to lead to priority inversions due to unan-
ticipated corner cases and race conditions.” Instead, in
LITMUSRT, we use the processor mapping to split job
scheduling, which is at the level of the sporadic model and
is only concerned with assigning abstract jobs to abstract
processors, from process scheduling, which is concerned
with address spaces, stacks, register sets, and other hard-
ware peculiarities.

This simplifies the real-time scheduling logic since any
processor’s job assignment can be updated on any proces-
sor by any event handler (in contrast to performing context
switches, which can be only done in one specific code path
on the target processor). Process scheduling is then reduced
to tracking which process should be executing based on the
current job-to-processor mapping; any delay in tracking is
captured by the various overhead terms.

Since the most common operation involving the proces-

sor mapping is to check whether a preemption is required,
which requires identifying the lowest-priority scheduled
job, the processor mapping is realized as a min-heap with
processors ordered by the priority of their assigned jobs (if
any—idle processors have the lowest priority).
Ready queue. In earlier versions of LITMUSRT, ready
queues were realized as ordered linked lists. Not surpris-
ingly, this simple approach did not scale well, and binomial
heaps were employed instead [7]. Binomial heaps were
chosen since they, together with timer sharing, support re-
leasing jobs with coinciding release times in O(logn) time
by means of a queue-merge operation.

However, since a binomial heap is a sequential data
structure, it suffers from two inherent weaknesses when
used as a shared queue on a multiprocessor: first, all ac-

TThis is especially true when jobs may self-suspend for short dura-
tions (due to blocking on semaphores or page faults, library loading, etc.).
However, handling self-suspensions is beyond the scope of this paper.

‘mas er queue.

Tocal queug] Tocal queue
P Iz

Figure 2: Illustration of hierarchical queues.

cesses must be synchronized through the use of a lock,
which is likely to incur high contention; and, second, ac-
cesses are likely to cause significant cache-coherency traffic
due to cache lines “bouncing” among processors.

To investigate the impact (if any) of these shortcom-
ings, we consider two alternate priority-queue designs in
this paper. With regard to lock contention, we implemented
Hunt ef al.’s concurrent heap [14, 15], which relies on
fine-grained locking to increase parallelism. To address
“cache line bouncing,” we implemented a simple hierarchi-
cal priority queue that relies on (mostly) local per-processor
queues to increase cache locality. The local queues con-
tain the bulk of the jobs, and the global queue only con-
sists of the highest-priority job on each processor (illus-
trated in Fig. 2). Under this scheme, insertion and merge
operations are always performed on the cache-local queue,
and an update of the global queue is only required if the
highest-priority job changes in the local queue. However,
removal of the highest-priority job from the global queue
may require non-cache-local updates. Obviously, this al-
gorithm is closely tied to the assumption that insertion and
merge operations are evenly distributed across processors.
(We used binomial heaps for both local and global queues.)

Another approach to avoiding lock contention is to em-
ploy non-blocking data structures, which allow accesses to
occur concurrently (see [14] for an overview and relevant
citations). We did not implement non-blocking priority
queues for this study since, to the best of our knowledge,
all such published algorithms only support bounded prior-
ity ranges (G-EDF requires unbounded priorities) or rely
on problematic techniques such as multi-word compare-
and-swap instructions (not supported by our hardware), fre-
quent copying (excessive overheads), and probabilistic al-
gorithms (ill-suited to real-time computing).

To summarize, the three ready-queue choices considered
in this paper are:

R1 a sequential binomial heap (coarse-grained locking);

R2 Hunt et al.’s fine-grained heap [15];

R3 asimple, hierarchical “queue of queues” scheme (two-
level locking with cache-local insertions).

Synchronization. In the latest publicly-available
LITMUSET version (2008.2), implementation R1 is
used. In this version, the processor mapping is protected by
a lock that serves a dual purpose: it protects the (sequen-

tial) heap against concurrent updates, and it serves as the
linearization point (see [14]) for the scheduler. Hence, it
is acquired when the processor mapping itself is modified
and whenever process state is observed or changed (e.g.,
on process self-suspension, on job completions, and when
comparing job priorities). This strategy also indirectly
supports R1: all ready-queue accesses occur together with
preemption checks, which require the processor mapping
lock to be held.

However, to support R2 and R3, significant changes
were required, as the processor mapping lock must be
released before performing queue operations under these
schemes. In making these changes, various complex race
conditions had to be addressed. For example, both the ready
queue and processor mapping must be locked to check
whether a preemption is required. If a preemption is indeed
required, then the processor mapping lock must be dropped
before dequeuing the preempting job under R2 and R3.
However, this allows the set of scheduled jobs to change
while the preempting job is dequeued, which might lead to
conflicts with other updates. To avoid this, the processor
to be updated is temporarily removed from the processor
mapping. Priorities are checked again upon re-insertion,
otherwise, preemptions could be missed.

Ideally, the processor mapping lock should be held as
little as possible to reduce contention. Unfortunately, the
need to serialize (complex) process state updates makes a
switch to fine-grained locking or non-blocking solutions
non-trivial.

The release queue is also protected by a lock. However,
contention for it is infrequent (it is only held briefly during
job releases, after job completions, and possibly when a
process resumes).

Interrupt handling. Two interrupt handling choices are
considered in this paper:

I1 global interrupt handling, wherein each processor
both handles interrupts and schedules jobs, and

12 dedicated interrupt handling, wherein a single proces-
sor is reserved for interrupt processing [17].

By default, interrupts may occur on all processors in Linux.
In fact, an even distribution of interrupts can help to im-
prove throughput in non-real-time workloads. However,
this implies that all real-time tasks are subject to release
overhead (and delays by other interrupt sources, such as
I/O devices). Since interrupt accounting can be severely
pessimistic [8], it may be desirable to shield tasks from in-
terrupts by dedicating a processor that does not serve tasks
to handling job releases (and other interrupts).

While simple in concept, this approach can be difficult
to implement if some hardware is only accessible from a
particular processor. For example, in our test platform (see

Plugin Ready Queue Scheduling Interrupts Capacity
cQm coarse-grained quantum-driven m m
CEm coarse-grained event-driven m m
FEm fine-grained [15] event-driven m m
HEm hierarchical event-driven m m
cQ1 coarse-grained quantum-driven 1 m—1
CE1 coarse-grained event-driven 1 m—1
FE1 fine-grained [15] event-driven 1 m—1

Table 1: Policy plugins evaluated in this paper. The letters of each
plugin name refer to columns 2—4 in this table. An “Interrupts”
value of 1 denotes the use of a dedicated interrupt processor. “Ca-
pacity” is the number of processors that schedule real-time tasks.

Sec. 4), each processor has a private, integrated hardware
timer that is not accessible to other processors. This is re-
solved by sending IPIs to the dedicated processor to initiate
the programming of hardware timers.

Implemented approaches. We implemented seven of the
twelve possible combinations of choices S1, S2, R1-R3,
I1, and 12 in LITMUSET as listed in Table 1. Under
event-driven scheduling, we considered all three queue
variants with global interrupt handling (CEm, FEm, and
HEm), and coarse- and fine-grained queues with dedicated
interrupt handling (CE1 and FE1). Hierarchical queues
were not considered in combination with dedicated inter-
rupt handling since they rely on insertions occurring on all
processors. Only coarse-grained queues were considered
under quantum-driven scheduling (CQm and CQ1) be-
cause quantum boundaries act as implicit barriers and ready
queues are only accessed at quantum boundaries. Hence,
parallel access would only yield minimal gains (if any).

4 Experiments

To evaluate the implemented approaches, we conducted ex-
tensive schedulability experiments under consideration of
runtime overheads as incurred in LITMUSET on a Sun
UltraSPARC T1 “Niagara” multicore platform. The Ni-
agara is a 64-bit machine containing eight cores on one
chip running at 1.2 GHz. Each core supports four hard-
ware threads,? for a total of 32 logical processors. On-chip
caches include a 16K (resp., 8K) four-way set associative
L1 instruction (resp., data) cache per core, and a shared,
unified 3 MB 12-way set associative L2 cache. Our test sys-
tem is configured with 16 GB of off-chip main memory. In
contrast to Sun’s proposed Niagara-successor “Rock,” our
first-generation Niagara does not employ advanced cache-
prefetching technology.

While the Niagara is clearly not an embedded sys-
tems processor, it is nonetheless an attractive platform for
forward-looking real-time systems research. Its power-

8The Niagara’s hardware threads are real-time-friendly because each
core distributes cycles in a round-robin manner—in the worst case, a hard-
ware thread can utilize every fourth cycle.

friendly combination of many simple and slow cores,
predictable hardware multi-threading, and a small shared
cache is likely indicative of future processor designs target-
ing computationally-demanding embedded systems.’ Thus,
we believe any limitations exposed on the enterprise-class
Niagara today to be of value as guidance to future embed-
ded system designs. However, note that specific results, as
with all implementation-based studies, only apply directly
to the tested configuration.

Next, we briefly discuss how we measured overheads,
and then present our study in detail.

4.1 Runtime Overheads

We used the same methodology to determine overheads as
in earlier LITMUSR " -based studies (e.g., [7]). Runtime
overheads were obtained by enabling aligned quanta and
measuring the system’s behavior for periodic task sets con-
sisting of between 50 and 450 tasks in steps of 50. For each
plugin and task-set size, we measured ten task sets gener-
ated randomly (with uniform light utilizations and moder-
ate periods; see Sec. 4.2 below), for a total of 90 task sets
per scheduling algorithm. Each task set was traced for 30
seconds. We repeated the same experiments with staggered
quanta. In total, more than 100 GB of trace data and 640
million individual overhead measurements were obtained
during more than ten hours of tracing. After removing out-
liers, we computed for each plugin average and worst-case
overheads as a function of task set size (for both aligned
and staggered quanta), which resulted in 20 graphs. Due to
space constraints, we only discuss the three representative
graphs shown in Fig. 3 here; all graphs and per-plugin over-
heads are provided in an extended version of this paper [6].
Fig. 3(a) shows average release overhead under stag-
gered quanta. One can clearly distinguish between the
quantum-driven plugins CQm and CQ1, which incur only
very little, constant overhead, and the other event-driven
plugins, which suffer the effects of increasing contention
and ready-queue lengths. Releases encounter less con-
tention in quantum-driven plugins because released jobs are
placed in a temporary queue that is merged at the next quan-
tum boundary by the tick handler [10]. Note that the FEm
and FE1 plugins incur significantly higher release over-
head than the CEm and CE1 plugins. This is likely due
to Hunt et al.’s fine-grained heap not supporting efficient
queue-merge operations (i.e., merges require O(nlogn)
time), increased cache protocol traffic (as queue elements
are being accessed concurrently), and frequent locking op-
erations. Similar reasoning applies to the HEm plugin.
Fig. 3(b) shows average scheduling overhead under stag-

9Similarly, 32-bit processors with L2 caches and speeds in excess of
100 MHz, once firmly associated with enterprise-class servers, are now
routinely deployed in embedded systems.

gered quanta. Again, quantum-driven plugins incur only lit-
tle overhead because staggering helps to avoid contention,
and because jobs are assigned to processors in the tick,
and not the schedule, handler. Staggering does not af-
fect when event-driven plugins schedule, so contention re-
mains high. Note that the FEm, FE1, and HEm plugins
incur only a fraction of the CEm plugin’s average schedul-
ing overhead because the processor mapping lock is relin-
quished during queue operations. The trends are reversed in
Fig. 3(c), which depicts average tick overhead under stag-
gered quanta: event-driven plugins only perform bookkeep-
ing activities in the tick handler and hence incur only little
overhead, whereas the CQm and CQ1 curves reveal that
job scheduling costs increase with the number of tasks.

We used monotonic piece-wise linear interpolation to
derive upper-bounds for each plugin and each overhead as
a function of task set size. These upper bounds were used
in the schedulability experiments described next.

4.2 Experimental Setup

To assess schedulability trends, we generated random task
sets (similarly to [7, 9]) using three period and six utiliza-
tion distributions similar to those proposed by Baker [2], for
a total of 18 scenarios. Task utilizations were distributed
differently for each experiment using three uniform and
three bimodal distributions. The ranges for the uniform
distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium),
and [0.5, 0.9] (heavy). In the three bimodal distributions,
utilizations were distributed uniformly over either [0.001,
0.5) or [0.5, 0.9] with respective probabilities of 8/9 and
1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy).
Similarly, we considered three uniform task period distri-
butions with ranges [3ms, 33ms] (short), [10ms, 100ms]
(moderate), and [50ms, 250ms] (long). Note that all peri-
ods were chosen to be integral.

Task execution costs excluding overheads were cal-
culated from periods and utilizations (and may be non-
integral). Each task set was created by generating tasks un-
til a specified cap on total utilization (that varied between 1
and 32) was reached and by then discarding the last-added
task, thereby allowing some slack for overheads. Sampling
points were chosen such that sampling density is high in
areas where curves change rapidly. For each scenario and
each sampling point, we generated 1,000 task sets, for a
total of over 5.5 million task sets.

Schedulability tests. After a task system was generated,
its schedulability under each of the plugins listed in Table 1
was tested as follows.

Prior to testing schedulability, we adjusted task parame-
ters to account for overheads and quantum-driven schedul-
ing as described in Sec. 2. Given Linux’s roots as a general-
purpose OS and our use of measured overheads (which are

[1] CEm [2) CE1 [3] FEm [4] FE1 5] cQm [6] CQ1 [7) HEm |

average-case release overhead
120

1)
100 7]
S 80 7 2
K
S 60 0
<
g 40 /
o
20
[5,6]
0
50 100 150 200 250 300 350 400 450
number of tasks
(@)
average-case scheduling overhead
45 T
40]
35 -
fé) 30 +
T 25
g 20t 71
2 15t 1
° 10l T |
i - e |
oL L L L L L L 4 L
50 100 150 200 250 300 350 400 450
number of tasks
(®)
average-case tick overhead
8
7+
% 67
2
- 5}
©
£ 4
o
3 3t
2t
= 11,2,3,47]
1 L L L L

50 100 150 200 250 300 350 400 450
number of tasks
©

Figure 3: Sample average-case overhead measurements. The
graphs show average-case measured per-event execution time (in
microseconds) as a function of task set size (under staggered
quanta). (a) Release overhead. (b) Scheduling overhead. (¢) Tick
overhead. Note the different scale of the Y-axis in each inset. The
complete worst-case and average-case overhead measurements
are reported in [6].

unlikely to capture true worst-case behavior), we interpret
task execution costs in a way that is reasonable for a Linux-
based system. Our main concern here (since this is not a
paper on timing-analysis tools for determining execution
costs) is to capture major differences in plugin implementa-
tions. Thus, in reality, we interpret “hard real-time” to mean
deadlines should almost never be missed and “soft real-
time” to mean that deadline tardiness on average remains
bounded. Consequently, we assumed worst-case overheads
and aligned quanta when testing HRT schedulability and
average-case overheads and staggered quanta when test-
ing SRT schedulability. Additionally, we also considered

HRT schedulability under the CQm and CQ1 plugins as-
suming worst-case overheads under staggered quanta; those
two cases are denoted S-CQm and S-CQ1 respectively.'?
(Note that periods are not modified in the SRT case under
quantum-driven scheduling as quantum-based delays cause
only constant tardiness.)

We used all major published sufficient (but not neces-
sary) HRT schedulability tests for G-EDF [1, 3, 4, 5, 12]
and deemed a task set schedulable if it passed at least one
of these five tests. A notable exception is the light uniform
utilization distribution: we had to disable Baruah’s test [3]
for these scenarios since it failed to terminate in reasonable
time due to the large number of tasks involved and the test’s
pseudo-polynomial nature.'!

For SRT schedulability, since G-EDF can guarantee
bounded deadline tardiness if the system is not over-
loaded [11], only a check that total utilization (after infla-
tion for overheads) is at most m is required.

4.3 Results

HRT schedulability results for the moderate period distri-
bution are shown in Fig. 4. The first column of the figure
(insets (a,c,e)) gives results for the three uniform distribu-
tions (light, medium, heavy) and the second column (insets
(b,d,f)) gives results for the three bimodal distributions. The
plots indicate the fraction of the generated task sets each
plugin successfully scheduled, as a function of total utiliza-
tion. Schedulability results for the SRT case are shown in
Fig. 5, which is organized similarly to Fig. 4. Due to space
constraints, other graphs (over 300) are not shown here but
can be found in the extended version of the paper. [6]

The results clearly show that differences in plugin imple-
mentation and hence overheads can have a very significant
impact on real-time performance. For example, in Fig. 5(a),
the best-performing plugin (FE1) supports task systems of
total utilization up to 26, whereas the worst-performing plu-
gin (HEm) fails even for task systems with total utilization
less than 5! Note that it is nearly impossible to predict such
outcomes purely based on theoretical considerations. In
fact, our initial assumption was that a hierarchical queue de-
sign should outperform any dedicated-interrupt scheme—
surprisingly, the HEm plugin was consistently among the
poorest-performing plugins. We will discuss this and other
notable trends next.

Dedicated vs. global interrupt handling. The most re-
markable trend is the superiority of dedicated interrupt

190nly quantum-driven plugins were considered under staggering in the
HRT case since neither overheads nor analysis are affected significantly by
staggering under event-driven plugins.

Regular compute jobs on UNC’s research cluster are limited to 48
hours runtime. With, on average, over 150 sampling points per graph,
1,000 task sets per point, and 10 curves per HRT graph, all five HRT G-
EDF schedulability tests must complete in & 0.11 seconds per task set.

handling. In virtually all tested scenarios, global inter-
rupt handling is inferior in spite of its nominally larger
system capacity, i.e., CE1 outperforms CEm, FE1 out-
performs FEm, and CQ1 outperforms CQm, in both the
HRT and SRT cases, and usually by a significant margin
(e.g., Figs. 4(a,c,e) and 5(a—f)). Differences are less pro-
nounced if periods are long (since overheads are propor-
tionally small), or if performance is indistinguishably bad
(e.g., CQmM/CQ1 for short periods).

Long periods with heavy, uniform utilizations is the only
scenario in which global interrupt handling is consistently
preferable—here, tasks are so few in number, periods so
long, and overheads so low that release overhead becomes
insignificant and system capacity is the deciding factor.

Staggered vs. aligned quanta. Another clear trend in the
HRT results is that staggered quanta are generally prefer-
able to aligned quanta, i.e., S-CQm outperforms CQm and
S-CQ1 outperforms CQ1 in most cases, as can be seen
in Figs. 4(a,c,e). (This matches similar trends observed in
the preceding scalability study [7].) Again, differences are
less pronounced for high task count / short period scenar-
ios (both plugins perform equally badly), and for heavy bi-
modal utilization / long periods (both plugins nearly reach
the ideal G-EDF limit). As S-CQ1 is generally prefer-
able to S-CQm (see above), the S-CQ1 plugin is the best-
performing quantum-driven plugin in this study.

Quantum- vs. event-driven scheduling. In the HRT case,
event-driven scheduling is mostly preferable. CQm outper-
forms CEm only in the cases of uniform light utilizations
and moderate or long periods (Fig. 4(a)), and medium uti-
lizations with moderate periods (Fig. 4(c)). Similarly, CQ1
is never preferable to CE1, though differences are small for
some scenarios involving long periods. Further, S-CQm
and S-CQ1 are inferior to CEm except for scenarios with
many light tasks and long periods. Surprisingly, the trend is
reversed in the SRT case. In Fig. 5, CQm is clearly prefer-
able to CEm in every inset but (b), and similar findings
apply to the case of short periods, too (but CEm remains
superior for long periods). However, CE1 remains prefer-
able to CQ1 for all period and utilization distributions, even
in the SRT case. Hence, event-driven scheduling was found
in our experiments to be the better choice for both HRT and
SRT if (and only if) used in conjunction with a dedicated
interrupt processor.

Fine-grained vs. coarse-grained vs. hierarchical queues.
As mentioned above, hierarchical queues exhibited surpris-
ingly poor performance in our experiments. In fact, in the
SRT case, HEm is the worst-performing plugin in all tested
scenarios, as can be readily seen in Fig. 5. It performs bet-
ter in the HRT case (e.g., Fig. 4(f)), but it is never preferable
to the CEm plugin.

The FEm plugin is never preferable to the CEmM plugin

[1] G-EDF [2] CEm 3] CE1 [4] FEm 5] FE1

[6] HEm [71cQm 8] CQ1 [o]s-cam [10] S-CQi

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

09 noj\l13,51 1
0.8 El
0.7 + El
0.6 El
0.5 el fiz1 71 (91 sl i1]
04 B
03 - B
02 B
0.1 El

ratio of schedulable task sets [hard]

8 10 12 14 16 18 20 22 24 26 28 30 32
task set utilization cap (prior to inflation)

(2)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

09 b
0.8 |-
0.7 |- b
0.6 1
05 Mell | \or i35l 1t]
0.4 1
03t 71 91]
0.2 - d
0.1+ d

ratio of schedulable task sets [hard]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

task set utilization cap (prior to inflation)
(©

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

1= T —
09
0.8
0.7 -
0.6 -
0.5 -
0.4 -
03
02t
0.1

ratio of schedulable task sets [hard]

8 10 12 14 16 18 20 22 24 26 28

task set utilization cap (prior to inflation)

e

2 4 6

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); period uniformly in [10, 100]
[8] [21 [4,6]

o T T T T T T T T ™

09 -
0.8 -
0.7 -
0.6 -
05
04 -
03
0.2+
0.1+

ratio of schedulable task sets [hard]

8 10 12 14 16 18 20 22 24 26 28 30 32
task set utilization cap (prior to inflation)

(b)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); period uniformly in [10, 100]
[4] [6] [2]

09 -
0.8 -
0.7 +
0.6 -
05+
04 -
03
0.2+
0.1+

ratio of schedulable task sets [hard]

8 10 12 14 16 18 20 22 24 26 28 30 32
task set utilization cap (prior to inflation)

(d)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); period uniformly in [10, 100]

ratio of schedulable task sets [hard]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

task set utilization cap (prior to inflation)

®

Figure 4: HRT schedulability (the fraction of generated task systems deemed HRT schedulable) for moderate periods as a function of
task system utilization cap for various utilization distributions. (a) Uniform light. (¢) Uniform medium. (e) Uniform heavy. (b) Bimodal
light. (d) Bimodal medium. (f) Bimodal heavy. In each graph, the curve labeled “[1] G-EDF” indicates schedulability under an
ideal event-driven system (zero overheads), the curves numbered 2—-8 correspond to the plugins listed in Table 1, and the curves 9-10
correspond to curves 7-8 but assume staggered quanta. Recall from Sec. 4.2 that a task set is HRT schedulable if it can be shown to have

zero tardiness under assumption of worst-case overheads.

in any of the tested scenarios. In the SRT case, the CEm
plugin performs better by a significant margin in all scenar-
i0s, as is apparent in Fig. 5; in the HRT case, the difference
is often less pronounced but still clear (e.g., Fig. 4(f)). In-
terestingly, the FE1 plugin is very competitive—it never
performs worse than the CE1 plugin, and in some scenar-
ios marginally better. This highlights two points: reducing
contention for the processor mapping lock is highly ben-
eficial, but the lack of an efficient queue-merge operation
penalizes FEm (see Fig. 3(a)).

Further observations. Overall, the FE1 and CE1 plugins
performed best in our study. Their performance is promis-
ing in two regards. First, the disappointing G-EDF perfor-
mance in [7] was shown here to be a correctable implemen-
tation artifact. Second, in many scenarios, FE1 and CE1
performance comes close to the limit imposed by current G-
EDF schedulability analysis (e.g., Fig. 4(b,d,e,f), and simi-
larly Fig. 5(b—f)). This indicates that G-EDF in particular,
and global scheduling in general, can be implemented effi-
ciently on current multicore platforms.

[1] G-EDF [2] CEm 3] CE1

[4] FEm

5] FE1 (6] HEm [71cam 18] CQ1

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

1
09 | 1]

0.8 | 4
0.7 4
0.6 | 4
0.5 | (614141 |[21 71
04t 1
03 | 4
0.2 B
0.1} 4

ratio of schedulable task sets [soft]

6 8 10 12 14 16 18 20 22 24 26 28 30
task set utilization cap (prior to inflation)

(2)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

09 ,
08 ,
07 1 ,
0.6 ,
05 lel 121 78
0.4 ,
03} i
02} i
01 f i

ratio of schedulable task sets [soft]

10 12 14 16 18 20 22 24 26 28 30

task set utilization cap (prior to inflation)
(©

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

09
08
0.7 -
0.6 -
0.5 -
0.4 -
03
02
0.1

ratio of schedulable task sets [soft]

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

task set utilization cap (prior to inflation)

©

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); period uniformly in [10, 100]

09 + i El
0.8 El
0.7 + El
0.6 El
0.5 - lel\ \[4 121 171
04 B
03 - B
02 B
0.1 El

ratio of schedulable task sets [soft]

6 8 10 12 14 16 18 20 22 24 26 28 30
task set utilization cap (prior to inflation)

(b)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); period uniformly in [10, 100]

09 -
0.8 -
0.7 -
0.6
0.5
04 -
03
0.2+
0.1+

ratio of schedulable task sets [soft]

6 8 10 12 14 16 18 20 22 24 26 28 30

task set utilization cap (prior to inflation)
(d

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); period uniformly in [10, 100]

09
0.8
0.7 -
0.6 -
0.5 -
0.4 -
03
02t
0.1

ratio of schedulable task sets [soft]

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

task set utilization cap (prior to inflation)

®

Figure 5: SRT schedulability (the fraction of generated task systems deemed SRT schedulable) for moderate periods as a function of
task system utilization cap for various utilization distributions. (a) Uniform light. (¢) Uniform medium. (e) Uniform heavy. (b) Bimodal
light. (d) Bimodal medium. (f) Bimodal heavy. In each graph, the curve labeled “[1] G-EDF” indicates schedulability under an ideal
event-driven system (zero overheads) and the curves numbered 2—8 correspond to the plugins listed in Table 1. Recall from Sec. 4.2 that
a task set is SRT schedulable if it can be shown to have bounded tardiness under assumption of average-case overheads.

5 Conclusion

In this work, we explored several alternatives for imple-
menting global real-time schedulers and conducted a large-
scale implementation-based study. Our results indicate that
implementation tradeoffs can impact schedulability as pro-
foundly as scheduling-theoretic tradeoffs. On our test plat-
form, the best performance was achieved in the majority
of the tested scenarios by the combination of Hunt et al.’s
fine-grained heap [15], event-driven scheduling, and dedi-
cated interrupt handling (the FE1 plugin). In contrast, the
simple hierarchical queue (the HEm plugin) performed sig-

10

nificantly below expectation—this partially due to cache-
affinity issues, which warrant further investigation gener-
ally. Additionally, we found that the scalability of global
real-time scheduler implementations is not the key limiting
factor in supporting sporadic real-time workloads on our—
fairly large—multicore platform unless task counts are ex-
tremely high or most periods short.

Prior studies. Given this paper’s conclusion that imple-
mentation choices can have a strong impact on schedula-
bility, it is appropriate to re-visit the conclusions of the two
preceding studies [7, 9]. Since the first study [9] was con-

ducted on a radically different hardware platform, its results
are not directly comparable to this paper. However, its main
conclusion that “for each tested scheme, scenarios exist in
which it is a viable choice” [9] remains valid even with the
improvements presented in this paper—while significantly
better, G-EDF’s HRT performance is still limited by pes-
simistic schedulability tests and contention under high task
counts. Further, note that dedicated interrupt handling is
likely less competitive on platforms with fewer processors.

The second study [7] is Niagara-based and hence readily
comparable; the interested reader is encouraged to compare
Figs. 4 and 5 above with Figs. 2 and 3 in [7]. As expected,
the observation that “for global approaches, scheduling
overheads are greatly impacted by the manner in which run
queues are implemented” [7], which motivated the present
study, has been validated. The relative performance of
CQm vs. S-CQm (best seen in [6]) also confirms that
“quantum-staggering can be very effective in reducing [pre-
emption and migration] costs” [7], but the benefit observed
in this study is less pronounced than that in [7].

Further, as noted above, G-EDF’s HRT performance is
still limited, and hence the observation that “for HRT work-
loads on the Niagara, [staggered Pfair] and [partitioned
EDF] are generally the most effective approaches” [7] re-
mains unchanged. However, [7] also stated that, “for SRT
workloads on the Niagara, there is no single best overall
algorithm, although [staggered Pfair] and [clustered EDF]
seem to be less susceptible to pathological scenarios than
the other tested algorithms.” This statement has to be
amended to include G-EDF, as the FE1 plugin is consis-
tently among the top-performing choices (with regard to
those in [7]) in the SRT case.

Future work. Our implementation efforts and the results
of our study reveal four major open problems. From
an analysis point of view, the two most-pressing con-
cerns are the need for improved G-EDF HRT schedu-
lability tests (ideally, both in accuracy and runtime re-
quirements) and improved interrupt accounting techniques.
Implementation-wise, better parallel priority queues that
can be implemented efficiently in a kernel environment
clearly have great potential. Ideally, such queues should
efficiently support queue-merge operations. Further, fine-
grained locking (or even non-blocking synchronization) for
the processor mapping could improve performance in the
presence of many tasks significantly. Especially with re-
gard to the latter, we would like to investigate whether the
hardware transactional memory support in Sun’s proposed
“Rock” processor can improve global schedulers.

References

[1] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. Proceedings of the 24th IEEE Real-

11

(2]

(3]

(4]

(3]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]
[14]

[15]

[16]
(7]

(18]

Time Systems Symposium, pages 120-129, 2003.

T. Baker. A comparison of global and partitioned EDF
schedulability tests for multiprocessors. Technical Report
TR-051101, Florida State University, 2005.

S. Baruah. Techniques for multiprocessor global schedula-
bility analysis. In Proceedings of the 28th IEEE Real-Time
Systems Symposium, pages 119-128, 2007.

M. Bertogna, M. Cirinei, and G. Lipari. Improved schedula-
bility analysis of EDF on multiprocessor platforms. In Pro-
ceedings of the 17th Euromicro Conference on Real-Time
Systems, pages 209-218, 2005.

M. Bertogna, M. Cirinei, and G. Lipari. Schedulability anal-
ysis of global scheduling algorithms on multiprocessor plat-
forms. IEEE Transactions on Parallel and Distributed Sys-
tems, 20(4):553-566, 2009.

B. Brandenburg and J. Anderson. On the implementation of
global real-time schedulers. Extended version of this paper.
Available at http://www.cs.unc.edu/"anderson/ papers.html.
B. Brandenburg, J. Calandrino, and J. Anderson. On the
scalability of real-time scheduling algorithms on multicore
platforms: A case study. In Proceedings of the 29th IEEE
Real-Time Systems Symposium, pages 157-169, 2008.

B. Brandenburg, H. Leontyev, and J. Anderson. Accounting
for interrupts in multiprocessor real-time systems. In Pro-
ceedings of the 15th International Conference on Embedded
and Real-Time Computing Systems and Applications, pages
273-283, 2009.

J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSFT: A testbed for empirically comparing
real-time multiprocessor schedulers. In Proceedings of the
27th IEEE Real-Time Systems Symposium, pages 111-123,
2006.

U. Devi. Soft Real-Time Scheduling on Multiprocessors.
PhD thesis, University of North Carolina, Chapel Hill, North
Carolina, 2006.

U. Devi and J. Anderson. Tardiness bounds under global
EDF scheduling on a multiprocessor. Real-Time Systems,
38(2):133-189, 2008.

J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on multiprocessors.
Real-Time Systems, 25(2-3):187-205, 2003.

UNC Real-Time Group. LITMUS®T homepage. http:/
www.cs.unc.edu/ “anderson/litmus-rt.

M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers, 2008.

G. Hunt, M. Michael, S. Parthasarathy, and M. Scott. An
efficient algorithm for concurrent priority queue heaps. In-
formation Processing Letters, 60(3):151-157, 1996.

J. Liu. Real-Time Systems. Prentice Hall, 2000.

J.A. Stankovic and K. Ramamritham. The Spring kernel:
A new paradigm for real-time systems. IEEE Software,
8(3):62-72, 1991.

G. Varghese and T. Lauck. Hashed and hierarchical tim-
ing wheels: data structures for the efficient implementa-
tion of a timer facility. SIGOPS Operating Systems Review,
21(5):25-38, 1987.

