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Abstract—Many embedded platforms consist of a hetero- specialization ofhetwork calculuswhich was proposed by
geneous collection of processing elements, memory modules Cruz in 1991 [5], [6] and has been widely used to analyze
and communication subsystems. These components often im- -, mynication networks since then. Real-time calculus spe

plement different scheduling/arbitration policies, havedifferent - . .
interfaces, and are supplied by different vendors. Hence cializes network calculus to the domain of real-time and em-

compositional techniques for modeling and analyzing such bedded systems by, for example, adding techniques to model
platforms are of interest. In prior work, the real-time calculus different schedulers and mode/state-based informatian, (e

framework has proven to be very effective in this regard.  see [13]). A number of schedulability tests have also been

However, real-ime calculus has heretofore been limited 10  garjyed based upon network calculus. An overview of these
systems with uniprocessor processing elements, which is a .
tests can be found in [17].

serious impediment given the advent of multicore technoldgs. - R .
In this paper, a two-step approach is proposed that allows ta In real-time calculus, timing properties of event streams
power of real-time calculus to be applied in globally-schedled  are represented using upper and lower bounds on the num-

multiprocessor systems: first, assuming that job responséme  per of events that can arrive over any time interval of
bounds are given, determine whether these bounds are met; a specified length. These bounds are given by functions

second, using these bounds, determine the resulting residu I . : . :
processor supply and streams of job completion events using a*(A) and o’ (A), which specify the maximum and min-

formalisms from real-time calculus. For this methodology b ~ imum number of events, respectively, that can arrive at a
be applied in settings where response-time bounds are not processing/communication resource within any time irgerv

specified, such bounds must be determined. Though this is an of length A (or the maximum/minimum number of possible
issue that warrants further investigation, a method is disassed task activations within amyA). The service offered by a

for calculating such bounds that is applicable to a large fariy L T . .
of fixed job-priority schedulers. The utility of the proposed  '€source is similarly specified using function$(A) and

analysis framework is demonstrated using a case study. BH(A), which specify the maximum and minimum number
of serviced events, respectively, within any interval ofgth

A. Given the functionsa® and o! corresponding to an
event stream arriving at a resource, and the sendte
and 5! offered by it, it is possible to compute the timing
properties of the processed stream and remaining progessin
The increasing complexity and heterogeneity of mod-capacity, i.e., functiona®’, o, B, andﬂl/, as illustrated
ern embedded platforms have led to growing interest inn Fig. 1(a), as well as the maximum backlog and delay
compositional modeling and analysis techniques [14]. Inexperienced by the stream. As shown in the same figure,
devising such techniques, the goal is not only to analyzehe computed functionsy*’ and o!' can then serve as
the individual components of a platform in isolation, butinputs to the next resource on which this stream is further
also to compose different analysis results to estimate thprocessed. By repeating this procedure until all resources
timing and performance characteristics of the entire platthe system have been considered, timing properties of the
form. Such analysis should be applicable even if individualfully-processed stream can be determined, as well as the
processing and communication elements implement differerend-to-end event delay and total backlog. This forms the
scheduling/arbitration policies, have different inteda, and  basis for composing the analysis for individual resourtes,
are supplied by different vendors. These complicatingoi@ct derive timing/performance results for the full system.
often cause standard event models (e.g., periodic, smoradi  Similarly, for any resource with tasks being scheduled
etc.) and schedulability-analysis techniques to lead &lpv  according to some scheduling policy, it is also possible to
pessimistic results or to be altogether inapplicable. compute bounds¥*(A) andj3'(A)) on the service available
To overcome this difficulty, a compositional framework to its individual tasks. Fig. 1(b) shows how this is done
— often referred to aseal-time calculus— was proposed for the fixed-priority (FP) andtime-division-multiple-access
by Chakraborty et al. in [3] and then subsequently extendedTDMA) policies. As shown in this figure, for the FP policy,
in a number of papers (e.g., see [4]). Real-time calculus is ¢he remaining service after processing Stream A serves

Keywords-component-based design; multiprocessor schedul-
ing; real-time calculus
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Figure 1. (a) Computing the timing properties of the processed streamgusal-time calculus(b) Scheduling networks for fixed priority and TDMA
schedulers.

as the input (or, is available) to Stream B. On the othemvithin specified bounds. Second, using these event delays,
hand, for the TDMA policy, the total servicg is split ~we compute arrival curves for the processed streamts,
between the services available to the two streams. Similaanda!’, and the remaining-total-service curve; these curves
so calledscheduling network$4] can be constructed for — as in the uniprocessor case — can in turn be used as input
other scheduling policies as well. Various operations an th for other resources, thereby resulting in a compositional
arrival and service curves and 3, as well as procedures framework (as shown in Fig. 1(a)). To apply these results,
for the analysis of scheduling networks on uniprocessorper-stream delay bounds must be given. In settings where
(and partitioned systems) have been implemented in theuch bounds are not given, they must be determined. We
RTC (real-time calculus) toolbox [16], which is a MATLAB- present a simple method for calculating such bounds, but
based library that can be used for modeling and analyzing comprehensive evaluation of its properties is deferred to
distributed real-time systems. future work.
Our contribution. Unfortunately, none of the compositional Prior work. Our work is based upon multiprocessor schedu-
techniques described above can be used when the resoulesility tests by Baruah [1] and Leontyev and Anderson [9].
in guestion is a multiprocessor that is scheduled using # some aspects, the presented analysis is also similar to
global multiprocessor scheduling algorithm. In particular, results by Bertogna et al. [2], Shin et al. [15], and Zhang and
when such algorithms are used, processors may be idiBurns [18]. The main difference between our work and these
even though tasks are available for execution, as taskgrior efforts is that we consider more general task arrival
must execute sequentially; this situation does not arise oand execution models, viz. those supported by the real-time
uniprocessors and thus is not addressed in uniprocessoalculus framework. Also, we consider the case when one or
compositional techniques. more processors can be partially available, which is simila
There are two reasons why existing compositional techto analysis in [15], where partial availability is considérin
niques need to be extended to incorporate such multiprdhe context of hierarchical scheduling. Our work is differe
cessors. First, multicore chips are becoming increasinglyrom that in [17] and related works listed there in that we
common. Second, Viewing a multiprocessor system as are primarily concerned with multiprocessor scheduling an
collection of independent uniprocessors and applying-part earliest-deadline-first-like algorithms.
tioning techniques is unnecessarily restrictive and pices The rest of the paper is organized as follows. Sec. Il
supporting workloads that fundamentally require globalpresents our task model. In Secs. Il and IV, timing charac-
scheduling approaches (such a workload is considered iteristics of processed streams and the remaining supply are
a case study presented later). computed. In Secs. V and VI, the response-time-bound test is
Motivated by these observations, we present in this papd@l‘esentEd and its time CompleXity is discussed. In Sec, VIII
an extension of the real-time calculus framework [3], [4] We present closed-form expressions for calculating respon
that incorporates globally-scheduled multiprocessorsian time bounds. Sec. IX presents a case study for our analysis,
compatible with the RTC toolbox. The core of our frame-and finally, Sec. X discusses some directions for future work
work is a pseudo-polynomial-time procedure that, given a
collection of arrival curves for input streamg anda!, their
execution requirements, and the available resource supply In this paper, we consider a task set= {T1,...,T,}.
checks that event delays on such a multiprocessor resideach task has incoming jobs that are processed by a mul-

II. TASK MODEL



tiprocessor consisting afi > 2 unit-speed processors. We

Y(2) = 7, v4(3) = 8, v¥(4) = 13, etc. Also,~7}(1) =1,

assume that > m. We also assume that all time quantities v}(2) = 3, 7/(3) = 8, 74(4) = 9, etc.

are integral.

The j** job of T;, where j > 1, is denotedT; ;.
The arrival (or releasg time of 7} ; is denotedr; ;. The
completion timef T; ; is denotedf; ; and the delay between
its start time and completiorf; ; —r; ;, is called itsresponse

time As in prior work on real-time calculus, we wish to be

Definition 2. Thearrival functiona?(A) (al(A)) provides
an upper (lower) bound on the number of jobsibthat can
arrive withinany time interval(z, z + A], wherez > 0 and
A > 0 [4]. (We assumex¥(A) =0 for all A <0.) a;(A)

denotes the paifal(A), al(A)).

able to accommodate very general assumptions concernirgxample 2. The widely-studied periodic and sporadic task
job executions and arrivals and the available service. Mosinodels are subcases of this more general task model. In
of the remaining definitions in this section are devoted toboth models, consecutive job arrivals’Bf are separated by
formalizing the assumptions we require. Table | summarizeat leastp; time units, wherep; is theperiod of T}, and each

the notation introduced in this section.

Definition 1. 4*(k) (v}(k)) denotes an upper (lower) bound
on the total execution time of anly consecutive jobs of;.
(We assume (k) = 0 forall k < 0 and~¥(k) < ~y#*(k+1),
and similarly for+!(k).) These definitions are equivalent to
the workload demand curves in [11].

Example 1. Suppose that tasK’;'s job execution times
follow a pattern1,5,2,1,5,2,.... Then, (1) 5,

Table |
MODEL NOTATION.

Input parameters
al(A) Max. (min.) number of job arrivals df;
(ak(A)) over A
v (k) Max. (min.) execution demand
(v (k) of any k consecutive jobs of;
B(A) Min. guaranteed cumulative processor
supply overA
Params. below can be found using RTC Toolbox
U Long-term avilable processor utilization
Otot Maximum blackout time
F The number of processors
that are always available
A (k) Pseudo-inverse af¥
K; Min. integer s.t. A=Y (K;) > v*4(K;)
= T;'s average worst-case job execution time
v; Burstiness of the execution demand
R; Long-term arrival rate off;'s jobs
B; Burstiness of the arrival curve
w; T;'s long-term utilization
Ugum Total utilization
O, below can be checked using the test in Sec. V
0, T;'s response-time bound
Output calculated using the input and {©;,}
al(A) Max. (min.) number of job completions
(al;(A)) of T; over A
B'(A) Min. guaranteed unused
processor supply oveh

job requires at most]"** execution units. Therefore, under
both modelsp}'(A) AW and~ (k) = k - e"ax,

Definition 3. Let A;'(k) = inf{A | a¥(A) > Fk},
where A > 0. This function characterizes the minimum
length of the time intervalz,z + A] during which jobs
Ti j+1,---, i j+x can be released for somieassumingl; ;
is released at time. We defined; ' (0) = 0 and require that
there exists/(; > 1 such that

A

(3

NK) > 7(Kq). 1)

We further require that there exisf3; > 0 and B; > 0,
whereR; = lima 4 o0 %, such that

af(A) < R;-A+ B; forall A >0. 2

Also, we assume that there exists > 0 and v;, where
& = limg_s 1 oo 71‘,5’“), such that

vi(k) <e-k+wv; forall k> 1. 3)

(1) is needed in order to prevent tagkfrom overloading
the system. In (2),R; characterizes the long-term arrival
rate of taskT;’s jobs andB; characterizes the degree of
burstiness of the arrival sequence. In (3), the paranwgter
denotes the average worst-case job execution timE .of

Definition 4. Let u; = R; - ;. This quantity denotes the
average long-term utilization of tagk. We require that <
u; < 1. LetUgym = ZT,;GT (78

Example 3. Under the sporadic task modelR;
(L’%J +1) /A = pi ande; = e"™, sou;

ma
— =i

Topi

11mA~>+oo

R;-e

Definition 5. Let supply,(t,A) be the total amount of
processor time available to tasks inon processorh in
the interval[t,t + A), where A > 0. Let Supply(¢, A)
> one supply, (¢, A) be the cumulative processor supply in
the intervallt, ¢ + A).

Though we desire to make our analysis compatible with
the real-time calculus framework, which requires that in-



dividual processor supplies be known, there exist many Second, given a task set = {7y,..., T,,} and a
settings in which individual processor supply functions ar multiprocessor platform characterized by a cumulativergua
not known and a lower bound on the cumulative availableanteed processor tint& A), we develop a sufficient test that
processor time is provided instead. (In uniprocessor realverifies whether the maximum job response time of a task
time calculus, the available service is described as th&; € 7, max;(f; ; — i ;), iS at most®;, where

number of incoming events processed by a PE during a time . i

interval.) Note that if individual processor supply guaeses 0 = r}?{’((ﬁ(j) — AT G =) ©6)
are known, a lower bound on the cumulative guarantee

. (Elt can be shown that the maximum job response time of
supply can be computed easily.

T; cannot be less than the right-hand-side of (6). Intuitively
Definition 6. Let B(A) < Supply(t,A) be the guaranteed 7;'(j) is the maximum execution requirementj€onsecu-
total time that all processors can provide to the tasks in tive jobsT; ., ..., T; a+j—1 andA; " (j—1) is the minimum
during any time intervalt, t+A), whereA > 0. We assume length of the interval where job%; .1, ..., i 4t -1 are
that released.) If9; equals the relative deadline of a job, then the
B(A) > max(0, U- (A = 0101)), (4) test will check whether the system is hard-real-time schedu
~ lable. Alternatively, if deadlines are allowed to be missed
whereU € (0,m] and oy, > 0. We let I be the number g o, includes the maximum allowed deadline tardiness,
of processors that are always available at any time. If alien the test will check soft-real-time schedulabilitycBua
processors have unit speed, then= max{y | VA > 0 ::  (egt allows workloads to be considered that fundamentally
B(A)zy- A} require global scheduling approaches. Unknown response-

In the above definition, the parametdrs which is the time bounds can be calculated by using closed-form expres-
total long-term fraction of processor time available to theSions given in Sec. VIil to determine initial bounds, and by

tasks inT on the entire platform, and;.;, which is the then iteratively decreasing these bounds and applying the
maximum duration of time when all processors are unavailPresented test to determine whether such decreased bounds

able, are similar to those in the bounded delay model [12]ar€ valid.
We require that (5) below holds for otherwise the system ) y
would be overloaded and job response times could be IIl. CALCULATING " AND «;

unbounded. Let o' (A) (aﬁ'(A)) be the maximum (respectively, min-

Usum U ) imum) number of job completions of tagk over an interval
We assume that released jobs are placed into a singles; = + A], wherez > 0. Bounds on these functions can be
global ready queue. When choosing a new job to schedul€omputed as follows.

the scheduler selects (and dequeues) the ready job of highelsneorem 1. If the response time of any job f is at most
priority. An unfinished job ispendingif it is released.

A pending job isready if its predecessor (if any) has ©i thenai’(A) < min (L%)W , o (A+0; — 75(1)))
completed execution. Note that the jobs of each task execu I ! _ !

sequentially. Job priorities are determined as follows. Ehd o}/ (8) 2 al(A - 0 +1i(1)).

Proof: We prove the first inequality, leaving the second
one to the reader. Consider an interyal, t2] such that at
least one job ofl; completes within it ands —¢; = A. Let
N1, (N2) be the index of the first (last) job &f; completed
within (¢4, t2]. Then,

Definition 7. (prioritization rules) Associated with each
job T; ; is a constant valugg; ;. If xi; < Xk.n OF Xi,; =
Xeh A (1< kV(i=kAj<h)), then the priority off; ; is
higher than that of’, 5, denotedl; ; < T} . Additionally,
we assumg < h implies x; ; < x;,, for each taskr;.

Example 4. Global earliest-deadline-firs6GEDF) priorities fing >t and f;n, <to. @)
can be defined by setting; ; =, ;+D; for each jobT; ;,
where D; is T;'s relative deadline. Global first-in-first-out
(FIFO) priorities can be defined by setting ; =r; ; [8].

By the condition of the theorem, job, ;'s response time
fi.; —mi; is at mostO,. By the definition of response time
and Def. 1,f; j—r; ; is atleasty!(1). From (7), we thus have

The technical contributions of this paper are twofold.r; x, > t; — ©; andr; y, < t2 —~}(1). Thus, the number
First, given per-task bounds on maximum job responsef jobs completed within the intervdt;, 2], No — Ny + 1,
times, we characterize the sequence of job completion gvents at most the number of jobs released within the interval
for each taskrl’; in terms of the next-stage arrival functions (¢; — ©;,ts — ’yf(l)]. By Def. 2, we haveN, — Ny +1 <
a¥ and ol and the remaining processor sup(A);  a(ty —~ (1) —t1 + 6;) = a%(A+©; —~L(1)). If job T} ;
these, in turn, can serve as inputs to subsequent PEs, yheretompletes at timef; ;, thenT; ;1 cannot complete earlier
resulting in a compositional technique. than f; ; +~!(1). Thus, job completions are separated by at



least~/(1) time units, and hence, at mo%%} jobs can
be completed within any interval of length. ]

IV. CALCULATING B/(A)

We now calculate a lower boun8’(A) on processor
time that is available after scheduling tasks. .., T,,. We
first upper-bound the total allocation of jobs Bf over any
interval of lengthA.

Definition 8. Let A(T;,I) be the total amount of time for
which jobs of taskl; execute within the set of intervals

Lemma 1. If the response time of any job &f is at most
©;, thenA(T;, [t,t + A)) < min(A, v (o (A + 6,))).

Proof: Consider an intervdk, ¢+ A). The condition of
the lemma implies that all df;'s jobs released at or before
time t — ©; complete by time. Thus, the allocation of;
within [¢,¢ + A), A(T;, [t,t + A)) is upper-bounded by the
maximum execution demand @f’s jobs released within the
interval (t— ©;,t+ A]. By Def. 2, there are at most! (A +
©,) jobs released withir(t — ©,,t + A}, and by Def. 1,
their total execution demand is at mosgt(a¥(A + ©;)).
We thus haveA(T;, [t,t + A)) < ¥ (a¥(A + ©;)). Also,
A(T;, [t,t + A)) cannot exceed the length of the interval
[t,t+A). |

Theorem 2. If the response time df;’s jobs is at most;,
then at least
B'(A)

sup (Z(y)) (8)

0<y<A

time units are available over any interval of length> 0,
where Z(y) = max (O, B(y) — ZT o, min(y, i % (y +
©;))). Additionally, (4) for B’'(A) holds with U =0-
Usum andoly, = (U-0ror+ 37, (ui- O+ Bi+v;)) /U

Proof: Consider an intervdk, t +y), wherey < A. By

Defs. 5 and 8, the supply that is available after scheduling

the tasks inr in this interval is

Supply(t,y) — ZA Ti, [t t+y))
TieT
{by Def. 6}

> max <O,B(y) -

{by Lemma 3

> max(

Additionally, Supply(t, A) > supy<,<a(Supply(t,y)). We
are left with finding coefficientd/’ ando;,, such that (4)
holds for B’(A). Setting (4) (forB(A)) into the definition

= min(y,

T;eT

i(y+6; ))))

of Z(y), we have

Z(y)
> max <O, max(0,U - (y — 04ot))

3 min
T; €T
max <O, U- (y — Gtot)

— Zmln y, E

T;eT

{by (2) and (3}

max (O, U- (y — Gtot)

-2 @
T;eT

{by Def. 4

max(O, U- (y — Otot)

y+9)))

b+ 0)))

>

(400 +B) 1)

- Z(ui'y+ui'@i+e_i'3i+vi))
T;eT

max(O, U- (y — Otot)

= Usum -y + Z(Ui'®i+e_i'Bi+Ui))
T;eT

max<0, (ﬁ — Usum) -y

~U - 1o — Z(Ui'@i+€_i'Bi+vi)>
T; €T
by the definition ofU’ and o/,
in the statement of the theore
= max (O,ﬁ/ (y

- Uilfot)) .

Finally, by (8), B'(A) > supy<,<a (max (()’ . (y —
Ugot))) = max (0, U (A - agot)). [ ]

V. MULTIPROCESSORSCHEDULABILITY TEST

In this section, we present the core analysis of our
framework in the form of a schedulability test (given in
Corollary 1 later in this section) that checks whether a pre-
defined response-time bourtd; is not violated for a task
T;.

As noted earlier, the way jobs are prioritized according
to Def. 7 is similar toGEDF. A number of GEDF schedu-
lability tests have been developed assuming that jobsearriv
periodically or sporadically (e.g., [1], [2], [9]). In thisaper,
we extend techniques from [1] and [9] in order to incorporate
more general job arrivals and execution models.



Similarly to [7], we derive our test by ordering jobs by
their priorities and assuming thdi, , is the first job for
which fg 4 > req + O, holds. We further assume that, for
each jobT, ; such thatly, , < Ty 4.

.fa,b S Ta,b + ®a- (9)

We consider an interval that includes the time when
becomes ready and the latest time wi¥én, is allowed to
complete, which is-, , + ©,. This interval is computed for
each value ofc € [1, K] (see Def. 3) and (defined later
in this section), which determine its length+ ©,. (The
range of§ depends ork and ¢.) During this interval, we

Proof: Let A" =1y 4 — 1¢4—;. Let
A* =inf{A | of (A) >i+1}. (10)

Because job%; ,_;, ..., T, , are released within the interval
[Pe,q—i,Te,q), DY Def. 9,af (A’) > i+ 1. Therefore, by (10),

Te,q —Tl,q—i = A/ Z A*. (11)
We now consider two cases.
. {by Def. 9}
Case 1: o} (A*) > i. In this case A* >  inf{A |

ad(A) > i} {by Det- 3 A; (7). The lemma follows from

consider demand due to competing higher-priority jobs thafhis @nd (11).

can interfere withly ,. We then perform the following three
steps:

S1: Compute the minimum guaranteed supply over the

interval of interestB(d + Oy).
S2: Given a finite upper bound/;(é,7,m) on the

competing demand and a finite upper bound on the

unfinished work due to jolf; , and its predecessors,

E;(k), define a sufficient test for checking whether
T,’s response-time bound is not violated by setting®¢

M6, 7,m)+ (m—1)-(E;(k) —1) < B(6 + Oy).
S3: CalculateM (9, 7,m) and E; (k) as used ir52

A. StepsS1andS2

To avoid distracting “boundary cases,” we henceforthae
assume that the schedule being analyzed is prepended withts = { _
schedule in which response-time bounds are not violated th£0!lows from this equality and (11).
is long enough to ensure that all predecessor jobs refedence

Case 2:a}(A*) < i. Becauseny(A) is non-decreasing,

ay (A) < for eachA < A*. (12)
Further, by (10),
at(A) < i+ 1,for eachA < A* (13)

Suppose that for somA” > A*, o (A”) < i. Because

v (A) is non-decreasingey (A;) < i for each A, €
[A*,A"). The latter implies) (A,) = lime_ 40 a¥ (A, +

e) < i for eachA, € [A*,A”). From this and (13),
we havea®(A) < i+ 1 for each A < A”. Since
A" > A*, we have a contradiction to (10). Therefore,
(A) > i for eachA > A*. From this and (12), we have
mf{Alaz(A) > i} 2T 4713). The lemma

[
The next two claims establish a lower bound on the

in the proof exist. Since job priorities remain fixed, we alsoMaximum job response time and an upper bound on the

ignore jobs that have lower priority thafy ,.
We introduce a definition below first.

Definition 9. Let o (A)

lime_, 40 (A + €). This

function provides an upper bound on the number of jobs

released withinany interval [z, + A], wherez > 0 and
A > 0. (We assumey; (A) =0 for all A <0.)

The next example illustrates the difference between the

functionsal anda; .

Example 5. Consider a taskl;, whose jobs arrive pe-
riodically with period p;. The maximum number of jobs
that can arrive within an intervalz,z + 2 - p;] is thus
al(2-p;) = PP—”} = 2. However, the maximum number
of jobs that can arrive within the intervét, = + 2 - p;] is
of (2 p;) = lime, 0¥ (2 p; + €) = 3. In general, under

the sporadic task modek (A) = L%J + 1.

We start the derivation by stating the following lemma
and claims. The following lemma specifies the minimum

time between the arrivals of joli& ,_;, andTy ,.

Lemma 2. rpq —roq-; > Ay ' (4).

finish times of certain jobs that can be used in addition to
(9)-
Claim 1: ©, > ~§(1).

Proof: By (6), ©¢ > max;>1(v(j)
yi(1) — A, 1(0). By Def. 3, 4,(0) =0
Claim 2: frq—k, < 7eq+ O — v (Ky).
Proof: By (9),

f@,qfi
<rpg—i + 6y
= Teq—i = Teq T Teq+ Ot

— A1) 2
: m

{by Lemma 2
< g+ 00— A (i) (14)

By (1), —A, '(K,) < —§(K,). Setting this and = K,
into (14), we get the required result. ]
Job T, , can violate its response-time bound for the
following reasons. Ifly ,_; completes by time, , + O, —
~¢ (1), thenT, , may finish its execution after, , + Oy if,
after timemax(feq—1,7¢,4), higher-priority jobs deprive it
of processor time or one or more processors are unavailable.



Alternatively, T, ,_1 may completeafter time r,, + [Te,q—kt1:Te,q+©¢) C [re,g—k+1, fr,q); tO see this, note that
©¢ — v¢(1), which can happen if the minimum job inter- f,, > 70, + ©, holds, sincely , violates its response-time
arrival time forT is less thanyy(1). In this situationTy,  bound. [ |
could violate its response-time bound even if it executes Becausel} , violates its response-time bound, after time
uninterruptedly within[fy ;1,704 + ©¢). In this casely's 7, +1, there are other higher-priority jobs that depritie
response-time bound is violated becad$g_; completes of processor time or one or more processors are unavailable.
“late,” namely after timer,, (recall that, by Claim 1,
©, > ~}(1)). However, this implies thafl; is pending
continuously throughout the interval, ,—1, r¢, + ©,), and
hence, we can examine the execution of jBbg_; and7} ,
t_ogether: In this case, we need to consider the completion W (T, 70.q-x11) < To.q+ Ot — To.q-rs1- (15)
time of job Ty q—o. If foq—2 < 7roq+ O¢ — ~v{(2), then ] ] ] S
job T; , may exceed its response-time bound if this job andn Fig. 2, which shows a response-time bound violation for
its predecessof ,_ 1, experience interference from higher- 100 T¢,q wherex =1, W (T}, 7 4-x+1) corresponds to the
priority jobs or some processors are unavailable during th&xecution demand of joli; , and the unfinished work of
time interval[max(fr.g_2,7e.q-1), 0. + ©¢). On the other 10D Tz g1 attimery,,.

hand, if fo.g-2 > 10,4+ O~ 7;/(2), thenTy , can complete  pefinition 12. Let Ty C [ryq—s1,7e + O¢) be the set of
after time r,,, + ©, even if T, executes uninterruptedly jyiervals where no available processor is idle as shown in
within [fg,q—2,70,4 + ©4). Continuing by considering pre- Fig. 2. LetTy = [rr.q-xs1, 0.0+ O¢)\Tx. We let|T| (Tr)
decessor jobd} 4k in this manner, we will exhaust all 4anote the total Ie’ngth of the intervals i, (ITx|).

possible reasons for the response-time bound violatiote No

that it is sufficient to consider only jol&& ,1,...,Tv,-x,  The lemma below is used to establish a lower bound on the
since, by Claim 2f;,,—k, < 70,4+ ©;—7(K,). Assuming competing workload within the interval, ,_41,70,,+0¢).

that, for job Ty ¢k, feq-t < 7T¢q + O¢ — ’7?(]{5), we
define theproblem windowfor jobs Ty ;—k+1,...,T¢,q a@s
[Te,g—k+1,T¢,q + Or). (This problem window definition is a W (Th, 704 rs1)+ 14 p, wherepu > 0. (Note that, by(15)
significant difference when comparing our analysis to priorIFAI >’ 03 Additionally, ,Tg executes within each’ instani of
analysis pertaining to periodic or sporadic systems.) T, and|Ty| — W(Tzﬂ"’z erst) —1—p.

Definition 11. Let W(T; ,,t) denote the remaining execu-
tion time for jobT; , (if any) after timet. Let W (T}, t) =
o J<Teq W(T;,,,t). In the appendix, we prove

Lemma 3. If the response-time bound fd¥, , is violated
(as we have assumgdhen|T'y| =74+ O — reg—rt1 —

Definition 10. Let A € [1, K] be the smallest integer such
that frq—x < 104+ ©¢ —7(A). By Claim 2, such a\
exists.

Proof: Suppose, contrary to the statement of the lemma,
that the response-time bound foy , is violated and
Claim 3. T} is ready(i.e., has a ready jopat each instant ICAl < 7eg + O =1t = W(Temeg-x1) + 1. (16)
of the interval[ry g—k+1,7¢,4 + O¢) for eachk € [1, ] Under these conditions, the total length of the intervals in

Proof: To prove the claim, we first show th@} is ready I'x, where at least ?br;?lgyallable processor is idley s+

continuously within [r¢ k41, fo,q) for eachk € [1,)]. Or—7re,g-r+1—|Tx| > W(Ty,re4g-x+1)—1. Thus, this
BecauseT) is ready within the intervalry 4, feq), this is  total length is at leastV (7, r¢ —x+1), as time is integral.
true fork = 1. If & > 1 (in which case\ > 1), then By Claim 3, T, executes at each time € Ty, and thus
feq—i > Teq + O — v4(4) for eachj € [1,)), by the  completes by time , + ©,, which is a contradictionT,|
selection of\. From this, we have can be found asly| = 744 + Or — 10g-2a+1 — || =
W(Tg, T‘g7q_)\+1) —1—pu. |

The next few definitions are used to set up an extension of
the problem window to the left so that a greater portion of

f&q—j
> 1pq+ 00—/ (4)

{because, by (6, > v/(j) — A; '(j — 1)} the workload can be considered. This technique is adapted
>req— A;l(j -1 from [1], [9] and improves the accuracy of the test.

{by Lemma 3 Definition 13. Let 7,(t) = {7}, | for somey, T}, , is ready
>0 g—jt1- at timet and7},,, < Ty,4}. (The subscripp denotes the fact

. that these jobs have higher or equabpty.
Thus, the interval$ry g—;, fe.q—;) and{re,g—j+1, fo.q—i+1), J 9 quaibpty.)

where consecutive jobs df, are ready, overlap. There- Definition 14. Let ¢o(k) < r¢q—r+1 be the earliest instant
fore, T, is ready continuously withitr, ,—;, fe,4) for each  such thatvt € [to(k),rs,q—k+1), |7p(t)] > m or fewer than

j € [1,A), and hence[T}, is ready continuously within |7,(¢)| tasks fromr,(¢) execute at time. If such an instant
[Te,q—k+1, fo,q) TOr eachk € [2, A]. The claim follows from  does not exist, then leb(k) = ¢ g—k+1-
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Figure 2. Conditions for response-time bound violation Xo& 1.

Def. 14 generalizes the well-known concept of idie
instantin uniprocessor scheduling as illustrated in Fig. 2.
The following claim is used to calculate the competing

demand within the intervato(A), re.g-x+1)- Proof: Consider jobT;,, k = A, and time instants

Claim 4. No available processor is idle within 7¢g-x+1 andto(\) as defined in Defs. 10 and 14. To

[to(A), e.q—ry1)- establish (18) (withy as defined later), we sum the processor
. o allocations within the interval&o(X),7¢,4—x+1) UT'x and

~ Proof: Suppose that an available processor is idle af By Def. 12 and Claim 4, the total processor allocation

time ¢ € [to(A),7e,4-2+1). Because the scheduler being (including unavailable time) withifto(A), 7e,—x+1) U T'x

a_malyzed is work-conserving, all '_[asks_ ip(t) execute at g ,, . (Feqexs1 — to(A)) + m - [T»| (see Fig. 2; note that

time ¢ and thus|7,(t)| < m — 1, which violates Def. 14m req-xi1 = T0.q here). Also, Lemma 3 implies that the total

Our schedulability test for task; is based upon summing processor allocation (including unavailable time) witfig
the competing demand of tasks in within the interval g gt leastiV (T, 70,4 x11) — 1 — p, wherep > 0.

[to(N), re,q + ©y), which has lengthry , — to(N) + O, and
the unavailable time within this interval.

Definition 15. Let E; (k) be a finite function of: such that

W(T,reg-i1) < Ef(\). Let W(t) = Y 0, W(T 1),

Let M/ (6,7,m) be a finite function of, m, and = such

that W(to(N\)) < MJ(req — to(A),7,m). The function

My (6, 7,m) upper-bounds the competing demand due to o . ) ]
higher-priority jobs and predecessorsf, over intervals _The total processor allpcauon (including unavailablegjm
of lengths + ©,. (As mentioned earlier at the beginning of Within [to(A), 7eq + ef)b 'f thus at leastn - (r¢,¢-x+1 —
Sec. V, M/ (6, 7,m) and E; (k) are calculated in order to to(A)) +m- ||+ T {bytemma 3 m-(re,g—x+1 —to(N)) +
test whether the response-time boundlfis not violated. m - (r¢,q + ©¢ — rog-xt1 — W(Tr, re,g-r+1) + 1+ p) +
Later, in Sec. V-B, we explain how/; (8, 7,m) andE; (k) ~ W (T, re,q-r41) =1 —p=m- (104 +Or —to(N)) — (m —
are calculated.) 1)-(W( Ty, reg-r41) — 1)+ (m—1) - p.

Definition 16. We require that there exists a constaht >
0 such that, for alb > 0,

My (6, 7,m) < Ugym - 6 + Hy. a7)

This requirement is reasonable because the growth rate of th
total demand over an interval of interest, which has length

re,q — to(A) + Oy, cannot be larger than the total long-term | ot Res, ([to(M), 7.4+ ©¢)) be the amount of time that is

utilization of the tasks in- for large values of; , — to(A). ot available on processérat time instants in the interval
This also allows us to upper-bound our test's computationa; () req + ©y). By Defs. 11 and 15, the allocation of

complexity. Henceforth, we omit the last four arguments ofjopg within[to()), ¢, +©y) is upper-bounded b (£o()))
My. (recall that we are ignoring lower-priority jobs). Thus,

Definition 17. Let §7***(k) = |(H, m—1)-(E; (k) — i

The following theorem will be used to define our schedu- > m-(ry ;—to(A)+0¢)—(m—1) - (W (Ty, re,g—r4+1)—1).
lability test. (29)



We next calculate an upper boundResy, ([to(\), 7¢,,+6¢)).  not hold for eachk € [1, K,] andd € [A, ' (k—1), 572 (k)],
For processoh and the intervalto (), 7¢,,+0;), by Def. 5,  then the response-time bound ffr is not violated.

The term(m—1)-(E} (k)—1) in (18) can be large i, and
Resy ([to(A), ¢, + Or)) Oy, are large. For large values 6f, and certain schedulers
= (rp.g—to(\)+0p) —supply, (to(\), 7.0 +Or—to(\ such asGEDF andFIFO, this term can be replaced with a
(req—t0(A)+60) PPYA(f0(A). Teg +Or—to(3) smaller term proportional tenax(m — F — 1,0) - E} (k),

(20) where F' is the number of processors that are always
Summing (20) for all, we have available (see Def. 6). This can be done because, under
GEDF andFIFO, the problem joll} , and its predecessors
Z Res ([to(N), re.q + ©¢)) cannot be preempted by other jobs after a certain time point
unless the competing demand carried from previous time
m instants is sufficiently large (see Sec. VIl for details).
Z (re,g — )+ ©y)
h=1 B. StepS3 (Calculating M (6) and Ej (k))
— supply,, (to(A),me.q — to(A) + ©¢)) Note that we did not make any assumptions above about
{by Def. 5} how jobs are scheduled except that the jobs of each task
=m-(re,g—to(N)+0O¢) —Supply(to(X), 70, —to(A\)+©O¢)  execute sequentially and jobs are prioritized as in Def. 7.
{by Def. 6} Therefore, Corollary 1 is applicable to all fixed job-prigri

scheduling policies (these policies include preemptivé-va
S me(reg = to(A) +00) = Blreg —to(A) +00). (1) -5 "o GEDF, FIFO, static-priority policies, and their
Setting (21) into (19), we have various combinations) provided the function$; (4) (and
its linear upper bound in Def. 16) anfl; (k) are known.
W (to(A) +1m-(re.q—to(A) +O¢) = B(re.q—to(A) +O¢) M;(5) and E (k) can be derived for a particular algorithm
>m - (re,g—to(N)+0¢)—(m—1)-(W(Ts,re4-2+1)—1). by extending techniques from previously-published papers
on the schedulability of sporadic tasks [1], [9] to incorater
more general arrival and execution patterns.
W(to(AN) + (m —1) - (W (T, re,g-241) — 1) In this section, we derive the functiodg (k) and M ()
> B(req—to(\) +6y). for a prioritization scheme in whicl; ; = r; ; + D;, where
D, is a constant (preemptive glob@BDF andFIFO are the
Setting £} (\) and M (re,q —to(X)) as defined in Def. 15 g pcases of this scheme).

into the inequality above, we get

Rearranging the terms in the above inequality, we have

. . Derivation of M/ (d). To derive M (5), we first note
My (req—to(A) + (m—1) - (Ef(A) = 1) that only jobsT,, < T;, can compete withl} , or its
> B(re,g—to(A)+60). predecessors.

Settingr,,, — to(A\) = 0 in the inequality above we get Definition 18. Let T, be the earliest pending job df,
(18). (Note that, by Def. 10\ € [1, K,].) By Def. 14 and  at timet, (k). We separate the tasks that may compete with
Lemma 20 = ryq—to(A) > roq—1eg-241 > A, ' (A=1). Ty, into two disjoint sets:

Our remaining proof obligation is to establish the stated B - . _
range fors. By (17) and (18), HC = {T,, :: (Tup exists\(ra,p < to(k))A(Tap = Toq)}s

NC = {T, :: (T,,, does not exist)

Usum -6+ Ho+(m—1)-(E; (k) —1) > B(0+0y).  (22) V[(ros = o) A(Tsn < To. )]}

Applying (4) to (22), we have Here, HC denotes “high-priority carry-in” andNC de-

Usum -0+ Hi+(m—1)- (Ej (k) —1) notes “non-carry-in”.
> max(0,U - (6 + O — 0101)) Claim 5: |HC| <m — 1.
> U (6+0Or—0tot) Proof: By Defs. 13 and 18HC C 7,(to(k) — 1). By
Def. 14, all tasks inr,(to(k) — 1) execute aty(k) — 1 and

Solvmg the latter inequality fos, we haved < (H, +
(m—1)- (Eé (k) - 1)+ U- Otot — Oy - )/(U Usum)-
Secause 18 gl (o a1l e 0 21 ancr 1) we sl )

= andWyc (T3, 7¢,4 — to(k)) to denote an upper-bound @i
Corollary 1. (Schedulability Test) If, for taskT}, (18)does on W (T;,to(k)) for the case wherT; is in NC and HC,

|7p(to(k) — 1)| <m — 1. Thus,|HC| < m — 1. [ |
Since the cumulative length & (k), ¢, +©,), depends



respectively. With this notation, we have wheremax is taken over each choice BfC andNC subject
to the following constraints.
Wito(k) < Y Whe(Tiyreq — to(k))

T;€HC
TieNC The constrainfHC| < m — 1 follows from Claim 5. It

We provide expressions for computifgine(7;,5) and  is easy to check that < Wic(T;, ) and0 < Wic(T5, 6)
Whc (T}, 6) in the following two lemmas. Their proofs can for eachd > 0. Thus, the sets maximizing the valdé; (5)

be found in the appendix. can be found by adding at most— 1 tasks with the largest

Lemma 4: Wc(T3,8) = ~¥(aj (5 + Dy — D;)). positive v_al_ue ofWuc (T3, 0)—Wne (T3, 6) to HC and adding
the remaining tasks tbIC.

Definition 19. Let G;(S, X) = min(}'(5), max(0, X — By the selection of in Def. 10, (23), and (250} (1., —

A7HS = 1)) +95(S = 1)) to(\)) upper-boundsdV (to()\)) so it complies with Def. 15.

Lemma 5. In order to use Corollary 1, we are left to find constaht

such that (17) holds so that/;(6) given by (25) complies
Whe (T3, 0) =Gi(ai (6+Dy—Di+0;), 6+ Dy — D +0;) with Def. 16.

Definition 21. Let L;(X) = max(0,u; - X +¢; - B;) + v;

Claim 6: rpq — 7¢,g-a+1 < max(0,7/ (A —1) —1). for any X.

Proof: If A = 1, thenry ,—r¢4 41 = 0. Alternatively, ~Lemma 6. (Proved in the appendix)For all § > 0,
if A > 1, then, by (9),704-x+1 + O > frgoasr >  Mi(0) < Usum -0 + Hy, where Hy = 3 0;, o Li(De —
r0.q + ©r — 72 (A — 1), where the last inequality follows D:i)+U(m—1)-max(©;) andU(y) is the sum ofnin(y, |7|)

from Def. 10. Thereforer, , — roq 241 < 74(A—1) —1,  largest utilizations.
as time Is mltegril. _ _ . Given an expression fak,, we can computé*®(k) in
The functionE; (k) can be derived as a simple corollary pet. 17 for any givenk. Given expressions foa(k),
of Lemma S. M;(5), and E} (k), we can apply Corollary 1 to check that
Definition 20. Let Q(k) = max(0, v(k — 1) — 1) + Oy. each taskl, € 7 meets its response-time bound. In the
. next section, we identify conditions under which the test is
We set£j (k) as follows. applicable and discuss its time complexity.
Ef (k) = Ge(ag (Q(K)), Q(K)) (24) VI. COMPUTATIONAL COMPLEXITY OF THE TEST
Corollary 2. If Ej(k) is given by (24), thent;(\) > According to Corollary 1, (18) needs to be checked for
W(Ti,70,4-2+1)- violation for all k € [1, K,] and§ € [A; ' (k—1), 6% (k)].
Proof: Theorem 4. The time complexity of the presented test is

By Def. 15, the function Ej(k) upper bounds pseudo-polynomial if there exists a constansuch that
W(Ty,7¢,4-x+1), and hence, it can be computed asy,,,, <c< U.

Whe (Te, 10, — T0.q— . Fork = \, we have ) L .
He (T e = Teg—ki1) Proof: We start with estimating the complexity of

W(Ty,re,g-x+1) checking (18). The values af?(A), v(k), A; *(k), and
< Whe(Te,re.q — To.g-n41) B(A) can be computed in constant timenif (A) and~¥ (k)
{by Lemma § consi;t of periqdic and aperiodic piecewise-lingar pan a
w B(A) is also piecewise-linear. These assumptions are used
= Go(ag(req = Teg-2+1+00), 70 = Teg-r41 + O1) in prior work on the Real-Time Calculus Toolbox [16] and
{by Claim 6} are sufficient for practical purposes.
< Gy(a¥ (max(0,v7¢(A — 1) — 1) + ©y), Under these assumptiond/; () for a given value ofd
max(0,74(A — 1) — 1) + Oy). can be computed i®(n) time, wheren is the number of

tasks. The calculations above need to be repeated for all
B ke [l,K/ and all integers ifA, ' (k — 1),67*(k)]. By

To continue our derivation of/; (6), we set Def. 17,6;***(k) is finite if its denominator is nonzero. By
. (5), we havelUs,,, < U. Therefore***(k) is finite if (5)
My (6) . .
is strict. [

= max Z Whc (T3, 6) + Z Wne(T;,0) |, (25) Checking that (18) is violated for each integral value in
T, eHC T,eNC [A, ' (k—1),67*(k)] can be computationally expensive. A



L] 7, [] competingjobs

s, T

| job release "

. N r”
B unavailable time i/ ArC)
m-1 } F+1
I T/vq'/ Tlvq ‘ T’yq
to(k) (C) ! time
riy 1tG 7, O

Figure 3. Conditions for response-time bound violation Xo& 1.

fixed-point iterative technique can instead be applied ab th
only a (potentially small) subset @4, ' (k — 1), 5" (k)]
is checked.

VII. SCHEDULABILITY TEST FORGEDF-LIKE

=m - (reg-xt1 —to(A)) +m- [T
=m- (re,g—r+1 — to(N)) +m - (1o, + Or — ro g—ry1
—W(Te,re,9-241) + 1+ )
=m- (re,q —to(A) +©¢) —m - (W(Ty, re,q-r41) — 1)
+m-u
[ ]
Lemma 8: A1 > 1y g+ Cp — 70 g—2r+1 — |F[)\1]|.

Proof: By Defs. 12 and 23[ry 4 x+1, 72,4 +Ce)NTy =
[Te,q=a+1, u_,q+0¢)\l“[;]. By Claim 3,7 , executes at each
instant within{re g—x+1,7¢,4 + Ce) \ FE\”. [ ]
Lemma 9: Az > v)*(\) — |FE\3]|.

Proof: By Defs. 12 and 23[r; , + ©¢ — v}/ (), re,q +
0)NTx = [re.g+ 00— (N), 70,4 +©0)\ T By Claim 3,
Ty, executes at each instant witHin ,+0,—~; (), re g+

(3]
SCHEDULERS 65)\% ' "
. . _ . If T} = 0, then, because by Def. 10} 4\ < 744 +
As mentioned earlier, the equation (18) for checkingg, — ~¥(N), jobs Tyq-xi1,...,Ts, Can execute uninter-

that the response-time bound @f is not violated can be
unnecessarily pessimistic if, and ©, are large.

In this section, we improve (18) for a prioritization
scheme in whichy; ; = r; ; + D;, whereD; is a constant
(preemptive globaEDF andFIFO are the subcases of this
scheme).

Definition 22. Let Cy = Dy — ming, e, (D;).

Claim 7. If T; , = Ty, thenr; y < ryq+ D¢ — D;, for
y > 0.No jobT; ; < Ty 4, can be released after, , + C.

Proof: The claim immediately follows from Defs. 7
and 22. [ |

ruptedly within [r, , + ©¢, — 7}/(A), 70,4 + ©¢), and hence,
Ty,q's response-time bound will not be violated leading to a
contradiction. We henceforth assuﬂiéj’” > 0.

Definition 25. Let a = min(F + 1,m).

Lemma 10: Ay > a- (=C¢ — v}(A) — re.g + Te.qg-241 +
W(Tr,req-xe1) = 1= ) +a- (T3] + D5,

Proof: By Claim 7, no job with priority higher thaff} ,
or its predecessors can be released after- C,. If at most
F available processors are not idle at some time ingtaat
[re.q+Ce,roq+0O¢— v (N) \ Ty, then at each time > ¢/
all tasks with jobs inr,(¢) can be accommodated usitg

To establish the necessary condition, we sum the procesully available processors, and herig, will complete by

sor allocations within the intervalBo(A), 7¢,g—x+1) U I'x
andT',. In the rest of this section, we assume tigat >
7}‘(/\) + Cy.

Definition 23. Let FE\I]
T
Fig. 3.

[Tg7q7A+1, Toq t+ Cg) NI, and
[Te.q + ©r — V¢ (A), 70,4 + ©¢) NTy, as shown in

Definition 24. Let Ay, A, Ay and Az be the total
processor allocation (including unavailable time) within
[to(A),7e.q—a+1) UL, [Teg—at1,70,9 + Co) Ny, [req +
Cy, TLL" O, — 'y;‘()\)) NIy, and[rqu + Oy — ”y}‘(/\), Te,q +
O¢) N T, respectively.

Lemma 7: A m - (req — to(A) + ©p) — m -
(W(Teyre,g-r41) — 1) +m - pu.

Proof: By Def. 12 and Claim 4, the total pro-
cessor allocation (including unavailable time) within
[to()\),’l’qu,)grl) Ul is

Ao

1,4 + Op. We henceforth assume that at least min(F +
1,m) available processors are not idle at each time within
[re,q + Cosre,g + Or — v (X)) \ T (see Fig. 3). Thus, the
total processor allocation (including unavailable timéfin
[re,q+ Ce,ro g +O¢ — vy (N) \ Ty is at least
Ay
2 a-|[req+ Coreq+©0— 7 (A) \ T
{by Defs. 12 and 2B
= a- (0 —#(\) — G — (T — T3] — [T§1)))
=a- (6 —7¢(\) = Co = Dx]) +a- (V] + T{))
{by Lemma 3
=a- (0= (A) = Ce— (re,g + O —Te,g-241
— W (Tpreqren) + 1+ ) +a- (T + 08
=a- (=N = Co =704+ 10,0211
+ W (Tereqas1) = 1= ) +a- (I0V |+ 08))).



Theorem 5. If the response-time boun®, of T, is
violated (as we have assumgdhen fork = A and § such
thats > A, ' (k—1) andd < [(He + (m —a) - (B; (k) —
1)+ (a—1) - (ve(k) + Ce + max(0,v¢(k — 1) = 1)) + U -
Otot — 6@ : U)/(U - Usum)Ja
My (6) + (m —a)- (E; (k) —1)
+(a—1)- (v (k) + Cr + max(0, v/ (k — 1) — 1))
> B(6 + Oy). (27)

Proof: Consider jobTy,, £k = A, and time instants
req-x+1 and to(A) as defined in Defs. 10 and 14. By
Def. 24, the total processor allocation (including unaafzli¢
time) within [to ()\), Te,q +®g) is Ag+ Ay + Ax+ Az, which,
by Lemmas 7-10 is
Ag+ Ay + As + A

>m-(reg —to(N) +0¢) —m- (W(Ty,re,g-241 — 1)
+m-p+rq+Co—Tog a1 — |FE\1]|
+a- (=7 (A) = Co = Te,q +Te,g-xrt1
+ W (Tt reg-as1) =1 = ) +a- (0] +[0F))
+7¢ () — %
=m- (re,qg — to(X) + Oy)
—(m—a) W(Tpreg-re —1)
+(m—a)-p+(a—1)- (03 +05))
+(1—=a)- (W) +Co4reg—104-241).  (28)
Let Resy ([to(A), ¢, +©¢)) be the amount of time that is
not available on processarat time instants in the interval

[to(A),re,q + ©f). By Defs. 11 and 15, the allocation of
jobs within[tg(A), r¢ o +©;) is upper-bounded bW (¢o(N))

From Claim 6, we have

W(to(N) + (m —a) - (W(Te,re,9-211) — 1)
4+ (a—1) - (V4(\) + Cp + max(0, 74X — 1) — 1))
> B(re,q — to(A)+6y).

Setting £ (A\) and M/ (r,q — to(A)) as defined in Def. 15
into the inequality above, we get

M (req —to(N) + (m —a) - (Ef(A) = 1)
+ (a—1)- (N + Cr + max(0, v/ (A — 1) — 1))
> B(re,q — to(A\)+Oy).

Setting ¢4 — to(A) = § in the inequality above we get
(27). (Note that, by Def. 10\ € [1, K/].) By Def. 14 and
Lemma2,0 = Tg,q—to(/\) > Toqg—Tlg—r+1 = Azl(/\— 1).
The stated range faf can further be found similarly to
Theorem 3. ]
Combining the results of Theorems 3 and 5, we can
construct the following improved schedulability test.

Corollary 3. (Improved Schedulability Test) Let

(m —a)- (Ef(k)-1)
Ha—1)- (v (k) +max(0, 77 (k=1)—=1)+C)

if ©, > ’7;(/6) + Cy,
(m—=1)-(E;(k)-1) otherwise,

wherea is as defined in Def. 25. Lef*™(k)' = |(H, +
Zo(k) + U - 0401 — Op - U) /(U = Ugum) | If, for task Ty,
MJ(8) + Z(k) < B(6 + ©,) for eachke[l, K,] and de
[A, ' (k—1), 672 (k)], then the response-time bound fBr
is not violated.

Z(k) =

VIIl. CLOSED-FORM EXPRESSIONS FOR
RESPONSETIME BOUNDS

In settings where response-time bounds are not known,

(recall that we are ignoring lower-priority jobs). Thus, by they need to be calculated. In this section, we presentalose

(28),

W (to(N) + > Res([to(A), re.q + O1))
h=1

> m-(re,q—to(A)+0¢)—(m—a) - (W(Ty, re,g-241)—1)
+ @ =a) (WA +Ce+reg—reg—rt1) (29)
Setting (21) into (29), we have
W (to(N)+m-(re,g—to(A\)+O¢) —B(re,g—to(A)+6y)
> m-(re,q—to(A)+0¢)—(m—a) (W(Te,re,q-241)—1)
+ (I —a) (A +Cr+reg—Te,g-211)-
Rearranging the terms in the above inequality, we have
W(to(N) + (m —a) - (W(Te, req-r+1) — 1)
+a—=1)- (W) +Cr+7eg —To,g-2+1)
> B(re,q — to(A)+06y).

form expressions for the response-time bou&isunder
GEDF-like schedulers.

In prior work [7], [10], it has been shown th&EDF
(and many other schedulers) ensure a maximum response-
time bound otz +p; +¢e"**, wherex > 0, for each sporadic
taskT; € 7, if tasks have implicit deadlines, all processors
are fully available, and/,,,, < m. In this paper, we adopt
a similar approach. We seek response-time bounds of the
form O, = x + v*(K;) + C;, wherex > 0, K; andC; are
as defined in Defs. 3 and 22.

Definition 26. For conciseness, we |€t; , = D; — Dj,.

In the rest of this section, we derive based upon task
parameters and resource availability. The derivation gssc
is similar to finding an upper bound a@nin Theorem 3. In
Lemmas 11 and 12 below, we first establish upper bounds
on Ej(k) and M} () as functions ofr for the case when
the response-time bound is a functionzofWe then set the



obtained expressions into the schedulability test andesolvUy,, < 17, by the statement of the theorem,

the resulting inequality for.
g nequatly Um—1) -5+ W+ Y Li(Coa)+(m—a)- (Yetug-z—1)

Definition 27. Let YV; = Ly(max(0,v)'(K, — 1) — 1) + TieT
Y (Ky) + Cy), whereL is defined in Def. 21. +(a—1)- (v (N) +Cp+max(0, vy (A—1)—1))
Lemma 11. (Proved in the appendix): If ©, = = + > U - (2 +7(Ke) + Co — 0tor)-

7¢ (Ke) + Co, then Ej (k) < Ve + ue -z for k € [1, Ky After regrouping the terms, we have

Definition 28. Let W be the sum ofn — 1 largest values W Z Li(Cri)+(m—a) (Ye—1)

T;eT
) ) +(a—1)-(v/(A)+Ce+max(0,v/(A=1)—1))
Lemma 12. (Proved in the appendix): If ©; = = + T _
v¥(K;) + C; for each taskl; and § > 0, then M (0) < u (f (Ke) + Co = o10t)
Usum = 6 + Y p,er Li(Cri) + U(m — 1) - x + W, where zz-(U—(m-a) u—Ulm-1)).

U(m — 1) is the sum ofn — 1 largest task utilizations. Solving the above inequality for, we have

Theorem 6. If U — (m — a) - max(u;) — U(m—1) > 0 and W+l

ry +U 04 + Ai(\) + L C %
Usum < U, then the maximum response time of any job of < Z Tt o) 2 e Ll ), (31)
T; is at mostr + v(K;) + C;, where U—-(m—a) u—U(m-1)

whereAy(k) = (m—a)- (Yo —1)+(a—1)- (v}'(k) + Ce +
max(0,v}(k—1)—1) = U - (v (K¢) + C¢). From Def. 25,
>+1 (30) we havem —a > 0 anda > 1. Thus, since the function
v (k) is non-decreasingd,(\) < A,, where A, is defined

(W‘f’fj'gtot'i'Ah"'ZTier Li(Ch,s)
Xr = ]ql%X
hE&T

U—(m—a)-up—U(m—1)

and A, = (m —a)- (Yy — 1) + (a — 1 — ﬁ) (v (KR + in the statement of the theorem, and hence, (31) contradicts
- h

Ch) + (a— 1) - max(0, 7 (Kp — 1) — 1). (30). u

The result of Theorem 6 is closely related to the results

Proof: Suppose to the contrary that tagk violates its  of [7], [10], in which the maximum deadline tardiness

response-time bour@l, = x+~;'(K,)+C,. Becauser > 0,  of sporadic tasks under different schedulers is studied. In

©¢ > ¢ (k)+C; holds for eactk € [1, K/]. By Theorem 5,  particular, the requirement to hate— (m — a) - max(u;) —
for somek € [1, K] andé > A, " (k — 1) (particularly, for ~ U(m — 1) to be positive is a sufficient condition for maxi-

k = X as defined in Def. 10), (27) holds. mum job response times (deadline tardiness) to be bounded.
Settingk = A and the bound foB given by (4) into (27), . ) ,
we get Tightening the bo_unds. Wh_|le we cannot assert tha‘; the
presented expressions are tight, they can be used to danstra
My (0)+(m—a)-(E;(N\)—1) an iterative search for tighter response-time bounds, as
+ (a—1)- (YN +Cr4+max(0, v (A—1)—1)) mentioned earlier at the end of Sec. Ilé}For example, one can
>0 (6 + O — 0101). calculate initial response-time boun@% using Theorem 6

and then try to find tighter bounds of the forn = y~®£01,
By the selection of,, wherey < 1. The multipliery can be found by performing a
. . binary search in which tentative valuesipfire tested using

Mg (8)+(m—a)-(E;(A)-1) Corollary 1. Note that the multipliey is the same for all

+ (a—1)- (7 (A) +Ce+max(0, v (A—1)—1)) tasks. This method worked well in our experimental study
>U- (6 + 2 +YHEKy) + Cp — 0101). (presented in the next section) as all tasks were identical.

For non-identical tasks, different multipliers could beeds

Setting the bounds of7(\) and M (5) given by Lem- byt we have not yet studied such approaches in any detail.
mas 11 and 12 into the inequality above, we have Further work is also needed on the inherent time complexity

U -6 Z Li(Cod)+U(m —1)-z4+W required to compute response-time bounds.

T;eT

F(m—a)-(Yetug-z—1) IX. MULTIPROCESSORANALYSIS: A CASE STUDY

+(a—1)-(v/(N)+Cr+max(0, v, (A—-1)—1)) Our analysis can be used to derive response-time bounds
>U. (5 + 2 + Y4 (K2) + Co — 0ror). for workloads that partitioning schemes cgr_mot accommo-
date and for workloads that cannot be efficiently analyzed

Becauses > A, '(k — 1) > 0, wherek € [1,K,], and under the widely-studied periodic and sporadic models.



v PEI w PE2 B” system could be used in a virtual reality application, where

o) B o, B
1 VL[;HQ ' IDETMC multiple video streams need to be processed. The modified
andliing > system is illustrated in Fig. 4(b) and explained in further
detail below. For conciseness, we refer to the systems in
@ .
these two insets as the (a)- and (b)-systems, respectiely.
| PE Three processors | assess the usefulness of our analysis, we comput_ed output
¢u:1,0 curves for the four tasks so that they can be used in further
o, [VLD+Q| [uvs1.0|u=l0 analysis. We assumed zero scheduling and system overheads
__,®__rw_n_oﬁ (the inclusion of such overheads in our analysis is beyond
the scope of this paper).
o lu:O.?) y y The goal of our experiments was to compare different
] VLD+IQ o ways of implementing and analyzing the (b)-system. As
VLDHQ’ ........... L we shall see, the (b)-system can be implemented on three
N R processors if global scheduling is used; in this case, it can
: VLDHIQ g be_ analyzed using the 'Fgchniques_of this paper but not usi_ng
(T, _ prior global schedulability analysis methods. Moreovér, i
the system is instead partitioned (allowing uniprocessal-r

(b) time calculus to be applied on each processor), then four
processors are required.

In the analysis, we used a tracetof 10> macroblock pro-
cessing events obtained in prior work for the VLD+IQ task
during a simulation of the (a)-system using a SimpleScalar
architecture [4], [13]. We obtained}(k) as in Def. 1
by examining a repeating pattern of 19,000 consecutive

N ‘ ‘ macroblock instruction lengths in the middle of the trace
0 200 400 |engmiofms) 800 1000 and assuming &00 MHz processor fr_equency. We found
© that all macroblock processing times in the trace are under
) _ _ o _ ~#(1) = 164us, which we set to be the maximum job ex-
(F:'Sr‘f,'eesiyf,(21'3;%d,egr']%“t’ﬁzsiﬁggr;;p"Cat'o'@b) Experimental seUp(C)  gction time (the best-case execution t.imeyéisl) = 205).
The functiona¥ (A) in Def. 2 was obtained by examining
macroblock arrival times. We computed; * (k) in Def. 3
as well as linear bounds fer!(A) and~(k) as in (2) and

To illustrate this, we applied our analysis to a part of a(3) using the RTC Toolbox [16].

MPEG-2 video decoder application that has been studied |n the (b)-system, task&;, . . ., Ty, are scheduled on three
previously in [4], [13]. The originally-studied applicati,  fully-available processors. Task; is statically prioritized
shown in Fig. 4(a), is partitioned and mapped onto twogver the other tasks. In such a system, t@skcan process
PEs, PE1 and PE2. PE1 runs the VLD (variable-lengthy time-critical video stream and tasks, T3, and 7 can
decoding) and 1Q (inverse quantization) tasks, while PEZ%yrocess low-priority video streams. Tasks, T3, and T
runs the IDCT (inverse discrete cosine transform) and MGare scheduled bBEDF using the supply from two fully-
(motion compensation) tasks. The (coded) input bit streamvailable processors and that remaining on a third processo
enters this system and is stored in the input buffer  after accommodating task;. In Fig. 4(b), down arrows are

The macroblocks (frame pieces of si2é x 16 pixels) used to depict the long-term available utilization on each
in B are first processed by PE1 and the correspondingrocessor.

partially decoded macroblocks are stored in the buffér

before being processed by PE2. The resulting stream of fulljResults. To show that existing analysis techniques are inap-
decoded macroblocks is written into a playout buffef plicable or are too pessimistic in the given setup, someeaf th
prior to transmission by the output video device. In the @bov properties of the input streams and the VLD+IQ task need

system, the coded input event stream arrives at a constaift be emphasized. First, the arrival curwg(A) is bursty,
bit-rate. i.e., several macroblocks can arrive at the same time instan

Second, whilee; = 17.6us, the maximum execution time
Experimental Setup.In our experiments, we considered a of a single macroblock i$64us, so assuming that each job
variation of the previously-studied system shown in Fig)4( executes for its worst-case execution time would result in
in which PE1 is a three-processor system running fouheavy overprovisioning. The long-term per-task utilieati
identical VLD+IQ tasks, Ty, T», T3, andTy. Such a task iswu; = R;-¢e; = 0.00396-17.6 = 0.7, whereR; = 0.00396

Completion curves in the (a)- and (b)-systems
80 - - - -

a;‘ (b)-system

60
o’ (a)- and (b)-systems

40

Frame count

u
‘ Input o

20 »
l‘!wllwr."””" e




is the long-term arrival rate. Finally, the total utilizai is  we found that the required response-time bounds could be

U= Z?Zlui = 2.8. Therefore, the task sdtl},..., T4} calculated in a couple of minutes (on a 1.7 GHz single-
cannot be partitioned onto three processors (four procgssoprocessor desktop system). Again, these bounds were ob-
are needed, actually), sglobal scheduling is required tained by using Theorem 6, and then refining these bounds

For the (b)-system, the minimum job inter-arrival time is using Corollary 1.
zero. Moreover, the arriving stream cannot be re-shaped so
that the minimum job inter-arrival time is at legst= 25us
and the long-term arrival rate to be preserved. Because the IN this paper, we have studied a multiprocessor PE, where
worst-case job execution time i€ = y¥(1) = 164pus (partially available) processors are managed by a global
and the minimum job inter-arrival time is; = 25us, we scheduling algorithm and jobs are triggered by streams of
havee™ /p;, = 6.59 > 1. Therefore, the (b)-systemannot external events. This work is of importance because it alow
be ana'yzed using prior results for periodic and Sporadicworkloads to be analyzed for which eXiSting schedulabil-
task modelswhich requirep; > 0 and e /p; < 1. ity analysis methods are completely inapplicable (e.¢, th

Fig. 4(c) depicts the job completion curvg” (normal- ~ System cannot be described efficiently using conventional
ized to frames/millisecond assuming 1,584 macroblocks peperiodic/sporadic task models) and for which partitioning
frame) for task7} in the (a)- and (b)-systems, the curve techniques are unnecessarily restrictive.
oy for task Ty in the (b)-system, and the input curve The research in this paper is part of a broader effort,

X. CONCLUDING REMARKS

ot. (Note that, in the (b)-system, tasks,...,T; have the goal of which is to produce a practical compositional
the same input curvert, and the Comp|etion curves for frameWOfk, based on real-time CalCUlUS, for anaIyZing mul-
Ty, ..., Ty are the same.) The curves foy in the (a)- and tiprocessor real-time systems. Towards this goal, therzont

(b)-systems were obtained using prior results in real-timéutions of this paper are as follows. We designed a pseudo-
calculus pertaining to uniprocessor systems as implerdentg?olynomial-time procedure that can be used to test whether
in the RTC Toolbox [16]. For the (b)-system, we calculatedjob response times occur within specified bounds. Given
the maximum response time f@ and then applied Theo- these bounds, we computed upper and lower bounds on
rem 2 to find the supply available to tasks 73, andZy. We  the number of job completion events over any_interval of
then calculated their inital response-time bousdd using  'ength A and a lower bound on the supply available after
Theorem 6. Since all three tasks have identical parametergcheduling all incoming jobs. These bounds can be used as
we calculated tighter bounds by running a binary search a§iputs for other PEs thereby resulting in a compositional
described earlier at the end of Sec. VIII. We then compute@nalysis framework. _ o
completion curves using Theorem 1. A number of unresolved issues of practical importance

The resulting curves have the same long-term completioﬁemam- First,efficientmethods are needed for determining
rate in both systems. Task; has the shortest possible response-time bounds when they are not specified — this
maximum response time in both the (a)- and (b)-systemsi.s probably the most important unresolved issue left by
However, the large job response times of tagks. .., T, this paper. As a partial solution, we provided closed-form
in the (b)-system cause a larger degree of burstiness in tHXpressions for computing response-time bounds, but we do
output event streams. Such burstiness is mainly due to tH@ot know how pessimistic they are. Second, the schedulabil-
fact that multiple jobs of the same task arriving at the samdly test itself could possibly be improved by incorporating
time instant can potentially execute for a significant dorat  information about lower bounds on job arrivals and exe-
of time, causing jobs of non-executing tasks to wait (Orcution times and upper bounds on supply. Third, real-time
be queued). Overall, the (b)-system has the advantage Hpterfaces as in [4] need to be derived for the multiprocesso
needing onlythree processors to accommodate four videoCase to achieve full compatibility with uniprocessor real-
streams, at the expense of larger buffers for storing parime calculus. Fourth, the inherent pessimism introduced
tially decoded macroblocks (for approximatel§ frames). by applying real-time calculus methods on multiprocessors
With partitioned schedulingiour dedicated processors are nNeeds to be assessed.
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by the total execution time of/;’s jobs released within
[to(k), 70,4 + D¢ — D;]. From Defs. 1 and 9, we have

W (T, to(k)) < i*(af (req + Do — Di — to(k)))

[ ]
Definition Al. Let T;, be the earliest job off; that is
pending within[ty(k), 7¢,q + Op).
Note that, ifT; , does not exist, thefl’ (T3, to(k)) = 0.
We henceforth assume thag, exists.
Claim A3. If T; , is defined as in Def. AL, thefy , > to(k)
and Tia > to(k) — 6;.

Proof: If f; o < to(k), thenT; , is not pending within
[to(k), 70,4 + ©), which violates Def. Al. By (9)/; >
to(k) impliesr; , + ©; > to(k). [
Definition A2. Let k; = {Tiy : y > a ATy = Tog A
T;., is pending within [to(k), r¢q + O}

Claim A4. If T; , € Ky, thenr; , € [ria,70,q + Do — Dy].

Proof: By Def. A2, T; , = T;, holds if T} ,, is in x;.

The claim follows from Claim A2. [ |
Claim A5:
W(Tito(k) = Y W(Thy,to(k)). (33)
Tw yém

Proof: The claim follows immediately from Defini-
tions 11, Al, A2. [ |

Claim A6. The functionG;(S, X) defined in Def. 19 is a
non-decreasing function of the integral argument

Proof: Suppose thatS > 1 is fixed. We compute
Gi(S+1,X).
Gi(S+1,X)
= min(y}"(S + 1), max(0, X — 4,(S)) +7(S))
{becauseF;(S) is a non-decreasing functipn
= 7;(5)

> min(y}(S), max(0, X — A71(S = 1)) + (S — 1))
= Gi(S, X)
]
Lemma 5.
W (T3, 6)
=Gi(a}(0+D¢—D;+0;),0+D¢—D;+0;)

Proof: Our proof obligation is to show that
Whc (Ti,me,q — to(k)) upper-bounds W(T;,to(k)) if

T, € HC. LetT; , be as defined in Def. Al. We first rewrite

(33).

W (T, to(k)) =W (Ti,a,t

+ Y W(Thy,to(k))

Tw Yy EH'L\T'L a
(34)

We now bound the individual terms in (34). By Claim A3,
T; ., finishes its execution at timg , > ¢o(k), and hence,

W(Ti,aa to(k))
= min(e;q, fia
{by (9)}
< min(e; q, 70 + i — to(k)).
By (34) and (35),
< min(ejq, ri,e + 0 —to(k)) +

—to(k))

(35)

S W (T to(k))

T,y GK/?',\U,

min (ei,a + Z W(Ti,yatO(k))a
>) |

Ti,y€ki\Ti,a
Let S; = |k;|. Because, the processor allocation of job
T;., cannot be greater than its execution time, by Def. 1, we
have the following.

IN

Tia+0i —to(k) +Y . W(Tyy, to(k) (36)

Ti,y€ri\Ti,a

rat . W(Tiyto(k) <7(S) (37
Tw yeﬁz\Tw a
> W(Tiyto(k) <AM(Si—1)  (38)
Ti yeﬁw\Tz a
By (36), (37), and (38), we have
W (T, to(k)) < min(v; (i), 7i,0+Oi—to(k) +7; (S —1)).
(39)

By Claim A4, all jobsT; , such thatl; , € «; are released
within [r; o, 70,4 + D¢ — D). LetT; ,4s,—1 be the latest job
released within this interval. We upper bound as follows.

Ti,a
= Ti,a+8;—1 + Ti,a = Ti,a+8,—1
{by the definition ofT; 15,1}
<reg+De—Di+1i0 —
{by Lemma 2
<rpg+Dy—Di— A7(S; — 1)
From the inequality above, we have

Tia + O —to(k)

< maX(O,Tg_’q—l-Dg—Di—.A;l(Si—1)+@i—t0(k}))

to(k)+D¢—D;—A;H(Si—1)+6,)
(40)

Ti,a+S;—1

= max(0, 74—



By (39) and (40), we have
W(T;, to(k))

< min(v;*(S;), max(0,7¢,q — to(k) + Dy — D; + ©;
= ATHS; = 1) +71(Si — 1))
=Gi(Si;req —to(k) + De — D; +©;),  (41)

whereG; (S, X) is defined in the statement of the lemma. By
Claim A6, the functionG,(S, X)) is a non-decreasing func-
tion of S. We thus can find an upper bound BA(T;, to(k))

by setting an upper bound o} into (41).

By Claim A4, S; = |x;| is at most the number of jobs
released within the intervat; ,, ¢, + D¢ — D;], which, by
Claim A3, is contained withir{to(k) — ©;,7¢,q + D¢ — D;).
We thus upper-bound; using Def. 2.

Si < ajf(re,q + De — Dy — to(k) + ©;)
= i (re,qg — to(k) + D¢ — D; + ©;)

Setting this upper bound of} into (41), we get the required
result. [ |

by Def. 9, we have
7 (o (X))
=7 (max(0, «
{by (3)}
<& - (max(0,a] (X)) + v
{by Claim A8}
<e - (max(0,R; - X + B;)) +v;

+

i (X))

{by Def. 4
= max(0,u; - X +& - B;) +v;
{by Def. 21}
= L;(X).
]
Lemma Al: WHc(Ti,é) < Li(06 + D¢ — D;) + u; - 0,

Wne(T;,0) < Li(6 + Dy — D;).

Proof: We prove the first inequality. The second in-

The following claims and lemma are used to prove Lemma 6gquality is proved similarly.

Claim A7: L(X +Y) <
Y >0.

Proof: By Def. 4, u; > 0. By Def. 21,
Li(X+Y)

Li(X)+wu;-Y for all X and

ax(0,u; - (X +Y) +& - B;) + v
(O,Ui-X-i-e_i'Bi)-f—Ui-i-ui-Y
= Li(X) +u; - Y.

< ma

Proof: By Def. 9,
af (X)
= lim o} (X +¢)

%
e—+0

{by (2)}

< lim R;- (X +¢€)+
e—+0

=R, - X+ B;

B;

Claim A9: 72(a2 (X)) < 7¥(a} (X)) < Li(X).

Proof: By Def. 2, a}*(A) is a non-decreasing function
of A. Thereforea¥(A) < a¥(A +¢) for anye > 0, which
implies o' (A) < lime_, o a¥(A + €). The right-hand side
of the latter inequality isy;" (A) by Def. 9. Thusp*(A) <
a; (A). The first inequality of the claim therefore follows
from ~;(k) being a non-decreasing function foy Def. 1.
We now prove the second inequality. Because(X) > 0

Whc (T3, 0)
{by Lemma §
<7i(e§' (6 + D¢ — D; + ©;))
{by Claim A9}
< Li(5+Dg —D; +®i)
{because; > 0, by Claim A7}
< Li(6+D;—D;)+u; - 0;.
[ ]
Lemma 6. For all 6 > 0, M;(0) < Ugum - 6 + H;, Where
Hy =31 ¢ Li(De— Di) +U(m —1) -max(©;) and U (y)

is the sum ofnin(y, |7|) largest utilizations.

Proof: Suppose that the setdC and NC subject to
(26) maximize the value of the right-hand side of (25). By
(25), we have

My (9)
= > Whe(Ti,0)+ > Wie(Ti,d)
T;eHC T;eNC

{by Lemma AL

< > (Li(6+De—Dy)+ui ©:)+ Y Li(0+Dy—D;)

T;€HC T;ENC
{sinceHC UNC C T}
> Z L 5 + DZ Z Us - z

T;eT T;€HC
becauseéHC| < m — 1 by (26),and by the
definition of U(y) in the statement of the lemm
> [Li(6+ Dy — Di)] + U(m — 1) - max(©;)
T;eT

<



by Claim A7
(by the condition of the lemmaj, > 0)

< Z )+ u; - 0]
T;eT
+U(m — 1) - max(0;)

in the statement of the lemma
= Usum -6 + Hl-

{ by Def. 4 and the definition off, }

[ |
Lemma 111If ©, = x4+ (K)+Cy, thenE} (k) < Yi+u,-z
for k € [1, K.
Proof: By (24),
Eq (k)
= Gu(af (Q(k)), Q(k))
{by Def. 19
< (e (Q(K)))
{by Claim A9}
< Le(Q(k)))
{by Def. 20
= Ly(max(0,7/(k—1)— 1)+ 0y))
{by the condition of the Lemnija
= Le(max(0, 7'k = 1) = 1)+ + 3} (K) + C))
{by Claim A7}
= Ly(max(0,v/(k—1) = 1) + v/ (K¢) + Cp)) 4 ue - x
becausel, and~; are non-decreasin
functions of their arguments
<Ly(max(0, v} (K¢—1)— 1)+~ (K¢)+Cp)) +ue-x
{by Def. 27}
=Y, +ur-x
[ |
Lemma 121f ©; = z + v}*(K;) + C; for each taskT; and
6 >0, thenM; (0) < Usum -0+ Y p. e Li(Coi) +U(m —
1) -z + W, whereU(m — 1) is the sum ofn — 1 largest
task utilizations.
Proof: Suppose that the setdC and NC subject to

(26) maximize the value of the right-hand side of (25). By
(25), we have

My (6)
Z Whc (T3,0) + Z Wi (T3, 9)
T,€HC T,eNC

{by Lemma AL

< > (Li(0+De—Di)+u;-0:)+ Y Li(6+De— D)

T;€HC T;eNC
{by Def. 26}

= Z( (6+C€z)+uz z Z L; 5+C€z)
T;€HC T;eNC

{sinceHCUNC C 7 and L;(X) > 0 for all X}
< Z L6+ Coy) + Z u; - 9
T,eT T;EHC
{by the selection 0B, in the statement of the Lemrha
= > L0+ Cui)+ > i (@+7 () +Ci)
T;eT T; EHC
becausgHC| < m — 1 by (26), and by the
definition of U(y) in the statement of the lemm

<D L6+ Cri)+Um—1)-z+ Y [v4

T;eT T;€HC
{becauséHC| < m — 1 by (26), and by Def. 2B

< Y L0+ Cri)+Um—1)-2+W
T:eT
by Claim A7
(note that, by the condition of the lemma> 0)
< Y Li(Cri) 4 ui 6]+ U(m—1) -2+ W
TieT
{by Def. 4}

T;eT



