
Work-In-Progress: Lock-Based Software
Transactional Memory for Real-Time Systems

Catherine E. Nemitz
Department of Computer Science

The University of North Carolina at Chapel Hill, USA
nemitz@cs.unc.edu

James H. Anderson
Department of Computer Science

The University of North Carolina at Chapel Hill, USA
anderson@cs.unc.edu

Abstract—We propose a method for designing software trans-
actional memory that relies on the use of locking protocols
to ensure that transactions will never be forced to retry. We
discuss our approaches to implementing this method and tunable
parameters that may be able to improve schedulability on an
application-specific basis.

Index Terms—multiprocess locking protocols, nested locks,
priority-inversion blocking, reader/writer locks, real-time locking
protocols, software transactional memory

I. INTRODUCTION

Software transactional memory (STM) is a mechanism

used to coordinate access to shared-memory resources. STM

provides a separation of concerns regarding these resources:

application development and resource-access synchronization

are isolated from each other. For developers of real-time

applications, STM presents a simple interface for guaranteeing

that shared memory is accessed in a safe manner; instead of

resorting to a parallelism-restricting coarse-grained solution

or reasoning through race conditions, potential memory loca-

tions being accessed, and devising a fine-grained approach,

a developer can simply mark a section of code as atomic.

Separately from this development phase, the STM ensures a

section of code in execution will access shared memory in a

safe manner based on the required access (read or write). How

this is accomplished is discussed later.

In the context of real-time systems, this separation of

concerns has benefits beyond the initial development of an

application. With the use of a certified STM, the burden

of certifying an application for a safety-critical domain is

reduced. Managing access to shared memory in the application

is abstracted away, which allows a certifying body to focus

on the easier task of ensuring that all code blocks for which

synchronization is necessary are marked atomic; the STM

handles the rest.

STM implementations can be considered to have several in-

terdependent parts. An STM allows reads and writes to shared

memory, detects and resolves conflicts, and ensures progress

Work supported by NSF grants CNS 1409175, CPS 1446631, CNS
1563845, CNS 1717589, and CPS 1837337, ARO grant W911NF-17-1-0294,
and funding from General Motors. This material is based upon work supported
by the National Science Foundation Graduate Research Fellowship Program
under Grant No. DGS-1650116. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

for each process. In the model typically envisioned [3], [4],

[6], [8], [9], [11], [12], [14]–[16], [18], [21], [25], [26], these

goals are accomplished with attempted transactions, a runtime

conflict-detection component, and transaction rollbacks and

retries with some priority or contention management to ensure

eventual completion.
Because of the focus on timing constraints within real-

time systems, we propose a new solution to reduce these

concerns to two components: a conflict-detection mechanism

and a locking protocol that guarantees that each transaction

completes on its first execution with no retries. We believe that

this approach can lead to improved schedulability over more

traditional approaches because of tighter bounds on worst-

case transaction execution times that can be guaranteed. Our

approach can support a range of applications, from embedded

to high performance computing.
Our new lock-based approach differs from prior work as

described in Sec. II. Also in Sec. II, we describe our system

model. Then, we describe components of our proposed im-

plementation in Sec. III and discuss extensions to our new

implementation in Sec. IV before concluding in Sec. V.

II. BACKGROUND AND PRIOR WORK

We begin by providing an explanation of our model of tasks

and resources. We then discuss prior work.

A. System model
We assume the standard sporadic or periodic task system

model, in which a task system Γ is comprised of tasks

τ1, . . . , τn. These n tasks are scheduled with a job-level fixed-

priority scheduler on a platform with m processors.
Each task may need to access some resource �a. (How a

resource maps to shared memory is discussed in more detail

in Sec. III.) This access may be a write access—one which

requires mutual exclusion—or a read access—one which may

occur concurrently with other read accesses. We focus on using

a lock L to protect specific resources. We define the notation

Lx:{y} to represent that Lock x protects the set of resources

y. That is, a task must first acquire Lx before it may access

any resource in y.

B. Prior work
The idea of transactional memory was proposed two-and-a-

half decades ago [16], and many approaches for implementing

147

2018 IEEE Real-Time Systems Symposium

2576-3172/18/$31.00 ©2018 IEEE
DOI 10.1109/RTSS.2018.00026

such a framework have emerged that focus on hardware-based,

software-based, and hybrid solutions. Much of the prior work

focuses on software transactional memory [26], as flexible

hardware implementations are not commercially available [7].

Many types of STM have been explored. These include

STM implementations that define resources by shared-memory

locations (e.g., [6], [14]) or by shared data structures (e.g.,
[15]). Some STM approaches have relied on non-blocking

or lock-free techniques to coordinate transaction commits

and retries (e.g., [15], [26]), while others have used locks

to coordinate these decisions (e.g. [6], [11]). However, the

approaches suitable for use in a real-time system cover a much

smaller space.
Existing approaches to STM development in the context

of real-time systems have focused on the traditional structure

described above. Tasks do prospective work on copies of

resources, and then the transaction attempts to commit these

changes to the original resource(s), retrying if any conflicts

are detected. The research focus on the use of STM for real-

time applications is necessarily focused on ensuring guarantees

of progress for each memory access in order to provide a

system that is schedulable. To this end, work has been done

that focuses on bounding and lowering the number of retries

required.
The most similar approach to the one we propose is one in

which a set of locks must be acquired for a given transaction

to complete, but a transaction may be forced to give up its

locks and re-acquire them based on a time-stamped order-

ing [3]. Prior work has also experimented with prioritizing

each transaction based on the deadline of the task issuing the

transaction [18], [21], [25]. Other work has investigated the

effect of eager vs. lazy conflict detection [4] and developed

a contention manager that limits the number of transactions

executing simultaneously in order to be able to guarantee

progress [8], [9].
In contrast, our proposed approach eliminates the need for

retries.
Our lock-based implementation described below is differ-

ent from other STM implementations that are called “lock-

based” [6], [11]; this term has often been used to describe

implementations that use locks, rather than a non-blocking

approach, as a method of synchronizing which transactions

will commit and which will retry. This is in contrast to our

approach, which relies on locks to ensure that a transaction

will always commit the first time.

III. STM IMPLEMENTATION

Our approach to implementing a lock-based STM for use

in real-time systems relies on two components: a conflict-

detection mechanism and an underlying locking protocol.

The conflict-detection mechanism determines which areas of

shared memory must be classified as one or more resources,

and the locking protocol grants access to these resources.

A. Detection of potential conflicts
We assumed above that any section of shared memory could

be abstracted to a specific resource.

A required assumption of real-time applications, especially

those intended for use in safety-critical systems, is that all

tasks can be analyzed offline to determine worst-case execu-

tion times, resources that may be accessed, and the worst-

case duration of any such resource access. In the context

of an STM, we can leverage this knowledge to determine

which tasks may conflict a priori. This gives us a significant

advantage in both the method of execution and the offline

analysis of schedulability.

Knowing what shared memory may be accessed by any

given task allows us to define our set of resources offline. Any

of these sections of shared memory that may be accessed by

multiple tasks must be declared as a resource to be protected

by a lock in our approach, while sections of shared memory

that are only ever accessed by a single task are not considered

resources. We plan to focus on this approach, also called a

word-based approach, rather than an object-based approach.

An object-based approach restricts the set of resources to the

set of objects or data structures; finer-grained access to these

resources would not be possible to provide with the object-

based approach. Therefore, we will develop a word-based

STM implementation, which will also allow for application-

specific tuning, as described in Sec. IV.

B. Locking approach

In determining what constitutes a resource, as described

above, we can ignore the manner in which these resources

are accessed; specifically, we can ignore if a specific access

requires mutual exclusion and if multiple resources must

be accessed concurrently. However, when implementing the

resource-access coordination supported by a locking protocol,

we must consider read and write accesses, as well as multiple-

resource accesses, typically seen in non-transactional code as

nested resource accesses.

We plan to use existing techniques to transform marked

atomic sections at compile time to sections containing

properly nested lock and unlock calls.

It is crucial, in a lock-based approach, to focus on the use

of contention-sensitive locking protocols—those which ensure

the blocking a task experiences is proportional to the number

of other tasks that share one or more resources with the task of

interest [19], [22], [23]. This is in contrast to locking protocols

that can only guarantee blocking bounds based on the number

of tasks or the number of processors in the system.

When multiple resources may be accessed concurrently,

achieving a contention-sensitive ordering of resource accesses

is made more difficult by the potential for transitive blocking

chains—chains of resource-access requests that can cause

a task to be delayed by many other non-conflicting tasks.

To achieve contention-sensitive resource access, a locking

protocol must provide a mechanism that allows non-conflicting

tasks to cut ahead of other tasks waiting for resource access.

While contention-sensitive locking protocols can also be

used in contexts independent from our STM, the structure of

the STM is what eases application development and certifica-

tion burdens. Additionally, because the STM examines trans-

148

Fig. 1. Task system with five tasks requiring access to four resources.

actions before transforming these transactions into lock-based

resource requests, we can tune performance in a fine-grained

manner without modifying application code. We explore one

method of tuning performance below as one of the additional

components that can augment our STM implementation.

IV. ADDITIONAL COMPONENTS

We elaborate on the benefit our implementation can provide

by exploring additional components that can be added, but

are not fundamental, to an implementation of STM. First

we introduce a method by which to improve performance

on a per-application basis. Then we describe an approach to

accommodate a wider set of resources and discuss how we

plan to manage the additional schedulability challenges that

may pose.

A. Tunable locking granularity
Generally, locking granularity refers to how many resources

are protected by a single lock. As mentioned above, a fine-

grained locking approach tends to protect each resource by

its own lock, while a coarse-grained approach may protect all

resources by a single lock. With the latter approach, different

resources could never be accessed concurrently. We illustrate

this difference with the following example.
Example 1: Consider tasks τ1 to τ5 and resources �a to �d.

Each task requires access to at least one resource, as shown in

Fig. 1. For example, τ1 requires access to �a and �b. A coarse-

grained approach to protecting access to these resources would

define a single lock L1:{�a, . . . , �d} to protect all resources.

With this approach, τ1 would be prevented from writing to �a
while τ3 writes to �c, even though τ1 and τ3 do not share any

of the same resources. A fine-grained approach would instead

use four locks: L1:{�a}, L2:{�b}, L3:{�c}, and L4:{�d}. This

would allow τ1 and τ3 to write data concurrently. This benefit

comes at the cost of maintaining more locks, which requires

additional time and memory.
Between these two extremes, however, there is a middle

ground. A few resources could be protected by the same lock,

and multiple such groups of resources could exist.

Example 1 (cont’d): A different approach for the task set

shown in Fig. 1 could be to have two locks: L1:{�a, �b} and

L2:{�c, �d}. Using these two locks allows some concurrent re-

source access (τ1 and τ3 could access their respective resources

concurrently), but prevents τ3 and τ5 from concurrent resource

access, though they do not share a common resource. However,

notice that τ1 and τ2 see no change in potential access conflicts

with this reduction of locks compared to those provided in the

most fine-grained lock assignment.

Thus, one method by which we seek to improve per-

formance is by adjusting the locking granularity on an

application-specific basis. This performance is ultimately mea-

sured by schedulability. Affecting schedulability, however, are

the overhead of the locking protocol—how long the locking

protocol takes to process a resource-access request—and the

worst-case blocking a task may experience—the sum of all

resource-access durations that may delay the task from its

resource access.

With fewer resources, the overhead of a locking protocol

may be reduced; there would be less lock state to maintain

and tasks would generally require fewer of these locks. If

lock state were to be held in cache by techniques explored

elsewhere [1], [5], [17], [20], [28], [29], the reduced cache

footprint that would come with using fewer locks could cause

other performance improvements as well. Prior work has

shown that, even with a very modest number of locks for

which state must be maintained, the reduction in overhead

when the protocol is able to run cache-hot is substantial [23].

In contrast, reducing the number of resources may cause

more tasks to compete for a given lock. This occurred in

Ex. 1 for τ3; the lock τ3 must acquire in the most fine-

grained approach had only one other task, τ4, ever requiring

the same lock. In the suggested middle-ground approach, the

lock τ3 required was also required by τ4 and τ5 for their

respective resource accesses. An increase in the number of

tasks contending will increase the worst-case blocking, which

must be accounted for in schedulability analysis.

Though varying lock granularity has been studied in other

contexts [12], [13], to our knowledge it has not been explored

in real-time systems, in which the chosen locking granularity

can affect schedulability, and thus, system correctness. Choos-

ing the locking granularity for use with a specific application

will depend on the number of resources, the memory footprint

of the locking protocol state, the worst-case resource-access

durations, the number of tasks, and the number of processors

on the platform. Additionally, how resources ought to be

assigned to locks is a non-trivial question that depends not

only on the task-resource relationships, but also which tasks

could incur higher blocking and remain schedulable.

B. Support for additional resources

To this point, the only resources we have considered are

those stored in shared memory. With few exceptions [27],

traditional STMs can only provide access protection to shared-

memory resources. However, the lock-based approach that we

propose can easily be adapted to support additional resources,

149

such as hardware resources (e.g., GPUs). In our model, any

such resources can simply be added to those that must be

protected by some lock.

Our initial approach to supporting a GPU or some other

accelerator will treat the entire device as a single resource.

This approach allows timing guarantees to be made easily,

as a given task will always run in isolation on the device.

(This reflects previous approaches to managing GPUs [10],

though the complexities of these devices are being explored

to determine if each GPU could be considered as multiple

resources based on the internal components and proprietary

scheduling decisions [2], [24].)

While supporting an additional set of resources may be

relatively simple to implement, it may have large effects on

the system as a whole. In general, reading from or writing

to shared memory is very quick, but accessing a hardware

resource may be significantly more time-consuming. This

variation can also depend on the type of computation being

done with, or on, the resource. Mixing resource types could

increase the worst-case access delay to the point of making a

system unschedulable.

Therefore, we will explore the effects of mixing different

resource types. We will experiment with developing protocols

that have a fast-path mechanism for certain resource types. We

will investigate grouping resources based on characterizations

such as access type (read or write), access duration (short or

long), and number of resources accessed together (one, few,

or many). One of these groups can then be selected to use the

fast-path mechanism of our locking protocol.

Note that by choosing one of these metrics on which to

group resources, we will influence how to best choose resource

assignments to individual locks based on locking granular-

ity. Therefore, applying additional techniques to improve the

schedulability of an application, such as allowing other shared

resources or modifying locking granularity, cannot be done in

isolation.

V. CONCLUSION

We have presented our vision for a lock-based software

transactional memory implementation for use in real-time

systems. We described how shared-memory access within a

transaction can be transformed to a set of lock and unlock

calls for specific resources and how these can be supported

by contention-sensitive locking protocols. This structure will

provide a separation of concerns between the development and

certification of a real-time application and the coordination of

concurrently running tasks accessing and modifying shared

resources.

Building on this proposed implementation, we discussed

tuning the granularity of the locks on a per-application basis.

We then suggested how non-shared-memory resources could

be accommodated by our STM implementation and shared

our planned examination of how to reduce the impact that

variations in resource type have on other tasks.

REFERENCES

[1] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. Evaluation of cache
partitioning for hard real-time systems. In ECRTS, 2014.

[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. Gpu
scheduling on the nvidia tx2: Hidden details revealed. In RTSS, 2017.

[3] A. Barros, L. Pinho, and P. Yomsi. Non-preemptive and SRP-based
fully-preemptive scheduling of real-time software transactional memory.
Journal of Systems Architecture, 61(10):553–566, 2015.

[4] C. Belwal and A. Cheng. Lazy versus eager conflict detection in software
transactional memory: A real-time schedulability perspective. IEEE
Embedded Systems Letters, 3(1):37–41, 2011.

[5] M. Campoy, A.P. Ivars, and J.V. Busquets-Mataix. Static use of locking
caches in multitask preemptive real-time systems. In IEEE/IEE Real-
Time Embedded Systems Workshop, 2001.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
2006.

[7] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM can
be more than a research toy. Communications of the ACM, 54(4):70–77,
2011.

[8] M. El-Shambakey and B. Ravindran. STM concurrency control for
embedded real-time software with tighter time bounds. In DAC, 2012.

[9] M. El-Shambakey and B. Ravindran. On real-time STM concurrency
control for embedded software with improved schedulability. In ASP-
DAC, 2013.

[10] G. Elliott, B. Ward, and J. Anderson. Gpusync: A framework for real-
time gpu management. In RTSS, 2013.

[11] R. Ennals. Software transactional memory should not be obstruction-
free. Technical report, Technical Report IRC-TR-06-052, Intel Research
Cambridge Tech Report, 2006.

[12] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP, 2008.

[13] J. N. Gray, R. A. Lorie, and G. R. Putzolu. Granularity of locks in a
shared data base. In VLDB, 1975.

[14] T. Harris and K. Fraser. Language support for lightweight transactions.
In ACM Sigplan Notices, volume 38, pages 388–402. ACM, 2003.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC, 2003.

[16] M. Herlihy and J. Moss. Transactional memory: Architectural support
for lock-free data structures, volume 21. ACM, 1993.

[17] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A
predictable cache-aware memory allocator. In ECRTS, 2011.

[18] S. Hirve, A. Lindsay, B. Ravindran, and R. Palmieri. On transactional
memory concurrency control in distributed real-time programs. In
CLUSTER, 2013.

[19] C. Jarrett, B. Ward, and J. Anderson. A contention-sensitive fine-grained
locking protocol for multiprocessor real-time systems. In RTNS, 2015.

[20] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical OS-level cache management in multi-core real-time systems.
In ECRTS, 2013.

[21] W. Maldonado, P. Marlier, P. Felber, J. Lawall, G. Muller, and E. Rivière.
Deadline-aware scheduling for software transactional memory. In DSN,
2011.

[22] C. Nemitz, T. Amert, and J. Anderson. Real-time multiprocessor locks
with nesting: Optimizing the common case. In RTNS, 2017.

[23] C. Nemitz, T. Amert, and J. Anderson. Using lock servers to scale real-
time locking protocols: Chasing ever-increasing core counts. In ECRTS,
2018.

[24] N. Otterness, M. Yang, T. Amert, J. Anderson, and F. D. Smith. Inferring
the scheduling policies of an embedded cuda gpu. In OSPERT, 2017.

[25] T. Sarni, A. Queudet, and P. Valduriez. Real-time support for software
transactional memory. In RTCSA, 2009.

[26] N. Shavit and D. Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[27] H. Volos, A. Tack, N. Goyal, M. Swift, and A. Welc. xCalls: safe I/O
in memory transactions. In EuroSys, 2009.

[28] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches
more predictable on multicore platforms. In ECRTS, 2013.

[29] M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. vCAT: Dynamic cache
management using CAT virtualization. In RTAS, 2017.

150

