
TORTIS: Retry-Free Software Transactional
Memory for Real-Time Systems

Claire Nord∗1, Shai Caspin†‡1,2, Catherine E. Nemitz†§2,
Howard Shrobe∗, Hamed Okhravi¶, James H. Anderson†, Nathan Burow¶, and Bryan C. Ward¶
∗ MIT CSAIL, † The University of North Carolina at Chapel Hill, ‡ Princeton University, § Davidson College

¶ MIT Lincoln Laboratory

Abstract—Software transactional memory (STM) is a synchro-
nization paradigm originally proposed for throughput-oriented
computing to facilitate producing performant concurrent code
that is free of synchronization bugs. With STM, programmers
merely annotate code sections requiring synchronization; the
underlying STM framework automatically resolves how synchro-
nization is done. Today, the programming issues that motivated
STM are becoming a concern in embedded computing, where
ever more sophisticated systems are being produced that require
highly parallel implementations. These implementations are often
produced by engineers and control experts who may not be
well versed in concurrency-related issues. In this context, a real-
time STM framework would be useful in ensuring that the
synchronization aspects of a system pass real-time certification.
However, all prior STM approaches fundamentally rely on retries
to resolve conflicts, and such retries can yield high worst-case
synchronization costs compared to lock-based approaches. This
paper presents a new STM class called Retry-Free Real-Time
STM (R2STM), which is designed for worst-case real-time per-
formance. The benefit of a retry-free approach for use in a real-
time system is demonstrated by a schedulability study, in which it
improved overall schedulability across all considered task systems
by an average of 95.3% over a retry-based approach. This paper
also presents TORTIS, the first R2STM implementation for real-
time systems. Throughput-oriented benchmarks are presented to
highlight the tradeoffs between throughput and schedulability
for TORTIS.

I. INTRODUCTION

The range of sophisticated features implemented in embed-
ded systems is accelerating at a rapid pace today. These fea-
tures are being fueled by the availability of high-performance
multicore platforms that can support computationally intensive
workloads within a restricted size, weight, and power (SWaP)

DISTRIBUTION STATEMENT A. Approved for public release. Distribu-
tion is unlimited. This material is based upon work supported by the Under
Secretary of Defense for Research and Engineering under Air Force Contract
No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Under Secretary of Defense for Research
and Engineering. © 2021 Massachusetts Institute of Technology. Delivered
to the U.S. Government with Unlimited Rights, as defined in DFARS Part
252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013
or DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights
that exist in this work.

This work was also supported by NSF grants CNS 1563845, CNS 1717589,
CPS 1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-20-1-
0237, and ONR grant N00014-20-1-2698.

1Equal contribution by both authors.
2Work conducted at the University of North Carolina at Chapel Hill.

1 transaction {
2 let item = queue1.pop();
3 queue2.push(item);
4 }

Listing 1: Pseudo-code showing example transaction annotation for
an operation moving an object from one queue to another.

envelope. In recent years, these platform characteristics have
enabled a wealth of new capabilities across a wide range
of application domains, from medical devices and robotic
systems with enhanced intelligence, to automobiles, aircraft,
and space vehicles that can function autonomously.

In many of these domains, the systems of interest are safety-
critical real-time systems that have timing constraints requiring
certification. In such systems, “performance” is tied to for-
mal analysis involving worst-case system behaviors, unlike
throughput-oriented systems, where average-case behaviors
are the usual focus and rigorous analysis is not pervasive.
Designing a safety-critical real-time system requires facing
many analysis-related certification issues, which become more
complex due to concurrency on a multicore platform.
The case for real-time transactional memory. One concur-
rency-related issue that looms large in any application domain
is the need for efficient synchronization. In work on real-
time systems, multiprocessor synchronization has been the
subject of significant research over the last 40+ years, as
well summarized by Brandenburg’s recent systematic review
with 225 references [13]. Many nuances and challenges exist
in correctly applying this vast body of work. For example,
some real-time locking protocols cannot be used together [12,
§4.6.5]—would a typical programmer know this? Moreover,
while dealing with concurrency can be generally tricky, adding
schedulability concerns only further complicates matters. Such
difficulties are exemplified by the work of Chen et al. [15],
who identified misconceptions related to task suspensions
that led to flawed analysis for a number of multiprocessor
synchronization protocols that had persisted for over 20 years.

In work on throughput-oriented computing, the need for
simple yet efficient and correct synchronization has been the
driving force behind considerable prior work on a concept
called transactional memory (TM). As illustrated in Lst. 1,
when a TM framework is employed, programmers must
merely annotate code sections that require synchronization.

The TM framework itself determines how synchronization is
actually achieved. The goal here is to enable programmers
to more easily produce correct code that harnesses prominent
results on efficient synchronization. An especially strong case
for TM can be made for safety-critical real-time systems where
there is a need for efficient synchronization, performance
analysis, and real-time certification in code that may be
developed by a domain expert, not a multiprocessor real-time
synchronization expert.

TM approaches. TM can be realized in software, hardware,
or some combination of the two [29], [39]. The specific
focus of this paper is software TM (STM).1 A myriad of
approaches to managing conflicts have been studied that are
designed around trade-offs such as minimizing overheads,
maximizing throughput, and/or ensuring different progress
guarantees. These approaches are categorized in Fig. 1. For
example, Herlihy and Moss [29] originally conceived TM
as being lock-free, but lock-based synchronization is used
in Transactional Locking II [19] to reduce overheads, using
retries for limited purposes such as resolving deadlock. In
contrast, obstruction-freedom [28] has been presented as a
non-blocking synchronization approach for STM with weaker
progress guarantees than lock-free synchronization, to trade-
off progress for throughput.

Regardless of how synchronization is realized, TM is fun-
damentally an approach to automatic synchronization. The
specific synchronization mechanisms used within a given TM
framework are designed to realize automatic synchronization
while enabling application-relevant performance approaching
that of hand-tuned concurrent code. As most work on TM
has been conducted in the general-purpose computing domain,
most prior work on TM uses optimistic techniques to syn-
chronization that abort and retry conflicting transactions. This
optimism can enable non-conflicting transactions to execute
and commit concurrently, increasing throughput.

Retry-based synchronization, however, is not fundamental to
TM; it is merely a means to realize automatic synchronization.
Retry-free automatic synchronization has been studied [16],
[31] for general-purpose systems,2 but it has never been
applied or evaluated in the context of a real-time system, where
worst-case behavior and analysis supersedes throughput.

Contributions. This paper presents the first retry-free (i.e.,
blocking) real-time STM. We call this class of STM ap-
proaches and associated blocking and real-time analysis Retry-
Free Real-Time STM (R2STM). R2STM is designed to min-
imize worst-case synchronization costs and enable tighter
analytical bounds on synchronization-related delays, rather
than maximizing average-case throughput. Additionally, elim-
inating retries enables I/O to be supported within transactions.

The R2STM design is motivated by the fact that in real-time
systems, schedulability is the paramount application-relevant

1We use the term “TM” when discussing transactional memory broadly,
and “STM” when referring to TM implemented in software.

2This work is presented as “pessimistic atomic sections,” but we argue any
automatic realization of atomic sections is TM.

Transactional Memory (TM)

Retry-Based TM Retry-Free TM

Hardware TM

Software TM (STM)
Real-time contention managers:

[3][21][22][36][37][38][44]

Hybrid HW/SW TM
[29][39]

Obstruction-Free [28]

Lock-Free [29]

Lock-Based [14][18][19]

Automatic Locking [16][31]

Proposed for throughput-oriented systems

R2STM
e.g. TORTIS

Wait-Free [17][35]

Fig. 1: Hierarchy of TM classes.

performance metric, not throughput. Retry-based STM in
this context requires bounds on retries to validate real-time
constraints. Such bounds are inherently based on worst-case
contention, rather than the lower average-case contention
for which retry-based approaches were designed. This fact
makes certifying retry-based systems difficult, as worst-case
execution must be accounted for. Furthermore, reasonable
bounds for retry-based STM can be difficult to obtain on a
multiprocessor. These two observations motivate the retry-free
design of R2STM based on the goal of enabling automatic
synchronization while maximizing schedulability.

Towards this end, we present the first R2STM framework,
which we call TORTIS (try-once real-time STM).3 In order
to eliminate retries, TORTIS relies on lock-based synchro-
nization to manage shared-object accesses. TORTIS realizes
automatic synchronization via compile-time instantiation of
lock and unlock calls. In order to eliminate the possibility
of deadlock, TORTIS statically determines the set of objects
that may potentially be accessed within each transaction,
and whether accesses are reads or writes. Knowing the set
of objects used in each transaction enables the compiler to
compute resource groups [7], and assign each transaction a
single group lock, thereby preventing deadlock.

This paper makes four main contributions. First, we conduct
a schedulability study that demonstrates an average of 95.3%
schedulability improvement when an R2STM approach is
used. Second, we present TORTIS, the first demonstration of
R2STM. Third, we evaluate concurrency and throughput trade-
offs involving retry-based vs. retry-free STM on multiple data
structures; we find that the relative performance of TORTIS
compared to a competing retry-based STM is highly dependent
upon the access patterns, but that overall TORTIS yields
competitive throughput while enabling greater schedulability.
Fourth, we investigate the locks emitted by TORTIS and their
performance in a case study.

Organization. The rest of this paper is organized as follows.
After providing needed background in Sec. II, we evaluate
retry-free and retry-based STM with respect to schedulability
in Sec. III. We then present the design and implementation of
TORTIS, in Sec. IV. Next, we evaluate the throughput trade-
offs of TORTIS in Sec. V and the impact of our static analysis
for resource grouping in Sec. VI. We conclude in Sec. VII.

3The predictable and consistent tortoise wins the race.

2

II. BACKGROUND AND MOTIVATION

Here we provide TM background, with a specific focus on
real-time TM. We also describe the analysis assumptions and
requirements for schedulability analysis for TM systems.

Transactional memory. The goal of TM is to allow simple
transaction annotations that mark atomic sections in source
code, as shown in Lst. 1, while having all synchronization
handled automatically by the TM system. How this automatic
synchronization is realized has been the subject of nearly three
decades of work, which has generated several different classes
of approaches to handling such synchronization (see [25] for
further discussion), as illustrated in Fig. 1. It is commonly
assumed that TM approaches must necessarily rely on aborting
and retrying transactions to realize such synchronization, but
this assumption is not fundamental to TM. It is driven by
optimization for the common case in which conflicts are
rare. Some STM systems employ locking to realize automatic
synchronization, but do so optimistically based on the set of
objects that are accessed at runtime within a transaction [19].
Even these lock-based approaches suffer from the possibility
of runtime deadlock, and must fall back on abort/retry to
enable progress. Yet other STM approaches only guarantee
obstruction-freedom [28], which only guarantees progress in
the contention-absent case.

The Transactional Locking II (TL2) algorithm [14], [18],
[19], which relies on retries, is perhaps the most widely cited
locked-based STM in existence, so we use it as a basis of
comparison to our new approach. As such, we describe how
it functions in more detail. Under TL2, transactions are pre-
executed to determine which objects they access. This simu-
lation adds overhead to the transaction execution, but enables
greater runtime concurrency. After the simulation phase, locks
are acquired for each of the written objects so that results can
be committed. In the interest of average-case performance,
such locks are acquired in an arbitrary order, potentially
leading to deadlock, which causes a transaction to abort and
retry. A transaction is forced to retry if an object it reads is
updated (or locked) after its simulation, thus invalidating the
simulation’s results. In this manner, transactions may conflict
at runtime if they access common objects.

Autolocking [16], [31] is an approach to STM from the
programming-languages community that frames the problem
in terms of automatically inferring the correct set of locks to
protect atomic sections. This line of work makes the case for
“pessimistic concurrency,” i.e., retry-free, for general-purpose
applications. To our knowledge, we are the first to investigate
retry-free transactional memory for real-time systems. Real-
time systems must use fundamentally different locking pro-
tocols. In particular, suitable progress mechanisms must be
used to limit priority-inversion durations [8]. (We use non-
preemptive execution as a progress mechanism in this work;
in contrast, in non-real-time systems, user-level processes are
typically not allowed to disable preemptions.) As real-time
systems are the subject of this paper, we hereafter use retry-
free and R2STM interchangeably.

Real-time TM. Prior work on real-time TM has mainly
focused on the development of more predictable contention
managers, which are mechanisms applied to ensure progress
when transactions conflict in retry-based implementations.
These contention managers often focus on distinguishing read
from write accesses to enable reader parallelism. Several
previous STM systems (e.g., [3], [44]) are designed for real-
time systems, but in fact lack any schedulability analysis.
Instead, such systems have been empirically evaluated based
on average-case responsiveness, deadline-miss ratios, and/or
synchronization overheads.

Sarni et al. [36] presented the first real-time contention man-
ager with associated schedulability analysis. Other real-time
contention managers were presented by El-Shambakey [21].
Schoeberl et al. [37], [38] presented real-time TM for Java chip
multiprocessors. Belwal and Cheng [4] investigated the effect
of eager vs. lazy conflict detection on real-time schedulability.
Note that all prior work on real-time TM and contention man-
agement focused exclusively on retry-based conflict resolution.

El-Shambakey’s [21] run-time experiments measured aver-
age deadline-miss ratios using several contention managers
plus the OMLP [10] and RNLP [43] multiprocessor real-time
locking protocols. He found that “more jobs meet their dead-
lines under [the] OMLP and [the] RNLP than any contention
manager by 12.4% and 13.7% on average, respectively.”
This conclusion is based on observations and not analysis.
Including an analysis-oriented comparison would likely have
made the observed discrepancy more pronounced. Indeed,
retry bounds in multiprocessor real-time systems can be ex-
tremely pessimistic. Additionally, retry-based synchronization
is prone to large overheads due to retry management (e.g.,
copying data to roll back aborted transactions).

Quillet et al. [35] derived upper bounds on the number of
aborts and thus execution time for a retry-based STM system
under the Polka contention manager, which was presented in
the general-purpose literature. Cotard et al. [17] demonstrated
a wait-free STM system for multicore architectures and de-
rived upper bounds on retries. In contrast to these works, we
show that it is advantageous from a schedulability perspective
to realize STM without retries.

Determining objects in transactions. The set of objects
accessed within each transaction must be determined (or at
least over-approximated) in order to evaluate synchronization-
related costs for schedulability analysis in any real-time TM
framework. Many prior STM analyses assume this information
as part of the task model [21], [22], [36], similarly to how most
work on real-time locking protocols assume locks are known
a priori [8], [42]. Furthermore, many of these analyses assume
that each transaction accesses a single object [21], [22]. This
assumption is quite limiting—if a transaction accesses only
one object, using explicit synchronization such as a lock is
simple and efficient. Furthermore, coalescing objects into one
for the purpose of analysis is not always safe as interactions
between tasks accessing different subsets of objects can in
some cases cause transitive retries, and potentially even live-

3

lock if not handled properly.
To our knowledge, the only prior work on real-time TM

that has presented analysis to determine the set of objects
used within each transaction in order to inform retry-bound
analysis is that of Schoeberl et al. [37], [38]. This analysis
is based on static data-flow analysis of the source code of
the application. Such data-flow analysis proceeds by tracking
the set of objects that may reach, i.e., could be used by,
each transaction. The precision of such data-flow analysis
depends upon many factors, including context sensitivity, or
interprocedural analysis considering the calling context of a
given function invocation, and flow sensitivity, or the order of
operations in a program. Aliasing, or two variables pointing
to the same object, can also affect the precision of data-flow
analysis. Regardless of the data-flow analysis employed, the
more precise the data-flow analysis, the fewer conflicts must
be considered in worst-case synchronization analysis.

A key observation in this work is that the analysis required
for tight retry-bound analysis, i.e., the objects that a transaction
uses, can also be used to implement R2STM. If the set of
objects potentially accessed within a transaction is known a
priori, deadlock can be statically prevented using techniques
such as group locking [7] or nesting lock invocations using
a partial ordering to prevent deadlock [20], [27], [42], [43].
This enables transactions to be executed without ever needing
to retry, opening the possibility of performing I/O within
transactions. Furthermore, as we show in our schedulability
evaluations, worst-case blocking bounds for modern real-time
locking protocols are often much smaller than corresponding
retry bounds when using the most recent analyses.

III. SCHEDULABILITY EVALUATION

In this section, we present a comparison of R2STM and
retry-based STM approaches on the basis of schedulability.
We begin by describing the scope of our evaluation before
discussing how schedulability is determined for retry-free
and retry-based STM. Finally, we present the results of our
schedulability study.
Experimental design. We used SchedCAT [2] to analyze the
schedulability of task systems scheduled with the Partitioned
Earliest-Deadline-First (P-EDF) scheduling algorithm on an
eight-processor platform.

We generated implicit-deadline sporadic task systems for
scenarios categorized by a number of parameters, which we
varied to represent systems similar to those studied in prior
work [6]. A scenario is defined by a particular selection of
each parameter. Task periods were selected from a log-uniform
distribution in [10ms, 100ms] or [1ms, 1000ms]. Each task’s
utilization was selected from an exponential distribution with
a mean of 0.1. The number of data objects was chosen from
{4, 8, 16}. For each task, the probability that a transaction
accesses a given data object was chosen from {0.1, 0.25, 0.5}.
If a task accesses a given data object, it contains some number
of transactions for that object. We consider two object-access
scenarios: (i) the number of transactions is chosen on a per-
task, per-object basis among {1, . . . , 5}, and (ii) all tasks have

exactly one transaction for each accessed data object. In both
scenarios each transaction accesses only one data object. We
do not make any assumptions about the order of transactions,
or their arrival pattern within jobs. Each access is set to be
a write transaction (as opposed to a read-only transaction)
with a probability chosen from {0.1, 0.25, 0.5, 0.75, 0.9, 1.0}.
We used transaction lengths selected uniformly from either
[1µs, 25µs] (short) or [25µs, 100µs] (medium). We did not
include overheads when determining schedulability.

In many STM implementations, reading and writing an
object can be handled separately. While reads may be common
at runtime, even occasional writes must be accounted for in
schedulability analysis. This is true regardless of the STM
approach applied. In our evaluation, we assumed that read
transactions always read and write transactions always write.

Additionally, when analyzing an individual transaction, we
must consider which resources may be accessed. Consider a
data buffer as an example. While at runtime separate transac-
tions may access different buffer elements concurrently, when
determining schedulability, we must account for any possible
conflict. Thus, we assume that each access to a given data
object (e.g., buffer) may conflict with any other access to it.

Analysis approaches for synchronization. Regardless of
how STM is realized, it can introduce delays (e.g., time
spent blocking or retrying) that must be accounted for in
schedulability analysis. Our analysis for both R2STM and
retry-based STM uses an inflation-free analysis framework [6]
to determine schedulability under P-EDF. This framework
determines schedulability by incorporating the maximum syn-
chronization interference. Synchronization interference on a
given CPU partition is the duration of processor time spent
blocking or retrying transactions during a given interval.

For an R2STM approach, synchronization interference is
entirely due to blocking while waiting to acquire a lock.
In the evaluation below, we assume the use of phase-fair
reader/writer locks (PF-RW) [11] as the locking protocol
supporting the R2STM approach. We apply an extension [34]
of the inflation-free framework that provides inflation-free
analysis of PF-RW. In our results, this is labeled “Retry-free”.

For a traditional retry-based STM, the delays resulting from
retrying a transaction contribute to the synchronization inter-
ference. For this approach, we apply the non-preemptive lock-
free analysis presented with the inflation-free framework [6].
While the analysis of PF-RW incorporates the distinction of
read and write access, this lock-free analysis does not. As such,
we apply two versions of this analysis: the baseline lock-free
analysis (denoted “Retry”) and an application of this analysis
in which all read transactions are simply ignored (denoted
“Retry, no reads”). This second version is intended to capture
the best-case scenario, in which read transactions complete
with few retries and cause minimal delays to write transac-
tions. Of course, in an actual retry-based implementation, there
may be delays incurred by and caused by read transactions,
and these may in fact be significant. We discuss this and the
implications of other study-design decisions next.

4

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Retry-free
Retry
Retry, no reads

(a) 4 objects, access probability of 0.5, medium
transaction length, number of transactions cho-
sen from {1 . . . 5}, write probability of 0.9, task
period chosen from [10ms, 100ms].

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Retry-free
Retry
Retry, no reads

(b) 16 objects, access probability of 0.5, short
transaction length, number of transactions cho-
sen from {1 . . . 5}, write probability of 0.75,
task period chosen from [10ms, 100ms].

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Retry-free
Retry
Retry, no reads

(c) 4 objects, access probability of 0.25,
short transaction length, 1 transaction, write
probability of 0.9, task period chosen from
[1ms, 1000ms].

Fig. 2: Schedulability results for scenarios with a range of TSA improvement ratios.

Favoring the competition. Retry-based STM implementations
can choose different methods for prioritizing the completion
of certain transaction types. As such, to determine the most
accurate schedulability results would require per-STM retry-
based analysis. For example, TL2 prioritizes the completion
of write transactions; transactions that read an object may
be forced to retry repeatedly until the read (and transaction
maintenance, such as checking a read-version clock) do not
overlap with any write to that object. As such, the retry-based
curve that ignores read transactions is very optimistic for TL2.

Additionally, for retry-based STM approaches that employ
locking, both blocking and retrying may contribute to the
synchronization delay. For example, TL2 requires a lock to be
acquired in order to perform a write, but even after the lock is
acquired, the transaction may fail. In this case, the lock would
need to be reacquired before attempting the transaction again,
possibly causing blocking in addition to the retry cost. This
again points to the need for per-STM analysis and highlights
that only accounting for retry delay in the schedulability
analysis may be generous.

Finally, as described in the experimental design, we used
the same transaction length for both R2STM and the retry-
based approaches. By doing so, we are favoring retry-based
STM. A transaction handled by R2STM simply reads or writes
its set of elements. A retry-based STM implementation, on
the other hand, must maintain metadata in order to detect
overlapping transactions, and abort and retry transactions. For
example, TL2 simulates a transaction’s execution, acquires
write locks, and checks the simulated values before writing
the values and releasing write locks. In practice, this extra
bookkeeping could add significant time to the execution of
each transaction (and any required retries of that transaction).
Accounting for this added work would increase the retry cost
of each transaction under retry-based STM approaches. We
chose to ignore this work to make our evaluation independent
of such implementation choices, and instead focus on retry-
free vs. retry-based analysis trade-offs.
Schedulability results. Considering all possible combinations
of task-set parameters results in 432 scenarios. For each one,
we generated task systems with a number of tasks between
{8, 12, .., 80}. As tasks were generated, they were added to
each partition in turn. For each number of tasks, we generated

1,000 independent task systems. We plot the schedulability
ratio of these, which is computed by taking the ratio of tasks
systems that were schedulable by each approach out of the
1,000 systems generated with the given parameters. To sum-
marize the relative performance of approaches under a given
scenario, we compute for each approach its task schedulable
area (TSA), which is the area under its schedulability curve
as computed with a midpoint sum. We compare curves on the
basis of TSA, and we report that two approaches performed
equally if their TSA was within 0.5 of each other.

Each scenario resulted in one graph. In Fig. 2, we present
three of these 432 scenarios that are representative of our key
observations. While each plot is with respect to the number of
tasks, higher task counts generally yield an increase in system
utilization and resource contention. With sufficiently high uti-
lization, task systems are not schedulable. The NOLOCK line
in each plot represents P-EDF schedulability of independent
tasks, including no synchronization delays. A task set that is
not schedulable under NOLOCK cannot be schedulable after
synchronization interference is accounted for, and is plotted to
show the utilization loss associated with synchronization.

From all of our results, we make the following observations.

Obs. 1 The retry-free approach resulted in a higher TSA than
the baseline retry-based approach in 91.9% of scenarios.

In the remaining scenarios, these two approaches were tied.
This observation is illustrated in Fig. 2. Recall that we did not
charge overheads for retries (other than accounting for actually
re-running the transaction); accounting for these would only
serve to further reduce the TSA of the retry-based approach.
Fig. 2a depicts a scenario with significant TSA improvement
under the retry-free approach compared to the retry-based
approaches (117.3% over the baseline retry-based approach
and 84.9% over the approach that ignores read transactions).
On average, the retry-free approach resulted in a 95.3% TSA
improvement over the baseline retry-based approach. Fig. 2b
depicts a scenario in which the retry-free approach has a 96.8%
TSA improvement.

Obs. 2 In scenarios with higher write probability, the retry-
free approach results in higher schedulability than the retry-
based approach that ignores read-only transactions.

5

In 73.1% of scenarios with write probability of 0.75 or
higher, the lock-based STM resulted in a higher TSA than
the retry-based approach that ignores reads, and in 22.2% of
those scenarios, the two approaches were tied.

Obs. 3 Fully accounting for read-only transactions may
improve schedulability under retry-based approaches, but it is
unlikely that such improvements can cause such approaches
to be preferable to retry-free approaches.

In Fig. 2, analysis that appropriately incorporates read-only
transactions would likely result in a curve between the two
retry curves. Even entirely ignoring read-only transactions
results in a TSA that is usually at most that of the retry-free
approach. On average the retry-free approach results in a 7.8%
TSA improvement over the retry-based approach that ignores
read transactions. Fig. 2c illustrates a scenario in which that
improvement is 7.5%.

These observations motivate the need for retry-free STM for
real-time applications in which schedulability is the principal
design consideration. Next we demonstrate how the same in-
formation necessary to compute retry bounds (i.e., the conflict
set of each transaction) can also be used at compile time to
insert locks that prevent the need for ever retrying transactions.

IV. TORTIS

Here we discuss the design and implementation of an
R2STM in Rust, TORTIS. We discuss both correctness, i.e., no
deadlock, and performance considerations. R2STM inherently
trades off throughput for the schedulability gains demonstrated
in the previous section. We show that it is possible to mitigate
throughput losses compared to optimistic STM systems when
designing an R2STM system.

The key challenge in designing an R2STM system is to
reliably prevent any circumstance that would require a trans-
action to be aborted. While previous lock-based STM ap-
proaches [19], [23], [26] prevent many such circumstances by
requiring that locks be acquired before results are committed,
they require aborts to resolve deadlock (among other reasons).
Deadlock freedom is therefore the quintessential requirement
for an R2STM system.

For this first R2STM, TORTIS, all transaction synchro-
nization is performed using coarse-grained group locks [7]—
one lock is acquired before, and released after, a transaction,
rather than on a finer-grained basis based on the objects
actually accessed at runtime. Thus, the one lock must guard all
objects potentially accessed within the transaction, regardless
of the code paths exercised, and must also be locked by any
conflicting transaction. The most naïve such approach is to use
the same lock for all transactions, as in the infamous Linux
Big Kernel Lock of years past. In contrast, TORTIS performs
static analysis to identify and lock separate, non-conflicting
resource groups, which helps mitigate throughput losses. We
leave exploration of finer-grained locking to future work.

1 fn main() {
2 let radar = /* shared object */;
3 let lidar = /* shared object */;
4 let 3D_model = /* shared object */;
5 let plan = /* shared object */;
6

7 for i in 1..sensing_threads{
8 let t1 = new_thread(move || {
9 let my_sensor = null;

10 if (...){
11 my_sensor = radar;
12 } else {
13 my_sensor = lidar;
14 }
15 transaction /* A */ {
16 /* read only */
17 read_sensor(my_sensor);
18 }
19 ...
20 transaction /* B */{
21 /* write */
22 update_model(3D_model);
23 }
24 });
25 }
26 for i in 1..planning_threads{
27 let t1 = new_thread(move || {
28 transaction /* C */{
29 /* read only */
30 get_position(3D_model);
31 get_plan_component(plan);
32 }
33 /* compute component of plan */
34 ...
35 transaction /* D */ {
36 /* write */
37 update_plan(plan);
38 }
39 });
40 }
41 }

Listing 2: Transaction example using vehicle path planning.

A. Static Analysis for Group Locks

Example scenario. To illustrate the principles of our static
analysis, we provide a running example in Lst. 2 drawn
from our motivating use case in Sec. I of an autonomous
car performing motion planning for parking. Note that this
is not a real system, but simplified and abstracted to highlight
important design considerations for TORTIS and illustrate our
analysis techniques. The simplified system has two sensors,
represented by the radar and lidar shared objects. It uses
these to build a model of the world around it, stored in

6

3D_model, which is shared between the sensing and planning
threads. Based on this model, the car computes a plan for
how to park itself, operating on the plan data structure.
There are two sets of threads that perform computation in
parallel: the sensing_threads, which use a transaction
to read the radar and lidar shared objects, and another
transaction to write to the 3D_model, updating it. The
planning_threads use a read transaction to query the
3D_model. They then perform partial computation for the
parking plan, and update the shared plan with their results
in a write transaction.

Conflict-set analysis. Which shared object(s) a transaction
uses, i.e., its conflict-set, determines which resource group that
transaction is in. As resource groups control the emitted locks
and potential runtime concurrency, this analysis is critical for
TORTIS’s runtime performance.

In Lst. 2, transaction A may use either the radar
and lidar shared objects, while transaction B uses the
3D_model shared object, transaction C uses the 3D_model
and plan shared objects, and transaction D uses the plan
shared object. TORTIS must recover this transaction-to-
shared-object mapping through static analysis. We start by as-
signing both transactions and shared-objects identifiers, based
on the line of code they begin at or site at which they
are allocated, respectively. Using allocation sites to identify
objects is the standard approach [32], [37], [40], [41], which
we extend to identifying transactions. In Lst. 2 the transactions
begin at Lines 15, 20, 28, and 35, and the shared objects are
allocated at Lines 2-5.

Having identified the shared objects, we next must deter-
mine which transactions access each resource. Statically, a
shared object may be used in a transaction if, after it is allo-
cated, there is a sequence of instructions in the program that
could lead to it being read or written inside the transaction. We
rely on a context-sensitive, flow-insensitive data-flow analysis,
similarly to Schoeberl et. al. [37], to map shared objects to
transactions, determining transactions’ conflict sets.

Conflict sets are inherently conservative, representing the
union of all shared objects that may be used by a transaction
on any path through the program. For instance, in Lst. 2, only
one of radar and lidar will be used in transaction A at
runtime. Despite this, because both may be used in transaction
A, TORTIS must include both radar and lidar in the
conflict set for the transaction. Programmers can help mitigate
this conservatism through the placement of transactions, as
discussed later. We leave exploring the trade-offs of dynamic
techniques that enable greater parallelism by only blocking on
the shared objects used at runtime as future work. Such ap-
proaches may require more invasive runtime instrumentation,
trading per-thread overhead for increased concurrency.

Creating resource groups. Once TORTIS determines the set
of shared objects that may be used by each transaction, it cre-

A B C D

Resource Group 1 Resource Group 2

Fig. 3: Conflict-set graph for transactions in Lst. 2. Transactions are
nodes, and are connected by an edge if their conflict sets intersect.

ates resource groups and assigns each transaction to a group.4

TORTIS assigns two transactions to the same resource group
if either: (i) they directly conflict, i.e., the intersection of their
conflicts sets is not empty, or (ii) they transitively conflict. To
see why the transitive closure over conflicting transactions is
required, consider the conflicts between transactions in Lst. 2.
Transactions B and C directly conflict, as do transactions C
and D. Consequently, when transaction C executes, neither B
nor D can execute concurrently. As TORTIS uses one lock per
transaction, all three transactions must be assigned to the same
lock, and thus resource group. This does limit concurrency as
B and D could otherwise execute in parallel, but as we show in
Sec. III, the predictability of retry-free execution far outweighs
the non-determinism of retry-based approaches, even if they
enable greater average-case parallelism.

Determining resource groups is equivalent to computing
connected components in a graph, where transactions are
nodes, and an edge exists between two transactions if the
intersection of their conflict sets is not empty. We call this
the conflict-set graph. Connected components in the conflict-
set graph represent resource groups, as elements are connected
if and only if they transitively access a common object. For the
program in Lst. 2, Fig. 3 shows the resulting conflict-set graph.
Transactions B and C both access the 3D_model object,
and so are connected. Transactions C and D are connected
via the plan shared object. Only transaction A accesses the
radar or lidar objects, so it is not connected to any other
transactions. Consequently, transaction A is placed alone in
Resource Group 1, while transactions B, C, and D form a
connected component and are placed in Resource Group 2.

Reader/writer locks. As a further optimization, TORTIS
supports reader/writer locks. A transaction that only reads
shared objects is deemed a read transaction, and all other
transactions are deemed write transactions. Transactions that
perform a mix of reads and writes are deemed to be write
transactions. Our read-write analysis does not change resource
grouping, and only requires that read-only transactions are
modified to use a read lock, while all other transactions use a
write lock. In our example in Lst. 2, transactions A and C are
read only, while B and D perform writes to shared objects.
More sophisticated reader/writer analysis based on the exact
set of shared objects read vs. written would require multiple
locks per transaction, and so is out of scope.

4Because we assume each transaction is protected by one lock, the resources
in a group correspond directly to the transactions that use the same group
lock. As such, we refer to the resource groups as representing the resources
themselves and the transactions that use those resources interchangeably.

7

tx {
…

}

TORTIS
Runtime
Library

Rustc

Tx to lock
/ unlock

translation

Shared
Objs.

TXs

Conflict-Set
Analysis

Resource
Groups

Group
Locks

Fig. 4: Overview of the TORTIS compiler extensions within Rustc.

B. Implementation

Fig. 4 illustrates the TORTIS implementation. Our im-
plementation targets Rust programs, allowing us to leverage
Rust’s type system, and bypass the question of alias-analysis
precision. We believe similar results can be achieved with
MISRA-C [33] and AUTOSAR [24], but do not implement or
evaluate R2STM for those C dialects. To achieve our design
goals, we first introduce a runtime library with new types that
integrate our R2STM system with Rust’s type system. We
also introduce syntax for transactions, in effect our R2STM
API. Transactions are initially converted by the compiler to
lock and unlock calls using a single global lock. TORTIS
then optimizes these locks to resource-group locks, using the
analysis described above in subsequent compiler passes. In
brief, our implementation consists of the following, which we
next describe in more detail:

1) Import TORTIS runtime library. Programmers must
import the TORTIS runtime library, which consists of:
(i) wrapper types for shared objects to allow TORTIS
to provide synchronization for shared objects while
complying with the Rust type system, and (ii) contains
our lock implementation.

2) Recognize transactions. Transactions are translated to
matched lock and unlock calls to a single lock by the
compiler, i.e., they are syntax sugar. At this stage we
have a naïve but correct R2STM system.

3) Optimize locks. TORTIS next optimizes the transaction
locks to resource-group locks, thereby providing retry-
free, concurrent transactions as described above.

Import TORTIS runtime library. While most of the TORTIS
implementation is based on extensions to the Rust compiler,
we also developed a TORTIS library. In particular, this library
provides the wrapper types TxCell and TxPointer for the
Rust type system to ensure that shared objects can be shared
and mutated across threads, with synchronization provided by
TORTIS. In particular, our wrapper types implement traits
that attest to the Rust type system that correct synchronization
mechanism exists. Further, these types allow the compiler’s
STM system to: (i) provide synchronization within transac-
tions, and (ii) verify that shared objects are not used outside
of transactions. Other retry-based Rust STM libraries [5], [30]
use similar wrapper types to satisfy the Rust type system while
providing a custom synchronization mechanism.

We note that only data wrapped in the TxCell or
TxPointer type is protected by TORTIS. This does not
imply a loss in generality as these wrappers can wrap arbitrary

data types. Further, the programmer can avail themselves of
any synchronization method for shared objects not wrapped
in TxPointer, albeit without the guarantees of the TORTIS
STM system. For example, if a transaction acquires a Rust
Mutex, this may lead to deadlock due to dependencies on
non-transactional code. Therefore, non-TORTIS synchroniza-
tion is not advisable to include in transactions, but can be used
alongside transactions at the programmer’s discretion.

In addition to the wrapper types, the TORTIS library con-
tains our lock implementation. Putting the lock implementation
inside the library rather than within the compiler itself allows
the library implementer to change the lock implementation
without rebuilding the compiler, thereby providing greater
flexibility to experiment with lock implementations. The locks
are accessed via lock() and unlock() function calls that
take a single argument—an integer specifying which lock
to manipulate. This design opens up the possibility of a
future API to specify the desired lock implementation for an
application, e.g., to allow the programmer to specify if a spin-
or suspension-based lock should be used. The current TORTIS
prototype uses a phase-fair reader/writer lock [9].
Recognize transactions. TORTIS adds the transaction
keyword to Rust, as shown in Lst. 2, e.g., at Line 14. Each
transaction is converted into a pair of lock/unlock calls into
our runtime library. The lock call is placed at the beginning
of the transaction’s scope, and the unlock call at the end.
The lock calls initially reference a single lock as resource
groups have not yet been determined. As such, immediately
after replacing the transaction keyword with lock/unlock
calls, a naïve retry-free STM system exists. However, this
naïve system provides no concurrency.
Optimize locks. To enable concurrency in TORTIS, we
optimize the initial lock calls to refer to resource-group locks
instead of a single global lock. As described above, doing so
first requires performing conflict-set analysis on the transac-
tions. To determine what shared objects reach a transaction, we
use a context-sensitive, flow-insensitive analysis that TORTIS
adds to the Rust compiler.

Once it has computed the per-transaction conflict-sets,
TORTIS creates a matrix representing the conflict-set graph
described above, where nodes are transactions and edges
represents conflicts that require serialization. Given this graph,
TORTIS computes the connected components and designates
each such component as a resource group. Each resource group
in turn is assigned a unique lock.

Once the resource groups are determined, the last step is
to update the naïve global lock() and unlock() calls in
individual transactions to reference the resource-group lock
instead. As per our runtime library design, the lock is specified
as an argument. Thus, changing the lock used by a transaction
only requires updating the argument to the API call. At this
stage, lock calls are promoted to read-only if possible.

C. Discussion
R2STM is motivated by worst-case real-time performance,

not throughput, in contrast to prior STM implementations.

8

Emphasizing worst-case behavior and schedulability leads to
trade-offs around the granularity of synchronization, and ele-
vates the importance of where programmers place transactions.
We also highlight how programmers can use the Rust type
system to provide hints to the TORTIS analysis.
Granularity of synchronization. TORTIS uniquely identifies
objects based upon their allocation site. In a list, for example,
TORTIS often cannot differentiate list elements from one
another, as they are all allocated in a common function.
Thus, TORTIS provides coarse-grained synchronization for
such objects, and will effectively treat the entire list (or other
multi-object aggregate structures) as one object. This limits
opportunities for concurrency and thus average-case through-
put. However, we note that for the purpose of schedulability
analysis, retry-based STM systems often cannot guarantee that
two transactions operating on a common structure will not con-
flict. For example, even if two transactions do not conflict in a
list, if this cannot be determined statically, then schedulability
analysis must assume they conflict. Consequently, TORTIS
trades off potential parallelism for schedulability.
Transaction placement. TORTIS’s context-sensitive analysis
favors some software design patterns over others. Consider a
helper function Foo that takes argument(s). If a transaction
is placed inside of the Foo implementation, any shared
object Foo may use will be forced into a single resource
group. If instead, Foo is called within multiple transactions,
each transaction could lock a different resource group. Thus,
deeply embedding transactions could inadvertently cause non-
conflicting transactions to be grouped together.
Leveraging the type system. The type system can also be
employed to help statically rule out conflicts. If the Foo
function is generic, and takes arguments of multiple types, then
during compilation Rust will generate one version of Foo per
type, and TORTIS will separately analyze each instance. Con-
sequently, each implementation may be assigned to a unique
resource group, despite there being one shared definition in
source code. Therefore, type aliases (e.g., typedefs) can be
used as hints to TORTIS to minimize conflicts.
Transactions with I/O. R2STM enables I/O in transac-
tions because transactions never abort. This is supported by
TORTIS. Performing I/O in a transaction requires wrapping
the I/O object, e.g., File, in a TxPointer. The object is then
accessed via the wrapper as with any other shared object.

V. THROUGHPUT COMPARISON

The primary objective of TORTIS is to increase schedu-
lability. However, to enable these schedulability gains, some
potential concurrency is sacrificed by using coarse-grained
locking instead of more optimistic synchronization. In this sec-
tion, we evaluate these tradeoffs with respect to concurrency
and throughput as compared to TL2 [19], a lock-based STM
system that leverages retries. We compared TORTIS against
TL2 for five main reasons: (i) we are not aware of any open-
source software TM implementations designed for real-time
workloads to test against; (ii) like TORTIS, TL2 is lock-based,

though it does allow for retries; (iii) TL2 is a well-established
algorithm (over 1,000 citations); (iv) measurement-based stud-
ies of some prior real-time (retry-based) STM approaches have
been shown inferior to lock-based synchronization [21]; and
(v) it has an open-source Rust-based implementation [30],
allowing us to conduct performance comparisons without
the confounding variable of language choice. We examined
throughput on both branching and linear data structures, and
generally found that when workloads offer the potential for
high concurrency, TL2 enables greater throughput, but when
more transactions conflict at runtime, the lower overheads and
no retries in TORTIS enable greater throughput.
Experimental design. STM is most commonly evaluated
based on observed average-case throughput. We performed
standard experiments from the STM literature to compare per-
formance between TORTIS and TL2, which was optimized for
throughput. We also compared to a modified TL2 implementa-
tion that locks objects in order, an optimization that increases
predictability at the expense of average-case throughput. We
found this led to a decrease in throughput in all scenarios by
up to 70%, and thus focus the rest of our discussion on the
less predictable original version. TORTIS used a low-overhead
implementation of a phase-fair reader/writer lock [8].

All experiments were run on a two-socket, 18-cores-per-
socket x86 machine running the Linux 4.9.30 LITMUSRT

kernel [1] with two Intel Xeon E5-2699 v3 CPUs @ 2.30GHz
with 128GB RAM and 32KB L1, 256KB L2, and 46080KB
L3 caches. We performed the evaluations on up to 36 cores,
with the first 18 cores on the same socket. We used P-EDF
scheduling as provided by LITMUSRT, and guaranteed non-
preemption by allowing only one thread to execute on each
core with no other concurrent workloads. Note that all through-
put figures are presented on logarithmic scales to better
highlight trends. Experiments in this section consider a single
concurrent data structure as is common in STM evaluations.
The impact of resource grouping among multiple objects is
highlighted in the next section, which considers a case study
with multiple shared data structures.

The implementation used with TL2 allows for concurrent
non-conflicting writes on the tested data structures while
TORTIS does not. Our motivation behind the following ex-
periments was to evaluate the throughput implications of this
tradeoff as a function of the amount of potential concurrency
in the workload. Towards that end, we varied read/write ratios,
as well as the fraction of the data structure accessed within the
transaction, for both a branching and a linear data structure.

A. Branching Benchmarks

For a branching data structure, we evaluated TORTIS
and TL2 on a large red-black tree and measured how in-
serts/lookups per second scale with thread/core counts. We
used a standard Rust-based red-black-tree implementation for
TORTIS, and declare the entire tree, not individual nodes,
as one shared object. For TL2, we used a red-black-tree
implementation optimized for high throughput provided as an
extension of the Rust-based TL2 implementation [30].

9

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

100

101

102

103

Th
ro

ug
hp

ut
 (1

00
K

op
s/

s) TORTIS
TL2

(a) 100k inserts.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

100

101

102

103

Th
ro

ug
hp

ut
 (1

00
K

op
s/

s) TORTIS
TL2

(b) 50k lookups, 50k inserts.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

100

101

102

103

Th
ro

ug
hp

ut
 (1

00
K

op
s/

s)

NOLOCK
TORTIS
TL2

(c) 100k lookups.

Fig. 5: Average throughput for varying access patterns in a red-black tree.

For inserts, we created an array of 100k integers, shuffled
the array, and then inserted each value as a node, measuring
the time it took for all inserts to succeed. For lookups, we
first created a random tree, and then timed how long it took
to find every element in the tree in random order. We also
evaluated a third case—using half inserts and half lookups.
For this 50% writes case, an array of 100k randomly shuffled
boolean values (half true, half false) was used to determine
whether a transaction is a lookup or an insert. A third of the
tree was pre-built to prevent abnormally fast lookups at the
beginning of the experiments. On this partially pre-built tree,
we timed 50k lookups and 50k inserts.

All work across the experiments was partitioned evenly over
the number of cores, with each thread performing an equal
fraction of the work. For each experiment, we averaged the
throughput for ten unique random trees with unique lookup
and insert orders. The results are shown in Fig. 5.

Obs. 4 For workloads with more inserts, TORTIS yields
higher throughput on one socket and TL2 yields higher
throughput on two sockets.

Insets (a) and (b) of Fig. 5 have 100% and 50% writes,
respectively. These write-heavy workloads have less potential
concurrency. In these cases, all operations were serialized
in TORTIS, while TL2 allowed non-conflicting updates to
occur in parallel. However, the extra overhead of maintain-
ing transactional state to enable retries significantly reduced
throughput for smaller core counts, enabling the lock-based
in-place approach in TORTIS to provide increased throughput
on one socket.

Obs. 5 TORTIS lookup throughput is limited by memory
contention due to the locking-protocol overhead in scenarios
with high read parallelism.

Fig. 5(c) shows a peculiar trend: for only lookups, TORTIS
does not scale to two sockets (more than 18 cores), despite
using a phase-fair reader/writer lock for a read-only workload.
We were surprised that the lock did not scale better given that
there is no blocking. We suspect this is due to high memory
contention incurred by the lock implementation itself. To test
this theory, instead of running 100k lookups within individual
transactions, we ran an additional experiment with only one
read-only transaction per thread to eliminate any lock-related

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

10 2

10 1

100

101

102

103

104

Th
ro

ug
hp

ut
 (1

00
K

TX
/s

) TORTIS
TL2

Fig. 6: Varying core count. 64 elements, 2% accessed, 5% writes

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

10 2

10 1

100

101

102

103

104

Th
ro

ug
hp

ut
 (1

00
K

TX
/s

) TORTIS
TL2

Fig. 7: Varying core count. 64 elements, 10% accessed, 5% writes

memory contention, and observed the NOLOCK line behavior
depicted in Fig. 5(c), which scaled as expected.

The difference between NOLOCK and TORTIS is due to
overheads introduced by lock-related memory contention. In
contrast, TL2 merely checks that no writes have occurred, and
such state may be cached requiring no memory references.
In the future we plan to use a new phase-fair reader/writer
lock that is optimized for read performance to further improve
TORTIS throughput [34].

B. Linear Benchmarks

The other major class of data structures commonly evaluated
by STM systems are linear data-structures, e.g., buffers. To
explore the comparative throughput performance of TORTIS
and TL2 on buffers we constructed a set of synthetic bench-
marks. These benchmarks allowed us to perform fine-grained
experiments on different access patterns and buffer lengths to
observe their effect on throughput, along with variations in
read-write workloads, and core count for scalability.
Experimental design. We considered transactions operating
on fixed-sized buffers with 64 elements and varied three

10

parameters: (i) core and thread counts, (ii) percent of elements
in the buffer accessed, and (iii) percent of element accesses
that were writes.

Multiple threads read and write a single shared buffer.
Each transaction accesses a given percentage of randomly
chosen buffer elements per loop iteration. Some percentage
of these accesses are writes, while the rest are reads. For all
benchmarks, the accessed elements are randomly determined
before the transactions execute to exclude the overhead of
determining this in the transaction measurement time.

Core counts. In our first experiments, we varied the number of
cores to evaluate how both STM systems scale. We evaluated
a small 64-element buffer, kept the percent of writes constant
at 5%, and tested multiple access patterns.

Obs. 6 For workloads with few runtime conflicts, TL2 outper-
forms TORTIS by up to 9.8× and exhibits throughput scaling
with increasing core counts. Conversely, for lower core counts,
TORTIS outperformed TL2 by up to 6× but did not scale.

Fig. 6 shows a case in which only one or two elements
of the buffer is accessed, and then only written once every 20
accesses. In this case, the likelihood of transactions conflicting
at runtime is low, and there are greater opportunities for
runtime concurrency. TL2 enables such runtime concurrency,
while the coarse-grained locking in TORTIS prevents it. As
such, TORTIS’s throughput strictly decreases as the number
of cores increases, and lock-related overheads increase. For
lower core counts, TORTIS outperformed TL2 due to lower
overheads for acquiring locks compared with the additional
blocking required to support retries.

Obs. 7 For workloads with less potential runtime concurrency
due to more likely conflicts from more elements being accessed,
TORTIS outperforms TL2 by up to 40× due to lower over-
heads for resolving conflicts.

As highlighted by Fig. 7, with an increase to 10% of
elements accessed versus 2% in Fig. 6, TORTIS outperformed
TL2 for all core counts while maintaining consistent through-
put. This is due to the additional retries TL2 experiences as
writes are more likely to conflict, increasing overheads.

Obs. 8 TORTIS throughput is less sensitive to changes in
access patterns than TL2 throughput.

While TORTIS throughput remained fairly constant be-
tween Fig. 6 and Fig. 7, TL2 throughput changed drastically.
The change in the percentage of elements accessed from
2% to 10% yielded an average 97% decrease in throughput
for TL2, while TORTIS decreased by an average of only
26%.Motivated by Obs. 7 and 8, we next evaluate the effects
of the number of elements accessed on throughput.

Obs. 9 TL2 has higher throughput for transactions accessing
up to 5% of elements, but has decreasing throughput as ele-
ment access increases. In contrast, TORTIS remains relatively
constant as the number of elements accessed increases.

10 20 30 40 50 60 70 80 90 100
Percent of elements accessed (%)

10 2

10 1

100

101

102

103

104

Th
ro

ug
hp

ut
 (1

00
K

TX
/s

) TORTIS
TL2

Fig. 8: Varying elements accessed. 64 elements, 2% writes, 8 cores

0 10 20 30 40 50 60 70 80 90 100
Write percentage (%)

10 2

10 1

100

101

102

103

104

Th
ro

ug
hp

ut
 (1

00
K

TX
/s

) TORTIS
TL2

Fig. 9: Varying writes. 64 element buffer, 5% accesses, 8 cores

Our access pattern experiment uses the same buffer size
with 2% writes, and the results are in Fig. 8. Increasing the
number of elements accessed decreases the potential runtime
concurrency for TL2 to exploit and so degrades its throughput,
but has little effect on TORTIS.

Obs. 10 TORTIS outperforms TL2 on workloads with >5%
writes, which have less potential concurrency.

To explore the effect of read/write concurrency, we varied
write percentages on a 64-element buffer with 5% of elements
accessed per transaction on 8 cores. The results are shown in
Fig. 9. TL2’s throughput advantage over TORTIS decreases as
the write percentage increases. Increasing the number of writes
at runtime increases potential conflicts, thereby decreasing
potential concurrency. The decrease in potential concurrency
reduces TL2’s throughput but has little effect on TORTIS.

Combining Obs. 9 and 10, we see that increasing either
the number of elements accessed or the number of elements
written decreases the potential concurrency available by mak-
ing conflicts between transactions more likely. The reduction
in potential concurrency in turn degrades TL2’s performance
relative to TORTIS. This relationship is seen in both Fig. 8
and Fig. 9, where TL2 initially outperforms TORTIS by over
an order of magnitude for all reads. However, TORTIS has
higher throughput for write percentages over 5% when 5% of
the data structure is accessed.

Summary. These observations demonstrate fundamental trade-
offs for retry-free STM. For workloads with high concurrency
potential due to infrequent writes or only accessing a lim-
ited portion of a data structure, optimistic retry-based STM
offers greater average-case throughput by as much as 9.8×.
Notably, however, the potential for retries significantly reduces
schedulability as shown in Sec. III. Conversely, TORTIS

11

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

15

20

25

30

35
Th

ro
ug

hp
ut

 (1
00

K
op

s/
s) One Lock

Two Locks

Fig. 10: 50% writes, 50% reads on a tree and a queue

performs comparably or better for workloads with moderately
less concurrency potential, due to lower core counts, which
are common in embedded systems, higher write percentages
(e.g., >10%), or access patterns more likely to conflict (e.g.,
>5%). We believe these results demonstrate TORTIS offers
reasonable throughput, while enabling significantly improved
schedulability in most cases over retry-based STM.

VI. RESOURCE-GROUPING CASE STUDY

To demonstrate that TORTIS’s resource-grouping imple-
mentation can recognize different resource groups, and that
doing so increases throughput, we present a case study with
two classes of transactions: one that operates on a red-black
tree, and one that operates on a queue. We consider two
program structures, one with two transactions in the source
code, with a switch statement choosing which transaction to
execute, and another in which the switch statement is part
of a single transaction. The former cases yields two resource
groups while the later only one.
Experimental design. We spawn one thread per core. each
thread contains a loop over a set of transactions, and randomly
selects with equal probability whether it reads or writes, and
on the red-black tree or the queue.

Obs. 11 Separate resource groups increase throughput by
38% in our case study.

Fig. 10 shows the results of this case study. For all but
one core, separate resource groups (Two Locks) outperforms
a single group (One Lock). We note that the throughput of
both versions declines after 18 cores due to the additional
cross-socket memory-contention overhead. This demonstrates
that our analysis was able to distinguish the red-black tree
from the queue, and use different locks for non-conflicting
transactions, even when contained in the same thread.

VII. CONCLUSION

We have presented a new class of STM, R2STM, and
TORTIS, the first R2STM implementation. R2STM is de-
signed for real-time applications, emphasizing both automatic
synchronization and schedulability. It offers the potential to
be a certified STM framework, which could greatly ease the
development of safety-critical real-time systems. We showed
that R2STM has an average schedulability improvement of
95.3% compared to retry-based STM. Our throughput eval-
uations demonstrate that while TORTIS may not enable as

much concurrency as optimistic retry-based STM, it achieves
reasonable average-case throughput in many cases, while
enabling greater schedulability.

REFERENCES

[1] “LITMUSRT home page,” http://www.litmus-rt.org/.
[2] “SchedCAT: Schedulability test collection and toolkit,” https://github.

com/brandenburg/schedcat, 2019, accessed: 2020-06-21.
[3] A. Barros, L. Pinho, and P. Yomsi, “Non-preemptive and SRP-based

fully-preemptive scheduling of real-time software transactional mem-
ory,” Journal of Systems Architecture, vol. 61, no. 10, pp. 553–566,
2015.

[4] C. Belwal and A. Cheng, “Lazy versus eager conflict detection in
software transactional memory: A real-time schedulability perspective,”
Embedded Systems Letters, vol. 3, no. 1, pp. 37–41, March 2011.

[5] G. Bergmann, “rust-stm,” https://github.com/Marthog/rust-stm/, 2020,
commit 74e959d.

[6] A. Biondi and B. Brandenburg, “Lightweight real-time synchronization
under P-EDF on symmetric and asymmetric multiprocessors,” in 2016
28th Euromicro Conference on Real-Time Systems. IEEE, 2016, pp.
39–49.

[7] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in Proceedings of the
13th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications. IEEE, August 2007, pp. 71–80.

[8] B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, University of North Carolina,
Chapel Hill, NC, 2011.

[9] B. Brandenburg and J. Anderson, “Reader-writer synchronization for
shared-memory multiprocessor real-time systems,” in Proceedings of the
21st Euromicro Conference on Real-Time Systems, 2009.

[10] ——, “Optimality results for multiprocessor real-time locking,” in
Proceedings of the 31st IEEE Real-Time Systems Symposium, 2010, pp.
49–60.

[11] ——, “Spin-based reader-writer synchronization for multiprocessor real-
time systems,” Real-Time Systems, vol. 46, no. 1, 2010.

[12] ——, “The OMLP family of optimal multiprocessor real-time locking
protocols,” Design Automation for Embedded Systems, vol. 17, no. 2,
pp. 277–342, 2014.

[13] B. B. Brandenburg, Multiprocessor Real-Time Locking Protocols. Sin-
gapore: Springer Singapore, 2020, pp. 1–99.

[14] V. Chaudhary, S. Kulkarni, S. Kumari, and S. Peri, “Starvation freedom
in multi-version transactional memory systems,” 09 2017.

[15] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley et al., “Many
suspensions, many problems: A review of self-suspending tasks in real-
time systems,” Real-Time Systems, vol. 55, no. 1, pp. 144–207, 2019.

[16] S. Cherem, T. Chilimbi, and S. Gulwani, “Inferring locks for atomic
sections,” ser. PLDI ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 304–315.

[17] S. Cotard, A. Queudet, J.-L. Béchennec, S. Faucou, and Y. Trinquet,
“Stm-hrt: A robust and wait-free stm for hard real-time multicore em-
bedded systems,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 14, no. 4, pp. 1–25, 2015.

[18] G. V. T. B. d. Cunha, “Consistent state software transactional memory,”
Ph.D. dissertation, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa, 2007.

[19] D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” in
International Symposium on Distributed Computing. Springer, 2006,
pp. 194–208.

[20] E. Dijkstra, “Two starvation free solutions to a general exclusion
problem,” EWD 625, Plataanstraat 5, 5671 Al Nuenen, The Netherlands.

[21] M. El-Shambakey, “Real-time software transactional memory: Con-
tention managers, time bounds, and implementations,” Ph.D. disserta-
tion, Virginia Polytechnic Institute, Blacksburg, VA, 2013.

[22] M. El-Shambakey and B. Ravindran, “STM concurrency control for
embedded real-time software with tighter time bounds,” in Design
Automation Conference 2012. IEEE, 2012, pp. 437–446.

[23] R. Ennals, “Software transactional memory should not be obstruction-
free,” Intel Research Cambridge Tech Report, Tech. Rep. IRC-TR-06-
052, January 2006.

12

https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat
https://github.com/Marthog/rust-stm/

[24] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange, “AUTOSAR–
A worldwide standard is on the road,” in 14th International VDI
Congress Electronic Systems for Vehicles, Baden-Baden, vol. 62, 2009,
p. 5.

[25] T. Harris, A. Cristal, O. S. Unsal, E. Ayguade, F. Gagliardi, B. Smith, and
M. Valero, “Transactional memory: An overview,” IEEE micro, vol. 27,
no. 3, pp. 8–29, 2007.

[26] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’05, 2005, p. 48–60.

[27] J. Havender, “Avoiding deadlock in multitasking systems,” IBM systems
journal, vol. 7, no. 2, 1968.

[28] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer, “Software transac-
tional memory for dynamic-sized data structures,” in Proceedings of the
22nd Annual ACM Symposium on Principles of Distributed Computing.
ACM, July 2003, pp. 92–101.

[29] M. Herlihy and J. Moss, “Transactional memory: Architectural support
for lock-free data structures,” in Proceedings of the 20th Annual In-
ternational Symposium on Computer Architecture. ACM, 1993, pp.
289–300.

[30] T. Kopf, “swym,” https://github.com/mtak-/swym, 2019, commit
f7b635d.

[31] B. McCloskey, F. Zhou, D. Gay, and E. Brewer, “Autolocker: Synchro-
nization inference for atomic sections,” in Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’06. New York, NY, USA: Association for
Computing Machinery, 2006, p. 346–358.

[32] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sen-
sitivity for points-to analysis for java,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 14, no. 1, pp. 1–41, 2005.

[33] C. MISRA, “Misra c,” 2003.
[34] C. Nemitz, S. Caspin, J. Anderson, and B. Ward, “Light reading: Opti-

mizing reader/writer locking for read-dominant real-time workloads,” in
Proceedings of the 32nd Euromicro Conference on Real-Time Systems,
2021.

[35] A. Quillet, A. Queudet, and D. Lime, “Analysis of polka contention
manager for use in multicore hard real-time systems,” in Proceedings of
the 28th International Conference on Real-Time Networks and Systems,
2020, pp. 11–21.

[36] T. Sarni, A. Queudet, and P. Valduriez, “Real-time support for software
transactional memory,” in 15th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications, Aug 2009,
pp. 477–485.

[37] M. Schoeberl, F. Brander, and J. Vitek, “RTTM: Real-time transactional
memory,” in Proceedings of the 25th ACM Symposium on Applied
Computing, 2010, pp. 326–333.

[38] M. Schoeberl and P. Hilber, “Design and implementation of real-
time transactional memory,” in Proceedings of the 2010 International
Conference on Field Programmable Logic and Applications, 2010, pp.
279–284.

[39] N. Shavit and D. Touitou, “Software transactional memory,” in Proceed-
ings of the 14th Annual ACM Symposium on Principles of Distributed
Computing. ACM, August 1995, pp. 204–213.

[40] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for java,” in
30th European Conference on Object-Oriented Programming (ECOOP
2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[41] M. Sridharan and R. Bodík, “Refinement-based context-sensitive points-
to analysis for java,” ACM SIGPLAN Notices, vol. 41, no. 6, pp. 387–
400, 2006.

[42] B. Ward, “Sharing non-processor resources in multiprocessor real-time
systems,” Ph.D. dissertation, University of North Carolina, Chapel Hill,
NC, 2016.

[43] B. Ward and J. Anderson, “Supporting nested locking in multiprocessor
real-time systems,” in Proceedings of the 23rd Euromicro Conference
on Real-Time Systems, 2012, pp. 223–232.

[44] R. Yoo and H.-H. Lee, “Adaptive transaction scheduling for transactional
memory systems,” in Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, 2008, pp. 169–178.

13

https://github.com/mtak-/swym

	Introduction
	Background and Motivation
	Schedulability Evaluation
	TORTIS
	Static Analysis for Group Locks
	Implementation
	Discussion

	Throughput Comparison
	Branching Benchmarks
	Linear Benchmarks

	Resource-Grouping Case Study
	Conclusion
	References

