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Abstract

We consider wait-free solutions to the renaming problem for shared-memory multiprocessing systems

[3, 5]. In the renaming problem, processes are required to choose new names in order to reduce the

size of their name space. Previous solutions to the renaming problem have time complexity that is

dependent on the size of the original name space, and allow processes to acquire names only once. In

this paper, we present several new renaming algorithms. Most of our algorithms have time complexity

that is independent of the size of the original name space, and some of our algorithms solve a new, more

general version of the renaming problem called long-lived renaming. In long-lived renaming algorithms,

processes may repeatedly acquire and release names.

1 Introduction

In the M -renaming problem [2], each of k processes is required to choose a distinct value, called a name,

that ranges over f0; :::;M � 1g. Each process is assumed to have a unique process identi�er ranging over

f0::N � 1g. It is further required that k � M < N . Thus, an M -renaming algorithm is invoked by k

processes in order to reduce the size of their name space from N to M .

Renaming is useful when processes perform a computation whose time complexity is dependent on the

size of the name space containing the processes. By �rst using an e�cient renaming algorithm to reduce the

size of the name space, the time complexity of that computation can be made independent of the size of the

original name space.

The renaming problem has been studied previously for both message-passing [2] and shared-memory

multiprocessing systems [3, 5]. In this paper, we consider wait-free implementations of renaming in asyn-

chronous, shared-memory systems. A renaming algorithm is wait-free i� each process is guaranteed to acquire

a name after a �nite number of that process's steps, regardless of the execution speeds of other processes.

Previous research on the renaming problem has focused on one-time renaming: each process acquires a

name only once. In this paper, we also consider long-lived renaming, a new, more general version of renaming

in which processes may repeatedly acquire and release names.

A solution to the long-lived renaming problem is useful in settings in which processes repeatedly access

identical resources. The speci�c application that motivated us to study this problem is the implementation of

shared objects. The complexity of a shared object implementation is often dependent on the size of the name

space containing the processes that access that implementation. For such implementations, performance can

�Work supported, in part, by NSF Contract CCR-9216421. Authors' e-mail addresses: fmoir,andersong@cs.unc.edu. Prelim-

inary version to be presented at the Eighth InternationalWorkshop on Distributed Algorithms, Terschelling, The Netherlands,

September, 1994.
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Reference M Time Complexity Long-Lived?

[3] k(k + 1)=2 �(Nk) No

[3] 2k� 1 �(N4k) No

[5] 2k� 1 �(Nk2) No

Thm. 1 k(k + 1)=2 �(k) No

Thm. 2 2k� 1 �(k4) No

Thm. 3 k(k + 1)=2 �(Nk) Yes

Table 1: A comparison of wait-free M -renaming algorithms that employ only atomic reads and writes.

be improved by restricting the number of processes that concurrently access the implementation, and by using

long-lived renaming to acquire a name from a reduced name space. This is the essence of an approach for

the implementation of resilient, scalable shared objects presented by us in [1]. Note that this approach only

restricts the number of processes that access the implementation concurrently. Over time, many processes

may access the implementation. Thus, it is not su�cient to simply acquire a name once and retain that

name for future use: a process must be able to release its name so that another process may later acquire the

same name. In [1], we presented a simple long-lived renaming algorithm. To our knowledge, this is the only

previous work on long-lived renaming. In this paper, we present several new long-lived renaming algorithms,

one of which is a generalization of the algorithm we presented in [1].

In the �rst part of the paper, we present three renaming algorithms that use only atomic read and write

instructions. It has been shown that if M < 2k� 1, then M -renaming cannot be implemented in a wait-free

manner using only atomic reads and writes [7]. Some of the previous wait-free, read/write algorithms for

one-time renaming [3, 5] yield an optimal name space of M = 2k � 1. However, in all of these algorithms,

the time complexity of choosing a name is dependent on N . Thus, these algorithms su�er from the same

shortcoming that the renaming problem is intended to overcome, namely time complexity that is dependent

on the size of the original name space.

We consider one-time and long-lived renaming using reads and writes. We present two read/write algo-

rithms for one-time renaming, one of which has an optimal name space of M = 2k � 1. In contrast to prior

algorithms, our one-time renaming algorithms have time complexity that depends only on k, the number of

participating processes. These algorithms employ a novel technique that uses \building blocks" based on

the \fast path" mechanism employed by Lamport's fast mutual exclusion algorithm [8]. We also present a

read/write algorithm for long-lived renaming that yields a name space of size k(k + 1)=2. This algorithm

uses a modi�ed version of the one-time building block that allows processes to \reset" the building block,

so that it may be used repeatedly. Unfortunately, this results in time complexity that is dependent on N .

Nevertheless, this result breaks new ground by showing that long-lived renaming can be implemented with

only reads and writes.

Previous and new renaming algorithms that use only read and write operations are summarized in Table

1. We leave open the question of whether read and write operations can be used to implement long-lived

renaming with a name space of size 2k � 1 and with time complexity that depends only on k.

In the second part of the paper, we consider long-lived k-renaming algorithms. By de�nition,M -renaming

for M < k is impossible, so with respect to the size of the name space, k-renaming is optimal. As previously

mentioned, it is impossible to implement k-renaming using only atomic read and write operations. Thus, all

of our k-renaming algorithms employ stronger read-modify-write operations.

We present three wait-free, long-lived k-renaming algorithms. The �rst such algorithm uses two read-

modify-write operations, set �rst zero and clr bit. The set �rst zero operation is applied to a b-bit shared

variable X whose bits are indexed from 0 to b� 1. If some bit of X is clear, then set �rst zero(X) sets the

�rst clear bit of X, and returns its index. If all bits of X are set, then set �rst zero(X) leaves X unchanged

and returns b. Note that for b = 1, set �rst zero is equivalent to test and set. The set �rst zero operation for
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Reference Time Complexity Bits / Variable Instructions Used

Thm. 4 �(k) 1 write and test and set

Thm. 4 �(k=b) b set �rst zero and clr bit

Thm. 5 �(log k) �(log k) bounded decrement and atomic add

Thm. 6 �(log(k=b)) �(log k) above, set �rst zero, and clr bit

Table 2: A comparison of wait-free long-lived k-renaming algorithms.

b > 1 can be implemented, for example, using the atom�0andset operation available on the BBN TC2000

multiprocessor [4]. The clr bit(X; i) operation clears the ith bit of X. For b = 1, clr bit is a simple write

operation. For b > 1, clr bit can be implemented, for example, using the fetch and and operation available

on the BBN TC2000.

Our second long-lived k-renaming algorithm employs the bounded decrement and atomic add operations.

The bounded decrement operation is similar to the commonly-available fetch and add operation, expect that

bounded decrement does not modify a variable whose value is zero. We do not know of any systems that

provide bounded decrement as a primitive operation. However, at the end of Section 5, we show that

bounded decrement can be approximated in a lock-free manner using the commonly-available fetch and add

operation. This allows us to obtain a lock-free, long-lived k-renaming algorithm based on fetch and add.

Our third long-lived k-renaming algorithm combines both algorithms discussed above, improving on the

performance of each. Our wait-free, long-lived k-renaming algorithms are summarized in Table 2.

The remainder of the paper is organized as follows. Section 2 contains de�nitions used in the rest of

the paper. In Sections 3 and 4, we present one-time and long-lived renaming algorithms that employ only

atomic reads and writes. In Section 5, we present long-lived renaming algorithms that employ stronger

read-modify-write operations. Concluding remarks appear in Section 6.

2 De�nitions

Our programming notation should be self-explanatory; as an example of this notation, see Figure 2. In this

and subsequent �gures, each labeled program fragment is assumed to be atomic,1 unless no labels are given,

in which case each line of code is assumed to be atomic.

Notational Conventions: We assume that 1 < k �M < N , and that p and q range over 0::N � 1. Other

free variables in expressions are assumed to be universally quanti�ed. We use P x1;x2;:::;xn
y1;y2;:::;yn

to denote the

expression P with each occurrence of xi replaced by yi. The predicate p@i holds i� process p's program

counter has the value i. We use p@S as shorthand for (9i : i 2 S :: p@i), p:i to denote statement i of

process p, and p:var to denote p's local variable var. The following is a list of symbols we use in our proofs,

in increasing order of binding power: �, ), _, ^, (=; 6=; <;>;�;�), (+;�), (multiplication,=), :, (:;@),

(f; g). Symbols in parentheses have the same binding power. We sometimes use parentheses to override

these binding rules. In our proofs, we sometimes use Hoare triples [6] to denote the e�ects of a statement

execution. 2

In the one-time M -renaming problem, each of k processes, with distinct process identi�ers ranging over

f0; :::; N � 1g, chooses a distinct value ranging over f0; :::;M � 1g. A solution to the M -renaming problem

1To simplify our proofs, we sometimes label somewhat lengthy blocks of code. Nonetheless, such code blocks are in keeping

with the atomic instructionsused. For example, statement 3 in Figure 4 is assumed to atomically readX[i; j], assign stop := true

or i := i+ 1 depending on the value read, check the loop condition, and set the program counter of the executing process to 0

or 4, accordingly. Note, however, that X [i; j] is the only shared variable accessed by statement 3. Because all other variables

accessed by this statement are private, statement 3 can be easily implemented using a single atomic read of a shared variable.

This is in keeping with the read/write atomicity assumed for this algorithm.
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process p = � 0 � p < N � =

private variable name : 0::M � 1 =� Name received �=

while true do

Remainder Section; =� Ensure at most k processes rename concurrently �=

Getname Section; =� Assigns a value ranging over f0::M � 1g to p:name �=

Working Section;

Putname Section =� Release the name obtained �=

od

Figure 1: Organization of processes accessing a long-lived renaming algorithm.

consists of a wait-free code fragment for each process p that assigns a value ranging over f0; :::;M � 1g to a

private variable p:name and then halts. For p 6= q, the same value cannot be assigned to both p:name and

q:name.

In the long-lived M -renaming problem, each of N distinct processes repeatedly executes a remainder

section, acquires a name by executing a getname section, uses that name in a working section, and then

releases the name by executing a putname section. The organization of these processes is shown in Figure 1.

It is assumed that each process is initially in its remainder section, and that the remainder section guarantees

that at most k processes are outside their remainder sections at any time. A solution to the long-lived M -

renaming problem consists of wait-free code fragments that implement the getname and putname sections

shown in Figure 1, along with associated shared variables. The getname section for process p is required to

assign a value ranging over f0::M �1g to p:name. If distinct processes p and q are in their working sections,

then it is required that p:name 6= q:name.

As discussed in the introduction, our algorithms use the set �rst zero, clr bit, and bounded decrement

operations, among other well-known operations. We de�ne these operations formally by the following atomic

code fragments, where X is a b-bit shared variable whose bits are indexed from 0 to b � 1, and Y is a non-

negative integer.

set �rst zero(X) � if (9n : 0 � n < b :: :X[n]) then

m := (min n : 0 � n < b :: :X[n]); X[m] := true; return m

else

return b

�

clr bit(X; i) � X[i] := false

bounded decrement(Y ) � m := Y ; if Y 6= 0 then Y := Y � 1 �; return m

We measure the time complexity of our algorithms in terms of the worst case number of shared variable

accesses required to acquire (and release, if long-lived) a name once.

3 One-Time Renaming using Reads and Writes

In this section, we present one-time renaming algorithms that employ only atomic read and write operations.

We start by presenting a (k(k+1)=2)-renaming algorithm that has �(k) time complexity. We then describe

how this algorithm can be combined with previous results [5] to obtain a (2k � 1)-renaming algorithm with

�(k4) time complexity. It has been shown that renaming is impossible for fewer than 2k � 1 names when

using only reads and writes, so with respect to the size of the resulting name space, this algorithm is optimal.

Our one-time (k(k + 1)=2)-renaming algorithm is based on a \building block", which we describe next.
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n

n−1

n−1

1
stop right

down

shared variable X : f?g [ f0::N � 1g;

Y : boolean

initially X = ? ^ :Y

private variable move : fstop; right;downg

X := p;

if Y then move := right

else

Y := true;

if X = p then move := stop

else move := down

�

�

Figure 2: The one-time building block and the code fragment that implements it.

3.1 The One-Time Building Block

The one-time building block, depicted in Figure 2, is in the form of a wait-free code fragment that assigns

to a private variable move one of three values: stop, right, or down. If each of n processes executes this code

fragment at most once, then at most one process receives a value of stop, at most n � 1 processes receive a

value of right, and at most n � 1 processes receive a value of down. We say that a process that receives a

value of down \goes down", a process that receives a value of right \goes right", and a process that receives

a value of stop \stops". Figure 2 shows n processes accessing a building block, and the maximum number of

processes that receive each value.

The code fragment shown in Figure 2 shows how the building block can be implemented using atomic

read and write operations. The technique employed is essentially that of the \fast path" mechanism used in

Lamport's fast mutual exclusion algorithm [8]. A process that stops corresponds to a process successfully

\taking the fast path" in Lamport's algorithm. The value assigned to move by a process p that fails to \take

the fast path" is determined by the branch p takes: if p detects that Y holds, then p goes right, and if p

detects that X 6= p holds, then p goes down.

To see that the code fragment shown in Figure 2 satis�es the requirements of our building block, note

that it is impossible for all n processes to go right | a process can go right only if another process previously

assigned Y := true. Second, the last process p to assign X := p cannot go down, because if it tests X, then

it detects that X = p, and therefore stops. Thus, it is impossible for all n processes to go down. Finally,

because Lamport's algorithm prevents more than one processes from \taking the fast path", it is impossible

for more than one process to stop. Thus, the code fragment shown in Figure 2 satis�es the requirements of

the building block.

In the next section, we show how these building blocks can be used to solve the renaming problem. The

basic approach is to use such building blocks to \split" processes into successively smaller groups. Because

at most one process stops at any particular building block, a process that stops can be given a unique name

associated with that building block. Furthermore, when the size of a group has been decreased often enough

that at most one process remains, that process (if it exists) can be given a name immediately.

5



0 1 2 3 4

8

9 10 11

12 13

14

6 75

Figure 3: k(k � 1)=2 building blocks in a grid, depicted for k = 5.

3.2 Using the One-Time Building Block to Solve Renaming

In this section, we use k(k� 1)=2 one-time building blocks arranged in a \grid" to solve one-time renaming;

this approach is depicted in Figure 3 for k = 5. In order to acquire a name, a process p accesses the building

block at the top left corner of the grid. If p receives a value of stop, then p acquires the name associated with

that building block. Otherwise, p moves either right or down in the grid, according to the value received.

This is repeated until p receives a value of stop at some building block, or p has accessed k�1 building blocks.

The name returned is calculated based on p's �nal position in the grid. In Figure 3, each grid position is

labeled with the name associated with that position. Because no process takes more than k � 1 steps, only

the upper left triangle of the grid is used, as shown in Figure 3.

The algorithm is presented more formally in Figure 4. Note that each building block in the grid is

implemented using the code fragment shown in Figure 2. At most one process stops at each building block,

so a process that stops at a building block receives a unique name. However, a process may also obtain a

name by taking k � 1 steps in the grid. The correctness proof in the following section shows that distinct

processes that take k � 1 steps in the grid acquire distinct names. Speci�cally, (I9) implies that no two

processes arrive at the same grid position after taking k � 1 steps in the grid.

3.3 Correctness Proof

The following simple properties follow directly from the program text in Figure 4, and are stated without

proof. Note that (I2) is used to prove (I4) and (I5).

invariant p:i � 0 ^ p:j � 0 (I1)

invariant p@f0::3g ) :p:stop ^ p:i+ p:j < k � 1 (I2)

invariant p@f4::5g ^ :p:stop ) p:i+ p:j = k � 1 (I3)

invariant p@f0::3g _ (p@f4::5g ^ p:stop) ) p:i+ p:j < k � 1 (I4)

invariant 0 � p:i+ p:j � k � 1 (I5)

invariant p@5 ) p:name = p:i(k � (p:i� 1)=2) + p:j (I6)
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shared variable X : array[0::k� 2; 0::k � 2] of f?g[ f0::N � 1g;

Y : array[0::k� 2; 0::k� 2] of boolean

initially (8r; c : 0 � r < k � 1 ^ 0 � c < k � 1 :: X[r; c] = ? ^ :Y [r; c])

process p =� k distinct processes ranging over 0::N � 1 �=

private variable name : 0::k(k+ 1)=2� 1;

stop : boolean;

i; j : 0::k� 1

initially i = 0 ^ j = 0 ^ :stop

while i+ j < k � 1 ^ :stop do =� Move down or across grid until stopping or reaching edge �=

0: X[i; j] := p;

1: if Y [i; j] then j := j + 1 =� Move down �=

else

2: Y [i; j] := true;

3: if X[i; j] = p then stop := true else i := i+ 1 � =� Stop or move right �=

�

od;

4: name := i(k � (i� 1)=2) + j; =� Calculate name based on position in grid �=

5: halt

Figure 4: One-time renaming using a grid of building blocks.

For each of the remaining invariants, a correctness proof is given.2

invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ Y [r; c])

(9p :: (p@f3::5g ^ p:i = r ^ p:j = c) _ (p:i > r ^ p:j = c)) (I7)

Proof: Assume r � 0 ^ c � 0 ^ r+c < k�1. Initially Y [r; c] is false, so (I7) holds. To prove that (I7) is not

falsi�ed, it su�ces to consider those statements that may establish3 Y [r; c], or that may falsify p@f3::5g or

modify p:i or p:j for some p. The statements to check are q:2, p:1, and p:3, where q is any process. Observe

that q:2 may establish Y [r; c] only if executed when q:i = r and q:j = c, in which case it also establishes

q@3 ^ q:i = r ^ q:j = c. For statement p:1, we have the following.

p@1 ^ p:i > r ^ p:j = c ^ Y [p:i; p:j] ^ (I7)
r;c;p

p:i;p:j;q

)p@1 ^ p:i > r ^ p:j = c ^ p:i � 0 ^ p:j � 0 ^ p:i+ p:j < k � 1 ^ Y [p:i; p:j] ^ (I7)
r;c;p

p:i;p:j;q

, by (I1) and (I4).

)p@1 ^ p:i > r ^ p:j = c ^ (9q :: (q@f3::5g ^ q:i = p:i ^ q:j = p:j) _ (q:i > p:i ^ q:j = p:j))

, by de�nition of (I7).

)(9q : q 6= p :: q:i > r ^ q:j = c) , p@1 ^ (q@f3::5g _ q:i > p:i) implies p 6= q.

fp@1 ^ p:i > r ^ p:j = c ^ Y [p:i; p:j] ^ (I7)
r;c;p

p:i;p:j;q
g p:1 f(9q : q 6= p :: q:i > r ^ q:j = c)g

, by preceding derivation and axiom of assignment.

fp@1 ^ p:i > r ^ p:j = c ^ :Y [p:i; p:j]g p:1 fp:i > r ^ p:j = cg , p:1 does not modify p:j in this case.

2We prove that an assertion I is an invariant by showing that it holds inductivelyor that it follows from established invariants.

In an inductive proof, it is required to show that I holds initially and is not falsi�ed by any statement execution, i.e., if I (and

perhaps other established invariants) holds before a given statement is executed then I holds afterwards.
3We say that an execution of statement p:i establishes a predicate P i� :P holds before that statement execution and P

holds afterwards.
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fp@1 ^ :(p:i > r ^ p:j = c) ^ (I7)g p:1

f:Y [r; c] _ (9q : q 6= p :: (q@f3::5g ^ q:i = r ^ q:j = c) _ (q:i > r ^ q:j = c))g

, by de�nition of (I7), precondition implies postcondition, which is unchanged by p:1.

The above assertions imply that p:1 does not falsify (I7). The following assertions imply that p:3 does

not falsify (I7).

fp@3 ^ p:i � r ^ p:j = c ^ X[p:i; p:j] = pg p:3 fp@4 ^ p:i � r ^ p:j = cg

, p:i is unchanged and p:stop is established in this case.

fp@3 ^ p:i � r ^ p:j = c ^ X[p:i; p:j] 6= pg p:3 fp:i > r ^ p:j = cg , p:i is incremented in this case.

fp@3 ^ :(p:i � r ^ p:j = c) ^ (I7)g p:3

f:Y [r; c] _ (9q : q 6= p :: (q@f3::5g ^ q:i = r ^ q:j = c) _ (q:i > r ^ q:j = c))g

, by de�nition of (I7), precondition implies postcondition, which is unchanged by p:3. 2

The following invariant shows that if X[r; c] has been modi�ed since process q assigned X[r; c], then there

is some process p in row r at or to the right of column c. This property is used to show that not all processes

that access building block (r; c) proceed to row r + 1.

invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ q@f1::3g ^ q:i = r ^ q:j = c ^ X[r; c] 6= q )

(9p : p 6= q :: p:i = r ^ ((p:j = c ^ ((p@f1::3g ^ X[r; c] = p) _ p@f4::5g)) _ p:j > c)) (I8)

Proof: Assume r � 0 ^ c � 0 ^ r+ c < k� 1. Initially q@0 holds, so (I8) holds. To prove that (I8) is not

falsi�ed, it su�ces to consider those statements that may establish q@f1::3g; falsify p@f1::3g or p@f4::5g;

or modify q:i, q:j, X, p:i, or p:j, where p 6= q. The statements to check are q:0, q:1, q:3, p:0, p:1, and p:3,

where p 6= q.

Observe that q:i = r ^ q:j = c ^ X[r; c] 6= q does not hold after the execution of q:0, and that q:1 and

q:3 both establish q@f0; 4g. Furthermore, p:0 establishes X[r; c] 6= q only if p:i = r and p:j = c, in which

case p@1 ^ p:i = r ^ p:j = c ^ X[r; c] = p holds afterwards. Also, statement p:1 can only increment p:j.

Therefore, if p:1 falsi�es p:j = c, then it establishes p:j > c, and it does not falsify p:i = r.

This leaves only statement p:3. Statement p:3 could falsify (I8) only by falsifying p:i = r ^ p:j =

c ^ X[r; c] = p or by falsifying p:i = r ^ p:j > c. In the �rst case, we have fp@3 ^ p:i = r ^ p:j =

c ^ X[r; c] = pg p:3 fp@4 ^ p:i = r ^ p:j = cg, so p:3 does not falsify (I8). For the second case, observe

that p:3 can only falsify p:i = r ^ p:j > c if executed when p@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p

holds. The following assertions imply that statement p:3 does not falsify (I8) in this case.

fp@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p ^ (q:i 6= r _ q:j 6= c)g p:3 fq:i 6= r _ q:j 6= cg

, p:3 does not modify q:i or q:j (recall that p 6= q).

p@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p ^ q:i = r ^ q:j = c ^ (I8)
q;r;c;p

p;p:i;p:j;s

)p@3 ^ p:i = r ^ p:j > c ^ q:j = c ^ p:i � 0 ^ p:j � 0 ^ p:i+ p:j < k � 1 ^

X[p:i; p:j] 6= p ^ (I8)
q;r;c;p

p;p:i;p:j;s
, by (I1) and (I4).

)p@3 ^ p:i = r ^ p:j > c ^ q:j = c ^

(9s : s 6= p :: s:i = p:i ^ ((s:j = p:j ^ ((s@f1::3g ^ X[p:i; p:j] = s) _ s@f4::5g)) _ s:j > p:j)))

, by de�nition of (I8).

)p:j > c ^ q:j = c ^ (9s : s 6= p :: s:i = r ^ s:j > c) , predicate calculus.
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)(9s : s 6= p ^ s 6= q :: s:i = r ^ s:j > c) , q:j = c ^ s:j > c implies s 6= q.

fp@3 ^ p:i = r ^ p:j > c ^ X[p:i; p:j] 6= p ^ q:i = r ^ q:j = c ^ (I8)
q;r;c;p

p;p:i;p:j;s
g p:3

f(9s : s 6= q :: s:i = r ^ s:j > c)g

, by preceding derivation, precondition implies postcondition, which is not falsi�ed by p:3. 2

The following invariant shows that at most k � r � c processes access building blocks in the \sub-grid"

whose top left corner is at position (r; c). In particular, it shows that at most one process accesses any

building block that is k � 1 \steps" away from the top left corner of the grid.

invariant r � 0 ^ c � 0 ^ r + c � k � 1 ) (jfp :: p:i � r ^ p:j � cgj � k � r � c) (I9)

Proof: Assume r � 0 ^ c � 0 ^ r+ c � k� 1. Initially p:i = 0 ^ p:j = 0 holds for all p, so (I9) holds. To

prove that (I9) is not falsi�ed, it su�ces to consider those statements that may establish q:i � r ^ q:j � c

for some q. There are two statements to check, namely q:1 and q:3.

Observe that statement q:1 can establish q:i � r ^ q:j � c only if executed when q:i � r ^ q:j =

c� 1 ^ Y [q:i; q:j] holds. To see that (I9) is not falsi�ed in this case, consider the following derivation.

q@1 ^ q:i � r ^ q:j = c� 1 ^ Y [q:i; q:j] ^ (I7)
r;c

q:i;q:j
^ (I9)c

c�1

)q@1 ^ q:i � r ^ q:j = c� 1 ^ q:i � 0 ^ q:j � 0 ^ q:i+ q:j < k � 1 ^ Y [q:i; q:j] ^ (I7)
r;c

q:i;q:j
^

c� 1 � 0 ^ (I9)cc�1
, by (I1) and (I4); note that q:j = c � 1 ^ (I1) implies c� 1 � 0.

)q:i � r ^ q:j = c� 1 ^ (9s : s 6= q :: s:i � q:i ^ s:j = q:j) ^ c� 1 � 0 ^ (I9)cc�1

, de�nition of (I7); note that q@1 ^ (s@f3::5g _ s:i > q:i) implies s 6= q.

)(jfs :: s:i � r ^ s:j = c� 1gj � 2 ^ c� 1 � 0) ^ (jfp :: p:i � r ^ p:j � c� 1gj � k � r � c+ 1)

, predicate calculus and de�nition of (I9); recall that r � 0 and r + c � k � 1.

)jfp :: p:i � r ^ p:j � cgj � k � r � c� 1 , predicate calculus.

fq@1 ^ q:i � r ^ q:j = c� 1 ^ Y [q:i; q:j] ^ (I7)
r;c

q:i;c�1
^ (I9)cc�1

g q:1

fjfq :: q:i � r ^ q:j � cgj � k � r � cg

, by preceding derivation; q:1 increases jfq :: q:i � r ^ q:j � cgj by at most one.

Statement q:3 can establish q:i � r ^ q:j � c only if executed when q:i = r�1 ^ q:j � c ^ X[q:i; q:j] 6= q

holds. The reasoning for this case is similar to that given above for statement q:1, except that (I8) is used

instead of (I7). 2

invariant p@3 _ (p@f4::5g ^ p:stop) ) Y [p:i; p:j] (I10)

Proof: Initially p@0 holds, so (I10) holds. (I10) could potentially be falsi�ed by any statement that estab-

lishes p@3 or p@f4::5g ^ p:stop or that modi�es p:i or p:j. (Note that no statement falsi�es any element

of Y .) The statements to check are p:1, p:2, and p:3. By (I2), p:1 establishes p@f0; 2; 4g ^ :p:stop. Also,

statement p:2 establishes Y [p:i; p:j]. The following assertions imply that p:3 does not falsify (I10).

fp@3 ^ X[p:i:p:j] = p ^ (I10)g p:3 fY [p:i; p:j]g

, by de�nition of (I10), precondition implies postcondition; p:3 does not modify Y , p:i, or p:j in this case.

fp@3 ^ X[p:i; p:j] 6= pg p:3 fp@f0; 4g ^ :p:stopg , by (I2), precondition implies :p:stop. 2
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The following invariant shows that if some process p stops at building block (r; c), then no other process

can stop at that building block. This property is used to show that processes that stop in the grid receive

distinct names.

invariant p 6= q ^ p@f4::5g ^ p:stop ) (q:i 6= p:i _ q:j 6= p:j _ q@0 _

(q@1 ^ Y [q:i; q:j]) _ (q@f1::3g ^ X[q:i; q:j] 6= q) _ (q@f4::5g ^ :q:stop)) (I11)

Proof: Assume that p 6= q. Initially p@0 holds, so (I11) holds. To prove that (I11) is not falsi�ed, it su�ces

to consider those statements that may establish p@f4; 5g; falsify q@0, q@1, q@f1::3g, or qf4; 5g; or modify

p:i, p:j, q:i, q:j, p:stop, q:stop, X, or Y . The statements to check are p:0, p:1, p:2, p:3, q:0, q:1, q:2, and

q:3. Observe that p@f4::5g is false after the execution of p:0 or p:2. Also, by (I2), p:stop is false after the

execution of p:1. For p:3, we have the following.

fp@3 ^ X[p:i; p:j] 6= pg p:3 fp@0 _ (p@4 ^ :p:stop)g , by (I2), precondition implies :p:stop.

fp@3 ^ X[p:i; p:j] = p ^ (q:i 6= p:i _ q:j 6= p:j _ q@0)g p:3 fp:i 6= q:i _ p:j 6= q:j _ q@0g

, precondition implies postcondition (recall that p 6= q); p:3 does not modify p:i in this case.

fp@3 ^ X[p:i; p:j] = p ^ q:i = p:i ^ q:j = p:j ^ q@f1::3gg p:3 fq@f1::3g ^ X[q:i; q:j] 6= qg

, p 6= q, so precondition implies postcondition, which is not falsi�ed by p:3.

fp@3 ^ X[p:i; p:j] = p ^ q:i = p:i ^ q:j = p:j ^ q@f4::5g ^ (I11)p;q
q;p
g p:3 fq@f4::5g ^ :q:stopg

, by the de�nition of (I11), precondition implies postcondition, which is not falsi�ed by p:3.

The above assertions imply that p:3 does not falsify (I11). As for process q, �rst note that q:0 establishes

q@1, which by (I10) implies that :(p@f4; 5g ^ p:stop) _ (q@1 ^ Y [p:i; p:j]) holds. The latter disjunct

implies that q:i 6= p:i _ q:j 6= p:j _ (q@1 ^ Y [q:i; q:j]) holds. Statement q:1 can falsify (I11) only if

executed when q@1 ^ Y [q:i; q:j] or q@f1::3g ^ X[q:i; q:j] 6= q holds. However, observe the following.

fq@1 ^ Y [q:i; q:j]g q:1 fq@0 _ (q@4 ^ :q:stop)g , by (I2), precondition implies :q:stop.

fq@1 ^ :Y [q:i; q:j] ^ X[q:i; q:j] 6= qg q:1 fq@2 ^ X[q:i; q:j] 6= qg , q:1 does not modify q:j in this case.

Although q:2 modi�es Y , it cannot falsify any disjunct of the consequent of (I11).

Statement q:3 could only falsify (I11) by falsifying q@3 ^ X[q:i; q:j] 6= q. However, because q@3 ^ (I2)

implies :q:stop, we have fq@3 ^ X[q:i; q:j] 6= q ^ (I2)g q:3 fq@0 _ (q@4 ^ :q:stop)g. 2

invariant p 6= q ^ p@f4::5g ^ q@f4::5g ) p:i 6= q:i _ q:j 6= q:j (I12)

Proof: If p 6= q ^ p@f4::5g ^ q@f4::5g ^ p:stop holds, then by (I3), (I4), and (I11), the consequent holds. If

p 6= q ^ p@f4::5g ^ q@f4::5g ^ :p:stop holds, then by (I1), (I3), and (I9), jfq :: q:i � p:i ^ q:j � p:jgj � 1

holds, which implies that the consequent holds. 2

Claim 1: Let c, d, c0, and d0 be nonnegative integers satisfying (c 6= c0 _ d 6= d0) ^ (c+d � k�1) ^ (c0+d0 �

k � 1). Then, c(k � (c � 1)=2) + d 6= c0(k � (c0 � 1)=2) + d0.

Proof: The claim is straightforward if c = c0, so assume that c 6= c0. Without loss of generality assume that

c < c0. Then,

c(k � (c� 1)=2) + d � c(k � (c� 1)=2) + k � 1� c , d � k � 1� c.

= kc� c2=2� c=2 + k � 1

< (c+ 1)(k � c=2)

� c0(k � (c0 � 1)=2) , c � c0 � 1.

� c0(k � (c0 � 1)=2) + d0 , d0 is nonnegative. 2
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invariant p@5 ^ q@5 ^ p 6= q ) p:name 6= q:name (I13)

Proof: The following derivation implies that (I13) is an invariant.

p@5 ^ q@5 ^ p 6= q ^ p:name = q:name

)p@5 ^ q@5 ^ p:name = q:name ^ (p:i 6= q:i _ p:j 6= q:j) ^ p:i+ p:j � k � 1 ^ q:i+ q:j � k � 1

, by (I5) and (I12).

)(p:i 6= q:i _ p:j 6= q:j) ^ p:i+ p:j � k � 1 ^ q:i+ q:j � k � 1 ^ p:i � 0 ^ p:j � 0 ^

q:i � 0 ^ q:j � 0 ^ p:i(k � (p:i� 1)=2) + p:j = q:j(k � (q:j � 1)=2) + q:j , by (I1) and (I6).

) false , by Claim 1 with c = p:i, d = p:j, c0 = q:i, and d0 = q:j. 2

This completes the proof that distinct processes that execute the code in Figure 4 acquire distinct names.

The following claim is used to prove that each process acquires a name ranging over f0::k(k+ 1)=2� 1g.

Claim 2: Let c and d be nonnegative integers satisfying c + d � k � 1. Then 0 � c(k � (c � 1)=2) + d <

k(k + 1)=2.

Proof: It follows from the statement of the claim that c � k � 1. Thus, k � (c � 1)=2 > 0. Also, c � 0 and

d � 0. Thus, c(k � (c� 1)=2) + d � 0. To see that c(k � (c � 1)=2) + d < k(k + 1)=2, consider the following

derivation.

c(k � (c� 1)=2) + d � c(k � (c� 1)=2) + d(d+ 1)=2 , d � 0.

� c(k � (c� 1)=2) + (k � 1� c)(k � c)=2 , d � k � 1� c.

= c+ k(k � 1)=2

� k � 1 + k(k � 1)=2 , c � k � 1.

< k(k + 1)=2 2

invariant p@5 ) 0 � p:name < k(k + 1)=2 (I14)

Proof: (I14) follows from (I1), (I5), (I6), and Claim 2. 2

(I13) and (I14) prove that the algorithm shown in Figure 4 correctly implements (k(k+ 1)=2)-renaming.

Wait-freedom is trivial because in each pass through the loop, either p:stop is established, or p:i or p:j is

incremented. It is easy to see that a process executes the loop at most k� 1 times before terminating. Each

iteration performs at most four shared variable accesses. Thus, we have the following result.

Theorem 1: Using read and write, wait-free, one-time (k(k+1)=2)-renaming can be implemented with time

complexity 4(k � 1). 2

Using the algorithmdescribed in this section, k processes can reduce the size of their name space fromN to

k(k+2)=2 with time complexity �(k). Using the algorithm presented in [5], k processes can reduce the size of

their name space from N to 2k�1 with time complexity �(Nk2). Combining the two algorithms, k processes

can reduce the size of their name space from N to 2k� 1 with time complexity �(k) +�((k(k + 1)=2)k2) =

�(k4). Thus, we have the following result. By the results of [7], this algorithm is optimal with respect to

the size of the name space.

Theorem 2: Using read and write, wait-free, one-time (2k � 1)-renaming can be implemented with time

complexity �(k4). 2
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4 Long-Lived Renaming using Reads and Writes

In this section, we present a long-lived renaming algorithm that uses only atomic read and write operations.

This algorithm is based on the grid algorithm presented in the previous section. To enable processes to

release names as well as acquire names, we modify the one-time building block. The modi�cation allows a

process to \reset" a building block that it has previously accessed. This algorithm yields a name space of

size k(k+ 1)=2 and has time complexity �(Nk). We now give an informal description of the algorithm, and

then present a formal correctness proof.

4.1 Using the Long-Lived Building Block for Long-Lived Renaming

Our long-lived renaming algorithm based on reads and writes is shown in Figure 5. As in the one-time

algorithm presented in the previous section, a process acquires a name by starting at the top left corner of a

grid of building blocks, and by moving through the grid according to the value received from each building

block. The building blocks, which are similar to those described in the previous section, are accessed in

statements 2 through 5 in Figure 5. There are two signi�cant di�erences between this algorithm and the

one-time renaming algorithm.

Firstly, the single Y -bit used in the one-time algorithm is replaced by N Y -bits | one for each process.

Instead of setting a commonY -bit, each process p sets a distinct bit Y [p] (see statement 4). This modi�cation

allows a process to \reset" the building block by clearing its Y -bit. A process resets a building block it has

accessed before proceeding to the next building block in the grid (see statement 6), or when releasing the

name associated with that building block (see statement 8). The building blocks are reset to allow processes

to reuse the grid to acquire names repeatedly. (It may seem more intuitive to reset all building blocks

accessed when releasing a name. In fact, this does not a�ect correctness, and resetting each building block

before accessing the next avoids the need for a data structure to record which building blocks were accessed.)

To see why N Y -bits are used, observe that in the one-time building block, the Y -variable is never reset,

so using a single bit su�ces. However, if only one Y -bit is used in the long-lived algorithm, a process might

reset Y immediately after another process, say p, sets Y. Because the value assigned by p to Y has been

overwritten, another process q may subsequently access the building block and fail to detect that p has

accessed the building block. In this case, it is possible for both p and q to receive a value of stop from the

same building block.

The second di�erence between the one-time and long-lived building blocks is that they di�er in time

complexity. Instead of reading a single Y -variable, each process now reads all N Y -bits. This results in

�(N ) time complexity for accessing the long-lived building block. It may seem that all N Y -bits must be

read in an atomic \snapshot" because, for example, p's write to Y [p] might occur concurrently with q's scan

of the Y -bits. In fact, this is unnecessary, because the fact that these operations are concurrent is su�cient

to ensure that either p or q will not receive a value of stop from the building block.

4.2 Correctness Proof

In accordance with the problem speci�cation, we assume the following invariant.

invariant jfp :: p@f1::8gj � k (I15)

The following simple properties follow directly from the program text in Figure 5, and are stated without

proof. Note that (I17) is used to prove (I18) and (I19).

invariant p@5 _ (p@f6::8g ^ p:move = stop) ) Y [p:i; p:j][p] (I16)

invariant p@f2::6g _ (p@f7::8g ^ p:move = stop) ) p:i+ p:j < k � 1 (I17)

invariant p@f7::8g ^ p:move 6= stop ) p:i+ p:j = k � 1 (I18)
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invariant 0 � p:i+ p:j � k � 1 (I19)

invariant p:i � 0 ^ p:j � 0 (I20)

invariant p@3 ) 0 � p:h < N (I21)

invariant p@8 ) p:name = p:i(k � (p:i� 1)=2) + p:j (I22)

For the remaining invariants, a formal correctness proof is given.

invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ Y [r; c][p])

p@f5::8g ^ p:i = r ^ p:j = c ^ p:move 6= right (I23)

Proof: Assume r � 0 ^ c � 0 ^ r + c < k � 1. Initially Y [r; c][p] is false, so (I23) holds. To prove that

(I23) is not falsi�ed, it su�ces to consider statements that potentially establish Y [r; c][p], falsify p@f5::8g,

modify p:i or p:j, or establish p:move = right . The statements to check are p:1, p:3, p:4, p:6 and p:8.

Observe that p@f1; 3g ^ (I23) ) :Y [r; c][p] and that statements p:1 and p:3 do not modify Y . Hence,

these statements do not falsify (I23). Note also that :Y [r; c][p] _ p:i 6= r _ p:j 6= c holds after statement

p:8 is executed (recall that r + c < k � 1). For statement p:4, we have the following.

fp@4 ^ p:i = r ^ p:j = c ^ p:move 6= rightg p:4 fp@5 ^ p:i = r ^ p:j = c ^ p:move 6= rightg

, axiom of assignment.

fp@4 ^ (p:i 6= r _ p:j 6= c _ p:move = right) ^ (I23)g p:4 f:Y [r; c][p]g

, p@4 ^ (I23) implies :Y [r; c][p]; p:4 does not modify Y [r; c][p] when

p:i 6= r _ p:j 6= c _ p:move = right holds.

The above assertions imply that statement p:4 does not falsify (I23). The following assertions imply that

statement p:6 does not falsify (I23).

fp@6 ^ p:i = r ^ p:j = c ^ p:move = stopg p:6 fp@7 ^ p:i = r ^ p:j = c ^ p:move 6= rightg

, axiom of assignment.

fp@6 ^ p:i = r ^ p:j = c ^ p:move 6= stopg p:6 f:Y [r; c][p]g , axiom of assignment.

fp@6 ^ :(p:i = r ^ p:j = c) ^ (I23)g p:6 f:Y [r; c][p]g

, :(p:i = r ^ p:j = c) ^ (I23) implies :Y [r; c][p]; p:1 does not establish Y [r; c][p]. 2

For notational convenience, we de�ne the following predicate. Informally, EN (p; r; c) holds for any p for

which p:i � r ^ p:j � c will eventually hold, regardless of the behavior of processes other than p. Note

that if the �rst disjunct holds, then the second disjunct holds after p:5 is executed. If the second or third

disjunct holds, then p:i � r ^ p:j � c holds after p:6 is executed. We use this predicate in (I25) to show

that at most one process concurrently accesses a building block that is k � 1 steps away from the top left

building block in the grid. This shows why a process that takes k � 1 steps in the grid can be assigned a

name immediately.

De�nition: EN (p; r; c) � (p:i = r � 1 ^ p:j � c ^ p@f3::5g ^ X[r � 1; p:j] 6= p) _

(p:i = r � 1 ^ p:j � c ^ p@6 ^ p:move = down) _

(p:i � r ^ p:j = c� 1 ^ p@f4; 6g ^ p:move = right) _

(p:i � r ^ p:j � c ^ p@f2::8g) 2
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shared variable X : array[0::k� 2; 0::k � 2] of f?g[ f0::N � 1g;

Y : array[0::k� 2; 0::k� 2] of array[0::N � 1] of boolean

initially (8r; c; p : 0 � r < k � 1 ^ 0 � c < k � 1 ^ 0 � p < N :: X[r; c] = ? ^ :Y [r; c][p])

process p =� 0 � p < N �=

private variable name : 0::k(k+ 1)=2� 1;

move : fstop; right; downg;

i; j : 0::k� 1

initially p:i = 0 ^ p:j = 0 ^ p:move = down

while true do

0: Remainder Section;

1: i; j; move := 0; 0; down; =� Start at top left building block in grid �=

while i + j < k � 1 ^ move 6= stop do =� Move down or across grid until stopping or reaching edge �=

2: X[i; j]; h; move := p; 0; stop;

while h < N ^ move 6= right do

3: if Y [i; j][h] then move := right else h := h+ 1; move := stop �

od;

4: if move 6= right then

Y [i; j][p] := true;

5: if X[i; j] 6= p then move := down else move := stop �

�;

6: if move 6= stop then

Y [i; j][p] := false; =� Reset block if we didn't stop at it �=

if move = down then i := i+ 1 else j := j + 1 � =� Move according to move �=

�

od;

7: name := i(k � (i� 1)=2) + j; =� Calculate name based on position in grid �=

Working Section;

8: if i+ j < k � 1 then =� If we stopped on a building block ... �=

Y [i; j][p] := false =� ... then reset that building block �=

�

od

Figure 5: Long-lived renaming with �(k2) name space and �(Nk) time complexity.

invariant EN (p; r; c)) EN (p; r; c� 1) ^ EN (p; r � 1; c) (I24)

Proof: (I24) follows directly from the de�nition of EN (p; r; c). If either of the �rst two disjuncts of EN (p; r; c)

holds, then that disjunct of EN (p; r; c � 1) holds because c > c � 1. If either of the last two disjunct of

EN (p; r; c) holds, then the last disjunct of EN (p; r; c � 1) holds. If the �rst, second, or last disjunct of

EN (p; r; c) holds, then the last disjunct of EN (p; r � 1; c) holds. Finally, if the third disjunct of EN (p; r; c)

holds, then the third disjunct of EN (p; r � 1; c) holds because r > r � 1. 2

The following invariant is analogous to (I9).

invariant r � 0 ^ c � 0 ^ r + c � k � 1 ) (jfs :: EN (s; r; c)gj � k � r � c) (I25)

Proof: Assume r � 0 ^ c � 0 ^ r+c � k�1. Initially p@0 holds for all p, so (I25) holds because r+c � k�1.

To prove that (I25) is not falsi�ed, it su�ces to consider those statements that may establish EN (p; r; c) for

some p. EN (p; r; c) can be established by modifying p:i or p:j, or by establishing X[r�1; p:j] 6= p, p@f3::5g,

p@6, p@f4; 6g, p@f2; 8g, p:move = down , or p:move = right. The statements to check are p:1 p:2, p:3, p:4,

p:5, p:6, and q:2 for q 6= p.
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By (I15), if r+c = 0, then (I25) is an invariant. Henceforth, we assume that r+c > 0. Statement p:1 could

only establish the last disjunct of EN (p; r; c). However, fp@1 ^ r+ c > 0g p:1 fp@2 ^ (p:i < r _ p:j < c)g.

Thus, statement p:1 does not establish EN (p; r; c).

Statement p:2 can only establish the �rst disjunct of EN (p; r; c). However, it only does so if executed

when p:i = r � 1 ^ p:j � c holds, in which case it also establishes X[r � 1; p:j] = p.

Statement p:4 does not establish p@f3::5g, p@6 ^ p:move = down , or p@f4; 6g, nor does it modify

p:move, p:i, p:j, or X.

Statement p:5 establishes p@6 ^ p:move 6= right, and hence can only establish the second disjunct of

EN (p; r; c). However, it only does so if executed when p@5 ^ p:i = r� 1 ^ p:j � c ^ X[p:i; p:j] 6= p holds,

in which case EN (p; r; c) already holds.

Statement p:6 establishes p@f2; 7g, and hence can only establish the last disjunct of EN (p; r; c). State-

ment p:6 can only establish the last disjunct of EN (p; r; c) if executed when either p:i = r � 1 ^ p:j �

c ^ p@6 ^ p:move = down or p:i � r ^ p:j = c � 1 ^ p@6 ^ p:move = right holds. In either case,

EN (p; r; c) already holds.

It remains to consider statements p:3 and q:2. Statement p:3 only can only establish the third disjunct

of EN (p; r; c). It only does so if executed when p@3 ^ p:i � r ^ p:j = c � 1 ^ Y [p:i; p:j][p:h] holds. The

following assertions imply that (I25) holds after statement p:3 is executed in this case.

p@3 ^ p:i � r ^ p:j = c� 1 ^ Y [p:i; p:j][p:h] ^ (I23)
r;c;p

p:i;p:j;p:h
^ (I25)cc�1

)p@3 ^ p:i � r ^ p:j = c� 1 ^ p:i � 0 ^ p:j � 0 ^ p:i+ p:j < k � 1 ^ 0 � p:h < N ^

Y [p:i; p:j][p:h] ^ (I23)
r;c;p

p:i;p:j;p:h
^ (I25)cc�1

, by (I17), (I20), and (I21).

)p@3 ^ p:i � r ^ p:j = c� 1 ^ c� 1 � 0 ^ (I25)cc�1
^

(9s : s = p:h ^ s 6= p :: s@f5::8g ^ s:i = p:i ^ s:j = p:j ^ s:move 6= right)

, by (I23); note that p@3 ^ s@f5::8g implies s 6= p.

)(9s : s 6= p :: s@f5::8g ^ s:i � r ^ s:j = c� 1 ^ s:move 6= right) ^

(jfs :: EN (s; r; c� 1)gj � k � r � c + 1) , by (I25); recall that r � 0 and r + c � k � 1.

fp@3 ^ p:i � r ^ p:j = c � 1 ^ Y [p:i; p:j][p:h] ^ (I23)
r;c;p

p:i;p:j;p:h
^ (I25)c

c�1
g p:3 f(9s : s 6= p ::

s@f5::8g ^ s:i � r ^ s:j = c� 1 ^ s:move 6= right) ^ (jfs :: EN (s; r; c� 1)gj � k � r � c+ 1)g

, by above derivation, precondition implies postcondition; p:3 does not modify private variables of s;

note also that the precondition implies EN (p; r; c� 1); EN (s; r; c� 1) is not established for s 6= p.

(9s : s 6= p :: s@f5::8g ^ s:i � r ^ s:j = c� 1 ^ s:move 6= right) ^

(jfs :: EN (s; r; c� 1)gj � k � r � c + 1)

)(9s : s 6= p :: :EN (s; r; c) ^ EN (s; r; c� 1)) ^ jfs :: EN (s; r; c� 1)gj � k � r � c+ 1

, by the de�nition of EN.

)jfs :: EN (s; r; c)gj � k � r � c , by (I24).

The above assertions imply that statement p:3 does not falsify (I25). Statement q:2 for q 6= p can only

establish EN (p; r; c) if executed when q@2 ^ q:i = r�1 ^ q:j = p:j ^ p:i = r�1 ^ p:j � c ^ X[r�1; p:j] = p

holds. The following assertions imply that q:2 does not falsify (I25) in this case.

q@2 ^ q:i = r � 1 ^ q:j = p:j ^ p:i = r � 1 ^ p:j � c ^ X[r � 1; p:j] = p ^ (I25)r
r�1

)(8s : s 6= p ^ s 6= q :: s:j 6= q:j _ X[r � 1; s:j] 6= s) ^ r � 1 � 0 ^ (I25)rr�1

, predicate calculus and (I20).
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)(8s : s 6= p ^ s 6= q :: s:j 6= q:j _ X[r � 1; s:j] 6= s) ^ (jfs :: EN (s; r � 1; c)gj � k � r � c+ 1)

, de�nition of (I25); recall that c � 0 ^ r + c � k � 1.

fq@2 ^ q:i = r � 1 ^ q:j = p:j ^ p:i = r � 1 ^ p:j � c ^ X[r � 1; p:j] = p ^ (I25)r
r�1

g q:2

fq@3 ^ q:i = r � 1 ^ q:j � c ^ X[q:i; q:j] = q ^ (jfs :: EN (s; r � 1; c)gj � k � r � c + 1)

, by above derivation and axiom of assignment; q:2 does not establish EN (s; r � 1; c) for any s in this case.

q@3 ^ q:i = r � 1 ^ q:j � c ^ X[q:i; q:j] = q ^ (jfs :: EN (s; r � 1; c)gj � k � r � c+ 1)

):EN (q; r; c) ^ EN (q; r � 1; c) ^ jfs :: EN (s; r � 1; c)gj � k � r � c+ 1 , by the de�nition of EN.

)jfs :: EN (s; r; c)gj � k � r � c , by (I24). 2

The following invariant is analogous to (I11).

invariant p 6= q ^ p@f6::8g ^ p:move = stop )

(q:i 6= p:i _ q:j 6= p:j _ q@f0::2g _ (q@3 ^ q:h � p) _ (q@4 ^ q:move = right) _

(q@f3::5g ^ X[q:i; q:j] 6= q) _ (q@f6::8g ^ q:move 6= stop)) (I26)

Proof: Assume that p 6= q. Initially p@0 holds, so (I26) holds. To prove that (I26) is not falsi�ed, it su�ces

to consider statements that potentially establish p@f6::8g ^ p:move = stop, statements that modify p:i, or

p:j, or process q's private variables. The statements to check are p:5, p:6, and all statements of process q.

After the execution of statement q:0, q:1, q:2, or q:8, we have q@f0::2g _ (q@3 ^ q:h � p). If statement q:5

falsi�es q@f3::5g ^ X[q:i; q:j] 6= q, then q@6 ^ q:move 6= stop holds afterwards. Statements q:7 does not

falsify q@f6::8g ^ q:move 6= stop. Statement p:6 does not establish the antecedent and if the antecedent

holds before statement p:6 is executed, then p:6 does not assign p:i or p:j, and hence does not a�ect the

consequent. It remains to consider statements p:5, q:3, q:4, and q:6.

fp@5 ^ (q:i 6= p:i _ q:j 6= p:j _ q@f0::2g)g p:5 fq:i 6= p:i _ q:j 6= p:j _ q@f0::2gg

, precondition implies postcondition, which is unchanged by p:5.

fp@5 ^ q:i = p:i ^ q:j = p:j ^ q@f6::8g ^ q:move 6= stopg p:5 fq@f6::8g ^ q:move 6= stopg

, precondition implies postcondition, which is unchanged by p:5.

p@5 ^ q:i = p:i ^ q:j = p:j ^ q@f6::8g ^ q:move = stop ^ (I26)p;qq;p ) p@5 ^ X[p:i; p:j] 6= p

, by the de�nition of (I26).

fp@5 ^ X[p:i; p:j] 6= pg p:5 fp@6 ^ p:move 6= stopg , axiom of assignment.

fp@5 ^ q:i = p:i ^ q:j = p:j ^ q@f6::8g ^ q:move = stop ^ (I26)p;q
q;p
g p:5 fp@6 ^ p:move 6= stopg

, by two previous assertions.

fp@5 ^ q:i = p:i ^ q:j = p:j ^ :q@f0::2; 6::8g ^ X[p:i; p:j] = pg p:5 fq@f3::5g ^ X[q:i; q:j] 6= q)g

, p 6= q, so precondition implies postcondition, which is unchanged by p:5.

The above assertions imply that p:5 does not falsify (I26). For statement q:3, we have the following.

fq@3 ^ (:p@f6::8g _ p:move 6= stop)g q:3 f:p@f6::8g _ p:move 6= stopg

, precondition implies postcondition, which is unchanged by q:3.
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fq@3 ^ p@f6::8g ^ p:move = stop ^ (q:i 6= p:i _ q:j 6= p:j)g q:3 fq:i 6= p:i _ q:j 6= p:jg

, precondition implies postcondition, which is unchanged by q:3.

fq@3 ^ p@f6::8g ^ p:move = stop ^ q:h = p ^ q:i = p:i ^ q:j = p:jg q:3

fq@4 ^ q:move = rightg , by (I16), precondition implies q@3 ^ Y [q:i; q:j][q:h].

fq@3 ^ p@f6::8g ^ p:move = stop ^ q:h > p ^ (I26)g q:3

fq:i 6= p:i _ q:j 6= p:j _ (q@f3::5g ^ X[q:i; q:j] 6= q)g

, by de�nition of (I26), precondition implies postcondition, which is unchanged by q:3.

fq@3 ^ q:h < pg q:3 f(q@3 ^ q:h � p) _ (q@4 ^ q:move = right)g

, loop at statement 3 either repeats or terminates.

The above assertions imply that q:3 does not falsify (I26). For statement q:4 we have the following.

fq@4 ^ q:move = rightg q:4 fq@6 ^ q:move 6= stopg , axiom of assignment.

fq@4 ^ (:p@f6::8g _ p:move 6= stop)g q:4 f:p@f6::8g _ p:move 6= stopg

, precondition implies postcondition, which is unchanged by q:4.

fq@4 ^ p@f6::8g ^ p:move = stop ^ q:move 6= right ^ (I26)g q:4

fq:i 6= p:i _ q:j 6= p:j _ (q@f3::5g ^ X[q:i; q:j] 6= q)g

, by de�nition of (I26), precondition implies postcondition, which is unchanged by q:4.

The above assertions imply that statement q:4 does not falsify (I26). The following assertions imply that

statement q:6 does not falsify (I26).

fq@6 ^ q:move 6= stopg q:6 fq@2 _ (q@7 ^ q:move 6= stop)g , axiom of assignment.

fq@6 ^ q:move = stop ^ (I26)p;q
q;p
g q:6 f:p@f6::8g _ p:move 6= stop _ p:i 6= q:i _ p:j 6= q:jg

, by de�nition of (I26), precondition implies postcondition;

postcondition is unchanged by q:6 because q:move = stop. 2

invariant p 6= q ^ p@f7::8g ^ q@f7::8g ) p:i 6= q:i _ q:j 6= q:j (I27)

Proof: If p 6= q ^ p@f7::8g ^ q@f7::8g ^ p:move = stop holds, then by (I17), (I18), and (I26), the consequent

holds. If p 6= q ^ p@f7::8g ^ q@f7::8g ^ p:move 6= stop holds, then by (I17), (I18), and (I25)r;c
p:i;p:j

, it

follows that jfs :: EN (s; p:i; p:j)gj � 1. By the de�nition of EN , p@f7::8g implies EN (p; p:i; p:j). Therefore,

EN (q; p:i; p:j) does not hold, which implies that the consequent holds. 2

invariant p 6= q ^ p@8 ^ q@8 ) p:name 6= q:name (I28)

Proof: The following derivation implies that (I28) is an invariant.

p 6= q ^ p@8 ^ q@8 ^ p:name = q:name

)p@8 ^ q@8 ^ p:name = q:name ^ (p:i 6= q:i _ p:j 6= q:j) ^ p:i+ p:j � k � 1 ^ q:i+ q:j � k � 1

, by (I19) and (I27).

)(p:i 6= q:i _ p:j 6= q:j) ^ p:i+ p:j � k � 1 ^ q:i+ q:j � k � 1 ^ p:i � 0 ^ p:j � 0 ^

q:i � 0 ^ q:j � 0 ^ p:i(k � (p:i� 1)=2) + p:j = q:j(k � (q:j � 1)=2) + q:j , by (I20) and (I22).
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) false , by Claim 1 (Section 3.3) with c = p:i, d = p:j, c0 = q:i, and d0 = q:j. 2

invariant p@5 ) 0 � p:name < k(k + 1)=2 (I29)

Proof: (I29) follows from (I19), (I20), (I22), and Claim 2 (Section 3.3). 2

(I28) and (I29) prove that the algorithm shown in Figure 5 correctly implements long-lived k-renaming.

To see that the wait-freedom requirement is satis�ed, consider the two loops in Figure 5. The inner loop

clearly terminates after at most N iterations. To see that the outer loop terminates, consider statement

p:4. If p:move = right holds before statement p:4 is executed, then p:j is incremented when statement p:6

is executed. Otherwise, statement p:5 establishes either p:move = stop or p:move = down . In the �rst case,

the outer loop terminates. In the second case, p:i is incremented when statement p:6 is executed. Because

of the loop condition p:i + p:j < k � 1, the outer loop is therefore executed at most k � 1 times. The inner

loop executes at most N shared references, and the outer loop executes at most four more. Releasing a name

causes at most one more shared access. Thus, we have the following result.

Theorem 3: Using read and write, wait-free, long-lived (k(k + 1)=2)-renaming can be implemented with

time complexity (N + 4)(k � 1) + 1 = �(Nk). 2

5 Long-Lived Renaming using Read-Modify-Writes

In this section, we present three wait-free, long-lived renaming algorithms and one lock-free, long-lived algo-

rithm. By using read-modify-write operations, these algorithms signi�cantly improve upon the performance

of the algorithms in the previous section. Furthermore, these algorithms yield a name space of size k, which

is clearly optimal (the lower bound results of [7] do not apply to algorithms that employ read-modify-write

operations).

The �rst algorithm uses set �rst zero and clr bit and has time complexity �(k=b). As discussed in Section

1, these operations can be implemented, for example, using operations available on the BBN TC2000 [4].

The second algorithm in this section has time complexity �(log k) | a signi�cant improvement over the

�rst algorithm. To achieve this improvement, this algorithm uses the bounded decrement operation. We then

describe how the techniques from these two algorithms can be combined to obtain an algorithm whose time

complexity is better than that of either algorithm.

We do not know of any systems that provide bounded decrement as a primitive operation. However, at

the end of this section, we discuss how the bounded decrement operation can be approximated in a lock-free

manner using the commonly-available fetch and add operation. We show how this approximation can be

used to provide a lock-free algorithm for long-lived k-renaming.

5.1 Long-Lived Renaming using set �rst zero and clr bit

Our �rst long-lived k-renaming algorithm employs the set �rst zero and clr bit operations. The algorithm is

shown in Figure 6. For clarity, we have expanded the de�nition of set �rst zero (see statement 1). In order

to acquire a name, a process tests each name in order. Using the set �rst zero operation, up to b names can

be tested in one atomic shared variable access, where b is the number of bits per shared variable. If k � b,

this results in a long-lived renaming algorithm that acquires a name with just one shared variable access. If

k > b, then \segments" of size b of the name space are tested in each access. To release a name, a process

clears the bit that was set by that process when the name was acquired. An example is shown in Figure 7

for b = 4 and k = 10. In this �gure, process p releases name 1 by executing clear bit(X[0]; 1) and process q

acquires name 5 by executing set �rst zero(X[1]).
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shared variable X : array[0::bk=bc] of array[0::b� 1] of boolean =� b-bit \segments" of the name space �=

initially (8i; j : 0 � i � bk=bc ^ 0 � j < b :: :X[i][j])

process p =� 0 � p < N �=

private variable h : 0::bk=bc+ 1; v : 0::b; name : 0::k � 1

while true do

0: Remainder Section;

h; v := 0; b; =� Initialize h and v after remainder section �=

while v = b do =� Loop until a bit is set �=

1: if (9n : 0 � n < b :: :X[h][n]) then =� set �rst zero operation, as de�ned in Section 2 �=

m := (min n : 0 � n < b :: :X[h][n]); X[h][m]; v := true; m

else

v := b

�;

h := h+ 1;

od;

2: name := b(h� 1) + v; =� Calculate name �=

Working Section;

3: X[h� 1][v] := false =� Clear the bit that was set �=

od

Figure 6: Long-lived k-renaming using set �rst zero and clear bit.

Because each process tests the available names in segments, and because processes may release and

acquire names concurrently, it may seem possible for a process to reach the last segment when none of the

names in that segment are available. In fact, this is not possible, as is shown by the following correctness

proof.

5.2 Correctness Proof

In accordance with the problem speci�cation, we assume the following invariant.

invariant jfp :: p@f1::3ggj � k (I30)

The following invariants follow directly from the program text in Figure 6, and are stated without proof.

Note that (I32) is used to prove (I33).

invariant p@3 ) p:name = b(p:h� 1) + p:v (I31)

invariant p:h � 0 (I32)

invariant p@f2::3g ) 0 � p:v < b ^ p:h > 0 (I33)

Formal correctness proofs are given below for the remaining invariants. We �rst prove that the conjunction

of the following two assertions is an invariant. These assertions show that two processes do not concurrently

\hold" the same bit.

q 6= p ^ q@f2::3g ^ p@f2::3g ^ 0 � p:h � dk=be ) q:h 6= p:h _ q:v 6= p:v (A1)

0 � i � bk=bc ^ 0 � j < b ) (X[i][j] = (9r :: r@f2; 3g ^ r:h = i+ 1 ^ r:v = j)) (A2)
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names 0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 0 0 1 0 1 0 0

X[0] X[1] X[2]

p q

(a) In this state, p@3 ^ p:h = 1 ^ p:v = 1 holds, so p is about to execute clear bit(X[0];1), thereby releasing name

1. For process q, q@1 ^ q:h = 1 holds, so q is about to execute set �rst zero(X[1]). As X[1][1] is the �rst clear bit

in X[1], q:1 will establish q@2 ^ q:h = 2 ^ q:v = 1, and will therefore acquire name 5.

names 0 1 2 3 4 5 6 7 8 9

1 1 1 1 0 1 0 1 0 0

X[0] X[1] X[2]

p q

0 1

(b) Process p has released name 1 and process q has acquired name 5.

Figure 7: Example steps of the k-renaming algorithm shown in Figure 6 for b = 4 and k = 10.

invariant (A1) ^ (A2) (I34)

Proof: Initially (8p :: p@0) ^ :X[i][j] holds, so (I34) holds. We �rst consider statements that potentially

falsify (A1). Assume that q 6= p. By symmetry, we need only consider statements that may establish

q@f2::3g or modify q:h or q:v. The statements to check are q:0 and q:1. The antecedent does not hold after

q:0 is executed. For q:1, we have the following.

fq@1 ^ (:p@f2::3g _ q:h+ 1 6= p:h _ p:h < 0 _ p:h > dk=be)g q:1

f:p@f2::3g _ q:h 6= p:h _ p:h < 0 _ p:h > dk=beg , axiom of assignment (q 6= p).

q@1 ^ p@f2::3g ^ q:h+ 1 = p:h ^ 0 � p:h � dk=be ^ (A2)
i;j

q:h;p:v

)p@f2::3g ^ q:h+ 1 = p:h ^ 0 � q:h � bk=bc ^ 0 � p:v < b ^ (A2)
i;j

q:h;p:v
, by (I33).

)X[q:h; p:v] ^ p:v 6= b , by de�nition of (A2).

fq@1 ^ p@f2::3g ^ q:h+ 1 = p:h ^ (A2)
i;j

q:h;p:v
g q:1 fq:v 6= p:vg

, by above derivation and de�nition of set �rst zero.

For (A2), assume that 0 � i � bk=bc ^ 0 � j < b. (A2) can be falsi�ed by statements that modify X,

establish or falsify r@f2::3g, or modify r:h or r:v for some r. The statements to check are r:0, r:1, and r:3.

Statement r:0 does not modify X; also r@f2; 3g (and hence r@f2; 3g ^ r:h = i ^ r:v = j) is false both

before and after the execution of r:0. For statement r:1, consider the following assertions.

fr@1 ^ r:h 6= i ^ (A2)g r:1 fr:h 6= i + 1 ^ (A2)g

, r:1 does not modify X[i][j] because r:h 6= i;

also pre- and post-conditions imply :(r@f2::3g ^ r:h = i+ 1 ^ r:v = j).

fr@1 ^ r:h = i ^ X[i][j] ^ (A2)g r:1 fX[i][j] ^ (9s : s 6= r :: s@f2; 3g ^ s:h = i+ 1 ^ s:v = j)g

, by de�nition of (A2), precondition implies postcondition, which is not falsi�ed by r:1;
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note that r@1 ^ s@f2; 3g implies s 6= r.

fr@1 ^ r:h = i ^ :X[i][j] ^ (9n : 0 � n < j :: :X[i][n]) ^ (A2)g r:1 f:X[i][j] ^ r:v < j ^ (A2)g

, r:1 does not modify X[i][j] or establish r:v = j in this case.

fr@1 ^ r:h = i ^ :X[i][j] ^ (8n : 0 � n < j :: X[i][n])g r:1 fX[i][j] ^ r@2 ^ r:h = i + 1 ^ r:v = jg

, by de�nition of set �rst zero, X[i][j] ^ r:v = j is established; loop terminates because j < b.

The above assertions imply that r:1 does not falsify (A2). The following assertions imply that r:3 does

not falsify (A2).

fr@3 ^ (r:h 6= i + 1 _ r:v 6= j) ^ (A2)g r:3 fr@0 ^ (r:h 6= i + 1 _ r:v 6= j) ^ (A2)g

, r:3 does not modify r:h, r:v, or X[i][j] in this case.

fr@3 ^ r:h = i+ 1 ^ r:v = j ^ (A1)g r:3

f:X[i][j] ^ r@0 ^ (8s : s 6= r :: :s@f2::3g _ s:h 6= i + 1 _ s:v 6= j)g

, because 0 � i � bk=bc, the precondition implies that 0 < r:h � dk=be; thus, by

de�nition of (A1), precondition implies (8s : s 6= r :: :s@f2::3g _ s:h 6= i + 1 _ s:v 6= j),

which is not falsi�ed by r:3; also, r:3 establishes :X[i][j] ^ r@0 in this case. 2

The following assertion shows that there are always enough names left for the number of processes seeking

names from X[i]:::X[bk=bc].

invariant 0 � i � bk=bc ) (jfp :: (p@1 ^ p:h � i) _ (p@f2::3g ^ p:h > i)gj � k � ib) (I35)

Proof: By (I30), (I35) holds if i = 0. Henceforth, assume 0 < i � bk=bc. Initially (8p :: p@0) holds, and

because i � bk=bc, it follows k � ib � 0, so (I35) holds initially. (I35) can only be falsi�ed by establishing

(q@1 ^ q:h � i) _ (q@f2::3g ^ q:h > i) for some process q. The statements to check are q:0 and q:1. After

statement q:0 is executed, q:h < i holds because i > 0. Statement q:1 can only establish q@f2::3g ^ q:h > i

(the second disjunct) if executed when q@1 ^ q:h � i (ie. the �rst disjunct already holds). Thus, statement

q:1 can only establish (q@1 ^ q:h � i) _ (q@f2::3g ^ q:h > i) if executed when q@1 ^ q:h = i� 1 holds.

The following assertions imply that q:1 does not falsify (I35) in this case.

fq@1 ^ q:h = i � 1 ^ (9n : 0 � n < b :: :X[i� 1][n])g q:1 fq@2 ^ q:h = i ^ q:v < bg

, de�nition of set �rst zero; loop terminates because q:v < b.

q@1 ^ q:h = i� 1 ^ (8n : 0 � n < b ::X[i � 1][n] ^ (I34)
i;j

i�1;n
) ^ (I35)i

i�1

) q@1 ^ q:h = i� 1 ^ jfp :: p@f2::3g ^ p:h = igj � b ^ 0 � i� 1 < bk=bc ^ (I35)i
i�1

, (I34) implies (A2); recall that 0 < i � bk=bc; thus 0 � i� 1 < bk=bc.

) q@1 ^ q:h = i� 1 ^ jfp :: p@f2::3g ^ p:h = igj � b ^

jfp :: (p@1 ^ p:h � i� 1) _ (p@f2::3g ^ p:h > i � 1)j � k � ib+ b , de�nition of (I35).

) q@1 ^ q:h = i� 1 ^ jfp :: (p@1 ^ p:h � i� 1) _ (p@f2::3g ^ p:h > i)j � k � ib

, predicate calculus; note that p:h = i ) p:h > i� 1 ^ :(p:h > i).

)jfp :: (p@1 ^ p:h � i) _ (p@f2::3g ^ p:h > i)gj � k � ib� 1

, predicate calculus; note that q:h = i � 1 ) q:h � i� 1 ^ :(q:h � i).

fq@1 ^ q:h = i � 1 ^ (8n : 0 � n < b :: X[i � 1][n] ^ (I34)
i;j

i�1;n
) ^ (I35)i

i�1
g q:1 f(I35)g

, by above derivation; q:1 does not establish (p@1 ^ p:h � i) _ (p@f2; 3g ^ p:h > i) for p 6= q. 2
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The following invariant shows that if a process reaches X[bk=bc], then its set �rst zero will succeed, so it

will acquire a name.

invariant p@1 ^ p:h = bk=bc ) (9n : 0 � n < k � bbk=bc :: :X[p:h][n]) (I36)

Proof: Consider the following derivation.

p@1 ^ p:h = bk=bc ^ (I35)i
bk=bc

)p@1 ^ p:h = bk=bc ^ (jfp :: (p@1 ^ p:h � bk=bc) _ (p@f2::3g ^ p:h > bk=bc)gj � k � bbk=bc)

, by (I35).

)p:h = bk=bc ^ (jfp :: p@f2::3g ^ p:h = bk=bc + 1gj < k � bbk=bc) , predicate calculus.

)p:h = bk=bc ^ (jfn : 0 � n < k � bbk=bc ::X[bk=bc][n]gj < k � bbk=bc)

, observe that 0 � n < k � bbk=bc implies 0 � n < b; thus by (I34),

(jfn : 0 � n < k � bbk=bc :: X[bk=bc][n]gj) � (jfp :: p@f2::3g ^ p:h = bk=bc + 1gj).

)p:h = bk=bc ^ (9n : 0 � n < k � bbk=bc :: :X[bk=bc][n]) , pigeonhole principle.

)(9n : 0 � n < k � bbk=bc :: :X[p:h][n]) , predicate calculus. 2

invariant p@1 ) 0 � p:h � bk=bc (I37)

Proof: Initially p@0 holds, so (I37) holds. Only statements p:0 and p:1 a�ect (I37). Because k > 1 and

b > 0, (I37) holds after p:0 is executed. Statement p:1 can only falsify (I37) if executed when p:h = bk=bc.

However, by (I36) and the de�nition of set �rst zero, we have fp@1 ^ p:h = bk=bcg p:1 fp@2g. 2

invariant p@f2; 3g ) 0 < p:h � bk=bc _ (p:h = bk=bc+ 1 ^ 0 � p:v < k � bbk=bc) (I38)

Proof: Initially, p@0 holds, so (I38) holds. Only statements p:0 and p:1 potentially falsify (I38). The

antecedent does not hold after p:0 is executed. For p:1 we have the following.

p@1 ^ (p:h < 0 _ p:h > bk=bc) ) false , by (I37).

fp@1 ^ 0 � p:h < bk=bcg p:1 f0 < p:h � bk=bcg , axiom of assignment.

fp@1 ^ p:h = bk=bcg p:1 fp@2 ^ p:h = bk=bc + 1 ^ 0 � p:v < k � bbk=bcg

, by (I36) and de�nition of set �rst zero. 2

Claim 3: Let c, d, c0, and d0 be nonnegative integers satisfying (c 6= c0 _ d 6= d0) ^ 0 � d < b ^ 0 � d0 < b.

Then, b(c� 1) + d 6= b(c0 � 1) + d0.

Proof: The claim is straightforward if c = c0, so assume that c 6= c0. Without loss of generality assume that

c < c0. Then,

b(c� 1) + d < bc , d < b.

� b(c0 � 1) , c < c0.

� b(c0 � 1) + d0 , d0 � 0. 2

invariant p 6= q ^ p@3 ^ q@3 ) p:name 6= q:name (I39)

Proof: Consider the following derivation.
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p 6= q ^ p@3 ^ q@3 ^ p:name = q:name

)p 6= q ^ p@3 ^ q@3 ^ p:name = q:name ^ 0 < p:h � dk=be , by (I38).

)p 6= q ^ p@3 ^ q@3 ^ p:name = q:name ^ (q:h 6= p:h _ q:v 6= p:v) , by (A1) ((I34) implies (A1)).

)(b(p:h� 1) + p:v = b(q:h� 1) + q:v) ^ (q:h 6= p:h _ q:v 6= p:v) ^

0 � p:v < b ^ 0 � q:v < b ^ p:h � 0 ^ q:h � 0 , by (I31), (I32), and (I33).

) false , by Claim 3 with c = p:h, d = p:v, c0 = q:h, and d0 = q:v. 2

This concludes the proof that no two processes in their working sections have the same name. The

following invariant shows that that each process acquires a name ranging over 0::k� 1.

invariant p@3 ) 0 � p:name < k (I40)

Proof: Initially p@0 holds, so (I40) holds. Only statement p:2 potentially falsi�es (I40). The following

assertions imply that statement p:2 does not falsify (I40).

p@2 ^ (p:h � 0 _ p:h > bk=bc+ 1) ) false , by (I38).

p@2 ^ 0 < p:h < bk=bc+ 1

)p@2 ^ 0 < p:h � bk=bc , predicate calculus.

)(0 � b(p:h� 1) � k � b) ^ (0 � p:v < b) , by (I33) and predicate calculus.

)0 � (b(p:h� 1) + p:v) < k , predicate calculus.

fp@2 ^ 0 < p:h < bk=bc + 1g p:2 f0 � p:name < kg , above derivation and axiom of assignment.

p@2 ^ p:h = bk=bc + 1

)(p:h = bk=bc+ 1) ^ (0 � p:v < k � bbk=bc) , by (I38) and predicate calculus.

)0 � (b(p:h� 1) + p:v) < (bbk=bc + k � bbk=bc) , predicate calculus, b > 0, k > 0.

)0 � (b(p:h� 1) + p:v) < k , predicate calculus.

fp@2 ^ p:h = bk=bc + 1g p:2 f0 � p:name < kg , above derivation and axiom of assignment. 2

(I39) and (I40) prove that the algorithm shown in Figure 6 correctly implements long-lived k-renaming.

Observe that p:h is incremented each time a shared variable is accessed when acquiring a name, and by

(I37), this occurs at most dk=be times before the loop terminates. Also, releasing a name takes one shared

variable access. Thus, we have the following result.

Theorem 4: Using set �rst zero and clr bit on b-bit variables, wait-free, long-lived k-renaming can be

implemented with time complexity dk=be+ 1. 2

As discussed in Section 1, when b = 1, the set �rst zero and clr bit operations are equivalent to the

test and set and write operations, respectively. Thus, we have the following.
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Corollary 1: Using test and set and write, wait-free, long-lived k-renaming can be implemented with time

complexity k + 1. 2

5.3 Long-Lived Renaming using bounded decrement and atomic add

In this section, we present a long-lived k-renaming algorithm that employs the bounded decrement and

atomic add operations. In this algorithm, shown in Figure 8, the bounded decrement operation is used to

separate processes into two groups left and right. The right group contains at most dk=2e processes and the

left group contains at most bk=2c processes. This is achieved by initializing a shared variable X to dk=2e,

and having each process perform a bounded decrement operation on X. Processes that receive positive return

values join the right group, and processes that receive zero join the left group. To leave the right group, a

process increments X. To leave the left group, no shared variables are updated.

Because processes must be able to repeatedly join and leave the groups, the normal fetch and add opera-

tion is not suitable for this \splitting" mechanism. If X is decremented below zero, then it is possible for too

many processes to be in the left group at once. To see this, suppose that all k processes decrement X. Thus,

dk=2e processes receive positive return values, and therefore join the right group, and bk=2c processes receive

non-positive return values, and therefore join the left group. Now, X = �bk=2c. If a process leaves the

right group by incrementing X, and then decrements X as the result of another call to Getname(), then that

process receives a non-positive return value, and thus joins the left group. Repeating this for each process in

the right group, it is possible for all processes to be in the left group simultaneously. The bounded decrement

operation prevents this by ensuring that X does not become negative.

The algorithm employs an instance of long-lived dk=2e-renaming for the right group, and an instance of

long-lived bk=2c-renaming for the left group, which are inductively assumed to be correct. For notational

convenience, we assume that the left instance is accessed by calling the Getname left and Putname left

procedures; similarly for the right instance. The algorithm that results from \unfolding" this inductively-

de�ned algorithm forms a tree. To acquire a name, a process goes down a path in this tree from the root to

a leaf. As the processes progress down the tree, the number of processes that can simultaneously go down

the same path is halved at each level. When this number becomes one, a name can be assigned. Thus, the

Getname() procedure has time complexity dlog
2
ke. To release a name, a process retraces the path it took

through the tree in reverse order, incrementing X at any node at which it received a positive return value.

Note that with b-bit variables, if b < log
2
dk=2e, then X cannot be initialized to dk=2e, so this algorithm

cannot be implemented. However, in any practical setting, this will not be the case. In the next section, we

prove the algorithm shown in Figure 8 correct.

5.4 Correctness Proof

We inductively assume correctness for the right instance of dk=2e-renaming and the left instance of

bk=2c-renaming. In accordance with the problem speci�cation, we assume that the following invariant holds.

invariant jfp :: p@f1::7ggj � k (I41)

The following two invariants follow directly from the program text in Figure 8.

invariant p@f5::6g ) p:side = right (I42)

invariant p@7 ) p:side 6= right (I43)

Proofs for the remaining invariants are provided. We �rst prove that the conjunction of the following

two assertions is an invariant. These assertions are used to prove that too many processes do not access the

left and right instances. This is required so that the correctness of these instances can be used to prove the

algorithm correct inductively.
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shared variable X : 0::dk=2e =� Counter of names available on right �=

initially X = dk=2e

process p =� 0 � p < N �=

private variable side : fleft; rightg

while true do

0: Remainder Section;

1: if bounded decrement(X) > 0 then =� Ensure at most dk=2e access right and at most bk=2c access left �=

2: side;name := right;Getname right() =� Get name from right instance �=

else

3: side;name := left; dk=2e +Getname left() =� Get name from left instance �=

�;

Working Section;

4: if side = right then

5: Putname right(name); =� Return name to right instance �=

6: atomic add(X;1) =� Increment counter again �=

else

7: Putname left(name� dk=2e) =� Return name to left instance �=

�

od

Figure 8: k-renaming using bounded decrement. Getname left and Putname left are inductively assumed to imple-

ment long-lived bk=2c-renaming. Similarly, Getname right and Putname right are inductively assumed to implement

long-lived dk=2e-renaming.

0 � X � dk=2e (A3)

jfp :: p@2 _ (p@f4::7g ^ p:side = right)gj = dk=2e �X (A4)

invariant (A3) ^ (A4) (I44)

Proof: Initially (A3) ^ (A4) holds. (A3) can only be falsi�ed by decrementing X when X = 0 holds, or

by incrementing X when X = dk=2e holds. By the de�nition of bounded decrement, the �rst case does not

arise. Only statement p:6 increments X. However, consider the following.

p@6 ^ X = dk=2e ^ p:side 6= right ^ (I42) ) false , by (I42).

p@6 ^ X = dk=2e ^ p:side = right ^ (A4) ) false , by de�nition of (A4).

(A4) is potentially falsi�ed by any statement that modi�es p:side or X, or establishes or falsi�es p@2

or p@f4::7g. The statements to check are p:1, p:2, p:3, p:6, and p:7 where p is any process. Statement p:2

preserves p@2 _ (p@f4::7g ^ p:side = right) and statement p:3 preserves :(p@2 _ (p@f4::7g ^ p:side =

right)). Also, neither statement modi�es X. By (I42), statement p:6 decreases both sides of (A4) by 1. By

(I43), statement p:7 does not a�ect either side. The following assertions imply that statement p:1 does not

falsify (A4).

p@1 ^ X < 0 ^ (A3) ) false , de�nition of (A3).

fp@1 ^ X = 0 ^ (A4)g p:1 fp@3 ^ (A4)g , by de�nition of bounded decrement, p:1 does not modify X.

fp@1 ^ X > 0 ^ (A4)g p:1 fp@2 ^ (A4)g , both sides of (A4) are increased by 1 in this case. 2

25



invariant jfp :: p@2 _ (p@f4::7g ^ p:side = right)gj � dk=2e (I45)

Proof: (I45) follows directly from (I44). 2

invariant jfp :: p@3 _ (p@f4::7g ^ p:side = left)gj � bk=2c (I46)

Proof: Initially, (8p :: p@0) holds, so (I46) holds because k > 0. (I46) is potentially falsi�ed by any

statement that establishes p@3 _ (p@f4::7g ^ p:side = left) for some p. The statements to check are

p:1, p:2, and p:3. For statement p:2, we have fp@2g p:2 fp@4 ^ p:side = rightg. Statement p:3 preserves

p@3 _ (p@f4::7g ^ p:side = left). The following assertions imply that statement p:1 does not falsify (I46).

p@1 ^ X < 0 ) false , by (A3) ((I44) implies (A3)).

fp@1 ^ X > 0g p:1 fp@2g , de�nition of bounded decrement.

p@1 ^ X = 0

)p@1 ^ jfq :: q@2 _ (q@f4::7g ^ q:side = right)gj = dk=2e , by (A4) ((I44) implies (A4)).

)jfq :: q@3 _ (q@f4::7g ^ q:side = left)gj < bk=2c , by (I41).

fp@1 ^ X = 0g p:1 fjfq :: q@3 _ (q@f4::7g ^ q:side = left)gj � bk=2c

, by preceding derivation; p:1 increases the left-hand side of (I46) by at most 1. 2

By (I45) and (I46), the right instance is accessed by at most dk=2e processes concurrently and the left

instance is accessed by at most bk=2c processes concurrently. Thus, by the assumption that these instances

are correct, we have the following invariants.

invariant p@f4; 5g ^ p:side = right ) 0 � p:name < dk=2e (I47)

invariant p@f4; 7g ^ p:side = left ) dk=2e � p:name < k (I48)

invariant p 6= q ^ p@f4::7g ^ q@f4::7g ^ p:side = q:side ) p:name 6= q:name (I49)

Correctness of the k-renaming algorithm shown in Figure 8 follows from (I47), (I48), and (I49). Note

that, given the assumption that the left and right instances are correct, wait-freedom is trivial. This allows

us to prove the following result.

Theorem 5: Using b-bit variables and bounded decrement and atomic add, wait-free, long-lived k-renaming

can be implemented with time complexity 2dlog
2
ke for k � 2(2b � 1).

Proof: By induction on k.

Basis: k = 2. 1-renaming can be trivially implemented with no shared accesses. Thus, in this case, the

algorithm in Figure 8 implements 2-renaming with two shared accesses.

Induction: k > 2. Inductively assume that dk=2e-renaming and bk=2c-renaming can be implemented with

time complexity at most 2dlog
2
dk=2ee and 2dlog

2
bk=2ce, respectively. Thus, the algorithm in Figure 8 has

time complexity at most 2 + 2dlog
2
dk=2ee = 2 + 2dlog

2
k � 1e = 2dlog

2
ke, so the theorem holds. Note that

because the shared counter X must be represented with b bits, this algorithm can only be implemented if

dk=2e � 2b � 1. Thus, the proof only holds if k � 2(2b � 1). 2

Note that if the set �rst zero and clr bit operations are available, then it is unnecessary to completely

\unfold" the tree algorithm described above. If the tree is deep enough that at most b processes can
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reach a leaf, then by Theorem 4, a name can be assigned with one more shared access. This amounts to

\chopping o�" the bottom blog
2
bc levels of the tree. The time complexity of the resulting algorithm is

�(log k� log b) = �(log(k=b)). Thus, using all the operations that are employed by the �rst two algorithms,

it is possible to achieve better time complexity than either of them. This approach yields the following result.

Theorem 6: Using b-bit variables and set �rst zero, clear bit, bounded decrement, and atomic add, wait-free,

long-lived k-renaming can be implemented with time complexity 2(dlog
2
dk=bee + 1) for 1 � k � 2(2b � 1).

Proof: By induction on k.

Basis: k � b. By Theorem 4, wait-free k-renaming can be implemented with time complexity dk=be + 1 =

2 = 2(dlog
2
dk=bee + 1) when k � b.

Induction: k > b. Inductively assume that dk=2e-renaming and bk=2c-renaming can each be implemented

with time complexity 2(dlog
2
dk=2bee + 1) = 2dlog

2
dk=bee. Then, the algorithm in Figure 8 implements the

k-renaming with time complexity at most 2 + 2dlog
2
dk=bee = 2(dlog

2
dk=bee + 1) shared accesses. As for

Theorem 5, this proof only holds if k � 2(2b � 1). 2

5.5 Lock-Free, Long-Lived k-Renaming using fetch and add

The k-renaming algorithm presented in Figure 8 is the basis of our fastest wait-free k-renaming solutions,

as shown by Theorems 5 and 6. Unfortunately, the bounded decrement operation employed by that al-

gorithm is not widely available. While the bounded decrement operation is similar to the well-known

fetch and add operation, we have been unable to design an e�cient wait-free implementation of the for-

mer using the latter. We have, however, designed a lock-free k-renaming algorithm that is based on the

idea of bounded decrement. The algorithm is presented in Figure 9. The fetch and add operation is used to

approximate the bounded decrement operation in such a way that it ensures that at most dk=2e processes

access the right instance of dk=2e-renaming, and similarly for the left instance.

Roughly speaking, this split is achieved by having processes that obtain positive values from X go right,

and processes that obtain non-positive values go left (see statements 1 and 2 in Figure 9). However, a

process, say p, that decrements the counter X below zero \compensates" by incrementing X again before

proceeding left. If p detects that X becomes positive again before this compensation is made, then it is

possible that some other process has incremented X and joined the left group. In this case, there is a risk

that process p should in fact go right, rather than left. In this case, process p restarts the loop.

The algorithm is lock-free because in order for a process to repeat the loop at statements 1 and 2, some

other process must modify X between the execution of statements 1 and 2. As the following proof sketch

shows, if this happens repeatedly, then eventually some other process makes progress.

The di�erences between the proofs for the algorithms shown in Figures 8 and 9 are captured by the

following three invariants. These invariants are easy to prove, and are therefore stated without proof.

invariant jfp :: (p@2 ^ p:side = none) _ (p@f3::9g ^ p:side = right)gj = dk=2e �X (I50)

invariant jfp@f3::9g ^ p:side = rightgj � dk=2e (I51)

invariant jfp@f3::9g ^ p:side = leftgj � bk=2c (I52)

These invariants are analogous to (A4), (I45), and (I46), respectively. As with the proof for the algorithm

shown in Figure 8, (I51) and (I52) are used to show that the left and right instances are not accessed by too

many processes concurrently. The rest of the proof is similar to the previous one. The lock-freedom property

for the algorithm shown in Figure 9 is captured formally by the following property.

Lock-Freedom: If a non-faulty process p attempts to reach its working section, then eventually some

process (not necessarily p) reaches its working section.
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shared variable X : �bk=2c::dk=2e =� Counter of names available on right �=

initially X = dk=2e

process p =� 0 � p < N �=

private variable side : fleft; right;noneg

while true do

0: Remainder Section;

side := none;

while side = none do

1: if fetch and add(X;�1) > 0 then side := right

2: else if fetch and add(X;1) < 0 then side := left �

�

od;

3: if side = right then

4: name := Getname right() =� Get name from right instance �=

5: else name := dk=2e +Getname left() =� Get name from left instance �=

�;

Working Section;

6: if side = right then

7: Putname right(name); =� Return name to right instance �=

8: atomic add(X;1) =� Increment counter again �=

else

9: Putname left(name� dk=2e) =� Return name to left instance �=

�

od

Figure 9: Lock-free k-renaming using fetch and add.

Proof:We inductively assume that the left and right instances are lock-free. Thus, it is easy to see that the

only risk to lock-freedom is that some non-faulty process p executes statements p:1 and p:2 forever, without

any other process reaching its working section. Assume, towards a contradiction that process p repeatedly

executes statements p:1 and p:2. Consider consecutive statement executions, of p:2 and p:1, respectively. By

the assumption that the loop executes repeatedly, it follows that X > 0 holds immediately after statement

p:2 is executed, and that X � 0 holds immediately before statement p:1 is executed. Thus, X is decremented

at least once between the execution of statements p:2 and p:1. Consider the �rst such decrement. The only

statement that decrements X is statement q:1, for some process q. As q:1 is the �rst decrement of X after the

execution of p:2, it follows thatX > 0 holds when q:1 is executed. Thus, q:1 establishes q@3 ^ q:side = right.

Note that process q can only decrement X again after reaching its working section. Thus, because there are

a �nite number of processes, it follows that p cannot execute statements p:1 and p:2 forever, without some

other process eventually reaching its working section. 2

Given that it is theoretically possible for a single process to repeatedly execute statements p:1 and p:2

(while other processes are making progress), the worst-case time complexity for the algorithm in Figure 9

is in�nite. However, if no other process takes a step between statements p:1 and p:2 being executed, then

the test at statement p:2 will succeed. Therefore, if there is no contention, then the number of shared

accesses generated by a process acquiring and releasing a name once is at most 2 plus the contention-free

time complexity for the inductively-assumed instances. Thus, by an inductive proof similar to the proof of

Theorem 5, we have the following result. This result can be extended, as Theorem 5 was in the previous

section, to give a result analogous to Theorem 6.

Theorem 7: Using b-bit variables and fetch and add, lock-free, long-lived k-renaming can be implemented

with contention-free time complexity 2dlog
2
ke for k � 2b � 1. 2
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6 Concluding Remarks

In this paper, we have presented two one-time renaming algorithms that employ only atomic read and

write operations. One of these algorithms yields an optimal-size name space. These algorithms improve

on previous read/write renaming algorithms in that their time complexity is independent of the size of the

original name space.

In addition, we have de�ned a new version of the renaming problem called long-lived renaming, in which

processes can release names as well as acquire names. We have provided several solutions to this problem,

including one that employs only read and write operations.

Our algorithms exhibit a trade-o� between time complexity, name space size, and the availability of

primitives used. All of our wait-free algorithms, except the one shown in Figure 8, have the desirable

property that time complexity is proportional to contention. This is an important practical advantage

because contention should be low in most well-designed applications [8]. The algorithm in Figure 8 has time

complexity that is logarithmic in k, regardless of the level of contention.

There are several questions left open by our research. For example, we have shown that one-time (2k�1)-

renaming can be solved using reads and writes with time complexity �(k4). We would like to improve on

this time complexity while still providing an optimal-size name space. Our fastest read/write algorithm has

time complexity �(k) and yields a name space of size k(k + 1)=2.

The long-lived renaming algorithm presented in Section 4 yields a name space of size k(k + 1)=2 with

time complexity �(Nk). We would like to improve on this result by obtaining an optimal name space of size

2k � 1 using only read and write operations, and by making the time complexity independent of N .

Our most e�cient wait-free, long-lived renaming algorithmuses a bounded decrement operation. Although

this operation is similar to the standard fetch and add operation, we have been unable to design an e�cient

wait-free implementation of the former using the latter. We have, however, designed an e�cient lock-free

implementation of k-renaming based on this idea. In this implementation, a process can only be delayed by

a very unlikely sequence of events. We believe this implementation will perform well in practice. It remains

to be seen whether fetch and add can be used to implement wait-free, long-lived renaming with sub-linear

time complexity.
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