
Soft Real-Time Scheduling

Jeremy P. Erickson and James H. Anderson

Abstract The notion of temporal correctness applicable to a hard real-time sys-
tem is quite categorical: such a system is deemed to be temporally correct if and
only if no task ever misses a deadline. In contrast, soft real-time systems are some-
times permitted to miss deadlines, and there are a variety of ways in which the term
“sometimes” might plausibly be defined. As a result, several different notions of
soft real-time correctness have been studied in the literature. In this chapter, a sur-
vey of research results pertaining to several such notions is presented. Additionally,
the related issue of overload management is considered. Overloads may be com-
mon in soft real-time systems because such systems are typically provisioned less
pessimistically than hard real-time ones.

1 Introduction

The common characteristic of real-time systems, as discussed throughout this book,
is that results must not only be correct, but must be produced “at the right time.”
The precise definition of “at the right time” depends on the type of system.

A system is typically defined to be a “hard real-time (HRT)” system if each job
(i.e., invocation of a program, or “task”), has a deadline by which it must complete in
order for the system to be correct. This definition of correctness is needed if drastic
consequences could result from a missed deadline. For example, consider a task that
adjusts a rudder on an aircraft, in response to the pilot using fly-by-wire controls.
This task has a hard real-time requirement, as a missed deadline could result in a

Jeremy P. Erickson
Department of Computer Science The University of North Carolina Campus Box 3175, Brooks
Computer Science Building Chapel Hill, N.C. 27599-3175 USA e-mail: jerickso@cs.unc.edu

James H. Anderson
Department of Computer Science The University of North Carolina Campus Box 3175, Brooks
Computer Science Building Chapel Hill, N.C. 27599-3175 USA e-mail: anderson@cs.unc.edu

1

2 Jeremy P. Erickson and James H. Anderson

crash. In order to guarantee the correctness of such a system, it is typically necessary
to make highly pessimistic assumptions about system behavior, in order to ensure
that a deadline cannot be missed under any possible circumstances. This usually
requires over-provisioning the system.

By contrast, a system is defined to be a “soft real-time (SRT)” system if it has less
stringent requirements. In such a system, each job typically still has a deadline, but
the system may be deemed to be correct even if some jobs miss their deadlines. As
an example of a SRT deadline constraint, one might require that some fraction of all
deadlines in a system be met. Such relaxed deadline constraints are often sufficient.
For example, a video decoding system that operates at 50 frames per second must
decode each frame within a 20 ms period, or the video may visibly skip. Such a skip
is not catastrophic, and the reduced pessimism enabled by tolerating some skips can
allow the system to be more fully provisioned.

In this chapter, we consider several different notions of SRT correctness and sur-
vey work pertaining to these various notions. We begin in Section 2 by presenting
basic definitions that will be used throughout this chapter. Then, in Section 3, we
consider various definitions of SRT correctness that are similar to that considered
above, where only some fraction of deadlines are required to be met. Next, in Sec-
tion 4, we consider a definition of SRT correctness that does not require any dead-
line to be met, but does require bounded tardiness, i.e., jobs may miss deadlines
as long as the extent of miss is bounded. SRT systems are often provisioned less
pessimistically than HRT ones, and as a result, the underlying hardware platform
can be expected to sometimes be overloaded. In such situations, policies must be
employed that ensure that overloads eventually abate by reducing computational
demand. One way to reduce demand is by dropping work. In Section 5, we survey
approaches for dealing with overload that use value functions in deciding which
work to drop. Another way to reduce demand is by reducing the rate at which tasks
submit work. In Section 6, we survey work on overload management in which such
an approach is taken. Finally, in systems that contain tasks of different criticalities,
criticality-cognizant overload management policies can be employed. We survey
work on such policies in Section 7.

2 Basic Definitions

Except where otherwise noted, some variant of the sporadic task model is assumed
in all papers surveyed in this chapter. In order to describe this model, we depict in
Figure 2 an example task running by itself. A task represents one process that is
composed of a (potentially infinite) series of discrete jobs. When a new job of a
task becomes available for execution, we say that that job is released by the task.
Because each task is a single process, a newly released job of a task must wait to
actually begin execution if any prior jobs of the same task have not yet completed.

We denote a system comprised of n sporadic tasks as τ = {τ1,τ2, . . . ,τn}. Each
task τi is specified by defining several temporal parameters.

Soft Real-Time Scheduling 3

Fig. 1 Common key for many figures in this chapter.

Fig. 2 Example of a sporadic task, with key in Figure 1.

One such parameter is the worst-case execution time (WCET) of τi, denoted Ci.
This parameter specifies an upper bound on the execution time for any job of τi. In
Figure 2, C1 = 2 ms, so no job runs for over 2 ms. However, some jobs run for only
1 ms, as allowed by the model.

Another parameter is the minimum separation time of τi, denoted Ti. This pa-
rameter specifies the minimum amount of time between two successive job releases
of τi. In Figure 2, T1 = 3 ms, so job releases occur at least three time units apart.
However, after the job release that occurs at time 9 ms, no new job is released until
time 14 ms, as allowed by the model.

The absolute deadline of a job is the point in time by which that job should fin-
ish. In Figure 2, the absolute deadline of the first job is at time 2 ms. The precise
interpretation of “should finish” depends on the particular definition of SRT correct-
ness assumed. The relative deadline of a particular task τi, denoted Di, is the time
between the release time and absolute deadline of each job of that task. In Figure 2,
D1 = 2 ms, so the job released at time 9 ms has its absolute deadline at time 11 ms.

We often consider implicit-deadline task systems in which for each task τi, Di =
Ti. However, some work is also applicable to arbitrary-deadline task systems that
may violate this assumption. For the purpose of examples, we will often use the
notation τi = (Ci,Ti) for the tasks of an implicit-deadline task system.

A final parameter of each task τi is its utilization, denoted Ui. A task’s utiliza-
tion is simply the ratio of its WCET to its minimum separation time: Ui =

Ci
Ti

. The
utilization of a task is significant because it indicates the long-term processor share
needed by the task, in the worst case.

Some SRT schedulers deal with situations of overload. In an overload situation,
there is more work than can possibly be completed with reasonable time constraints.
For example, two tasks with utilization greater than 0.5 cannot execute together
on a uniprocessor, or jobs will miss their deadlines by increasing amounts. SRT
schedulers that work in the presence of overload may employ various methods to

4 Jeremy P. Erickson and James H. Anderson

reduce computational demand so as to encourage overloads to abate. Several such
methods are reviewed later.

3 Meeting Some Deadlines

In this section, we review prior work in which a definition of SRT correctness is
employed that requires some deadlines to be met. All of the papers reviewed in
this section focus on uniprocessor platforms and the implicit-deadline periodic task
model, where tasks have exact rather than minimum separation times.

Koren and Shasha (1995a) allowed each task to have a skip factor s: each time a
job of that task misses a deadline, the next s−1 jobs must complete. The scheduler
can simply skip any task that would miss a deadline, so some task sets with overload
due to total utilization larger than one can be scheduled. However, Koren and Shasha
showed that even on a uniprocessor, optimal scheduling with their model is NP-hard.
Hamdaoui and Ramanathan (1995) considered the more general (h,k) model.1 In
that model, h jobs of a task must meet their deadlines out of any consecutive k
jobs of that task. Both of these types of constraints are generalized as weakly hard
constraints by Bernat et al. (2001). They defined a “weakly hard real-time system”
as any system with a precise bound on the distribution of met and missed deadlines.
(Ordinary HRT systems are a special case, where every deadline is met.) Bernat
et al. described a few variants, which can be combined with logical operators:

• A task can “meet any h in k deadlines,” which is identical to the (h,k) model
discussed above.

• A task can “meet row h in k deadlines”, meaning that it must meet h deadlines in
a row in every window of k deadlines. If k = h+1, then this scheme reduces to a
skip factor of h.

• A task can “miss any h in k deadlines,” meaning that it cannot miss more than h
deadlines in a window of k.

• A task can “miss row h in k deadlines,” meaning that it cannot miss more than h
deadlines in a row in a window of k. (The window size k is not actually required
to express this condition.)

A weaker form of the (h,k) model, the window-constrained task model, was de-
scribed by West and Poellabauer (2000). In that model, the time line is segmented
into periodic windows, each containing k consecutive jobs of a given task, and
within each window, h jobs of that task must meet their deadlines. (Any task system
that is schedulable using the (h,k) model is also schedulable using the window-
constrained model.)

Lin and Natarajan (1988) proposed the imprecise computation model for tasks
that compute numerical results. Under that model, each job has a mandatory part
that must complete before its deadline under any circumstances, and an optional part

1 We have changed their notation slightly to avoid conflict with other terms.

Soft Real-Time Scheduling 5

Fig. 3 Response time, lateness, and tardiness. If t were before d, then lateness would be negative,
while tardiness would be zero.

that can be interrupted at any time. The mandatory part guarantees an approximate
solution, and the precision of the solution must be non-decreasing as the optional
part executes. The task must be defined to conform to these requirements. Ideally,
every task would run its optional part to completion, but part of that computation can
be cancelled when that is not possible. This model is not sufficient to provide a well-
defined scheduling problem, because there must be some mechanism to determine
which optional parts to execute. Several potential strategies, such as minimizing the
number of dropped optional portions or minimizing the maximum error, were dis-
cussed by Liu et al. (1991). Aydin et al. (2001) proposed a metric where a reward
is assigned for completing each job, varying based on how much of the optional
part is allowed to execute. They assumed linear or concave (non-increasing deriva-
tive) nondecreasing reward functions and periodic tasks. They demonstrated that the
maximum reward can provably be achieved by a system where the same amount of
optional computation happens for each job of a task. They then provided a system
of equations (linear in the case of linear reward functions) that can be solved to
determine the optimal amount of optional computation for each task.

4 Bounded Tardiness/Lateness

In this section, we review work that uses a notion of SRT correctness that requires
“bounded tardiness” or “bounded lateness.”

In order to do so, we will first introduce some additional definitions that are used
in these works. Suppose a job is released at time r, has an absolute deadline at
time d, and completes at time t. Then, as depicted in Figure 3, its response time is
t− r, its lateness is t− d, and its tardiness is max{0, t− d}. Observe that, if a job
completes no earlier than its deadline, then its lateness and tardiness are identical
and nonnegative. Otherwise, its lateness is negative and its tardiness is zero.

With these definitions in place, we now specify the definition of SRT that we
focus on in this section: bounded lateness. If a task has an upper bound on the late-
ness of any of its jobs, then such a bound is called a lateness bound. If all tasks have
lateness bounds, then the system has bounded lateness. Bounded tardiness (with tar-
diness bounds) and bounded response times (with response-time bounds) are equiv-

6 Jeremy P. Erickson and James H. Anderson

alent to bounded lateness in the sense that a system has bounded lateness if and only
if it has bounded tardiness and if and only if it has bounded response times. All three
of these criteria are useful because each guarantees that each task receives a suffi-
cient processor share in the long term. Some of the works in this section has used the
bounded tardiness criterion for SRT. Other more recent works reviewed here have
used bounded lateness because lateness bounds can indicate that jobs must finish
before their deadlines, whereas tardiness bounds cannot.

Work on bounded tardiness and bounded lateness has typically been performed
on multiprocessor systems, primarily due to the relative simplicity of optimal sched-
ulers on uniprocessors.

4.1 Review of EDF Scheduling

A widely studied uniprocessor scheduling algorithm is the earliest-deadline-first
(EDF) scheduling algorithm, in which jobs are prioritized by absolute deadline, with
ties broken arbitrarily but consistently. Most of the work described in this section is
based on schedulers derived from EDF.

In order to describe the properties of EDF that make it useful, we first define some
terms. When considering HRT scheduling, a schedule is said to be HRT correct if
no job misses its deadline. When considering the type of SRT scheduling described
in this section, a schedule is said to be SRT correct if it has bounded lateness. A
task system is HRT (respectively, SRT) feasible if some scheduling algorithm can
generate an HRT- (respectively, SRT-) correct schedule. A scheduler is said to be
HRT (respectively, SRT) optimal if it generates an HRT- (respectively, SRT-) correct
schedule for every HRT- (respectively, SRT-) feasible task system. On uniproces-
sor platforms, EDF is both HRT optimal and SRT optimal. In particular, EDF can
correctly schedule any implicit-deadline task system with ∑τi∈τ Ui ≤ 1. An example
EDF schedule is depicted in Figure 4.

In the rest of this section, we mainly consider multiprocessor platforms and use m
to denote the number of processors. There are multiple ways to extend EDF schedul-
ing to a multiprocessor setting. One method is partitioned EDF (P-EDF). Under P-
EDF, each task is statically assigned to a processor, and each processor schedules its
tasks using EDF. For implicit-deadline task systems, assigning tasks to processors
is equivalent to solving a bin-packing-like problem. The items are the n tasks, with
weights equal to utilizations, and the bins are the m processors, each with capacity
one.

The primary limitation of P-EDF is related to the bin-packing problem: there are
task systems that are feasible on m processors with techniques other than partition-
ing, but that cannot be partitioned onto the same set of processors. As an example,
consider the task system with three identical tasks (2,3). Each task has a utilization
of 2

3 , so no two tasks can be allocated on the same processor and three processors
are required. However, this task system is actually feasible using only two proces-
sors. As an example, Figure 5 depicts an HRT-correct schedule for this task system

Soft Real-Time Scheduling 7

Fig. 4 EDF schedule of τ1 = (2,4) and τ2 = (4,8).

Fig. 5 Correct (both HRT and SRT) schedule of a system with three tasks where each τi = (2,3).

Fig. 6 G-EDF schedule of the same system as Figure 5. This schedule is SRT correct, but not HRT
correct.

on only two processors when all jobs are released as early as possible. Notice that
in this schedule, jobs of τ3 migrate between processors during execution.

An alternative to P-EDF is global EDF (G-EDF), in which all processors share a
global run queue and the m jobs with the soonest deadlines execute. A G-EDF sched-
ule of our running example (as in Figure 5) is depicted in Figure 6. Unfortunately, as
can be seen in the figure, all jobs of τ3 miss their deadlines. This demonstrates that
G-EDF is not HRT optimal. However, notice that no job of τ3 misses its deadline by
more than 1 ms. In fact, Devi and Anderson (2008) demonstrated that G-EDF is in
fact SRT optimal.

Schedulers that are HRT optimal for implicit-deadline sporadic task systems do
exist, e.g., (Anderson and Srinivasan, 2004; Baruah et al., 1996; Compagnin et al.,
2014; Funk et al., 2012, 2011; Megel et al., 2010; Nelissen et al., 2012a,b, 2014;
Regnier et al., 2011; Zhu et al., 2011). However, most such schedulers are difficult
to implement in practice and all cause jobs to frequently be preempted by other jobs
or migrated between CPUs. Even the schedule in Figure 5, which is for a very simple
task system, requires each of τ3’s jobs to incur a migration. Furthermore, in order to

8 Jeremy P. Erickson and James H. Anderson

achieve optimality, it is necessary to change the relative priorities of jobs while those
jobs are running. In Figure 5, each of τ3’s jobs initially has a higher priority than
the corresponding job of τ2, but only for 1 ms. This type of priority change, which
does not occur under G-EDF, can cause problems for locking protocols Branden-
burg (2011). Therefore, G-EDF remains a good choice for SRT systems for which
bounded tardiness is acceptable.

On systems with a large number of processing cores, the overheads incurred by
locking and maintaining a global run queue may result in large overheads (Bastoni
et al., 2010). Therefore, a compromise between P-EDF and G-EDF called clustered
EDF (C-EDF), where tasks are partitioned onto clusters of CPUs and G-EDF is
used within each cluster, is preferable in such cases. Because G-EDF is used within
each cluster, work analyzing G-EDF can also be applied in a straightforward manner
to C-EDF.

4.2 Work on Bounded Lateness and Bounded Tardiness Without
Overload

The seminal work on bounded tardiness was that by Devi and Anderson (2008), who
considered G-EDF scheduling. They compared G-EDF to an ideal scheduler that
continuously maintains for each task a processor share equal to its utilization. The
difference in allocation between what a task receives under G-EDF and under the
ideal scheduler is called lag. Lag can be analyzed at various points in the schedule in
order to derive tardiness bounds. The most significant time instants in the analysis
occur when all CPUs become simultaneously busy at that very instant. Because
some processor was idle, there can be at most m−1 tasks that have remaining work
just before such a time. That insight allowed Devi and Anderson to define a value x
such that the tardiness of a task τi is at most x+Ci. The value of x they defined is as
follows:

x ,
Csum−Cmin

m−Usum
,

where Csum is the sum of the m−1 largest values of Ci, Cmin is the smallest value of
Ci, and Usum is the sum of the m−2 largest values of Ui.

Bounded tardiness is established by mathematical induction over a set of jobs.
We denote job k of task τi with Ji,k. When analyzing a job Ji,k with a deadline at di,k,
jobs with lower priority than di,k can be ignored. Induction begins with the highest-
priority job in the system, and the inductive assumption is that no job with priority
higher than Ji,k has tardiness larger than stated in the proof. The lag is tracked in-
ductively at key points in the execution of the system, so that a bound on the lag of
the system at di,k can be determined. From that lag bound the tardiness bound for
di,k is established.

Leontyev and Anderson (2010) performed significant extensions to Devi and An-
derson’s initial work. Rather than limiting their analysis to G-EDF, they considered
a broader class of window-constrained schedulers. Under such a scheduler, jobs are

Soft Real-Time Scheduling 9

Fig. 7 Depiction of the service functions used by Leontyev and Anderson (2010).

prioritized on the basis of a priority point (PP), and the system executes the eligi-
ble jobs with the earliest PPs. Furthermore, a job’s PP may change with time, but
there must exist constants φi and ψi such that, if a job of task τi has a release at
time r, a deadline at time d, and a PP at time y (priority), then r−φi ≤ y ≤ d +ψi
holds. By using the absolute deadline of each job as its PP, we see that G-EDF is a
window-constrained scheduling algorithm.

Leontyev and Anderson also considered situations in which processing supply
may be restricted. Such restrictions are conceptualized by defining a service func-
tion (following from Chakraborty et al. (2003)) βp(∆) for each CPU p, indicating
that in any interval of length ∆ , at least βp(∆) units of time on CPU p are available
to execute tasks. The form of the service functions used by Leontyev and Anderson
is depicted in Figure 7. Each CPU p has an available utilization ûp and a blackout
time σp, so that

βp(∆), max{0, ûp · (∆ −σp)}.

In Figure 7, we assume that the same pattern of supply restriction continues indef-
initely; in this case, ûp = 1

2 and σp = 3. ûp indicates the long-term utilization of
processor p. For example, in Figure 7, half of the CPU time is occupied by supply
restriction. σp is set to the x-intercept necessary in order for βp(∆) to lower-bound
the actual supply, when the slope of βp(∆) is ûp.

The proof structure used by Leontyev and Anderson is similar to that used by
Devi and Anderson, but much additional complexity is added by the generalizations
applied. For the same reasons, the tardiness bounds are significantly more complex,
so we refer the reader to (Leontyev and Anderson, 2010) for full expressions.

Leontyev et al. (2011) considered a task model that is more general than the
sporadic task model, using a framework called real-time calculus. They considered
delay bounds, which correspond to response-time bounds under the sporadic task
model. As discussed above, requiring bounded response times is equivalent to re-
quiring bounded lateness and bounded tardiness. Leontyev et al. provided a method
to determine whether a given set of response-time bounds could be met. Again, the
expressions are complex, so we refer the reader to (Leontyev et al., 2011) for details.

10 Jeremy P. Erickson and James H. Anderson

(a) G-EDF schedule, where Yi = Di for all i.

(b) A different GEL schedule (in this case, G-FL) of the same task system.

Fig. 8 Comparison of two GEL schedules of the same task system, with τ1 = τ2 = (2,4) and
τ3 = (8,8).

Leontyev et al. also provided a method to determine lateness bounds for a fam-
ily of G-EDF-like (GEL) schedulers. Recall that, under G-EDF, jobs are prioritized
based on their absolute deadlines, and the absolute deadline of each job of τi is Di
units of time after its release. Under a GEL scheduler, jobs are prioritized based on
fixed (nonchanging) PPs that may differ from absolute deadlines. In an analogous
manner to G-EDF and using absolute deadlines, a job under a GEL scheduler has a
higher priority than another if it has an earlier PP. A per-task constant Yi (priority)
takes the place of Di: the PP of each job is Yi time units after its release. The imple-
mentation of any GEL scheduler is identical to that of G-EDF, except that Yi is used
for prioritization in place of Di.

An example comparing two GEL schedulers is depicted in Figure 8. Figure 8(a)
depicts G-EDF itself, where Yi = Di for all i, and Figure 8(b) depicts a different
GEL scheduler, the global fair lateness (G-FL) scheduler proposed by Erickson
et al. (2014), as discussed below.

While Leontyev et al. (2011) provided analysis for arbitrary GEL schedulers,
they did not provide substantial guidance on how to select values of Yi in order to
obtain desired scheduler characteristics. Furthermore, although they allowed delay
bounds to be specified, they did not provide an efficient method to obtain the tightest
possible delay bounds using their analysis, and the bounds provided are not as tight
as possible for sporadic task systems given the more general task model consid-
ered. Erickson et al. (2014) addressed these limitations using an analysis framework
similar to that of Devi and Anderson (2008).

Soft Real-Time Scheduling 11

Compared to Devi and Anderson (2008), Erickson et al. provided further im-
provements on the tightness of tardiness/lateness bounds, and also provided a way
to handle arbitrary deadlines (deadlines may differ from minimum separation times)
and arbitrary GEL schedulers. Their method does not require the additional pes-
simism from the more general models considered by Leontyev and Anderson (2010)
and Leontyev et al. (2011). Erickson et al. also provided methods to choose the best
lateness bounds by optimizing parameters such as maximum or average lateness.

As discussed above, Devi and Anderson define the tardiness bound for τi as x+
Ci, with a single value of x for the entire task system. One fundamental change in
Erickson et al.’s analysis is to define a separate xi for each τi. They also allow for
relative PPs that differ from minimum separation times, which allows consideration
of both arbitrary deadlines and arbitrary GEL schedulers.

The tardiness bound x+Ci from Devi and Anderson is equivalent to a response-
time bound of Di + x +Ci. In the analysis of Erickson et al., Yi replaces Di, so
response-time bounds are of the form Yi + xi +Ci. Stated as lateness bounds, they
are of the form Yi + xi +Ci−Di.

Erickson et al. defined a term

Si(Yi),Ci ·max
{

0,1− Yi

Ti

}
,

that accounts for the difference between Yi and Ti, and they use it to provide the
following bound on xi.

xi ≥
∑m−1 largest(x jU j +C j−S j(Yj))+∑τ j∈τ S j(Yj)−Ci

m
(1)

Notice that xi effectively appears on both sides of (1), so (1) cannot be used directly
to compute xi. However, Erickson et al. showed how to define a linear program in
order to determine the smallest values of xi that satisfy (1) for all i. Furthermore,
if each Yi is treated as a variable rather than as a constant, one can also use linear
programming to select Yi values in order to optimize any linear criterion of lateness
bounds, such as minimizing the maximum or average lateness bound.

Erickson et al. also proposed G-FL, the same scheduler that was depicted in
Figure 8(b). Under G-FL, for each τi,

Yi , Di−
m−1

m
·Ci.

As can be seen in Figure 8, G-FL can provide better observed lateness than G-
EDF. Additionally, it can provide better lateness bounds. Erickson et al. also showed
that it provably provides the smallest possible maximum lateness bound, given their
analysis.

For the particular case of G-EDF, Valente (2016) provided a method to tighten
tardiness bounds further. He used a lag proof similar to that of Devi and Anderson
(2008). He demonstrated that lags for different tasks within a task system have a
“balancing” effect on each other. Using this observation, he was able to provide

12 Jeremy P. Erickson and James H. Anderson

tighter bounds for G-EDF than were possible with earlier research, albeit using an
algorithm that requires exponential time to compute them in the worse case.

Erickson and Anderson (2011) proposed a task-system modification that can fur-
ther reduce lateness. Recall that, because a task is a single-threaded process, each
job must wait to begin executing until its predecessor completes. This is an intra-
task precedence constraint. If jobs run in separate threads, however, this constraint
can be removed, and multiple jobs of the same task can execute at the same time on
different processors. Doing so can further reduce lateness bounds.

Some of the pessimism in previous lateness bounds results directly from the fact
that work can be backed up within a task, even when there are idle CPUs. It is
possible that a task has several jobs that have sufficient priority to run, but only one
can make progress. Without the intra-task precedence constraint, however, multiple
pending jobs from the same task can make progress at the same time. This change
allows for smaller bounds.

Furthermore, in the presence of the intra-task precedence constraint, the amount
by which a task is backed up can grow unboundedly even when there are idle CPUs.
Therefore, it is necessary that Ui ≤ 1 holds for every task. However, without the
intra-task precedence constraint, this requirement is no longer necessary, and the
simple system utilization requirement ∑τ j∈τ U j ≤ m is sufficient.

Erickson and Anderson (2012) proposed another modification to the scheduler
to improve lateness bounds. The lateness bounds from Erickson et al. (2014) de-
pend heavily on task execution times. A task’s execution time can be reduced by an
integral factor if each of its jobs is split. For example, a task that has a WCET of
2 ms and a period of 4 ms could have its jobs split in half, resulting in a task with a
WCET of 1 ms and a period of 2 ms. Notice that the utilization of the task remains
constant. Each consecutive pair of subjobs in the split task corresponds to a real job
in the original task.

An example of job splitting under G-EDF is depicted in Figure 9. Figure 9(a)
depicts an example schedule in the absence of splitting. Notice that J3,0 completes
4 ms late. Figure 9(b) depicts the schedule where jobs of τ3 are split into two sub-
jobs. Ji, j,k is used to denote subjob k of Ji, j. Notice that J3,0 now completes only
3 ms late.

Job splitting becomes more complicated in the presence of critical sections, be-
cause many locking protocols require that job priorities do not change during ex-
ecution, but every time a subjob ends, the priority of the underlying job changes.
However, this problem can be overcome by not allowing a subjob to end while
holding or waiting for a lock, reducing the length of the subsequent subjob. This
procedure is depicted in Figure 9(c), where J3,0,0 runs for 8 ms instead of 7 ms, and
J3,0,1 then runs for only 6 ms.

In the absence of overheads and critical sections, because task utilizations re-
main constant with splitting, lateness bounds could be made arbitrarily close to zero.
However, on a real system, more overheads are incurred as a result of job splitting.
Whenever a subjob ends, the operating system must decide what job should subse-
quently be scheduled, creating more scheduling decisions. Additionally, jobs may
be preempted at subjob completion, rather than only at job releases, causing a po-

Soft Real-Time Scheduling 13

(a) No splitting.

(b) Each job of τ3 split into two subjobs.

(c) Each job of τ3 split into two subjobs, in the presence of critical sections.

Fig. 9 Schedules of a task system with τ1 = (4,6), τ2 = (9,12), and τ3 = (14,24), to illustrate job
splitting.

tential loss of cache affinity. These additional overheads effectively increase a task’s
utilization, so it is necessary to account for these overheads in order to determine
the actual benefits of job splitting.

Erickson and Anderson’s lateness analysis remains correct if jobs are allowed
to begin execution prior to their proper release times, as long as job PPs are deter-
mined based on their proper release times. Therefore, when one subjob completes,
it is sufficient to simply lower the priority of the underlying job. It is not necessary
to unconditionally preempt the job. Furthermore, even if the job does need to be pre-
empted, it can simply be added to the ready queue immediately; it is not necessary

14 Jeremy P. Erickson and James H. Anderson

to set a timer for a future release. This approach significantly limits the additional
overheads that splitting creates.

Provisioning SRT applications based upon the worst case may be overkill in
many settings. Indeed, by inspecting the tardiness and lateness bounds given above,
it is evident that such bounds can be reduced if tasks are provisioned using average-
case execution times rather than worst-case times. Mills and Anderson (2011) ex-
plored this possibility and showed that the prior tardiness analysis of Devi and An-
derson (2008) can be extended so that only average-case task execution times are
assumed. The basic idea is to encapsulate each task within a single-task server that
is sporadically allocated execution budget based on that task’s provisioned average-
case execution time. A single job of a task may require budget from multiple server
invocations to complete. Mills and Anderson showed that such an approach allows
tardiness to be bounded in expectation. In later work, Liu et al. (2014) revisited
the independence assumptions applied in the analysis of Mills and Anderson and
showed that such assumptions can be relaxed.

5 Overload Management Using Value Functions

In this section, we discuss prior work on scheduling algorithms that use value func-
tions to define correct behavior during overload.

5.1 Locke’s Best-Effort Heuristic

Locke (1986) considered a system that resembles the sporadic task model, scheduled
globally on a multiprocessor. Most of the other papers in this section are written for
special cases of this model, so we review it in some detail. However, rather than
having a per-task upper bound on job execution times, there is a stochastic per-
task distribution of execution times. Similarly, rather than having a per-task lower
bound on separation time between job releases, job releases follow a stochastic per-
task distribution. Given these modifications to the task system, it is possible for the
system to experience overload if there is a burst of jobs that either are released closer
together than generally expected, or that run for longer than generally expected.

Locke (1986) assigned to each task a value function that specifies the value to a
system of completing a job at a particular time after its release. “Value” is a unit-less
quantity that can be compared between jobs, to determine which job to complete in
the event of an overload. Ideally, the system should accrue as much total value as
possible.

Examples of value functions are depicted in Figure 10. In each example, the
x axis represents the completion time of a job after its release, while the y axis
represents the value to the system from completing that job. For example, suppose τi
is the task considered in Figure 10(a). If some Ji,k completes before the time marked

Soft Real-Time Scheduling 15

V
a
lu

e

Time

Critical Time

(a) Value function with step at critical time.

V
a
lu

e

Time

Critical Time

(b) Value function with exponential drop-off
after critical time.

V
a
lu

e

Time

Critical Time

(c) Value function with quadratic drop-off af-
ter critical time.

V
a
lu

e

Time

Critical Time

(d) Value function with a specific target com-
pletion time, and quadratic increase and drop-
off before and after that time, respectively.

Fig. 10 Example value functions from Locke (1986).

“Critical Time,” then the system achieves some constant value. However, if the job
completes after that time, the system receives no value whatsoever. Thus, the system
should only execute Ji,k if it is possible for Ji,k to complete before its critical time.
Furthermore, suppose there are two tasks τi and τ j that each have value functions
of this form and that at time t there are ready jobs Ji,k and J j,`. If it is possible to
complete either Ji,k or J j,` before its respective critical time, but not to complete both
before their respective critical times, then Ji,k should generally be selected if τi has a
higher constant value than τ j, and J j,` should be selected if the reverse is true. (This
is not strictly true because the choice of Ji,k or J j,` may affect the ability to complete
other jobs at appropriate times.)

Although not required by the definition of “value function,” for tractability Locke
(1986) considered value functions that are continuous and have continuous first and
second derivatives, except for (possibly) a single discontinuity at the critical time.
This is why the time of the discontinuity in Figure 10(a) is labelled as the “critical
time.” Although the step function discussed above is the simplest value function,
Locke proposed others. Figure 10(b) depicts a value function that drops off expo-
nentially after the critical time, indicating that there is still some value to completing
jobs late, but this value rapidly drops off as jobs complete later. Figure 10(c) depicts
a value function that drops off more slowly after the critical time, indicating that
completing jobs slightly late has a smaller impact than for the value function in
Figure 10(b). Finally, as depicted in Figure 10(d), it is also possible to use value
functions to indicate that a job should not complete too early. In this case, a job that
finishes very quickly will achieve zero value, just as if the job finished very late.

The system should try to achieve the maximum cumulative value even if an over-
load occurs. However, there are two difficulties that arise in attempting to do so:
uncertainty about system behavior and the intractability of the scheduling problem.

16 Jeremy P. Erickson and James H. Anderson

Locke assumed that the system does not know the timing of job releases until they
occur and does not know the actual run time of each job until it completes. We show
by example that even the first assumption is itself sufficient to prevent the system
from always maximizing the cumulative value. Consider the task system with value
functions depicted in Figure 11, as scheduled on a uniprocessor. Suppose that τ1
releases J1,0 and τ2 releases J2,0 at time 0 and that no other job is released before
time 15. Further suppose that J1,0 is known to require 14 ms of execution, while
the job of J2,0 is known to require 7 ms of execution. This scenario is depicted in
Figure 12(b)–(c). Because these two jobs together require 21 ms of execution, while
their last critical time is at time 15, the system cannot complete both jobs before their
critical times. It is therefore better for it to select J1,0 as in Figure 12(b), in order to
achieve a cumulative value of three, rather than selecting J2,0 as in Figure 12(c),
which would only achieve a cumulative value of one.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Time

(a) Value function for τ1.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Time

(b) Value function for τ2.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Time

(c) Value function for τ3.

Fig. 11 Value functions for an example task system.

Suppose, however, that τ3 actually releases J3,0 at time 8, and that J3,0 is known
to require 6 ms of execution. Because J3,0 can complete with a value of 4, which is
greater than the value that can be achieved by either J1,0 or J2,0, the system should
execute J3,0 to maximize the cumulative value. If the system initially chose to exe-
cute J1,0, as depicted in Figure 12(d), then because J1,0 does not actually complete,

Soft Real-Time Scheduling 17

(a) Key for schedules in this figure.

(b) Schedule running only the job from τ1,
with a cumulative value of 3.

(c) Schedule running only the job from τ2,
with a cumulative value of 1.

(d) Schedule running jobs from τ1 (though
not to completion) and τ3, with a cumulative
value of 4.

(e) Schedule running jobs from τ2 and τ3,
with a cumulative value of 5.

Fig. 12 Several possible schedules for the task system with value functions depicted in Figure 11.
J1,0 is released at time 0 and is known to have an execution time of 14. J2,0 is also released at time
0 and is known to have an execution time of 7. In (d) and (e), J3,0 is released at time 8 and is known
to have an execution time of 6.

the cumulative value achieved is only four. However, if the system initially chose to
execute J2,0, as depicted in Figure 12(e), then because J1,0 completes, the cumulative
value achieved is five. Therefore, the optimal choice at time 0 depends on whether
J3,0 is released at time 8, so making an optimal choice is impossible under Locke’s
assumptions. A similar example could be constructed if the execution times were
unknown.

Locke also noted that, even if optimal decision-making were possible, the prob-
lem is likely to be NP-complete. However, the results of this decision-making pro-
cess are most important precisely when the system is already overloaded and cannot
complete all jobs. Furthermore, running the scheduling algorithm requires the same
computing resource as the jobs themselves. Therefore, running an optimal schedul-
ing algorithm would cause more harm than it prevents. Thus, Locke could have
chosen to develop either a heuristic algorithm or an approximation algorithm with a
corresponding provable bound on achieved value, but he chose the former.

18 Jeremy P. Erickson and James H. Anderson

Locke’s heuristic algorithm is based on the assumption that, under typical cir-
cumstances, it will be possible for nearly every job to complete at a time that allows
it to achieve nearly all of its possible value. This assumption simply means that
the system was properly provisioned for the common case. In order to exploit this
assumption, Locke assigned for each job a deadline that is the latest time it can
complete while continuing to achieve a user-configurable fraction of its maximum
achievable value. In the case of a step value function, as in Figure 10(a), a job’s
deadline is simply its critical time. However, under any of the other types of value
functions depicted in Figure 10, a job’s deadline is usually after its critical time.
Locke’s heuristic simply prioritizes all jobs by deadline until the probability of a
deadline miss exceeds a user-configurable threshold.

Once a deadline miss is likely, the system switches prioritization to a heuristic
based on value density. The value density for Ji,k at time t is computed as follows.
Let er

i,k(t) be the expected remaining execution time for Ji,k at time t, conditioned
on how long it has already executed. The expected value V (t) of Ji,k at time t is
defined to be the value that Ji,k will accumulate if it completes at time t + er

i,k(t).
The value density of Ji,k at time t is simply V (t)/er

i,k(t). For example, consider the
schedule in Figure 12(d). At time t = 0, J1,0 is expected to have 14 units of execution
remaining, completing at time 14, and has an expected value of three, resulting in
a value density of 3/14. At time t = 8, J1,0 is expected to have 14− 8 = 6 units
of execution remaining, still completing at time 14, and has an expected value of
three. Its value density is now 3/6 = 1/2. The heuristic that the system uses during
overload, when it is likely that some job will miss its deadline, is to prioritize jobs
by decreasing value density.

Locke demonstrated the effectiveness of his heuristic through experiments that
simulate global multiprocessor schedules where one CPU is dedicated to making
scheduling decisions for the rest of the system. He demonstrated that his scheme
provides significantly higher achieved value than other considered schedulers in the
presence of overload, while also meeting most deadlines in the absence of overload.
However, he did not provide any theoretical guarantees comparing the achieved
value to the maximum achievable value.

5.2 Providing a Guarantee on Achieved Value: D∗

Unless otherwise noted, all papers discussed in the remainder of Section 5 consider
only step value functions, as depicted in Figure 10(a). In such cases, we say that the
deadline of each job is simply its critical time, and that its value is the value that it
achieves if it completes before its critical time. Furthermore, the job’s value density
is simply its value divided by its total execution time. (This differs from the notion
of “value density” used by Locke (1986), who used remaining execution time.) We

Soft Real-Time Scheduling 19

use the constant q to denote the importance ratio, or the ratio of the largest value
density in the system to the smallest value density in the system.2

Baruah et al. (1991) considered scheduling on uniprocessors. They observed that
Locke (1986) provided only heuristics, but did not provide any guarantee about
the value that could be achieved during an overload. In order to provide such a
guarantee, they developed a new scheduling algorithm, D∗. They assumed that job
release times are not known ahead of time, but that the exact execution time of each
job is known upon release.

D∗ is similar to the later-proposed earliest deadline until zero laxity (EDZL)
scheduling algorithm (Baker et al., 2008; Lee, 1994). A job’s laxity is the time until
its deadline minus its remaining execution time. If it reaches a zero-laxity state, then
it must be scheduled immediately, or it will miss its deadline. Like EDZL, D∗ be-
haves identically to EDF until some Ji,k reaches a zero-laxity state. If no other job is
in a zero-laxity state when this occurs, then Ji,k runs immediately. To handle the case
when some J j,` is already in a zero-laxity state, D∗ maintains the sum of the values
of all jobs that have been preempted in a zero-laxity state since the last successful
job completion. Such preempted jobs have been abandoned, as it was impossible for
them to meet their deadlines. If Ji,k has a value greater than this sum plus the value
of J j,`, then Ji,k preempts J j,`, J j,` is abandoned, and the sum is updated. Otherwise,
Ji,k is abandoned.

Baruah et al. (1991) proved that, if value densities are normalized such that the
smallest is at least one, the total value achieved during an overloaded interval using
D∗ is at least 1/5 the length of that interval. Although this value is small, they proved
that no algorithm can guarantee more than 1/4 of the length of such an interval with-
out knowing job releases ahead of time. Baruah et al. also showed experimentally
that D∗ performs similarly to Locke’s best effort scheduler in the common case, but
provides drastically better behavior in certain pessimistic cases.

5.3 Providing the Optimal Guarantee: Dover

Koren and Shasha (1995b) provided a scheduler Dover that can guarantee an achieved
value of 1/4 of the length of an overloaded interval, closing the gap between D∗ and
the theoretical limit. The design of Dover, like the design of D∗, is based on EDF and
is identical to EDF until an overload occurs.

Even during underload, Dover maintains two sets of ready jobs, not including the
currently running job: waiting jobs and privileged jobs. If a job is preempted by a
normal job release, then it becomes a privileged job. The system keeps track of the
amount of time that a newly arriving job can execute without causing the current job
or any privileged job to miss its deadline. When a new job arrives, if its execution
cost is less than this time, it preempts the current job. Otherwise, because adding
the new job could cause some existing job to miss its deadline, an overload has

2 Several of the papers cited herein use k for the importance ratio, but we use q (quotient) to avoid
conflict with the job index k.

20 Jeremy P. Erickson and James H. Anderson

occurred. Therefore, the new job is instead added to the queue of waiting jobs. This
strategy ensures that a privileged job can never reach a zero-laxity state.

Let Vj,` denote the value of J j,`. When waiting Ji,k reaches a zero-laxity state,
then either it must be scheduled immediately or it is not worth running at all. How-
ever, running it may prevent other jobs from running. To determine whether is worth
running, its value is compared to (1−√q) · (∑Ji,k∈Θ Vj,`), where Θ is the set con-
taining all privileged jobs and the currently running job. If its value is larger than
this expression, then Ji,k preempts the currently running job, and all privileged jobs
become waiting jobs. Otherwise, Ji,k is discarded.

Koren and Shasha (1995b) also demonstrated that Dover achieves the optimal
competitive ratio of 1

(1+
√

q)2 . In other words, Dover is guaranteed to achieve at least
1

(1+
√

q)2 times as much value in an overloaded interval as could be achieved by a
clairvoyant algorithm. Baruah et al. (1991) demonstrated that no better competitive
ratio is possible.

5.4 Providing Guarantees on Multiprocessors: MOCA

While D∗ and Dover provide guarantees on a uniprocessor, Koren and Shasha (1994)
proposed the multiprocessor on-line competitive algorithm (MOCA) to provide such
guarantees on a multiprocessor. MOCA requires an even number of processors and
works by dividing the system into m/2 bands of two processors, as depicted in
Figure 13. ψ of the bands are designated with specific value densities, and ω form
a central pool. It must be the case that ψ +ω = m/2, so that each CPU is assigned
to exactly one band. Each band contains a safe processor for executing jobs that can
be guaranteed to meet their deadlines and a risky processor for executing jobs for
which such a guarantee cannot be made.

When a job is released, the system first tries to assign it to the band designated for
its value density. If it can be assigned to the safe processor without compromising
the guarantees made to other jobs that are already on that safe processor, the system
assigns it there. Otherwise, the system tries to assign it to the safe processor for a
band designated for lower value density, considering such bands in decreasing value
density order. If even that fails, the system then tries to assign it to a safe processor
in the central pool, considering such processors in arbitrary order. If all else fails,
the system adds it to a list of waiting jobs and does not consider it until it reaches a
zero-laxity state.

When a waiting job Ji,k reaches a zero-laxity state, the system tries to schedule it
on a risky processor. Bands are considered in the same order as for safe processors. If
it finds an idle risky processor, it begins executing Ji,k there. Otherwise, it considers
the same set of risky processors as before and finds the one running the J j,` with
the earliest deadline. If Ji,k has a later deadline than J j,`, then J j,` is abandoned,
and Ji,k begins running in its place. Otherwise, Ji,k is abandoned. This heuristic is

Soft Real-Time Scheduling 21

Fig. 13 Grouping of CPUs used by MOCA.

used to minimize the risk of unnecessary idleness on a risky processor, as a job in a
zero-laxity state will run continuously until its deadline.

Whenever some safe processor becomes idle, the safe and risky processors within
that band switch roles. This guarantees that the job running on the risky processor
will complete (as it is now on a safe processor) and ensures that an idle risky pro-
cessor is now ready to schedule a waiting job that reaches a zero-laxity state.

Koren and Shasha (1994) also showed that no scheduler executing on m proces-
sors can achieve a competitive ratio above

q−1

qm · (q 1
m −1)

,

and that MOCA achieves a competitive ratio of

1

1+2m ·

max1≤i≤ψ
q

i
ψ

ω+ q
i
ψ −1

q
1
ψ −1

.

22 Jeremy P. Erickson and James H. Anderson

ψ should be chosen to maximize this ratio. Observe that MOCA is not necessar-
ily optimal in the sense of achieving the best possible competitive ratio. However,
unlike heuristic approaches, it does provide a guarantee.

5.5 Rate-Based Earliest Deadline Scheduling

Buttazzo and Stankovic (1995) proposed the robust earliest-deadline (RED) sched-
uler, which uses a model based on value functions. Each task has an associated
deadline, value, and deadline tolerance. It has a step value function with the criti-
cal time at the deadline plus deadline tolerance. However, scheduling decisions are
based only on deadline, without accounting for deadline tolerance.

Under RED, each task has a WCET that will not be exceeded, but the arrival
pattern of jobs is not known. In this respect, its assumptions are like those used by
D∗, Dover, and MOCA.

When a job is released, it can be accepted or rejected. If it is rejected, it will
not run unless slack is created in the future by jobs that underrun their WCETs.
In addition to considering value, RED also divides tasks into two classes: hard and
critical. If a hard job is accepted, then it must complete unless overload later occurs.
If a critical job is accepted, then it must complete under all circumstances.

At runtime, RED keeps a list of all unfinished accepted jobs, both hard and crit-
ical, ordered by deadline. Whenever a new Ji,k is released, RED uses the list to
determine whether adding Ji,k will cause a deadline miss. If it will not, Ji,k is im-
mediately accepted. Otherwise, RED will attempt to find one or more hard jobs that
can be dropped. Dropped jobs may still be completed if other jobs complete early.

RED always executes the job at the beginning of its list of accepted jobs, thus
running the job with the earliest deadline. In the absence of overload, RED reduces
simply to EDF. Buttazzo and Stankovic (1995) provided experimental evidence that
RED can achieve significantly higher value than other schedulers such as EDF when
an overload occurs.

Spuri et al. (1995) proposed the robust total bandwidth (RTB) scheduler, a similar
scheduler to RED. RTB also supports a class of guaranteed3 periodic tasks that are
not subject to being rejected. It does so by scheduling the aperiodic tasks (i.e., the
same types of tasks as the hard and critical tasks under RED) inside a server. A
server is a budgeted container for other tasks. The server can be scheduled with
EDF, using a budget to guarantee that it will not interfere with guaranteed periodic
tasks. When RTB chooses to schedule that server, it actually executes one of the
aperiodic jobs running inside that server. Tasks are accepted or rejected using a
similar strategy to RED.

3 Spuri et al. (1995) use the term “hard periodic” for these tasks, but we use “guaranteed” here to
avoid confusion with hard RED tasks.

Soft Real-Time Scheduling 23

5.6 Schedulers Accounting for Dependencies

Some work has been performed on scheduling with value functions in the presence
of dependencies such as shared resources. These schedulers have additional con-
straints they must consider, such as needing to let a critical section finish in order
to free the resource for another job. For examples, see (Cho, 2006; Clark, 1990;
Garyali, 2010; Li, 2004; Li et al., 2006).

6 Overload Management by Changing Minimum Separation
Times

Most of the overload management techniques surveyed thus far in this chapter have
worked by dropping certain jobs. An alternative technique is to adjust the minimum
separation time of a task, slowing down the rate at which it releases jobs.

Adaptive scheduling algorithms allow such a scaling of minimum separation
times. Such algorithms were surveyed in detail by Block (2008). However, most
of these algorithms are intended for use in systems where high variability in job
execution times is expected, and minimum separation times must be decided online
for that reason. We are concerned primarily with systems that are provisioned for
the common case, but that need to recover from transient overloads.

The related problem of choosing new minimum separation times was addressed
by Buttazzo et al. (2002), who proposed the elastic model. Under the elastic model,
tasks are assigned initial and maximum periods, as well as elasticity factors that
are used to determine the extent of “stretching” of each task. During a transient
overload, minimum separation times can be determined based on elasticity factors.

One adaptive scheduling algorithm, the earliest eligible virtual deadline first
(EEVDF) algorithm (Stoica et al., 1996), uses a notion of virtual time. We provide
a description of EEVDF here.

EEVDF is a proportional share scheduling algorithm. Each task is assigned a
weight, and each task should receive a processor share that is commensurate with its
weight. For example, consider the task system in Figure 14. The actual progression
of time is graphed on the bottom axis. From time 0 to time 2, only τ1 is present in the
system. Therefore, it receives all of the CPU time. At time 2, τ2 enters the system.
Because τ1 has a weight of 4 and τ2 has a weight of 2, τ1 receives twice as much
processor time as τ2. Until τ3 arrives at time 8, τ1 receives 2/3 of the processor time
and τ2 receives 1/3. As long as some task is present, the CPU is never idle.

In order to distribute processor time in accordance with the weights, EEVDF
maintains the current virtual time. The speed of virtual time relative to actual time
depends on the total weight of all tasks in the system. Specifically, if A(t) is the set
of active tasks at time t and Wi is the weight of τi, then the speed of virtual time at
actual time t is 1

∑τi∈A(t)Wi
, and the virtual time v(t) corresponding to actual time t is

24 Jeremy P. Erickson and James H. Anderson

Fig. 14 EEVDF schedule of a task system. τ1 has a weight of 4 and always issues requests of size
2 ms. τ2 has a weight of 2 and always issues requests of size 2 ms, although its second request
issued at actual time 8 completes early. τ3 has a weight of 2 and always issues requests of size
1 ms.

v(t) =
∫ t

0

1
∑τi∈A(t)Wi

dt.

For example, between time 0 and time 2 in Figure 14, only τ1 is present, with
a weight of 4. Therefore, the speed of virtual time in this interval is 1

4 , and v(2) =∫ 2
0

1
4 dt = 0.5.
Each task repeatedly makes requests for CPU time, making a new request as soon

as its previous request has completed (unless it instead exits the system at that time).
When a task enters the system, it makes its first request. That request is said to have
an eligible time at that time. Each request also has an associated size s, indicating
the amount of actual time desired for computation. However, it is possible for the
task to complete executing its request before it has used a full s units of execution,
as τ2 does in Figure 14 for the request issued at virtual time 1.5.

Once a task completes executing its request, it usually initiates another request.
If the just-finished request had an eligible virtual time of r and an actual execution
time of a, the new request has an eligible time at virtual time r+ a

Wi
. Alternatively,

the task may exit the system at the time its next request would otherwise be eligible,
as τ1 does in Figure 14 at virtual time 2.5.4

For example, the first request of τ1 in Figure 14 has an eligible virtual time of
0 and executes for 2 ms. Therefore, the eligible virtual time for the second request
is 0+ 2

4 = 0.5. Similarly, the second request of τ1 has an eligible virtual time of
0.5, as just computed, and also executes for 2 ms. Thus, the eligible virtual time for
the third request is 0.5+ 2

4 = 1. Observe that the difference between eligible virtual
times is 0.5 ms in both cases, but the difference between eligible actual times is

4 Stoica et al. (1996) provide more complex rules that allow a task to leave at other times, but we
do not consider those here.

Soft Real-Time Scheduling 25

2 ms between the first and second request, but 3 ms between the second and third
requests. This occurs because the virtual time clock runs more slowly once τ2 enters
the system.

Each virtual request has a virtual deadline that is used to determine scheduling
priority. If the request has a virtual eligible time of r and a request size of s, then
its virtual deadline is at time d = r + s

Wi
. For example, the first request of τ1 in

Figure 14 has a virtual eligible time of 0 and a request size of 2 ms, so its virtual
deadline is 0+ 2

4 = 0.5. If a request runs for its full request size, then its virtual
deadline is identical to the virtual eligible time of the next request. However, if a
request completes early, as happens to the second request of τ2 that completes at
virtual time 2, then the virtual eligible time of the next request may be earlier than
the virtual deadline of the just-finished request.

EEVDF prioritizes requests by earliest virtual deadline, considering only re-
quests that have reached their eligible times but have not completed. For example, at
virtual time 0.5 in Figure 14, τ1 has a request with a virtual deadline of 1 and τ2 has
a request with a virtual deadline of 1.5. Because τ1 has an earlier virtual deadline, its
request runs for the requested 2 ms. The next request of τ1 does not have an eligible
time until virtual time 1, so τ2’s request runs until that time. In Figure 14, deadline
ties are broken by task index, so when τ1’s third request becomes eligible at virtual
time 1, it preempts the executing request of τ2.

Observe in Figure 14 that τ3 and τ2 receive the same processor share, even though
their request sizes differ. The request size of τ2 is always 2 ms (even though the
full size may not be used) and the request size of τ3 is always 1 ms. However,
from virtual time 1.5 onward (when τ3 enters the system), τ3 releases jobs twice
as frequently as τ2, except for the shift in release time for τ2 caused by the early
completion. This occurs because both tasks have the same weight.

7 Overload Management in Mixed-Criticality Scheduling

Sometimes different applications that will be run on the same physical machine have
different requirements for timing correctness. For example, some applications have
HRT constraints (requiring all deadlines to be met), while others have SRT con-
straints (where bounded lateness is acceptable). An example of a system with this
sort of requirement is next-generation unmanned air vehicles (UAVs), which will
have tasks with different requirements that will realize in software functionality that
has traditionally been performed by humans. For example, safety-critical software
performing functions such as flight control has stringent HRT constraints, whereas
mission-critical software performing planning functions has only SRT constraints.
Running both sets of software on the same machine could significantly reduce the
size, weight, and power required for the aircraft.

Furthermore, there may be further distinctions in requirements than simply the
difference between HRT and SRT constraints. For example, some tasks may be so
critical that it is necessary to use WCET estimates determined by a tool that provides

26 Jeremy P. Erickson and James H. Anderson

a provable upper bound on execution time, in order to provide the strongest possible
guarantee that no WCET is exceeded. Such a level of certainty may be necessary
in order for the system to be acceptable to a relevant certification authority. How-
ever, for other tasks, it may be sufficient to use less pessimistic WCET estimates,
such as those determined by measuring the largest execution on a real system and
multiplying by a safety factor.

Under most real-time scheduling analysis, the system can only be deemed cor-
rect if it can be proven to be correct even using the most pessimistic assumptions
for all tasks. For example, in order to prove that the flight-control software will
behave correctly, it is necessary to use highly pessimistic WCET estimates for the
mission-control software as well. This may result in a system that is unnecessarily
underutilized.

Mixed-criticality scheduling algorithms and analysis address this problem. Vestal
(2007) proposed that a single scheduling algorithm could be analyzed under multi-
ple sets of assumptions about WCET estimates. The system has a finite number of
criticality levels, and each task is assigned a criticality level and, for each critical-
ity level in the system including its own, a provisioned execution time (PET). For
arbitrary level `, the system is considered to be correct at level-` if all tasks with
a criticality level at or above level ` are scheduled correctly, assuming that no job
of any task exceeds its level-` PET. An example is depicted in Figure 15 with two
criticality levels, A (high) and B (low). Figure 15(a) depicts the worst-case behavior
assuming that no job of any task exceeds its level-B PET, and Figure 15(b) depicts
the worst-case behavior assuming that no job of any task exceeds its level-A PET.
Observe that deadlines are only missed in Figure 15(b), that only τ2 (which is a
level-B task) has jobs that miss their deadlines, and that this schedule involves jobs
exceeding their level-B PET. As depicted in Figure 15, statically prioritizing τ1 over
τ2 correctly schedules the task system.

Observe that guarantees at level ` are conditioned on all jobs running for at most
their respective level-` PETs. However, it is possible that some task’s level-` PET
was insufficiently pessimistic and is overrun by some job. This is a form of overload.

As Santy et al. (2012) pointed out, many mixed-criticality scheduling algorithms
respond to such a PET overrun by simply dropping all jobs of level-` tasks from that
point forward. However, this is usually an unacceptable response. In Section 7.1, we
survey some methods that reduce the number of low-criticality jobs that are dropped,
and in Section 7.2, we survey some methods that scale minimum separation times
as an alternative to dropping jobs. In Section 7.2 we discuss how to handle PET
overruns in a scheduler called MC2. For a more comprehensive survey of recent
work on mixed-critical scheduling, see (Burns and Davis, 2017).

7.1 Techniques to Reduce Dropped Low-Criticality Jobs

Baruah et al. (2010) introduced the own-criticality based priority (OCBP) technique
for determining static task priorities for mixed-criticality scheduling. Traditionally,

Soft Real-Time Scheduling 27

(a) Level-B worst-case behavior.

(b) Level-A worst-case behavior.

Fig. 15 Possible schedules for a uniprocessor mixed-criticality system with two criticality levels,
A (high) and B (low), both with HRT requirements. Level-A τ1 has a minimum separation time of
4 ms, a level-A PET of 3 ms, and a level-B PET of 2 ms. Level-B τ2 has a minimum separation
time of 8 ms, a level-A PET of 4 ms, and a level-B PET of 3 ms. τ1 is statically prioritized over τ2.

when some job scheduled using this technique overruns its level-` PET, all jobs at
levels ` and below are dropped from that point forward. However, Santy et al. (2012)
proposed three improvements to this technique. For each, suppose that some job Ji,k
of τi overruns its PET.

1. If some τ j has a lower criticality but a higher priority than τi, it is not necessary
to drop jobs from τ j. This follows from a property of the analysis.

2. It is possible to set an allowance for each such τi and criticality level ` below that
of τi, so that if Ji,k exceeds its PET by less than that allowance, it is not necessary
to drop jobs at level `. This technique is based on the work of Bougueroua et al.
(2007), and is enforced by the Latest Completion Time (LCT) mechanism that
Santy et al. propose.

3. If no jobs at the level of τi are eligible for execution, then jobs no longer need to
be dropped, and the system can be returned to normal operation.

Santy et al. demonstrated that these techniques can significantly reduce the number
of dropped jobs, primarily due to the ability to only temporarily drop jobs from a
task.

Santy et al. (2013) proposed two similar mechanisms to stop dropping jobs for
low-criticality tasks, but on multiprocessors.

The first mechanism Santy et al. (2013) proposed applies to fixed-priority sys-
tems. In order to restore the system to level `, the system keeps track of a series of

28 Jeremy P. Erickson and James H. Anderson

times fXi , ordered by decreasing task priority. fX0 is the last completion time of a
job that overran its level-` PET. For i > 0, fXi is the earliest time not earlier than
fXi−1 such that there is no active job of τi. Once fXn has been detected, where n is the
number of tasks, all tasks with criticalities at least ` can execute jobs. Furthermore,
Santy et al. demonstrated that summing bounds on the response time of all tasks
provides a bound on the time it will take for such an fXn to occur after an overload
finishes.

The second mechanism Santy et al. (2013) proposed applies to any system where
job priorities are fixed. The mechanism to return the system to level ` works by
tracking the actual schedule relative to a reference schedule in which all jobs run for
their level-` PETs. In order to do so, the system must simulate the reference schedule
and compare the remaining execution for each job between the actual schedule and
the reference schedule. Once all jobs have sufficiently short remaining execution to
complete ahead of the reference schedule, all tasks with criticalities at least ` can
execute jobs.

These mechanisms prevent low-criticality tasks from being permanently im-
pacted by an overload. However, they do not allow these tasks to run at all for a
period of time.

7.2 Scaling Separation Times of Low-Criticality Jobs Instead of
Dropping Jobs

Su and Zhu (2013) proposed an alternative task model that allows for low-criticality
tasks to have both a desired period and a maximum period. For a properly provi-
sioned system, it is possible to guarantee that low-criticality tasks can execute with
their maximum periods even when high-criticality tasks run for their full PETs,
while executing tasks at or close to their desired periods in the expected case. This
task model is called the elastic mixed-criticality (E-MC) task model. Unlike the
similarly named model from Buttazzo et al. (2002), E-MC does not use an elasticity
factor to determine the extent of scaling of each task.

In order to schedule E-MC task systems, Su and Zhu (2013) also proposed a mod-
ified version of the earliest deadline first with virtual deadlines (EDF-VD) scheduler
(Baruah et al., 2012), called the early-release EDF (ER-EDF) scheduler. ER-EDF
maintains a set of wrapper-tasks (Zhu and Aydin, 2009) that keep track of the slack
that is created when high-criticality jobs finish ahead of their high-level PETs. Each
low-criticality job is guaranteed to release no later than its task’s maximum period
after the release of its predecessor. However, such a job also has a set of early re-
lease points. Each time such a point arrives, if there is enough slack (as indicated
by the wrapper-tasks) for the job to be released early, ER-EDF does so. In the com-
mon case, high-criticality jobs usually run for less than their high-level PETs, so
low-criticality jobs run more frequently than their minimum guarantee. However,
even during an overload, low-criticality jobs continue to receive a minimum level of
service.

Soft Real-Time Scheduling 29

Fig. 16 Architecture of MC2.

Su et al. (2013) later extended this work to multicore systems. The extension
is basically a partitioned variant of ER-EDF. Su et al. considered partitioning the
task system using several different partitioning heuristics. For high-criticality tasks,
they used utilizations based on high-criticality PETs, and for low-criticality tasks,
they used utilizations based on low-criticality PETs and maximum periods. A worst-
fit decreasing heuristic based on those utilizations, ignoring criticalities, tended to
perform the best and to significantly outperform the global EDF-VD algorithm (Li
and Baruah, 2012).

Su et al. also considered two different techniques to reclaim slack. The simplest is
to use the same strategy as ER-EDF, allowing low-criticality tasks to reclaim slack
from high-criticality tasks on the same processor. They also considered a global
slack reclamation technique. Under that technique, when there is not enough slack
to release a job early on the core to which its task has been assigned, if there is
enough slack on a remote processor, then that single job is migrated to the remote
processor. Su et al. demonstrated that this technique can significantly improve the
performance of their algorithm.

Jan et al. (2013) provided a different mechanism to minimize the separation time
of low-criticality releases. They assumed that high-criticality jobs are statically pri-
oritized over low-criticality jobs, and that the system optimistically schedules low-
criticality jobs with deadlines that match their desired separation times. However,
when a likely deadline miss is expected, the deadline is pushed back at that time.
Jan et al.’s task model provides per-task parameters to specify how much deadline
stretching is allowable, as well as which tasks to scale back first.

Overload and MC2

Motivated by UAV systems, Herman et al. (2012) proposed a specific scheduler,
the mixed-criticality on multicore (MC2) scheduler, which supports four criticality
levels, A through D. (An earlier version of MC2 that supports five criticality lev-
els was proposed by Mollison et al. (2010).) The architecture of MC2 is depicted
in Figure 16. Each criticality level is scheduled independently, and higher critical-
ity levels are statically prioritized over lower criticality levels. Level A has HRT
requirements. Tasks are partitioned onto CPUs and scheduled using a per-CPU ta-

30 Jeremy P. Erickson and James H. Anderson

ble with a precomputed schedule. Level B also has HRT requirements and requires
tasks to be partitioned onto CPUs, but uses P-EDF for scheduling. Level C has SRT
requirements, and tasks are scheduled using G-EDF. Finally, level D is best effort,
which means that it has no real-time guarantees. Level D can be scheduled using the
general-purpose scheduler provided by the underlying operating system (OS).

Erickson (2014) and Erickson et al. (2015) considered the problem of overload
within MC2. In order to address scheduling in MC2, Erickson (2014) added re-
stricted supply to the analysis of GEL schedulers. The basic strategy for handling
restricted supply is like that of Leontyev and Anderson (2010), but because Erick-
son does not use the full generality of window-constrained scheduling, the resulting
bounds are tighter.

Because level-C PETs are not as pessimistic as level-A or -B PETs, it is possible
that jobs at any level may overrun their level-C PETs. (MC2 can optionally enforce
job budgets to ensure that jobs do not overrun their PETs at their own criticality
levels, but even if this feature is enabled, level-A and -B jobs can still overrun their
level-C PETs.) The effects of overload are depicted in Figure 17, which depicts an
MC2 system that has only level-A and -C tasks. For this example, level-A tasks are
depicted using the notation (CC

i ,C
A
i ,Ti), where CC

i is its level-C PET and CA
i is its

level-A PET, while level-C tasks are depicted using the notation (CC
i ,Ti,Yi). Fig-

ure 17(a) depicts a schedule in the absence of overload, while Figure 17(b) depicts
the results of some level-A jobs running for their full level-A PETs. As a result of
the overload, all future job release times are impacted.

To analyze this situation, Erickson generalizes both the restricted supply model
and the task model. He then describes a technique that can be used to recover from
such an overload situation. His technique is depicted in Figure 17(c). He uses a
notion of virtual time, as originally introduced by Zhang (1990) and used in unipro-
cessor real-time scheduling by Stoica et al. (1996). Essentially, there is a secondary
“virtual” clock that, at actual time t, is operating at a speed of s(t) relative to the
actual clock. In the absence of overload, s(t) = 1, so that the two clocks operate
at the same speed. However, after an overload occurs, the operating system can
choose to use a slower speed, as occurs from actual time 19 to actual time 29 in
Figure 17(c). Erickson’s technique does not prescribe a particular choice of s(t), but
Erickson et al. (2015) provide experimental results that provide guidance. Addition-
ally, Erickson et al. demonstrate that the system can recover relatively quickly under
experimental conditions.

Job minimum separation times and relative PPs are defined in terms of the virtual
clock, rather than the actual clock. This has the effect of reducing the number of
level-C job releases for an interval of time and allows the system to recover from
overload. The time required to do so is called a dissipation time. Erickson derives
dissipation bounds, or upper bounds on the dissipation time.

Soft Real-Time Scheduling 31

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A jobs starting at time 20 running
for their full level-A PETs. Notice that response times of level-C jobs settle into a pattern that is
degraded compared to (a). For example, consider J2,6, which is released at actual time 36. In (a), it
completes at actual time 43 for a response time of 7, but in this schedule it does not complete until
actual time 46, for a response time of 10.

(c) The same schedule in the presence of overload and the recovery techniques from Erickson
(2014). Notice that response times of level-C jobs settle into a pattern that is more like (a) than
like (b).

Fig. 17 Example MC2 task system, illustrating overload and recovery.

32 Jeremy P. Erickson and James H. Anderson

8 Summary

In this chapter, we reviewed prior work on SRT scheduling and overload. We dis-
cussed both prior SRT work using the bounded tardiness model and prior SRT work
using other models of SRT. We then focused in more detail on prior work dealing
with overload management, including those focusing on MC systems.

References

Anderson J, Srinivasan A (2004) Mixed pfair/erfair scheduling of asynchronous pe-
riodic tasks. Journal of Computer and System Sciences 68(1):157–204

Aydin H, Melhem R, Mosse D, Mejia-Alvarez P (2001) Optimal reward-based
scheduling for periodic real-time tasks. IEEE Transactions on Computers
50(2):111–130

Baker T, Cirinei M, Bertogna M (2008) Edzl scheduling analysis. Real-Time Sys-
tems 40(3):264–289

Baruah S, Koren G, Mishra B, Raghunathan A, Rosier L, Shasha D (1991) On-
line scheduling in the presence of overload. In: Proceedings of the 32nd Annual
Symposium On Foundations of Computer Science, pp 100–110

Baruah S, Cohen N, Plaxton C, Varvel D (1996) Proportionate progress: A notion
of fairness in resource allocation. Algorithmica 15(6):600–625

Baruah S, Bonifaci V, D’Angelo G, Li H, Marchetti-Spaccamela A, Megow N,
Stougie L (2010) Scheduling real-time mixed-criticality jobs. In: Hlinĕený P,
Kuc̆era A (eds) Mathematical Foundations of Computer Science 2010, Lecture
Notes in Computer Science, vol 6281, pp 90–101

Baruah S, Bonifaci V, D’Angelo G, Li H, Marchetti-Spaccamela A, Van der Ster
S, Stougie L (2012) The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In: Proceedings of the 24th Euromicro
Conference on Real-Time Systems, pp 145–154

Bastoni A, Brandenburg B, Anderson J (2010) An empirical comparison of global,
partitioned, and clustered multiprocessor edf schedulers. In: Proceedings of the
31st Real-Time Systems Symposium, pp 14–24

Bernat G, Burns A, Llamosi A (2001) Weakly hard real-time systems. IEEE Trans-
actions on Computers 50(4):308–321

Block A (2008) Adaptive multiprocessor real-time systems. PhD thesis, The Uni-
versity of North Carolina at Chapel Hill

Bougueroua L, George L, Midonnet S (2007) Dealing with execution-overruns to
improve the temporal robustness of real-time systems scheduled FP and EDF. In:
Proceedings of the 2nd International Conference on Systems, pp 52–52

Brandenburg B (2011) Scheduling and locking in multiprocessor real-time operating
systems. PhD thesis, The University of North Carolina at Chapel Hill

Burns A, Davis R (2017) Mixed criticality systems - a review. http://www-
users.cs.york.ac.uk/ burns/review.pdf

Soft Real-Time Scheduling 33

Buttazzo G, Stankovic J (1995) Adding robustness in dynamic preemptive schedul-
ing. In: Fussell D, Malek (eds) Responsive Computer Systems: Steps Toward
Fault-Tolerant Real-Time Systems, The Springer International Series in Engineer-
ing and Computer Science, vol 297, pp 67–88

Buttazzo G, Lipari G, Caccamo M, Abeni L (2002) Elastic scheduling for flexible
workload management. IEEE Transactions on Computers 51(3):289–302

Chakraborty S, Kunzli S, Thiele L (2003) A general framework for analysing system
properties in platform-based embedded system designs. In: Proceedings of the
2003 Design, Automation and Test in Europe Conference and Exhibition, pp 190–
195

Cho H (2006) Utility accrual real-time scheduling and synchronization on single and
multiprocessors: Models, algorithms, and tradeoffs. PhD thesis, Virginia Poly-
technic Institute and State University

Clark R (1990) Scheduling dependent real-time activities. PhD thesis, Carnegie
Mellon University

Compagnin D, Mezzetti E, Vardanega T (2014) Putting run into practice: Imple-
mentation and evaluation. In: Proceedings of the 26th Euromicro Conference on
Real-Time Systems, pp 75–84

Devi U, Anderson J (2008) Tardiness bounds under global edf scheduling on a mul-
tiprocessor. Real-Time Systems 38(2):133–189

Erickson J (2014) Managing tardiness bounds and overload in soft real-time sys-
tems. PhD thesis, The University of North Carolina at Chapel Hill

Erickson J, Anderson J (2011) Response time bounds for G-EDF without intra-task
precedence constraints. In: Proceedings of the 15th International Conference on
Principles of Distributed Systems, pp 128–142

Erickson J, Anderson J (2012) Fair lateness scheduling: Reducing maximum late-
ness in G-EDF-like scheduling. In: Proceedings of the 24th Euromicro Confer-
ence on Real-Time Systems, pp 3–12

Erickson J, Anderson J, Ward B (2014) Fair lateness scheduling: reducing maximum
lateness in G-EDF-like scheduling. Real-Time Systems 50(1):5–47

Erickson J, Kim N, Anderson J (2015) Recovering from overload in multicore
mixed-criticality systems. In: Proceedings of the 2015 IEEE International Par-
allel and Distributed Processing Symposium, pp 775–785

Funk S, Levin G, Sadowski C, Pye I, Brandt S (2011) Dp-fair: a unifying theory for
optimal hard real-time multiprocessor scheduling. Real-Time Systems 47(5):389

Funk S, Berten V, Ho C, Goossens J (2012) A global optimal scheduling algorithm
for multiprocessor low-power platforms. In: Proceedings of the 20th International
Conference on Real-Time and Network Systems, pp 71–80

Garyali P (2010) On best-effort utility accrual real-time scheduling on multiproces-
sors. Master’s thesis, The Virginia Polytechnic Institute and State University

Hamdaoui M, Ramanathan P (1995) A dynamic priority assignment technique
for streams with (m, k)-firm deadlines. IEEE Transactions on Computers
44(12):1443–1451

34 Jeremy P. Erickson and James H. Anderson

Herman J, Kenna C, Mollison M, Anderson J, Johnson D (2012) Rtos support for
multicore mixed-criticality systems. In: Proceedings of the 18th IEEE Real-Time
and Embedded Technology and Applications Symposium, pp 197–208

Jan M, Zaourar L, Pitel M (2013) Maximizing the execution rate of low-criticality
tasks in mixed criticality systems. In: Proceedings of the 1st Workshop on Mixed
Criticality Systems, pp 43–48

Koren G, Shasha D (1994) MOCA: a multiprocessor on-line competitive algorithm
for real-time system scheduling. Theoretical Computer Science 128(1–2):75–97

Koren G, Shasha D (1995a) Skip-over: Algorithms and complexity for overloaded
systems that allow skips. In: Proceedings of the 16th IEEE Real-Time Systems
Symposium, pp 110–117

Koren G, Shasha D (1995b) Dover: An optimal on-line scheduling algorithm
for overloaded uniprocessor real-time systems. SIAM Journal on Computing
24(2):318–339

Lee S (1994) On-line multiprocessor scheduling algorithms for real-time tasks. In:
Proceedings of IEEE Region 10’s Ninth Annual International Conference, pp
607–611 vol.2

Leontyev H, Anderson J (2010) Generalized tardiness bounds for global multipro-
cessor scheduling. Real-Time Systems 44(1-3):26–71

Leontyev H, Chakraborty S, Anderson J (2011) Multiprocessor extensions to real-
time calculus. Real-Time Systems 47(6):562–617

Li H, Baruah S (2012) Global mixed-criticality scheduling on multiprocessors. In:
Proceedings of the 24th Euromicro Conference on Real-Time Systems, pp 166–
175

Li P (2004) Utility accrual real-time scheduling: Models and algorithms. PhD thesis,
Virginia Polytechnic Institute and State University

Li P, Wu H, Ravindran B, Jensen E (2006) A utility accrual scheduling algorithm
for real-time activities with mutual exclusion resource constraints. IEEE Trans-
actions on Computers 55(4):454–469

Lin K, Natarajan S (1988) Expressing and maintaining timing constraints in flex. In:
Proceedings of the 9th IEEE Real-Time Systems Symposium, pp 96–105

Liu J, Lin K, Shih W, Yu A, Chung J, Zhao W (1991) Algorithms for scheduling
imprecise computations. Computer 24(5):58–68

Liu R, Mills A, Anderson J (2014) Independence thresholds: Balancing tractability
and practicality in soft real-time stochastic analysis. In: Proceedings of the 35th
IEEE Real-Time Systems Symposium, pp 314–323

Locke C (1986) Best-effort decision making for real-time scheduling. PhD thesis,
Carnegie Mellon University

Megel T, Sirdey R, David V (2010) Minimizing task preemptions and migrations
in multiprocessor optimal real-time schedules. In: Proceedings of the 31st IEEE
Real-Time Systems Symposium, pp 37–46

Mills A, Anderson J (2011) A multiprocessor server-based scheduler for soft real-
time tasks with stochastic execution demand. In: Proceedings of the 17th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, pp 207–217

Soft Real-Time Scheduling 35

Mollison M, Erickson J, Anderson J, Baruah S, Scoredos J (2010) Mixed-criticality
real-time scheduling for multicore systems. In: Proceedings of the IEEE Interna-
tional Conference on Embedded Software and Systems, pp 1864–1871

Nelissen G, Berten V, Nelis V, Goossens J, Milojevic D (2012a) U-edf: An unfair but
optimal multiprocessor scheduling algorithm for sporadic tasks. In: Proceedings
of the 24th Euromicro Conference on Real-Time Systems, pp 13–23

Nelissen G, Funk S, Goossens J (2012b) Reducing preemptions and migrations in
ekg. In: Proceedings of the 2012 IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pp 134–143

Nelissen G, Su H, Guo Y, Zhu D, Nélis V, Goossens J (2014) An optimal boundary
fair scheduling. Real-Time Systems 50(4):456–508

Regnier P, Lima G, Massa E, Levin G, Brandt S (2011) Run: Optimal multiprocessor
real-time scheduling via reduction to uniprocessor. In: Proceedings of the 32nd
IEEE Real-Time Systems Symposium (RTSS), pp 104–115

Santy F, George L, Thierry P, Goossens J (2012) Relaxing mixed-criticality schedul-
ing strictness for task sets scheduled with fp. In: Proceedings of the 24th Euromi-
cro Conference on Real-Time Systems, pp 155–165

Santy F, Raravi G, Nelissen G, Nelis V, Kumar P, Goossens J, Tovar E (2013) Two
protocols to reduce the criticality level of multiprocessor mixed-criticality sys-
tems. In: Proceedings of the 21st International Conference on Real-Time Net-
works and Systems, pp 183–192

Spuri M, Buttazzo G, Sensini F (1995) Robust aperiodic scheduling under dynamic
priority systems. In: Proceedings of the 16th IEEE Real-Time Systems Sympo-
sium, pp 210–219

Stoica I, Abdel-Wahab H, Jeffay K, Baruah S, Gehrke J, Plaxton C (1996) A pro-
portional share resource allocation algorithm for real-time, time-shared systems.
In: Proceedings of the 17th IEEE Real-Time Systems Symposium, pp 288–299

Su H, Zhu D (2013) An elastic mixed-criticality task model and its scheduling al-
gorithm. In: Proceedings of the 2013 Design, Automation Test in Europe Confer-
ence Exhibition, pp 147–152

Su H, Zhu D, Mosse D (2013) Scheduling algorithms for elastic mixed-criticality
tasks in multicore systems. In: Proceedings of the 19th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications, pp
352–357

Valente P (2016) Using a lag-balance property to tighten tardiness bounds for global
edf. Real-Time Systems 52(4):486–561

Vestal S (2007) Preemptive scheduling of multi-criticality systems with varying de-
grees of execution time assurance. In: Proceedings of the 28th IEEE Real-Time
Systems Symposium, pp 239–243

West R, Poellabauer C (2000) Analysis of a window-constrained scheduler for real-
time and best-effort packet streams. In: Proceedings of the 21st IEEE Real-Time
Systems Symposium, pp 239–248

Zhang L (1990) Virtual clock: A new traffic control algorithm for packet switch-
ing networks. In: Proceedings of the 5th ACM Symposium on Communications
Architectures & Protocols, pp 19–29

36 Jeremy P. Erickson and James H. Anderson

Zhu D, Aydin H (2009) Reliability-aware energy management for periodic real-time
tasks. IEEE Transactions on Computers 58(10):1382–1397

Zhu D, Qi X, Moss D, Melhem R (2011) An optimal boundary fair scheduling al-
gorithm for multiprocessor real-time systems. Journal of Parallel and Distributed
Computing 71(10):1411–1425

