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Abstract deadline misses often result in tolerable performance degra-
dation. Hence, an extreme notion of fairness that precludes

The earliest-pseudo-deadline-firffEPDF) Pfair algo-  all deadline misses is usually not required.
rithm is more efficient than other known Pfair scheduling

algorithms, but is not optimal on more than two processors.overhead introduced by tie-breaking rules mav be unaccent-
In earlier work, Srinivasan and Anderson established a suffi- y 9 y b

cient per-task utilization restriction for ensuring a tardiness able. In such a system, spare processing capacity may be-

of at most one quantum under EPDF. They also conjecturealsome available. To make use qf this cgpacny, task weights
. . must be changed on-the-fly. It is possible to reweight each
that a tardiness bound of one quantum applies to system

that are not restricted in any way. In this paper, we presen'?f”lSk S0 that 'FS next su bt"’.‘Sk de_adll_ne Is preserved [8]. If no
: . . tie-breaking information is maintained, such an approach
counterexamples that show that this conjecture is false. We

L o - entails very little overhead. However, weight changes can
also present sufficient utilization restrictions that are more . - . s :
liberal than theirs. cause tie-breaking information to change, so if tie-breaking

rules are used, reweighting may necessitafg & log N)

] cost for NV tasks, due to the need to re-sort the scheduler’s
1 Introduction priority queue. This cost may be prohibitive if load changes
are frequent.

In dynamic systems that permit tasks to join or leave, the

Pfair scheduling, originally introduced by Baruahal. . _ o

[4], is the only known way of optimally scheduling re- The observations above motivated Srinivasan and Ander-
current real-time tasks on multiprocessors. Under PfairSOn to consider the viability of scheduling soft real-time ap-
scheduling, each task must execute at an approximately uniPlications using the simplegarliest-pseudo-deadline-first
form rate, while respecting a fixed-size allocation quantum. (EPDF) Pfair algorithm, which uses no tie-breaking rules.
A task’s execution rate is defined by igight(or utiliza- ~ They succeeded in showing that EPDF can guarantee a tar-
tion). Uniform rates are ensured by subdividing each task diness bound of one quantum for every subtask, provided a
T into quantum-|engt|3ubtaskghat are Subject to interme- certain condition holds. This Condition, which is described
diate deadlines. To avoid deadline misses, ties among subln detail later, can be ensured by limiting each task’s weight
tasks with the same deadline must be broken carefully. Into at most 1/2, and can be generalized to apply to tardiness
fact, tie-breaking rules are crucial when devising optimal Pounds other than one. Unfortunately, Srinivasan and An-
Pfair scheduling algorithms. derson left open the question of whether such conditions are

As discussed by Srinivasan and Anderson [8], overheadd1€cessary to guarantee small constant tardiness.

associated with tie-breaking ruIe§ may be unnecessary or |, this paper, we provide counterexamples that show that,
unacceptable for many soft real-time systems. A soft real-j, general, restrictions on individual task utilizations are
time task differs from a hard real-time task in that its dead- necessaryo guarantee constant tardiness bounds. In addi-
lines may sometimes be missed. If a jo(task instance)  {jon we show that, in general, a more liberal per-task weight
or a subtask with a deadline at tirlecompletes executing  reqtriction of 2/3 (66.7%) is sufficient to ensure a tardiness
attimet, then '_t IS sa|d.to haveiardlnessof_max(o, t—d). of one quantum, and that for a somewhat special case, which
Systems with quality-of-service requirements, such asjs described in Sec. 3, this restriction can be relaxed to 11/15
multimedia applications, are examples where tle—breaklng(73_3%)_ We also present generalizations of these condi-

rules may be unnecessary. Here, fair resource allocationjgns that can be applied to other tardiness bounds.
is necessary to provide service guarantees, but occasional
The rest of the paper is organized as follows. In Sec. 2,

*Work supported by NSF grants CCR 9988327, ITR 0082866, CCR needed definitions are given. In Sec. 3, the results above are
0204312, and CCR 0309825. proved. Sec. 4 concludes.
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Figure 1. (a) Windows of the first job of a periodic task with weight8/11. This job consists of subtasks, . . ., Tz, each of
which must be scheduled within its window, or else a lag-bound violation will result. (This pattern repeats for evefly)johg
Pfair windows of an IS task. Subtagk becomes eligible one time unit latéc) The Pfair windows of a GIS task. Subta$k is
absent and is one time unit late.

2 Pfair Scheduling [r(T;),d(T;)), termed itswindow Thelengthof T;’s win-
. . . L ) . dow, denotedw(T;)|, is d(T;) — r(T;). As an example,
In this section, Pfair scheduling is defined and some prior .o ciqer subtask; in Fig. 1(a). Here, we have(T}) = 0
r.es.ults sur.nmarlzed. [1., 2,3,4,7, 8] .To beglq with, we d(T}) = 2, and|w(T})| = 2. Hence,I; must be scheduled
limit attention to periodic tasks that begin execution attime 4; aither time or time 1.
0. Such a tasi" has an integeperiod T'.p, an integerex- Note thatr (T 1) is eitherd(T;) — 1 or d(T}). Thus,

ecution costTe, Ej:d aﬁv .Gi?h;w.i(.T) - T'ﬁ/ Tli wher:]re consecutive windows either overlap by one slot, or are dis-
0 < wt(T) < 1. Ataskislight if its weight is less than joint. The “b-bit,” denoted byb(T;), distinguishes between

1/2, andheavyotherwise. . ; ;
Pfair algorithms allocate processor time in discrete (N€S€ possibilities. Formally(T;) = [T(T)W - \fﬂt(T}J'

quanta; the time intervat, ¢ + 1) is calledslot¢. (Hence,  For example, in Fig. 1(a}(7;) = 1for1 < i < 7 and
time ¢ refers to the beginning of slot) A task may be allo-  b(73) = 0.

cated time on different processors, but not in the same slot It can be shown that all windows of a heavy task are of
(i.e., interprocessor migration is allowed but parallelism is length two or three. For such tasks, the “group deadline” is
not). The sequence of allocation decisions over time definesused to mark the end of a sequence of windows of length
ascheduleS. Formally,S : 7 x N +— {0, 1}, wherer is two. Consider a sequen@g, . . ., T; of subtasks of a heavy

a task set.S(7T,t) = 1iff T is scheduled in slot. On M task T such thath(Ty) = 1, |w(Tk+1)] = 2 forall ¢ <
processorsy .. S(T,t) < M holds for allt. k < j. Then, scheduling’ in its last slot forces the other
Lags and subtasks. The notion of a Pfair schedule is de- subtasks in this sequence to be scheduled in their last slots.

fined by comparing such a schedule to an ideal fluid sched0" €xample, in Fig. 1(a), schedulifg in slot 4 forcesT,

ule, which allocatest(T") processor time to task in each ~ @nd 75 to be scheduled in slots 5 and 6, respectively. A
slot. Deviation from the fluid schedule is formally captured 90UP de?dlme corresponds to a time by which any such
by the concept ofag. Formally, thelag of task T at time t cascade” of scheduling decisions must end. Formally, it

is defined by lag(T,t) = wt(T) - t — Zf,;lo S(T,u). A is a timet such that eitheft = d(T;) A b(T;) = 0) or

schedule is defined to Wefair iff (t+1=d(T;) N |w(T;)| = 3) for some subtask;. For
example, the task in Fig. 1(a) has group deadlines at times
VTt :: —1 < lag(T,t) < 1). Q) 4,8, and 11.

_ _ . We let D(T;) denote the group deadline of subtagk
Informally, the allocation error associated with each task |f 7 js heavy, thenD(T}) = (minw : u > d(T}) A uisa

must always be less than one quantum. group deadline of"). For example, in Fig. 1(@))(T}) = 4
These lag bounds have the effect of breaking each taskand p(7y) = 11. If T is light, thenD(T;) = 0.
T into an infinite sequence of quantum-lengthbtasks

Ty, Ty, ... . Each subtask has@seudo-release(T;) and ~ Task models. In this paper, we consider thetra-
apseudo-deadling(T}), where sporadic(IS) and thegeneralized-intra-sporadi(G1S) task
models [2, 7], which provide a general notion of recurrent
1—1 1 execution that subsume that found in the well-studied peri-
r(f) = Lut(T)J (i) = {wt(T)-‘ ’ ) odic and sporadic task models. Tégoradicmodel gener-

) ) . ., alizes the periodic model by allowing jobs to be released

(For brevity, we often omit the prefix “pseudo-") To sat- «te”: the IS model allows subtasks to be released late,

isfy (1), T; must be scheduled in the interval(T;) = 45 jllustrated in Fig. 1(b). More specifically, the separa-
IFor conciseness, we leave the schedule implicit and g, t) in- tion betweenr(T;) andr (71 ) is allowed to be more than
stead ofag(T, t, S). li/wt(T)] — [(¢ — 1)/wt(T)], which would be the sepa-
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Figure 2. Fluid schedule for the first five subtasks (. . ., 75) of a taskl” of weight5/16. The share of each subtask in each slot
of its PF-window is shown. lifa), no subtask is released late;(ln), 7> andTs are released late. Note thdtare(T), 3) is either
5/16 or 1/16 depending on when subtagk is released.

ration if 7" were periodic. Thus, an IS task is obtained by pe at Ieast[%] Fig. 1(c) shows an example. If a task

allowing a task’s windows to be shifted right from where 7 qq; executing subtask,, releases subtask,, thenT,

they would appear if the task were periodic. is called thesuccessoof T; and7; is called thepredecessor
Let6(7;) denote the offset of subtagk, i.e., the amount of T,

by which w(T;) has been shifted right. Then, by (2), we

have the following. As shown in [2], an IS or GIS task systemis feasible

on M processors iff
r(Ty) = 0(T3) + Mt(Tl)J A d(T) = 6(T) + [thTﬂ 3)

> wt(T) < M. (5)

. . T
The offsets are constrained so that the separation between <

any pair of subtask releases is at least the separation beAlgorithm EPDF. The earliest-pseudo-deadline-first
tween those releases if the task were periodic. Formally,(EPDF) Pfair scheduling algorithm, considered in this
kE>i=60(Ty) > 0(T;). paper, is optimal on one or two processors, but not on more
Each subtask’; has an additional paramete{7;) that than two processors [3]. At each timeEPDF schedules
specifies the first time slot in which it is eligible to be sched- at mostM eligible subtasks with the highest priority. As
uled. We requirez(T;) < r(T;) ande(T;) < e(T;41) for its name suggests, higher priority is given to subtasks
all ¢ > 1. Additionally, no subtask can become eligible with earlier deadlines; a tie between subtasks with equal
before its predecessor completes execution. The intervatleadlines is broken arbitrarily.
[7(T3),d(T3)) is called thePF-windowof T; and the inter-  gpares and lags in IS and GIS task systems.lag(T, t)

val [e(T;), d(T7)) is called thdS-windowof T;. A schedule g gefined for IS and GIS tasks as before [7]. L&tal(T, t)
for an IS system isalid iff each subtask is scheduled in its  denote the processor share tiateceives in an ideal fluid

IS-window. (processor-sharing) schedule[int). Then,
b-bits for IS tasks are defined in the same way as for pe- i1
riodic tasks.r(T;) is defined as follows. lag(T,t) = ideal(T, t) — ZS(T w). ©)
vy = { eI fi=1 =0
' maz(e(T3),d(Ti-1) — b(Ti-1)), ifi>2 Towards definingideal(T,t), we define share(T,u),

, _ ) _ which is the share assigned to taBkn slotu. share(T, u)
_Ty's deadlined(T;) is defined to be(T;) + |w(Ti)|. PF- s defined in terms of a functiofi(7;, ) that indicates the
window lengths are defined as before. Thus, by (2), we haveshare assigned to subtagkin slott. f(75,t) is defined as
ATy) = (L) + [ | = |2k | follows.

S+ 1 HT) — (i—1), ift=r(T;
Generalized intra-sporadic (GIS) task systems. A GIS (L”“T)J ) xwiI) = (=1) r@)

task system is obtained by removing subtasks from a corre<{ @ — ( mETJ — 1) xwt(T), ift=d(T:) -1
sponding IS task system, and thus, is a more general model| wt(T), if t € (r(T3),d(Ti)—-1)
than the IS model. Specifically, in a GIS task system, atask \ 0, otherwise

T, after releasing subtadk, may release subtadl,, where )

k > i+ 1, instead off},,, with the following restriction: ~ Fig. 2 shows the values of for different subtasks of a
task of weight 5/16. Givery, share(T,u) can be de-

. H k—1 i—1 H
r(Ty) —r(T;) is at Ieasqiwt(T)J - {Tt(T)J- Forthe special  fineq asshare(T,u) = 3, f(T},u). As shown in Fig. 2,
case wherd}, is the first subtask released By r (7T}, ) must share(T,w) usually equalavt(T), but in certain slots, it



may be less thawt(T'). We can now definédeal (T, t) as
S~ share(T, u). Hence, from (6),

lag(T,t+1) = Z(shm‘e(T, u) — S(T,u))

lag(T,t) + share(T,t) — S(T,1).

= ®)

Similarly, the total lag for a schedulgé and task sys-
temr at timet + 1, denotedLAG(r,t + 1), is as follows.
(LAG(T,0) is defined to b@.)

LAG(7,t+1) = LAG(r,t)+ » (share(T,t) = S(T,1)). (9)

Tet

The following lemma gives two properties concerning
the f values of subtasks as defined by (7).

Lemma 1 [6] Let f be as defined b§7). Then, the follow-

ing hold.

(@) If b(T;—1) 1 and subtaskT; exists,
f(Ti1,d(Ti-1)) + f(T;,7(Th)) = wi(T).

(b) (VTit = f(Tit) > 7).

then

3 Tardiness Bounds for EPDF

Table 1. Counterexamples to show that tardiness under
EPDF can exceed three.

Tardiness
(in quanta)

Util.
(M)

Task Set

# of
tasks

weight

1/2
3/4
23/24
1/2
3/4
23/24
239/240
1/2
3/4
23/24
31/32
119/120
239/240
479/480
959/960
1199/1200
2399/2400
4799/4800

10 2at50

T1

19 3 at 963

T2

80 | 4at43,204

T3

N B =
SR hocorbrrownsEowbows

In this section, we present results concerning tardiness

bounds that can be guaranteed under EPDF. As mentioned

earlier, if subtask’; completes execution at tintethen its
tardiness is given bynax(0,t — d(7;)). Thetardiness of a

task systenis defined as the maximum tardiness among all SUPtas

of its subtasks in any schedule.

It is easy to show that subtask deadlines can be missed

under EPDF. In [8], it was conjectured that EPDF always

ensures a tardiness of at most one. We now show that thi

conjecture is false.

Theorem 1 Tardiness under EPDF can exceed three
quanta. In particular, if EPDF is used to schedule task sys-
temr; (1 < i < 3)in Table 1, then a tardiness aof+ 1
quanta is possible.

Proof: Fig. 3 shows a schedule faf, in which a subtask
has a tardiness of two at time 50. The schedulesf@nd

73 are too lengthy to be depicted; we verified them using
two EPDF simulators. |

The sufficient condition for a tardiness of one as given

by Srinivasan and Anderson requires that the sum of the

weights of theM — 1 heaviest tasks be less théﬁj—l.

This can be ensured if the weight of each task is restricte
to be at most /2. We next show that, in general, a weight
restriction of2/3 (66.7%) per task is sufficient to guarantee

(C) The weight of each task is at mast3.
(D) The weight of each task is at mastt/15, and for every
I<Ti, e(TZ) = T(Tl)

In this paper, we prove the following theorem, which
states that (C) is sufficient for EPDF to guarantee a tardi-

Jess of at most one.

Theorem 2 EPDF ensures a tardiness of at most one quan-
tum for feasible GIS task systems that sati€fy.

The proof of the theorem stated next, which establishes
the sufficiency of (D), can be found in [5]. (It is the same as
that for Theorem 2, except for one case.)

Theorem 3 EPDF ensures a tardiness of at most one quan-
tum for feasible GIS task systems that sati§fy.

Before proving Theorem 2, we reproduce some helpful
definitions and lemmas from [7] and [8].

In a schedules, if k processors are idle at time slgt
then we say that there akeholesin S at slott. The follow-

ding lemma relates an increase in total lag to the presence of

holes
Lemma 2 [7] If LAG(r,t) < LAG(7,t + 1), then there is

a tardiness of one, and that for the special case where g nole in slott in S.
subtask does not become eligible before its release time,

this restriction can be improved td /15 (73.3%). These
restrictions are stated below.

We prove Theorem 2 in a manner similar to that used in
[8]. If (C) is not sufficient, thent; andr defined as follows
both exist.
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Figure 3. Counterexample to prove that tardiness under EPDF can exceed one quantum. 13 periodic tasks with total utilization
10 are scheduled on 10 processors using EPDF. In the schedule, tasks of the same weight are shown together as a group. Each
column corresponds to a time slot. The Pfair window of each subtask is shown as a sequence of dashes that are aligned. An integer
valuen in slot¢ means that tasks in the corresponding group have a subtask schedule8abtasks that miss their deadlines are

shown scheduled after their windows. Ties are broken in favor of tasks with lower weights. In this schedule, 11 subtasks miss their
deadlines at time 48. Hence, at least one subtask has a tardiness of two quanta.

Definition 1: ¢4 is the earliest deadline of a subtask with Lemma 3 The following properties hold far and.S, where

a tardiness of two under EPDF in any task system satisfyingT; is any subtask irr.

(C), i.e, there exists some task system with a subtask with a) Forall T}, d(T}) < ta.

a deadline at; and a tardiness of two, and there does not -

exist any other task system with a subtask with a deadline(b) LAG(r,ta) = M +1.

prior tot, and a tardiness of two. (c) There are no holes in sla; — 1.
)

Definition 2: 7 is a feasible task system satisfying (C) with (d) LAG(r,tq —1) > M + 1.

the following properties. (e) There exists a timex € [0,tq — 2] such that
(T1) tq is the earliest deadline of a subtaskrimwith a tar- LAG(1,u) < M +1andLAG(t,u+1) > M + 1.
diness of two under EPDF.

; C By Lemma 3(e), there exists a time slot< t; — 1 across
T2) No feasible task system satisfying (C) and (T1) re- =7 )
I(eas)es fewersubtasks[’[ﬁ{td) than+ fying (C) (T1) which LAG increases to at least + 1. By Lemma 2, there

. L is at least one hole im. Thus, there exists a time slot
(T3) No feasible task system satisfying (C), (T1), and (T2) \yitn 5, > 1 holes satisfying the following.

has a larger rank thanatt,, where rank is defined as fol-
g & W s cett (A3)0 <ty < tg—1A LAG(r,tn +1)> M+ 1A (Vu:

lows.
Therankof a systenr att is th fthe eligibility ti u € [0, 8] LAG(7,u) < M+ 1).
erank of a systenr att is the sum of the eligibility times
y 9 y In other wordst,, is the earliest time slot across whitilG

of all subtasks with deadlines at mast ) G+ 1. In what foll deri
By (T1) and (T2), exactly one subtaskithas a tardiness Increases + L. In what follows, we derive an upper
bound on the lags of all tasks inat¢; + 1 and prove that

of two: if several such subtasks exist, then all but one can.]c o) sfied. then thei ) ictly | A
be removed and the remaining subtask will still have a tardi-' ( t) |sd_sat1.t|s Iteh 3 gntt eirsumiis strictly less than+ 1,
ness of two, contradicting (T2). Additionally, the following contradicting the existence of.

assertions follow from the above properties and definitions.3,1  Categorization of Subtasks

Al) (3T; € 7: d(T;) = tg A tardi T,)=2 . _ .

E Az; EVT- c : . dET% < tz N tZZdzgzeeZ((T)) < 1)) In this subsection, we show how to categorize subtasks

_ and bound their lags based on those categories.
In the rest of this paper, we uskto denote an EPDF sched-

ule for ~ on M processors, in which a subtask with a dead- ¥-dependensubtasks. Subtasks of heavy tasks can be di-

line att,, has a tardiness of two. The following lemma sum- Vided into “groups” based on their group deadlines in a

marizes some properties ofandss. It is proved in [7], [8] straightforward manner: place all subtasks with identical

and [5]. e group deadlines in the sanggoup and identify the group
using the smallest index of any subtask in that group. For
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T, — — .. T, — — . X
1T 1T 1T 1T 1T 17T 1T T T 1T 1T 1T T 1T 17T 17T 1T T 11
9 18 9 20

Figure 4. Possible schedules for the second jol(@fa periodic andb) an IS task of weight 7/9 under EPDF. Subtasks are
scheduled in the slots marked by an X. Solid (dotted) lines indicate slots that lie within (outside) the window of a subtask. A subtask
scheduled in a dotted slot misses its deadline. InTaJandTi. are MIs, Ty andT;3 are SMIs, and the remaining subtasks fall
within neither categoryli, andTi4 have a tardiness of 1, arffd, has a tardiness of 0. In (), Ty, 711, andTis are Mls, and

Tio andT4 are SMIs. Note thafs and7Ty (711 andT}3) belong to the same groufs (G11). Thus, if there are IS separations,

there may be more than one Ml in a group.

example, in Fig. 1G, = {T1, Tz}, G3 = {13,T4,T5}, and The share that a GIS task receives in the ideal system
G¢ = {Ts,T7,Ts}. If there are no IS or GIS separations may be zero during certain time slots, if subtasks are absent
among the subtasks of a group, then a deadline miss by oner are released late. We distinguish between tasks with and
for a subtask’; will necessarily result in a deadline miss by without subtasks at timeusing the following definition of
at least one for the remaining subtaskijis group. Hence, anactivetask.
a subtask’; is dependent on all prior subtasks in its group pefinition 3:[7] A task U is active at time ¢ if it has a
for not missing its deadline. We say tHtis k-dependent subtask; such thae(U;) < t < d(U;).
wherek > 0, if T'is heavy andl}; is the (k + 1)** subtask
in its group (assuming all subtasks are present). If atask Earlier, we showed how subtasks can be categorized.
T'is light, then we simply define all of its subtasks to be The following is a classification disksas given by Srini-
O-dependent. vasan and Anderson [7, 8].
Miss initiators. We call a subtask missing its deadline at
¢ by onea miss initiator (MI) for its group if no subtask of ~ A: Setof all tasks that are active and schedule at
the same task is scheduledtat1. Thus, a subtaskisan Ml B: Set of all tasks that are active, but not scheduleg at
if it misses its deadline and is either the first subtask in its : .
. . . Set of all tasks that are inactiveat
group to do so or is separated from its predecessor by an IS[
or GIS separation. Such a subtask is termed a miss initiator4, B, andI form a partition ofr, i.e.,
because in the absence of future separations, it causes all
subsequent subtasks in its group to miss their deadlinesas AUBUI=71andANB=BNI=1INA=0. (10

well. Ty, € G;isan Mlif tardiness(Ty) = 1 A S(T, t) = . ] ] )
1,andS(Tj,t — 1) = 0, for all j < k. Several examples of We further classify tasks id, based on the tardiness of their

Mls are shown in Fig. 4 subtasks scheduled @, as follows.

Successors of miss initiators. The immediate succes-  4: IncludesT in A iff its subtask scheduled &t has zero
sor T;11 of a miss-initiator subtask’; is called asuc- tardiness.

cessor of a miss initiato(SMI) if tardiness(T;11) =
tardiness(T;) = 1andS(Ti+1,t) = 1= S(T;,t—1) = 1.
Fig. 4 shows several examples. Note that1or; to be
an SM, its predecessor ifi must beT;, rather than some Ay is further partitioned into1?, A!, andA2.
lower-indexed subtask af.

The following lemma, proved in [5], bounds the lag of A9: IncludesT in A, iff its subtask scheduled aj, is an
a task at timet, based on thé-dependency of its last- MI.
scheduled subtask. Al

Aq: IncludesT in A iff its subtask scheduled &, has a
tardiness of one.

: IncludesT in A; iff its subtask scheduled af, is an

Lemma 4 [5] LetT; be ak-dependent subtask of a GIS task SMI.
T for k > 0, and letd(T;) < tq. Thenlag(T,d(T;) + 1) < A2%: IncludesT in A; iff its subtask scheduled & is nei-
(k+2) - wt(T) — k. ther an Ml nor an SMI.



From the above, we have

This classification of tasks is illustrated in Fig. 5. The car-
dinalities of the subsets of are denoted as follows.

Proof: LetT; be the subtask of scheduled at;,. As shown

T : Tasks in B in Fig. 5, the ideal system can be ahead of the actual system

? g : in executingT’ only by the amount of flow irf;4’s first
P Y slot. By parts (a) and (b) of Lemma 1, this flow is less than
L A wt(T). O

- - Tasksin 1 @)

—— v Lemma9 For T € AY, lag(T,ty + 1) < 2 - wt(T).

- A Proof: If T € A9, then the subtask; of T' scheduled at
LX ETasksinAo ty is an Ml , andd(T;) = t,. If T; is k-dependent, then by
Do v Lemma 4/ag(T,tn + 1) is less thar{(k + 2) - wt(T) — k),
H% ’ which is at mos® - wt(T), for all k > 0. O

o ! Tasks in A) The next two lemmas follow similarly.
i A Lemma 10 For T € Al, lag(T,t, +1) < 3 - wt(T) — 1.

_x Tasksin ] Lemma 11 For T € A2, lag(T,t, + 1) < 4 - wt(T) — 2.
X X .
o Finally, we show thal. AG(7,t;, + 1) < M + 1 in each
" of the following cases.
}—{ X 3Tasks in A% Case A: Al = @
o L | Case B: A9 # 0.
no . .
: Y Case C: A9 =P and A} # 0.
t t +1
vt Case D: A9 = Al = 0.
Figure 5. Task classification for Lemmas 6 — 11. The PF- For each case abovelLAG(r,t;, + 1) can be ex-

windows of a sample task in each set are shown. An arrow  pressed as follows. From (10), (11), and Lemmas 6
over release (deadline) indicates that the release (deadline) and 7, we haveLAG(7,tp, + 1) < >y, lag(T,tn +
could be anywhere in the direction of the arrow. An (no) X 1) + ZTeA? lag(T,ty, + 1) + ZTeA% lag(T,tp, + 1) +

;r;ozta- slot indicates that a subtask is (not) scheduled in that ZTeAf lag(T,t, + 1), which by Lemmas 8— 11 implies
that LAG(7, th+1) < Yopea, WHT)+ 2 pe a0 2-wt(T)+
ZTGA} B-wt(T)—-1) + ZTeAf (4 - wt(t) — 2). Let-
ting wt denote the weight of the heaviest task, by (12),
Ao U Ay = A and AL U AD U A% = 4, (11) LAG(r,ty, + 1) can be bounded as
LAG(7,tn +1) < ao - wt +af - 2 - wt

+ay- (3wt —1)+af - (4-wt—2). (13)

The total number of processord/, expressed in terms of

the number of subtasks in each subsetiafcheduled at;,,
and the number of holes i, is as follows.

a0:|Ao|;a(1):|A(1)\;ai:\Ai|;a%:|A?|. (12)

The next lemma, proved in [5], shows that> 1.
P 5] hat > M=ao+a)+ai +a5+h (14)

Lemma 5 [5] There exists a subtasi’, scheduled at;,

A, B, andI att;, + 1.

with d(W,) = ¢, + 1. Case A:A; = (). Case A is dealt with as follows.
Lemma 12 If A; = 0, thenLAG(7,tp, +1) < M — 1.
Proof: If A; = 0, thena) = ai = a? = 0. Therefore, by
(13), LAG(7,tp, + 1) < ag - wt, and by (14)ag = M — h.
Hence, becauset < 1, LAG(r,t, + 1) < M — h, which,
Lemma6 [8]ForT € I,lag(I,t, + 1) = 0. becausé > 0, implies thatLAG(7,t, + 1) < M — 1. O

Case B: AY # 0. The following lemma, proved in [5],

The next six lemmas give bounds on the lags of tasks in

Lemma?7 [8]ForT € B,lag(B,t; + 1) <0. shows that if an Ml is scheduled &, then the total lag at

ty, + 1isless than\/ + 1.
Lemma 8 For T € Ao, lag(T, ty + 1) < wt(T). Lemma 13 [5] If a0 > 0, thenLAG(7,t;, + 1) < M + 1.



Case C:AY = (; Al # 0. The following lemma estab-
lishes the sufficiency of (C) for this case.

Lemma 14 If A = Q) and Al # 0, thenLAG(r,t, +1) <

constant number of quanta for task systems that are not re-
stricted, thereby proving false the conjecture that EPDF en-
sures a tardiness of one quantum. We have also presented
sufficient weight restrictions that are more liberal than those

M +1.
Proof: The proof is by contradiction. Assume to the con-

previously known.

trary thatLAG (7, t, +1) > M +1. From (13) and4{ = 0, References
we haveL AG(7,tp + 1) < ag - wt + al - (3wt — 1) +a? -
(4wt — 2). Becausevt < 1, we havelwt — 2 < 3wt — 1. [1] J. Anderson and A. Srinivasan. Early-release fair scheduling.

Therefore LAG(7,t, +1) < ag-wt+ (ai +a?)- (3wt —1),
which by (14) yieldsLAG(7,tp, + 1) < ag - wt + (M —
h—ao) - (3wt — 1). If LAG(r,tp + 1) > M + 1, then
ag-wt+ (M —h—ag) - (3wt —1) > M +1, which implies
thatwt > f = 23="-a9tl By Lemma 5,40 > 1. Itcan
be shown thaff is minimized whem = ay = 1. Because
ai > 0, this implies that\/ > 3, by (14). Forh = ag = 1,

(2]

f=%#=1> 2 forall M > 2. Thus, (C) is violated. O
Case D: 49 = Al = 0. [4]
Lemma 15 If A = A} =0, thenLAG(7,t, +1) < M +
1.
[5]

Proof: The proof is again by contradiction. From (13) and
A) = A} =0, LAG(7,tp + 1) < ag - wt + (4wt — 2) - a?,
which, by (14), equalsy - wt + (4wt — 2) - (M — h —
ag). If LAG(7,tp, +1) > M + 1, thenag - wt + (4wt —

2) - (M — h —ag) > M + 1, which in turn implies that
wt > f = %723‘;?. M, h, andag are constrained
by M > h + ag, andM, h,ag > 0. It can be shown that
the value off is minimized whem, = a¢ = 1, for which

f=3M=3> 3 forall M > 1. This violates (C) (and (D)).
O
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By Lemmas 12-15, if (C) is satisfied, thém G (7, t;, +
1) < M + 1, which is a contradiction to (A3). Thus, Theo-
rem 2 is proved.

3.2 Other Results

(C) and (D) can be generalized by giving per-task weight
restrictions ofé%?l and 171144‘1(1, respectively, for ensuring a
tardiness of;, whereq > 1. The proof for each is the same

as before, except for generalizations to allow subtasks with
tardiness up tq to be scheduled in any slot.

It can be shown that a tardiness of two less than the
largest difference between successive group deadlines of
any task can be ensured, in the absence of any restrictions.
A formal proof is omitted due to space constraints. How-
ever, note that the key to the proof we have presented is deal-
ing with the impact of cascades of deadline misses in heavy
tasks. Such cascades must end by the next group deadline,
regardless of any restrictions.

4 Conclusion

We have presented counterexamples that show that tar-
diness under the EPDF Pfair algorithm can exceed a small

real-time applications on multiprocessors Piroc. of the 15th
Euromicro Conference on Real-time Systepsges 51-59,
July 2003.



