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Formal Verification for Fau lt-To lerant 
Architectures: Prolegomena to the Design of PVS 

Sam Owre, John Rushby, Member,  IEEE, Natarajan Shankar,  and  Friedrich von Henke 

Abstract- PVS is the most recent in a series of verifica- 
tion systems developed at SRI. Its design was strongly influ- 
enced, and later refined, by our experiences in developing for- 
mal specifications and mechanical ly checked verifications for the 
fault-tolerant architecture, algorithms, and implementations of 
a model “reliable computing platform” (RCP) for life-critical 
digital flight-control applications, and by a collaborative project 
to formally verify the design of a commercial  avionics processor 
called AAMPS. 

Several of the formal specifications and verifications performed 
in support of RCP and AAMPS are individually of considerable 
complexity and difficulty. But in order to contribute to the overall 
goal, it has often been necessary to modify completed verlfi- 
cations to accommodate changed assumptions or requirements, 
and people other than the original developer have often needed 
to understand, review, build on, modify, or extract part of an 
intricate verification. 

In this paper, we outline the verifications performed, present 
the lessons learned, and describe some of the design decisions 
taken in PVS to better support these large, difllcult, iterative, 
and collaborative verifications. 

Index Terms- Byzantine agreement, clock synchronization, 
fault tolerance, flight control, formal methods, formal 
specification, hardware verification, theorem proving, verification 
systems, PVS. 

I. INTRODUCTION 

w 
E CONSIDER the chief benefit of formal methods is 
that they allow certain quest ions about  computat ional 

systems to be  reduced to calculation. For these methods to 
be  useful in practice, calculations relevant to problems of 
substantial scale and  complexity must be  performed efficiently 
and  reliably. This requires mechanized tools, and  the main 
focus of our  research has  been  the development of tools for 
formal methods that are sufficiently powerful that they can 
be  appl ied effectively to problems of intellectual or industrial 
significance. 

This paper  outl ines a  number  of verifications performed 
with our  tools on  applications related to aircraft flight control 
and  descr ibes their inf luence on  the design of PVS, our  
latest verification system. The  rest of this introductory section 
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descr ibes the problem domain for the formal verifications con- 
sidered here, and  briefly introduces our  tools. The  verifications 
performed are descr ibed in Section II; the lessons we have  
learned and  their inf luence on  the design of PVS are presented 
in Section III; brief conclusions are given in Section IV. 

A. The  Problem Domain: Digital Flight Control Systems 

Catastrophic failure of digital flight-control systems for 
passenger  aircraft must be  “extremely improbable”; a  require- 
ment that can  be  interpreted as  a  failure rate of less than 
lo-’ per  hour  [l, paragraph lO.b]. This must be  achieved 
using electronic devices such as  computers and  sensors whose 
individual failure rates are several orders of magni tude worse 
than the requirement. Thus, extensive redundancy and  fault 
tolerance are needed  to provide a  comput ing resource of ad-  
equate reliability for flight-control applications. Organizat ion 
of redundancy and  fault-tolerance for ultra-high reliability is 
a  chal lenging problem: redundancy management  can account  
for half the software in a  flight-control system [2] and,  if less 
than perfect, can  itself become the primary source of system 
failure [ 31. 

There are many  candidate architectures for the ultra-reliable 
“comput ing platform” required for flight-control applications, 
but a  general  approach based  on  rational foundat ions was 
establ ished in the late 1970’s and  early 1980’s by  the SIFT 
project [4]: several independent  comput ing channels (each 
having their own processor)  operate in approximate synchrony; 
single source data (such as  sensor  samples) are distributed to 
each  channel  in a  manner  that is resistant to “Byzantine” faults’ 
[S], so  that each  good  channel  gets exactly the same input data; 
all channels run the same application tasks on  the same data at 
approximately the same time and  the results are submitted to 
exact-match majority voting before being sent to the actuators. 
Failed sensors are dealt with by  the sensor-condit ioning and  
diagnosis code that is common to every channel;  failed chan-  
nels are masked by the majority voting of actuator outputs. 
The  original SIFT design suffered from performance problems, 
but several effective architectures based  on  this general  idea 
have  since been  developed,  including one  (called MAFT) by  
a  manufacturer of flight-control systems [6]. 

’ Strictly, a  Byzantine fault-tolerant algorithm is one  that makes no  
assumptions about the behavior of faulty components;  it can be  thought of 
as one  that tolerates the “worst possible” (i.e., Byzantine) faults. In this 
sense, Byzantine faults are generally considered to be  those that display 
asymmetric symptoms: sending one value to one  channel  and  a  different value 
to another, thereby making it difficult for the receivers to reach a  common 
view. Symmetric faults deliver wrong values but do  so consistently. Manifest 
faults are those that can be  detected by all nonfaulty receivers. 
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These fault-tolerant architectures must be able to withstand 
multiple faults, and it can require an excessive amount of 
redundancy to do this if failed channels are left operating (e.g., 
seven channels are required to withstand two simultaneously 
active Byzantine faults). Reconfiguration to remove faulty 
channels reduces the redundancy required, provided further 
faults do not arrive before reconfiguration has been completed 
(e.g., five channels are sufficient to withstand two Byzantine 
faults if the system can reconfigure between arrival of the 
first and second faults). However, reconfiguration adds con- 
siderable complexity to the design, and can thereby promote 
design faults that reduce overall reliability. 

Experimental data shows that the large majority of faults 
are transient (typically single event upsets caused by cosmic 
rays, and other passing hazards): the device temporarily goes 
bad and corrupts data, but then (possibly following a reset 
interrupt from a watchdog timer) it restores itself to normal 
operation. The potential for lingering harm remains, however, 
from the corrupted data that is left behind. This contamination 
can gradually be purged if the computing channels vote 
portions of their internal state data periodically and replace 
their local copies by majority-voted versions. This process 
provides self-stabilizing transient recovq; after, a while, an 
afflicted processor will have completely recovered its health, 
refreshed its state data, and become a productive member of 
the community again, The viability of this scheme depends 
on the recovery rate (which itself depends on the frequency 
and manner in which state data are refreshed with majority 
voted copies, and on the pattern of dataflow dependencies 
among the application tasks) and on the fault arrival rate. 
Markov modeling shows that a nonreconfigurable architecture 
with transient recovery can provide fully adequate reliability 
even under fairly pessimistic assumptions. 

We mentioned earlier that the distribution of single-source 
data must be done in a manner that is resistant to Byzantine 
faults. The clock synchronization that keeps the channels 
operating in lock-step must be similarly fault tolerant. Byzan- 
tine fault-tolerant algorithms are known for both the sensor 
distribution and clock synchronization problems, but they 
suffer from some disadvantages. First, the standard Byzantine 
fault-tolerant clock-synchronization algorithms do not provide 
transient recovery: there is no fully analyzed mechanism 
that allows a temporarily disturbed clock to get back into 
synchronization with its peers. Second, conventional Byzan- 
tine fault-tolerant algorithms treat all faults as Byzantine and 
therefore tolerate fewer simple faults than less sophisticated 
algorithms. For example, a five-channel system ought to be 
able to withstand two simultaneous symmetric faults (by 
ordinary majority voting), and as many as four manifest 
faults (by simply ignoring the manifestly faulty values). Yet a 
conventional Byzantine fault-tolerant algorithm is only good 
for one fault of any kind in a five-channel system. To overcome 
this, the MAFT project introduced the idea of hybrid fault 
models and of algorithms that are maximally resistant to 
simultaneous combinations of faults of different types [7]. 

Although the principles just sketched are well understood, 
fully credible analysis of the necessary algorithms and their 
implementations (which require a combination of hardware 

and software), and of their synthesis into a total architecture, 
has been lacking.2 In 1989, NASA’s Langley Research Center 
began a program to investigate use of formal methods in the 
design and analysis of a “reliable computing platform” (RCP) 
for flight-control applications. We supplied our EHDM and 
(later) PVS verification systems to NASA Langley, and have 
collaborated closely with researchers there. The overall goal 
of the program is to develop mechanically checked formal 
specifications and verifications for the architecture, algorithms, 
and implementations of a model RCP that is resilient with 
respect to a hybrid fault model that includes Byzantine and 
transient faults. 

This is a rather ambitious goal, since the arguments for 
correctness of some of the individual fault-tolerant algorithms 
are quite intricate, and their synthesis into an overall ar- 
chitecture is of daunting complexity. Because mechanized 
verification of algorithms and fault-tolerance arguments of 
the difficulty we were contemplating had not been attempted 
before, we did not have the confidence to simply lay out 
a complete architecture and then start verifying it. Instead, 
we first isolated some of the key challenges and worked 
on those in a relatively abstracted form, and then gradually 
elaborated the analysis, and put some of the pieces together. 
The process is still far from complete and we expect the 
program to occupy us for some time to come.3 Later in the 
program, the goals expanded to include transfer of formal 
verification technology to US aerospace companies. As part 
of this technology transfer, we and NASA established a 
collaboration with Collins Commercial Avionics to apply 
formal verification to the hardware design and microcode of an 
advanced commercial avionics computer called AAMPS. This 
stressed our tools to their limits and led to further refinements 
in their implementation. 

Before describing the verifications performed with them in 
more detail, we briefly introduce our tools. 

B. Our Verification Systems 
EHDM, which first became operational in 1984 [l l] but 

whose development still continues, is a system for the de- 
velopment, management, and analysis of formal specifications 
and abstract programs that extends a line of development that 
began with SRI’s original Hierarchical Development Method- 
ology (HDM) of the 1970’s [12]. EHDM ‘s specification 
language is a higher order logic with a rather rich type system 
that includes predicate subtypes. EHDM provides facilities 
for grouping related material into parameterized modules and 
supports a form of hierarchical verification in which the 
theory described by one set of modules can be shown to 
interpret that of another; this mechanism is used to demonstrate 
correctness of implementations, and also the consistency of 
axiomatizations. EHDM provides a notion of implicit program 
“state” and supports program verification in a simple subset 

*Some aspects of SIFT-which was built for NASA Langley-were 
subjected to formal verification [8], but the treatment was far from complete. 

3CLI Inc., and ORA Corporation also participate in the program, using their 
own tools. Descriptions of some of their work can be found in [9] and [lo], 
respectively. The overall program is not large; it is equivalent to about three 
full-time staff at NASA, and about one each at CLI, ORA, and SRI. 
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of Ada. However,  these capabilities were not exploited by  the 
verifications descr ibed here: all algorithms and  computat ions 
were descr ibed functionally. The  EHDM tools include a  parser, 
prettyprinter, typechecker,  proof checker,  and  many  browsing 
and  documentat ion aids, all of which use  a  customized GNU 
Emacs as  their interface. Its proof checker  is built on  a  decision 
procedure (due to Shostak 1131)  for a  combinat ion of g round 
theories that includes linear arithmetic over both integers and  
rationals. EHDM’s proof-checker is not interactive; it is guided 
by  proof descriptions prepared by  the user and  included as  
part of the specification text [14]. 

Development of PVS, our  most recent verification sys- 
tem, started in 1991;  it was built as  a  lightweight prototype 
for a  “next generat ion” version of EHDM, and  in order to 
explore ideas in interactive proof checking. Our  goal was 
considerably greater productivity in mechanical ly-supported 
verification than had  been  achieved with other systems. 

The  specification language of PVS is similar to that of 
EHDM, but has  an  even richer type system that includes 
dependent  types. However,  PVS omits the support  for 
hierarchical verification and  for program verification present 
in EHDM. The  PVS theorem prover includes similar 
decision procedures to EHDM, but provides much additional 
automation-including an  automatic rewriter, and  use  of 
BDD’s (binary decision programs) for proposit ional simplifi- 
cation-within an  interactive environment that uses a  sequent  
calculus presentat ion [15]. The  primitive inference steps of 
the PVS prover are rather powerful and  highly automated, 
but the selection and  composit ion of those primitive steps 
into an  overall proof is performed interactively in response 
to commands  from the user. Proof steps can be  composed 
into higher level “strategies” that are similar to the tactics of 
LCF-style provers [ 161.  

Specifications in EHDM and  PVS can be  stated construc- 
tively using a  number  of definitional forms that provide 
conservat ive extension, or they can be  given axiomatically, 
or a  mixture of both styles can be  used.  The  built-in types 
of EHDM and  PVS include the booleans, integers, and  ra- 
tionals; enumerat ions and  uninterpreted types can also be  
introduced, and  compound  types can be  built using (higher- 
order) function and  record constructors (PVS also provides 
tuples and  recursively-defined abstract data types). Standard 
theories def ined in terms of the basic types are pre loaded into 
both systems; in the case of PVS, for example, these provide 
sets, lists, trees, a  constructive representat ion of the ordinals 
up  to co, and  many  other useful constructions. 

The  distinguishing feature of both EHDM and  PVS is 
the tight and  mutually support ive integration between their 
specification languages and  theorem provers. For example, 
the type systems of both languages include features (such 
as  predicate subtypes) that render typechecking algorithmi- 
cally undecidable: in certain cases, the typechecker needs  the 
services of the theorem prover. Conversely, type predicates 
provide additional information to the theorem prover and  
thereby increase the effectiveness of its automation. 

It is not easy to directly compare EHDM and  PVS with other 
approaches to formal methods, such as  those embodied in the 
Z and  VDM notations, or the Boyer-Moore theorem prover, 

since they are based  on  very different foundations. The  HOL 
system is based  on  similar foundat ions to EHDM and  PVS, but 
its language, proof-checker, and  environment are much more 
austere than those of our  systems. Over  several years of ex- 
perimentation, we have  found that our  specification languages 
have  permitted concise and  perspicous treatments of all the 
examples we have  tried, and  that the PVS theorem prover, in 
particular, is a  more product ive instrument than others we have  
used.  The  PVS system is freely available under  l icense from 
SRI International. It can  be  obtained by  anonymous ftp from 
ftp.csl.sr i .com/pub/pvsorviatheWorldWideWeb 
from http://www.csl.sri.com/pvs.html. Prospec- 
tive users of EHDM should contact the authors for information 
on  its availability. 

II. FORMAL VERIFICATIONS PERFORMED 

In this section we descr ibe some of the verifications per- 
formed using EHDM and  PVS. W e  concentrate on  those 
under taken as  part of our  work with NASA, since these 
span several years and  have  had  the greatest impact on  the 
development of EHDM, and  the design of PVS. Other areas of 
applications include real-time systems, where PVS has  been  
used by  us  [17], [18], and  by  others working independent ly 
[19], to formalize and  verify real-time properties. 

A. The  Interactive Convergence Clock 
Synchronizat ion Algorithm 

The  first verification we undertook in NASA’s program 
was of Lamport  and  Melliar-Smith’s Interactive Convergence 
Algorithm (ICA) for Byzantine fault-tolerant clock synchro- 
nization. At the time, this was one  of the hardest mechanized 
verifications that had  been  attempted and  we began  by simply 
trying to reproduce the arguments in the journal paper  that 
introduced the algorithm [20]. Eventually, we succeeded,  but 
d iscovered in the process that the proofs or statements of 
all but one  of the lemmas, and  also the proof of the main 
theorem, were f lawed in the journal presentation. In devel- 
oping our  mechanical ly-checked verification we eliminated 
the approximations used  by  Lamport  and  Melliar-Smith and  
streamlined the argument.  W e  were able to derive a  joumal- 
style presentat ion from our mechanized verification that is 
not only more precise than the original, but is simpler, more 
uniform, and  easier to follow [21], [22]. Our  mechanized 
verification in EHDM took us  a  couple of months to complete 
and  required about  200  lemmas (many of which are concerned 
with “background knowledge,” such as  summation and  prop- 
erties of the arithmetic mean,  that are assumed in informal 
presentations). 

W e  have  modif ied our  original verification several times. For 
example, we were unhappy  with the large number  of axioms 
required in the first version. Since axioms can introduce 
inconsistencies, definitions are often to be  preferred, but the 
early version of EHDM lacked the necessary mechanisms. 
Later, when  definitional forms guaranteeing conservat ive ex- 
tension were added  to EHDM, we were able to eliminate 
the large majority of our  axioms in favor of definitions; 
the axioms that remain are used  to state assumptions about  
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the environment and constraints on parameters-properties 
that are best treated axiomatically rather than definitionally. 
Even so, Bill Young of CLI, who repeated our verification 
using the Boyer-Moore prover [23], found that one of the 
remaining axioms was unsatisfiable in the case of drift-free 
clocks. We adopted a repair suggested by him (a substitution 
of 5 for <), and also an improved way to organize the 
main induction. The defective axiom identified by Bill Young 
did not introduce an inconsistency; rather, it excluded an 
intended model. Consistency of axioms can be established 
by exhibiting a model, and we have since done this for our 
current specification of ICA using the theory interpretation 
mechanism of EHDM. However, checking that an axiomatic 
specification captures all (and only) the intended models 
does not lend itself to a similarly definitive test: it is really 
a problem of validation (“does the specification say what 
is intended?‘), and must be examined through the human 
processes of review, introspection, and the exploration of test 
cases. Formal verification can assist this validation activity by 
exposing all assumptions, by sharpening their statements, and 
by allowing the mechanized examination of test cases. 

When we first completed our verification of ICA, we 
assumed that was the end of the matter-the final step in 
understanding and documenting the algorithm. Later, we dis- 
covered that availability of a mechanically checked specifi- 
cation and verification opened new opportunities for further 
investigations. 

The first of these was initiated by our colleague Erwin 
Liu, who developed and formally verified in EHDM the 
design of a hardware circuit to perform part of the clock- 
synchronization function [24]. During circuit design, it became 
apparent that one of the assumptions of ICA (namely, that the 
initial clock corrections are all zero) is very inconvenient to 
satisfy in an implementation. We explored the conjecture that 
this assumption is unnecessary by simply eliminating it from 
the formal specification and rerunning all the proofs (which 
takes about 10 minutes on a Sun SPARCStation 2) in order to 
see which ones no longer succeeded. We found that the proofs 
of a few internal lemmas needed to be adjusted, but that the 
rest of the verification was unaffected. 

Another change was stimulated by Palumbo and Graham 
of NASA, who built equipment for experimenting with 
clock-synchronization circuitry and found that the observed 
worst-case skews were significantly better than predicted 
[25]. They showed informally that observation and theory 
could be brought into much closer agreement by changing 
the modeling of errors in the reading of clock values to use 
the fact that there is no read-error when a processor reads 
its own clock. This improvement leads to reductions of 10% 
to 25% in numerical estimates of the worst-case clock skew 
[26]. Extending the formal verification of ICA to accommodate 
Palumbo and Graham’s improved bound required development 
of a body of lemmas concerning finite summations. Clock 
skew between two nonfaulty processors p and q is influenced 
by their individual skews with processor T. A bound on the 
maximum skew between p and q is obtained by summing these 
contributions over all T. Previously, it had only been necessary 
to split this summation into two-according to whether 

processor T is faulty or nonfaulty-and an ad-hoc formal 
treatment was adequate. For Palumbo and Graham’s bound, 
it was necessary to split the summation further according to 
whether T is the same as one of p or q, and it seemed better 
to develop a more general theory of summations. 

Availability of this general theory then made it feasible to 
extend ICA to a hybrid fault model (where the summation 
needs to be further subdivided according to the different 
kinds of fault). This was accomplished in just a few days 
of work, and provides a formally verified algorithm that has 
significantly better fault tolerance than the original algorithm 
[26]. Among all clock-synchronization algorithms suitable 
for architectures of the kind used in digital flight-control 
applications, this hybrid variant of ICA seems to provide the 
most robust fault tolerance for a given level of redundancy. 

B. Other Clock Synchronization Algorithm 

There are alternatives to ICA that may be easier to im- 
plement. Also, there is a choice in formalizations of clock 
synchronization whether clocks are modeled as functions from 
“clock time” to “real time” or the reverse. ICA does it the first 
way, but the other seemed to fit better into the arguments for 
an overall architecture. Accordingly, we next embarked on . a mechanized verification of Schneider’s generalized clock- 
synchronization protocol, which gives a uniform treatment that 
includes almost all known synchronization algorithms [27], 
and models clocks in the “real time” to “clock time” direction. 
As before, we found a number of small errors in the original 
argument and were able to produce an improved journal-style 
presentation as well as the mechanically-checked proof [28]. 

This general verification, undertaken by Shankar using 
EHDM, depends on 11 constraints that must be satisfied by any 
specific instantiation of the general theory. Shankar verified 
that the instantiation that characterizes ICA satisfies these 
constraints, thereby providing an independent verification of 
this algorithm. Paul Miner of NASA argued that one of the 
constraints (called “bounded delay”) is often quite difficult 
to establish for a given instantiation-almost as difficult as 
proving synchronization in the first place. Furthermore, by 
modifying Shankar’s treatment, he was able to verify that this 
condition could be established once and for all from suitably 
modified versions of the other 10 constraints [29]. Using this 
simplified approach, he then formally specified and verified the 
instantiation that characterizes the very attractive Welch-Lynch 
fault-tolerant mid-point algorithm [30]. 

Miner and colleagues at Indiana University later developed 
and implemented a verified clock synchronization circuit that 
implements this algorithm [31]. Several formal methods were 
used in their design and implementation. The register transfer 
level architecture was developed using the Digital Design 
Derivation (DDD) system from Indiana [32]: this transforms 
an abstract state machine specification into a concrete ar- 
chitecture by applying a number of correctness-preserving 
transformations. Most of the transformations used were built- 
in to DDD, but some additional ad-hoc transformations were 
required; these were justified using PVS. The register trans- 
fer level description was then transformed into a gate-level 
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description using a combination of standard “projections” 
provided by DDD and custom projections justified in PVS. 
Finally, a BDD-based tautology checker was used to estab- 
lish equivalence between some of the combinational circuits 
obtained by projection and more efficient ones available in a 
standard library. 

Miner has also shown that a slightly adjusted version of 
the Welch-Lynch midpoint algorithm provides self-stabilizing 
transient recovery [29, ch. 61. Formal verification of the 
general form of this extension is a significant challenge for 
the future. 

C. Byzantine Agreement 

Turning from fault-tolerant clock synchronization to sen- 
sor distribution, we next focussed on the “Oral Messages” 
algorithm for Interactive Consistency [33].4 Bevier and Young 
at CLI, who had already verified this algorithm, found it “a 
fairly difficult exercise in mechanical theorem proving” [34]. 
We suspected that their treatment was more complex than 
necessary, and attempted an independent verification. We were 
able to complete this in less than a week, and found that one 
of the keys to simplifying the argument was to focus on the 
symmetric formulation (which is actually the form required), 
rather than the asymmetric Byzantine Generals form [35]. 

Because of its manageable size and complexity (it is an 
order of magnitude smaller than the clock-synchronization 
proofs), we used verification of the Oral Messages algorithm as 
a test-case in the development of the theorem prover for PVS. 
Eventually we were able to construct the necessary proofs 
interactively in under an hour (starting from the specification 
and a couple of minor lemmas). Thus equipped, we turned to 
an important variation on the algorithm due to Thambidurai 
and Park [7] that uses a hybrid fault model, and thereby pro- 
vides greater fault tolerance than the classical algorithm. Here 
we found not merely that the journal-style argument for the 
correctness of the algorithm was flawed, but that the algorithm 
contained an outright bug. We proposed a modified algorithm 
and, together with our colleague Pat Lincoln, began to formally 
verify its correctness-until we found that it, too, was flawed. 

The difficulty in discovering the flaw in our modified 
algorithm was due to an unrelated error in one of the axioms 
of our specification. The modified algorithm uses a “hybrid 
majority vote” function (i.e., majority vote with error values 
excluded). We had axiomatized the properties required of this 
function, rather than given an implementation, and had got it 
wrong: we had excluded the values that should be manifestly 
erroneous (i.e., that came from manifestly faulty processors), 
rather than those that actually were. In other words, our voter 
was “omniscient.” This flaw in the axiomatization masked 
the bug in our algorithm, so that it was provably “correct,” 
but unimplementable (because the omniscient voter cannot be 
realized in practice). Pat Lincoln noticed the problem after 
a couple of days, but this experience underscores the need 
to be very skeptical of axiomatic specifications and the need 

41nteractive consistency is the problem of distributing consistent values to 
multiple channels in the presence of faults [5]. It is the symmetric version of 
the Byzantine Generals problem, and should not be confused with interactive 
convergence, which is an algorithm for clock synchronization. 

to validate them by showing that they are satisfied by some 
(intended) model. In this case, attempting to show that a 
specific majority-vote algorithm satisfied our axioms would 
have revealed the error. 

Once we had identified our mistake, we were able to repair it 
and to develop and formally verify a new and correct algorithm 
for Interactive Consistency under a hybrid fault model [36], 
[37]. And this time, we did verify an implementation (a 
modified version of the Boyer-Moore linear-time MJRTY 
algorithm [38]) against our axioms for a hybrid majority voter 
[39]. Overall, this work took less than two weeks, and was 
primarily undertaken by Pat Lincoln as his first exercise in 
mechanized formal verification using PVS. 

As with clock synchronization, availability of a formally 
verified algorithm for hybrid interactive consistency created 
new opportunities for the rapid and reliable exploration of 
variations. One of these is a version of the algorithm for the 
architecture of the “Fault Tolerant Processor” (FTP) developed 
at the C. S. Draper Laboratory [40], [41]. A fundamental 
result regarding Interactive Consistency states that at least 
3n + 1 processors are required to withstand n simultaneous 
Byzantine faults [5]; thus, in particular, four processors are 
required to withstand a single fault. Traditionally, the fault- 
tolerant architecture is symmetrical, and all four processors 
are identical. The FTP architecture breaks with this tradition 
and uses only three full processors, plus three much simpler 
“interstages” whose only function is to relay messages between 
the main processors. 

The FTP architecture is an attractive alternative to a con- 
ventional four-plex, since is should be cheaper and more 
reliable (cost and fault arrival rate are largely determined by 
the number of processors). Published accounts, however, do 
not provide a full description and analysis of the interactive 
consistency algorithm for FTP. Building on our previous 
treatments of interactive consistency algorithms, we were able 
to develop a formally specified and verified algorithm for 
FTP in a matter of days. This algorithm not only extends the 
analysis to allow some processors to lack interstages (as may 
arise following reconfiguration), but also employs a hybrid 
fault model [42] to withstand a wider range of fault behaviors. 

D. Hierarchical Verijcation of the Reliable 
Computing Platform 

Clock synchronization and interactive convergence are key 
algorithms in the architecture for the Reliable Computing 
Platform (RCP), but it is the argument for fault tolerance and 
transient recovery of the overall architecture that is the main 
challenge. 

A model for the overall architecture of RCP, and the 
argument for its correctness, were developed by Rick Butler, 
Jim Caldwell and Ben Di Vito at NASA. Their model and 
verification were formal, in the style of a traditional presenta- 
tion of a mathematical argument [43]. Working in parallel, we 
developed a formal specification and verification of a slightly 
simplified, but also rather more general model [44]. Before 
formally specifying and verifying our model in EHDM, we 
developed a description and proof with pencil and paper. This 
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description was developed with specification in EHDM in 
mind; it was built from straightforward mathematical concepts 
and  was transliterated more or less directly into EHDM in a  
matter of hours. The  formal verification took about  three weeks 
of part-time work. Some of this time was required because the 
formal verification establ ishes a  number  of subsidiary results 
that were glossed over in the pencil and  paper  version, and  
some of it was required because EHDM’s theorem prover 
lacked a  rewriter at that time. However,  the mechanical ly 
verified theorem is also stronger than the pencil and  paper  
version. The  stronger theorem requires a  proof by  Noether ian 
induction (as opposed  to simple induction for the weaker  
theorem), which is rather tricky to state and  carry out in semi- 
formal notation, but no  more difficult than simple induction 
in a  mechanized setting. 

The  property establ ished by  this verification is that, subject 
to specif ied assumptions, a  replicated collection of,processors 
using majority voting can provide the same external behavior 
in the presence of faults as  a  single ideal processor that suffers 
no  faults. The  assumptions include those of synchronization, 
interactive consistency for sensor  input, and  fault contain- 
ment. (The last of these requires that damage  to state data 
cannot  propagate from one  application task to another in a  
nonfaulty processor;  in practice it is achieved using memory 
management  hardware).  

The  most ambit ious formal verification carried out in the 
program so far was performed by Rick Butler and  Ben Di Vito 
at NASA: it e laborates the two-level model  descr ibed above  
into a  six-level hierarchy that connects the ideal fault-free 
single processor all the way down to the details of task man-  
agement,  interprocessor communicat ion, and  memory manage-  
ment [45], [46]. The  topmost level is called the uniprocessor 
synchronous (US) model: it is essentially the correctness 
criterion-a single computer  that never  fails. The  level below 
this is the replicated synchronous (RS) model, which is similar 
to the fault-masking model  descr ibed above;  below this is the 
distributed synchronous (DS) model, which introduces the fact 
that communicat ion between channels takes time; below this 
is the distributed asynchronous (DA) model, which connects 
to the clock synchronizat ion condit ions and  recognizes that the 
channels are only approximately synchronized. The  DA model  
relates to both clock synchronizat ion (and thence to the various 
verifications of clock synchronizat ion algorithms and  their 
implementations) and  to a  minimal voting model  (DA-minv). 
DA-minv, in turn, is supported by  the local execut ive (LE) 
model, which introduces details of task management ,  memory 
management ,  and  interprocessor communicat ion. 

The  chain of argument  that connect  the US and  LE models 
has  been  formally verified at NASA using EHDM’s capabil- 
ities for hierarchical verification. The  US to RS verification 
is similar to ours, the others are novel. Overall, this formal 
specification and  verification took several man-years to de-  
velop, and  is the largest such effort under taken in E HDM; it 
is also one  of the largest and  most elaborate formally verified 
hierarchical developments known to us. The  specification and  
proof directives (which are part of the specification text in 
EHDM) are 13,559 lines long; about 4  h  are required to check 
all 781  proofs on  a  Spare 10. 

E. Experimental Ver$cation of the AAMPS 

In 1992,  SRI and  NASA began  a  collaborative project with 
Collins Commercial  Avionics to determine whether the formal 
verification technology we had  developed could be  appl ied to a  
project of industrial scale and  in an  industrial setting. The  cho- 
sen project was to apply formal specification and  verification 
to selected parts of an  avionics processor under  development 
at Collins called the AAMPS [47]. The  exercise was run 
as  a  “shadow” project, not on  the critical path of the main 
development.  Processor verification is a  very different problem 
to the algorithm and  architecture verifications descr ibed above;  
it was chosen because it provided a  well-defined project that 
was of interest and  potential value to Collins. 

The  AAMPS is a  member  of Collins’ “Advanced Architec- 
ture Microprocessor” (AAMP) family [48]. It is intended to be  
instruction-set compatible with the earlier AAMP2, which is 
used  in numerous applications for civil aircraft (e.g., there are 
thirty AAMP2s on  board each  747-400),  but four times faster. 
AAMPS is intended for critical applications such as  avionics 
displays, but not for ultra-critical systems such as  autoland or 
fly-by-wire. 

Given formal specifications for a  processor at the user- 
visible, machine code,  level (the macro-architecture), and  
at the implementation, register-transfer, level (the micro- 
architecture), the task of processor verification is to show that 
the latter implements the former. In a  microcoded processor 
such as  the AAMPS, the micro-architecture is driven by  a  
program (the microcode), rather than being hard-wired, and  
the verification problem becomes the task of showing that the 
microcode execut ing on  the micro-architecture implements 
the macro-architecture. 

Microcode verification is not new: it was p ioneered by  
Bill Carter at IBM in the 1970’s and  appl ied to elements of 
NASA’s Standard Spaceborne Computer  [49]; in the 1980’s a  
group at the Aerospace Corporat ion verified microcode for 
an  implementation of the C/30 switching computer  using 
a  verification system called SDVS [50]; and  a  group at 
Inmos in the UK establ ished correctness across two levels of 
description (in Occam) of the microcode for the T800  floating 
point unit using mechanized transformations [5 11. Similarly, 
several groups have  performed automated verification of non-  
microcoded processors, of which Warren Hunt’s’FM8501  [52] 
(and subsequent  PM9001 [53]) are among  the most substantial. 
However,  none  of these previous efforts approaches the scale 
and  complexity of the AAMPS. 

Both the macro and  micro-architectures of the AAMPS are 
complex. The  macro-architecture is a  stack machine with a  
large and  elaborate instruction set: instructions are variable 
length, they operate on  multiple data types, and  among  the 209  
different instructions are some that provide services normally 
del ivered by  the run-time system of a  compiler (e.g., procedure 
state saving, parameter passing, return l inkage and  reentrancy) 
and  others that provide functions normally associated with an  
operat ing system kernel (e.g., interrupt handling, task state 
saving, context switching). The  AAMPS provides separate 
execut ive and  user address spaces,  as  well as  separate code and  
data environments. The  micro-architecture has  four indepen- 
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dent units: bus  interface, instruction cache,  look-ahead fetch 
unit, and  data processing unit. The  latter is microcoded, caches 
the top elements of the stack in registers, and  has  a  three-stage 
pipeline. There are approximately 500,000 transistors in the 
AAMPS implementation. 

Specification and  verification of the AAMPS were un-  
dertaken in PVS, which was just entering beta-test when  
the project started. The  project began  with Srivas at SRI 
developing formal specifications for a  large part of the macro- 
architecture (based on  the AAMP programmer’s reference 
manual).  Two previously undetected errors in the microcode 
were discovered during this process, as  formal specification 
forced considerat ion of the intended behavior of the AAMPS 
in some unusual  circumstances. 

After Srivas had  completed a  first version of the macro- 
architecture specification, it was taken over and  revised and  
extended by staff at Collins. In order to validate the speci- 
fications, Collins engineers familiar with AAMPS subjected 
the PVS specifications to Fagan-style inspections and  detected 
28  major specification faults (i.e., those affecting correct- 
ness) in the process. Conversely, formal specification of the 
macro-architecture led to clarification or correction of several 
descriptions in the reference manual,  and  to reconsiderat ion 
of the manner  in which stack overf low is handled. The  
engineers who performed the inspections required surprisingly 
little training in PVS, but considerable work was required to 
render the specifications in a  style they found acceptable (e.g., 
consistent naming, careful formatting, informative comments).  

Parenthetically, we should note that we had  at first assumed 
that the Collins engineers should be  introduced to PVS in 
a  “bottom-up” manner,  starting with the bitvector library 
(developed by  Rick Butler of NASA Langley)-the rationale 
being that we would start with the basics and  show them how 
things were built up  from very simple beginnings. The  effect 
surprised us: the engineers were appal led (“Isn’t this stuff 
built-in?’ was a  typical comment)  and  quite uninterested, for 
they wanted to focus on  the big picture. This episode caused 
us to drop the bottom-up introduction to PVS: subsequent ly,  
new members  of the project first encountered PVS by sitting 
in on  inspections-an approach that seems to have  been  quite 
successful. 

While Collins engineers were validating and  extending 
the specification of the macro-architecture, Srivas at SRI 
developed a  formal specification of the micro-architecture. 
The  specification focussed on  the data processing unit (DPU); 
the other units were descr ibed only in terms of their external 
interactions with the DPU. 

When  Srivas had  finished with the specification of the 
micro-architecture, it was sent to Collins for revision and  
inspection, and  Srivas focussed on  developing proof strategies 
for the verification. To  reduce its scope to a  manageab le  size, 
the project called for only 13  instructions (each represent ing 
a  different class) to be  formally specif ied and  verified by  
SRI, with an  additional 11  to be  under taken at Collins. 
However,  it turned out that in order to specify the basic 13  
operations, the complete micro-architecture and  almost the 
complete macro-architecture had  to be  specified. (In the end,  
108  instructions were formally specif ied at the macro level; 

the macro-architecture specification is 2 ,550 lines of PVS 
in 48  theories, the micro-architecture specification is 2 ,679 
lines in 20  theories, and  the bitvector library is 2 ,030 lines 
in 31  theories.) Similarly, in order to verify the basic 13  
instructions with tolerable efficiency, and  in order to render 
the process sufficiently systematic that it could be  transferred 
to Collins, it was found necessary to explore a  number  of 
different techniques and  to develop a  collection of reusable 
proof strategies. 

Because axiomatic specifications had  proved error-prone in 
the past, specification of the macro-architecture used  a  defi- 
nitional style. This style proved cumbersome for verification, 
however,  so  a  collection of lemmas in the form of conditional 
equat ions was created to represent this information in a  form 
suitable for automated rewriting. The  need  for fast rewriting 
and  the ability to deal with large proposit ional structures 
led to a  number  of modifications to PVS during this effort. 
These included caching rewrites and  the corresponding state 
of the congruence closure data structure, and  the use  of BDD’s 
for proposit ional simplification. These modifications al lowed 
reasonably efficient verification of the AAMPS microcode 
and  micro-architecture. Currently, 11  instructions have  been  
verified (several of these are outside the core set of 13), from 
three instruction classes. Verification of a  new instruction class 
takes about  a  week, and  verification of a  new instruction in a  
known class takes less than a  day. 

Formal verification revealed several errors in the specifica- 
tions of the macro- and  micro-architectures that had  not been  
detected by  inspections. Furthermore, it led to the detection of 
two subtle errors that had  been  seeded  in the microcode (these 
were different errors than those discovered during formal 
specification). Because the AAMPS was a  development of an  
architecture that was very familiar to Collins engineers, and  
for which they had  extensive simulation and  diagnostic tools, 
there was concern that there might be  no  “natural” bugs  in 
its microcode, and  therefore the project might be  unable to 
demonstrate the potential of formal verification to detect bugs.  
Consequent ly,  with the acquiescence of SRI management ,  
Collins engineers planted a  bug  in the microcode of one  of 
the instructions in the core set. This bug  was of a  kind that 
had  proved hard to detect with conventional V&V practices. 
In addition, a  bug  that had  e luded these conventional practices 
and  made  it into an  early fabrication of the AAMPS (where 
it was discovered in tests of applications code)  was left in 
the microcode suppl ied to SRI. Formal verification easily 
exposed both these bugs;  furthermore, Srivas was able to 
extract information from the failed proof attempts that al lowed 
him to descr ibe the necessary microcode corrections to the 
Collins engineers. 

This project demonstrated the feasibility of applying formal 
verification to a  commercial microprocessor [47], but its cost 
was high (about 3  man-years).  However,  we attribute much 
of this to one-t ime start-up costs and  are now planning a  
follow-on project where the understanding and  infrastructure 
developed for AAMPS will be  appl ied to a  new member  of 
the AAMP family. For the follow-on, formal methods will 
be  used  in the design loop and  PVS specifications will be  the 
main design documents.  W e  expect  that this will reduce overall 
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development time and  costs. W e  also anticipate that improved 
speed and  automation in new versions of PVS will make 
complete formal verification of the processor cost-competit ive 
with the traditional assurance processes, while providing much 
greater coverage.  

III. LESSONS LEARNED AND THEIR 
INFLUENCEONTHE DESIGNOF PVS 

W e  summarize here some of the main characteristics ob-  
served and  conclusions drawn from the verifications descr ibed 
above.  First, most of the proofs we have  been  interested in 
checking, not to mention many  of the theorems and  some 
of the algorithms, were incorrect when  we started. Thus, 
we find it at least as  important that a  verification system 
should assist in the early detection of error as  that it should 
confirm truth. Second,  our  axiomatizations were occasionally 
unsound,  and  sometimes they were sound but did not say what 
we thought they did. Mechanisms for establishing soundness  
of axiomatizations are clearly desirable (purely definitional 
specifications are often too restricting), as  are techniques for 
reviewing the content of formal specifications. Third, our  
verifications are seldom finished: changed  assumptions and  
requirements, the desire to improve an  argument  or a  bound,  
and  simple experimentation, have  led us  to revise some of 
our  verifications several times. W e  believe that investment in 
an  existing verification should assist, not discourage, discovery 
of simplifications, improvements, and  generalizations. But this 
means  that the method of theorem proving must be  robust 
in the face of reasonably small changes  to the specification. 
Fourth, our  formal specifications and  verifications were often 
used  by  someone other than their original developer.  These 
secondary users sometimes carry off just a  few theories (or 
ideas) for their own work, sometimes they substantially modify 
or extend the existing verification, and  sometimes they build 
on  top of it; in all cases, they need  to understand the original 
verification. These activities argue for specifications and  proofs 
that are structured or modular ized in some way, and  that 
are sufficiently perspicuous that users other than the original 
authors can comprehend them well enough  to make effective 
use  of them. 

Finally, our  specifications and  verifications have  often been  
quite large or complex, and  the efficiency of their construction 
is of vital concern.  The  most important measure of efficiency 
is the amount  of human time expended  in the process from 
start to finish. For many  of our  specifications, we found that 
substantial effort was expended  on  the formal development of 
“background theories” such as  summations, bitvectors, finite 
sets, and  so on. Clearly, it is necessary that such theories 
should be  made  available in libraries for future reuse. Much 
effort was also spent  in debugging specifications: methods 
such as  direct execut ion or simulation of specifications (some- 
times called “animation”), and  state exploration or model  
checking can help explore and  validate specifications before 
full verification is undertaken. In our  full verifications, we 
noted two attributes that are important for overall efficiency: 
for those verifications (such as  the fault tolerant algorithms) 
whose construction requires significant insight at a  number  of 

steps, the main requirement is that the theorem prover should 
automate the straightforward parts of the proof so  that the 
human user is free to focus on  the significant steps; for those 
verifications that are conceptual ly straightforward, but large 
(such as  AAMPS), a  vital requirement is for raw speed in the 
basic steps of rewriting, arithmetic, and  proposit ional calculus. 

In the following subsect ions we expand  on  these points 
and  descr ibe some of the design decisions taken in our  
languages,  support  tools, and  theorem provers, in light of these 
experiences. 

A. SpeciJication Language 

In this section we descr ibe some of the choices made  in 
the design of our  specification languages,  and  discuss some 
of the changes  we have  made  in the light of experience. The  
main constraints informing our  design decisions have  been  
the desire for a  language that is powerfully expressive, yet 
that nonspecial ists find comfortable, that has  a  straightfor- 
ward semantics, and  that can  be  given effective mechanized 
support:  this includes very stringent (and early) detection of 
specification errors, as  well as  powerful theorem proving. 

The  domain of problems that we have  investigated involves 
asynchronous communicat ion, distributed execution, real-time 
properties, fault tolerance, and  hierarchical development.  One  
quest ion that arises is the degree of support  for these topics 
that should be  built-in to the specification language and  its 
verification system. Our  viewpoint here is pragmatic rather 
than philosophical: we have  found that a  classical higher-order 
logic is adequate  for formalizing the concepts of interest to us  
in a  perspicuous and  effective way. W e  have  also found that 
the computat ional aspects of the systems of interest to us  are 
adequately modeled in a  functional style and  we have  not 
found it necessary to employ Hoare logic or other machinery 
for reasoning about  imperative programs. In part, this is 
because we have  concentrated on  verifying algorithms and  
architectural designs, rather than programs; we have  chosen 
to do  so because the available ev idence points to these and  
other early lifecycle concerns (particularly requirements) as  
the principle sources of failure in safety-critical systems [54].5 

EHDM does  provide a  notion of “state” that allows systems 
to be  modeled using state-dependent objects and  procedural  
state transformations; it also provides direct support  for rea- 
soning about  them in a  Hoare logic. W e  have  also used  
this capability in other applications, but even  then we have  
general ly found it most convenient to develop the bulk of 
the specification and  verification in a  functional style, and  to 
transfer to the imperative style only in the final steps-very 
much in the manner  advocated by  Guttag and  Homing [56]. 

W e  have  used special ized formalisms, such as  temporal 
logic, when  they seem appropriate, but we have  done  so by  
formalizing them within higher-order logic (see, for example, 
our  embedding of the Duration Calculus [18], and  Hooman’s 

5These systems are developed under stringent controls that are very 
effective at detecting and eliminating faults introduced in the later lifecycle 
phases of detai led design and coding. For example, Lutz [.55] reports on  197 
critical software faults detected during integration and system testing of the 
Voyager and  Galileo spacecraft, Only 3  of these faults were programming 
errors. 
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treatment of a  real-time Hoare calculus [19]). The  advantage 
of embedding such formalisms within a  single logic is that it 
is then easier to combine them, and  easier to share common 
theories such as  datatypes, arithmetic, and  other prerequisite 
mathematics. Furthermore, we are not restricted to a  fixed 
selection of formalisms, but can  develop special ized notations 
to suit the problem at hand-rather in the way that product ive 
pencil and  paper  mathematics is done.  

In the case of the examples considered here, it was relatively 
straightforward to descr ibe the necessary concepts directly 
within higher-order logic in a  manner  that reproduced the 
presentat ion in standard journal treatments of the topics con- 
cerned fairly closely [20], [27], or that fol lowed a  style that 
had  proved comfortable in earlier pencil and  paper  develop- 
ment (e.g., compare the pencil and  paper  development of a  
fault-masking model  [43] with a  fully formal version [44]). 
However,  allowing these formal specifications to be  rendered 
in a  natural syntactic form demands  some sophistication of 
the support  tools. For example, the definition of the function 
working that appears  in the fault-masking verification [44] was 
given in EHDM as 

working: function[C + function[R + bool]] =  
(Xc: (A?-: OK(T)(C))) 

whereas the later PVS allows 

working(c): set[R] =  {TIC E OK(T)}.~ 

Here we are exploiting the fact that the axiom of comprehen-  
sion is sound  in higher-order logic, so  that sets can be  identified 
with predicates (which are themselves just functions with 
range type bool). The  value of syntactic conveniences such as  
these should not be  underest imated; we find that they reduce 
learning time, and  ease  comprehension and  communicat ion. 
Readers  who are new to the languages can quickly-and 
correctly-interpret specifications written by  others when  the 
notation is close to traditional practice. 

Several conveniences that appear  syntactic actually require 
semantic treatment. For example, we allow the proposit ional 
connect ives such as  “or” and  the arithmetic and  relational 
operators such as  + and  5  to be  over loaded with new def- 
initions (while retaining their s tandard ones).  This allows the 
proposit ional connect ives to be  “lifted’ to temporal formu- 
las (represented as  predicates on  the natural numbers),  for 
example, so  that if x  and  y are temporal formulas, 5  V y 

could be  def ined to denote their pointwise disjunction. These 
usages correspond to informal mathematical practice, but their 
mechanized analysis requires rather powerful strategies for 
type inference and  name resolution. 

Just as  the syntactic aspects of our  languages have  been  en- 
r iched over the years, so  have  their semantic attr ibutes-and in 
particular the type systems. Initially we had  just the “ground” 
types (i.e., uninterpreted types, the booleans, and  the integer 

6These specification fragments appear here as typeset by the LaTeX- 
prettyprinters of the two systems. The actual input format is a  lin- 
ear ASCII representation. For example, the PVS text is entered as 
working(C) : set[R] = {r\member(c,OK(r))}. The table-driven 
LaTeX-prettyprinters allow transformations such as that from the prefix 
function application member  to the infix E to be  specified easily. 

and  rational numbers)  and  the (higher order) function type 
constructor. W e  soon found it convenient to add  record and  
enumerat ion type constructors, and  then-the most significant 
step of all-predicate subtypes. In PVS we also added  tuple 
types, and  dependent  type constructions.7 

As their name suggests,  predicate subtypes use  a  predicate 
to induce a  subtype on  some parent type. For example, the 
natural numbers  are specif ied (in PVS) as: 

nut: type = {n: int(n > O}. 

More interestingly, the signature for the division operat ion (on 
the rationals) is specif ied by  

/: [rational, nonzero-rational + rational] 

where 

nonzero-rational: type = {x: rationallx # 0} 

specifies the nonzero rational numbers.  This constrains divi- 
sion to nonzero divisors, so  that a  formula such as  

x #  Y 1  (Y - x)/(x - Y) <  cl 

requires the typechecker to discharge the proof obligation, or 
Type-Correctness Condit ion (TCC), 

X#YY>X-Y)#O 

in order to ensure that the occurrence of division is well-typed. 
Notice that the “context” (x #  y) of the division under  a  
left to right reading appears  as  an  antecedent  in the proof 
obligation. TCC’s of this kind establish that the value of 
the original expression does  not depend  upon  the value of 
a  type-incorrect term; they are generated whenever  a  term of 
the parent type appears  where one  of a  predicate subtype is 
required. The  automated procedures of our  theorem provers 
general ly d ispose of such proof obligations instantly (if they 
are true!), and  the user usually need  not be  aware of them. 
This use  of predicate subtypes allows certain functions (such 
as  division) that are partial in some other treatments to remain 
jotal, thereby avoiding the need  for logics of partial terms or 
three-valued logics. 

Related constructions allow nice treatments of errors, such 
as  pop(empty) in the theory of stacks. Here we can type and  
axiomatize the stack operat ions as  follows: 

stack: type 

empty: stack 

nonempty-stack: type = {s: stack)s # empty} 

push: [elem, stack ---t nonempty-stack] 

pop: [nonempty-stack --) stack] 

top: [nonempty-stack 4 elem] 

pop-push: axiompop(push(y: elem, s: stack)) =  s 
top-push: axiom top(push(y: elem, s: stack)) = e 

so that nonempty-stack is a  predicate subtype of stack. W ith 
these signatures, the expression pop(empty) is rejected during 

7A rather useful dependent  construction has been available in EHDM since 
the beginning through the mechanism of module  parameters. 



116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2. FEBRUARY 1995 

typechecking (because pop  requires a  nonempty-stack as  its 
argument),  and  the theorem 

push(e,  5) #  empty 

is an  immediate consequence of the type definitions. By similar 
reasoning, the axiom pop-push is immediately seen to be  
type-correct, but type-correctness of the expression 

poP(PoP(Pw~, P,wY, s>>)> = s, (1) 

cannot  be  deduced  by such simple syntactic analysis (because 
the outermost pop  requires a  nonempty-staclc, but is given 
the result of another pop-which is only known to be  a  stack. 
However,  this expression can be  shown to be  well-typed by  
proving the theorem 

po~(push(c P@Y! ~1)) ,# empty, 

in order to establish that the argument  to the first pop  is, 
in fact, a  nonempty-stack. EHDM and  PVS automatically 
generate this theorem as a  proof obligation (i.e., TCC) when  
typechecking the expression (l), and  can prove it easily. 

In practice, we would not specify the stack data type by  
means  of an  explicit set of function signatures and  axioms; 
we would use  the datatype mechanism of PVS instead. This 
mechanism (which is related to the “shells” of the Boyer- 
Moore prover and  the “free types” of Z) allows recursively 
structured data types to be  specif ied very compactly in terms 
of the relationships among  their constructors, accessors,  and  
subtype recognizers. As a  datatype, stack is specif ied as  
follows: 

stack[t: type]: datatype 
begin 

empty: empty-stack 
push(top: t, pop:  stack): nonempty-stack 

end  stack 

Here, empty and  push  are the constructors, with corre- 
sponding recognizers (and predicate subtypes) empty-stack 
and  nonempty-stack, and  top and  pop  are the accessors.  
This specification automatically generates a  theory containing 
signatures and  axioms similar to those shown earlier, together 
with a  structural induction scheme, subterm ordering predicate, 
and  several other useful axioms and  definitions. Furthermore, 
the theory thus generated is guaranteed to be  a  conservat ive 
extension (in particular, its axioms are sure to be  consistent), 
and  the theorem prover is able to provide very effective 
mechanizat ion for these highly stereotyped constructions. The  
datatype mechanism is very useful for specifying structures 
such as  lists and  trees; furthermore, by  defining predicate 
subtypes on  the types so constructed, it is easy to define 
data structures such as  ordered binary search trees [57], or 
constructive representat ions of the ordinals. 

TCC’s that are not d ischarged automatically by  the theorem 
prover are added  to the specification text and  can be  proved 
later, under  the user’s control. Untrue TCC’s indicate a  type- 
error in the specification, and  have  proved a  potent method 
for the early discovery of specification errors. For example, 

the injections are specif ied as  that subtype of the functions 
associated with the one-to-one property: 

injection: type = 
{f: [t1 +  t2]lV(i: j: tt): f(i) =  f(j) 3  i =  j} 

(here tt and  t2 are type parameters).  If we  were later to specify 
the function square as  an  injection from the integers to the 
naturals by  the declaration 

square:  injection[int, nut] =  A(s: int): z  X z 

then the PVS typechecker would require us  to show that the 
body  of square satisfies the injection subtype predicate.s 
That is, it requires the TCC i2 =  j2 >  i =  j to be  proved 
in order to establish that the square function is well-typed. 
Since this conjecture is untrue (e.g., 22  = (-2)” but 2  #  -2), 
we are led to discover a  fault in this specification. 

Notice how use of predicate subtypes here has  automatically 
led to the generat ion of proof obligations that might require 
special-purpose checking tools in other systems. Another ex- 
ample of the utility of predicate subtypes in generat ing proof 
obligations arises when  model ing a  system by means  of a  
state machine. In this style of specification, we first identify 
the components  of the system state; an  invariant specifies how 
the components  of the system state are related, and  we then 
specify operat ions that are required to preserve this relation. 
W ith predicate subtypes available, we can use the invariant to 
induce a  subtype on  the type of states, and  can specify that 
each  operat ion returns a  value of that subtype. Typechecking 
the specification will then automatically generate the proof 
obligations necessary to ensure that the operat ions preserve 
the invariant. 

Although TCC’s are very useful in contexts such as  those 
descr ibed above,  there are other contexts where it is desirable 
to control their generat ion. For example, the expression n  + m, 
where n  and  m are of type nat, has  type int (because nat is 
a  subtype of int, but nothing special is known about  +  on  the 
nats, so  it is interpreted as  addit ion on  the ints). This has  the 
d isadvantage that a  TCC will be  generated whenever  n  +  m 
appears  in a  context where a  nat is required. 

One  way around this difficulty is to over load the function 
+ with the following definition - 

+(n, m: nat): nat =  72  + m.9 

This will generate the TCC 

once  and  for all, but has  the d isadvantage that the definition 
must be  expanded  every time + appl ied to nats occurs in 
a  proof. W e  overcome these difficulties in PVS by providing 
type judgments, which are declarations of the following form 

judgment +  has-type [nat, nat -+ nut]. (2) 

*We  would also be  required to discharge the (true) proof obligation 
generated by the subtype predicate for nat: V(z: int): I x z 1  0. 

9The f on  the right is the built-in $  on  integers. 
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This declaration causes the TCC (2) to be  generated to verify 
the has-type claim, and  thereafter allows the typechecker 
freely to use  the information that +  is c losed on  the nat’s. 

Judgments  provide the typechecker with additional infor- 
mation about  the type(s) of a  function. PVS also allows 
conversions, which are functions that the typechecker may 
apply to convert  terms that are type-incorrect in a  given context 
into terms of an  acceptable type. An example will help explain 
the idea. The  purpose of the “jet-select” function of the Space 
Shuttle On-Orbit Digital Autopilot (“Orbit DAP,” another of 
the flight control applications we have  studied under  NASA 
sponsorship),  is to select and  fire a  set of up  to three reaction 
control jets. The  selected set can  be  restricted to various 
combinat ions of “primary” and  “vernier” jets, such as  those 
whose gas  plumes do  not extend above  the cargo bay. It is 
natural to model  vernier and  primary jets as  subtypes of 
a  jet type. However,  the subtype relationship between the 
primary and  jet types does  not induce a  subtype relation 
between the sets on  these types.” However,  there is a  fairly 
natural function that extends a  set of primary jets to a  set 
of jets: 

extend(p: setbrimary]): setbet] =  
{j: jetlj E primary A j E p}. 

If we  declare extend to be  a  conversion, then we can 
supply a  set of primary jets in places where a  set of jets 
is expected: PVS will automatically convert  the former to 
the latter by  applying the extend function. (PVS can display 
the “converted” form of a  specification or proof sequent  on  
request, and  issues a  warning if a  given context has  more than 
one  applicable conversion.) 

Implicit conversions solve a  number  of specification prob- 
lems in a  simple and  effective manner.  For example, a  state- 
dependent  integer program “variable” x in a  Hoare-sentence 
specification, or a  flexible integer variable 21  in a  temporal 
logic specification, will general ly be  modeled as  functions 
from “state” or “time,” respectively, to the integers. It is very 
convenient to be  able to “lift” the arithmetic operators to apply 
directly to state-dependent or temporal terms, so  one  can write 
x +  1  or w + 7  rather than x(s) +  1  and  u(t) +  7, and  conversions 
provide an  effective way to do  this. (Simple overloading of 
the + operator can  require unnatural  constructions, such as  
the introduction of functions l(s) and  7(t).) 

Dependent  types increase expressive convenience still fur- 
ther. W e  find them particularly convenient for deal ing with 
functions that would be  partial in simpler type systems. The  
standard “chal lenge” for treatments of partial functions [58] is 
the function subp on  the integers def ined by  

subp(i, j) =.if i =  j thenOelsesubp(i ,  j +  1) +  lendif. 

This function is undef ined if i <  j (when i 2  j, subp(i, j) =  
i - j) and  it is often argued that if a  specification language 

‘ORecall that a  set of jets is represented in PVS as a  function of 
type [jet +  bool]; PVS does not extend subtype relations on  function 
domains to the corresponding function types. Some systems do  provide this 
extension-usually in a  “contravariant” manner,  so that [jet +  bool] is a  
subtype of [primary +  bool] (Le., the subtype relation on  the functions is 
the reverse of that on  their domains). 

is to admit such a  definition, then it must provide a  treatment 
for partial functions. Fortunately, examples such as  these do  
not require partial functions: they can be  admitted as  total 
functions on  a  very precisely specif ied domain. Dependent  
types, in which the type of one  component  of a  structure 
depends  on  the value of another,  are the key to this. For 
example, in the language of PVS, subp can be  specif ied as  
follows: 

subp((i: int), (j: intli >  j)): recursiveint =  
if i =  j thenOelsesubp(i ,  j +  1) +  lendif .l’ 
measure:  i - j 

Here, the domain of subp  is the dependent  tuple-type 

[i: int, {j: intli 2  j}] 

(i.e., the pairs of integers in which the first component  is 
greater than or equal  to the second)  and  the function is total 
on  this domain. 

Although dependent  types and  predicate subtypes general ly 
obviate the need  to deal with partial functions, they also allow 
these to be  modeled quite straightforwardly. For example, the 
partial functions f from type tl to type ts can be  represented 
by  the following dependent  record type: 

pfun: type = [# dom: set[tJ, fun: [(dom) - tz]#]. 

(The [# ... #] brackets indicate a  record type in PVS, and  a  
set or predicate enclosed in parentheses (here dom) indicates 
the corresponding predicate subtype.) If pf is of type pfun, 
then its domain is denoted dom(pf)‘* and  its application to 
argument  x in this domain is denoted fun(pf)(x).13 This is 
a  little ugly, but by  defining the function 

pfun-wz4pf): [(dom(pf)l -+ t21 = 
(X(x: (dom(pf))): fun(pf)(x)) 

to be  a  conversion, we can write simply p!(x) and  the 
typechecker will perform the necessary expansion.  

The  earliest versions of EHDM required almost all concepts 
to be  specif ied axiomatically-thereby raising the possibility 
of, inadvertently introducing inconsistencies. Our  decisions 
to support  very powerful type-constructions and  to embrace 
the consequence that theorem-proving can be  required during 
typechecking were motivated by  a  desire to increase the 
expressive power  of those elements of the language for which 
we could guarantee conservat ive extension. On  the other hand,  
we do  not wish to exclude axiomatic specifications; these 
are often the most natural way to specify assumptions about  
the environment, and  top-level requirements. Axioms can be  
proved consistent by  exhibiting a  model-a process that is 
closely related to verification of hierarchical developments.  

The  establ ished way to demonstrate that one  level of speci- 
fication “implements” the requirements of another is to exhibit 

t ’ The measure clause specifies a  function to be  used in the termination 
proof. 

“PVS uses the notation dom(pf) rather than the more usual pf .dom to 
indicate record access. 

13Note that the predicate subtype in the type of fun(pf) will cause 
the typechecker to generate a  proof obligation requiring demonstrat ion that 
I E dom(pf) in this context. 
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an  “abstraction” (also called “retrieve”) function that induces 
a  homomorphism between the concrete and  the abstract spec- 
ification. The  required constructions can easily be  specif ied 
within our  specification languages,  but we have  found the 
process to be  tedious and  error-prone (for example, it is 
easy to over look the requirement that the abstraction function 
be  surjective). Accordingly, we have  provided mechanized 
support  for hierarchical verification since the earliest versions 
of EHDM.14 Our  mechanizat ion is based  on  the notion of 
theory interpretations [59, Section 4.71; the basic idea is 
to establish a  translation from the types and  constants of 
the “source” or abstract specification to those of a  “target” 
or concrete specification, and  to prove that the axioms of 
the source specification, when  translated into the terms of 
the target specification, become provable theorems of that 
target specification. The  difference between the use  of theory 
interpretation to demonstrate correctness of an  implementation 
and  to demonstrate consistency of a  specification is that for 
the latter, the “implementation” does  not have  to be  useful, or 
realistic, or efficient; it just has  to exist.15 

The  basic mechanism of theory interpretation is quite easy 
to implement: a  “mapping” module specifies the connect ion 
between a  source and  a  target module by  giving a  translation 
from the types and  constants of the former to those of the 
latter, and  a  “mapped” module of proof obligations is then 
generated.  Special care is needed  when  the equality relation 
on  a  type is interpreted by  something other than equality on  
the corresponding concrete type.16 This construction requires 
proof obligations to ensure that the mapped  equality is a  
congruence relation (i.e., has  the propert ies of equivalence 
and  substitutivity). 

These straightforward mechanisms have  become somewhat  
embell ished over time, as  the stress of real use  has  revealed 
additional requirements. For example, we originally assumed 
that source modules would be  specif ied entirely axiomatically. 
This proved unrealistic: modules general ly contain a  mixture 
of axiomatic and  definitional constructions, and  it is neces-  
sary for the mapping mechanism to translate definitions (and 
theorems) into the terms of the target specification. Next, we 
found that our  users wished to interpret not just single modules, 
but whole chunks of specification in which both source and  
target spanned  several modules. This is quite straightforward 
to support,  except  that care needs  to be  taken to exclude 
modules common to both source and  target ( these often include 
modules that specify mathematical prerequisites common to 
both levels). As the size of specifications increases, it becomes 
necessary to introduce more layers into the hierarchical veri- 
fication. For example, in demonstrat ing the consistency of the 
axiomatization used  to specify assumptions about  clocks [22], 

14PVS does not support this at the moment;  we arc examining a  slightly 
different approach involving quotient types. 

I5 What  is demonstrated here is relative consistency: the source specification 
is consistent if the target specification is. Generally, the target specification 
is one  that is specified definitionally, or one  for which we have some other 
good reason to believe in its consistency. 

16For example, if abstractly specified stacks are implemented by a  pair 
comprising an  array and  a  pointer, then the equality on  abstract stacks 
corresponds to equality of the implementing arrays up  ro the pointer; this 
is not the standard equality on  pairs. 

we have  a  module algorithm that uses (imports) the module 
clocks. An interpretation for algorithm will normally generate 
interpretations for the types and  constants in clocks as well. 
But if we  have  already establ ished an  interpretation for clocks, 
we will want the interpretation for algorithm to refer to it, 
not generate a  new one.  Support ing these requirements in a  
reasonable way is not difficult once  the requirements have  
been  understood. Our  exper ience has  been  that it takes some 
real-world use  to learn these requirements. 

B. Support Tools 

The previous few paragraphs have  outl ined some of the 
complicating details that must be  addressed in the support  
environment for a  specification language that provides a  rich 
type system and  theory interpretations. A consequence of the 
design decision that typechecking can require theorem proving 
is that the support  environments for EHDM and  PVS provide 
a  far closer integration between the language analysis and  
theorem proving components  than is usual. W e  discuss this in 
more detail in the section on  theorem proving. More mundane,  
but no  less important, engineer ing decisions concern the choice 
of interface, style of interaction, and  functions provided by  the 
support  tools. 

Some specification environments allow specifications to be  
expressed directly in terms of mathematical symbols such 
as  V, 3, >, and  so on. Although superficially attractive, we 
have  found that the burdens of support ing these conveniences 
outweigh the benefits, bringing in their wake such menaces  
to productivity as  structure editors and  a  plethora of mouse  
and  menu  selections. In the United States, at least, most 
scientists and  engineers are fast touch-typists, and  we find 
that a  conventional program editor provides a  more product ive 
environment for.rapid interaction than a  graphical user inter- 
face. Consequent ly,  we have  adopted the GNU Emacs editor 
as  our  interface, and  accepted an  ASCII representat ion for 
our  specifications. (A side benefit of this is that it is perfectly 
feasible to use  EHDM and  PVS from remote ASCII terminals.) 
Our  exper ience has  been  that it is the naturalness of its 
semantic foundat ion and  syntactic expression that determines 
acceptance of a  specification notation, not its lexical repre- 
sentation on  the screen. Nonetheless, we have  taken care to 
provide a  civilized concrete syntax, a  competent  prettyprinter 
and,  as  noted earlier, a  LATEX-prettyprinter .that can  produce 
attractively typeset documents  for review and  presentation. 

W e  are not opposed  to use  of mouse  and  menus  for selection 
of the major functions of our  systems, nor  to graphical 
presentat ion of certain outputs, but we have  not considered 
it worthwhile to divert development effort away from more 
fundamental  capabilities in order to provide these rather costly 
conveniences.  Recently, however,  availability of improved 
development tools has  significantly reduced the associated 
costs, and  so the latest versions of PVS do  provide pull- 
down menu  selection (using the facilities of GNU Emacs 19), 
and  graphical representat ion of module dependenc ies and  of 
proof trees (using TcYTK [60]). W e  are also investigating 
hypertext for the presentat ion of documentat ion and  proofs 
(using Mosaic). 
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Our specifications have  been  quite large, typically involving 
hundreds of distinct identifiers and  dozens  of separate modules. 
W e  have  found facilities for cross-referencing and  browsing 
essential to product ive development of large specifications 
and  verifications, especially when  returning to them after an  
absence,  or when  building on  the work of others. Browsing is 
an  on-l ine capability that allows the user to instantly refer to 
the definition or uses of an  identifier; cross-reference listings 
provide comparable information in a  static form suitable for 
typeset documentat ion. Graphical presentat ion of dependenc ies 
aids comprehension of the structure of large specifications. 

Our  specifications and  verifications are developed over 
per iods of days or weeks and  we have  found it imperative 
that the system record the state of a  development (including 
completed and  partial proofs) from one  session to the next, so  
that work can pick up  where it left off. W e  have  found it best to 
record such information continuously (so that not everything 
will be  lost if a  machine crashes) and  incrementally (so that 
work is not interrupted while the entire state is saved in a  
single shot). 

W e  have  also found it necessary to support  version man-  
agement  and  careful analysis of the consequences  of changes.  
Version management  is concerned with the control of changes  
to a  formal development (ensuring that two people do  not 
modify a  module simultaneously, for example) and  with 
tracking the consequences  of changes.  EHDM at one  time had  
quite elaborate built-in capabilities for version management ,  
maintenance of shared libraries, and  so on. These proved 
unpopular  (users wanted direct access to the underlying files), 
so  we have  now arranged matters so that EHDM and  PVS 
monitor, but do  not attempt to control, access to specification 
files. Changes  to specification files are detected by  examining 
their write-dates, and  internal data structures corresponding to 
changed  files are invalidated. Users who wish to exercise more 
control over modification to specification files can do  so using 
a  standard version control package such as  RCS. 

Tracking the propagat ion of changes  can be  performed at 
many  levels of granularity. At the coarsest level, the state of an  
entire development can be  reset when  any  part of it is changed;  
at a  finer level, changes  can be  tracked at the module level; and  
at the finest level of granularity, they can be  tracked at the level 
of individual declarations and  proofs. Once  the consequences  
of changes  have  been  propagated,  another choice needs  to 
be  made:  should the affected parts be  reprocessed at once,  
or only when  needed?  EHDM originally propagated changes  
at the module level (so that if a  module was changed  and  
its internal data structures invalidated, that invalidation would 
propagate transitively up  the tree of modules). Reprocessing 
(i.e., typechecking and  proving) took place under  user control 
and  reconstructed the internal data structures of the entire tree 
of modules. This proved expensive when  large specifications 
were involved. An unsuccessful  proof in a  module at the 
top of a  tree of modules might necessitate a  change  to an  
axiom in a  module at the bottom. Retypechecking the entire 
tree could take several minutes, with consequent  loss of 
concentrat ion and  productivity. EHDM now propagates the 
consequences  of changes  at the level of individual declarations, 
and  retypechecking is done  incrementally and  lazily (i.e., only 

when  needed),  also at the level of declarations. This requires a  
far more complex implementation, but the increase in human 
productivity is enormous,  as  the user now typically waits 
only seconds while the relevant consequences  of a  change  
are propagated.  Because it can  take several seconds,  or even  
minutes, to replay a  proof, this is done  only on  request. “Proof- 
tree analysis” (descr ibed below) identifies the state of a  proof 
dur ing an  evolving verification. 

C. Theorem Proving 

Theorem proving in support  of fairly difficult or large 
verifications requires a  rather large range of capabilities and  
attributes on  the part of the theorem prover or proof checker.  
Furthermore, we have  found that each  formal verification 
evolves through a  succession of phases,  not unlike the lifecy- 
cle in software development,  and  that different requirements 
emerge at different phases.  W e  have  identified four phases  in 
the “verification lifecycle” as  follows. 

1) Exploration: In the early stages of developing a  formal 
specification and  verification, we are chiefly concerned with 
exploring the best way to approach the chosen problem. 
Many  of the approaches will be  flawed, and  thus many  of 
the theorems that we attempt to prove will be  false. It is 
precisely in the discovery and  isolation of mistakes that formal 
verification can be  of most value. Indeed, the phi losopher 
Lakatos argues similarly for the role of proof in mathematics 
[61]. According to this view, successful complet ion is among  
the least interesting and  useful outcomes of a  proof attempt at 
this stage; the real benefit comes from failed proof attempts, 
since these chal lenge us  to revise our  hypotheses,  sharpen 
our  statements, and  achieve a  deeper  understanding of our  
problem: proofs are less instruments of justification than tools 
of discovery [62]. 

The  fact that many  putative theorems are false imposes a  
novel requirement on  theorem proving in support  of verifica- 
tion: it is at least as  important for the theorem prover to provide 
assistance in the discovery of error, as  that it should be  able to 
prove true theorems with aplomb. Most research on  automatic 
theorem proving has  concentrated on  proving true theorems; 
accordingly, few heavily automated provers terminate quickly 
on  false theorems, nor  do  they return useful information from 
failed proof attempts. By the same token, powerful heuristic 
techniques are of quest ionable value in this phase,  since they 
require the user to figure out whether a  failed proof attempt is 
due  to an  inadequate heuristic, or a  false theorem. 

2) Development:  Following the exploration phase,  we ex- 
pect to have  a  specification that is mostly correct and  a  body  
of theorems that are mostly true. Although debugging will 
still be  important, the emphasis in the development phase  
will be  on  eficient construction of the overall verification. 
Here we can expect  to be  deal ing with a  very large body  of 
theorems spanning a  wide range of difficulty. Accordingly, 
efficient proof construction will require a  wide range of 
capabilities. W e  would like small or simple theorems to be  
dealt with automatically. Large and  complex theorems will 
require human control of the proof process, and  we would like 
this control to be  as  straightforward and  direct as  possible. 
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In our  experience, formal verification of even  a  moderately 
sized example can generate large numbers  of lemmas involving 
arithmetic. Effective automation of arithmetic, that is the 
ability to instantly d ischarge formulas such as  

(where z and  y are rational numbers),  is therefore essential to 
product ive theorem proving in this context. 

Our  proof checkers include decision procedures for g round 
linear arithmetic: that is expressions involving constants, vari- 
ables, and  uninterpreted function symbols, the relations <, >, 
2, 2, =, and  #, and  the arithmetic operat ions of addition, sub- 
traction, and  multiplication, but with multiplication restricted 
to the linear case (i.e., multiplication by  literal constants only). 
These are true (i.e., complete) decision procedures over the 
reals, and  heuristically effective over the integers (we have  
only once  encountered the integer incompleteness in practice) 
1631, [641. 

It would, in our  view, be  quite infeasible to undertake 
verifications that involve large amounts  of arithmetic (such as  
clock synchronization) without arithmetic decision procedures.  
However,  it has  also been  our exper ience that seemingly nonar-  
ithmetic topics (such as  fault masking) require a  surprising 
quantity of elementary arithmetic (for example, inequality 
chaining, and  “fl” arguments in inductions). Verification 
systems that lack automation of arithmetic and  proposit ional 
reasoning require their users to waste inordinate amounts  of 
effort establishing trivial facts. 

Other common steps in proofs arising from formal verifica- 
tion are to expand  the definition of a  function and  to replace an  
instance of the left-hand side of a  (conditional) equat ion by  the 
corresponding instance of the r ight-hand side. Both operat ions 
can be  mechanized by  the technique known as “rewriting,” and  
the effectiveness of a  theorem prover is strongly inf luenced 
by  the automation and  efficiency of its rewriter. A simple 
rewriter expands  definitions and  rewrites first-order equat ions 
under  the user’s guidance. A more sophist icated rewriter 
will also consider conditional equat ions ( those of the form 
condit ion > lhs = rhs), and  may attempt certain higher- 
order cases (where it is necessary to find instantiations for 
function variables). Automatic rewriters require less guidance 
from the user and  use  heuristics to select which rewrites to 
apply. 

In our  experience, the minimum capabilities required for 
product ive theorem proving during the development phase  
include effective automation for arithmetic and  rewriting. 
However,  it is not enough  for a  prover to have  arithmetic 
and  rewriting capabilities that are individually powerful: these 
two capabilities need  to be  tightly integrated. For exam- 
ple, the arithmetic procedures must be  capable of invoking 
rewriting for simplification-and the rewriter should employ 
the arithmetic procedures in discharging the condit ions of 
a  conditional equation, or in simplifying expanded  defini- 
t ions by  eliminating irrelevant cases. Theorem provers that 
are product ive in verification systems derive much of their 
effectiveness from tight integration of powerful primitives 
such as  rewriting and  arithmetic decision procedures-and 
the real skill in developing such provers is in constructing 

these integrations [65]. More visibly impressive capabilities 
such as  the automation of proof by  induction are useful 
(and we do  provide them), but of much less importance 
than competence in combining powerful basic inference steps 
including arithmetic and  rewriting. 

An integrated collection of highly effective primitive infer- 
ence  steps is one  requirement for product ive theorem proving 
during the proof development phase;  another is an  effective 
way for the user to control and  guide the prover through 
larger steps. Even “automatic” theorem provers need  some 
human guidance or control in the construction and  checking 
of proofs. Some receive this gu idance indirectly through the 
order and  selection of results they are invited to consider 
(the Boyer-Moore prover is like this), others in the form of 
a  program that specifies the proof strategy to be  used (the 
“tactics” of LCF-style provers such as  HOL [66] are like 
this). W e  have  found that direct instruction by  the user seems 
the most product ive and  most easily understood method of 
guidance, provided the basic repertoire of operat ions is not 
too large (no more than a  dozen  or so). And we find that a  
style of proof based  on  Gentzen’s Sequent  Calculus allows 
information to be  presented to the user in a  very compact  but 
understandable form, and  also organizes the interaction very 
conveniently. 

A large verification often decomposes  into smaller parts that 
are very similar to each  other and  we have  found it useful 
to allow the user to specify customized proof “strategies” 
(similar to LCF-style tacticals) that can  automate the repetitive 
elements of the proof. W e  have  also found strategies very 
useful for constructing general -purpose proof procedures that 
are higher-level and  more automatic than the primitive proof 
procedures.  

3) Presentation: Formal verification may be  under taken for 
a  variety of purposes;  the “presentat ion” phase  is the one  
in which the chosen purpose is satisfied. For example, one  
important purpose is to provide ev idence to be  considered in 
certifying that a  system is fit for its intended application. W e  
do  not bel ieve the mere fact that certain propert ies have  been  
formally verified should constitute grounds for certification; 
the content of the verification should be  examined, and  human 
judgment brought  to bear. This means  that one  product of 
verification must be  a  genuine proof-that is a  chain of 
argument  that will convince a  human reviewer. It is this proof 
that distills the insight into why a  certain design does  its 
job, and  it is this proof that we will need  to examine if we 
subsequent ly  wish to change  the design or its requirements. 

Many  powerful theorem-proving techniques work in ways 
that do  not lend themselves to the extraction of a  readable 
proof, and  are unattractive on  this count. For example, reso- 
lution theorem provers do  not generate a  conventional proof 
at all, while heuristic methods can generate proofs that follow 
“unnatural” paths, and  low-level proof checkers overwhelm 
the reader with trivial detail. It seems to us  that the most 
promising route to mechanical ly-checked proofs that are also 
readable is to allow the user to indicate the major steps, while 
routine ones  are heavily automated and  regarded as  atomic. 

Other purposes for which verification may be  under taken 
(for example, to determine the exact assumptions that underl ie 

-. 
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a  certain theorem, or to gain insight into an  algorithm) can 
require abstracting information from a  proof, and  it is useful 
if a  theorem prover has  tools that can  present such abstracts. 
Both EHDM and  PVS, for example, can  provide a  list of all 
the definitions, axioms, and  lemmas referenced in a  proof and,  
recursively, in the proofs of its lemmas. PVS can also display 
a  graphical representat ion of the proof tree and  we are also 
investigating use  of hypertext to assist the active exploration 
of proofs. 

4) Maintenance and  Generalization: Designs are seldom 
static; user requirements may change  with time, as  may the 
interfaces and  services provided by  systems that interact with 
the one  under  study. A verification may therefore need  to 
be  revisited periodically in order to adapt  to changes.  Thus, 
in addit ion to the human-readable proof, a  second product 
of formal verification should be  a  description that guides 
the theorem prover to repeat the verification without human 
guidance. This proof description should be  robust-describing 
a  strategy rather than a  line-by-line argument-so that small 
changes  in the specification of lemmas or assumptions will not 
derail it. Some degree of automation in the theorem prover 
seems essential to this capability: it is difficult for proof 
checkers,  which require very detailed guidance, to adapt  to 
even  small changes  in a  specification. 

In addit ion to the modifications and  adjustments that may 
be  made  to accommodate changes  in the original applica- 
tion, another class of modif ications-generalizations-may 
be  made  in order to support  future applications, to distill 
general  principles, or to explore alternative assumptions and  
designs. Many  of the verifications we have  performed have  
been  general izations of earlier ones,  and  much of the benefit 
we have  derived from formal verification has  been  in the 
exploration of changed  assumptions and  modif ied algorithms. 
Investment in formal verification yields most value if its 
products can be  reused. 

Consequences  for Prover Design 

The  evolution of our  theorem proving systems to best serve 
the various requirements descr ibed above  has  followed two 
main tracks: increasingly powerful automation of low-level 
inference steps, such as  arithmetic reasoning and  rewriting, 
and  increasingly direct and  interactive control by  the user 
for the higher level steps. W e  have  found this combinat ion 
to provide greater productivity than that achieved either with 
highly automated provers that must be  kept on  a  short leash, or 
with low level proof checkers that must be  dragged towards 
a  proof. 

One  of the greatest advantages provided by  interactive 
theorem provers is the ability to back out of (i.e., undo)  
unproduct ive lines of exploration. This can often save much 
work in the long run: if a  case-split is performed too soon,  
then many  identical subproofs may be  performed on  each  of 
the branches.  A user who recognizes this can  back up  to before 
the case-split, do  a  little more work there so that the offending 
subproof  is dealt with once  and  for all, and  then invoke the 
case-split once  more. 

In the interests of enhanc ing productivity for the human 
user, we have  made  a  number  of design decisions that have  

entailed complex implementation strategies. For example, we 
allow the user to invent and  introduce new lemmas or defini- 
t ions during an  ongoing proof; this flexibility is very valuable, 
but requires tight integration between the theorem prover 
and  the rest of the verification system: the prover must be  
able to call the parser and  typechecker in order to admit 
a  new definition (and also when  substitutions are proposed 
for quantif ied variables), and  typechecking can then generate 
further proof obligations. 

A yet more daring f reedom is the ability to modify the 
statement of a  lemma or definition during an  ongoing proof. 
Much of what happens  during a  proof attempt is the discovery 
of inadequacies, oversights, and  faults in the specification that 
is intended to support  the theorem. Having to abandon  the 
current proof attempt, correct the problem, and  then get back to 
the previous position in the proof, can  be  very time consuming. 
Allowing the underlying specification to be  extended and  
modif ied during a  proof (as we do  in PVS) confers enormous 
gains in productivity, but the mechanisms needed  to support  
this in a  sound way are quite complex. 

Interactive theorem provers or proof checkers must display 
the evolving state of a  proof so  that the user can study it 
and  propose the next step. It is general ly much easier for the 
user to comprehend the proof display if it is expressed in 
the same terms as the original specification, rather than some 
canonical or “simplified” form. This means  that the external 
representat ions of structures need  to be  maintained along with 
their internal form. For example, the “let” construct is treated 
internally as  a  X-application, but must be  presented to the user 
as  a  “let,” even  after it has  undergone transformations such as  
the expansion of def ined terms appear ing within it. Obviously, 
formulas change  as proof steps are performed, but it is usually 
best if each  transformation in the displayed proof corresponds 
to an  action explicitly invoked by  the user. For example, 
EHDM always eliminates quantif iers by  Skolemization, but 
for PVS we found it best to retain quantif iers until the user 
explicitly requests a  quantifier-elimination step. 

Interactive theorem provers must avoid overwhelming the 
user with information. Ideally, the user should be  expected 
to examine less than a  screenful of information at each  
interaction. It requires powerful low level automation to prune 
(only) irrelevant information effectively. For example, irrel- 
evant  cases should be  silently d iscarded when  expanding 
definitions-so that expanding a  definition of the form 

f(x) =  if ZE = 0  then A else B endif 

in the context f(~ +  1) where z is a  natural number  should 
result in simply B. Such automation requires tight integration 
of rewriting, arithmetic, and  the use  of type information. 

An interactive prover should allow the user to attack the 
subcases of a  proof in any  order, and  to use  lemmas before 
they have  been  proved. Often, the user will be  most interested 
in the main line of the proof, and  may wish to postpone minor 
cases and  boundary  condit ions until satisfied that the overall 
argument  is likely to succeed.  In these cases, it is necessary to 
provide a  macroscopic “proof-tree analyzer” to make sure that 
all cases and  lemmas are eventually dealt with, and  that all 
proof obligations arising from typechecking are discharged. In 
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addit ion to this “honesty check,” our  systems can identify all 
the axioms, definitions, assumptions and  lemmas used in the 
proof of a  formula (and so on  recursively, for all the lemmas 
used in the proof). Such information helps eliminate unneces-  
sary axioms and  definitions from theories, and  identifies the 
assumptions that must be  validated by  external means.  

The  main difference between the EHDM and  PVS theorem 
provers is that the latter is interactive and  incorporates the tech- 
n iques descr ibed above  in order to enhance  the effectiveness of 
its interaction. Users told us  that they found PVS “at least an  
order of magni tude” more product ive in use  than EHDM, and  
we were, ourselves, quite satisfied with its per formance when  
exploring the main line of difficult proofs. However,  we found 
that it required a  little too much interaction when  deal ing with 
straightforward lemmas and  minor proof branches.  W e  were 
able to remedy this by  defining “strategies” to automate most 
of the straightforward proofs that we encountered.  

PVS provides a  simple “strategy languagi” for combin- 
ing basic proof procedures into strategies that are akin to 
the tacticals of LCF-like provers. This can easily lead to 
a  proliferation of rather special ized strategies, however,  so  
as  we gained exper ience we amalgamated many  strategies 
into a  few very powerful ones  of broad applicability. The  
functionalities of the primitive proof procedures were adjusted 
to make them more suitable as  building blocks for the higher 
level strategies. W ith this arrangement,  we find that it is only 
necessary to remember  about  a  dozen  high level strategies, 
plus the primitive procedures (there are about  20  of them), in 
order to accomplish proofs using an  effective combinat ion of 
interaction and  automation. Examples of higher level strate- 
gies provided in PVS are one  that establ ishes propert ies of 
recursively-defined functions by  induction, and  another that 
is very effective on  “obvious” lemmas and  proof branches.  
This strategy sets up  all def ined functions as  automatic rewrite 
rules, and  then iteratively performs Skolemization, rewriting, 
proposit ional simplification, heuristic instantiation, and  applies 
arithmetic and  other decision procedures.  The  effectiveness of 
this strategy is very largely due  to the way the rewriter is 
controlled and  to its interaction with the decision procedures.  
Using rewriting to expand  every function definition at every 
opportunity is seldom effective (and with recursive functions 
it is nonterminating): many  function definitions contain em- 
bedded  if-then-else constructs and  expanding these blindly 
can lead to exponential  case-splits. The  control technique 
employed most often by  the PVS rewriter will only expand  
a  function definition whose body  has  a  top-level if-then-else if 
the decision procedures are able to simplify the if test to either 
true or false. This technique general ly keeps the rewriter on  
a  product ive path, and  the case-splits under  control. 

Our  use  of strategies may be  contrasted to the use  of tactics 
in LCF-style provers such as  HOL [66]. Whereas  we use 
powerful primitive inferences and  employ strategies to build 
yet higher-level automation, HOL builds almost everything 
using tactics, since its built-in proof procedures perform only 
the elementary inferences of its logic. W e  doubt  that the 
efficiency required to complete the verifications descr ibed here 
at reasonable cost can  be  achieved using the HOL approach.  
The  argument  advanced in its favor is manifest soundness.  

It is true that our  decision procedures and  other powerful 
primitive inferences have  more complicated implementations 
than the elementary inferences of logic and  require (and have  
received) careful scrutiny to ensure soundness,  but most of 
their complexity is concerned with search, where bugs  will 
affect termination and  completeness, not soundness.  Users 
must weigh the arguments and  the ev idence and  make their 
own choices in these matters. 

Although the automation descr ibed above  proved very ef- 
fective in our  verification of the fault-tolerant algorithms and  
architectures, it foundered when  we appl ied it to AAMPS 
and  other large hardware examples. The  basic approach still 
seemed effective, for these hardware examples are very reg- 
ularly structured and  the proofs are conceptual ly straightfor- 
ward, but PVS was overwhelmed by their sheer  size. Tens 
of minutes could be  spent  in performing the large numbers  
of rewrites required, and  the resulting formulas were so large 
that the simple proposit ional simplifier used  in PVS ran out of 
space (it would also generate subgoals that were permutat ions 
of other subgoals).  

W e  overcame these difficulties using an  off-the-shelf BDD 
package [67] to provide very efficient proposit ional simplifi- 
cation, and  by  caching information about  rewrites. The  cache 
is a  hash-table where, corresponding to a  term a, the result of 
the most recent rewriting of a  is kept a long with the logical 
“context” at the time of the rewrite. The  context consists 
of the congruence closure data structure maintained by  the 
decision procedures and  the set of rewrite rules current at the 
time of rewrite. If the term a  is encountered again within 
the same logical context, the result of the rewrite is taken 
from the cache and  the rewriting steps are not repeated. The  
information that an  expression could not be  rewritten in a  
context is also cached (and is probably more heavily used  than 
the information about  successful rewriting). Use of BDD’s 
and  cached rewrites significantly increases the performance 
of PVS on  hardware examples (for example, they allow the 
microcode of the benchmark  “Tamarack” processor to be  
verified completely automatically in about  five minutes [68]) 
and  these enhancements  were instrumental in our  ability to 
undertake mechanized analysis of the AAMPS. 

IV. CONCLUSIONS 

W e  have descr ibed our  exper iences in developing 
mechanical ly-checked formal verifications for several 
quite difficult and  large examples arising in fault-tolerant 
systems and  microprocessor design. As well as  ourselves, 
specifications and  verifications were developed by  col leagues 
at SRI who had  not been  involved in the development of our  
tools, and  by  collaborators thousands of miles away at Collins 
Commercial  Avionics and  at NASA Langley Research Center. 
The  evolution of our  languages and  tools in response to the 
lessons learned from these exper iences took us  in the direction 
of increasingly powerful type systems, and  increasingly 
interactive and  powerfully automated theorem proving. 
Powerful type systems allow many  constraints to be  embedded  
in the types, so  that the main specification is uncluttered and  
typechecking can provide a  very effective consistency check. 
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Effectively automated and  user-guided theorem proving also 
assists the early detection of errors, and  the product ive 
development of proofs whose information content can  assist 
in the certification of safety-critical systems [54]. 

W e  found that formal verification provides many  bene-  
fits besides proof of “correctness.” These include debugging 
(i.e., discovery of incorrectness), complete enumerat ion of 
assumptions, sharpened statements of assumptions and  lem- 
mas, streamlined arguments,  and  an  enhanced  understanding 
that can  lead to further improvements. Furthermore, a  formal 
specification and  verification is a  reusable intellectual resource 
that can  support  reliable and  relatively inexpensive explo- 
ration of design alternatives and  the consequences  of changed  
assumptions or requirements. 

Most of the techniques we employ were p ioneered by  others. 
For example, Nuprl [69] and  Veritas [70] provide predicate 
subtypes and  dependent  types; theory interpretations were used  
in Iota [71]; our  theorem proving techniques draw on  LCF 
[ 161,  the Boyer-Moore prover [72], [73], and  on  earlier work at 
SRI [ 131.  Our  systems differ from others in tightly integrating 
capabilities that usually occur separately; this has  al lowed us to 
provide expressive specification languages and  powerful and  
very effective mechanizat ion within a  classical framework. It 
should be  noted that many  of the design choices we have  
made  are tightly coupled: for example, predicate subtypes 
and  dependent  types bring great r ichness of expression to a  
logic of total functions but require theorem proving to ensure 
type correctness, which is only feasible if the theorem prover 
is highly effective; effective theorem proving needs  decision 
procedures for arithmetic and  equality over uninterpreted 
function symbols, and  these require that functions are total. 

W e  consider these design choices to have  served us  well 
and,  at some risk of complacency,  we are satisfied with them; 
al though we plan to improve on  the details of our  languages 
and  mechanizat ions, and  cont inue to seek major improvements 
in efficiency, we do  not expect  to change  the main decisions. 
Direct compar isons with alternative approaches would support  
objective evaluation, but will not be  possible until more 
verification systems are capable of undertaking mechanical ly 
checked verifications of the scale and  difficulty descr ibed here. 

For the future, we are investigating techniques for earlier 
exploration and  validation of specifications, so  that the path 
to eventual confrontation with a  theorem prover is made  
more gradual.  The  techniques we are examining include di- 
rect execut ion or “animation,” state-exploration, and  fault-tree 
analysis. W e  are also examining ways to extract more useful 
diagnostic information from failed proof attempts, such as  
returning counterexamples from the decision procedures.  In 
collaboration with David Dill at Stanford University, we are 
studying techniques for combining theorem proving with state- 
exploration and  model-checking methods. In this regard, we 
have  developed an  experimental translator from Mur$ [74] to 
PVS, and  have  connected a  BDD-based decision procedure for 
the modal  y-calculus to PVS, giving us  similar capabilities to 
SMV [75]. W e  are also exploring more efficient approaches 
to hardware verification [76], [77] and  improved support  for 
requirements specifications in the tabular style advocated by  
Pamas and  others [78], [79]. 
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