
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 2.1, NO, 2, FEBRUARY 1995 107

Formal Verification for Fau lt-To lerant
Architectures: Prolegomena to the Design of PVS

Sam Owre, John Rushby, Member, IEEE, Natarajan Shankar, and Friedrich von Henke

Abstract- PVS is the most recent in a series of verifica-
tion systems developed at SRI. Its design was strongly influ-
enced, and later refined, by our experiences in developing for-
mal specifications and mechanical ly checked verifications for the
fault-tolerant architecture, algorithms, and implementations of
a model “reliable computing platform” (RCP) for life-critical
digital flight-control applications, and by a collaborative project
to formally verify the design of a commercial avionics processor
called AAMPS.

Several of the formal specifications and verifications performed
in support of RCP and AAMPS are individually of considerable
complexity and difficulty. But in order to contribute to the overall
goal, it has often been necessary to modify completed verlfi-
cations to accommodate changed assumptions or requirements,
and people other than the original developer have often needed
to understand, review, build on, modify, or extract part of an
intricate verification.

In this paper, we outline the verifications performed, present
the lessons learned, and describe some of the design decisions
taken in PVS to better support these large, difllcult, iterative,
and collaborative verifications.

Index Terms- Byzantine agreement, clock synchronization,
fault tolerance, flight control, formal methods, formal
specification, hardware verification, theorem proving, verification
systems, PVS.

I. INTRODUCTION

w
E CONSIDER the chief benefit of formal methods is
that they allow certain quest ions about computat ional

systems to be reduced to calculation. For these methods to
be useful in practice, calculations relevant to problems of
substantial scale and complexity must be performed efficiently
and reliably. This requires mechanized tools, and the main
focus of our research has been the development of tools for
formal methods that are sufficiently powerful that they can
be appl ied effectively to problems of intellectual or industrial
significance.

This paper outl ines a number of verifications performed
with our tools on applications related to aircraft flight control
and descr ibes their inf luence on the design of PVS, our
latest verification system. The rest of this introductory section

Manuscript received October 1992. Recommended by J. Woodcock and P.
G. Larsen. This work was supported by the National Aeronautics and Space
Administration Langley Research Center under Contracts NASI 17067 and
NASl 18969.

S. Owre, J. Rushby, and N. Shankar are with the Computer Science
Laboratory, SRI International, Menlo Park, CA 94025 USA.

F. von Henke is with the Computer Science Laboratory, SRI International,
Menlo Park, CA 94025 USA. He is also with Fakultlt ftir Informatik,
Universitlt Ulm, Germany.

IEEE Log Number 9408524.

descr ibes the problem domain for the formal verifications con-
sidered here, and briefly introduces our tools. The verifications
performed are descr ibed in Section II; the lessons we have
learned and their inf luence on the design of PVS are presented
in Section III; brief conclusions are given in Section IV.

A. The Problem Domain: Digital Flight Control Systems

Catastrophic failure of digital flight-control systems for
passenger aircraft must be “extremely improbable”; a require-
ment that can be interpreted as a failure rate of less than
lo-’ per hour [l, paragraph lO.b]. This must be achieved
using electronic devices such as computers and sensors whose
individual failure rates are several orders of magni tude worse
than the requirement. Thus, extensive redundancy and fault
tolerance are needed to provide a comput ing resource of ad-
equate reliability for flight-control applications. Organizat ion
of redundancy and fault-tolerance for ultra-high reliability is
a chal lenging problem: redundancy management can account
for half the software in a flight-control system [2] and, if less
than perfect, can itself become the primary source of system
failure [31.

There are many candidate architectures for the ultra-reliable
“comput ing platform” required for flight-control applications,
but a general approach based on rational foundat ions was
establ ished in the late 1970’s and early 1980’s by the SIFT
project [4]: several independent comput ing channels (each
having their own processor) operate in approximate synchrony;
single source data (such as sensor samples) are distributed to
each channel in a manner that is resistant to “Byzantine” faults’
[S], so that each good channel gets exactly the same input data;
all channels run the same application tasks on the same data at
approximately the same time and the results are submitted to
exact-match majority voting before being sent to the actuators.
Failed sensors are dealt with by the sensor-condit ioning and
diagnosis code that is common to every channel; failed chan-
nels are masked by the majority voting of actuator outputs.
The original SIFT design suffered from performance problems,
but several effective architectures based on this general idea
have since been developed, including one (called MAFT) by
a manufacturer of flight-control systems [6].

’ Strictly, a Byzantine fault-tolerant algorithm is one that makes no
assumptions about the behavior of faulty components; it can be thought of
as one that tolerates the “worst possible” (i.e., Byzantine) faults. In this
sense, Byzantine faults are generally considered to be those that display
asymmetric symptoms: sending one value to one channel and a different value
to another, thereby making it difficult for the receivers to reach a common
view. Symmetric faults deliver wrong values but do so consistently. Manifest
faults are those that can be detected by all nonfaulty receivers.

0098-5589/95$04.00 0 1995 IEEE

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

These fault-tolerant architectures must be able to withstand
multiple faults, and it can require an excessive amount of
redundancy to do this if failed channels are left operating (e.g.,
seven channels are required to withstand two simultaneously
active Byzantine faults). Reconfiguration to remove faulty
channels reduces the redundancy required, provided further
faults do not arrive before reconfiguration has been completed
(e.g., five channels are sufficient to withstand two Byzantine
faults if the system can reconfigure between arrival of the
first and second faults). However, reconfiguration adds con-
siderable complexity to the design, and can thereby promote
design faults that reduce overall reliability.

Experimental data shows that the large majority of faults
are transient (typically single event upsets caused by cosmic
rays, and other passing hazards): the device temporarily goes
bad and corrupts data, but then (possibly following a reset
interrupt from a watchdog timer) it restores itself to normal
operation. The potential for lingering harm remains, however,
from the corrupted data that is left behind. This contamination
can gradually be purged if the computing channels vote
portions of their internal state data periodically and replace
their local copies by majority-voted versions. This process
provides self-stabilizing transient recovq; after, a while, an
afflicted processor will have completely recovered its health,
refreshed its state data, and become a productive member of
the community again, The viability of this scheme depends
on the recovery rate (which itself depends on the frequency
and manner in which state data are refreshed with majority
voted copies, and on the pattern of dataflow dependencies
among the application tasks) and on the fault arrival rate.
Markov modeling shows that a nonreconfigurable architecture
with transient recovery can provide fully adequate reliability
even under fairly pessimistic assumptions.

We mentioned earlier that the distribution of single-source
data must be done in a manner that is resistant to Byzantine
faults. The clock synchronization that keeps the channels
operating in lock-step must be similarly fault tolerant. Byzan-
tine fault-tolerant algorithms are known for both the sensor
distribution and clock synchronization problems, but they
suffer from some disadvantages. First, the standard Byzantine
fault-tolerant clock-synchronization algorithms do not provide
transient recovery: there is no fully analyzed mechanism
that allows a temporarily disturbed clock to get back into
synchronization with its peers. Second, conventional Byzan-
tine fault-tolerant algorithms treat all faults as Byzantine and
therefore tolerate fewer simple faults than less sophisticated
algorithms. For example, a five-channel system ought to be
able to withstand two simultaneous symmetric faults (by
ordinary majority voting), and as many as four manifest
faults (by simply ignoring the manifestly faulty values). Yet a
conventional Byzantine fault-tolerant algorithm is only good
for one fault of any kind in a five-channel system. To overcome
this, the MAFT project introduced the idea of hybrid fault
models and of algorithms that are maximally resistant to
simultaneous combinations of faults of different types [7].

Although the principles just sketched are well understood,
fully credible analysis of the necessary algorithms and their
implementations (which require a combination of hardware

and software), and of their synthesis into a total architecture,
has been lacking.2 In 1989, NASA’s Langley Research Center
began a program to investigate use of formal methods in the
design and analysis of a “reliable computing platform” (RCP)
for flight-control applications. We supplied our EHDM and
(later) PVS verification systems to NASA Langley, and have
collaborated closely with researchers there. The overall goal
of the program is to develop mechanically checked formal
specifications and verifications for the architecture, algorithms,
and implementations of a model RCP that is resilient with
respect to a hybrid fault model that includes Byzantine and
transient faults.

This is a rather ambitious goal, since the arguments for
correctness of some of the individual fault-tolerant algorithms
are quite intricate, and their synthesis into an overall ar-
chitecture is of daunting complexity. Because mechanized
verification of algorithms and fault-tolerance arguments of
the difficulty we were contemplating had not been attempted
before, we did not have the confidence to simply lay out
a complete architecture and then start verifying it. Instead,
we first isolated some of the key challenges and worked
on those in a relatively abstracted form, and then gradually
elaborated the analysis, and put some of the pieces together.
The process is still far from complete and we expect the
program to occupy us for some time to come.3 Later in the
program, the goals expanded to include transfer of formal
verification technology to US aerospace companies. As part
of this technology transfer, we and NASA established a
collaboration with Collins Commercial Avionics to apply
formal verification to the hardware design and microcode of an
advanced commercial avionics computer called AAMPS. This
stressed our tools to their limits and led to further refinements
in their implementation.

Before describing the verifications performed with them in
more detail, we briefly introduce our tools.

B. Our Verification Systems
EHDM, which first became operational in 1984 [l l] but

whose development still continues, is a system for the de-
velopment, management, and analysis of formal specifications
and abstract programs that extends a line of development that
began with SRI’s original Hierarchical Development Method-
ology (HDM) of the 1970’s [12]. EHDM ‘s specification
language is a higher order logic with a rather rich type system
that includes predicate subtypes. EHDM provides facilities
for grouping related material into parameterized modules and
supports a form of hierarchical verification in which the
theory described by one set of modules can be shown to
interpret that of another; this mechanism is used to demonstrate
correctness of implementations, and also the consistency of
axiomatizations. EHDM provides a notion of implicit program
“state” and supports program verification in a simple subset

*Some aspects of SIFT-which was built for NASA Langley-were
subjected to formal verification [8], but the treatment was far from complete.

3CLI Inc., and ORA Corporation also participate in the program, using their
own tools. Descriptions of some of their work can be found in [9] and [lo],
respectively. The overall program is not large; it is equivalent to about three
full-time staff at NASA, and about one each at CLI, ORA, and SRI.

OWRE er al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 109

of Ada. However, these capabilities were not exploited by the
verifications descr ibed here: all algorithms and computat ions
were descr ibed functionally. The EHDM tools include a parser,
prettyprinter, typechecker, proof checker, and many browsing
and documentat ion aids, all of which use a customized GNU
Emacs as their interface. Its proof checker is built on a decision
procedure (due to Shostak 1131) for a combinat ion of g round
theories that includes linear arithmetic over both integers and
rationals. EHDM’s proof-checker is not interactive; it is guided
by proof descriptions prepared by the user and included as
part of the specification text [14].

Development of PVS, our most recent verification sys-
tem, started in 1991; it was built as a lightweight prototype
for a “next generat ion” version of EHDM, and in order to
explore ideas in interactive proof checking. Our goal was
considerably greater productivity in mechanical ly-supported
verification than had been achieved with other systems.

The specification language of PVS is similar to that of
EHDM, but has an even richer type system that includes
dependent types. However, PVS omits the support for
hierarchical verification and for program verification present
in EHDM. The PVS theorem prover includes similar
decision procedures to EHDM, but provides much additional
automation-including an automatic rewriter, and use of
BDD’s (binary decision programs) for proposit ional simplifi-
cation-within an interactive environment that uses a sequent
calculus presentat ion [15]. The primitive inference steps of
the PVS prover are rather powerful and highly automated,
but the selection and composit ion of those primitive steps
into an overall proof is performed interactively in response
to commands from the user. Proof steps can be composed
into higher level “strategies” that are similar to the tactics of
LCF-style provers [161.

Specifications in EHDM and PVS can be stated construc-
tively using a number of definitional forms that provide
conservat ive extension, or they can be given axiomatically,
or a mixture of both styles can be used. The built-in types
of EHDM and PVS include the booleans, integers, and ra-
tionals; enumerat ions and uninterpreted types can also be
introduced, and compound types can be built using (higher-
order) function and record constructors (PVS also provides
tuples and recursively-defined abstract data types). Standard
theories def ined in terms of the basic types are pre loaded into
both systems; in the case of PVS, for example, these provide
sets, lists, trees, a constructive representat ion of the ordinals
up to co, and many other useful constructions.

The distinguishing feature of both EHDM and PVS is
the tight and mutually support ive integration between their
specification languages and theorem provers. For example,
the type systems of both languages include features (such
as predicate subtypes) that render typechecking algorithmi-
cally undecidable: in certain cases, the typechecker needs the
services of the theorem prover. Conversely, type predicates
provide additional information to the theorem prover and
thereby increase the effectiveness of its automation.

It is not easy to directly compare EHDM and PVS with other
approaches to formal methods, such as those embodied in the
Z and VDM notations, or the Boyer-Moore theorem prover,

since they are based on very different foundations. The HOL
system is based on similar foundat ions to EHDM and PVS, but
its language, proof-checker, and environment are much more
austere than those of our systems. Over several years of ex-
perimentation, we have found that our specification languages
have permitted concise and perspicous treatments of all the
examples we have tried, and that the PVS theorem prover, in
particular, is a more product ive instrument than others we have
used. The PVS system is freely available under l icense from
SRI International. It can be obtained by anonymous ftp from
ftp.csl.sr i .com/pub/pvsorviatheWorldWideWeb
from http://www.csl.sri.com/pvs.html. Prospec-
tive users of EHDM should contact the authors for information
on its availability.

II. FORMAL VERIFICATIONS PERFORMED

In this section we descr ibe some of the verifications per-
formed using EHDM and PVS. W e concentrate on those
under taken as part of our work with NASA, since these
span several years and have had the greatest impact on the
development of EHDM, and the design of PVS. Other areas of
applications include real-time systems, where PVS has been
used by us [17], [18], and by others working independent ly
[19], to formalize and verify real-time properties.

A. The Interactive Convergence Clock
Synchronizat ion Algorithm

The first verification we undertook in NASA’s program
was of Lamport and Melliar-Smith’s Interactive Convergence
Algorithm (ICA) for Byzantine fault-tolerant clock synchro-
nization. At the time, this was one of the hardest mechanized
verifications that had been attempted and we began by simply
trying to reproduce the arguments in the journal paper that
introduced the algorithm [20]. Eventually, we succeeded, but
d iscovered in the process that the proofs or statements of
all but one of the lemmas, and also the proof of the main
theorem, were f lawed in the journal presentation. In devel-
oping our mechanical ly-checked verification we eliminated
the approximations used by Lamport and Melliar-Smith and
streamlined the argument. W e were able to derive a joumal-
style presentat ion from our mechanized verification that is
not only more precise than the original, but is simpler, more
uniform, and easier to follow [21], [22]. Our mechanized
verification in EHDM took us a couple of months to complete
and required about 200 lemmas (many of which are concerned
with “background knowledge,” such as summation and prop-
erties of the arithmetic mean, that are assumed in informal
presentations).

W e have modif ied our original verification several times. For
example, we were unhappy with the large number of axioms
required in the first version. Since axioms can introduce
inconsistencies, definitions are often to be preferred, but the
early version of EHDM lacked the necessary mechanisms.
Later, when definitional forms guaranteeing conservat ive ex-
tension were added to EHDM, we were able to eliminate
the large majority of our axioms in favor of definitions;
the axioms that remain are used to state assumptions about

110 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

the environment and constraints on parameters-properties
that are best treated axiomatically rather than definitionally.
Even so, Bill Young of CLI, who repeated our verification
using the Boyer-Moore prover [23], found that one of the
remaining axioms was unsatisfiable in the case of drift-free
clocks. We adopted a repair suggested by him (a substitution
of 5 for <), and also an improved way to organize the
main induction. The defective axiom identified by Bill Young
did not introduce an inconsistency; rather, it excluded an
intended model. Consistency of axioms can be established
by exhibiting a model, and we have since done this for our
current specification of ICA using the theory interpretation
mechanism of EHDM. However, checking that an axiomatic
specification captures all (and only) the intended models
does not lend itself to a similarly definitive test: it is really
a problem of validation (“does the specification say what
is intended?‘), and must be examined through the human
processes of review, introspection, and the exploration of test
cases. Formal verification can assist this validation activity by
exposing all assumptions, by sharpening their statements, and
by allowing the mechanized examination of test cases.

When we first completed our verification of ICA, we
assumed that was the end of the matter-the final step in
understanding and documenting the algorithm. Later, we dis-
covered that availability of a mechanically checked specifi-
cation and verification opened new opportunities for further
investigations.

The first of these was initiated by our colleague Erwin
Liu, who developed and formally verified in EHDM the
design of a hardware circuit to perform part of the clock-
synchronization function [24]. During circuit design, it became
apparent that one of the assumptions of ICA (namely, that the
initial clock corrections are all zero) is very inconvenient to
satisfy in an implementation. We explored the conjecture that
this assumption is unnecessary by simply eliminating it from
the formal specification and rerunning all the proofs (which
takes about 10 minutes on a Sun SPARCStation 2) in order to
see which ones no longer succeeded. We found that the proofs
of a few internal lemmas needed to be adjusted, but that the
rest of the verification was unaffected.

Another change was stimulated by Palumbo and Graham
of NASA, who built equipment for experimenting with
clock-synchronization circuitry and found that the observed
worst-case skews were significantly better than predicted
[25]. They showed informally that observation and theory
could be brought into much closer agreement by changing
the modeling of errors in the reading of clock values to use
the fact that there is no read-error when a processor reads
its own clock. This improvement leads to reductions of 10%
to 25% in numerical estimates of the worst-case clock skew
[26]. Extending the formal verification of ICA to accommodate
Palumbo and Graham’s improved bound required development
of a body of lemmas concerning finite summations. Clock
skew between two nonfaulty processors p and q is influenced
by their individual skews with processor T. A bound on the
maximum skew between p and q is obtained by summing these
contributions over all T. Previously, it had only been necessary
to split this summation into two-according to whether

processor T is faulty or nonfaulty-and an ad-hoc formal
treatment was adequate. For Palumbo and Graham’s bound,
it was necessary to split the summation further according to
whether T is the same as one of p or q, and it seemed better
to develop a more general theory of summations.

Availability of this general theory then made it feasible to
extend ICA to a hybrid fault model (where the summation
needs to be further subdivided according to the different
kinds of fault). This was accomplished in just a few days
of work, and provides a formally verified algorithm that has
significantly better fault tolerance than the original algorithm
[26]. Among all clock-synchronization algorithms suitable
for architectures of the kind used in digital flight-control
applications, this hybrid variant of ICA seems to provide the
most robust fault tolerance for a given level of redundancy.

B. Other Clock Synchronization Algorithm

There are alternatives to ICA that may be easier to im-
plement. Also, there is a choice in formalizations of clock
synchronization whether clocks are modeled as functions from
“clock time” to “real time” or the reverse. ICA does it the first
way, but the other seemed to fit better into the arguments for
an overall architecture. Accordingly, we next embarked on . a mechanized verification of Schneider’s generalized clock-
synchronization protocol, which gives a uniform treatment that
includes almost all known synchronization algorithms [27],
and models clocks in the “real time” to “clock time” direction.
As before, we found a number of small errors in the original
argument and were able to produce an improved journal-style
presentation as well as the mechanically-checked proof [28].

This general verification, undertaken by Shankar using
EHDM, depends on 11 constraints that must be satisfied by any
specific instantiation of the general theory. Shankar verified
that the instantiation that characterizes ICA satisfies these
constraints, thereby providing an independent verification of
this algorithm. Paul Miner of NASA argued that one of the
constraints (called “bounded delay”) is often quite difficult
to establish for a given instantiation-almost as difficult as
proving synchronization in the first place. Furthermore, by
modifying Shankar’s treatment, he was able to verify that this
condition could be established once and for all from suitably
modified versions of the other 10 constraints [29]. Using this
simplified approach, he then formally specified and verified the
instantiation that characterizes the very attractive Welch-Lynch
fault-tolerant mid-point algorithm [30].

Miner and colleagues at Indiana University later developed
and implemented a verified clock synchronization circuit that
implements this algorithm [31]. Several formal methods were
used in their design and implementation. The register transfer
level architecture was developed using the Digital Design
Derivation (DDD) system from Indiana [32]: this transforms
an abstract state machine specification into a concrete ar-
chitecture by applying a number of correctness-preserving
transformations. Most of the transformations used were built-
in to DDD, but some additional ad-hoc transformations were
required; these were justified using PVS. The register trans-
fer level description was then transformed into a gate-level

OWRE er al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 111

description using a combination of standard “projections”
provided by DDD and custom projections justified in PVS.
Finally, a BDD-based tautology checker was used to estab-
lish equivalence between some of the combinational circuits
obtained by projection and more efficient ones available in a
standard library.

Miner has also shown that a slightly adjusted version of
the Welch-Lynch midpoint algorithm provides self-stabilizing
transient recovery [29, ch. 61. Formal verification of the
general form of this extension is a significant challenge for
the future.

C. Byzantine Agreement

Turning from fault-tolerant clock synchronization to sen-
sor distribution, we next focussed on the “Oral Messages”
algorithm for Interactive Consistency [33].4 Bevier and Young
at CLI, who had already verified this algorithm, found it “a
fairly difficult exercise in mechanical theorem proving” [34].
We suspected that their treatment was more complex than
necessary, and attempted an independent verification. We were
able to complete this in less than a week, and found that one
of the keys to simplifying the argument was to focus on the
symmetric formulation (which is actually the form required),
rather than the asymmetric Byzantine Generals form [35].

Because of its manageable size and complexity (it is an
order of magnitude smaller than the clock-synchronization
proofs), we used verification of the Oral Messages algorithm as
a test-case in the development of the theorem prover for PVS.
Eventually we were able to construct the necessary proofs
interactively in under an hour (starting from the specification
and a couple of minor lemmas). Thus equipped, we turned to
an important variation on the algorithm due to Thambidurai
and Park [7] that uses a hybrid fault model, and thereby pro-
vides greater fault tolerance than the classical algorithm. Here
we found not merely that the journal-style argument for the
correctness of the algorithm was flawed, but that the algorithm
contained an outright bug. We proposed a modified algorithm
and, together with our colleague Pat Lincoln, began to formally
verify its correctness-until we found that it, too, was flawed.

The difficulty in discovering the flaw in our modified
algorithm was due to an unrelated error in one of the axioms
of our specification. The modified algorithm uses a “hybrid
majority vote” function (i.e., majority vote with error values
excluded). We had axiomatized the properties required of this
function, rather than given an implementation, and had got it
wrong: we had excluded the values that should be manifestly
erroneous (i.e., that came from manifestly faulty processors),
rather than those that actually were. In other words, our voter
was “omniscient.” This flaw in the axiomatization masked
the bug in our algorithm, so that it was provably “correct,”
but unimplementable (because the omniscient voter cannot be
realized in practice). Pat Lincoln noticed the problem after
a couple of days, but this experience underscores the need
to be very skeptical of axiomatic specifications and the need

41nteractive consistency is the problem of distributing consistent values to
multiple channels in the presence of faults [5]. It is the symmetric version of
the Byzantine Generals problem, and should not be confused with interactive
convergence, which is an algorithm for clock synchronization.

to validate them by showing that they are satisfied by some
(intended) model. In this case, attempting to show that a
specific majority-vote algorithm satisfied our axioms would
have revealed the error.

Once we had identified our mistake, we were able to repair it
and to develop and formally verify a new and correct algorithm
for Interactive Consistency under a hybrid fault model [36],
[37]. And this time, we did verify an implementation (a
modified version of the Boyer-Moore linear-time MJRTY
algorithm [38]) against our axioms for a hybrid majority voter
[39]. Overall, this work took less than two weeks, and was
primarily undertaken by Pat Lincoln as his first exercise in
mechanized formal verification using PVS.

As with clock synchronization, availability of a formally
verified algorithm for hybrid interactive consistency created
new opportunities for the rapid and reliable exploration of
variations. One of these is a version of the algorithm for the
architecture of the “Fault Tolerant Processor” (FTP) developed
at the C. S. Draper Laboratory [40], [41]. A fundamental
result regarding Interactive Consistency states that at least
3n + 1 processors are required to withstand n simultaneous
Byzantine faults [5]; thus, in particular, four processors are
required to withstand a single fault. Traditionally, the fault-
tolerant architecture is symmetrical, and all four processors
are identical. The FTP architecture breaks with this tradition
and uses only three full processors, plus three much simpler
“interstages” whose only function is to relay messages between
the main processors.

The FTP architecture is an attractive alternative to a con-
ventional four-plex, since is should be cheaper and more
reliable (cost and fault arrival rate are largely determined by
the number of processors). Published accounts, however, do
not provide a full description and analysis of the interactive
consistency algorithm for FTP. Building on our previous
treatments of interactive consistency algorithms, we were able
to develop a formally specified and verified algorithm for
FTP in a matter of days. This algorithm not only extends the
analysis to allow some processors to lack interstages (as may
arise following reconfiguration), but also employs a hybrid
fault model [42] to withstand a wider range of fault behaviors.

D. Hierarchical Verijcation of the Reliable
Computing Platform

Clock synchronization and interactive convergence are key
algorithms in the architecture for the Reliable Computing
Platform (RCP), but it is the argument for fault tolerance and
transient recovery of the overall architecture that is the main
challenge.

A model for the overall architecture of RCP, and the
argument for its correctness, were developed by Rick Butler,
Jim Caldwell and Ben Di Vito at NASA. Their model and
verification were formal, in the style of a traditional presenta-
tion of a mathematical argument [43]. Working in parallel, we
developed a formal specification and verification of a slightly
simplified, but also rather more general model [44]. Before
formally specifying and verifying our model in EHDM, we
developed a description and proof with pencil and paper. This

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

description was developed with specification in EHDM in
mind; it was built from straightforward mathematical concepts
and was transliterated more or less directly into EHDM in a
matter of hours. The formal verification took about three weeks
of part-time work. Some of this time was required because the
formal verification establ ishes a number of subsidiary results
that were glossed over in the pencil and paper version, and
some of it was required because EHDM’s theorem prover
lacked a rewriter at that time. However, the mechanical ly
verified theorem is also stronger than the pencil and paper
version. The stronger theorem requires a proof by Noether ian
induction (as opposed to simple induction for the weaker
theorem), which is rather tricky to state and carry out in semi-
formal notation, but no more difficult than simple induction
in a mechanized setting.

The property establ ished by this verification is that, subject
to specif ied assumptions, a replicated collection of,processors
using majority voting can provide the same external behavior
in the presence of faults as a single ideal processor that suffers
no faults. The assumptions include those of synchronization,
interactive consistency for sensor input, and fault contain-
ment. (The last of these requires that damage to state data
cannot propagate from one application task to another in a
nonfaulty processor; in practice it is achieved using memory
management hardware).

The most ambit ious formal verification carried out in the
program so far was performed by Rick Butler and Ben Di Vito
at NASA: it e laborates the two-level model descr ibed above
into a six-level hierarchy that connects the ideal fault-free
single processor all the way down to the details of task man-
agement, interprocessor communicat ion, and memory manage-
ment [45], [46]. The topmost level is called the uniprocessor
synchronous (US) model: it is essentially the correctness
criterion-a single computer that never fails. The level below
this is the replicated synchronous (RS) model, which is similar
to the fault-masking model descr ibed above; below this is the
distributed synchronous (DS) model, which introduces the fact
that communicat ion between channels takes time; below this
is the distributed asynchronous (DA) model, which connects
to the clock synchronizat ion condit ions and recognizes that the
channels are only approximately synchronized. The DA model
relates to both clock synchronizat ion (and thence to the various
verifications of clock synchronizat ion algorithms and their
implementations) and to a minimal voting model (DA-minv).
DA-minv, in turn, is supported by the local execut ive (LE)
model, which introduces details of task management , memory
management , and interprocessor communicat ion.

The chain of argument that connect the US and LE models
has been formally verified at NASA using EHDM’s capabil-
ities for hierarchical verification. The US to RS verification
is similar to ours, the others are novel. Overall, this formal
specification and verification took several man-years to de-
velop, and is the largest such effort under taken in E HDM; it
is also one of the largest and most elaborate formally verified
hierarchical developments known to us. The specification and
proof directives (which are part of the specification text in
EHDM) are 13,559 lines long; about 4 h are required to check
all 781 proofs on a Spare 10.

E. Experimental Ver$cation of the AAMPS

In 1992, SRI and NASA began a collaborative project with
Collins Commercial Avionics to determine whether the formal
verification technology we had developed could be appl ied to a
project of industrial scale and in an industrial setting. The cho-
sen project was to apply formal specification and verification
to selected parts of an avionics processor under development
at Collins called the AAMPS [47]. The exercise was run
as a “shadow” project, not on the critical path of the main
development. Processor verification is a very different problem
to the algorithm and architecture verifications descr ibed above;
it was chosen because it provided a well-defined project that
was of interest and potential value to Collins.

The AAMPS is a member of Collins’ “Advanced Architec-
ture Microprocessor” (AAMP) family [48]. It is intended to be
instruction-set compatible with the earlier AAMP2, which is
used in numerous applications for civil aircraft (e.g., there are
thirty AAMP2s on board each 747-400), but four times faster.
AAMPS is intended for critical applications such as avionics
displays, but not for ultra-critical systems such as autoland or
fly-by-wire.

Given formal specifications for a processor at the user-
visible, machine code, level (the macro-architecture), and
at the implementation, register-transfer, level (the micro-
architecture), the task of processor verification is to show that
the latter implements the former. In a microcoded processor
such as the AAMPS, the micro-architecture is driven by a
program (the microcode), rather than being hard-wired, and
the verification problem becomes the task of showing that the
microcode execut ing on the micro-architecture implements
the macro-architecture.

Microcode verification is not new: it was p ioneered by
Bill Carter at IBM in the 1970’s and appl ied to elements of
NASA’s Standard Spaceborne Computer [49]; in the 1980’s a
group at the Aerospace Corporat ion verified microcode for
an implementation of the C/30 switching computer using
a verification system called SDVS [50]; and a group at
Inmos in the UK establ ished correctness across two levels of
description (in Occam) of the microcode for the T800 floating
point unit using mechanized transformations [5 11. Similarly,
several groups have performed automated verification of non-
microcoded processors, of which Warren Hunt’s’FM8501 [52]
(and subsequent PM9001 [53]) are among the most substantial.
However, none of these previous efforts approaches the scale
and complexity of the AAMPS.

Both the macro and micro-architectures of the AAMPS are
complex. The macro-architecture is a stack machine with a
large and elaborate instruction set: instructions are variable
length, they operate on multiple data types, and among the 209
different instructions are some that provide services normally
del ivered by the run-time system of a compiler (e.g., procedure
state saving, parameter passing, return l inkage and reentrancy)
and others that provide functions normally associated with an
operat ing system kernel (e.g., interrupt handling, task state
saving, context switching). The AAMPS provides separate
execut ive and user address spaces, as well as separate code and
data environments. The micro-architecture has four indepen-

OWRE et al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 113

dent units: bus interface, instruction cache, look-ahead fetch
unit, and data processing unit. The latter is microcoded, caches
the top elements of the stack in registers, and has a three-stage
pipeline. There are approximately 500,000 transistors in the
AAMPS implementation.

Specification and verification of the AAMPS were un-
dertaken in PVS, which was just entering beta-test when
the project started. The project began with Srivas at SRI
developing formal specifications for a large part of the macro-
architecture (based on the AAMP programmer’s reference
manual). Two previously undetected errors in the microcode
were discovered during this process, as formal specification
forced considerat ion of the intended behavior of the AAMPS
in some unusual circumstances.

After Srivas had completed a first version of the macro-
architecture specification, it was taken over and revised and
extended by staff at Collins. In order to validate the speci-
fications, Collins engineers familiar with AAMPS subjected
the PVS specifications to Fagan-style inspections and detected
28 major specification faults (i.e., those affecting correct-
ness) in the process. Conversely, formal specification of the
macro-architecture led to clarification or correction of several
descriptions in the reference manual, and to reconsiderat ion
of the manner in which stack overf low is handled. The
engineers who performed the inspections required surprisingly
little training in PVS, but considerable work was required to
render the specifications in a style they found acceptable (e.g.,
consistent naming, careful formatting, informative comments).

Parenthetically, we should note that we had at first assumed
that the Collins engineers should be introduced to PVS in
a “bottom-up” manner, starting with the bitvector library
(developed by Rick Butler of NASA Langley)-the rationale
being that we would start with the basics and show them how
things were built up from very simple beginnings. The effect
surprised us: the engineers were appal led (“Isn’t this stuff
built-in?’ was a typical comment) and quite uninterested, for
they wanted to focus on the big picture. This episode caused
us to drop the bottom-up introduction to PVS: subsequent ly,
new members of the project first encountered PVS by sitting
in on inspections-an approach that seems to have been quite
successful.

While Collins engineers were validating and extending
the specification of the macro-architecture, Srivas at SRI
developed a formal specification of the micro-architecture.
The specification focussed on the data processing unit (DPU);
the other units were descr ibed only in terms of their external
interactions with the DPU.

When Srivas had finished with the specification of the
micro-architecture, it was sent to Collins for revision and
inspection, and Srivas focussed on developing proof strategies
for the verification. To reduce its scope to a manageab le size,
the project called for only 13 instructions (each represent ing
a different class) to be formally specif ied and verified by
SRI, with an additional 11 to be under taken at Collins.
However, it turned out that in order to specify the basic 13
operations, the complete micro-architecture and almost the
complete macro-architecture had to be specified. (In the end,
108 instructions were formally specif ied at the macro level;

the macro-architecture specification is 2 ,550 lines of PVS
in 48 theories, the micro-architecture specification is 2 ,679
lines in 20 theories, and the bitvector library is 2 ,030 lines
in 31 theories.) Similarly, in order to verify the basic 13
instructions with tolerable efficiency, and in order to render
the process sufficiently systematic that it could be transferred
to Collins, it was found necessary to explore a number of
different techniques and to develop a collection of reusable
proof strategies.

Because axiomatic specifications had proved error-prone in
the past, specification of the macro-architecture used a defi-
nitional style. This style proved cumbersome for verification,
however, so a collection of lemmas in the form of conditional
equat ions was created to represent this information in a form
suitable for automated rewriting. The need for fast rewriting
and the ability to deal with large proposit ional structures
led to a number of modifications to PVS during this effort.
These included caching rewrites and the corresponding state
of the congruence closure data structure, and the use of BDD’s
for proposit ional simplification. These modifications al lowed
reasonably efficient verification of the AAMPS microcode
and micro-architecture. Currently, 11 instructions have been
verified (several of these are outside the core set of 13), from
three instruction classes. Verification of a new instruction class
takes about a week, and verification of a new instruction in a
known class takes less than a day.

Formal verification revealed several errors in the specifica-
tions of the macro- and micro-architectures that had not been
detected by inspections. Furthermore, it led to the detection of
two subtle errors that had been seeded in the microcode (these
were different errors than those discovered during formal
specification). Because the AAMPS was a development of an
architecture that was very familiar to Collins engineers, and
for which they had extensive simulation and diagnostic tools,
there was concern that there might be no “natural” bugs in
its microcode, and therefore the project might be unable to
demonstrate the potential of formal verification to detect bugs.
Consequent ly, with the acquiescence of SRI management ,
Collins engineers planted a bug in the microcode of one of
the instructions in the core set. This bug was of a kind that
had proved hard to detect with conventional V&V practices.
In addition, a bug that had e luded these conventional practices
and made it into an early fabrication of the AAMPS (where
it was discovered in tests of applications code) was left in
the microcode suppl ied to SRI. Formal verification easily
exposed both these bugs; furthermore, Srivas was able to
extract information from the failed proof attempts that al lowed
him to descr ibe the necessary microcode corrections to the
Collins engineers.

This project demonstrated the feasibility of applying formal
verification to a commercial microprocessor [47], but its cost
was high (about 3 man-years). However, we attribute much
of this to one-t ime start-up costs and are now planning a
follow-on project where the understanding and infrastructure
developed for AAMPS will be appl ied to a new member of
the AAMP family. For the follow-on, formal methods will
be used in the design loop and PVS specifications will be the
main design documents. W e expect that this will reduce overall

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

development time and costs. W e also anticipate that improved
speed and automation in new versions of PVS will make
complete formal verification of the processor cost-competit ive
with the traditional assurance processes, while providing much
greater coverage.

III. LESSONS LEARNED AND THEIR
INFLUENCEONTHE DESIGNOF PVS

W e summarize here some of the main characteristics ob-
served and conclusions drawn from the verifications descr ibed
above. First, most of the proofs we have been interested in
checking, not to mention many of the theorems and some
of the algorithms, were incorrect when we started. Thus,
we find it at least as important that a verification system
should assist in the early detection of error as that it should
confirm truth. Second, our axiomatizations were occasionally
unsound, and sometimes they were sound but did not say what
we thought they did. Mechanisms for establishing soundness
of axiomatizations are clearly desirable (purely definitional
specifications are often too restricting), as are techniques for
reviewing the content of formal specifications. Third, our
verifications are seldom finished: changed assumptions and
requirements, the desire to improve an argument or a bound,
and simple experimentation, have led us to revise some of
our verifications several times. W e believe that investment in
an existing verification should assist, not discourage, discovery
of simplifications, improvements, and generalizations. But this
means that the method of theorem proving must be robust
in the face of reasonably small changes to the specification.
Fourth, our formal specifications and verifications were often
used by someone other than their original developer. These
secondary users sometimes carry off just a few theories (or
ideas) for their own work, sometimes they substantially modify
or extend the existing verification, and sometimes they build
on top of it; in all cases, they need to understand the original
verification. These activities argue for specifications and proofs
that are structured or modular ized in some way, and that
are sufficiently perspicuous that users other than the original
authors can comprehend them well enough to make effective
use of them.

Finally, our specifications and verifications have often been
quite large or complex, and the efficiency of their construction
is of vital concern. The most important measure of efficiency
is the amount of human time expended in the process from
start to finish. For many of our specifications, we found that
substantial effort was expended on the formal development of
“background theories” such as summations, bitvectors, finite
sets, and so on. Clearly, it is necessary that such theories
should be made available in libraries for future reuse. Much
effort was also spent in debugging specifications: methods
such as direct execut ion or simulation of specifications (some-
times called “animation”), and state exploration or model
checking can help explore and validate specifications before
full verification is undertaken. In our full verifications, we
noted two attributes that are important for overall efficiency:
for those verifications (such as the fault tolerant algorithms)
whose construction requires significant insight at a number of

steps, the main requirement is that the theorem prover should
automate the straightforward parts of the proof so that the
human user is free to focus on the significant steps; for those
verifications that are conceptual ly straightforward, but large
(such as AAMPS), a vital requirement is for raw speed in the
basic steps of rewriting, arithmetic, and proposit ional calculus.

In the following subsect ions we expand on these points
and descr ibe some of the design decisions taken in our
languages, support tools, and theorem provers, in light of these
experiences.

A. SpeciJication Language

In this section we descr ibe some of the choices made in
the design of our specification languages, and discuss some
of the changes we have made in the light of experience. The
main constraints informing our design decisions have been
the desire for a language that is powerfully expressive, yet
that nonspecial ists find comfortable, that has a straightfor-
ward semantics, and that can be given effective mechanized
support: this includes very stringent (and early) detection of
specification errors, as well as powerful theorem proving.

The domain of problems that we have investigated involves
asynchronous communicat ion, distributed execution, real-time
properties, fault tolerance, and hierarchical development. One
quest ion that arises is the degree of support for these topics
that should be built-in to the specification language and its
verification system. Our viewpoint here is pragmatic rather
than philosophical: we have found that a classical higher-order
logic is adequate for formalizing the concepts of interest to us
in a perspicuous and effective way. W e have also found that
the computat ional aspects of the systems of interest to us are
adequately modeled in a functional style and we have not
found it necessary to employ Hoare logic or other machinery
for reasoning about imperative programs. In part, this is
because we have concentrated on verifying algorithms and
architectural designs, rather than programs; we have chosen
to do so because the available ev idence points to these and
other early lifecycle concerns (particularly requirements) as
the principle sources of failure in safety-critical systems [54].5

EHDM does provide a notion of “state” that allows systems
to be modeled using state-dependent objects and procedural
state transformations; it also provides direct support for rea-
soning about them in a Hoare logic. W e have also used
this capability in other applications, but even then we have
general ly found it most convenient to develop the bulk of
the specification and verification in a functional style, and to
transfer to the imperative style only in the final steps-very
much in the manner advocated by Guttag and Homing [56].

W e have used special ized formalisms, such as temporal
logic, when they seem appropriate, but we have done so by
formalizing them within higher-order logic (see, for example,
our embedding of the Duration Calculus [18], and Hooman’s

5These systems are developed under stringent controls that are very
effective at detecting and eliminating faults introduced in the later lifecycle
phases of detai led design and coding. For example, Lutz [.55] reports on 197
critical software faults detected during integration and system testing of the
Voyager and Galileo spacecraft, Only 3 of these faults were programming
errors.

0wR~ dd: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 115

treatment of a real-time Hoare calculus [19]). The advantage
of embedding such formalisms within a single logic is that it
is then easier to combine them, and easier to share common
theories such as datatypes, arithmetic, and other prerequisite
mathematics. Furthermore, we are not restricted to a fixed
selection of formalisms, but can develop special ized notations
to suit the problem at hand-rather in the way that product ive
pencil and paper mathematics is done.

In the case of the examples considered here, it was relatively
straightforward to descr ibe the necessary concepts directly
within higher-order logic in a manner that reproduced the
presentat ion in standard journal treatments of the topics con-
cerned fairly closely [20], [27], or that fol lowed a style that
had proved comfortable in earlier pencil and paper develop-
ment (e.g., compare the pencil and paper development of a
fault-masking model [43] with a fully formal version [44]).
However, allowing these formal specifications to be rendered
in a natural syntactic form demands some sophistication of
the support tools. For example, the definition of the function
working that appears in the fault-masking verification [44] was
given in EHDM as

working: function[C + function[R + bool]] =
(Xc: (A?-: OK(T)(C)))

whereas the later PVS allows

working(c): set[R] = {TIC E OK(T)}.~

Here we are exploiting the fact that the axiom of comprehen-
sion is sound in higher-order logic, so that sets can be identified
with predicates (which are themselves just functions with
range type bool). The value of syntactic conveniences such as
these should not be underest imated; we find that they reduce
learning time, and ease comprehension and communicat ion.
Readers who are new to the languages can quickly-and
correctly-interpret specifications written by others when the
notation is close to traditional practice.

Several conveniences that appear syntactic actually require
semantic treatment. For example, we allow the proposit ional
connect ives such as “or” and the arithmetic and relational
operators such as + and 5 to be over loaded with new def-
initions (while retaining their s tandard ones). This allows the
proposit ional connect ives to be “lifted’ to temporal formu-
las (represented as predicates on the natural numbers), for
example, so that if x and y are temporal formulas, 5 V y

could be def ined to denote their pointwise disjunction. These
usages correspond to informal mathematical practice, but their
mechanized analysis requires rather powerful strategies for
type inference and name resolution.

Just as the syntactic aspects of our languages have been en-
r iched over the years, so have their semantic attr ibutes-and in
particular the type systems. Initially we had just the “ground”
types (i.e., uninterpreted types, the booleans, and the integer

6These specification fragments appear here as typeset by the LaTeX-
prettyprinters of the two systems. The actual input format is a lin-
ear ASCII representation. For example, the PVS text is entered as
working(C) : set[R] = {r\member(c,OK(r))}. The table-driven
LaTeX-prettyprinters allow transformations such as that from the prefix
function application member to the infix E to be specified easily.

and rational numbers) and the (higher order) function type
constructor. W e soon found it convenient to add record and
enumerat ion type constructors, and then-the most significant
step of all-predicate subtypes. In PVS we also added tuple
types, and dependent type constructions.7

As their name suggests, predicate subtypes use a predicate
to induce a subtype on some parent type. For example, the
natural numbers are specif ied (in PVS) as:

nut: type = {n: int(n > O}.

More interestingly, the signature for the division operat ion (on
the rationals) is specif ied by

/: [rational, nonzero-rational + rational]

where

nonzero-rational: type = {x: rationallx # 0}

specifies the nonzero rational numbers. This constrains divi-
sion to nonzero divisors, so that a formula such as

x # Y 1 (Y - x)/(x - Y) < cl

requires the typechecker to discharge the proof obligation, or
Type-Correctness Condit ion (TCC),

X#YY>X-Y)#O

in order to ensure that the occurrence of division is well-typed.
Notice that the “context” (x # y) of the division under a
left to right reading appears as an antecedent in the proof
obligation. TCC’s of this kind establish that the value of
the original expression does not depend upon the value of
a type-incorrect term; they are generated whenever a term of
the parent type appears where one of a predicate subtype is
required. The automated procedures of our theorem provers
general ly d ispose of such proof obligations instantly (if they
are true!), and the user usually need not be aware of them.
This use of predicate subtypes allows certain functions (such
as division) that are partial in some other treatments to remain
jotal, thereby avoiding the need for logics of partial terms or
three-valued logics.

Related constructions allow nice treatments of errors, such
as pop(empty) in the theory of stacks. Here we can type and
axiomatize the stack operat ions as follows:

stack: type

empty: stack

nonempty-stack: type = {s: stack)s # empty}

push: [elem, stack ---t nonempty-stack]

pop: [nonempty-stack --) stack]

top: [nonempty-stack 4 elem]

pop-push: axiompop(push(y: elem, s: stack)) = s
top-push: axiom top(push(y: elem, s: stack)) = e

so that nonempty-stack is a predicate subtype of stack. W ith
these signatures, the expression pop(empty) is rejected during

7A rather useful dependent construction has been available in EHDM since
the beginning through the mechanism of module parameters.

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2. FEBRUARY 1995

typechecking (because pop requires a nonempty-stack as its
argument), and the theorem

push(e, 5) # empty

is an immediate consequence of the type definitions. By similar
reasoning, the axiom pop-push is immediately seen to be
type-correct, but type-correctness of the expression

poP(PoP(Pw~, P,wY, s>>)> = s, (1)

cannot be deduced by such simple syntactic analysis (because
the outermost pop requires a nonempty-staclc, but is given
the result of another pop-which is only known to be a stack.
However, this expression can be shown to be well-typed by
proving the theorem

po~(push(c P@Y! ~1)) ,# empty,

in order to establish that the argument to the first pop is,
in fact, a nonempty-stack. EHDM and PVS automatically
generate this theorem as a proof obligation (i.e., TCC) when
typechecking the expression (l), and can prove it easily.

In practice, we would not specify the stack data type by
means of an explicit set of function signatures and axioms;
we would use the datatype mechanism of PVS instead. This
mechanism (which is related to the “shells” of the Boyer-
Moore prover and the “free types” of Z) allows recursively
structured data types to be specif ied very compactly in terms
of the relationships among their constructors, accessors, and
subtype recognizers. As a datatype, stack is specif ied as
follows:

stack[t: type]: datatype
begin

empty: empty-stack
push(top: t, pop: stack): nonempty-stack

end stack

Here, empty and push are the constructors, with corre-
sponding recognizers (and predicate subtypes) empty-stack
and nonempty-stack, and top and pop are the accessors.
This specification automatically generates a theory containing
signatures and axioms similar to those shown earlier, together
with a structural induction scheme, subterm ordering predicate,
and several other useful axioms and definitions. Furthermore,
the theory thus generated is guaranteed to be a conservat ive
extension (in particular, its axioms are sure to be consistent),
and the theorem prover is able to provide very effective
mechanizat ion for these highly stereotyped constructions. The
datatype mechanism is very useful for specifying structures
such as lists and trees; furthermore, by defining predicate
subtypes on the types so constructed, it is easy to define
data structures such as ordered binary search trees [57], or
constructive representat ions of the ordinals.

TCC’s that are not d ischarged automatically by the theorem
prover are added to the specification text and can be proved
later, under the user’s control. Untrue TCC’s indicate a type-
error in the specification, and have proved a potent method
for the early discovery of specification errors. For example,

the injections are specif ied as that subtype of the functions
associated with the one-to-one property:

injection: type =
{f: [t1 + t2]lV(i: j: tt): f(i) = f(j) 3 i = j}

(here tt and t2 are type parameters). If we were later to specify
the function square as an injection from the integers to the
naturals by the declaration

square: injection[int, nut] = A(s: int): z X z

then the PVS typechecker would require us to show that the
body of square satisfies the injection subtype predicate.s
That is, it requires the TCC i2 = j2 > i = j to be proved
in order to establish that the square function is well-typed.
Since this conjecture is untrue (e.g., 22 = (-2)” but 2 # -2),
we are led to discover a fault in this specification.

Notice how use of predicate subtypes here has automatically
led to the generat ion of proof obligations that might require
special-purpose checking tools in other systems. Another ex-
ample of the utility of predicate subtypes in generat ing proof
obligations arises when model ing a system by means of a
state machine. In this style of specification, we first identify
the components of the system state; an invariant specifies how
the components of the system state are related, and we then
specify operat ions that are required to preserve this relation.
W ith predicate subtypes available, we can use the invariant to
induce a subtype on the type of states, and can specify that
each operat ion returns a value of that subtype. Typechecking
the specification will then automatically generate the proof
obligations necessary to ensure that the operat ions preserve
the invariant.

Although TCC’s are very useful in contexts such as those
descr ibed above, there are other contexts where it is desirable
to control their generat ion. For example, the expression n + m,
where n and m are of type nat, has type int (because nat is
a subtype of int, but nothing special is known about + on the
nats, so it is interpreted as addit ion on the ints). This has the
d isadvantage that a TCC will be generated whenever n + m
appears in a context where a nat is required.

One way around this difficulty is to over load the function
+ with the following definition -

+(n, m: nat): nat = 72 + m.9

This will generate the TCC

once and for all, but has the d isadvantage that the definition
must be expanded every time + appl ied to nats occurs in
a proof. W e overcome these difficulties in PVS by providing
type judgments, which are declarations of the following form

judgment + has-type [nat, nat -+ nut]. (2)

*We would also be required to discharge the (true) proof obligation
generated by the subtype predicate for nat: V(z: int): I x z 1 0.

9The f on the right is the built-in $ on integers.

OWRE et al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 117

This declaration causes the TCC (2) to be generated to verify
the has-type claim, and thereafter allows the typechecker
freely to use the information that + is c losed on the nat’s.

Judgments provide the typechecker with additional infor-
mation about the type(s) of a function. PVS also allows
conversions, which are functions that the typechecker may
apply to convert terms that are type-incorrect in a given context
into terms of an acceptable type. An example will help explain
the idea. The purpose of the “jet-select” function of the Space
Shuttle On-Orbit Digital Autopilot (“Orbit DAP,” another of
the flight control applications we have studied under NASA
sponsorship), is to select and fire a set of up to three reaction
control jets. The selected set can be restricted to various
combinat ions of “primary” and “vernier” jets, such as those
whose gas plumes do not extend above the cargo bay. It is
natural to model vernier and primary jets as subtypes of
a jet type. However, the subtype relationship between the
primary and jet types does not induce a subtype relation
between the sets on these types.” However, there is a fairly
natural function that extends a set of primary jets to a set
of jets:

extend(p: setbrimary]): setbet] =
{j: jetlj E primary A j E p}.

If we declare extend to be a conversion, then we can
supply a set of primary jets in places where a set of jets
is expected: PVS will automatically convert the former to
the latter by applying the extend function. (PVS can display
the “converted” form of a specification or proof sequent on
request, and issues a warning if a given context has more than
one applicable conversion.)

Implicit conversions solve a number of specification prob-
lems in a simple and effective manner. For example, a state-
dependent integer program “variable” x in a Hoare-sentence
specification, or a flexible integer variable 21 in a temporal
logic specification, will general ly be modeled as functions
from “state” or “time,” respectively, to the integers. It is very
convenient to be able to “lift” the arithmetic operators to apply
directly to state-dependent or temporal terms, so one can write
x + 1 or w + 7 rather than x(s) + 1 and u(t) + 7, and conversions
provide an effective way to do this. (Simple overloading of
the + operator can require unnatural constructions, such as
the introduction of functions l(s) and 7(t).)

Dependent types increase expressive convenience still fur-
ther. W e find them particularly convenient for deal ing with
functions that would be partial in simpler type systems. The
standard “chal lenge” for treatments of partial functions [58] is
the function subp on the integers def ined by

subp(i, j) =.if i = j thenOelsesubp(i , j + 1) + lendif.

This function is undef ined if i < j (when i 2 j, subp(i, j) =
i - j) and it is often argued that if a specification language

‘ORecall that a set of jets is represented in PVS as a function of
type [jet + bool]; PVS does not extend subtype relations on function
domains to the corresponding function types. Some systems do provide this
extension-usually in a “contravariant” manner, so that [jet + bool] is a
subtype of [primary + bool] (Le., the subtype relation on the functions is
the reverse of that on their domains).

is to admit such a definition, then it must provide a treatment
for partial functions. Fortunately, examples such as these do
not require partial functions: they can be admitted as total
functions on a very precisely specif ied domain. Dependent
types, in which the type of one component of a structure
depends on the value of another, are the key to this. For
example, in the language of PVS, subp can be specif ied as
follows:

subp((i: int), (j: intli > j)): recursiveint =
if i = j thenOelsesubp(i , j + 1) + lendif .l’
measure: i - j

Here, the domain of subp is the dependent tuple-type

[i: int, {j: intli 2 j}]

(i.e., the pairs of integers in which the first component is
greater than or equal to the second) and the function is total
on this domain.

Although dependent types and predicate subtypes general ly
obviate the need to deal with partial functions, they also allow
these to be modeled quite straightforwardly. For example, the
partial functions f from type tl to type ts can be represented
by the following dependent record type:

pfun: type = [# dom: set[tJ, fun: [(dom) - tz]#].

(The [# ... #] brackets indicate a record type in PVS, and a
set or predicate enclosed in parentheses (here dom) indicates
the corresponding predicate subtype.) If pf is of type pfun,
then its domain is denoted dom(pf)‘* and its application to
argument x in this domain is denoted fun(pf)(x).13 This is
a little ugly, but by defining the function

pfun-wz4pf): [(dom(pf)l -+ t21 =
(X(x: (dom(pf))): fun(pf)(x))

to be a conversion, we can write simply p!(x) and the
typechecker will perform the necessary expansion.

The earliest versions of EHDM required almost all concepts
to be specif ied axiomatically-thereby raising the possibility
of, inadvertently introducing inconsistencies. Our decisions
to support very powerful type-constructions and to embrace
the consequence that theorem-proving can be required during
typechecking were motivated by a desire to increase the
expressive power of those elements of the language for which
we could guarantee conservat ive extension. On the other hand,
we do not wish to exclude axiomatic specifications; these
are often the most natural way to specify assumptions about
the environment, and top-level requirements. Axioms can be
proved consistent by exhibiting a model-a process that is
closely related to verification of hierarchical developments.

The establ ished way to demonstrate that one level of speci-
fication “implements” the requirements of another is to exhibit

t ’ The measure clause specifies a function to be used in the termination
proof.

“PVS uses the notation dom(pf) rather than the more usual pf .dom to
indicate record access.

13Note that the predicate subtype in the type of fun(pf) will cause
the typechecker to generate a proof obligation requiring demonstrat ion that
I E dom(pf) in this context.

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

an “abstraction” (also called “retrieve”) function that induces
a homomorphism between the concrete and the abstract spec-
ification. The required constructions can easily be specif ied
within our specification languages, but we have found the
process to be tedious and error-prone (for example, it is
easy to over look the requirement that the abstraction function
be surjective). Accordingly, we have provided mechanized
support for hierarchical verification since the earliest versions
of EHDM.14 Our mechanizat ion is based on the notion of
theory interpretations [59, Section 4.71; the basic idea is
to establish a translation from the types and constants of
the “source” or abstract specification to those of a “target”
or concrete specification, and to prove that the axioms of
the source specification, when translated into the terms of
the target specification, become provable theorems of that
target specification. The difference between the use of theory
interpretation to demonstrate correctness of an implementation
and to demonstrate consistency of a specification is that for
the latter, the “implementation” does not have to be useful, or
realistic, or efficient; it just has to exist.15

The basic mechanism of theory interpretation is quite easy
to implement: a “mapping” module specifies the connect ion
between a source and a target module by giving a translation
from the types and constants of the former to those of the
latter, and a “mapped” module of proof obligations is then
generated. Special care is needed when the equality relation
on a type is interpreted by something other than equality on
the corresponding concrete type.16 This construction requires
proof obligations to ensure that the mapped equality is a
congruence relation (i.e., has the propert ies of equivalence
and substitutivity).

These straightforward mechanisms have become somewhat
embell ished over time, as the stress of real use has revealed
additional requirements. For example, we originally assumed
that source modules would be specif ied entirely axiomatically.
This proved unrealistic: modules general ly contain a mixture
of axiomatic and definitional constructions, and it is neces-
sary for the mapping mechanism to translate definitions (and
theorems) into the terms of the target specification. Next, we
found that our users wished to interpret not just single modules,
but whole chunks of specification in which both source and
target spanned several modules. This is quite straightforward
to support, except that care needs to be taken to exclude
modules common to both source and target (these often include
modules that specify mathematical prerequisites common to
both levels). As the size of specifications increases, it becomes
necessary to introduce more layers into the hierarchical veri-
fication. For example, in demonstrat ing the consistency of the
axiomatization used to specify assumptions about clocks [22],

14PVS does not support this at the moment; we arc examining a slightly
different approach involving quotient types.

I5 What is demonstrated here is relative consistency: the source specification
is consistent if the target specification is. Generally, the target specification
is one that is specified definitionally, or one for which we have some other
good reason to believe in its consistency.

16For example, if abstractly specified stacks are implemented by a pair
comprising an array and a pointer, then the equality on abstract stacks
corresponds to equality of the implementing arrays up ro the pointer; this
is not the standard equality on pairs.

we have a module algorithm that uses (imports) the module
clocks. An interpretation for algorithm will normally generate
interpretations for the types and constants in clocks as well.
But if we have already establ ished an interpretation for clocks,
we will want the interpretation for algorithm to refer to it,
not generate a new one. Support ing these requirements in a
reasonable way is not difficult once the requirements have
been understood. Our exper ience has been that it takes some
real-world use to learn these requirements.

B. Support Tools

The previous few paragraphs have outl ined some of the
complicating details that must be addressed in the support
environment for a specification language that provides a rich
type system and theory interpretations. A consequence of the
design decision that typechecking can require theorem proving
is that the support environments for EHDM and PVS provide
a far closer integration between the language analysis and
theorem proving components than is usual. W e discuss this in
more detail in the section on theorem proving. More mundane,
but no less important, engineer ing decisions concern the choice
of interface, style of interaction, and functions provided by the
support tools.

Some specification environments allow specifications to be
expressed directly in terms of mathematical symbols such
as V, 3, >, and so on. Although superficially attractive, we
have found that the burdens of support ing these conveniences
outweigh the benefits, bringing in their wake such menaces
to productivity as structure editors and a plethora of mouse
and menu selections. In the United States, at least, most
scientists and engineers are fast touch-typists, and we find
that a conventional program editor provides a more product ive
environment for.rapid interaction than a graphical user inter-
face. Consequent ly, we have adopted the GNU Emacs editor
as our interface, and accepted an ASCII representat ion for
our specifications. (A side benefit of this is that it is perfectly
feasible to use EHDM and PVS from remote ASCII terminals.)
Our exper ience has been that it is the naturalness of its
semantic foundat ion and syntactic expression that determines
acceptance of a specification notation, not its lexical repre-
sentation on the screen. Nonetheless, we have taken care to
provide a civilized concrete syntax, a competent prettyprinter
and, as noted earlier, a LATEX-prettyprinter .that can produce
attractively typeset documents for review and presentation.

W e are not opposed to use of mouse and menus for selection
of the major functions of our systems, nor to graphical
presentat ion of certain outputs, but we have not considered
it worthwhile to divert development effort away from more
fundamental capabilities in order to provide these rather costly
conveniences. Recently, however, availability of improved
development tools has significantly reduced the associated
costs, and so the latest versions of PVS do provide pull-
down menu selection (using the facilities of GNU Emacs 19),
and graphical representat ion of module dependenc ies and of
proof trees (using TcYTK [60]). W e are also investigating
hypertext for the presentat ion of documentat ion and proofs
(using Mosaic).

OWRE et al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 119

Our specifications have been quite large, typically involving
hundreds of distinct identifiers and dozens of separate modules.
W e have found facilities for cross-referencing and browsing
essential to product ive development of large specifications
and verifications, especially when returning to them after an
absence, or when building on the work of others. Browsing is
an on-l ine capability that allows the user to instantly refer to
the definition or uses of an identifier; cross-reference listings
provide comparable information in a static form suitable for
typeset documentat ion. Graphical presentat ion of dependenc ies
aids comprehension of the structure of large specifications.

Our specifications and verifications are developed over
per iods of days or weeks and we have found it imperative
that the system record the state of a development (including
completed and partial proofs) from one session to the next, so
that work can pick up where it left off. W e have found it best to
record such information continuously (so that not everything
will be lost if a machine crashes) and incrementally (so that
work is not interrupted while the entire state is saved in a
single shot).

W e have also found it necessary to support version man-
agement and careful analysis of the consequences of changes.
Version management is concerned with the control of changes
to a formal development (ensuring that two people do not
modify a module simultaneously, for example) and with
tracking the consequences of changes. EHDM at one time had
quite elaborate built-in capabilities for version management ,
maintenance of shared libraries, and so on. These proved
unpopular (users wanted direct access to the underlying files),
so we have now arranged matters so that EHDM and PVS
monitor, but do not attempt to control, access to specification
files. Changes to specification files are detected by examining
their write-dates, and internal data structures corresponding to
changed files are invalidated. Users who wish to exercise more
control over modification to specification files can do so using
a standard version control package such as RCS.

Tracking the propagat ion of changes can be performed at
many levels of granularity. At the coarsest level, the state of an
entire development can be reset when any part of it is changed;
at a finer level, changes can be tracked at the module level; and
at the finest level of granularity, they can be tracked at the level
of individual declarations and proofs. Once the consequences
of changes have been propagated, another choice needs to
be made: should the affected parts be reprocessed at once,
or only when needed? EHDM originally propagated changes
at the module level (so that if a module was changed and
its internal data structures invalidated, that invalidation would
propagate transitively up the tree of modules). Reprocessing
(i.e., typechecking and proving) took place under user control
and reconstructed the internal data structures of the entire tree
of modules. This proved expensive when large specifications
were involved. An unsuccessful proof in a module at the
top of a tree of modules might necessitate a change to an
axiom in a module at the bottom. Retypechecking the entire
tree could take several minutes, with consequent loss of
concentrat ion and productivity. EHDM now propagates the
consequences of changes at the level of individual declarations,
and retypechecking is done incrementally and lazily (i.e., only

when needed), also at the level of declarations. This requires a
far more complex implementation, but the increase in human
productivity is enormous, as the user now typically waits
only seconds while the relevant consequences of a change
are propagated. Because it can take several seconds, or even
minutes, to replay a proof, this is done only on request. “Proof-
tree analysis” (descr ibed below) identifies the state of a proof
dur ing an evolving verification.

C. Theorem Proving

Theorem proving in support of fairly difficult or large
verifications requires a rather large range of capabilities and
attributes on the part of the theorem prover or proof checker.
Furthermore, we have found that each formal verification
evolves through a succession of phases, not unlike the lifecy-
cle in software development, and that different requirements
emerge at different phases. W e have identified four phases in
the “verification lifecycle” as follows.

1) Exploration: In the early stages of developing a formal
specification and verification, we are chiefly concerned with
exploring the best way to approach the chosen problem.
Many of the approaches will be flawed, and thus many of
the theorems that we attempt to prove will be false. It is
precisely in the discovery and isolation of mistakes that formal
verification can be of most value. Indeed, the phi losopher
Lakatos argues similarly for the role of proof in mathematics
[61]. According to this view, successful complet ion is among
the least interesting and useful outcomes of a proof attempt at
this stage; the real benefit comes from failed proof attempts,
since these chal lenge us to revise our hypotheses, sharpen
our statements, and achieve a deeper understanding of our
problem: proofs are less instruments of justification than tools
of discovery [62].

The fact that many putative theorems are false imposes a
novel requirement on theorem proving in support of verifica-
tion: it is at least as important for the theorem prover to provide
assistance in the discovery of error, as that it should be able to
prove true theorems with aplomb. Most research on automatic
theorem proving has concentrated on proving true theorems;
accordingly, few heavily automated provers terminate quickly
on false theorems, nor do they return useful information from
failed proof attempts. By the same token, powerful heuristic
techniques are of quest ionable value in this phase, since they
require the user to figure out whether a failed proof attempt is
due to an inadequate heuristic, or a false theorem.

2) Development: Following the exploration phase, we ex-
pect to have a specification that is mostly correct and a body
of theorems that are mostly true. Although debugging will
still be important, the emphasis in the development phase
will be on eficient construction of the overall verification.
Here we can expect to be deal ing with a very large body of
theorems spanning a wide range of difficulty. Accordingly,
efficient proof construction will require a wide range of
capabilities. W e would like small or simple theorems to be
dealt with automatically. Large and complex theorems will
require human control of the proof process, and we would like
this control to be as straightforward and direct as possible.

120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

In our experience, formal verification of even a moderately
sized example can generate large numbers of lemmas involving
arithmetic. Effective automation of arithmetic, that is the
ability to instantly d ischarge formulas such as

(where z and y are rational numbers), is therefore essential to
product ive theorem proving in this context.

Our proof checkers include decision procedures for g round
linear arithmetic: that is expressions involving constants, vari-
ables, and uninterpreted function symbols, the relations <, >,
2, 2, =, and #, and the arithmetic operat ions of addition, sub-
traction, and multiplication, but with multiplication restricted
to the linear case (i.e., multiplication by literal constants only).
These are true (i.e., complete) decision procedures over the
reals, and heuristically effective over the integers (we have
only once encountered the integer incompleteness in practice)
1631, [641.

It would, in our view, be quite infeasible to undertake
verifications that involve large amounts of arithmetic (such as
clock synchronization) without arithmetic decision procedures.
However, it has also been our exper ience that seemingly nonar-
ithmetic topics (such as fault masking) require a surprising
quantity of elementary arithmetic (for example, inequality
chaining, and “fl” arguments in inductions). Verification
systems that lack automation of arithmetic and proposit ional
reasoning require their users to waste inordinate amounts of
effort establishing trivial facts.

Other common steps in proofs arising from formal verifica-
tion are to expand the definition of a function and to replace an
instance of the left-hand side of a (conditional) equat ion by the
corresponding instance of the r ight-hand side. Both operat ions
can be mechanized by the technique known as “rewriting,” and
the effectiveness of a theorem prover is strongly inf luenced
by the automation and efficiency of its rewriter. A simple
rewriter expands definitions and rewrites first-order equat ions
under the user’s guidance. A more sophist icated rewriter
will also consider conditional equat ions (those of the form
condit ion > lhs = rhs), and may attempt certain higher-
order cases (where it is necessary to find instantiations for
function variables). Automatic rewriters require less guidance
from the user and use heuristics to select which rewrites to
apply.

In our experience, the minimum capabilities required for
product ive theorem proving during the development phase
include effective automation for arithmetic and rewriting.
However, it is not enough for a prover to have arithmetic
and rewriting capabilities that are individually powerful: these
two capabilities need to be tightly integrated. For exam-
ple, the arithmetic procedures must be capable of invoking
rewriting for simplification-and the rewriter should employ
the arithmetic procedures in discharging the condit ions of
a conditional equation, or in simplifying expanded defini-
t ions by eliminating irrelevant cases. Theorem provers that
are product ive in verification systems derive much of their
effectiveness from tight integration of powerful primitives
such as rewriting and arithmetic decision procedures-and
the real skill in developing such provers is in constructing

these integrations [65]. More visibly impressive capabilities
such as the automation of proof by induction are useful
(and we do provide them), but of much less importance
than competence in combining powerful basic inference steps
including arithmetic and rewriting.

An integrated collection of highly effective primitive infer-
ence steps is one requirement for product ive theorem proving
during the proof development phase; another is an effective
way for the user to control and guide the prover through
larger steps. Even “automatic” theorem provers need some
human guidance or control in the construction and checking
of proofs. Some receive this gu idance indirectly through the
order and selection of results they are invited to consider
(the Boyer-Moore prover is like this), others in the form of
a program that specifies the proof strategy to be used (the
“tactics” of LCF-style provers such as HOL [66] are like
this). W e have found that direct instruction by the user seems
the most product ive and most easily understood method of
guidance, provided the basic repertoire of operat ions is not
too large (no more than a dozen or so). And we find that a
style of proof based on Gentzen’s Sequent Calculus allows
information to be presented to the user in a very compact but
understandable form, and also organizes the interaction very
conveniently.

A large verification often decomposes into smaller parts that
are very similar to each other and we have found it useful
to allow the user to specify customized proof “strategies”
(similar to LCF-style tacticals) that can automate the repetitive
elements of the proof. W e have also found strategies very
useful for constructing general -purpose proof procedures that
are higher-level and more automatic than the primitive proof
procedures.

3) Presentation: Formal verification may be under taken for
a variety of purposes; the “presentat ion” phase is the one
in which the chosen purpose is satisfied. For example, one
important purpose is to provide ev idence to be considered in
certifying that a system is fit for its intended application. W e
do not bel ieve the mere fact that certain propert ies have been
formally verified should constitute grounds for certification;
the content of the verification should be examined, and human
judgment brought to bear. This means that one product of
verification must be a genuine proof-that is a chain of
argument that will convince a human reviewer. It is this proof
that distills the insight into why a certain design does its
job, and it is this proof that we will need to examine if we
subsequent ly wish to change the design or its requirements.

Many powerful theorem-proving techniques work in ways
that do not lend themselves to the extraction of a readable
proof, and are unattractive on this count. For example, reso-
lution theorem provers do not generate a conventional proof
at all, while heuristic methods can generate proofs that follow
“unnatural” paths, and low-level proof checkers overwhelm
the reader with trivial detail. It seems to us that the most
promising route to mechanical ly-checked proofs that are also
readable is to allow the user to indicate the major steps, while
routine ones are heavily automated and regarded as atomic.

Other purposes for which verification may be under taken
(for example, to determine the exact assumptions that underl ie

-.

OWRE er al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 121

a certain theorem, or to gain insight into an algorithm) can
require abstracting information from a proof, and it is useful
if a theorem prover has tools that can present such abstracts.
Both EHDM and PVS, for example, can provide a list of all
the definitions, axioms, and lemmas referenced in a proof and,
recursively, in the proofs of its lemmas. PVS can also display
a graphical representat ion of the proof tree and we are also
investigating use of hypertext to assist the active exploration
of proofs.

4) Maintenance and Generalization: Designs are seldom
static; user requirements may change with time, as may the
interfaces and services provided by systems that interact with
the one under study. A verification may therefore need to
be revisited periodically in order to adapt to changes. Thus,
in addit ion to the human-readable proof, a second product
of formal verification should be a description that guides
the theorem prover to repeat the verification without human
guidance. This proof description should be robust-describing
a strategy rather than a line-by-line argument-so that small
changes in the specification of lemmas or assumptions will not
derail it. Some degree of automation in the theorem prover
seems essential to this capability: it is difficult for proof
checkers, which require very detailed guidance, to adapt to
even small changes in a specification.

In addit ion to the modifications and adjustments that may
be made to accommodate changes in the original applica-
tion, another class of modif ications-generalizations-may
be made in order to support future applications, to distill
general principles, or to explore alternative assumptions and
designs. Many of the verifications we have performed have
been general izations of earlier ones, and much of the benefit
we have derived from formal verification has been in the
exploration of changed assumptions and modif ied algorithms.
Investment in formal verification yields most value if its
products can be reused.

Consequences for Prover Design

The evolution of our theorem proving systems to best serve
the various requirements descr ibed above has followed two
main tracks: increasingly powerful automation of low-level
inference steps, such as arithmetic reasoning and rewriting,
and increasingly direct and interactive control by the user
for the higher level steps. W e have found this combinat ion
to provide greater productivity than that achieved either with
highly automated provers that must be kept on a short leash, or
with low level proof checkers that must be dragged towards
a proof.

One of the greatest advantages provided by interactive
theorem provers is the ability to back out of (i.e., undo)
unproduct ive lines of exploration. This can often save much
work in the long run: if a case-split is performed too soon,
then many identical subproofs may be performed on each of
the branches. A user who recognizes this can back up to before
the case-split, do a little more work there so that the offending
subproof is dealt with once and for all, and then invoke the
case-split once more.

In the interests of enhanc ing productivity for the human
user, we have made a number of design decisions that have

entailed complex implementation strategies. For example, we
allow the user to invent and introduce new lemmas or defini-
t ions during an ongoing proof; this flexibility is very valuable,
but requires tight integration between the theorem prover
and the rest of the verification system: the prover must be
able to call the parser and typechecker in order to admit
a new definition (and also when substitutions are proposed
for quantif ied variables), and typechecking can then generate
further proof obligations.

A yet more daring f reedom is the ability to modify the
statement of a lemma or definition during an ongoing proof.
Much of what happens during a proof attempt is the discovery
of inadequacies, oversights, and faults in the specification that
is intended to support the theorem. Having to abandon the
current proof attempt, correct the problem, and then get back to
the previous position in the proof, can be very time consuming.
Allowing the underlying specification to be extended and
modif ied during a proof (as we do in PVS) confers enormous
gains in productivity, but the mechanisms needed to support
this in a sound way are quite complex.

Interactive theorem provers or proof checkers must display
the evolving state of a proof so that the user can study it
and propose the next step. It is general ly much easier for the
user to comprehend the proof display if it is expressed in
the same terms as the original specification, rather than some
canonical or “simplified” form. This means that the external
representat ions of structures need to be maintained along with
their internal form. For example, the “let” construct is treated
internally as a X-application, but must be presented to the user
as a “let,” even after it has undergone transformations such as
the expansion of def ined terms appear ing within it. Obviously,
formulas change as proof steps are performed, but it is usually
best if each transformation in the displayed proof corresponds
to an action explicitly invoked by the user. For example,
EHDM always eliminates quantif iers by Skolemization, but
for PVS we found it best to retain quantif iers until the user
explicitly requests a quantifier-elimination step.

Interactive theorem provers must avoid overwhelming the
user with information. Ideally, the user should be expected
to examine less than a screenful of information at each
interaction. It requires powerful low level automation to prune
(only) irrelevant information effectively. For example, irrel-
evant cases should be silently d iscarded when expanding
definitions-so that expanding a definition of the form

f(x) = if ZE = 0 then A else B endif

in the context f(~ + 1) where z is a natural number should
result in simply B. Such automation requires tight integration
of rewriting, arithmetic, and the use of type information.

An interactive prover should allow the user to attack the
subcases of a proof in any order, and to use lemmas before
they have been proved. Often, the user will be most interested
in the main line of the proof, and may wish to postpone minor
cases and boundary condit ions until satisfied that the overall
argument is likely to succeed. In these cases, it is necessary to
provide a macroscopic “proof-tree analyzer” to make sure that
all cases and lemmas are eventually dealt with, and that all
proof obligations arising from typechecking are discharged. In

122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

addit ion to this “honesty check,” our systems can identify all
the axioms, definitions, assumptions and lemmas used in the
proof of a formula (and so on recursively, for all the lemmas
used in the proof). Such information helps eliminate unneces-
sary axioms and definitions from theories, and identifies the
assumptions that must be validated by external means.

The main difference between the EHDM and PVS theorem
provers is that the latter is interactive and incorporates the tech-
n iques descr ibed above in order to enhance the effectiveness of
its interaction. Users told us that they found PVS “at least an
order of magni tude” more product ive in use than EHDM, and
we were, ourselves, quite satisfied with its per formance when
exploring the main line of difficult proofs. However, we found
that it required a little too much interaction when deal ing with
straightforward lemmas and minor proof branches. W e were
able to remedy this by defining “strategies” to automate most
of the straightforward proofs that we encountered.

PVS provides a simple “strategy languagi” for combin-
ing basic proof procedures into strategies that are akin to
the tacticals of LCF-like provers. This can easily lead to
a proliferation of rather special ized strategies, however, so
as we gained exper ience we amalgamated many strategies
into a few very powerful ones of broad applicability. The
functionalities of the primitive proof procedures were adjusted
to make them more suitable as building blocks for the higher
level strategies. W ith this arrangement, we find that it is only
necessary to remember about a dozen high level strategies,
plus the primitive procedures (there are about 20 of them), in
order to accomplish proofs using an effective combinat ion of
interaction and automation. Examples of higher level strate-
gies provided in PVS are one that establ ishes propert ies of
recursively-defined functions by induction, and another that
is very effective on “obvious” lemmas and proof branches.
This strategy sets up all def ined functions as automatic rewrite
rules, and then iteratively performs Skolemization, rewriting,
proposit ional simplification, heuristic instantiation, and applies
arithmetic and other decision procedures. The effectiveness of
this strategy is very largely due to the way the rewriter is
controlled and to its interaction with the decision procedures.
Using rewriting to expand every function definition at every
opportunity is seldom effective (and with recursive functions
it is nonterminating): many function definitions contain em-
bedded if-then-else constructs and expanding these blindly
can lead to exponential case-splits. The control technique
employed most often by the PVS rewriter will only expand
a function definition whose body has a top-level if-then-else if
the decision procedures are able to simplify the if test to either
true or false. This technique general ly keeps the rewriter on
a product ive path, and the case-splits under control.

Our use of strategies may be contrasted to the use of tactics
in LCF-style provers such as HOL [66]. Whereas we use
powerful primitive inferences and employ strategies to build
yet higher-level automation, HOL builds almost everything
using tactics, since its built-in proof procedures perform only
the elementary inferences of its logic. W e doubt that the
efficiency required to complete the verifications descr ibed here
at reasonable cost can be achieved using the HOL approach.
The argument advanced in its favor is manifest soundness.

It is true that our decision procedures and other powerful
primitive inferences have more complicated implementations
than the elementary inferences of logic and require (and have
received) careful scrutiny to ensure soundness, but most of
their complexity is concerned with search, where bugs will
affect termination and completeness, not soundness. Users
must weigh the arguments and the ev idence and make their
own choices in these matters.

Although the automation descr ibed above proved very ef-
fective in our verification of the fault-tolerant algorithms and
architectures, it foundered when we appl ied it to AAMPS
and other large hardware examples. The basic approach still
seemed effective, for these hardware examples are very reg-
ularly structured and the proofs are conceptual ly straightfor-
ward, but PVS was overwhelmed by their sheer size. Tens
of minutes could be spent in performing the large numbers
of rewrites required, and the resulting formulas were so large
that the simple proposit ional simplifier used in PVS ran out of
space (it would also generate subgoals that were permutat ions
of other subgoals).

W e overcame these difficulties using an off-the-shelf BDD
package [67] to provide very efficient proposit ional simplifi-
cation, and by caching information about rewrites. The cache
is a hash-table where, corresponding to a term a, the result of
the most recent rewriting of a is kept a long with the logical
“context” at the time of the rewrite. The context consists
of the congruence closure data structure maintained by the
decision procedures and the set of rewrite rules current at the
time of rewrite. If the term a is encountered again within
the same logical context, the result of the rewrite is taken
from the cache and the rewriting steps are not repeated. The
information that an expression could not be rewritten in a
context is also cached (and is probably more heavily used than
the information about successful rewriting). Use of BDD’s
and cached rewrites significantly increases the performance
of PVS on hardware examples (for example, they allow the
microcode of the benchmark “Tamarack” processor to be
verified completely automatically in about five minutes [68])
and these enhancements were instrumental in our ability to
undertake mechanized analysis of the AAMPS.

IV. CONCLUSIONS

W e have descr ibed our exper iences in developing
mechanical ly-checked formal verifications for several
quite difficult and large examples arising in fault-tolerant
systems and microprocessor design. As well as ourselves,
specifications and verifications were developed by col leagues
at SRI who had not been involved in the development of our
tools, and by collaborators thousands of miles away at Collins
Commercial Avionics and at NASA Langley Research Center.
The evolution of our languages and tools in response to the
lessons learned from these exper iences took us in the direction
of increasingly powerful type systems, and increasingly
interactive and powerfully automated theorem proving.
Powerful type systems allow many constraints to be embedded
in the types, so that the main specification is uncluttered and
typechecking can provide a very effective consistency check.

OWRE et al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 123

Effectively automated and user-guided theorem proving also
assists the early detection of errors, and the product ive
development of proofs whose information content can assist
in the certification of safety-critical systems [54].

W e found that formal verification provides many bene-
fits besides proof of “correctness.” These include debugging
(i.e., discovery of incorrectness), complete enumerat ion of
assumptions, sharpened statements of assumptions and lem-
mas, streamlined arguments, and an enhanced understanding
that can lead to further improvements. Furthermore, a formal
specification and verification is a reusable intellectual resource
that can support reliable and relatively inexpensive explo-
ration of design alternatives and the consequences of changed
assumptions or requirements.

Most of the techniques we employ were p ioneered by others.
For example, Nuprl [69] and Veritas [70] provide predicate
subtypes and dependent types; theory interpretations were used
in Iota [71]; our theorem proving techniques draw on LCF
[161, the Boyer-Moore prover [72], [73], and on earlier work at
SRI [131. Our systems differ from others in tightly integrating
capabilities that usually occur separately; this has al lowed us to
provide expressive specification languages and powerful and
very effective mechanizat ion within a classical framework. It
should be noted that many of the design choices we have
made are tightly coupled: for example, predicate subtypes
and dependent types bring great r ichness of expression to a
logic of total functions but require theorem proving to ensure
type correctness, which is only feasible if the theorem prover
is highly effective; effective theorem proving needs decision
procedures for arithmetic and equality over uninterpreted
function symbols, and these require that functions are total.

W e consider these design choices to have served us well
and, at some risk of complacency, we are satisfied with them;
al though we plan to improve on the details of our languages
and mechanizat ions, and cont inue to seek major improvements
in efficiency, we do not expect to change the main decisions.
Direct compar isons with alternative approaches would support
objective evaluation, but will not be possible until more
verification systems are capable of undertaking mechanical ly
checked verifications of the scale and difficulty descr ibed here.

For the future, we are investigating techniques for earlier
exploration and validation of specifications, so that the path
to eventual confrontation with a theorem prover is made
more gradual. The techniques we are examining include di-
rect execut ion or “animation,” state-exploration, and fault-tree
analysis. W e are also examining ways to extract more useful
diagnostic information from failed proof attempts, such as
returning counterexamples from the decision procedures. In
collaboration with David Dill at Stanford University, we are
studying techniques for combining theorem proving with state-
exploration and model-checking methods. In this regard, we
have developed an experimental translator from Mur$ [74] to
PVS, and have connected a BDD-based decision procedure for
the modal y-calculus to PVS, giving us similar capabilities to
SMV [75]. W e are also exploring more efficient approaches
to hardware verification [76], [77] and improved support for
requirements specifications in the tabular style advocated by
Pamas and others [78], [79].

ACKNOWLEDGMENT

The work reported here owes a very great deal to our
collaborators at NASA Langley Research Center: R. Butler,
J. Caldwell, M. Holloway, P. Miner, and B. Di Vito, and
to S. Miller at Collins Commercial Avionics. W e also thank
col leagues at SRI: P. Lincoln, E. Liu, and M. Srivas, who
performed several of the verifications ment ioned here, and D.
Cyrluk, S. Rajan, and C. W itty, who contr ibuted to the tools
development.

REFERENCES

[I] ‘.Federal Aviation Administration, “Svstem Design and Analvsis,” Advi-

PI
sory Circular 25.1309.IA, June 21,- 1988 -
R. W. Dennis and A. D. Hills, “A fault tolerant fly by wire system for
maintenance free applications, ” in 9th A&I/IEEE Digital Avionics Syst.

r31

[41

Pl

161

[71

181

191

1101

1111

[I21

[I31

[I41

1151

Cl61

[I71

[181
1191

1201

1211

1221

Conf: Virginia Beach, VA. Oct. 1990, pp. 11-20.
D. A. Mackall, “Development and flight test experiences with a flight-
crucial digital control system,” NASA Tech. Paper 2857, NASA Ames
Res. Ctr., Dryden Flight Res. Facility, Edwards, CA, 1988.
J. H. Wensley et al., “SIFT: Design and analysis of a fault-tolerant
computer for aircraft control,” in Proc. IEEE, vol. 66, Oct. 1978, pp.
1240-1255.
M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980.
R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai,
“The MAFT architecture for distributed fault tolerance,” IEEE Trans.
Comput., vol. 37, pp. 398405, Apr. 1988.
P. Thambidurai and Y.-K. Park, “Interactive consistency with multiple
failure modes.” in IEEE 7th Symp. Reliable Distribut. Sysf., Columbus,
OH, Oct. 1988, pp. 93-100. . -
P. M. Melliar-Smith and R. L. Schwartz, “Formal specification and
verification of SIFT: A fault-tolerant flight control system,” IEEE Trans.
Cornput., vol. C-31, pp. 616630, July 1982.
W. R. Bevier and W. D. Young, “Machine checked proofs of the design
of a fault-tolerant circuit,” Formal Aspects of Computing, vol. 4, no.
6A, pp. 755-775, 1992.
M. Srivas and M. Bickford, “Verification of the Ft.-Cayuga fault-tolerant
microprocessor system, Vol. 1: A case-study in theorem prover-based
verification,” NASA Langley Res. Ctr., Hampton, VA, Contractor Rep.
4381, July 1991.
P. M. Melliar-Smith and J. Rushby, “The Enhanced HDM system
for specification and verification,” in Proc. WkShop III, pp. 4143.
publ ished as ACM Sofbvure Engineering Notes, vol. 10, no. 4, Aug. 85.
J. M. Spitzen, K. N. Levitt. and L. Robinson, “An example of hierarchi-
cal design and proof,” Commun. ACM, vol. 21, no. 12, pp. 1064-1075,
Dec. 1978.
R. E. Shostak, “Deciding combinations of theories,” J. ACM, vol. 31,
no. 1, pp. 1-12, Jan. 1984.
J. Rushby, F. von Henke, and S. Owre, “An introduction to formal
specification and verification using EHDM ,” Computer Sci. Lab., SRI
International, Menlo Park, CA, Tech. Rep. SRI-CSL-91-2, Feb. 1991.
S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th Int. Confi Automated Deduction (CADE), vol. 607 of
Lecture Notes in Artijicial Intelligence, D. Kapur, Ed. New York:
Springer-Verlag, pp. 748-752.
M. Gordon, R. Milner, and C. Wadsworth, “Edinburgh LCF: A mech-
anized logic of computation,” in Lecture Notes in Computer Sci. New
York: Springer-Verlag, vol. 78, 1979.
N. Shankar, “Verification of real-time systems using PVS,” in Courcou-
betis [80], pp. 280-291.
J. U. Skakkebaek and N. Shankar, “Towards a duration calculus proof
assistant in PVS,” in Langmaack et al. [81], pp. 660-679.
J. Hooman, “Correctness of real t ime systems by construction,” in
Langmaack et al. [81], pp. 19-40.
L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,” J. ACM, vol. 32, no. 1, pp. 52-78, Jan. 1985.
J. Rushby and F. von Henke, “Formal verification of the Interactive
Convergence clock synchronization algorithm using EHDM,” Computer
Sci. Lab., SRI International, Menlo Park, CA, Feb. 1989 (Rev. Aug.
1991); original version also available as NASA Contractor Rep. 4239,
June 1989.

“Formal verification of algorithms for critical systems,” IEEE
~‘Sofhvare Eng., vol. 19, pp. 13-23, Jan. 1993.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995 124

~231

[241

W I

W I

~271

W I

v91

[301

[311

~321

[331

[341

]351

[361

1371

[381

[391

[401

[411

~421

1431

[441

1451

Wil l iam D. Young, “Verifying the Interactive Convergence clock-
synchronization algorithm using the Boyer-Moore prover,” NASA
Langley Res. Ctr., Hampton, VA, NASA Contractor Rep. 189649, Apr.
1992.
E. Liu and .I. Rushby, “A formally verified module to support Byzantine
fault-tolerant clock synchronization,” Computer Sci. Lab., SRI Intema-
tional, Menlo Park, CA, Project rep. 8200-130, Dec. 1993.
D. L. Palumbo and R. Lynn Graham, “Experimental validation of clock
synchronization algorithms,” NASA Langley Res. Ctr., Hampton, VA,
NASA Tech. Paper 2857, July 1992.
J. Rushby, “A formally verified algorithm for clock synchronization
under a hybrid fault model,” in 13th ACM Symp. Principles of Distrib.
Comput., Los Angeles, CA, Aug. 1994, pp. 306313.
F. B. Schneider, “Understanding protocols for Byzantine clock syn-
chronization,” Dep. of Computer Sci., Cornell Univ., Ithaca, NY, Tech.
Rep. 87-859, Aug. 1987.
N. Shankar, “Mechanical verification of a general ized protocol for
Byzantine fault-tolerant clock synchronization,” in Vytopil [82], pp.
217-236.
P. S. Miner, “Verification of fault-tolerant clock synchronization sys-
tems,” NASA Langley Res. Ctr., Hampton, VA, NASA Tech. Paper
3349, Nov. 1993.
J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for clock
svnchronization,” Information and Computat ion, vol. 77, no. 1, pp.
lL36, Apr. 1988. -

._

P. S. Miner, S. Pullela, and S. D. Johnson. “Interaction of formal design
systems in the development of a fault-tolerant clock synchronization
circuit,” in IEEE 13th Symp. Reliable Distribut. Syst., Dana Point, CA,
Oct. 1994, pp. 128-137.
B. Bose, “DDD-a transformation system for Digital Design Derivia-
tion,” Computer Sci. Dep., Indiana Univ., Bloomington, IN, Tech. Rep.
331, May 1991.
L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Programming Languages and Syst., vol. 4, no. 3, pp.
382-401, July 1982.
W. R. Bevier and W. D. Young, “Machine-checked proofs of a Byzan-
tine agreement algorithm,” Computat ional Logic Inc., Austin, TX, Tech.
Rep. 55, June 1990.
J. Rushby, “Formal verification of an Oral Messages algorithm for
interactive consistency,” Computer Sci. Lab., SRI International, Menlo
Park, CA, Tech. Rep. SRI-CSL-92-1, July 1992; also available as NASA
Contractor Rep. 189704, Oct. 1992. -
P. Lincoln and J. Rushbv, “Formal verification of an algorithm for
interactive consistency under a hybrid fault model,” in C&rcoubetis
[80], pp. 292-304.
-, “A formally verified algorithm for interactive consistency under
a hybrid fault model,” in IEEE Fault Tolerant Comput ing Symp. 23,
Toulouse, France, June 1993, pp. 402411.
R. S. Boyer and J. S. Moore, “MJRTY-a fast majority vote algorithm,”
in Automated Reasoning: Essays in Honor of Woody Bledsoe, of Auto-
mated Reasoning Series, R. S. Boyer, Ed. Dordrecht, The Netherlands:
Kluwer, vol. 1, pp. 105-117, 1991.
P. Lincoln and J. Rushby, “Formal verification of an algorithm for
interactive consistency under a hybrid fault model,” Computer Sci. Lab.,
SRI International, Menlo Park, CA, Tech. Rep. SRI-CSL-93-2, Mar.
1993; also available as NASA Contractor Rep.-4527, July 1993.
A. L. Hookins. Jr., J. H. Lala. and T. B. Smith III, “The evolution of fault
tolerant comput ing at the Charles Stark Draper Laboratory, 1955-85,”
in The Evolution of Fault-Tolerant Computing, vol. 1 of Dependable
Comput ing and Fault-Tolerant Systems,A. Aviiienis, H. Kopetz, and J.
C. Laprie, Eds. Vienna, Austria: Springer-Verlag, 1987, pp. 121-140.
J. H. Lala, “A Byzantine resilient fault tolerant computer for nuclear
power application,” in IEEE Fault Tolerant Comput ing Symp. 16, Vi-
enna, Austria, July 1986, pp. 338-343.
P. Lincoln and J. Rushby, “Formal verification of an interactive con-
sistency algorithm for the Draper FlP architecture under a hybrid
fault model,” in IEEE COMPASS ‘94 (Proc. 9th Annual Conf Comput.
Assurance), Gaithersburg, MD, June 1994, , pp. 107-120.
B. L. Di Vito, R. W. Butler, and J. L. Caldwell, “High level design
proof of a reliable comput ing platform, ” in Meyer and Schlichting [83],
pp. 279-306.
J. Rushby, “A fault-masking and transient-recovery model for digital
flight-control systems,” in Formal Techniques in Real-Time and Fault-
Tolerant Systems, J. Vytopil, Ed. Norwell, MA: Kluwer, ch. 5, pp.
109-136, 1993. .
R. W. Butler, B. L. Di Vito, and C. M. Holloway, “Formal design
and verification of a reliable comput ing platform for real-time control:
Phase 3 results,” NASA Langley Res. Ctr., Hampton, VA, NASA Tech.

C4f-Y

[471

[481

[491

PO1

[511

1521

[531

[541

1551

[561

1571

[581

[591

[601

Wll

[621

W 3 1

[641

[651

1661

[671

[fw

[691

[701

[711

~721

[731

[741

Memo. 109140, Aug. 1994.
B. L. Di Vito and R. W. Butler, “Formal techniques for synchronized
fault-tolerant systems,” in Dependable Comput ing for Critical Appli-
cations-3, in Dependable Comput ing and Fault-Tolerant Systems.C.
E. Landwehr, B. Randell, and L. Simoncini, Eds. Vienna, Austria:
Springer-Verlag, vol. 8, pp. 163-188, Sept. 1992.
S. P. Miller and M. Srivas, “Formal verification of the AAMPS
microprocessor: A case study in the industrial use of formal methods,”
to be presented at WIFT’95: Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, FL, Apr. 5-8, 1995.
D. W. Best, C. E. Kress, N. M. Mykris, J. D. Russell, and W. J. Smith,
“An advanced-architecture CMOS/SOS microprocessor,” IEEE Micro,
vol. 2, pp. 11-26, Aug. 1982.
W. C. Carter, W. H. Joyner, Jr., and D. Brand, “Microprogram verifica-
tion considered necessary,” in Nat. Comput. Conf. AFIPS Conf Proc.,
1978, vol. 48, pp. 657-664.
J. V. Cook, “Verification of the C/30 microcode using the State Delta
Verification System (SDVS),” in Proc. 13th Nat. Comput. Security Con&
Washington, DC, Oct. 1990, pp. 20-31.
D. May, G. Barrett, and D. Shepherd, “Designing chips that work,” in
Hoare and Gordon [84], pp. 3-19.
W. A. Hunt, Jr., FM8.501: A Verified Microprocessor, vol. 795 of Lecture
Notes in Artificial intelligence. Berlin: Springer-Verlag, 1994.
W. A. Hunt. Jr. and B. C. Brock, “A formal HDL and its use in the
FM9001 verification,” in Hoare and Gordon [84], pp. 35-47.
J. Rushby, “Formal methods and digital systems validation for airborne
systems,” Computer Sci. Lab,, SRI International, Menlo Park, CA, Tech.
Rep. SRI-CSL-93-7, Dec. 1993; also available as NASA Contractor Rep.
4551, Dec. 1993.
R. R. Lutz, “Analyzing software requirements errors in safety-critical
embedded systems,” in IEEE Int. Symp. Requirements Eng., San Diego,
CA, Jan. 1993, pp. 126-133.
J. Guttag and J. J. Homing, “Formal specification as a design tool,” in
7th ACM Symp. on Principles of Programming Languages, Las Vegas,
NV, Jan. 1980, pp. 251-261.
N. Shankar, “Abstract datatypes in PVS,” Computer Sci. Lab., SRI
International, Menlo Park, CA, Tech. Rep. SRI-CSL-93-9, Dec. 1993.
J. H. Chene and C. B. Jones, “On the usability of logics which handle
partial functions,” in Proc 3rd Refinement Workshop, in Springer-Verlag
Workshops in Computing. C. Morgan and J. C. P. Woodcock, Eds., 1990,
pp. 51-69.
J. R. Shoenfield, Mathematical Logic. Reading, MA: Addison-Wesley,
1967.
J. K. Ousterhout, “Tel and the TK Toolkit,” in Professional Comput ing
Series. Reading, MA: Addison-Wesley, 1994.
I. Lakatos, Proofs and Refutations. Cambridge, England: Cambridge
University Press, 1976.
I. Kleiner, “Rigor and proof in mathematics: A historical perspective,”
in Mathematics Magazine, vol. 64, no. 5, pp. 291-314, Dec. 1991.
R. E. Shostak, “On the SUP-INF method for proving Presburger
formulas,” J. ACM, vol. 24, no. 4, pp. 529-543, Oct. 1977.

“Deciding linear inequalit ies by comput ing loop residues,” J.
G ;ol. 28, no. 4, pp. 769-779, Oct. 1981.
R. S. Boyer and J. S. Moore, “Integrating decision procedures into
heuristic theorem provers: A case study with linear arithmetic,” in
Machine Intelligence, vol. 11. London: oxford University Press, 1986.
M. J. C. Gordon and T. F. Melham, Eds., Introduction to HOL: A
Theorem Proving Environment .for Higher-Order Lagic. Cambridge,
UK: Cambridge-University Press, 1993.
G. L. J. M. Janssen. ROBDD Software, Dep. of Elec. Eng., Eindhoven
Univ. of Technology, Oct. 1993”. .
D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas, “Effective theorem
proving for hardware verification,” in Preliminary Proc. 2nd Con&
Theorem Provers in Circuit Design. (Germany: Bad Herrenalb), Sept.
1994, pp. 287-305.
R. L. Constable et al., Implementing Mathematics with the Nuprl Proof
Development System. Englewood Cliffs, NJ: Prentice-Hall, 1986.
F. K. Hanna. N. Daeche. and M. Longlev, “Specification and verifica-
tion using dependent types,” IEEE Trans. Software Eng., vol. 16, pp.
949-964, Sept. 1989.
T. Yuasa and R. Nakajima, “IOTA: A modular programming system,”
IEEE Trans. Software Eng., vol. SE-1 1, pp. 179-187, Feb. 1985.
R. S. Boyer and J. S. Moore, A Computat ional Logic. New York:
Academic, 1979.

1988.’
A Computat ional Logic Handbook. New York: Academic,

R. Melton and D. L. Dill, Murd Annotated Reference Manual. Stan-
ford, CA: Computer Sci. Dep., Stanford Univ., Mar. 1993.

OWR!3 et al.: FORMAL VERIFICATION FOR FAULT-TOLERANT ARCHITECTURES 125

[75] K. L. McMillan, Symbolic Model Checking. Boston, MA: Kluwer,
1993.

1761 J. R. Burch and D. L. Dill, “Automatic verification of pipel ined
microprocessor control,” in Computer-Aided Veri&ation, CAV’94, vol.
818 of Lecture Notes in Computer Science,D. Dill, Ed. New York:
Springer-Verlag, pp. 68-80.

[77] D. Cyrluk and P. Narendran, “Ground temporal logic-a logic for
hardware verification,” in Computer-Aided Verification, CAV ‘94, vol.
818 of Lecture Notes in Computer Science, D. Dill, Ed. New York:
Springer-Verlag. pp. 247-259.

[78] K. L. Heninger, “Specifying software requirements for complex systems:
New techniques and their application,” IEEE Trans. Software Eng., vol.
SE-6, pp. 2-13, Jan. 1980.

[79] J. Rushby and M. Srivas, “Using PVS to prove some theorems of David
Parnas,” in Higher Order Logic Theorem Proving and its Applications,
(6th Int. Workshop, HUG ‘93) no. 780 in Lecture Notes in Computer
Science, J. .I. Joyce and C-J. H. Seger, Eds. New York: Springer-
Verlag, pp. 163-173.

[80] C. Courcoubetis, Ed., Computer-Aided V’er$cation, CAV ‘93, vol. 697
of Lecture Notes in Computer Science. New York: Springer-Verlag,
June/July 1993.

[81] H. Langmaack, W.-P. de Roever, and J. Vytopil, Eds., Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, vol. 863 of Lecture
Notes in Computer Science. New York: Springer-Verlag, Sept. 1994. .

[82] J. Vytopil, Ed., Formal Techniques in Real-Time and Fault-Tolerant
Systems: vol. 571 of Lecture Notes in Computer Science. New York:
Springer-Verlag, Jan. 1992.

[83] J. F. Meyer and R. D. Schlichting, Eds., Dependable Comput ing for
Critical Applications-2, vol. 6 of Dependable Comput ing and Fault-
Tolerant Systems. Vienna, Austria: Springer-Verlag, Feb. 1991.

[84] C. A. R. Hoare and M. J. C. Gordon, Eds., Mechanized Reasoning
and Hardware Design. Prentice Hall International Series in Computer
Science, Hemel Hempstead, UK, 1992.

Sam Owre received his B.S. degree in mathematics
from Stevens Institute of Technology in 1975, and
an M.A. in mathematics from the University of
California, Los Angeles in 1978.

He is a Senior Software Engineer in the Computer
Science Laboratory at SRI International, where for
the past 5 years he has devoted most of his waking
hours to the development of the PVS and EHDM
verification systems. Prior to that he worked in a
number of AI-related research projects at Advanced
Decision Systems, and before that he built yet

another verification system (described in the Feb. 1987 issue of this journal)
while working at Sytek Inc. He has coauthored a number of papers on formal
methods.

Mr. Owre is a member of the Association for Comput ing Machinery, the
Association for Symbolic Logic, the European Association for Theoretical
Computer Science, and the American Mathematical Society,

John Rushby (M’89) received the B.Sc. and Ph.D.
degrees in computer science from the University of
Newcastle upon Tyne in 1971 and 1977, respec-
tively.

He joined the Computer Science Laboratory of
SRI International in 1983, and served as its Direc-
tor from 1986 to 1990; he currently manages its
research program in formal methods and dependable
systems. Prior to joining SRI, he held academic
positions at the Universities of Manchester and
Newcastle upon ‘Qne in England. His research

interests center on the use of formal methods for problems in design and
assurance for dependable systems. He is the author of the section on formal
methods for the FAA Digital Systems Validation Handbook.

Dr.. Rushby is a member of the Association for Comput ing Machinery,
the American Institute of Aeronautics and Astronautics, and the American
Mathematical Society. He is an associate editor for the Communicat ions ofthe
ACM and recently joined the editorial board of the journal “Formal Aspects
of Computing.”

Natarajan Sbankar received the B.Tech. degree
in electrical engineering from the Indian Institute
of Technology, Madras in 1980, and the Ph.D. in
computer science from the University of Texas at
Austin in 1986.

He has been a Computer Scientist with the Com-
puter Science Laboratory at SRI International since
1989. Prior to joining SRI, he was a research
associate with the Stanford University Computer
Science Department. His interests include formal
methods, automated reasoning, metamathematics,

and linear logic. He co-developed SRI’s PVS specification language and
verification system. His book Metamathematics, Machines, and Godel’s Proof
was recently publ ished by Cambridge University Press.

Dr. Shankar is a member of the Association for Comput ing Machinery,
the Association for Symbolic Logic, the European Association for Theoret-
ical Computer Science, and the IFIP Working Group 2.3 on programming
methodology.

Friedrich von Henke received the diploma and
Dr.rer.nat. degrees from the University of Bonn,
Germany, in 1971 and 1973, respectively.

He has been a Professor of Informatics (com-
puter science) at the University of Ulm, Germany,
since 1990. From 1984 to 1990 he was a Program
Manager in the Computer Science Laboratory of
SRI International; prior to joining SRI International,
he held research appointments in the Artificial In-
tell igence and Computer Systems Laboratories of
Stanford University and at the German Research

Center for Mathematics and Data Processing (GMD). He has been active in the
area of formal methods since 1973. At SRI, he led the project developing the
EHDM system. His current research interests include formal and knowledge-
based methods of software development and their applications; in this area he
also continues the collaboration with the group at SRI.

Dr. von Henke is a member of ACM, IEEE Computer Society, GI (German
Informatics Society), and the European Association for Theoretical Computer
Science.

