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Abstract

In a paper that was presented at the recently-concluded Real-
Time Systems Symposium, Vestal proposed a new real-time task
model that is able to represent the fact that the worst-case execu-
tion time (WCET) of a single task may be determined to different
levels of accuracy with different degrees of confidence. In systems
with multiple criticality requirements — different tasks need to be
assured of meeting their deadlines with different levels of confi-
dence — such multiple specifications of WCET may be exploited
to obtain better processor utilization.

This paper conducts a thorough study of the feasibility and
schedulability questions for such multi-criticality real-time task
systems when implemented upon preemptive uniprocessor plat-
forms.

Keywords. Safety-critical systems; Sporadic task systems;
Feasibility analysis; Schedulability analysis; Hybrid-priority
scheduling.

1 Introduction

In a recent paper [9], Vestal presented an interesting, and
practically significant, formal model for representing real-
time tasks. Based on the observation that “the more confi-
dence one needs in a task execution time bound, the larger
and more conservative that bound tends to be in practice,”
several different worst-case execution time (WCET) param-
eters may be specified for each task in this model, each such
parameter being determined at a different level of assur-
ance or criticality. For example the largest execution time
observed during tests of normal operating mode scenarios
can be specified as the WCET at a low level of assurance;
the largest execution time observed during more exhaustive
“code-coverage” tests are more appropriate as the WCET at
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a higher level of assurance; while at the highest levels of
assurance code flow analysis and worst-case instruction cy-
cle counting may need to be done in order to find suitable
bounds.

Different tasks in the system may, in general, perform
tasks of different levels of criticality and hence need to be
guaranteed to meet their timing constraints to different lev-
els of assurance. For instance, the RTCA DO-178B soft-
ware standard specifies several different criticality levels,
with the system designer expected to assign one of these
criticality levels to each task — Table 1 lists the criticality
levels, and intended interpretations, that are specified in this
standard.

The criticality levels assigned to the different tasks must
be taken into account during system validation and testing.
The intended interpretation is as follows: As in any hard-
real-time system, each task must be guaranteed to meet all
its deadlines; furthermore, all the WCET values that have
an impact on whether a task meets its deadline or not must
be of the same criticality level as that required by the task.

This research. Vestal’s multi-criticality sporadic task
model represents a potentially very significant advance in
the modeling of safety-critical real-time systems. Accord-
ingly, it is appropriate that a thorough analysis of the
scheduling-theoretic issues related to this model be con-
ducted; in particular, the large body of research into the tra-
ditional sporadic task model should be revisited in order to
determine which parts apply to this more general model as
well, and which parts do not. This paper represents an at-
tempt at initiating such a study in the context of preemptive
uniprocessor systems of independent tasks. Fundamental
scheduling-theoretic issues – feasibility; schedulability; ex-
pressiveness; etc. – are revisited for this model. Exact fea-
sibility conditions are derived. The relative abilities of dif-
ferent kinds of scheduling algorithms (EDF, fixed-priority,
etc.) in scheduling such task systems are determined, and
a scheduling algorithm proposed that generalizes the algo-



Level Failure Condition Interpretation
A Catastrophic Failure may cause a crash
B Hazardous Failure has a large negative impact on safety or performance, or reduces the abil-

ity of the crew to operate the plane due to physical distress or a higher workload,
or causes serious or fatal injuries among the passengers

C Major Failure is significant, but has a lesser impact than a Hazardous failure (for exam-
ple, leads to passenger discomfort rather than injuries)

D Minor Failure is noticeable, but has a lesser impact than a Major failure (for example,
causing passenger inconvenience or a routine flight plan change)

E No Effect Failure has no impact on safety, aircraft operation, or crew workload.

Table 1. DO-178B is a software development process standard, Software Considerations in Airborne Systems and Equipment
Certification, published by RTCA, Incorporated. The United States Federal Aviation Authority (FAA) accepts the use of DO-178B
as a means of certifying software in avionics applications. RTCA DO-178B assigns criticality levels to tasks, categorized by effects
on commercial aircraft.

rithm proposed by Vestal in [9].

Organization. The remainder of this paper is organized
as follows. The multi-criticality sporadic task model is for-
mally defined in Section 2. Feasibility analysis of multi-
criticality sporadic task systems is studied in Section 3, and
schedulability by different classes of scheduling algorithms
is discussed in Section 4. A particular scheduling algorithm
that generalizes the algorithm proposed by Vestal [9] is de-
rived and evaluated in Section 5.

2 Task model

Although the RTCA DO-178B standard specifies just
five criticality levels A-E, there is no particular reason why
systems should be required to have at most five levels. Ac-
cordingly, we consider here a system model in which there
are arbitrarily many distinct criticality levels, denoted by the
positive integers, with larger integers denoting greater criti-
cality. (The RTCA DO-178B criticality level A would thus
be mapped to 5, and level E to 1.)

We consider the preemptive, uniprocessor scheduling
of multi-criticality sporadic task systems. Such a multi-
criticality sporadic task system τ is comprised of n multi-
criticality sporadic tasks τ1, . . . , τn. Each task τi is charac-
terized by the following parameters

• A WCET function Ci : N+ → R+, specifying the
WCET’s for different criticality levels: the WCET for
criticality level � is equal to Ci(�). Without any loss of
generality, we assume that Ci(�) ≤ Ci(� + 1) for all i

and all �.

• A relative deadline parameter Di.

• A minimum inter-arrival separation or period parame-
ter Ti.

• A criticality level Li, Li ∈ N+.

The intended interpretation of these parameters is similar
to that for standard (non multi-criticality) sporadic task sys-
tems [8]. That is, each task τi generates a potentially infinite
sequence of jobs, with successive job arrivals separated by
at least Ti time units and with each job’s deadline being Di

time-units after its arrival time. The WCET of any job of τi,
at criticality level �, is Ci(�). We restrict ourselves in this
paper to systems of independent tasks – it is assumed that
the different tasks in τ do not interact in any manner other
than executing upon a shared preemptive processor.

Observe that the multi-criticality sporadic task model is
a strict generalization of the traditional sporadic task model,
since a traditional sporadic task system can be specified in
this model by specifying exactly the same criticality level
for all tasks (Li = Lj (∀i, j)).

The multi-criticality sporadic task model turns out to be
a remarkably powerful and expressive model. For instance,
observe that it allows for the modeling of tasks τi for which
WCET estimates at criticality levels greater than Li are un-
known, by setting these values equal to ∞. This is im-
portant – in order to obtain WCET bounds at high levels
of assurance (i.e., at high criticalities), it is typically nec-
essary to limit the kinds of programming constructs that
may be used in implementing the task (for instance, loops
may be required to have static bounds). But low-criticality
tasks should not be subject to these same stringent program-



ming restrictions; by allowing the corresponding (high-
assurance) WCET’s for these low-criticality tasks to be set
equal to∞, we are not forbidding low-criticality tasks from
using these “unsafe” constructs. (Of course, care must be
taken in scheduling systems containing such tasks to ensure
that no job of some task of any criticality � is ever assigned
lower priority than a job that has its level-� WCET equal to
∞.)

Several notions from the analysis of traditional sporadic
task systems, including feasibility and schedulability, and
the synchronous arrival sequence, generalize in a straight-
forward manner to multi-criticality sporadic task systems:

Definition 1 (Feasibility and schedulability) A multi-
criticality sporadic task system τ is said to be schedulable
by a scheduling algorithm A if algorithm A will always
meet all deadlines of τ to the desired level of assurance.
τ is said to be feasible if there exists some scheduling
algorithm A such that τ is schedulable by A.

Definition 2 (synchronous arrival sequence (SAS)) The
synchronous arrival sequence of jobs for a sporadic task τi

consists of the first job of τi arriving at time-instant zero,
and subsequent jobs arriving exactly Ti time units apart.
The synchronous arrival sequence for a collection of tasks
consists of the union of the synchronous arrival sequences
of each individual task in the collection of tasks.

3 Feasibility analysis

Vestal [9] considered the scheduling of multi-criticality
sporadic task systems using the restricted class of schedul-
ing algorithms called fixed priority algorithms (discussed
below in Section 4 under the name Fixed Task Priority, or
FTP, algorithms). If no such restrictions are placed upon
the scheduling algorithms that may be used, it is straightfor-
ward to show that the feasibility analysis problem for multi-
criticality sporadic task systems is equivalent to the feasibil-
ity analysis problem for traditional sporadic task systems.
This is formalized in Theorem 1 below. But first, a defini-
tion:

Definition 3 For any multi-criticality sporadic task system
τ , we define the corresponding traditional sporadic task
system to be

⋃
τi∈τ

{(
Ci(Li), Di, Ti

)}

— here, every traditional sporadic task system is repre-
sented by the 3-tuple (WCET, relative deadline, period).

Theorem 1 Multi-criticality sporadic task system τ is fea-
sible if and only if the corresponding traditional sporadic
task system is feasible.

Proof Sketch: Consider a scheduling algorithm that is
able to enforce temporal isolation (see Section 4) between
different jobs, allowing each job to execute only for a pre-
determined amount of time. Such an algorithm could be
made to execute each job of τi for at most Ci(Li) time units,
thereby essentially ignoring the multiple specifications of
the WCET and treating each multi-criticality sporadic task
as a traditional sporadic task.

Since algorithms for determining the feasibility of tradi-
tional sporadic task systems are known (see, e.g. [4]), The-
orem 1 immediately yields algorithms for determining the
feasibility of multi-criticality sporadic task systems.

4 Schedulability analysis

Theorem 1 above illustrates that from the perspective of
feasibility analysis, multi-criticality sporadic task systems
are identical to traditional sporadic task systems. Neverthe-
less as Vestal’s paper [9] illustrates, there are many interest-
ing unresolved issues concerning the scheduling of multi-
criticality sporadic task systems; essentially, these issues
arise from the fact that it is schedulability by specific algo-
rithms, rather than feasibility (i.e., schedulability by some
hypothetical optimal algorithm), that is the important anal-
ysis question with respect to the implementation of actual
safety-critical application systems. In this section, we delve
deeper into schedulability analysis of multi-criticality spo-
radic task systems; we will see that when restrictions are
placed upon the kinds of scheduling algorithms that may be
used, multi-criticality sporadic task systems are very differ-
ent from traditional sporadic task systems.

§1. A classification of scheduling algorithms. Unipro-
cessor run-time scheduling algorithms operate as follows.
At each instant they (implicitly or explicitly) assign a prior-
ity to each job that is awaiting execution, and choose for ex-
ecution the greatest-priority waiting job. Within the context
of such priority based scheduling algorithms, the semantic
interpretation of multi-criticality may be stated in this man-
ner: in determining whether a task meets its deadline, the
WCET values of all jobs that could be directly or transi-
tively prioritized over a job of this task, and thereby impact
this job’s execution, must be of the same level of assurance
as the assurance required by the task.



Depending upon the restrictions that are placed upon the
manner in which priorities may be assigned to jobs, we dis-
tinguish [5] between three classes of algorithms for schedul-
ing sporadic task systems:

1. Fixed task-priority (FTP) scheduling: All the jobs gen-
erated by a given task are assigned the same priority.

2. Fixed job-priority (FJP) scheduling: Different jobs of
the same task may have different priorities. However,
the priority of each job may not change between its
arrival time and its completion time.

3. Dynamic priority (DP) scheduling: Priorities of jobs
may change between their release times and their com-
pletion times.

It is evident from the definitions that FJP scheduling is a
generalization of FTP scheduling, and DP scheduling is
a generalization of FJP scheduling. In the uniprocessor
scheduling of traditional (i.e., not multi-criticality) task sys-
tems, the FJP scheduling algorithm Earliest Deadline First
(EDF) is known to be optimal in the sense that EDF al-
ways meets all deadlines for all feasible traditional sporadic
task system; hence, DP scheduling algorithms (which typ-
ically incur greater run-time implementation overhead) are
not commonly used in scheduling such task systems.

In his initial work [9] introducing multi-criticality sys-
tems, Vestal restricted himself to FTP scheduling algo-
rithms. In this research, we wish to consider the more gen-
eral FJP and DP algorithms as well.

§2. DP scheduling. Since the class of DP algorithms
includes all scheduling algorithms, all feasible multi-
criticality sporadic task systems are, by definition, schedu-
lable by some DP scheduling algorithm. Consequently, a
multi-criticality sporadic task system τ is DP-schedulable if
and only if the corresponding traditional sporadic task sys-
tem (see Definition 3) is feasible, and the test of Theorem 1
also tests for DP-schedulability.

§3. Limitations of FJP and FTP scheduling. We now
turn our attention to FJP and FTP scheduling. The first
question to ask here is: what (if any) features do DP al-
gorithms possess that FJP and FTP algorithms do not, that
may affect their ability to schedule multi-criticality sporadic
task systems?

Some schedulers are able to enforce temporal isolation
between different jobs at run-time. That is, each job is as-
signed a maximum amount of execution, and the scheduler

is able to ensure that no job exceeds the amount of execu-
tion assigned it. In such systems no job depends upon the
scheduling of another, and hence a job’s completion is not
impacted by the accuracy of the execution time estimates
of other jobs. Examples include static table-driven or time-
triggered schedulers (in which individual jobs are only al-
lowed to execute for predetermined amounts of time) and
real-time variants of weighted fair-queueing.

Now, any algorithm that implements temporal isolation
between jobs can be implemented within the framework of
a DP priority-driven scheduling algorithm by simply rais-
ing and lowering the priorities of jobs at the appropriate
instants. However, this cannot be done in FJP and FTP
scheduling algorithms: FJP and FTP algorithms cannot by
themselves guarantee temporal isolation among jobs1.

Does this inability to provide temporal inter-job isola-
tion cost us anything in terms of schedulability? As stated
above, in traditional sporadic task systems it is the case that
all feasible task systems are also schedulable using some
FJP scheduling algorithm (specifically, EDF). The follow-
ing example illustrates that this is not the case with multi-
criticality sporadic task systems:

Example 1 Consider the task system comprised of the two
tasks τ1 and τ2, with the following parameters:

C1(1) = 5, C1(2) = 5, D1 = T1 = 6, L1 = 2,

C2(1) = 0.5, C2(2) = 5, D2 = T2 = 5, L2 = 1,

By considering both possibilities – (i) τ1 has the greater pri-
ority, and (ii) τ2 has the greater priority — it may be verified
that this system is not FTP-schedulable. Neither is it FJP
schedulable, as is seen by the following argument. Let us
consider the first job of each task when scheduling the SAS,
and consider both possibilities: τ1’s first job has greater pri-
ority than τ2’s first job, or vice versa.

1. When τ1’s first job has greater priority than τ2’s first
job: In this case, τ2’s first job cannot be guaranteed
to meet its deadline with assurance level 1: since
C1(2) = 5, τ1’s first job would execute over the in-
terval [0, 5), thereby allowing τ2’s job no execution at
all.

2. When τ2’s first job has greater priority than τ1’s first
job: In this case, τ1’s first job cannot be guaranteed

1This is not to claim that FJP and FTP schedulers cannot be enhanced to
provide inter-job temporal isolation – indeed, that is exactly what the var-
ious servers and open environments built around EDF and FTP schedulers
do. But all such servers have additional “budgeting” components which
are responsible for ensuring that each job observes the preset limits on its
execution time.



to meet its deadline with assurance level 2: since
C2(2) = 5, τ2’s first job would execute over the in-
terval [0, 5), and leave only one unit of execution for
τ1’s job before its deadline.

However, since C1(L1)/T1 + C2(L2)/T2 = 5/6 + 0.5/5
< 1, this system is feasible by the result in Theorem 1 and
consequently DP-schedulable.

The result in Example 1 is formalized in the following the-
orem.

Theorem 2 There are multi-criticality sporadic task sys-
tems schedulable using DP scheduling algorithms, that
cannot be scheduled using any FTP or FJP scheduling
algorithms.

§4. Comparing FTP and EDF. For traditional sporadic
task systems, it is known that EDF dominates FTP schedul-
ing from the perspective of schedulability – all task sys-
tems schedulable by FTP scheduling are also schedulable
by EDF, while there are task systems schedulable using
EDF for which no FTP schedule can exist. (This is a di-
rect consequence of the optimality of EDF, and the fact that
no FTP algorithm is optimal in the sense of being able to
schedule all feasible sporadic task systems.) However, this
dominance does not carry over to multi-criticality sporadic
task systems, as illustrated by the following simple exam-
ple.

Example 2 Consider the task system comprised of the two
tasks τ1 and τ2, with the following parameters:

C1(1) = 2, C1(2) = 2, D1 = T1 = 4, L1 = 2,

C2(1) = 2, C2(2) = 5, D2 = T2 = 7, L2 = 1.

Thus, τ1 is a higher-criticality task. By assigning τ1 greater
priority than τ2, it may be verified that both tasks meet their
deadlines at the desired levels of criticality; hence, the sys-
tem is FTP-schedulable.

Now consider EDF, and let us focus on the second job
of τ1 in the SAS. Recall that the semantics of the multi-
criticality task model require that all the WCET values used
in ensuring that a task meets its deadline be of the same
level of assurance as that required by the task. The jobs that
have greater priority than τ1’s second job are τ2’s first job
and, by transitivity, τ1’s first job. The WCET’s C1(2) and
C2(2) must be used to determine whether τ1 meets its dead-
lines. But in simulating EDF on the SAS with these WCET
estimates, it is easy to see that τ1’s second job misses its

deadline at time-instant 8 (since τ1’s first job executes over
[0, 2), and τ2’s job over [2, 7), thereby leaving just one unit
of execution, rather than the required two units, for τ1’s sec-
ond job before its deadline).

Example 2, in conjunction with the fact that there
are EDF-schedulable multi-criticality sporadic task systems
that are not FTP-schedulable (any feasible traditional spo-
radic task system that is not FTP-schedulable is an exam-
ple), immediately yields the following result:

Theorem 3 FTP and EDF are incomparable scheduling
strategies in the scheduling of multi-criticality sporadic task
systems.

§5. The Vestal algorithm [9]. Intuitively, the result of
Theorem 3 is not particularly surprising — since any task’s
job may get prioritized over any other task’s job in EDF
scheduling, all the WCET values used must be of the level
of assurance required by the task with the greatest crit-
icality level. Hence, systems with low-criticality tasks
for which high-criticality WCET estimates are overly pes-
simistic are highly unlikely to be deemed EDF-schedulable
since the overly pessimistic WCET estimate adversely im-
pacts the likelihood that the high-criticality tasks will meet
their deadlines at their desired level of assurance.

To avoid this phenomenon, one possible strategy is to
prioritize tasks according to their criticality levels – the
greater the criticality of a task, the higher the (fixed) pri-
ority assigned to this task. However, Vestal showed [9] that
this algorithm is provably non-optimal even among fixed-
priority algorithms; neither is deadline-monotonic (DM)
priority assignment [6] (even for those task systems – Di ≤
Ti∀i – for which DM is an optimal FTP strategy for regu-
lar sporadic task systems). Vestal [9] proposed a priority-
assignment algorithm based upon the priority assignment
strategy of Audsley [1], and proved that this algorithm is
optimal within the class of FTP scheduling algorithms: if
a multi-criticality sporadic task system is schedulable using
any FTP algorithm, then it is schedulable using the Vestal
priority-assignment scheme.

Although the Vestal algorithm is an optimal FTP scheme,
it is by no means optimal if we are not required to re-
strict ourself to FTP algorithms only. Indeed, since multi-
criticality sporadic task systems in which all tasks happen
to have the same criticality level are essentially equivalent
to regular sporadic task systems, EDF would dominate the
Vestal algorithm in the scheduling of such multi-criticality
sporadic task systems.



5 Hybrid-priority scheduling

As discussed in Theorem 1 above, the Vestal algorithm
(which yields an optimal FTP priority assignment) and EDF
are incomparable when it comes to multi-criticality spo-
radic task systems — there are multi-criticality sporadic
task systems schedulable by each algorithm that the other
fails to schedule. Our objective in this section is to obtain
a scheduling algorithm that generalizes both EDF and the
Vestal algorithm, and is provably superior to both in the
scheduling of multi-criticality sporadic task systems. To
this end, we propose to explore the use of hybrid schedul-
ing policies[2], which incorporate features of both FTP
scheduling and EDF. In order to schedule multi-criticality
sporadic task system τ using such a hybrid scheduling pol-
icy, we must assign each task in τ a (not necessarily unique)
priority. These priorities are, by definition, totally ordered
with respect to each other: as long as jobs in one priority are
awaiting execution during run-time, no lower-priority jobs
may execute. Within each priority, tasks will be scheduled
using EDF.

An algorithm for performing schedulability analysis of
(traditional – not multi-criticality) sporadic task systems
under such a hybrid scheduling policy is presented in [2].
There, it is shown that the synchronous arrival sequence
(SAS) represents the worst-case arrival sequence — if the
SAS of a sporadic task system is scheduled to meet all dead-
lines using hybrid-priority scheduling for a given priority
assignment, then the sporadic task system will always meet
all deadlines under hybrid-priority scheduling with the same
priority assignment. (This result for hybrid-priority systems
generalizes the previously-known results that the SAS rep-
resents the worst-case arrival sequence for FP [7, 6] and
EDF [3] scheduling as well.) In Section 5.1 below, we
will use this observation as the basis upon which to de-
sign a priority-assignment algorithm for the hybrid-priority
scheduling of multi-criticality sporadic task systems.

5.1 Algorithm description

Our priority assignment algorithm,
ASSIGNPRIORITIES(τ), is presented in pseudo-code
form in Figure 1. It is a generalization of the Audsley
algorithm [1] for assigning priorities in FTP-scheduled
systems. The procedure AUGMENTEDAUDSLEY(τcur, p)
accepts as input a set of tasks τcur ⊆ τ and a priority p, and
determines which of the tasks in τcur can be assigned prior-
ity p, and which must be assigned greater priority, in order

to meet their timing constraints at their desired levels of
assurance. At each step in AUGMENTEDAUDSLEY during
consideration of the current priority level p, τcur retains the
set of tasks that have not been ruled out for being assigned
priority p and τhi contains the set of tasks that have been
identified as needing to be assigned some greater priority.
(It is assumed that all the tasks in (τ \ (τcur

⋃
τhi)) have

already been assigned some priority < p, prior to entering
this call to AUGMENTEDAUDSLEY.) The initial call to
AUGMENTEDAUDSLEY (from ASSIGNPRIORITIES(τ))
thus starts with the lowest priority and all the tasks (i.e.,
p← 1, and τcur ← τ ).

During the execution of AUGMENTEDAUDSLEY, any
task that is identified as not being guaranteed to meet its
timing constraints at the current priority level must be as-
signed greater priority — such tasks are removed from τcur

and added to τhi. In order to identify tasks that cannot
meet their timing constraints at the current priority level,
we simulate the hybrid-priority scheduling of the the SAS
of (τcur

⋃
τhi) (as Audsley pointed out [1], tasks that have

already been assigned priority < p need not be considered,
since they do not influence the scheduling of tasks with pri-
ority p or greater). More specifically, let π1, π2, . . . , π� de-
note the different criticality levels of tasks in τcur, sorted
in decreasing order. AUGMENTEDAUDSLEY simulates the
hybrid-priority scheduling of the the SAS of (τcur

⋃
τhi) us-

ing first the Ci(π1)’s as WCET’s for the tasks; if all dead-
lines of jobs of the tasks in τcur with criticality level π1 are
met, it then simulates the hybrid-priority scheduling of the
the SAS of (τcur

⋃
τhi) using the Ci(π2)’s as WCET’s for

the tasks; if all deadlines of jobs of the tasks in τcur with
criticality level π2 are met, it next simulates the hybrid-
priority scheduling of the the SAS of (τcur

⋃
τhi) using the

Ci(π3)’s as WCET’s for the tasks; and so on.

If all deadlines of jobs of the tasks in τcur with the lowest
criticality level (π�, in the pseudo-code) are met when the
Ci(π�)’s are used as WCET estimates, then we are done –
the system can be scheduled to the desired degree of assur-
ance when all tasks in τcur are assigned the current priority
level p (this is represented by the return statement in Line
8 of the pseudo-code). Suppose, however, that some job of
a task in τcur with criticality level πj misses its deadline
during the simulation using the Ci(πj)’s as WCET’s for the
tasks. Let τk denote the task with criticality πj generating
the first such job to miss its deadline, and suppose that this
deadline miss occurs at time-instant tf . In order for this job
to meet its deadline, it is necessary that it have a greater
priority than some earlier-deadline job of some task in τcur



AUGMENTEDAUDSLEY(τcur, p)

� Assigns priorities p or greater to all the tasks in τcur, such that all these tasks are deemed schedulable at
� their specified levels of assurance, if possible.

1 τhi ← ∅� Tasks in τhi will be assigned priority > p.
Let π1, π2, . . . , π� denote the distinct criticality levels of tasks in τcur, in decreasing order.

2 for j ← 1 to � do
3 while (a job of some task in τcur of criticality πj misses a deadline in the simulation of the hybrid-priority

scheduling of the SAS of τcur ∪ τhi, using level-πj WCET’s) do
4 Let τk denote the task generating the criticality-πj job that first misses a deadline
5 τhi ← τhi ∪ {τk}; τcur ← τcur \ {τk}� τk gets “promoted” to a higher priority

end while (line 3)
end for (line 2)

6 if τcur = ∅ then return “could not schedule” end if � All the tasks needed to be promoted.
7 All tasks in τcur are assigned to the priority level p

8 if τhi = ∅ then return “successfully scheduled” end if � all tasks have been assigned priorities.
� Now, recursively assign priorities to all the tasks that were “promoted.”

9 AUGMENTEDAUDSLEY(τhi, p + 1)

end AUGMENTEDAUDSLEY

ASSIGNPRIORITIES(τ )

1 AUGMENTEDAUDSLEY(τ, 1)

end ASSIGNPRIORITIES

Figure 1. Hybrid-priority scheduling of multi-criticality sporadic task systems: priority-assignment.

assigned priority p in the SAS. Within our hybrid-priority
framework, the only way this can be achieved is by assign-
ing τk a greater (fixed) priority than some other task in τcur;
consequently, we conclude that τk must be assigned a prior-
ity that is greater than the lowest priority in the system, and
move it from τcur to τhi (Line 5 of the pseudo-code).

Having assigned τk a greater priority in this manner,
AUGMENTEDAUDSLEY must re-examine the entire system
once again (the while loop in Lines 3-5). That is, it re-
simulates the scheduling of the SAS at each criticality level
π1, π2, . . ., except that τk is now assigned a greater priority
than the tasks remaining in τcur. In doing so, it may be de-
termined that some other task τ ′

k also needs to be promoted
to a greater priority, in order to be able to meet its deadline
at the desired level of assurance. In that case, it will also
promote this task, and repeat the entire process (the while
loop in Lines 3-5) on the tasks remaining in τcur.

As in the original Audsley approach [1], AUG-
MENTEDAUDSLEY is essentially identifying the tasks that
are to be assigned the current priority p; hence, it does not
(yet) assign the promoted tasks (τk and τ ′

k, in the exam-
ple scenario above) priorities relative to each other — this
will be done later, during future recursive calls to AUG-

MENTEDAUDSLEY (Line 9 of the pseudo-code), after all
the tasks that can be assigned the priority p are identified.
Hence in checking for deadline misses, only deadlines of
(jobs of) tasks that have not yet been promoted are consid-
ered: AUGMENTEDAUDSLEY does not check whether pro-
moted tasks make their deadlines or not in the simulation,
regardless of their criticality levels.

It is also important to point out that the decision to pro-
mote, to a greater priority, the task that has the earliest dead-
line miss is strictly necessary, in the sense that this task can-
not remain in the current priority level regardless of which
(if any) other tasks are chosen for promotion. This is a di-
rect consequence of the fact that a task’s “interference” —
the amount of execution it is able to consume over any in-
terval [0, t) during the scheduling of the SAS — can only
increase or remain unchanged upon promotion to a greater
priority. Since the task chosen for promotion is the one with
the earliest deadline miss, promoting any other tasks can-
not possibly result in this deadline getting met — in other
words, promotion is necessary if the task is to be guaranteed
to meet its deadline.

AUGMENTEDAUDSLEY repeats this process – identify-
ing some task that cannot be guaranteed to meet its dead-



line at the desired criticality level and promoting it to a
higher priority level – until all deadlines are met by the re-
maining tasks, or all the tasks have been promoted out of
the lowest priority level. If we ended up needing to thus
promote all the tasks (i.e., τcur becomes empty), then we
have failed to determine a priority assignment that guaran-
tees that all deadlines will be met at the desired criticality
levels — this flags the failure declaration on Line 6 of the
pseudo-code. Otherwise, we assign the lowest priority level
to all the tasks that were not promoted, since we have deter-
mined that they all meet all their timing constraints at this
priority level (Line 7 of the pseudo-code).

We then consider all tasks that had been promoted
(stored in the set τhi). Since the tasks at the lower priority
level have no effect on the schedulability of these tasks, we
recursively determine whether these tasks in τhi are schedu-
lable or not (Line 9 of the pseudo-code), using the same pro-
cedure as the one described above but starting at a greater
priority (p + 1, rather than p).

5.2 Evaluation

In Section 5.1 above, we presented an algorithm for as-
signing priorities to tasks in a multi-criticality sporadic task
system such that the resulting system is scheduled to meet
all timing constraints to their respective desired levels of
assurance, using the hybrid-priority scheduling algorithm
of [2]. We now compare this approach to other possible ap-
proaches to the scheduling of multi-criticality sporadic task
systems.

First, observe that our algorithm in Section 5.1 above
dominates EDF scheduling: any τ that is EDF-schedulable
will be determined to be schedulable by our algorithm with
all tasks in τ being assigned the same – lowest – priority.
That is, the first call to AUGMENTEDAUDSLEY(τ, 1) de-
clares success by executing the return statement of Line 8,
and making no further recursive calls to AUGMENTEDAUD-
SLEY.

Our algorithm also dominates the Vestal algorithm [9].
The Vestal algorithm is more restrictive in the sense that
each priority level must have exactly one task assigned to
it; it is not hard to show that any τ for which the Vestal
algorithm finds such a priority assignment will also have a
priority assignment (perhaps the same one) found by our
algorithm.

As shown in Theorem 2 (Section 3), there are feasible
multi-criticality sporadic task systems that are schedulable
using dynamic priority algorithms, but not schedulable us-

ing any FJP or FTP algorithms. A natural question to ask is:
is the hybrid-priority algorithm described in Section 5.1 op-
timal among the class of FJP algorithms, for the scheduling
of multi-criticality sporadic task systems? Example 3 below
answers this question in the negative: there are task systems
that are FJP-schedulable, but that cannot be scheduled using
the algorithm of Section 5.1.

Example 3 Consider the task system comprised of the two
tasks τ1 and τ2, with the following parameters:

C1(1) = 5, C1(2) = 10, D1 = 12, T1 =∞, L1 = 2,

C2(1) = 1, C2(2) = 2, D2 = 5 T2 = 5, L2 = 1.

First, it may be verified that it follows from Theorem 1
and the feasibility-testing algorithm for traditional sporadic
task systems in [3] that this multi-criticality sporadic task
system is feasible.

Next, it may be verified that is is not schedulable using
the algorithm presented in Section 5.1 above:

• When both tasks are assigned the same priority, τ1’s
only job in the SAS cannot be guaranteed to meet its
deadline at the desired criticality level, since at criti-
cality level 2 the total processor demand over the time-
interval [0, 12) is (C1(2) + 2C2(2)) = 10 + 2 × 2 =
14 > 12.

• If τ1 is instead assigned greater priority, then τ2’s first
job in the SAS misses its deadline at time-instant 5.

However, the system is FJP-schedulable: the following
FJP priority-assignment strategy ensures that all deadlines
are met.

1. The only job of τ1 is assigned priority level 2.

2. A job of τ2 arriving at time-instant ta is assigned prior-
ity 1 if τ1’s job has arrived and executed for ≥ 1 units
prior to time-instant ta, and priority 3 otherwise.

To see that this FJP scheduling strategy always meets all
deadlines at the desired criticality levels, observe that

• Any task of τ2 that is assigned priority 3 trivially meets
its deadline (since there are no jobs of greater priority
in the system).

• Suppose that a task of τ2 is assigned priority 1. The
only job of τ1 must have completed at least one unit of
execution; at τ2’s criticality level of 1, (L2 = 1), this
means that τ1’s job has ≤ (C1(1) − 1) ≤ 4 units of
execution remaining. Hence, this job of τ2 can only be



delayed by a further 4 time units, which still leaves it
adequate execution to complete by its deadline.

• Now consider τ1’s sole job. At criticality level 2
(L1 = 2), it can be delayed from executing for up
to two time units by a priority-3 job of τ2; however,
if this happens, this job will have completed at least 3
units of execution before the arrival of the next job of
τ2. Consequently, this next job of τ2 is assigned prior-
ity 1 and does not effect the execution of τ1’s sole job,
which therefore suffers a total interference of at most
2 units and consequently completes on time.

Hence, this is a multi-criticality sporadic task system that
is FJP-schedulable, but which the algorithm of Section 5.1
fails to schedule.

6 Conclusions

The multi-criticality task model presented by Vestal [9]
represents a potentially very significant advance in the mod-
eling and analysis of safety-critical real-time systems. In
this paper, we have attempted to obtain a better understand-
ing of the preemptive uniprocessor scheduling of multi-
criticality sporadic task systems. We have studied the
fundamental scheduling-theoretic issues — expressiveness;
feasibility; schedulability by specific classes of schedul-
ing algorithms; etc. — that must be understood in order
to fully understand a new task model. We have learned
much from this study that went against our prior experience
with traditional sporadic task systems: for example, we
learned that EDF is not an optimal algorithm for schedul-
ing multi-criticality sporadic task systems, and that EDF
and fixed-priority scheduling are incomparable. We have
also derived, and evaluated, a new scheme for scheduling
such multi-criticality sporadic task systems upon preemp-
tive uniprocessors, and shown that this new scheme is supe-
rior to previously-proposed ones.
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