
Towards the design of certifiable mixed-criticality systems

Sanjoy Baruah∗ Haohan Li
Department of Computer Science
The University of North Carolina

Chapel Hill, NC. USA

Leen Stougie†

Division of Operations Research
Dept. of Economics and Business Administration

Vrije Universiteit and CWI
Amsterdam, The Netherlands

Abstract
Many safety-critical embedded systems are subject to cer-
tification requirements; some systems may be required
to meet multiple sets of certification requirements, from
different certification authorities. Certification require-
ments in such “mixed-criticality” systems give rise to
some interesting scheduling problems, that cannot be sat-
isfactorily addressed using techniques from conventional
scheduling theory. In this paper, we propose a for-
mal model for representing such mixed-criticality work-
loads. We demonstrate the intractability of determining
whether a system specified in this model can be sched-
uled to meet all its certification requirements. For dual-
criticality systems – systems subject to two sets of certifi-
cation requirements – we quantify, via the metric of pro-
cessor speedup factor, the effectiveness of 2 techniques
(reservation-based scheduling and priority-based schedul-
ing) that are widely used in scheduling such mixed-
criticality systems.

1 Introduction
Due to cost and related considerations, there is an in-
creasing trend in embedded systems towards implement-
ing multiple functionalities upon a single shared comput-
ing platform. The concept of mixed criticalities is fast
coming to be regarded as an important concept in such
systems. (Indeed, mixed criticalities has been identified
as one of the core foundational concepts in the emerg-
ing discipline of Cyber Physical Systems.) In such sys-
tems, mixed criticalities can mean two different things.
The first meaning is the obvious one: upon platforms
that offer support for multiple functionalities, it is highly
likely that some of these functionalities will be more im-
portant (more “critical”) to the overall welfare of the plat-

∗Supported in part by AT&T, IBM, and Sun Corps.; NSF grants
CNS 0834270 and CNS 0834132; ARO grant W911NF-09-1-0535; and
AFOSR grant FA9550-09-1-0549.
†Supported by the Dutch BSIK-BRICKS project.

form than others. For instance, it is more important to the
correct behavior of an automotive control system that the
anti-lock brake system (ABS) works correctly than that
the on-board radio does so. This aspect of mixed criti-
calities is widely studied by embedded systems design-
ers, who typically address such differences in criticalities
by means of priority-based scheduling approaches: more
critical functionalities are accorded greater priority so that
they will be less likely to suffer performance degradation
in the event of system overload . (Lately, much more
sophisticated approaches have been proposed for dealing
with such systems, based on “servers” that isolate func-
tionalities of different criticalities from each other via the
technique of virtualization.)

However, there is another aspect [3] to mixed critical-
ities that arises in application domains (such as civilian
and defense avionics) that are subject to mandatory certi-
fication requirements by statutory organizations. It is the
aspect of mixed criticalities arising as a consequence of
such certification requirements, that is the focus of this
paper.

Mixed-criticality and certification. We illustrate the
certification aspect of mixed criticality via an exam-
ple taken from the domain of unmanned aerial vehicles
(UAV’s) that are used for defense reconnaissance and
surveillance. The functionalities on board such UAV’s can
be classified into two categories:

• The flight-critical functionalities: these are the func-
tions that must be performed by the aircraft in order
to ensure its safe operation.

• The mission-critical functionalities, which are con-
cerned with the UAV’s reconnaissance and surveil-
lance objectives. These could include capturing im-
ages from the ground, transmitting these images to
the base station, perhaps (depending on how sophis-
ticated the UAV’s capabilities are) doing some im-
age processing in order to track potential targets and



more generally to determine where next to direct its
surveillance activities, etc.

In order that such UAV’s be permitted to operate over
civilian airspace (e.g., for border surveillance), it is
mandatory that its flight-critical functionalities be certi-
fied by civilian Certification Authorities (CA’s), such as
the Federal Aviation Authority in the US, and similar or-
ganizations in other parts of the world. Such CA’s tend to
be very conservative: they require that the correctness of
the UAV be demonstrated under extremely rigorous and
pessimistic assumptions, which are very unlikely to occur
in reality.

However, the CA’s are not concerned with the correct-
ness (or otherwise) of the mission-critical functionalities
— their sole concern is with the safety of the aircraft.
These mission-critical functionalities must instead be val-
idated by the clients and the vendor-manufacturer, typi-
cally to standards that are less rigorous than the ones used
by the CA’s.

We illustrate this difference in rigor by considering a
particular characterizing parameter of real-time code: the
Worst-Case Execution Time (WCET). The WCET of a
piece of code represents an upper bound on the amount
of time required to execute this code. Each Certification
Authority is likely to specify its own rules, tools, etc., for
determining the value of the WCET:

• For flight-critical certification purposes, the CA’s re-
quire that we have a great deal of confidence that the
value we assign to this parameter be an actual upper
bound on the execution time of the code. Such con-
fidence could be obtained by, e.g., severely restrict-
ing the kinds of programming constructs that are per-
mitted to be used, analyzing the resulting programs
very carefully to identify the worst-case execution
path through it, and subjecting this worst-case path
to careful analysis using rigorous cycle-counting un-
der extreme pessimistic assumptions regarding cache
state etc.

• For mission-critical validation, it may suffice to es-
timate the WCET of the same piece of code by per-
forming a large number of simulation experiments
on the code, covering what we believe are all ex-
tremal behaviors of the system, measuring the run-
times to determine the largest value, and perhaps in-
flating the largest observed value by an additional
“fudge” factor to give us greater confidence in the
result. The resulting estimate will still be very con-
servative, but presumably not as large as the value
determined above for use in the flight-critical certifi-
cation process.

Thus, the same piece of code will be characterized by
different WCET’s in safety-critical certification and in

mission-critical certification, and it is incumbent that the
platform pass both certification processes. This would
not be an issue if all the functionality on board the plat-
form needed to be certified by both CA’s: in that case,
we would simply take the more conservative bound (the
larger WCET estimate) and use this in both certification
processes. However (as stated above), it is typically the
case that only some of the functionality must be certified
according to the more rigorous flight-critical certification
process, while the entire system (comprising the flight-
critical plus the mission-critical functionalities) must pass
the less rigorous mission-critical certification. We illus-
trate by an example.

Example 1 Consider a system comprised of two jobs: J1

is flight-critical while J2 is only mission-critical. Both
jobs arrive at time-instant 0, and have their deadlines at
time-instant 10. The WCET of J1, estimated according
to the techniques associated with flight-critical certifica-
tion, is determined to equal 6, while the WCET of J2,
estimated using the techniques associated with mission-
critical certification is 5. Using the WCET estimates of
6 and 5 respectively, there is no way that both jobs can
be scheduled to guarantee completion by their deadlines.
Recall, however, that

• For the purposes of flight-critical certification, it is
irrelevant whether J2 completes on time or not; and

• the value of 6 that is assigned to J1’s WCET param-
eter may be deemed too pessimistic for the purposes
of mission-critical certification.

Let us suppose that the WCET of J1, estimated using the
techniques associated with mission-critical certification,
is determined to be equal to 3 (rather than 6), and step
through the certification processes if we were to schedule
the jobs by assigning J1 greater priority than J2.

• The CA responsible for safety-critical certification
would determine that J1 completes by time-instant
6 and meets its deadline; hence the system passes
certification.

• The CA responsible for mission-critical certification
determines that J1 completes by time-instant 3, and
J2 by time-instant 8. Thus they both complete by
their deadlines, and the system passes certification.

We thus see that the system is certified as being correct
by both the flight-critical and the mission-critical CA’s,
despite our initial observation that the sum of the relevant
WCET’s (6 and 5) exceeds the length of the scheduling
window over which they are to execute.



This research. Example 1 above illustrates the central
thesis of our research: the efficient utilization of comput-
ing resources in mixed-criticality systems that are subject
to multiple certification requirements requires the devel-
opment of fundamental new scheduling theory. This pa-
per reports on some of our initial attempts towards such a
theory.

Alternative approaches. In order to justify the need for
a new theory, we need to show that current scheduling
theory is inadequate for addressing the needs of mixed-
criticality certification. Example 1 above illustrates that
a reservations-based approach, whereby we a priori re-
serve adequate computing capacity to guarantee each job
enough execution to meet its WCET requirement at its
criticality level, is pessimistic. (Indeed, the example is
easily modified to make the pessimism arbitrarily large:
in the worst case, each criticality level could end up need-
ing to be assigned the equivalent of its own dedicated pro-
cessor.)

But what about priority-based scheduling, the other
technique commonly used by systems engineers in deal-
ing with mixed criticalities? In the specific case of Exam-
ple 1, observe that assigning greater priority to the higher-
criticality job – a “criticality-monotonic” scheduling pol-
icy – worked. However, it is in fact not too difficult to con-
struct examples (similar to the one above), in which such a
criticality-monotonic scheme will also fail. For instance,
consider a 2-job system in which the lower-criticality job
has a much earlier deadline, and a far smaller WCET,
than the higher-criticality job. A criticality-monotonic
schedule may fail to pass certification at the lower criti-
cality level even though there may be adequate comput-
ing capacity to meet both jobs’ WCET’s at their specified
criticality levels. These drawbacks of such a criticality-
monotonic approach are also highlighted in [7].

Organization of this paper. Current real-time work-
load models are inadequate for representing MC systems.
Hence in Section 2, we propose a formal model for rep-
resenting mixed-criticality real-time systems. This formal
model extends the conventional model of a real-time job
by allowing for the specification of different WCET’s for
a job at different criticality levels. We also define and ex-
plain important concepts concerning MC scheduling, by,
for instance, highlighting the inherent on-line nature of
the MC scheduling problem, and by formally capturing
the notion of what it actually means for a MC system to
be schedulable. We cite results proving that schedulabil-
ity analysis of MC systems is highly intractable. In Sec-
tion 3, we consider a special case for which tractable anal-
ysis is possible, and present and prove the correctness of
an algorithm for performing such analysis. In Sections 4

and 5, we study the two techniques that are most widely
used in designing mixed-criticality systems for certifiabil-
ity; we quantify the sub-optimality of both techniques via
the metric of processor speedup factor. We briefly survey
some other work on mixed-criticality real-time systems in
Section 6.

2 Model and definitions; prior re-
sults

In this section we formally define the mixed-criticality job
model, and explain terms and concepts used throughout
the remainder of this document. These definitions are il-
lustrated by means of examples in Section 2.1; while read-
ing the following definitions, it may occasionally be use-
ful to refer forward to Section 2.1.

Although our eventual interest is in the scheduling
of collections of recurrent (periodic or sporadic) mixed-
criticality tasks each of which can generate an infinite
number of jobs1, we will see in this document that many
fundamental questions remain unanswered regarding even
the simpler case of finite collections of jobs. Hence we
focus in this paper on the simpler case where a system is
comprised of a finite number of (non-recurring) jobs. Our
results may be considered as a first step towards a more
comprehensive analysis of systems of mixed-criticality re-
current tasks. In addition, these results have immediate
applicability for the scheduling of frame-based recurrent
real-time systems, in which the recurrent nature of the be-
havior is expressed as the infinite repetition of a finite col-
lection of jobs of the kind considered here.

A mixed-criticality (MC) job is characterized by a 4-
tuple of parameters: Ji = (Ai, Di, χi, Ci), where

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the deadline. We assume that Di ≥ Ai.

• χi ∈ N+ denotes the criticality of the job, with a
larger value denoting higher criticality.

• Ci : N+ → R+ specifies the worst case execution
time (WCET) estimate of Ji for each criticality level.
(It is reasonable to assume that Ci(`) is monotoni-
cally non-decreasing with increasing `.)

We will sometimes refer to the time interval [Ai, Di) as
the scheduling window of job Ji.

MC instance. An MC instance is specified as a finite
collection of such MC jobs: I = {J1, J2, . . . , Jn}. Given

1Some partial results concerning the scheduling of such task systems
may be found in [10, 6].



such an instance, we are concerned here with determin-
ing how to schedule it to obtain correct behavior; in this
document, we restrict our attention to scheduling on pre-
emptive uniprocessor platforms.

Dual criticality instances. A dual criticality instance
I is an MC instance with the additional property that all
jobs have criticality either one or two: χi ∈ {1, 2} for all
Ji ∈ I . The example instance considered in Example 1
is clearly a dual criticality instance (this trivially follows
since the instance is comprised of just two jobs); so is the
example (with more than 2 jobs) that will be discussed
below in Section 2.1.

Behaviors. The MC job model has the following se-
mantics. Each job Ji is released at time-instant Ai, needs
to execute for some amount of time γi, and has a deadline
at time-instant Di. The values of Ai and Di are known
from the specification of the job. However, the value of
γi is not known from the specifications of Ji, but only
becomes revealed by actually executing the job until it
signals that it has completed execution. γi may take on
very different values during different execution runs: we
will refer to each collection of values (γ1, γ2, . . . , γn) as
a possible behavior of instance I .

The criticality level of the behavior (γ1, γ2, . . . , γn) of
I is the smallest integer ` such that γi ≤ Ci(`) for all
i, 1 ≤ i ≤ n. (If there is no such `, then we define that
behavior to be erroneous.)

Scheduling strategies. A scheduling strategy for an in-
stance I specifies, in a completely deterministic manner
for all possible behaviors of I , which job (if any) to ex-
ecute at each instant in time. A clairvoyant scheduling
strategy knows the behavior of I — i.e., the value of γi

for each Ji ∈ I — prior to generating a schedule for I .
By contrast, an on line scheduling strategy does not have
a priori knowledge of the behavior of I: for each Ji ∈ I ,
the value of γi only becomes known by executing Ji un-
til it signals that it has completed execution. Since these
actual execution times – the γi’s – only become revealed
during run-time, an on-line scheduling strategy does not a
priori know what the criticality level of any particular be-
havior is going to be; at each instant, scheduling decisions
are made based only on the partial information revealed
thus far.

Correctness. A scheduling strategy is correct if it satis-
fies the following criterion for each ` ≥ 1: when schedul-
ing any behavior of criticality level `, it ensures that every
job Ji with χi ≥ ` receives sufficient execution during the
interval [Ai, Di) to signal that it has completed execution.

MC schedulability. Let us define an instance I to be
MC schedulable if there exists a correct on-line schedul-
ing strategy for it. The MC schedulability problem then is
to determine whether a given MC instance is MC schedu-
lable or not2.

2.1 An example
Consider an MC instance I comprised of 4 jobs. Job J2

has criticality level 1 (which is the lower criticality level),
and the other 3 jobs have the higher criticality level 2.
We specify the WCET function of each task for the two
criticality levels by explicit enumeration: [Ci(1), Ci(2)].

• J1 = (0, 3, 2, [1, 2])

• J2 = (0, 3, 1, [2, 2])

• J3 = (0, 5, 2, [1, 1])

• J4 = (3, 5, 2, [1, 2])

For this example instance, any behavior in which
γ1, γ2, γ3, and γ4 are no larger than 1, 2, 1, and 1 respec-
tively has criticality 1; while any behavior not of criticality
1 in which γ1, γ2, γ3, and γ4 are no larger than 2, 2, 1, and
2 respectively has criticality 2. All remaining behaviors
are, by definition, erroneous.

S0 below denotes a possible on-line scheduling strategy
for this instance I:

S0: Execute J1 over [0,1). If J1 has remaining execution
(i.e., γ1 is revealed to be greater than 1), then execute
scheduling strategy S1 below; else,execute schedul-
ing strategy S2 below.

S1: Execute J1 over [1,2), J3 over [2,3), and J4 over
[3,5).

S2: Execute J2 over [1,3), J3 over [3,4), and J4 over
[4,5).

Scheduling strategy S0 is not correct for I , as can be
seen by considering the schedule that is generated on the
behavior (1, 2, 1, 2). This particular behavior has criti-
cality 2 (since γ4, at 2, is greater than C4(1) which has
value 1, it is not criticality 1); hence, a correct schedule
would need to complete jobs J1, J3 and J4 by their dead-
lines. However, the schedule generated by this scheduling
strategy would have executed J4 for only one unit by its
deadline. In fact, it turns out that instance I is not MC
schedulable.

2Another problem — the scheduling strategy verification problem —
verifies whether a given scheduling strategy is correct for a given prob-
lem instance. We will not discuss the scheduling strategy verification
problem much in this document, since a thorough analysis requires us to
first agree on what constitutes an acceptable representation of a schedul-
ing strategy.



2.2 The complexity of MC schedulability
testing

Unfortunately, determining whether a given MC instance
is MC schedulable or not turns out to be higly intractable:

Theorem 1 (From [4]) The MC schedulability prob-
lem — given an MC instance, determine whether it is MC-
schedulable — is NP-hard in the strong sense. This hard-
ness result holds even in the highly restricted case where
all jobs in the MC instance have the same arrival times,
and each job’s criticality level is either 1 or 2.

This intractability implies that under the assumption that
P 6= NP, there can be no polynomial or pseudo-polynomial
time algorithm for solving the MC schedulability problem
(even in the restricted case of equal arrival times and only
two criticality levels).

Note. In fact, it is not at all clear that a polynomial time
scheduling strategy verification algorithm exists. Thus,
the MC Schedulability problem may very well not belong
to NP, but to a higher complexity class in the polynomial-
time hierarchy [9]. It remains open to settle the exact com-
plexity of the problem.

3 Special case: all deadlines equal
The intractability result in Section 2.2 above tells us
that the MC schedulability analysis problem is intractable
even when all jobs have the same arrival time. What
about the case when all jobs have the same deadline? In
this case, it turns out that the problem is in fact tractable,
even when arrival times may be different. In this section,
we derive an efficient polynomial-time MC schedulability
testing algorithm for such mixed criticality systems.

Consider an MC instance I satisfying the constraint that
for all Ji ∈ I , the deadline parameters Di are all equal —
we will denote this common deadline by D.

We first derive a necessary condition for such an in-
stance I to be MC schedulable. Consider the behavior of
I in which each job Ji needs exactly Ci(`) units of exe-
cution – by definition, such a behavior has criticality level
`. In order that I be deemed MC-schedulable, it is there-
fore necessary that this behavior be schedulable in such
a manner that each job Ji with χi ≥ ` receives at least
Ci(`) units of execution between its release time Ai and
the common deadline D. For each ` ≥ 1, let F` denote
the completion time of the last such job in any preemptive
work-conserving schedule, in which each Ji with χi ≥ `
receives exactly Ci(`) units of execution. It is evident
that F` is easily computed in polynomial time, as shown
in Figure 1. A necessary MC-schedulability condition is

hence as follows:

∀` : ` ≥ 1 : F` ≤ D . (1)

We claim that this necessary condition is in fact also suf-
ficient, and that the criticality-monotonic (CM) on-line
scheduling algorithm — schedule at each instant an avail-
able job needing execution that is of greatest criticality —
will successfully schedule any instance I that satisfies
this necessary condition. To see why this must be true,
consider any behavior of I that has some criticality level
`. By definition of criticality-monotonic scheduling, the
scheduling of jobs of criticality ` or higher is not at all
effected by the presence of lower-criticality jobs — such
lower-criticality jobs get to execute only when there are no
jobs of criticality ` or higher awaiting execution. Hence,
CM can be thought of as a work-conserving scheduling
algorithm on those jobs of I that are of criticality level `
or higher; by our MC-necessary schedulability condition
(Condition 1 above), this does not exceed the common
deadline D.

Theorem 2 The Criticality-monotonic (CM) on-line
scheduling algorithm is optimal for the scheduling of MC
instances in which all jobs have the same deadline.

Note. Notice that max`≥1 F` is the makespan of I;
hence, this technique can be used to compute the
makespan of any MC instance in which jobs do not have
deadlines specified.

4 Sufficient MC-schedulability test-
ing: a reservations approach

Since determining MC schedulability is highly intractable
even for dual-criticality instances, we now seek sufficient
MC-schedulability conditions that can be implemented
with polynomial time-complexity, but that can neverthe-
less make quantitative performance guarantees.

We make an assumption here that for each job Ji,
Ci(`) = Ci(χi) for all ` ≥ χi. That is, no job is allowed
to execute for more than its WCET at its own specified
criticality.

The worst-case reservations approach. As stated in
Section 1, one straightforward approach is to map each
MC job Ji into a “traditional” (i.e., non MC) job with the
same arrival time and deadline as Ji, and a WCET equal
to Ci(χi), and determine whether the resulting collection
of traditional jobs is schedulable using some preemptive
uniprocessor scheduling algorithm such as EDF3. Since

3In fact, this approach forms the basis of current practice, as formu-
lated in the ARINC-653 standard: each Ji is guaranteed Ci(Ji) units



1. Let I` denote the jobs in I with criticality level ` or higher: I` = {Ji ∈ I | χi ≥ `}.

2. Let J1, J2, . . . , Jn`
denote all the jobs in I` ordered by non-decreasing release times: Ai ≤ Ai+1 for all i, 1 ≤

i < n`.

3. Consider the sequence f1, f2, . . . , fi of numbers defined according to the following recurrence

f1 = A1 + C1(`)
fi = max(fi−1, Ai) + Ci(`), for i > 1

4. F` ← fn`
.

Figure 1: Computing F`: the makespan of a preemptive work-conserving schedule for that behavior of I in which
each job Ji ∈ I of criticality ≥ ` executes for exactly Ci(`) time units.

the EDF schedule for n traditional jobs can be obtained
in time polynomial in n, this test can clearly be done
in polynomial time. We will refer to dual-criticality in-
stances that are deemed schedulable by this test as worst-
case reservations schedulable instances.

Lemma 1 If dual-criticality instance I is worst-case
reservations schedulable on a given processor, then I is
MC schedulable on the same processor.

Proof: Consider first any behavior of I of criticality level
1. Each job Ji ∈ I needs at most Ci(1) units of execution.
Since Ci(1) ≤ Ci(2) for all jobs Ji, the worst-case reser-
vations approach ensures that at least Ci(1) units of exe-
cution can be accommodated for each job. Therefore, an
on-line scheduling algorithm such as EDF would schedule
I’s criticality-level 1 behavior to meet all deadlines.

Consider now any criticality-level 2 behavior of I . Re-
call the assumption we have made, that no Ji with χi = 1
executes for more than Ci(1) units. Hence, in a behavior
of I of criticality level 2, each Ji with χi = 1 executes
for at most Ci(1) and each Ji with χi = 2 executes for at
most Ci(2). But this is exactly how much execution has
been reserved for each job in the worst-case reservations
approach; hence once again an optimal on-line schedul-
ing algorithm such as EDF would schedule I’s criticality-
level 2 behavior to meet all deadlines.

Lemma 1 asserts that worst-case reservations schedu-
lability testing represents a sufficient MC-schedulability
test. But how far from an exact test is this? The following
two lemmas provide an answer, in terms of the proces-
sor speedup metric: the minimum multiplicative factor by
which processors must be made faster in order to compen-
sate for the inexactness of the test.

of execution in a time partitioned schedule, obtained by partitioning the
time-line into distinct slots and only permitting particular jobs to execute
in each such slot.

Lemma 2 If dual-criticality instance I is MC schedula-
ble on a given processor, then I is worst-case reservations
schedulable on a processor that is twice as fast.

Proof: If dual-criticality instance I is MC schedulable
on a unit-speed processor, it follows that the behavior
in which each criticality-one job Ji executes for Ci(1)
time units and all criticality-two jobs experience no ex-
ecution is schedulable using EDF. Similarly, the behav-
ior in which all criticality-one jobs do not execute at all
while each criticality-two job Ji executes for Ci(2) time
units is also schedulable using EDF. Hence, a processor-
sharing schedule4 on a speed-two processor would ensure
that each job Ji gets to execute for as much as Ci(χi) time
units, regardless of the behavior of other jobs.

The drawback of the worst-case reservations approach
is that while the semantics of the MC model do not require
criticality-1 jobs to complete if any criticality-2 job exe-
cutes for more than its criticality-1 WCET, such knowl-
edge is not exploited by the worst-case reservations ap-
proach. This severely limits the effectiveness of this ap-
proach, as formalized by the following lemma.

Lemma 3 There exist dual-criticality instances that are
MC schedulable on a given processor, but not worst-case
reservations schedulable on a processor that is less than
twice as fast.

Proof: Consider the instance I comprised of the follow-
ing two jobs (as before, we specify the WCET function of
each job for the two criticality levels by explicit enumer-
ation: [Ci(1), Ci(2)]).

• J1 = (0, D, 1, [D, D])

• J2 = (0, D, 2, [0, D])

4For instance, the time-line could be partitioned into equi-sized slots
of arbitrarily short duration, with alternate slots devoted to jobs of each
criticality level.



This instance is MC-schedulable on a unit-speed proces-
sor by the scheduling strategy of assigning greater priority
to J2. Any behavior in which J2 has an execution require-
ment > 0 is a behavior of criticality level 2, and hence J1

is not obliged to meet its deadline in this behavior. In any
behavior of criticality level 1, on the other hand, J2 has an
execution requirement of zero and J1 gets to execute for
the entire duration [0, D) and thereby meets its deadline.

However, the worst-case reservations approach would
require that C1(χ1) = C1(1) = D units of execution be
reserved for J1, and C2(χ2) = C2(2) = D units of exe-
cution be reserved for J2 over this interval as well. Both
these reservations can only be accommodated on a speed-
≥ 2 processor.

Generalization to more than 2 criticality levels. Lem-
mas 2 and 3 show that the processor speedup factor of 2
is tight for dual criticality systems. Straightforward exten-
sions of these lemmas can be used to show that the natural
generalization of the worst-case reservations approach to
systems with k > 2 criticality levels has a tight processor
speedup factor of k.

5 A priority-based approach
In this section, we present another sufficient schedulabil-
ity condition that can also be implemented in polynomial
time, but offers a performance guarantee (as measured by
the processor speedup factor) that is superior to the perfor-
mance guarantee offered by time-partitioning. As in Sec-
tion 5, we assume that for each job Ji, Ci(`) = Ci(χi) for
all ` ≥ χi. That is,no job is allowed to execute for more
than its WCET at its own specified criticality.

The high-level description of our algorithm is as fol-
lows. Given a dual-criticality instance I , we aim to derive
offline (i.e., prior to run-time) a total priority ordering of
the jobs of I such that scheduling the jobs according to
this priority ordering guarantees a correct schedule, where
scheduling according to priority means that at each mo-
ment in time the highest-priority available job is executed.

The priority list is constructed recursively using the ap-
proach commonly referred to in the real-time scheduling
literature as the “Audsley approach” [1, 2]. We first de-
termine the lowest priority job: Job Ji has lowest priority
if there is at least Ci(χi) time between its release time
and its deadline available if every other job Jj has higher
priority and is executed for Cj(χi) time units (the WCET
of job Jj according to the criticality level of job i). Then
the procedure is repeated to the set of jobs excluding the
lowest priority job, until all jobs are ordered, or at some
iteration a lowest priority job does not exist.

Because of the priority of a job being based only on its
own criticality level, we say the instance I is Own Criti-

cality Based Priority (or OCBP)-schedulable if we find
a complete ordering of the jobs.

If at some recursion in the algorithm no lowest priority
job exists, we say the instance is not OCBP-schedulable.
This does not mean that the mixed-criticality instance is
not MC Schedulable, as the following example illustrates.

Example 2 Let Ji ¤Jj denote that Ji has greater priority
than Jj . Consider three jobs J1, J2 and J3 with χ2 = 1
and χ1 = χ3 = 2, for which C1(2) > C1(1). In consid-
ering the priority ordering J1 ¤J2 ¤J3, we would require
that J3 receive C3(2) units of execution if J1 receives
C1(2) units of execution and J2 receives C2(2) (which,
by assumption, equals C2(1)) units of execution. This is
despite the fact that if J1 receives more than C1(1) units
of execution, it is not necessary that J2 receive any execu-
tion. In other words, we do not attempt to take advantage
of this knowledge, that the behavior is of criticality level 2
and hence criticality-one jobs need not execute to comple-
tion, to modify the scheduling strategy during run-time;
instead, we stick with the priority ordering that was deter-
mined off-line and execute jobs according to this priority
ordering.

We point out that this algorithm for assigning priori-
ties runs in polynomial time and is guaranteed to find a
total priority ordering of the jobs, if one exists, such that
scheduling according to this priority ordering is a correct
on-line scheduling strategy. Hence, the non-optimality
of OCBP scheduling (as highlighted in Example 2), is a
consequence of the fact that no such priority-ordering ap-
proach can be optimal rather than a failure to find an ap-
propriate ordering.

We now show that testing for OCBP-schedulability
comprises a sufficient MC-schedulability test.

Lemma 4 If dual-criticality instance I is OCBP-
schedulable on a given processor, then I is MC schedu-
lable on the same processor.

Proof: Suppose that I is OCBP-schedulable, and let, after
renaming of the jobs, J1, J2, . . . , Jn denote a priority
ordering that bears witness to this.

Let Jk denote any job in this priority ordering. In or-
der to show MC schedulability, it is incumbent to demon-
strate that Jk can receive Ck(χk) units of execution in
any behavior of I of criticality-level χk or lower. But in
any behavior of criticality level χk or lower, each job Ji

executes for no more than Ci(χk) units. And the OCBP-
schedulability of I with priority-ordering J1 ¤ J2 ¤ · · ·¤
Jn implies that Jk will receive Ck(χk) units of execution
if each Ji ∈ {J1, . . . , Jk−1} executes for no more than
Ci(χk) units; hence, Jk will indeed meet its deadline in
all behaviors of criticality-level χk or lower.



Lemma 5 If dual-criticality instance I is MC schedula-
ble on a given processor, then I is OCBP-schedulable on
a processor that is (1 +

√
5)/2 times as fast.

Proof: (We observe that (1 +
√

5)/2 is the famous con-
stant typically denoted as Φ, and often known as the
Golden Ratio.)

Let I denote a minimal instance I that is MC-
schedulable on a speed-1 processor, but not OCBP-
schedulable on a speed-s processor for some s > 1. We
will show that s < (1 +

√
5)/2.

Without loss of generality, let us assume that
minJi∈I Ai = 0 (i.e., the earliest release time is zero).

Observe that it must be the case that there is no time-
instant t ∈ [0,maxJi∈I Di) such that no job’s scheduling
window5 contains t. If there were such a t, it would fol-
low that either the instance comprised of only those jobs
with scheduling windows before t, or the instance com-
prised of only those jobs with scheduling windows after
t, is not OCBP-schedulable; this contradicts the assumed
minimality of I .

Observation 5.1 The job[s] in I with the latest deadline
must [all] be of criticality 2.

Proof: If a criticality-1 job has the latest deadline but nev-
ertheless cannot therefore be assigned lowest priority, it
follows from the optimality of EDF for scheduling “reg-
ular” (non-MC) real-time workloads that the criticality-
level 1 behavior of I in which each job Ji executes for
Ci(1) time units is not schedulable. This contradicts the
assumed MC schedulability of I .

Let j2 denote such a latest-deadline job of criticality 2
with deadline d2, and let j1 denote the job of criticality 1
with the latest deadline, this deadline being at d1.

Let c1, c2(1), and c2(2) denote certain cumulative exe-
cution requirements, defined as follows:

c1 =
∑

j |χj=1

Cj(1)

c2(1) =
∑

j |χj=2

Cj(1)

c2(2) =
∑

j |χj=2

Cj(2)

In words, c1 denotes the cumulative WCET of all
criticality-one jobs, while c2(`) denotes the cumulative
WCET at criticality level `, of all criticality-two jobs.

Consider now any work-conserving schedule of I upon
a speed-s processor, when each job Ji requests exactly

5Recall that the scheduling window of a job Ji is the interval
[Ai, Di)).

Ci(1) units of execution6. Let Λ1, Λ2, . . . denote the inter-
vals, of cumulative length λ, during which the processor
is idle in this schedule.

Observation 5.2 No Ji with criticality χi = 1 has a
scheduling window that overlaps with Λ`.

Proof: Suppose that some criticality-1 job Ji were to
overlap with Λ`. This means that in a behavior of critical-
ity level one, all the jobs which arrive prior to Λ` complete
by the beginning of Λ`. Hence, Ji would complete by its
deadline in any behavior of criticality level one, if it were
assigned lowest priority. But this contradicts the assumed
non-OCBP-schedulability of I on speed-s processors.

Since I is assumed to be MC schedulable on a speed-1
processor, the behavior in which each criticality-one job
executes for its WCET is guaranteed to complete by d1,
the latest deadline of any criticality-one job. It there-
fore follows from Observation 5.2 that the cumulative
WCET’s of all criticality-one jobs cannot exceed (d1−λ):

c1 ≤ d1 − λ (2)

Since we’re assuming that I is not OCBP-schedulable on
a speed-s processor, it must be the case that j1 cannot be
the lowest-priority job on such a processor. Hence, it is
necessary that

c1 + c2(1) > (d1 − λ) s (3)

We now argue from the MC schedulability of I on a
speed-1 processor that the behavior of criticality level one,
in which all jobs execute for their WCET at criticality one,
is guaranteed to complete by the latest deadline d2 of any
job. Inequality 4 below, immediately follows.

c1 + c2(1) ≤ d2 (4)

It similarly follows from the MC schedulability of I on
a speed-1 processor that the behavior of criticality level
two, in which each criticality-two job executes for its
WCET at criticality two, is guaranteed to complete by the
latest deadline d2 of any job. Inequality 5 follows:

c2(2) ≤ d2 (5)

Observation 5.3 Consider any work-conserving sched-
ule of I upon a speed-s processor, when each job Ji re-
quests exactly Ci(χi) units of execution7. There are no
idle intervals in this schedule.

6We are not attempting to meet deadlines in this schedule, simply
keeping the processor active whenever there are jobs remaining that have
arrived but not completed execution, regardless of whether their dead-
lines are met or not.

7As in Observation 5.2, we are not attempting to meet deadlines in
this schedule.



Proof: If there were an idle interval, any job whose
scheduling window spans the idle interval would meet its
deadline upon the speed-s processor if it were assigned
lowest priority. But this contradicts the assumed non-
OCBP-schedulability of I on speed-s processors.

Since we are assuming that I is not OCBP-schedulable
on a speed-s processor, it must be the case that j2 can-
not be the lowest-priority job on such a processor. Given
Observation 5.3 above, it must then be the case that

c1 + c2(2) > d2 s (6)

Let x be defined as follows:

x =
d1 − λ

d2

From Inequalities 3 and 4, we have

d2 > (d1 − λ)s
≡ d2 > x d2 s

≡ 1
x

> s

From Inequality 6 and the Inequalities 2 and 5, we have

c1 + c2(2) > s d2

⇒ (d1 − λ) + d2 > s d2

≡ x d2 + d2 > s d2

≡ x + 1 > s

We thus conclude, it must be the case that

s < min
{ 1

x
, (1 + x)

}

It is evident that 1
x decreases, and (1 + x) increases, with

increasing x. Therefore the minimum value of s occurs
at the value of x that solves the equation 1

x = (1 + x).
Solving for x, we get x = (

√
5− 1)/2, and s ← (1 + x)

= (1 +
√

5)/2. Lemma 5 follows.

Generalization to more than 2 criticality levels. Al-
though the techniques used in the proof of Lemma 5 do
indeed generalize to MC systems with k > 2 critical-
ity levels, such a generalization is not as straightforward
as it was in the reservations approach. We have recently
proved in [5] that for MC systems with k criticality levels,
an upper bound on the speedup factor sk can be expressed
as a recurrence:

s1 = 1

sk =
1 +

√
4 s2

k−1 + 1

2
, k > 1 (7)

(Note that for k = 2, we get the same result as we had
obtained above: an upper bound on the speedup factor of
(1 +

√
5)/2.)

It can be shown that the RHS of Equation 7 approaches
(k/2) as k → ∞; hence, this priority-based scheduling
approach asymptotically becomes at least twice as good
as the reservations-based approach from the perspective
of processor speedup factors, with increasing numbers of
criticality levels.

Discussion. We thus see that of the two polynomial-
time sufficient MC-schedulability conditions for dual-
criticality systems — reservations based and priority
based — the priority-based approach requires a proces-
sor speedup of no more than the Golden Ratio (Φ; approx
1.618) whereas the reservations-based approach requires
a processor speedup of 2.

6 Related work

Most prior work on mixed-criticality scheduling (such as
the work described in [8, 7, 6, 10]) has considered dif-
ferent workload models than the one studied in this pa-
per. As can be seen from the discussion below about each
of these pieces of work, their goals are also very differ-
ent from our objective of discovering and quantifying the
fundamental limitations (such as intractability and impos-
sibility results, and speedup bounds) of MC scheduling
for certification considerations.

Pellizzoni et al. [8], use a reservations-based approach
to ensure strong isolation among sub-systems of differ-
ent criticalities; this paper proposes innovative design and
architectural techniques for preserving such isolation de-
spite some necessary interaction (e.g., in the sharing of ad-
ditional non-preemptable resources) between jobs of dif-
ferent criticalities. The focus here is not on maximizing
resource utilization, but on ensuring isolation; hence, this
research does not attempt to avoid the disadvantage of
the reservations-based approach that we have highlighted
here, of potentially making poor use of system resources.

De Niz et al. [7] deal with a different problem from
the one we here focus on here, in the sense that they do
not directly address the certification issue in MC systems.
Nevertheless, [7] contains very interesting and novel ideas
that merit mention. This work observes that the com-
plete inter-criticality isolation offered by the reservations
approach may have the undesirable effect of denying a
higher-criticality job from meeting its deadline while al-
lowing lower-criticality jobs to complete (this is called
criticality inversion in [7]). On the other hand, as-
signing priorities according to criticality may result in
very poor processor utilization. An innovative slack-



aware approach is proposed that builds atop priority-
based scheduling (with priorities not necessarily assigned
according to criticality), to allow for asymmetric protec-
tion of reservations thereby helping to lessen criticality
inversion while retaining reasonable resource utilization.

To our knowledge, the scheduling problem that arises
from multiple certification requirements, at different crit-
icality levels, was first identified and formalized by Vestal
in [10], in the context of the fixed-priority preemptive
uniprocessor scheduling of recurrent task systems. Some
results concerning EDF scheduling of such systems ap-
pear in [6].

7 Conclusions
Thanks to the rapid increase in the complexity and diver-
sity of functionalities performed by safety-critical embed-
ded systems, the cost and complexity of obtaining certi-
fication for such systems is fast becoming a serious con-
cern [3]. We have argued in this document that in mixed-
criticality systems, these certification considerations give
rise to fundamental new resource allocation and schedul-
ing challenges, and that these challenges are not ade-
quately addressed by conventional real-time scheduling
theory. We have therefore proposed a novel job model
that is particularly appropriate for representing mixed-
criticality workloads, and have studied basic properties
of this model. We have demonstrated that schedulabil-
ity analysis for mixed-criticality systems is highly in-
tractable, even for very simple workloads comprised of in-
dependent jobs, all of which have one of only two possible
criticality levels, and which is being scheduled on a fully
preemptive uniprocessor platform. We have shown how
this intractability can be dealt with by providing faster
processors.

In addition to the specific results presented here, we
consider the formal model and the new techniques that
we have introduced to be significant contributions of this
paper. we are optimistic that this model, and the new tech-
niques, will facilitate further research into the very impor-
tant problem of mixed-criticality scheduling and resource
allocation.

References
[1] AUDSLEY, N. C. Optimal priority assignment and

feasibility of static priority tasks with arbitrary start
times. Tech. rep., The University of York, England,
1991.

[2] AUDSLEY, N. C. Flexible Scheduling in Hard-Real-
Time Systems. PhD thesis, Department of Computer
Science, University of York, 1993.

[3] BARHORST, J., BELOTE, T., BINNS, P., HOFF-
MAN, J., PAUNICKA, J., SARATHY, P., STANFILL,
J. S. P., STUART, D., AND URZI, R. White paper:
A research agenda for mixed-criticality systems,
April 2009. Available at http://www.cse.wustl.edu/˜
cdgill/CPSWEEK09 MCAR.

[4] BARUAH, S. Mixed criticality schedulabil-
ity analysis is highly intractable. Available at
http://www.cs.unc.edu/˜baruah/Pubs.shtml, 2009.

[5] BARUAH, S., LI, H., AND STOUGIE, L.
Mixed-criticality scheduling: improved resource-
augmentation results. In Proceedings of the ICSA In-
ternational Conference on Computers and their Ap-
plications (CATA) (April 2010), IEEE.

[6] BARUAH, S., AND VESTAL, S. Schedulability anal-
ysis of sporadic tasks with multiple criticality spec-
ifications. In Proceedings of the EuroMicro Confer-
ence on Real-Time Systems (Prague, Czech Repub-
lic, July 2008), IEEE Computer Society Press.

[7] DE NIZ, D., LAKSHMANAN, K., AND RAJKUMAR,
R. R. On the scheduling of mixed-criticality real-
time task sets. In Proceedings of the Real-Time
Systems Symposium (Washington, DC, 2009), IEEE
Computer Society Press, pp. 291–300.

[8] PELLIZZONI, R., MEREDITH, P., NAM, M. Y.,
SUN, M., CACCAMO, M., AND SHA, L. Handling
mixed criticality in SoC-based real-time embedded
systems. In Proceedings of the International Confer-
ence on Embedded Software (EMSOFT) (Grenoble,
France, 2009), IEEE Computer Society Press.

[9] STOCKMEYER, L. The polynomial-time hierarchy.
Theoretical Computer Science 3 (1977), 1–22.

[10] VESTAL, S. Preemptive scheduling of multi-
criticality systems with varying degrees of execu-
tion time assurance. In Proceedings of the Real-Time
Systems Symposium (Tucson, AZ, December 2007),
IEEE Computer Society Press, pp. 239–243.


