
Model Extraction for ARINC 653 based
Avionics Software?

Pedro de la Cámara, Maŕıa del Mar Gallardo, and Pedro Merino1

University of Málaga
Campus de Teatinos s/n,

29071, Málaga, Spain
pedro.delacamara@gmail.com,{gallardo,pedro}@lcc.uma.es

Abstract. One of the most exciting and promising approaches to ensure
the correctness of critical systems is software model checking, which con-
siders real code, written with standard programming languages like C.
One general technique to implement this approach is producing a reduced
model of the software in order to employ existing and efficient tools, like
spin. This paper presents the application of the technique to avionics
software constructed on top of an application interface (api) compliant
with the arinc 653 specification (apex), which is widely employed by the
manufacturers in the avionics industry. The paper uses modelling tech-
niques previously developed by the authors. However, these techniques
are now extended to deal with new problems, like real-time aspects and
scheduling. The paper also contains a novel testing method to ensure the
correctness of the key part in the model: the execution engine that im-
plements apex services. This testing method uses spin to execute official
test suites.

Keywords: Model extraction, software model checking, avionics, apex,
Real Time

1 Introduction

Application software for avionics, ranging from comfort and measurement soft-
ware to critical flying control systems, are currently implemented on top of a
shared network of processors following standard interfaces like arinc 653 (Avion-
ics Application Software Standard Interface) [1]. The applications share proces-
sors, memory and devices (sensors and input/output devices) and the whole
system requires specific scheduling methods with real time features. So the ver-
ification of this kind of system is a real trend for model checker practitioners.

It is well known that one major problem of model checking for non-expert en-
gineers is that the technique requires a deep understanding of both the modelling
and the property languages supported by the tools. Furthermore, the manual
construction process is susceptible to human errors due to misunderstandings or
? This work has been partially supported by the Spanish MEC under grant TIN2004-

7943-C04



plain programming bugs. This is one reason to start many projects that can gen-
erate suitable models with minimal human interaction (see Feaver [9], JPF1 [7]
and Bandera [4]). In [6] and [5], the authors develop a model extraction tech-
nique to deal with software built on top of well defined apis. The approach
was implemented for spin 4 (the same target as that of other related tools like
FeaVer or Bandera). In this paper, we extend and apply our method to verify C
applications running on top of apex. The main extensions to our previous work
consist in modelling time features and using conformance testing for checking
the correctness of our model.

Modelling and verification of avionics software is also described in [10]. The
problem of modelling real time in spin has been considered in [3]. Although, a
detailed comparison with these works is given in Section 8, we may summarize
the main contributions of this paper as follows:

1. The method to model timing events preserves the size of the state space
into the limits suitable for verification with spin, like [3]. In addition, our
approach can also benefit from abstract matching.

2. The approach in [10] is oriented to the verification of the operating system
(os), and not to the applications running on top of this os. We model both
the os and the application and, in particular, we focus on debugging the
application. Furthermore, our model of the arinc execution engine is also
available for traditional hand-made modelling of the applications.

3. In so far as the verification of the application depends on the correctness of
the model of the os, we automatically check the correctness of our arinc
model. To this end, we employ spin to do automatic testing, using the official
test suites available in the avionics industry.

The paper is organized as follows. The preliminary material in Section 2
summarizes our general extraction approach to deal with software constructed
on top of well-defined apis [6]. Section 3 gives an overview of the apex api
and the partitioning scheme for avionics software. The main ideas of the model
extraction approach are presented in Section 4 and the details of time modelling
in Section 5. Some experimental results that confirm the feasibility of the method
is given in Section 6. Section 7 shows the correctness of our approach through
testing. Sections 8 and 9 conclude with a more detailed comparison with related
works, and the conclusions, respectively.

2 Model extraction with Well-defined APIs

Existing approaches to verifying software by model extraction do not specifically
address the problem of how to model services provided by the operating system.
They are suitable for source code that only contains library functions that can
be executed by the target model checker (see Feaver [7]). When the target model
checker cannot directly execute all the operating system calls, it is necessary to
add some extra hardness to complete the extracted models.

2



Clientsandservers(C code)

global vars

main()
{

Local vars

C block;
API call;
............
C block;
API call;

}

Functions

global vars

main()
{

Local vars

C block;
API call;
............
C block;
API call;

}

Functions

Additional C global vars;

proctype p1()
{

C global vars
C local vars;

C block;
API call;
............
C block;
API call;

}

proctype p2()
{

C block;
API call;
............
C block;
API call;

}

Clientsandservers(Pormelacode)

Fig. 1. Mapping scheme in SocketMC

In [6] we considered how to verify concurrent C applications that make exten-
sive use of os facilities through system calls. In our approach to model extraction,
we construct a spin oriented model of the behavior of some operating system
apis. This model is used to automatically obtain a correct abstraction of the soft-
ware that makes use of this api, for instance the Berkley-like Socket api. Follow-
ing [9], we defined a mapping from the original C code to extended promela.
Tool SocketMC automatically transforms each api call into promela. The
new promela model can be verified with standard spin.

As shown in Figure 1, mapping from the original code to promela is done
replacing every process (every main function) with a proctype definition. Then,
the body of every proctype is filled using the extensions for C code (c decl,
c state, c expr and c code). This is done breaking the C code at the points
where a call to api appears. The final promela code preserves the sequential
execution of every C block code between two system calls. Thus, when verifying
the model, spin interleaves blocks and system calls as atomic sentences.

By default, the promela models produced by our model extractor contain
all the C variables in the original code. Our method to produce abstract matching
functions, presented in [5], allows us to automatically reduce the set of variables
that should be actually managed to produce the state space. This optimization
is also considered for models extracted from apex based C applications.

This approach can be used for any kind of api, provided that the way of mod-
elling the api calls preserve their semantics. So, in order to verify C applications
written on top of apex, we only need to correctly model the services provided by
apex and reuse our model extraction tool SocketMC. The definition of such
api models is the aim of this paper.

3 The arinc api for Avionics Software: apex Interface

On-board avionics computing systems have evolved from federated specific com-
puter systems towards generic to modular and integrated computers, like the

3



Fig. 2. APEX Interface

Integrated Modular Avionics (ima). Most of the federated computers perform
basically the same functions (input, processing, and output). A natural way of
optimizing resources is to adopt a modular approach: to identify common parts,
to standardize interfaces and to encapsulate services. Then, the next step is to
share the hardware and software resources by integrating several functions on
the same execution platform.

To enable multiple applications to be executed on the same computation re-
source, while avoiding error propagation, a robust isolation mechanism is used.
Isolation is achieved by means of spatial and temporal partitioning, i.e., seg-
regation of memory and time slots allocated to various application parts (or
partitions) by means of software and hardware mechanisms.

The Operating System (os) offers the basic and common services for all appli-
cations such as load, scheduling, and communication, through a well-defined api
conforming to the arinc 653 specification called apex. We now briefly describe
the main characteristics of apex (see [1] for a more detailed description).

Partitioning.- One purpose of a core module in an ima system is to support
one or more avionics applications and to allow their independent execution. This
can be correctly achieved if the system provides partitioning, i.e., a functional
separation of the avionics applications, usually for fault containment (to prevent
any partitioned function from causing a failure in another partitioned function)
and for ease of verification, validation and certification. A partition is basically
the same as a program in a single application environment: it comprises data, its
own context, configuration attributes, etc. For large applications, the concept of
multiple partitions relating to a single application is recognized.

apex Interface.- As Figure 2 shows, interface apex is located between the
application software and the os. It defines a set of facilities provided by the sys-
tem for application software to control the scheduling, communication, and the
status information of its internal processing elements. apex also provides a com-

4



Fig. 3. Process Time Capacity

mon logical environment for the application software that enables independently-
produced applications to execute together on the same hardware.

Scheduling.-Specification differences between partition scheduling and process
scheduling. Scheduling of partitions is strictly deterministic over time. The Sys-
tem Integrator assigns one or more time windows to each partition. This is done
in the fixed configuration within the core module. The scheduling algorithm runs
repetitively with a fixed periodicity. Partitions have no priority by themselves.
The scheduling unit is an apex process. Each process has a priority. The schedul-
ing algorithm is priority preemptive. During any process rescheduling event, the
os always selects the highest priority process in the ready state within the par-
tition to receive processor resources. If several processes have the same current
priority, the os selects the oldest one.

Time Management.- As Figure 3 shows, a time capacity is associated with
each process, and represents the response time given to the process for satisfying
its processing requirements. When a process is started, its deadline is set to the
value of the current time plus the time capacity. This deadline time may be
postponed by means of service REPLENISH. This capacity is an absolute duration
of time, not an execution time. This means that a deadline overrun will occur
even when the process is not running inside or outside the partition window, but
will be acted upon only inside a partition window of its own partition.

Interpartition and Intrapartition communication.- Interpartition communica-
tion is defined as the communication among two or more partitions executing
either on the same module or on different modules. It may also mean communi-
cation between apex partitions and external equipment. Interpartition commu-
nication is conducted via messages. Intrapartition communication mechanisms
allow processes to communicate and synchronize with each other. All intraparti-
tion message passing mechanisms must ensure atomic message access.

5



Service Behaviour
GET PROCESS ID provides a process identifier
GET PROCESS STATUS returns the current status of the specified process. The current

status of each process in a partition is available to all processes
within that partition.

CREATE PROCESS creates a new process and returns its identifier. Partitions
can create as many processes as the pre-allocated memory
space supports. The consistency among process and
partition parameters is checked. Assigning INFINITE TIME VALUE
to PERIOD and TIME CAPACITY defines an aperiodic process
and a process without DEADLINE, respectively.

SET PRIORITY changes the current process’ priority. The process is placed as the newest
process with that priority in the ready state. Process rescheduling
is performed after this service request only when the process
whose priority is changed is in the ready or running state.

SUSPEND SELF suspends the execution of the current process, if it is aperiodic,
until the RESUME service request is issued or the specified time-out
value expires.

RESUME resumes another previously suspended process. The resumed process
will become ready if it is not waiting on a resource (delay, semaphore,
period, event, message). A periodic process cannot be suspended,
so it cannot be resumed.

STOP makes a process ineligible for processor resources until another
process issues START.

START initializes all attributes of a process to their default values,
and resets the runtime stack of the process. If the partition is in
NORMAL mode, the process’ deadline expiration time and the next release
point are calculated.

GET MY ID returns the identifier of the current process.
GET PARTITION STATUS provides the status of the current partition.
SET PARTITION MODE sets the operating mode of the current partition to normal

after initialization of the partition is completed. The service is also
used to set the partition back to idle (partition shutdown), and to cold
start or warm start (partition restart), when a serious fault
is detected and processed.

TIMED WAIT suspends execution of the requesting process for a minimum
amount of elapsed time. Value zero allows the round robin scheduling
of processes with the same priority.

PERIODIC WAIT suspends the execution of the requesting process until the next release
point in the processor time line that corresponds to the period
of the process.

GET TIME returns the value of the system clock. The system clock is
the value of a clock common to all processors in the module.

REPLENISH updates the deadline of the requesting process with a specified
BUDGET TIME value. It is not allowed to postpone a periodic process
deadline past its next release point.

Table 1: Modelled services

4 Modelling Processes

Following the approach described in [6], our promela model is composed of
several application processes, extracted from the application C source code, and
an environment that closes the model. During the extraction, the api calls in the
original source code are translated into calls to the environment. Consequently,
the environment is the process that provides the apex services to the application
processes, and that stores all the state information needed as global data.

We have not modelled every apex service or functionality. As a first step, we
have focussed on what, in our opinion, is the most critical aspect to be modelled
in spin, that is, the apex Time Management. Table 1 above shows services
modelled with a brief description of their behaviour.

6



Since the present paper focuses on modelling apex Time Management, and
several apex features and services are not implemented in this first phase, the
following limitations have been imposed: only one partition is allowed, processes
cannot be restarted after being stopped, partitions cannot be restarted, error
handler, and Health Monitoring and recovering actions are not supported.

4.1 Modelling the Process Scheduling

Applications running on apex are composed of processes. Processes are sched-
uled according to the following apex process scheduling rules: 1) the scheduling
unit is an apex process, 2) each process has a priority, 3) the scheduling algo-
rithm is priority preemptive, 4) during any process rescheduling event, the os
always selects the highest priority process in the ready state, and 5) if several
processes have the same current priority, the os selects the oldest one.

In our model, scheduling is included in the environment and ensures that, in
every state, only one promela process is executable by spin. Scheduling also
ensures that the apex scheduling rules are followed when selecting a process for
processor resources.

Modelling preemption without state explosion. The first issue of mod-
elling apex scheduling comes from the process preemption requirement. apex
specification states that a process may be preempted whenever a re-scheduling
event takes place (for instance, when a higher-priority process is resumed after
a timeout expiration). Implementing this requirement increases the complexity
of the resulting model, which may lead to state explosion during verification.

To solve this problem, we divide the source code into code blocks and apex
api calls, as introduced in [6] (see Figure 1). Code blocks operate only at local
scope (i.e. read and write local variables). api calls operate at global scope
(i.e. read or write global variables). Notice that application processes can only
communicate with other processes or with the environment through api calls.

¿From the model checking point of view, code blocks perform non-visible
local actions, that neither affect other processes nor the environment. Thus,
when a process is executing a code block, it does not matter in which code point
it is preempted. Therefore we may merge all the sentences of a code block in
an atomic block, allowing processes to be preemptable only before or after the
execution of a code block. The idea of merging local sentences is well known,
and it has already used in [6].

api calls behave differently. They use global information and have global
effects but, since they are already executed atomically in the real system, it is
also correct setting them as atomic in the model.

Controlling process execution. The second important issue when modelling
the apex scheduling is to ensure that the scheduling rules are fulfilled. Scheduling
must be able to stop the execution of a process and resume another one. To
do this, we use a provided() sentence in each promela proctype declaration.

7



Sentence provided() appends an executability clause to every transition of that
process, disabling its execution when it is false. For example, global variable
curSchProc in clause “proctype p1() provided ( curSchProc == pid)” stores
the pid of the process currently in execution. Thus, sentence provided() is only
true for the process whose pid matches curSchProc. Thus, the scheduler can
control the execution of processes by modifying the Pid stored in the variable.

Storing process attributes. Scheduler must keep information about the at-
tributes of each process to correctly realize the context switch. These data are
stored as C-structures in the environment, using the embedded-C primitives
provided by spin 4. Attributes may be static, if their value does not change, or
dynamic. Process attributes are shown in Table 2 below.

Due to optimization reasons, only dynamic attributes are included in the
spin state-vector. Static attributes are marked as Tracked UnMatched data (see
references [6], [5] and [8]). Hiding these data during the comparison of states
(Matching) does not discard any significant behaviour, since static attributes are
written only once, during the partition initialization phase, when the process is
created and the initialization phase is completely deterministic.

Static Attributes

Name

Base priority Initial priority

Period

Time capacity the amount of time in which the process must finish
its work (it is used to calculate the process deadline)

type of deadline it can be HARD or SOFT

Dynamic Attributes

Current priority

Deadline Absolute time when time budged will expire.

State apex state of the process: WAITING, RUNNING, DORMANT, READY.

Waiting cause Reason why a process is WAITING (e.g. for a resource).

Position in queue If the process is WAITING or READY, position in the queue
of processes waiting for the same cause.
This attribute is used when there are several candidates
to be awaked/run and the scheduler must choose the oldest one.

Resource If the process is waiting for a resource, this is its identifier
(e.g. a communication port).

Timeout If the process was suspended with timeout,
absolute time when the process will be resumed.

Time wait If the process called TIMED WAIT,
absolute time when the process will continue its execution.

Table 2. Process attributes

Calling the scheduling functionality. Scheduler is called when the so-called
re-scheduling events occur. Re-scheduling events are triggered when a change
in the environment may modify the executability of one process. Examples of
these events are api calls (e.g. SET PROCESS PRIORITY and SUSPEND SELF), time

8



events (e.g. deadline or timeout expiration), the reception of messages in ports,
and intra-partition communication (events up, signaling of semaphores, etc.)

5 Modelling time

The apex time management model is based on the notion of time events. In
respect to model checking with spin, a time event is a global event, triggered by
the environment, and associated to a point in the timeline.

The time event concept is related to the classic “tick” signal used in other
real-time models. A “tick” signal usually indicates that certain amount of time
has elapsed. It is used to interrupt the execution of the model, and to allow the
increment or decrement of a time counter. In some cases, increasing/decreasing
is not the only action. Other actions, such as awakening a process or notifying a
deadline violation, are also carried out as a response to this “tick”. In contrast to
these signals, time events are only triggered when other actions must be taken.
In other words, a time event is a special “tick” signal that is only triggered if its
effect on the model goes beyond increasing/decreasing a time counter.

Our time management model includes a system clock that keeps track of
the time flux, and that is updated by time events. That means that the system
clock is only updated when a time-related event takes place. If a monitor process
observed the system clock during an execution sequence, it would notice that
the clock keeps the same value for long time and then, after a time event takes
place, it jumps to a new value. The most important issue is that the size of the
jump is completely dependant on the time event, and on the behavior of model
itself. It is worth noting that, in terms of model checking, this approach causes
a state-space reduction by avoiding “tick” signals that interrupt the model only
to update time counters.

5.1 Life-cycle of time events

Time events may be armed statically, before starting verification, or dynamically
by the environment during execution of the model. The typical life cycle of a
time event is as follows:

– An application process calls an apex service (e.g. TIMED WAIT(500ms)).
– The environment (i.e. the apex os) takes control and suspends the calling

process. Then it arms a Waiting Timeout time event that will be triggered
500ms in the future.

– The environment returns the execution to another ready application process.
– Eventually (i.e. 500ms in the future), the environment will trigger the time

event. Then execution of the running process will be interrupted, so that the
environment can awake the suspended process.

– Finally, the environment updates the system clock in 500ms, removes the
time event, and returns execution to the appropriate application process.

9



5.2 Implementing and using time events.

Regarding the implementation details in spin, the environment keeps a list with
all the armed time events as a global state variable. The impact of the list in the
state-vector size is not remarkable, since it is optimized for memory saving.

Time events may be used in different ways, depending on how they are armed
and triggered. In this project, we have explored two ways of modelling apex
time management in spin. They are called Time Management Types and each
one corresponds to a different modelling requirement. Time Management Type
1 (tmt1) is used for modelling applications when the execution times of the
application code are unknown. Time Management Type 2 (tmt2) is a refinement
of tmt1 taking these execution times into account.

Time Management Type 1: Execution times are not used. In the early
stages of software development for industrial processes, execution times are often
not available. However, in these first phases, verification by model checking can
be very useful as a mean of discarding design errors. Even if execution times
are unknown, the piece of software under analysis may already include in the
code some time values (inherited from the requirement or design phases). tmt1
provides a model of the environment capable to interpret these time values, but
without using specific execution times.

tmt1 makes an over-approximation of the model assuming that the execution
of each application code block may take a variable amount of time ranging from
0 to infinite time units, but only at those time points where a time event is
triggered. Evidently, this over-approximation produces execution traces that will
never happen in real execution.

This over-approximation is implemented by the process TimeEventTrigger,
whose code appears below. This process is in charge of triggering time events
and runs parallel to the application processes.

proctype TimeEventTrigger () {
do \
:: (1) ->c_code {ma_Tempus_Fugit();} \
od;

}

Process TimeEventTrigger contains an infinite loop with a call to the envi-
ronment function ma Tempus Fugit that triggers time events, and updates the
system clock. Since TimeEventTrigger may always be executed, every transi-
tion of the model may non-deterministically choose to execute either an atomic
application code block (whenever there exists at least one enabled process), or
the TimeEventTrigger sentence Tempus Fugit.

We now describe the possible execution sequences produced by spin when
the application code blocks and process TimeEventTrigger are interleaved. In
the discussion, we denote with A0, A1, . . . , Ak the application code blocks of the
model under analysis, et(Ai)(0 ≤ i ≤ k) being their respective execution times.
Similarly, we assume that T0, T1, · · · are the sucessive TimeEventTrigger tran-
sitions, and that tp(Ti) is the time point associated to the time event triggered

10



in Ti. We use → to represent the order in which transitions are executed in a
given sequence of transitions. It is important to remember that the system clock
is only updated during the time event triggering which, in this case, means that
it is only updated by Tempus Fugit.

Starting with one TimeEventTrigger transition T0, spin explores all the
following execution sequences:

– T0 → A0 → A1 → · · · , that is, no TimeEventTrigger transition takes place.
Then, the system clock remains unchanged, and therefore, et(A0)+et(A1)+
· · · = 0.

– T0 → A0 → · · ·An → T1 → · · · , that is some application code blocks
are executed between T0 and T1. After T1 is triggered, the system clock is
updated, and therefore, et(A0) + · · ·+ et(An) = tp(T1)− tp(T0).

– T0 → T1 → A0 → · · · , that is, the first block A0 is executed after T1. This
sequence models the behavior where et(A0) > tp(T1) − tp(T0). It can also
represent a behavior where execution of A0 is disabled until the time event
T1 is triggered.

– T0 → T1 → T2 → · · · , that is, no application code block is executed. This
sequence models the behavior where et(A0) is infinite. It can also represent
a behavior where execution of A0 is indefinitely disabled.

tmt1 can be used to verify properties related to the ordering of execution of
application code blocks (Ai) and TimeEventTrigger transitions (Ti). This in-
cludes all non-real-time temporal properties usually checked in spin. In addition,
tmt1 can only deal with some of the properties involving real time values. For
example, the existential property “Process P1 is able to do its work before its
deadline” can be checked. spin will try to find an execution in which P1 is able
to finish successfully. However, property “Process P1 shall always do its work
before its deadline” cannot be proven because it will always be violated by the
execution sequence where one code block has an infinite execution time.

Time Management Type 2: Execution Times are used. The Time Man-
agement Type 2 refines tmt1 by adding information about the execution times
of the application processes. tmt2 assigns a fixed execution time to each code
block. These times may be real data, estimations or even purely hypothetical
values.

In a real system, a time event may happen at any time as, for instance, during
the execution of a code block. However, code blocks are modelled as atomic
sentences, and therefore, their execution cannot be interrupted. But this is not a
problem, since, by definition, code blocks only perform local computation, with
no visible effects on other processes, and it does not matter whether a time event
is triggered during or just before a code block, as it does not influence the whole
behavior of the model.

The strategy of tmt2 is to delay the execution of a code block until it can
be executed without being interrupted by time events. Whenever a code block
is delayed, its remaining execution time is decreased in an amount equal to the

11



delay. This is because the model considers that, in the real system, the code
block would be partially executed. Eventually, when the remaining execution
time is so short that no time event can interrupt the code block, the actual code
block will be executed.

A special time control logic, which is considered part of the environment,
is added at the beginning of each code block. Both the whole code block and
time control logic are included in an atomic sentence. The following example
illustrates the way time control logic works.
1 CP1:
2 Atomic { /* Init of Time Control Logic of Block 1 */
3 if RemainingExecTime(_pid) = 0 then
5 RemainingExecTime(_pid) = CP1_EXEC_TIME;
6 end if
6 if ( (T_NextTimeEvent - CurrentTime) < RemainingExecTime(_pid) then
/* Partial code block execution */
7 RemainingExecTime(_pid) = RemainingExecTime(_pid) - (T_NextTimeEvent - CurrentTime);
8 CurrentTime = T_NextTimeEvent;
9 Trigger Time Event;
10 goto CP1;
11 else /* Complete code block execution */
8 CurrentTime = CurrentTime + RemainingExecTime(_pid);
9 RemainingExecTime(_pid) = 0;
11 end if
/* End of Time Control Logic of Block 1 */

/////////////////////////////////////////////////////////
APPLICATION CODE BLOCK

/////////////////////////////////////////////////////////
12 }

Firstly, the time control logic stores the fixed execution time for the code
block into the global variable RemainingExecTime, which is specifically assigned
to the corresponding process. This variable is only updated when its value is
zero.

Then, the time to the next armed time event is calculated, and if it is pos-
sible to completely execute the code block before the next time event is trig-
gered, variable RemainingExecTime is set back to zero, and the system clock
is increased in the same amount. In other words, the elapsed time is equal to
RemainingExecTime. After setting the system clock, the code block is executed
as usual.

Otherwise, if the block code cannot be completely executed, the difference
between the next time event and the current system clock time is calculated. This
value, that represents the time elapsed during which the code block has been
partially executed, is subtracted from RemainingExecTime. Just after that, the
time event is triggered, and the process jumps back outside the atomic block.
Notice that, as a result of the triggered time event, the process may be disabled.
Eventually, when the process runs again, it will try to execute the same code
block, performing a new iteration of the time control logic. Since this time vari-
able RemainingExecTime is not zero, its value is not updated. This iteration
goes on until the code block can be completely executed.

This implementation also includes process TimeEventTrigger, whose code
appears below, and that uses the timeout promela sentence to trigger time
events when the rest of processes are blocked.

12



proctype TimeEventTrigger () {
do \
:: (timeout) ->c_code {ma_Tempus_Fugit();} \
od;

}

In summary, if an execution event is a fictitious event that occurs when a
code block finalizes its execution, it is possible to state that tmt2 preserves the
ordering of time events and execution events.

However, a question still remains. What happens with the api service calls
which are not completely local? The answer is that in a real system, a time event
cannot interrupt api calls. The concrete effects of a time event (for example, a
DEADLINE) triggered during an api call are mostly implementation dependant.
Usually, the effects can be seen after the process returns from the call. In our
model, api calls are delayed until all the interrupting time events are triggered.

6 Experimental results

We now present an example to evaluate our apex environment. The application
code has been instrumented in such a way that spin generates one execution
trace for each possible execution sequence. By analyzing the traces, we may
understand the order in which sentences were executed during verification, and
the time when it happened (measured with the modelled system clock). We have
used Time Management Type 1.

The example consists of one process P1 with the following behaviour. Process
P1 obtains its own identifier (GET MY ID), modifies its own priority (SET PRIORITY)
four times and enters the waiting state (TIMED WAIT) for 500 time units. After
awaking, it reads the system clock (GET TIME) and stops itself (STOP SELF). The
complete code of the example may be found at Appendix A.

Process init, whose code appears below, creates P1 (CREATE PROCESS), starts
it (START) and begins the normal process scheduling by setting the partition in
NORMAL mode (SET PARTITION MODE). Since P1 has a time capacity of 5000 time
units, its deadline shall be set 5000 time units. For this example, we modelled a
minimal Health Monitoring functionality that stops process P1 when its deadline
is reached.

init{ atomic {
c_code {

MODEL_A653_Init(); };
c_code{ A653_CREATE_PROCESS(&a_att, &a_proc,

strcpy (a_att.NAME, "p1"); &a_return,p1);
a_att.STACK_SIZE = 200; A653_START(a_proc,&a_return);
a_att.BASE_PRIORITY = 30; A653_SET_PARTITION_MODE(NORMAL,&a_return);
a_att.PERIOD = INFINITE_TIME_VALUE; run clock();
a_att.TIME_CAPACITY= 5000; };
a_att.DEADLINE = SOFT; };

};

As described in Section 5.2, Time Management Type 1 makes use of process
TimeEventTrigger to trigger time events. In order to explore every possible
sequence of time events and application code-blocks, Time Management Type 1

13



takes advantage of the non-deterministic interleaving between this process and
the application processes. In particular, the instrumentation code added to this
example generates 10 traces, one for each possible execution sequence. We now
discuss them in detail.
Trace 1

Time Process Executed Description

0 TimeEventTrigger Next time event t = 5000
5000 DEADLINE

In this trace, TimeEventTrigger runs before P1 and triggers the P1-DEADLINE

time event. In consequence, the execution is stopped before P1 can run. In a real
system, this behavior takes place if the execution time of the first code-block of
P1 takes more than 5000 time units.

Traces 2-6
The second trace corresponds to the scenario where P1 is able to execute

sentence (GET MY ID) before its deadline is triggered. Note that after the execution
of GET MY ID, the system time has not advanced.

Time Process Executed Description

0 P1 CP11: GET MY ID

0 TimeEventTrigger Next time event t = 5000

5000 DEADLINE

The next four traces are similar to the previous one. In each of then, P1 is able
to execute one additional sentence SET PRIORITY before the deadline is triggered.

Traces 7-10
In the seventh trace, P1 enters a waiting state for 500 time units. A time

event is armed at t = 500 and, since no other process is executing, it is triggered.
Finally, the deadline of P1 is triggered.

Time Process Executed Description

0 P1 CP11: GET MY ID

0 P1 CP12: SET PRIORITY

0 P1 CP13: SET PRIORITY

0 P1 CP14: SET PRIORITY

0 P1 CP15: SET PRIORITY

0 P1 CP15: TIMED WAIT

0 TimeEventTrigger Next time event t = 500

500 Awake P1

500 TimeEventTrigger Next time event t = 5000

5000 DEADLINE

The last three traces show how P1 continues its execution after TIMED WAIT.
The last trace represents the behavior where the execution of P1 is so fast that
its deadline is not triggered.

spin search reached a depth of 30, with a total state-vector size of 228 bytes.
From these 228 bytes, 107 bytes are used to store the environment state and
the rest are for application or instrumentation variables. The example confirms

14



that Time Management Type 1 can be used as an over-approximation to analyze
applications when there is no information about execution times.

7 Testing the model of the API

In a real system, application processes use the os services described in the speci-
fication arinc 653 Part 1 [1]. In the verification model, applications call services
provided by the verification environment. To ensure the correctness of the verifi-
cation, the behavior of the environment services must match the real os services.
As a first step to establish the soundness of the model proposed here, we have
carried out an exhaustive testing campaign. The procedure consists in running
a battery of Test Cases, written in promela+C code, which call every imple-
mented service in every possible condition. Each Test Case provides a fail/pass
verdict, depending on the behavior of the services called.

Test Cases are defined considering the arinc 653 Part 3 “Conformity Test
Specification” document [2]. This specification gives a description in natural lan-
guage of an apex conformity test-battery. In other words, this battery checks if
the apex services provided by an os are conformed to the arinc 653 Part 1 spec-
ification. In consequence, it can also be used to check if the services implemented
in our environment are also conformant.

Test Cases are classified into functional and robustness tests. Functional tests
check that the service works in normal use conditions. Robustness tests check
how the service works in abnormal conditions (e.g. it returns the appropriate
error codes). The result is a complete conformance test suite. Our work firstly
consisted in selecting the test definitions applicable to the current services im-
plemented in the environment. Then we built the promela-C Test Cases and
finally we checked that no Test Case returned a fail verdict. The execution of the
test cases and the promela model of apex is done with the validation facilities
of spin. Due to space restrictions, we cannot describe in detail the codes for Test
Cases developed. As an example, Appendix B shows the Test Case checking the
SET PRIORITY service when the PROCESS ID input parameter is not valid.

It is worth noting that during testing we have used Time Management Type 2
because we are assuming a deterministic evolution of time.

8 Related work

Since this paper focuses mainly on modelling the time management aspects of
apex, in this section, we have concentrated on the previous references which
have modelled real-time in spin.

The proposal presented in [10] shows how to verify a microkernel used in the
avionics industry, by constructing a promela model of the Honeywell DEOS
operating system. In order to close the os model, all the possible interactions
between the DEOS model and the external world are modelled inside the en-
vironment. Basically, this environment includes threads requiring services from
the os and time-related interruption sources. Our work has the opposite goal.

15



We aim at verifying avionics applications which access os services through the
apex interface. In our case, we semi-automatically extract promela models
from applications source code (see [6]). In order to close the application model,
we need to use an environment able to provide apex services to the applications.

In the DEOS environment, one message is periodically generated to indicate
that a higher priority thread may become schedulable. After receiving this mes-
sage, the kernel checks if the current running process must be pre-empted by
the higher priority thread. In our case, since the environment is the os, and the
threads are the applications to be verified, whenever a higher priority process
becomes schedulable, the environment, that is the os, disables the execution of
the low-priority processes and enables the high-priority one.

The DEOS environment has two time-related interruption sources. The first
one periodically interrupts the kernel, in order to check if a higher priority has
become schedulable. The second one interrupts the kernel whenever the running
process exhausts its time budget. The DEOS environment combines both in-
terruptions in one process, in order to coordinate them and avoid “impossible”
behaviours. Similarly, our environment includes a TimeEventGenerator process
that may be seen as the combination of every time-related interruption source
applicable on apex (waiting timeout expiration, time budget expiration, etc.)
However, instead of ticks, our TimeEventGenerator triggers time events. Each
time events has an associated time point. The environment is able to know the
current system time, just by reading the time point value of the last time event
triggered. This feature allows our environment to provide the system time to
the applications. Since both the environment and the applications are aware of
system time, it is possible to use timing values in the properties to be verified
(i.e. in LTL formulae).

The work presented in [3] is a time extension for promela. The principles
explained in that work are generic and may be applicable to different modelling
problems. In our case, we aim at modelling the time management as described
in the apex specification. The context of our approach is automatic model ex-
traction of avionics applications and apex environment modelling. That means
that we are in the position of using modelling techniques specially tailored for
this context. On the other hand, some of the techniques and assumptions made
may not be applicable to other modelling problems.

In the discrete time model of [3], time is divided into slices. The actions take
place inside these slices, making it possible to obtain a measure for the time
elapsed between events belonging to different slices. However, within a slice,
only the relative ordering between events is known. The time elapsed between
events is measured in ticks of a global digital clock that is increased by one
with every such tick. In our case, a time slice may be considered as the time
elapsed between two consecutive time events. The main difference is that the
time slice size is always variable and depends on model behavior. Furthermore,
time events may only happen between two atomic blocks of application codes.
Another significant difference is that we have identified two different use scenar-
ios, depending on whether the execution time of application code blocks is known

16



or not. If execution time is not known, the environment assumes the worst case
over-approximation, that is, the execution time of each code block may be any
value from 0 to infinite. In practice, this means that between two time events, a
process can execute a non-deterministic number of code blocks, unless it makes
an api call involving waiting for an event (TIMED WAIT, etc.).

In principle, as in [3], only the relative ordering between events is known
within a slice. However, if the execution time of code blocks is known, the envi-
ronment making it possible to know the absolute time in which a block of code
was executed. One important point of the work [3] is that it is compatible with
spin partial order reduction algorithm (POR). This is not our case, since we use
the promela the provide sentence which is incompatible with POR. However,
this is not a big performance issue for our model, since the main objective of
POR is to reduce the state explosion caused by non-deterministic process in-
terleaving. Due to the way in which apex processes are scheduled, this kind of
state explosion rarely appears during verification.

Another related development is the RT-Spin package of [11]. RT-Spin extends
promela in order to deal with Real Time. This is the main difference with our
work, since we rely on standard promela.

Finally, another main difference with the works referred to above is that most
of the environment is implemented in C code. This is done using the embedded
C capabilities of spin 4. The embedded C code allows us to use data abstraction
techniques, as those explained in [5].

9 Conclusions

The first and most important conclusion of this work is that verification of apex-
based avionics applications is feasible with spin. We have proven that spin is able
to model apex-like Real-Time management in a correct and efficient manner, if
the right methods and assumptions are used. Our past experience in modelling
apis ([6], [5]). tells us that other features of apex (e.g. inter-partition communi-
cation, process synchronization, etc) can also be modelled in spin. Actually, we
are extending SocketMC to obtain a more generic model extractor that allows
us to automatically verify apex based applications.

The second conclusion is that verification methods and assumptions must be
adapted to each use-scenario. In our case, if application execution times are not
known before the verification, then we must use methods and assumptions that
cope with this incertitude (i.e. Time Management Type 1). On the other hand,
when execution times become available, we must refine the verification using
more accurate methods and assumptions (i.e. Time Management Type 2).

In respect to future work, we have several parallel lines of study. First, we
plan to expand the set of modelled apex services. The next step will be to
include inter-partition and intra-partition communication services. These new
services will be integrated in the ongoing extension of SocketMC[6].

We also want to improve the approach by using memory optimization meth-
ods based on data abstraction [5]. We have detected that in some use-scenarios,

17



the execution times are known, but with some degree of incertitude. For these
scenarios we want to build a Hybrid Time Management, where execution times
are non-deterministically chosen among a limited set of values.

Finally, we realize that apex static configuration (e.g. ports, partitions, time-
schedule, etc.) must also be incorporated into the verification model. For this
purpose, we plan to enable our environment to read external static configuration
information. In the long term, we want to be able to parse apex configuration
XML files and translate them into a spin-friendly configuration.

References

1. ARINC. ARINC Specification 653-2: Avionics Application Software Standard In-
terface Part 1 - Required Services. Aeronautical Radio INC, Maryland, USA, 2005.

2. ARINC. ARINC Specification 653-2: Avionics Application Software Standard In-
terface Part 3 - Conformity Test Specification. Aeronautical Radio INC, Maryland,
USA, 2006.

3. D. Bosnacki and D. Dams. Integrating Real Time into SPIN: A Prototype Imple-
mentation. In Proc. of the FIP TC6 WG6.1 Joint Int. Conf. FORTE XI / PSTV
XVIII ’98, pages 423–438, 1998. Kluwer, B.V.

4. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from java source code. In ICSE
’00: Proc.of the 22nd Int. Conf. on Software Engineering, pages 439–448, 2000.
ACM Press.

5. P. de la Cámara, M. M. Gallardo, and P. Merino. Abstract matching for software
model checking. In 13th Int. Workshop on Model Checking of Software (SPIN06),
pages 182–200, 2006. Springer-Verlag.

6. P. de la Cámara, M. M. Gallardo, P. Merino, and D. Sanán. Model checking
software with well-defined apis: the socket case. In FMICS ’05: Proc. of the 10th
Int. Workshop on Formal methods for Industrial Critical Systems, pages 17–26,
2005. ACM Press.

7. K. Havelund and T. Pressburger. Model Checking Java Programs using Java
Pathfinder. International Journal of Software Tools for Technology Transfer,
2(4):366–381, 2000.

8. G. J. Holzmann and R. Joshi. Model-driven Software Verification. In 11th Int.
Workshop on Model Checking of Software (SPIN04), pages 76–91, 2004.

9. G. J. Holzmann and M. H. Smith. Software model checking: Extracting Verification
Models from Source Code. Software Testing, Verification & Reliability, 11(2):65–
79, 2001.

10. John Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Verification of
Time Partitioning in the DEOS Scheduler Kernel. In ICSE ’00: Proceedings of the
22nd Int. Conf. on Software Engineering, pages 488–497, 2000. ACM Press.

11. S. Tripakis and C. Courcoubetis. Extending Promela and Spin for Real Time.
In Proc. of the 2nd Int. Workshop on Tools and Algorithms for Construction and
Analysis of Systems (TACAS96) , pages 329–348, 1996. Springer-Verlag.

18



A Code of the example

c_state "PROCESS_ID_TYPE apid" "Local p1"
c_state "RETURN_CODE_TYPE ret" "Local p1"
c_state "SYSTEM_TIME_TYPE time" "Local p1"
proctype p1 () provided ( _curSchProc == _pid )
{ CP11:

atomic {
TRACE(11);
A653_GET_MY_ID(&(Pp1->apid),&(Pp1->ret),Pp1->_pid);

}
CP12:

atomic {
TRACE(12);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret));

}
CP13:

atomic {
TRACE(13);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret));

}
CP14:

atomic {
TRACE(14);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret));

}
CP15:

atomic {
TRACE(15);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret));

}
CP16:

atomic {
TRACE(16);
A653_TIMED_WAIT(500,&(Pp1->ret),Pp1->_pid);

}
CP17:

atomic {
TRACE(17);
A653_GET_TIME(&(Pp1->time),&(Pp1->ret));
c_code{

printf("Time = %u \n",Pp1->time);
};

}
CP18:

atomic {
TRACE(18);
A653_STOP_SELF(Pp1->_pid);

}
} }

19



B Test Case checking SET PRIORITY

////////////////////////////////////////////////
//////P1
////////////////////////////////////////////////

proctype P1 () provided ( _curSchProc == _pid ) {
...

}

////////////////////////////////////////////////
//////Master Test
////////////////////////////////////////////////

c_state "RETURN_CODE_TYPE ret" "Local Master_Test"

proctype Master_Test () provided ( _curSchProc == _pid ) {

// Invalid Process Id
atomic {

A653_SET_PRIORITY(INVALID_PROCESS_ID, HIGH_PROCESS_PRIORITY, &(PMaster_Test->ret));
}

// Expected RETURN_CODE == INVALID_PARAM
atomic {

c_code{
if ( PMaster_Test->ret == INVALID_PARAM)
{

printf("T-API-PROC-0340:0010 =PASS\n");
} else
{

printf("T-API-PROC-0340:0010 =FAIL\n");
}

assert(go);
}

}

atomic {
A653_STOP_SELF(PMaster_Test->_pid);

}
}

////////////////////////////////////////////////
//////Init:
////////////////////////////////////////////////

c_code {
PROCESS_ATTRIBUTE_TYPE a_att;
PROCESS_ID_TYPE a_proc;
RETURN_CODE_TYPE a_return;

};
c_track "&a_att" "sizeof(PROCESS_ATTRIBUTE_TYPE)" "Matched"
c_track "&a_proc" "sizeof(PROCESS_ID_TYPE)" "Matched"
c_track "&a_return" "sizeof(RETURN_CODE_TYPE)" "Matched"

20



init{ atomic {

// Init Model
c_code {

MODEL_A653_Init();
};

// Create & Start Master_Test
c_code{

strcpy (a_att.NAME, "Master_Test");
a_att.STACK_SIZE = 200;
a_att.BASE_PRIORITY = REGULAR_MASTER_PROCESS_PRIORITY;
a_att.PERIOD = INFINITE_TIME_VALUE;
a_att.TIME_CAPACITY= INFINITE_TIME_VALUE;
a_att.DEADLINE = HARD;

};

A653_CREATE_PROCESS(&a_att, &a_proc, &a_return,eso2);
A653_START(a_proc,&a_return);

// Create & Start P1
c_code{

strcpy (a_att.NAME, "P1");
a_att.STACK_SIZE = 200;
a_att.BASE_PRIORITY = HIGH_PROCESS_PRIORITY;
a_att.PERIOD = INFINITE_TIME_VALUE;
a_att.TIME_CAPACITY= INFINITE_TIME_VALUE;
a_att.DEADLINE = HARD;

};

A653_CREATE_PROCESS(&a_att, &a_proc, &a_return,eso2);
A653_START(a_proc,&a_return);

// Start Scheduling
A653_SET_PARTITION_MODE(NORMAL,&a_return);
run clock();

}; };

21


